

Copyright © 2000, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MoML - A MODELING MARKUP

LANGUAGE IN XML - VERSION 0.4

by

Edward A. Lee and Steve Neuendorffer

Memorandum No. UCB/BRL MOO/12

14 March 2000

MoML - A MODELING MARKUP

LANGUAGE IN XML - VERSION 0.4

by

Edward A. Lee and Steve Neuendorffer

Memorandum No. UCB/ERL MOO/12

14 March 2000

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720

MoML — A Modeling Markup Language in XML — Version 0.4

Edward A. Lee and Steve Neuendorffer

University ofCalifornia at Berkeley
{eal, neuendor}®eecs.berkeley.edu

March 14, 2000

1.0 MOML PRINCIPLES

MoML is an XML modeling markup language. It is
intended for specifying interconnections of parameterized,
hierarchical components. It makes no assumptions about the
meaning of the components or their interconnections. It pro
vides a concrete syntax for the GSRC abstract syntax (see
http://www.gigascale.org/semantics). It also includes some
features that are not in the abstract syntax, such as annota
tions for visual rendition.

MoML is extensible in that components and their inter
connections can be decorated with data specified in some
other language (such as another XML language). The intent
is to keep MoML very small by representing only the fea
tures of the abstract syntax. A MoN^ parser is expected to
ignore decorations that it does understand. Thus, tools that
can read MoML are able to exchange meaningful data even
if they do not share semantic models, type systems, or other
features of design languages. An example of a tool that
requires only MoML is a visualizer or browser for hierarchi
cal designs.

XML defines a rudimentary syntax for specifying hierar
chical data. An XML language (sometimes called a dialect)
follows this syntax and imposes additional rules defined in a
document type definition (DTD). MoML is such a dialect,
and as such, is fully defined by its DTD,

The key features of MoML include:

• Web integration. XML, the popular extensiblemarkup
language, provides a standard syntax and a standard
way of defining the content within that syntax. The syn
tax is a subset of SGML, and is similar to HTML. It is
intended for use on the Internet, and is intended for pre
cisely this sort of specialization into dialects. File refer
ences are via URIs (in practice, URLs), both relative
and absolute, so MoML is equally comfortable working
on a localized computer or on a network.

• Implementation independence.The MoML language is
designed to work with a varietyof tools. A modeling
tool that reads MoML files is expected to provide a class
loader in some form. Given the name of a class, the
class loader must be able to instantiate it. In Java, the
class loader could be that built in to the JVM. In C++ or
other languages, the class loader would have to imple
mented by the modeling tool.

• Extensibility. Components can be parameterized in two

ways. First, they can have named properties with string
values. Second, they can be associated with an extemal
configuration file that can be in any format understood
by the component. Typically, the configuration will be
in some other XML dialect, such as PlotML or Graph-
icML.

• Supportfor visual rendering. Models in MoML can pro
vide annotations that serve as hints or specifications for
a visual rendering tool, such as a block diagram editor.
This recognizes the reality that hierarchical component-
based designs are a good match for visual renditions.
For example, components can specify a location and can
reference an extemal configuration file that defines a
visual rendition, such as an icon.

• Classes and inheritance. Components can be defined in
MoML as classes which can then be instantiated in a

model. Components can extend other components
through an object-oriented inheritance mechanism. It is
important to recognize that this mechanism operates at
the level of the abstract syntax, and therefore can be
used in a variety of contexts.

• Semantics independence. MoML defines no semantics
for an interconnection of components. It instead pro
vides a mechanism for attaching a "director" to a model.
The director defines the semantics of the interconnec
tion. MoML knows nothing about directors except that
they are instances of classes that can be loaded by the
class loader.

The key observation in the design of MoML is that the most
important decision for such a language is the abstract syntax
supported by the language, not the concrete syntax. It is far
less important what punctuation is used, and how the textual
data is structured, than what the data represents. MoML is
intended to provide a concrete syntax for the GSRC abstract
syntax, although the GSRC abstract syntax is evolving, so
some of the features of the GSRC abstract syntax are missing
from MoML. The concrete syntax follows from the abstract
syntax by designing an XML dialect to most concisely repre
sent this abstract syntax.

A MoML tool has been constructed using Ptolemy II [1],
which provides a sanity check and a reference implementa
tion. Some of the examples below illustrate how MoML is
used with Ptolemy II, but keep in mind that MoML is
designed carefully to be tool independent. Its key depen-

dence is on the abstract syntax, and in principle, it can be used
with any tool thatis compatible with theabstract syntax.

1.1 Clustered Graphs

A model is given as a clustered graph, an abstract syntax for
netlists, state transition diagrams, block diagrams, etc. An
abstract syntaxis a conceptual data organization. It can be con
trasted with a concrete syntax^ which is a syntax for a persistent,
readable representation of the data, such as EDIF for netlists.
MoML is a concrete syntax for the clustered graph abstract syn
tax.A particular graph configuration is called a topology.

Certain features of the GSRC abstract syntax extend beyond
clustered graphs and are not yet supported by MoML. In particu
lar, MoML does not yet support heterarchy. Also, the reference
implementation currently only supports tree-structured contain
ment relationships, rather than the directed acyclic graphs
(DAGs) modeledin the GSRC abstractsyntax.

A topology is a collection of entities, ports, and relations. We
use the graphical notation shown in figure 1, where entities are
depicted as rounded boxes and relations as diamonds. Entities
contain ports, shown as filled circles, and relations connect the
ports. We consistently use the term connection to denote the asso
ciation between connected ports (or their entities), and the term
link to denote the association between ports and relations. Thus, a
connection consists of a relation and two or more links.

