
End to End Learning in Autonomous Driving Systems

Yang Gao
Trevor Darrell

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-5
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-5.html

January 8, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

End to End Learning in Autonomous Driving Systems

by

Yang Gao

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Sergey Levine

Professor Francesco Borrelli

Fall 2019

End to End Learning in Autonomous Driving Systems

Copyright 2019
by

Yang Gao

1

Abstract

End to End Learning in Autonomous Driving Systems

by

Yang Gao

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Convolutional neural networks have advanced visual perception significantly in recent years.
Two major ingredients that enable such a success are the composition of simple modules
into a complex network and the end to end optimization. However, such success has not yet
revolutionized robotics as much as vision, even if robotics suffer from similar problems as
traditional computer vision, i.e. imperfectness of the manual pipeline design of the system.

This thesis investigates using end-to-end learning for the autonomous driving system, a
concrete robotic application. End to end learning can produce reasonable driving behaviors,
even in the complex urban driving scenarios. Representation learning in end-to-end driving
models is crucial, and auxiliary vision tasks such as semantic segmentation can help to form
a more informative driving representation especially when training data is limited. Naive
convolutional neural networks are usually only capable of doing reactive control and can not
involve complex reasoning in a particular scenario. This thesis also studies how to handle
scene conditioned driving behavior, which goes beyond the capability of reactive control.
Alongside the end-to-end structure, learning methods also play a critical role. Imitation
learning methods will acquire meaningful behaviors but usually, the robot can not master the
skill. Reinforcement learning, on the contrary, either barely learns anything if the environment
is too complex, or it can master the skill otherwise. To get the best of both worlds, this
thesis proposes an algorithmically unified method to learn from both demonstration data
and the environment.

i

To my parents, Ying Jin and Pengfei Gao

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Autonomous Driving System . 1
1.2 Existing Autonomous Driving Systems . 2
1.3 End to End Autonomous Driving Systems 3
1.4 Open Questions in End-To-End Driving . 4
1.5 Summary of the Proposed Solution . 5

2 End-To-End Driving Models 7
2.1 Background . 7
2.2 Related Work . 9
2.3 Deep Generic Driving Networks . 10
2.4 The BDDV Dataset . 14
2.5 Experiments . 16
2.6 Discussion . 23

3 Recover Motion from Egocentric Video 24
3.1 Background . 24
3.2 Related Work . 26
3.3 Semantically Filtered Structure-from-Motion 28
3.4 Experiment . 32
3.5 Discussion . 36

4 Perception-Logical Policy 37
4.1 Background . 37
4.2 Related Work . 39
4.3 The Perception-Logic Network . 41
4.4 Experiments . 44

iii

4.5 Limitations . 50
4.6 Discussion . 51

5 Combining Imitation Learning and Reinforcement Learning 52
5.1 Background . 52
5.2 Preliminaries . 53
5.3 Soft Advantage Learning on Demonstrations and Rewards 55
5.4 Related Work . 59
5.5 Results . 60
5.6 Discussion . 63

6 Conclusion 64

A Soft Advantage Learning Details 66
A.1 Environments . 66
A.2 Effects of Imperfect Demonstrations . 66
A.3 Effects of Demonstration Amount . 67
A.4 Effects of Reward Choice . 67
A.5 Learning from Human Demonstrations . 69
A.6 Experiment Details . 70

Bibliography 71

iv

List of Figures

1.1 A typical autonomous driving software . 2
1.2 The AlexNet architecture . 3
1.3 The second place entry in the ILSVRC 2012 challenge 4

2.1 The egomotion formulation of the autonomous driving problem 8
2.2 Architectures that fuse temporal info with visual inputs 11
2.3 The mediated perception, motion reflex and privileged training methods 14
2.4 The example density of the data distribution of the BDDV dataset in a major city 15
2.5 Sample frames from the BDDV dataset . 17
2.6 Sample predictions of the FCN-LSTM driving model 19
2.7 Continuous actions predicted by the driving model 21
2.8 Results from three types of driving models . 22