Relations are intended to serve a mediators, in the sense of the
Mediator design pattern of Gamma, et al. [2]. "Mediator pro
motes loose coupling by keeping objects from referring to each
other explicitly..." For example, a relation could be used to direct
messages passed between entities. Or it could denote a transition
between states in a finite state machine, where the states are rep
resented as entities. Or it could mediate rendezvous between pro
cesses represented as entities. Or it could mediate method calls
between loosely associated objects, as for example in remote
method invocation over a network.

1.2 Abstraction

Composite entities (clusters) are entities that can contain a
topology (entities and relations). Clustering is illustrated by the
example in figure 2. A port contained by a composite entity has
inside as well as outside links. Such a port serves to expose ports
in the contained entities as ports of the composite.This is the con
verse of the "hiding" operator often found in process algebras.

Connection

Link
Entity

Relation Port

Connection Connection

Port

Entity

Figure 1. Visual notation and terminology.

Ports within an entity are hidden by default, and mustbe explic
itly exposed tobe visible (linkable) from outside the entity^ The
composite entity with ports thus provides an abstraction of the
contents of the composite.

2.0 SPECIFICATION OF A MODEL

In this section, we describe the XML elements that are used to
define MoML models.

2.1 Data Organization

As with all XML files, MoML files have two parts, one
definingthe MoML languageand one containing the modeldata.
The first part is calledthe document typedefinition, or DTD.This
dual specification of content and structure is a key XML
innovation. The DTD for MoML is given in figure 3. If you are
adept at reading these, it is a complete specification of the
language. However, since it is not particularly easy to read, we
explain its key features here.

Every MoML file must either contain or refer to a DTD. The
simplest way to do this is with the file structure shown below:

<?xml versions'1.0" standalone="no"?>

<!DOCTYPE model PUBLIC

"-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_l.dtd">
<model names "inodelname" classs "classname">

model definition ...

</model>

Here, "model definition" is a set of XML elements that specify a
clustered graph. The syntax for these elements is described in
subsequent sections. The first line above is required in any XML
file. It asserts the version of XML that this file is based on (1.0)
and states that the file includes external references (in this case, to
the DTD). The second through fourth lines declare the document
type (model) and provide references to the DTD.

The references to the DTD above refer to a "public" DTD.
The name of the DTD is - / /uc Berkeley/ /dtd MoML 1/ /EN,

Figure 2. Abstraction and aggregation.

I. The GSRC abstract syntax rejects level-crossing links. MoML can
express these, but they are discouraged, and a particular MoML tool is
likely to reject them.

<!ELEMENT model (class | configure | director | doc] entity | import |
link 1 property | relation | rendition)*>

<!ATTLIST model name CDATA #REQUIRED

class CDATA #IMPLIED>

<(ELEMENT class (class | Configure | director | doc | entity | import |
property | relation | rendition)*>

<!ATTLIST class name CDATA SREQUIRED
extends CDATA #IMPLIED>

link 1

<!ELEMENT configure (#PCDATA)>
<!ATTLIST configure source CDATA #IMPLIED>

<!ELEMENT director (configure | property)*>
<!ATTLIST director name CDATA "director"

class CDATA #REQUIRED>

<!ELEMENT doc (#PCDATA)>

<(ELEMENT entity (class | configure | director j doc | entity | import
link 1 port | property | relation [rendition)*>

<(ATTLIST entity name CDATA #REQUIRED
class CDATA #IMPLIED>

1 link 1 port |

<(ELEMENT import EMPTY>
<(ATTLIST import source CDATA ftREQUIRED

base CDATA #IMPLIED>

<(ELEMENT link EMPTy>

<(ATTLIST link port CDATA #REQUIRED
relation CDATA ((REQUIRED
vertex CDATA #IMPLIED>

<(ELEMENT location EMPTY>

<(ATTLIST location value CDATA #REQUIRED>

<(ELEMENT port (configure | doc 1 property)*>
<(ATTLIST port class CDATA #IMPLIED

name CDATA #REQUIRED>

<(ELEMENT property (configure 1 doc | property)*>
<(ATTLIST property class CDATA #IMPLIED

name CDATA #REQUIRED
value CDATA #IMPLIED>

<(ELEMENT relation (property \ vertex)*>
<(ATTLIST relation name CDATA #REQUIRED

class CDATA #IMPLIED>

<(ELEMENT rendition (configure | location | property)*>
<(ATTLIST rendition class CDATA #REQUIRED>

<(ELEMENT vertex (location | property)*>
<(ATTLIST vertex name CDATA ((REQUIRED

pathTo CDATA #IMPLIED>

Figure 3, MoML version 1 DTD.

which follows the standard naming convention of public DTDs.
The leading dash indicates that this is not aDTD approved by
any standards body. The first field '̂ '•urrounded bydouble slashes,
in the name of the"owner" of the DTD, "UC Berkeley." The
next field is the name of the DTD "DTD MoML 1" where the
"1" indicates version 1 of the MoML DTD. Thefinal field, "EN"
indicates that the language assumed by the DTD is English.

In addition to the name of the DTD, the DOCTYPE element
includes a URL pointing to a copy of the DTD on the web. If a
particular MoML tool does not have access toa local copy of the
DTD, then it finds it at this web site.

The "model" element may be replaced by a "class" element,
as in:^

<?xml version="l.0" standalone="no"?>

<!DOCTYPE class PUBLIC "..." "http://..."
<class naine="jnodeliiame" class="classnajne">

class definition ...

</class>

We will say more about class definitions below.

The DTD may be givendirectly as a relativeor absolute URL
instead ofa public DTD, using thefollowing syntax:

<?xinl version="1.0" standalone="no"?>

<!DOCTYPE model SYSTEM "DTD location'>
<model naiixe='modelnaine" class='classnaine'>

model definition ...

</model>

Here, "DTD location" is a relative or absolute URL.

A third option is to create a standalone MoML file that
includes the DTD. Theresult is rather verbose, buthasthe general
structure shown below:

<?xml versions"1.0" standalone="yes"?>
<!DOCTYPE model [

DTD information

]>

<model name= "modelname" class=" classj7ame">
model definition ...