3.1 The comparison of a KITTI image and a BDD dashcam image 25
3.2 The keypoint matching comparison of our method versus the standard method . 27
3.3 The first person and third person view of the 3D point reconstruction by the Sf2M

method . 30
3.4 Reconstructed trajectories with different methods 31
3.5 Comparison of the Sf2M reconstruction and the GPS trajectory 35
3.6 Video frames of the sample sequence . 35

4.1 The perception-logic network that unsupervisely learns logic factors and combines
them . 38

4.2 The architecture of the perception-logic network 41
4.3 A visualization of the conditional imitation learning method 41
4.4 Sampled images for a qualitative study of Perception-Logic network 47

5.1 Benefits of properly normalized q-values . 58
5.2 Sample frames from the Toy Minecraft and the Torcs environment 60
5.3 SAL performances on the Torcs game . 61
5.4 Results on learning from imperfect data . 63

A.1 More results of the SAL method on imperfect demonstrations 67

v

A.2 Results on SAL learning from different amount of demonstrations. 68
A.3 The SAL result when the reward is not carefully shaped 69
A.4 SAL performances on the Torcs game with human demonstrations 70

vi

List of Tables

2.1 Comparisons of BDDV dataset with other driving datasets 16
2.2 Results on the discrete feasible action prediction task 18
2.3 The continuous lane following experiment . 19
2.4 Comparisons of the privileged training method with the others 20

3.1 Robustness of Sf2M, ORB-SLAM and Libviso2 34

4.1 The performance evaluation of the Perception-Logic network on 2 variables . . . 45
4.2 The performance evaluation of the Perception-Logic network on 3 variables . . . 45
4.3 The gating network prediction accuracy and the driving speed accuracy 47

vii

Acknowledgments

First and foremost, I would like to thank my parents, Ying Jin and Pengfei Gao, who brought
me to this world and educate me to be diligent, tenacious and honest. They unconditionally
support whatever decision I made, and never ask for anything for their interest. They also
encourage me to do challenging things, but they never set any goals that I have to reach. My
parents are also great mentors to my research, even if they know very little about computer
science, not to say computer vision. My father even learns the news that I don’t know about
and kept an in-depth discussion about my work in detail. I would like to thank them for
everything they did.

I would like to give my equal appreciation to Prof. Trevor Darrell. He is a friendly and
nice advisor that made my life in research much easier. I learned a lot from his sense of
academic topic importance as well as the precious view on the treasure in the pre-deep-
learning age. Trevor is also very supportive of doing any new research direction and gives
us the freedom to explore the topic to our interest. Without his open mind, I will not be
able to try a lot of exciting stuff. Besides the technical side, I also want to thank Trevor to
create such a diverse environment in our group. I learned a lot from those who are from a
very different background. Trevor and I also often have many interesting chats about topics
other than research, which help make me think of things more broadly, such as politics, law,
entrepreneurship, work-life balance and career planning, etc. Trevor is also a great leader: he
leads the Berkeley Vision and Learning Center (BVLC), which is then further extended into
Berkeley Artificial Intelligence Research (BAIR). He also co-lead the Berkeley Deep Drive
(BDD). His figure has demonstrated how to become a good leader and has inspired me to do
so in the future.

During my Ph.D., I am also fortunate enough to work with a lot of other mentors.
I worked with Prof. Sergey Levine on one of the reinforcement learning projects. I am
extremely impressed by him being knowledgeable, hard-working and efficient. I treasure
every meeting I had with him. He can propose simple yet effective experiments at every
meeting, which is helpful. I have also worked with Dr. Vladlen Koltun and Dr. German
Ros at Intel research. Vladlen has a pretty high research standard and has guided me to
impactful research directions. German taught me a lot of things from both research and
engineering perspective, and I’d like to thank him for bringing up several break-throughs in
our project. I also have done a very pleasant internship at Waymo. Waymo was still a project
in Google X at that time. I appreciate Abhijit Ogale and Wan-Yen Lo’s mentorship during
that internship, which is very different from my experience at school. I’d like to especially
thank Abhijit for his great help during my job hunting process.