</model>

2.2 Overview of XML

An XML document consists of the header tags "<?xml . . .
?>" and "< ! DOCTYPE ... >" followed by exactly one
element. The element has the structure:

start tag

body

end tag

where the start tag has the form

<elementName attributes>

1. We omit the DTD name and URL henceforth for conciseness.

and the end tag has the form

</elementName>

The body, if present, can contain additional elements as well as
arbitrary text. If the bodyis not present, then the elementis said to
beempty, it can optionally bewritten using theshorthand:

<elementName attributes/>

wherethe bodyand end tag are omitted.
The attributesare given as follows:

<elementName attributeNarae="attributeValue" />

Which attributes are legal in an element is defined by the DTD.
The quotation marks delimit the attributes, so if the attribute value
needs to contain quotation marks, then they must begiven using
the special XML entity """ as in the following example:

<elementName attributeName="&<iuot; foo&quoC; "/>

The value of the attribute will be

'too'

(with the quotation marks).

In XML """ is called an entity, creating possible con
fusion with our use of entity in MoML. In XML, an entity is a
named storage unit of data. Thus, """ references an entity
called"quot" that stores a doublequote character.

The keyword "SYSTEM" (which was seen above) indicates
that an external URL or URIgivesan entity(above it is the loca
tion of the DTD). This choice of keyword is positively peculiar,
but we must live with it. The keyword "CDATA" (which we will
encounter below) refers to "character data."

2.3 Names and Classes

Most MoML elements have name and class attributes. The
name is a handle for the objectbeing defined or referenced by the
element. In MoML, the same syntax is used to reference a pre
existing object as to create a new object. If a new object is being
created, then the class attribute (usually) mustbe given. If a pre
existing object is being referenced, or if the MoML reader has a
built-in default class for the element, then the class attribute is
optional. If theclassattribute is given, thenthepre-existing object
must be an instance of the specified class.

A name is either absolute or relative. Absolute names begin
with a period "." and consist of a series of name fields separated
by periods, as in ".x.y.z". Each namefield can have alphanumeric
characters or the underscore character. The first field is the
name of the top-level model or clziss object. The second field is
the name of an object immediately contained by that top-level.

Any name that does not begin with a period is relative to the
current context, the object defined or referenced by an enclosing
element. The first field of such a name refers to or defines an
object immediately contained by that object. For example, inside

of an object with absolute name ".x" the name "y.z" refers to an
object with absolute name ".x,y.z".

A name is required to be unique within its container. That is,
in any given model, the absolute names of all the objects must be
unique. There can be two objects named "z", but they must not be
both contained by ".x.y".

2.4 Model Element

A very simple MoML file looks like this:

<?xinl versions" 1.0" scandalone="no"?>

<!DOCTYPE model PUBLIC "..." "hctp://...">

<model Hcunes "modeiname" class="ciassnanie">

</model>

A model element has name and class attributes. This value of the
class attribute must be a class that instantiable by the MoML tool.
For example, in the Ptolemy II reference implementation, we can
define a model with:

<?xml versions"1.0" standalone="no"?>

<!DOCTYPE model PUBLIC "..." "http://...">

<model names"ptilmodel"
classs"Ptolemy.actor.TypedCompos1teActor">

</model>

Here, ptolemy.actor .TypedCompositeActor is a class
that a Java class loader can find and that the MoML parser can
instantiate. In Ptolemy II, it is a container class for clustered
graphs representing executable models or libraries of instantiable
model classes.

2.5 Entity Element

A model typically contains entities, as in the following
Ptolemy II example:

<?xml versions"!.0" standalones"no"?>

<!DOCTYPE model PUBLIC "..." "hCtp://...">
<model names"ptilmodel"

classs"ptolemy.actor.TypedCompos i teActor">
<entity names"source"

classs"ptolemy.actor.lib.Ramp"/>
<entity names"sink"

classs"ptolemy.actor.lib.SequencePlotter"/>
</model>

Notice the common XML shorthand here of writing "<entity
/>" rather than "<entity . . .></entity>." Of

course, the shorthandonly works if there is nothingin the bodyof
the entity element.

An entity can containother entities, as shown in this example:

<model names"ptilmodel"
classs"ptolemy.actor.TypedCompos iteActor">

<entity names"container"
classs"ptolemy.actor.TypedCompos iteActor">

<entity names"source"

classs"ptolemy.actor.lib.Ramp"/>
</entity>

</model>

An entity must specify a class unless the entity already exists in
the containing entity or model. The name of the entity reflects the
container hierarchy. Thus, in the above example, the source entity
has the full name " .ptilmodel. container. source".

The definition of an entity can be distributed in the MoML
file. Once created, it can be referred to again by name as follows:

<model neune="top" class= "classnanie">

<encity name="x" class="classname"/>

<entity name="x">

<property name="y">

</entity>

</model>

The property element is added to the pre-existing entity with
name "x" when the second entity element is encountered.

In principle, MoML supports multiple containment, as in the
following:

<model names"top" classs"classname">

<entity names"x" classs"classname"/>

<entity names"y" classs"classname">

<entity names".top.x"/>

</entity>

</model>

Here, the element named "x" appears both in "top" and in
".top.y". Thus, it would have two full names, ".top.x" and
".top.y.x". However, the Ptolemy II reference implementation
does not (yet) support this, as it implements a strict container rela
tionship, where an object can have only one container. Thus,
attempting to parse the above MoML will result in an exception
being thrown.