Besides the mentors, I also had a great time with my collaborators. I want to thank Ning
Zhang who introduces me to Trevor when I first trying to contact him. She nicely pointed
me directly to Trevor’s office and it is from then I started the journey in computer vision.
I’d like to thank Lisa Anne Hendricks for her guidance when I worked on the first project
with Trevor. She always has so much to say and she has such a nice personality. I also want
to thank Christian Hane for his great mentorship in the 3D reconstruction project. He is

viii

so knowledgeable in the 3D vision area. He is an extremely friendly advisor and he usually
provides useful references for us to follow. I published my first CVPR paper with Oscar
Beijbom, who impressed me by his exceptionally organized workflow. Marcel Simon and I
have a lot of nice discussions on extensions on the compact bilinear pooling method. I enjoy
discussing various experimental phenomena on that topic with him. Last but not least, I
want to thanks Huazhe (Harry) Xu for all the collaborations we had during the years. He is
a co-author of almost half of my paper and I appreciate many joyful working nights in the
lab we spent.

I didn’t have enough chance to collaborate with all the people in my group, but I wish
I did. Deepak Pathak, Samaneh Azadi and I joined the group in the same year. We share
similar thoughts about school work and life. I enjoyed talking with them a lot during my
Ph.D. years. Evan Shelhamer helped a lot on the Caffe stuff during my initial years. His
academic rigor set a great example for me that I always remind myself. Sayna Ebrahimi
joined our group after her Ph.D. She is one of the most hard-working persons I have ever seen.
Her academic achievement is well deserved and I wholeheartedly hope she could physically
get better as soon as possible. I am also fortunate enough to work with Anna Rohrbach on
the XAI project. She is such a responsible leader and friend. I enjoyed spending time hanging
out with my Chinese friends in the group, such as Ronghang Hu, Shizhan Zhu, Dequan Wang,
Xin Wang, Zhuang Liu, Tete Xiao and Hang Gao. I also had a chance to see many great
new faces coming in, such as Seth Park, Parsa Mahmoudieh, Coline Devin, and Medhini
Gulganjalli Narasimhan. I learned a lot of new ideas and interesting stuff from them.

I am lucky to advise many brilliant undergrad students. Jingzhao Zhang, who was an
undergrad at UC Berkeley, is the first student I worked with. He is remarkably hardworking
and eager to do even the most intense work. Although we had bad luck and failed to discover
new algorithms during our collaboration, it is still an inspirational experience for us. Later,
I worked with two students from Tsinghua University, Ji Lin and the Haoran Ma, both of
whom did a brilliant job at their projects. In my final year of the Ph.D., I worked with
Boyuan Chen, Brandon Trabucco, Jerry Lin, and Yifei Xing, whom all go to Berkeley. We
had a lot of interesting discoveries on two projects. I want to especially thank Boyuan, who
is one of the smartest and the most curious people I have ever seen. We also become very
good friends: Huazhe Xu and I have successfully transformed Boyuan into a tea-drinking
and Lavals-eating person, as we are.

I want to thanks a lot of friends whom I would remember for the rest of my life. They
are the source of happiness in my Ph.D. life. Biye Jiang is not only my roommate for four
years but also a warm-hearted friend. He not only helped me with the Ph.D. application but
also kindly share his ride to school with me during my first two years. You never know how
warm-hearted he is under his cool face. Hong Shang and I hang out a lot before he graduated.
He is an outdoor person and thus he opened a new world for me. Skiing, paddle-boarding,
hiking, and rock climbing, we had so much fun and I also got the chance to know a lot of
friends. Xiaofei Zhou and Mao Zhou are my two Berkeley friends that I will visit every time
I travel to China. I don’t even remember how we three started to have a lot of conversations.
Cheng Ju is the funniest person I have ever seen. Except for the funny part, we are the same

ix

type of person, and we shared a lot of jokes that exist only between us. I’d also like to thanks
my friend Yi Wu and Huazhe Xu. We started our friendship with an occasional common
complaint, and ever since then, we shared a lot of happiness, troubles, concerns. I’d also like
to thank one of my closest friends from my junior high, Zhengyu Wang, for listening to a
lot of my deep complaints and happiness. He is so trustworthy and kind that I can speak
to him without any concern for hours. I’m also grateful to a lot of people that I couldn’t
possibly enumerate, including the EECS Ph.D. gang, my closest study mates; the ACE gang,
my best mates for entrepreneurship chatting; the “what’s next dinner” gang, my best mates
for late-night party and daily life chats; the go bears gang, the people made me feel home
when I started at Berkeley; all of my roommates in the five and a half years, the best people
I’ve ever lived with.