2.6 Properties

Entities (and some other elements) can be parameterized.
There are two mechanisms. The simplest one is to use the
property element:

<entity names"source"

classs"ptolemy.actor.lib.Ramp">
<property names"init" values"5"

classs"ptolemy.data.expr.Parameter"/>

</entity>

The property element has a name, at minimum (the value and
class are optional). It is common for the enclosing class to already
contain properties, in which case the property element is used
only to set the value. For example:

<entity names"source"

classs"ptolemy.actor.lib.Ramp">
<property names"init" values"5"/>

</entity>

In the above, the enclosing object {source^ an instance of
ptolemy .actor. lib. Ramp) must already contain a prop
erty with the name init. This is typically how library components

are parameterized. It is up to a MoML tool, such as Ptolemy II, to
interpret the value string.

A property can be declared without a class and without a pre
existingpropertyif it is apureproperty,one with only a nameand
no value. For example:

<entity name="source"

class="ptolemy.actor.lib.Ramp">
<property name="abc"/>

</entity>

A property can also contain a property, as in

<property ncune="x" value="5">

<property name="y" value="10"/>

</property>

A second, much more flexible mechanism is provided for
parameterizing entities. The configure element can be used to
specify a relative or absolute URL pointing to a file that config
ures the entity, or it can be used to include the configuration infor
mation in line. That information need not be MoML information.
It need not even be XML, and can even be binary encoded data
(although binary data cannot be in line; it must be in an external
file). For example,

<entity name="sink"

class="ptolemy.actor.lib.SequencePlotter">
<configure source="riJenanie"/>

</entity>

Here, filename can give the name of a file containing data. (For
the SequencePlotter actor, that external data will have PlotML
syntax; PlotML is another XML dialect for configuring plotters.)
Configure information can also be given in the body of the
MoML file as follows:

<entity name="sink"

class="ptoleroy.actor.1ib.SequencePlotter">
<configure>

configure information

</configure>

</entity>

With the above syntax, the configure information must be textual
data without any markup (no "<" or ">"). If you wish to include
markup, use the standard XML syntax for preventing the parsing
of the markup:

<entity name="sink"

class= "ptolemy. actor. 1 ib. SecjuencePlotter" >

<configure> <![CDATAt

configure information with markup

]]></configure>

</entity>

Everything between "< ! [CDATA [" and "]] >" will be passed to
the class as configuration information. The data must be textual,
but it can now contain markup. The only constraint is that it can
not contain the termination string "]] >", so it cannot itself con
tain a similarly escaped body of CDATA information. This

mechanism is particularly useful if the configuration is XML data
conforming to some other DTD (i.e., non-MoML XML or
HTML).

You can give both a source attribute and in-line configuration
information, as in the following:

<entity naine="sink"

class="ptoleiny. actor. lib. SequencePlotter">

<configure source="filename">

configure information
</configure>

</entity>

In this case, the file data will be passed to the application first,
followed by the in-line configuration data.

In Ptolemy II, the configure element is supported by any class
that implements the Configurable interface. That interface defines
a configureO method that accepts an input stream. Both external
file data and in-line data are provided to the class as a character
stream by calling this method.

2.7 Doc Element

Some elements can be documented using the doc element. For
example,

<entity name="source"

class="ptolemy.actor.lib.Ramp">

<property name="init" value="5">
«3oc> Text here ... </doc>

</property>

<doc> Text here ... </doc>

</entity>

With the above syntax, the documentation information must be
textual data without any markup (no "<" or *•>"). If you wish to
include markup, use the standard XML syntax for preventing the
parsing of the markup. For example, to use HTML in the docu
mentation, do something like this:

<entity name="source"

class="ptolemy.actor.lib.Ramp">

<doc><!(CDATA[

<Hl>ritIe</Hl>

<P>Text</P>

])></doc>

</entity>

Everything between "<! [CDATA [" and "]] >" will be recorded
as documentation. The only constraint is that it cannot contain the
termination string "]] >", so it cannot itself contain a similarly
escaped body of CDATA information.

More than one doc element can be included in an element.

Utilities such as graphical editors are responsible for consolidat
ing the documentation given by each in the order in which they
are given.

2.8 Ports

An entity can declare a port:

<entity name="A" class="classnaine">

6

<port names"out"/>

</entity>

In the above example, no class is given for the port, so the port is
requiredto alreadyexist in the class for entityA. Alternatively, we
can specify a class name, as in

<entity names"A" classs"ciassnaflie">

<port names "out" classs"cJassnanie"/>

</entity>

In this case, a port will be created if one does not already exist. If
it does already exist, then its class is checked for consistency with
the declared class (the pre-existing port must be an instance of the
declared class). In Ptolemy II, the typical classname for a port
would be ptolemy. actor. TypedlOPort.

In Ptolemy II, it is often useful to declare a port to be an input,
an output, or both. To do this, enclose in the port a property
named "input" or "output" or both, as in the following example:

<port names"out" classs"ptolemy.actor.l0Port">

<property names"output"/>

</port>

This is an example of a pure property. Note that this convention is
not part of the MoML definition. This illustrates one of the ways
in which MoML extensible.

2.9 Relations and Links

To connect entities, you create relations and links. The
following example describes the topology shown in figure 4:

<model names"top" classs"classname">

<entity names"A" classs"classname">

<port names"out"/>

</entity>

<entity names"B" classs"classname">

<port names"out"/>

</entity>

<entity names"C" classs"classname">

<port names"in">

<property names"multiport"/>

</port>

</entity>

Figure 4. Example topology.

<relation name="rl" class="cJassname"/>

<relation name="r2" class="ciassname"/>

<link porc="A.out" relation="rl"/>

<link ports"B.out" relations"r2"/>

<link ports"C.in" relations"rl"/>

<1ink ports"C.in" relations"r2"/>

</model>

Notice that this example has two distinct links to C. in from two
different relations. The order of these links may be important to a
MoML tool, so any MoML tool must preserve the order in which
they are specified.

In the Ptolemy II reference implementation, the typical class-
name for a relation would be ptolemy. actor. TypedlORe-
lation. As usual, the class attribute may be omitted if the
relation already exists in the containing entity.