Last but not least, I want to give my final thanks to Hezhu Zhang, whom I am fortunate
enough to meet at Berkeley. I’d like to thanks her for giving me unconditionally love and
teaching me how to love. We are lovers, friends, brother and sister, mother and child, father
and daughter.

1

Chapter 1

Introduction

1.1 Autonomous Driving System

Autonomous driving (AD) is the task of driving a vehicle without any human intervention
in urban and highway conditions. An autonomous driving system is usually equipped with a
set of sensors, such as cameras, lidar, radar, and acoustic sensors. With a stream of sensory
inputs, the autonomous driving system is required to output low-level controls of the vehicle,
usually in the form of continuous steer, throttle and brake values. In this thesis, we focus
on the camera sensory input modality, as the driving task can be solved with only vision
modality in theory. To be able to navigate on various unseen landscapes, the system must be
able to complete the environment state perception, future state prediction, path planning,
trajectory generation tasks, where the system can either complete explicitly or implicitly.

Autonomous driving is an interesting problem to study not only because of its potential
high impact on how people travel on the road but also because it is a great concrete example
of sensorimotor tasks. Sensorimotor learning refers to the task of acting in a physical world,
with explicit consideration of raw sensor inputs. AD is an interesting task because it is
extremely safety-critical, and we need fundamental innovations to fulfill it. According to
the National Safety Council, there are around 1.25 deaths per 100 million human vehicle
miles [Wikipedia,]. People usually expect the autonomous driving system would be at
least as good as an average human driver. That would require the system to be far more
reliable than a non-safety-critical robotic system. In Section 1.3, we will discuss how recent
technology advances might be able to improve the performance by a large margin. Besides
the safety-critical aspect, autonomous driving also requires the system to complete many
challenging tasks, and connect them properly under the hood. For example, the system needs
to predict the future environment state, including states of other vehicles and pedestrians.
The system also needs to reason about the interactions among all the agents involved in
the scene. The problem of properly connecting different components is essential to many
sensorimotor systems, as we will take AD system as an example in Section 1.2. The study
of the autonomous driving system will potentially lead to many technological advances to

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The Team Victor Tango’s urban driving software stack [Currier,] in the DARPA
Urban Challenge.

sensorimotor research in general.

1.2 Existing Autonomous Driving Systems

DARPA held the autonomous driving challenges in 2004, 2005 and 2007. It is also from
that time, people have built practical autonomous driving systems. Figure 1.1 shows the
software architecture of one of the participating teams in the Urban Challenge. It employs
laser range finder, cameras, and GPS/IMU as the perception sensors. The perception stack
is a heavily engineered pipeline that detects dynamic obstacles, recognizes the category of
the objects, the location of the road, as well as localizes the ego vehicle. The engineered
perception interface passes the extracted the obstacles, roads and ego vehicle location to the
planning modules. A rule-based planner takes in the output of the perception stack and
optional user input, and generate a coarse route planner. Afterward, it generates a refined,
detailed low-level trajectory and executes on the car.

Twelves years later, the basic component of the autonomous driving system is very similar
to the architecture shown in Figure 1.1. They are still in general consist of a perception stack
that output human-defined representations of the driving scenario, and a route planner that
incorporates perception’s output as well as traffic rules to generate a coarse route, and the
low-level motion planner that output the detailed local trajectory. Although each module

CHAPTER 1. INTRODUCTION 3

Figure 1.2: The architecture of Alexnet [Krizhevsky et al., 2012], first place in the ILSVRC
2012 challenge.

has improved a lot over time, they is no significant change to the overall architecture.
However, there are many challenges with this design. Some modules still encounter

technical challenges. On the recognition part, there are way too many semantic classes to
label than other closed world problems, since in the real world, there are a lot of rare object
classes. On the planning side, the system has to smartly “violate” some traffic rules when
necessary. For example, it needs to cross the double yellow line marking when there is a
malfunctioning vehicle ahead. On the behavior prediction side, the system has to use subtle
facial expressions, or gestures to guess the intention of the pedestrian. It also needs to reason
about multi-agent interaction in a crowded traffic scenario.

Beyond the technical challenges in each module, coordination among submodules is also a
big challenge. For example, if the perception module outputs a vehicle ahead of you, but
it is flickering across the frames. What should the planning module do in this case? The
existing system usually defines some heuristic to handle such problems, such as thresholding
and temporal smoothing. However, people have found that managing those coordinations
are much harder than expected. In this thesis, we focus on how to tackle this aspect of the
problem with inspirations from deep neural networks.

1.3 End to End Autonomous Driving Systems

In recent years, convolutional neural networks have achieved great success in the visual
recognition tasks. Figure 1.2 and Figure 1.3 show the ILSVRC 2012 winning and second place
method architectures. The second-place entry is a human-designed pipeline, that extract
image descriptors such as SIFT [Lowe, 1999], and pool them into a feature vector using
the Fisher Vector method [Perronnin and Dance, 2007]. Finally, the pooled feature goes
through some classifiers and outputs a classification score. The winning entry is an end-to-end
trained convolutional neural network, which is more widely known as AlexNet [Krizhevsky
et al., 2012]. The reason why AlexNet is much better than the previous hand-designed
descriptor-pooling-classification pipeline is usually attributed to the end-to-end coordination

CHAPTER 1. INTRODUCTION 4

Figure 1.3: The architecture of second place in the ILSVRC 2012 challenge [Gunji et al.,].

among the layers. Although all layers are simple linear convolution filters with the ReLU
activation function, they coordinate with each other well by the end to end optimization
algorithm.

If we step back and stare at the existing autonomous driving system shown in Figure
1.1, there is a similar hand-designed aspect of the autonomous driving system that leads
to suboptimal performance. The question is whether can we improve the autonomous
driving performance with this end-to-end philosophy? I.e. use end to end optimization to
improve cross-component cooperation. End to end mechanism refers to the philosophy that
each module can adapt w.r.t the other components, driven by the task loss. In this thesis,
we investigate both the general end-to-end CNN architecture, as well as the task-specific
end-to-end architecture (the Perception-Logic Network).

1.4 Open Questions in End-To-End Driving

To design an end to end driving system. There are several open questions.
First, how to design the end to end architecture itself. One obvious choice is to use CNN

like architecture, and hope that all the driving-related knowledge can be learned from the data.
However, as previous work and we have shown [Bojarski et al., 2016b,Xu et al., 2017,LeCun
et al., 2005,Amini et al., 2019], this approach hasn’t yet scaled up to complex behaviors such
as by-passing a malfunctioning vehicle. Another choice is to design differentiable equivalence
of the previous hand-designed systems. However, it is not clear how to define differentiable
counterpart of every component in the existing driving system. It might also be the case
that one needs to make heavy changes to the overall architecture, to better fit the end-to-end
framework.

Second, how to train such an end to end system. Imitation learning is one of the most

CHAPTER 1. INTRODUCTION 5

widely used methods to train a robotic system, however, imitation learning usually suffers
from the distributional shift issue. I.e. the system generates a different distribution of
trajectories at test time and thus the agent is not able to generalize well. Reinforcement
learning is an alternative method to train such a system. However, sometimes it needs
millions of examples, if not billions, to converge. Training such a system in practice is too
costly. In this thesis, we explore a method to combine the best of imitation learning and
reinforcement learning, to get the best of both worlds.

Last but not least, a human should be able to verify and explain the system. Most of the
neural networks are not explainable and hard to verify. In the autonomous driving task, it is
highly desirable to develop the system such that it is easy to verify and explain to human
beings.

1.5 Summary of the Proposed Solution

In this thesis, we study the problem of end to end driving following the open questions
mentioned in Section 1.4. In Chapter2, we take advantage of a newly collected dataset,
called Berkeley Deep Drive Video Dataset (BDDV). We formulate the autonomous driving
problem as a future ego-motion prediction task. We designed an FCN-LSTM architecture
that can directly learn from raw driving videos. This work examines how much work a
modern convolutional neural network could do when trained on real-world urban human
driving recordings. We have shown that only using the vanilla CNN network, it exhibits
behaviors like turning, attend on other traffic participants, as well as react to the traffic
lights.