2.10 Classes

So far, entities have been instances of externally defined
classes accessed via a class loader. They can also be instances of
classes defined in MoML. To define a class in MoML, use the
class element, as in the following example from Ptolemy II:

<class name="Gen"

excends="ptolemy.actor.TypedCompositeActor">
<entity name="ramp"

class="ptolemy.actor, lib. Reimp">
<port name="output"/>

<property name="step" value="2*PI/50"/>

</entity>

<entity name="sine"

class="ptolemy.actor.lib.Sine">
<port name="input"/>

<port name="output"/>

</entity>

<port name="output"

class="ptolemy.actor.TypedlOPort"/>
<relation name="rl"

class="ptolemy.actor.TypedIORelation"/>
<relation name="r2"

class="ptoleray.actor.TypedlORelation"/>
<link port="ramp.output" relations"rl"/>
<link ports"sine.input" relations"rl"/>

<link ports"sine.output" relations"r2"/>

<link ports"output" relations"r2"/>

</class>

The class element may be the top-level element in a file, in which
case the DOCTYPE should be declared as "class". It can also be

nested within a model. The above example specifies the topology

shown in figure 5. Once defined, can be instantiated as if it were a
class loaded by the class loader:

<entity name=" instancenajne" class= "cIassname"/>

The class name follows the sameconvention as entity names. In
fact, a class is an entity with the additionzil feature that one can
create new instances of it with the entity element.

In the above example, the relative name of the class is "Gen".
Theclass name might be". Gen" if theclass is defined at thetop
level, as follows:

<?xinl versions"1.0" standalone="no"?>

<!DOCTYPE class PUBLIC "http://...">
<class names"Gen"

extendss"ptolemy.actor.TypedCompositeActor">
class definition ...

</class>

Alternatively, it may have fiill name
as follows:

. top. Gen" if it is defined

<?xml versions"1.0" standalones"no"?>

<!DOCTYPE class PUBLIC "http://...">
<model names"top"

extendss"ptolemy.kernel.CompositeEntity">
<class names"Gen"

extendss"ptolemy.actor.TypedCompositeActor">
class definition ...

</class>

</model>

This allows a library of class definitions to be conveniently col
lected within a single MoML file.

The Genclass given at thebeginning of this subsection gener
ates a sine wave with a periodof 50 samples. It is not all that use
ful without being parameterized. Let us extend it and add
properties:

<class name="Sinegen" extends="Gen">
<property name="sart5)lingFreciuency"

value="8000.0"

class="ptolemy.data.expr.Parameter">
<doc>The sampling frequency in Hertz.</doc>

</property>

<property name="frequency"

value="440.0"

class="ptolemy.data.expr.Parameter">
<doc>The frequency in Hertz.</doc>

</property>

output
output

input

Figure 5. Sine wavegeneratortopology.

<property names"phase"

values"0.0"

classs"ptolemy.data.expr.Parameter">

<doc>The phase, in radians.</doc>
</property>

<property names"ramp.step"

values" frequency*2 •PI/saii^lingFrequency">
<doc>Formula for the step size.</doc>

</property>

<property names"ramp.init" values"phase"/>
</class>

This class extends Gen by adding threeproperties, and then sets
the properties of the component entities to have values that are
expressions.

2.11 Directors

Recall that a clustered graph in MoML has no semantics.
However, a particular model has semantics. It may be a dataflow
graph, a state machine, a process network, or something else.To
give it semantics, MoML allows the specification of a director
associated with a model, an entity, or a class. The following
examplegivesdiscrete-event semantics to a PtolemyII model:

<model name="top"

class="ptolemy.actor.TypedCompositeActor">
<director

class="ptolemy.domains.de.kernel.DEDirector">
<property name="stopTime" value="100.0"/>

</director>

</model>

This example also sets a propertyof the director.

2.12 Import Element

Given the ability to have class definitions and clusters, it is
unlikely that interesting designs will reside in a single file. You
can import definitions in another file by giving a relative or
absolute URL in an element like this:

<import: source="URL"/>

or

<import base="URL" source="URL"/>

The (optional) basespecifies a URLwithrespect to which therel
ative source URL should be interpreted. If no base is specified,
then the base of the current document (the one containing the
import statement)is used, or if the currentdocument has no base,
then the current working directory is used.

For example, you might import a library of classes. The
imported file must be a MoML file. If it defines classes with
names that match classes previously defined, then the new defini
tions replace the old. Imported models are always defined at the
top level of the hierarchy, regardless of wherethe importelement
is found. Thus, if the imported file contains

<model name="top"

8

class="Ptolemy.actor.CompositeEntity">
<class name="Gen"

extends="ptolemy.actor.TypedCompositeActor'

</class>

</model>

then the class should be referenced by the absolute name
". top. Gen" always, even if the import element occurs within
an entity definition.

Notice that since an import element may result in a class defi
nition that replaces a previous class definition, it matters where in
a MoML file you place the import element. Any elements before
it use definitions in place before the imported file is read. Any
elements after it will use the new definitions.

2.13 Annotations for Visual Rendering

The abstract syntax of MoML, clustered graphs, is amenable
to visual renditions as bubble and arc diagrams or as block
diagrams. To support tools that display and/or edit MoML files
visually, there are two simple annotations that can be attached to
entities and relations. A tool that does not support visual
renditionsjust ignores these annotations. A visual rendition might
be an icon, the layout of a circuit, an image of the structure of a
component, or anything else that can be rendered visually.

First, an entity can specify a rendition as in the following
example:

<entity name="ramp" class="ptolemy.accor.lib.Rarap">
<port name="output"/>

<rendition class="iconCiass">

<location value="100, 100"/>

</rendition>

</entity>

The iconClass depends on the visual rendering tool being used.
The location element specifies the location of the icon in the
visual field. MoML makes no assumptions about how this loca
tion is specified; its value is just a string. The location element is
not required, so a MoML tool should be prepared to place the icon
without a specified location.

The second type of annotation supports paths that connect
ports. Consider the following example:

<relation name="r"

class="ptolemy.actor.TypedlORelation">
<vertex name="vl">

<location value="100, 100"/>

</vertex>

<vertex name="v2" pathTo="vl">

<location value="100, 200"/>

</vertex>

</relation>

<link port="A.out" relation="r" vertex="vl"/>

<link port="B.in" relation="r" vertex="vl"/>

<link port="C.in" relation="r" vertex="v2"/>

This assumes that there are three entities named A, B, and C. The
relation is annotated with a set of vertices, which will normally be
rendered as graphical objects with a location. The vertices are
linked together with paths, which in a simple visual tool might be

straight lines, or in a more sophisticated tool might be autorouted
paths.

Figure 6 illustrates how the above fragment might be ren
dered. The square boxes are icons for the three entities. They have
ports with arrowheads suggesting direction. There is a single rela
tion, which shows up visually only as a set of lines and two verti
ces. The vertices are shown as small squares.

The link elements specify not just a relation, but also a vertex
within that relation. This tells the visual rendering tool to draw a
path from the specified port to the specified vertex.

3.0 PTOLEMY II IMPLEMENTATION

MoML is intended to be a generic modeling markup language,
not one that is specialized to Ptolemy II. As such, Ptolemy II may
be viewed as a reference implementation of a MoML tool. In
Ptolemy II, MoML is supported by two packages, the moml
package and the actor.gui package.

The moml package contains the classes shown in figure 7,
which is a UML static structure diagram. The basis for the MoML
parser is the parser distributed by Microstar. This parser is used in
Ptolemy II in both applications and applets, as shown in figure 8.
The moml package (figure 7) also includes a set of attribute
classes that decorate the objects in a model with MoML-specific
information.

The parseO methods of the MoMLParser class read MoML
data and construct a Ptolemy II model. The exportMoMLO meth
ods of Ptolemy II objects can be used to produce a MoML file
given a model. Thus, MoML can be used as the persistent file for
mat for Ptolemy II models.

3.1 Command-line Invocation

A model defined as a MoML file may be executed on the
command-line by typing

ptolemy filename.xml

This assumes that the ptolemy executable is in your path. That
executable creates an instance of the class PtolemyApplication,
shown in figure 8. That class contains an instance of Model-
Frame, which defines a top-level window that serves as an inter
face for executing a model. An example of such a top-level
window is shown in figure 9. The ModelFrame is actually just a
top-level window and a menubar containing an instance of Mod-
elPane. The ModelPane has two parts. On the left, it displays all
the top-level parameters of a model and its director, permitting the
user to interactively edit them. On the right, it stacks the displays
of any components in the model that implement the Placeable
interface, such as signal plotters.

Figure 6. Example showing how MoML might be visually rendered.

The ptolemy executable has the following usage:

Usage: pcolemy [options] [file ...]

Options that take values:

-class <classname>

-<paranieter naine> <paraineter value>

Boolean flags:

-help -test -version

com.mlcrosUu'.xml.HanderBaM

«attiibuts(name; String, value: String. isSpeciried: boolean)
i-KharOat^data: charfl, start:int. length: int)
i-KiocTypeDecl{naine: String. publicID: Sti^, systemlO: String)|
leraffliocumentO I
•fendElement{nanie: String) |<1"
-wndExtemalEntityfsyslefnlD: String) i
•fenor(nnessage : String, systemID: String, line: int, coiumn: int)|
•HgnofBt)leWhitespBce(data: chatQ, start: int, length; int)
>prooessingln3tnjction(target: String, data: String)
i-resolveEntitytpubiicIO; String, systemID: String)
♦startOocumentO
4'StartElement(Rame: String)
<-startExtemalEntity(aystemlD: String)

cocn.fnlcrostar.xmlJ(ni]Pars«rj

•Interface-

LocataUe

'fgetLocatlonO; doubleQ
-••setLocationilocation: doublsQ)

IT

Vertex

-.location; intfl

Notice that more than one MoML file can be given. The result is
that multiple files will be executed in the same Java virtual
machine, in separate threads. By default, models are opened using
the PtolemyApplication class. However, any other class with a
mainO method can be specified instead using the -class option.

If a model has top-level parameters, the default value of those
parameters can be given on the command line. Also, the director
parameters can be set by the same mechanism. For example,

bash-2.02$ cd SPTII/ptolemy/moral/demo

MoMLParser

♦MoML DTD 1 : String

•_baso: URL
.current: Object
•_currentBement: String
'.manager: Manager
'jianel: Container
-jKirser: XmlPatser

.toplevel: NamedOt^

.workspace: Workspace

-fMoMLParserQ
-♦MoMLParseitw: Workspace)
-♦MoMLParsertw: Workspace, container: Container)
-r-parsetbase: URL,input: tnputStream): NamedObj
't'parse(base : URL,reader: Reader): NamedObj
'••parse<input: String): NamedOtq
O.currentExtemaiEntityO: String

Attribute

[•fgetContainerQ: Name^bj|

rj

Icon

•.location: intQ
-.linked: Vertex
•jorts: LinkedUst

•>lccn(contamer: TypedCompositeActor, name: String)

Documentation

-.value: String

•rccnsolidatefctxect NamedObii: Sirino

-fgetValueO: String
•i.setVaIue(value: String)•»>Vertsx(contair«er: Relation, name: String)

■♦getLlnkedVertexO; Vertex
•»setLinkedVertex(vertex: Vertex)

I Reialion

Port

Links

■♦Unks^container:Port, name: String)
•faddjlinkNumber: int, vertex: Vertex)
-t-clearO
-fgetjiinkNumtrer: int): Vertex
-fisEmptyO: boolean
+iterator(): Iterator

removejiinkNumber: int): Vertex
■♦sizeO: int

Figure 7. Classes supporting MoML in the moml package.