In Chapter 3, we further investigate how to get a more accurate supervision signal for
the dataset used in Chapter 2. The dataset used in Chapter 2 is collected by iPhone’s
video recordings and the GPS/IMU sensory readings. The GPS/IMU fused signal gives the
ground truth of the ego-motion of the vehicle. However, the ground truth of the motion is
not accurate enough when there are tall buildings around it, or when the vehicle is doing
subtle behaviors, such as changing lane. In this work, we investigate the combination of
Structure-From-Motion techniques and semantic segmentation methods to acquire accurate
ego-motion from the BDDV dataset.

Chapters 2 and 3 both deal with generic convolution neural networks, which is not
designed for the autonomous driving task. I.e. they do not have the inductive bias that
autonomous driving need. In Chapter 4, we investigate the visuomotor decision-making
problem in autonomous driving. In many cases of autonomous driving, the behavior should
have a strict logical condition. For example, if the weather is rainy or it is dark, then
the agent had better drive more cautiously than usual since the perception capability is
limited. When the pre-condition becomes more complex, it is harder for a vanilla CNN
to learn those logic-conditioned behaviors well. We propose a Perception-Logic Network
that can unsupervised discover logical primitives in the training data, and combine them

CHAPTER 1. INTRODUCTION 6

with a differentiable logic network. Our method could achieve near-perfect generalization
performance during test time.

In Section 1.4, we also mentioned the hardness of training an end to end driving system.
In Chapter 5, we proposed to combine the best of imitation learning and reinforcement
learning to be able to master the skill and learn with a relatively small amount of data at
the same time.

7

Chapter 2

End-To-End Driving Models

Robust perception-action models should be learned from training data with diverse visual
appearances and realistic behaviors, yet current approaches to deep visuomotor policy learning
have been generally limited to in-situ models learned from a single vehicle or simulation
environment. We advocate learning a generic vehicle motion model from large scale crowd-
sourced video data, and develop an end-to-end trainable architecture for learning to predict a
distribution over future vehicle egomotion from instantaneous monocular camera observations
and previous vehicle state. Our model incorporates a novel FCN-LSTM architecture, which
can be learned from large-scale crowd-sourced vehicle action data, and leverages available
scene segmentation side tasks to improve performance under a privileged learning paradigm.
We provide a novel large-scale dataset of crowd-sourced driving behavior suitable for training
our model, and report results predicting the driver action on held out sequences across diverse
conditions.

2.1 Background

Learning perception-based policies to support complex autonomous behaviors, including
driving, is an ongoing challenge for computer vision and machine learning. While recent
advances that use rule-based methods have achieved some success, we believe that learning-
based approaches will be ultimately needed to handle complex or rare scenarios, and scenarios
that involve multi-agent interplay with other human agents.

The recent success of deep learning methods for visual perception tasks has increased
interest in their efficacy for learning action policies. Recent demonstration systems [Bojarski
et al., 2016a,Chen et al., 2015a,LeCun et al., 2005] have shown that simple tasks, such as a
vehicle lane-following policy or obstacle avoidance, can be solved by a neural net. This echoes
the seminal work by Dean Pomerleau with the CMU NavLab, whose ALVINN network was
among the earliest successful neural network models [Pomerleau , 1989].

These prior efforts generally formulate the problem as learning a mapping from pixels to
actuation. This end-to-end optimization is appealing as it directly mimics the demonstrated

CHAPTER 2. END-TO-END DRIVING MODELS 8

Dilated FCN

Seg Loss

LSTM

Motion

Previous Motion

Moving Path

N

Video

Figure 2.1: Autonomous driving is formulated as a future egomotion prediction problem.
Given a large-scale driving video dataset, an end-to-end FCN-LSTM network is trained to
predict multi-modal discrete and continuous driving behaviors. Using semantic segmentation
as a side task further improves the model.

performance, but is limiting in that it can only be performed on data collected with the
specifically calibrated actuation setup, or in corresponding simulations (e.g., as was done
in [Pomerleau , 1989], and more recently in [Tzeng et al., 2016, Rusu et al., 2016, Daftry
et al., 2016]). The success of supervised robot learning-based methods is governed by the
availability of training data, and typical publicly available datasets only contain on the order
of dozens to hundreds of hours of collected experience.