10

Import

-.source: URL

-♦getSourceO: URL
•»setSouree(origin: URL)

bash-2.02$ ptolenv -iterations 1000 modulation.xml

results in the display shown in figure 9.

3.2 Applets

The same XML file can be used in an application or an applet.
The applet mechanism is explained in detail in this subsection. An
applet is a Java class that can be referenced by an HTML file and

accessed over the web. For details, see the Ptolemy II documenta
tion.

3.3 Support Methods

A number of methods have been added to the Ptolemy II
kernel classes to support MoML. The following methods of
NamedObj (and derived class) are particularly useful:

de£erMoMLDe£init:ionTo (de£erTo: NamedObj)

•Interface*
ExocuOofjUstanor

fexscutionEnQr(m; Manager, ex: ExoepQcn)
'fexacutionFinishe(l(m: Manager)
»managefStateChange(f(m: Manager)

ComposlteAetorApplication

t_rnodels: List

JApplet

, tdestroyO
r^tApplettnloO: String
+getParametertnfo(): String)])]
-^initO
^sta^
♦stopQ

BasicJApplet

♦C(xiipanentActorAppIication(args:Strihg(])
r-addCmode!:ComposileActor)
♦malnrams; SWivitn

«remcve(mo(lel: ComposileActor)
ttepott(message: String)
'freportiex: Exception)
+report(mess8ge: Str^, ex: Exception)
+8tartRun(model: CompositeActor)
+w8itFbrF!nisti()
«_parseArg(arg: String): boolean
«_parseA^args;String)!)
*_usageO: String

i-)-raport(ex: Exception)
i-)-report(message: String)
j+rajxxt(message; String, ex; Exception)
j«_concatStringArrays<first: String)])], second: String)])!): String)!)
j»_9etSlaclOrrace(ex: Exception): String

MoMLAppBcotlon

i-MoMLApptic8tion(8rgs: String)])
•.matnTaros; Slrinntn

»_rea(l(ba3e: URL, in: InputStream)

PtolemyApplication

Jrames: Hash Map
tPtolemyApp(ication(args: String)])
.createFtame(model: CompositeActor): ModelFrame
.mainiaros: Strinollt

parse(l)ase: URL, in: InputStream)]

PtotamyAppM

n.manager; Manager
>_setupOK; boolean
'.toplevel; CompositeActor
Hjwotfcspace: Worlcspace

crealeFlunControlsfnumber; int); JPanel
»_SOO
0-StopO

MoMLApplet

Modefframe

.application; GUIApptication

.nwdel: CompositeActor
•jpane: ModelParte

+ModelFfame(model: CompositeActor. app ; GUIApptication)
4getModeI(); CompositeActor
+modelPaneO: ModelPane
4repcirt)ex: Exception)
Meport(message: String)
'Keport(ex: Exception, message: String)
+setModel(model; CompositeActor)
#_3tlOUt()
«_ciose()
#_he!pO
'.open))
KjirintO
#_save()
*_saveAs))

creates

JPanel

.model: CompositeActor

+ModeIPane(inodei: CompositeActor)
.getDisptayPane)); Container
+getModelO: CompositeActor
.setOelaultButtonO
'.setDisplayPane(pane: Container)
-tsetModei(model: CompositeActor)
+startRunO
♦stopRunQ

JMent£ar

Figure 8. Applet and applicationclasses in the actor.gui package.

11

deferredMoMLDefinitionFrom{): List
exportMoML(): String

exportMoML(output: Writer)

exportMoML{output: writer, depth: int)

_exportMoMLContents(output: Writer, depth: int)

The first two of these permit an object to instantiateanother "by
reference."This means in particular that when the object is asked
to describe itself using MoML, it defers to the reference.

The rest of these methods support exporting MoML. Since
any object derived from NamedObj can export MoML, MoML
becomesan effectivepersistentformat for PtolemyII models. It is
much more compact than serializing the objects, and it reflects a
stable initial state of the objects rather than whatever happens to
bethe current state (say, in ^e middle ofa model execution).

3.4 Special Attributes

A number of classes derived from Attribute are shown in
figure 7. These classes are used to decorate a Ptolemy II object
with additional information that is relevant to a GUI or other user
interface.They generate their own MoML representations. Some
of these are described here.

Doc element. When a MoML file is parsed by Ptolemy II, a doc
element is converted to an instance of thespecial property of class
Documentation. This property is contained by the entity, port, or
relation that encloses the doc element. There may be more than
one instance of Documentation contained by a single object. To
extract all documentation that has been so associated with an
object, use code like the following;

import Ptolemy.kernel.util.NamedObj;
import Ptolemy.moml.Documentation;

NamedObj obj = object with documentation;

Iterator docs = obj.attributeList(Documenta

tion.class) ;

while (docs.hasNextO) {

Documentation doc = (Documentation)docs.next();

System.out.println(doc.getValue());
}

This code would be used, for example, by a GUI wishing to
present documentation.

3.5 Inheritance

MoML supports inheritance by permitting you to extend
existing classes. Ptolemy II reads MoML that uses this
inheritance mechanism. For example, consider the following
MoML file:

<?xml version="1.0" scandalone="no"?>

<!DOCTYPE model PUBLIC " . . . " "http://...">
<model ncmie= "top-

class^ "ptolemy. kernel .CompositeEntity">
<class name="base"

extends=-ptolemy.kernel.CoffipositeEntity">
<entity name="el"

class="ptolemy.kernel.ComponentEntity">
</entity>

</class>

<class name="derived" extends="base">

<entity name="e2"

class="ptolemy.kernel.ComponentEntity"/>
</class>

</model>

Here, the "derived" class extends the "base" class by adding
another entity to it. However, there is a key limitation in Ptolemy
II. Invoking the exportMoML() methods discards the inheritance
link. For the above example, top. exportMoML () will pro
duce:

<?xml version=-l.0" standalone="no"?>

<!D0CTYPE model PUBLIC "..." "http://...">
<model name="top"

class="ptolemy.kernel.CompositeEntity">
<class name="base"

extends^: "ptolemy. kernel. CompositeEntity">
<entity name="el"

class="ptolemy.kernel.ComponentEntity"/>

</class>

<class naroe="derived"

extends="ptolemy.kernel.CompositeEntity">

<entity name="el"

Foe ^

j Go I • si«) i

htodel parameters:

ifWfHBiicvt:-Prti 2

fiei(UKrtcv3: pm 02

Director parameters:

neiatmiis; jiooo

Modulated Waveform Example

-execution finished.

ao O.t 0.2 0-3 0.4 0.5 0.6 0.7 0.8 0.9 1,0

sample count

Figure 9. Sinusoidal modulation example specified in MoML.

class="Ptolemy.kernel.ComponentEntity"/>
<entity naine="e2"

class="ptolemy.kernel,ComponentEnt i ty"/>
</class>

</model>

The derived class no longer extends the base class. This is caused
by the addition of an entity to the derived class. The same prob
lem arises if the base class is instantiated and extended using
MoML code like:

<entity name="derived" class="base">
<entity name="e2"

class="ptolemy.kernel.ComponentEntity"/>
</entity>

The reasons for this flaw are subtle and fairly deep, and a
good mechanism for correcting it remains an open research ques
tion. Fortunately, this flaw is not visible at the level of a block
diagram editor, because no known block diagram editor provides
visual inheritance mechanisms like those in MoML. It is again an
open research question to identify such a mechanism.

We explain further. In object-oriented languages such as C++
and Java, all instances of a class share the same code for then-
methods. Only the instance variables differ among instances of a
class. In Ptolemy II, however, the "code" for a composite entity is
its topology. Ptolemy II has no mechanism for sharing the same
topology among instances of the composite entity. Instead, it
clones the base topology when creating an instance or a derived
topology. The difficulty arises when either the base or the derived
topology changes.

If the base topology changes after the derived topology has
been created, then ideally, the derived topology should reflect
those changes. Unfortunately, this is difficult to do. All changes to
the base would have to be mirrored in the derived, which would
require all code that modifies the base, including user-written
code in actors, to mirror the changes in all derived classes. Such
an approach would place an undue burden on code developers,
and the resulting code would have very little chance of being cor
rect.

One possibility would be to prohibit changes in the base
topology after a derived topology is created. However, this is
excessively restrictive. In Ptolemy II, the deferredMoMLDefini-
tionsFromO method of NamedObJ returns a list of objects that
were derived by cloning a particular object. This list can be used
by a user interface to re-clone the base, replacing the derived
instances with new ones.

If the derived topology changes after cloning, as in the above
example, and these changes involve only addition to the topology
(new entities, ports, relations, or links) or changes to parameter
values, then in principle it would not be difficult to generate those
additions in the MoML body. However, even detecting the
changes is non-trivial, since they can occur arbitrarily deeply in
the topology. A block diagram editor can largely avoid the prob
lem by providing no mechanism for editing the derived topology.
Only the base topology can be edited.

The mechanism in Ptolemy II is conservative, in that if a
MoML file is exported, it correctly reflects the topology. How
ever, it loses information about the heritage of composite objects
that are derived from others.

There is an additional subtlety. If a topology is modified by
directly making kemel calls, then exportMoML() will normally
export the modified topology. However, if a derived component is
m^ified, then exportMoMLO may fail to catch the changes. In
particular, consider the following example:

<?xml version="l.0" standalone="no"?>

<!DOCTYPE model PUBLIC "..." "hCtp://...">

<model name="top"

class="Ptolemy.kernel.CompositeEntity">
<class names"base"

extends= "ptolemy. kemel. CompositeEnti ty" >

<entity ncime="el"

class="ptolemy.kernel.ConqponentEntity"/>
</class>

<entity name="derived" class="master"/>

</model>

Here, the derived class does not modify the topology, so export
MoMLO produces:

<?xml versions"1.0" standalones"no"?>

<!D0CTypE model public "..." "http://...">

<model names"top"

classs"ptolemy.kernel.CompositeEntity">

<class names"master"

extendss"ptolemy.kernel.CompositeEntity">

<entity names"el"

classs"ptolemy.kernel.ComponentEntity"/>

</class>

<entity names"derived" classs".top.master"/>

</model>

This MoML code will be exported even if the derived class has
been modified by making direct kemel calls. This actually can
prove to be convenient. It means that if a model mutates during
execution, and is later saved, that a user interface can ensure that
only the original model, before mutations, is saved. It does this by
creating a class for the model, instantiating the class without mod
ifying it, and executing the instance.

4.0 ACKNOWLEDGEMENTS

Many thanks to Ed Willink of Racal Research Ltd. for many
helpful suggestions, only some of which have made it into this
version of MoML. Also, thanks to Tom Henzinger, Alberto San-
giovanni-Vincentelli, and Kees Vissers for helping clarify issues
of abstract syntax.

5.0 REFERENCES

[1] J. Davis, R. Galicia, M. Goel, C. Hylands, E.A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth. J. Tsay and Y.
Xiong, "Ptolemy II: Heterogeneous Concurrent Modeling and
Design in Java," Technical Report UCB/ERL No. M99/40, Univer
sity of California, Berkeley, CA 94720, July 19, 1999.
(http://ptoIemy.eecs.berkeIey.edu/papers/99/HMAD).

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat
terns: Elements of Reusable Object-Oriented Software, Addison
Wesley, 1994.

13

	Copyright notice 2000
	ERL-00-12