We explore an alternative paradigm, which follows the successful practice in most computer
vision settings, of exploiting large scale online and/or crowdsourced datasets. We advocate
learning a driving model or policy from large scale uncalibrated sources, and specifically
optimize models based on crowdsourced dashcam video sources. We release a curated dataset
from which suitable models or policies can be learned.

To learn a model from this data, we propose a novel deep learning architecture for
learning-to-drive from uncalibrated large-scale video data. We formulate the problem as
learning a generic driving model/policy; our learned model is generic in that it learns a
predictive future motion path given the present agent state. Presently we learn our model
from a corpus of demonstrated behavior and evaluate on held out data from the same corpus.
Our driving model is akin to a language model, which scores the likelihood of character or
word sequences given certain corpora; our model similarly is trained and evaluated in terms
of its ability to score as highly likely the observed behavior of the held out driving sequence.
It is also a policy in that it defines a probability distribution over actions conditioned on
a state, with the limitation that the policy is never actually executed in the real world or
simulation.

This chapter offers four novel contributions. First, we introduce a generic motion approach
to learning a deep visuomotor action policy where actuator independent motion plans are
learned based on current visual observations and previous vehicle state. Second, we develop a

CHAPTER 2. END-TO-END DRIVING MODELS 9

novel FCN-LSTM which can learn jointly from demonstration loss and segmentation loss, and
can output multimodal predictions. Third, we curate and make publicly available a large-scale
dataset to learn a generic motion model from vehicles with heterogeneous actuators. Finally,
we report experimental results confirming that “privileged” training with side task (semantic
segmentation) loss learns egomotion prediction tasks faster than from motion prediction task
loss alone1.

We evaluate our model and compare to various baselines in terms of the ability of the
model to predict held-out video examples; our task can be thought of that of predicting
future egomotion given present observation and previous agent state history.

While future work includes extending our model to drive a real car, and addressing issues
therein involving policy coverage across undemonstrated regions of the policy space (c.f. [Ross
et al., 2011]), we nonetheless believe that effective driving models learned from large scale
datasets using the class of methods we propose will be a key element in learning a robust
policy for a future driving agent.

2.2 Related Work

ALVINN [Pomerleau , 1989] was among the very first attempts to use a neural network
for autonomous vehicle navigation. The approach was simple, comprised of a shallow network
that predicted actions from pixel inputs applied to simple driving scenarios with few obstacles;
nevertheless, its success suggested the potential of neural networks for autonomous navigation.

Recently, NVIDIA demonstrated a similar idea that benefited from the power of modern
convolution networks to extract features from the driving frames [Bojarski et al., 2016a].
This framework was successful in relatively simple real-world scenarios, such as highway
lane-following and driving in flat, obstacle-free courses.

Instead of directly learning to map from pixels to actuation, [Chen et al., 2015a] proposed
mapping pixels to pre-defined affordance measures, such as the distance to surrounding cars.
This approach provides human-interpretable intermediate outputs, but a complete set of
such measures may be intractable to define in complex, real-world scenarios. Moreover, the
learned affordances need to be manually associated with car actions, which is expensive, as
was the case with older rule-based systems. Concurrent approaches in industry have used
neural network predictions from tasks such as object detection and lane segmentation as
inputs to a rule-based control system [Huval et al., 2015].

Another line of work has treated autonomous navigation as a visual prediction task in
which future video frames are predicted on the basis of previous frames. [Santana and Hotz,
2016] propose to learn a driving simulator with an approach that combines a Variational
Auto-encoder (VAE) [Kingma and Welling, 2014] and a Generative Adversarial Network
(GAN) [Goodfellow et al., 2014]. This method is a special case of the more general task
of video prediction; there are examples of video prediction models being applied to driving

1The codebase and dataset can be found at https://github.com/gy20073/BDD_Driving_Model/

https://github.com/gy20073/BDD_Driving_Model/

CHAPTER 2. END-TO-END DRIVING MODELS 10

scenarios [De Brabandere et al., 2016,Lotter et al., 2016]. However, in many scenarios, video
prediction is ill-constrained as preceding actions are not given as input the model. [Oh et al.,
2015,Finn et al., 2016] address this by conditioning the prediction on the model’s previous
actions. In our work, we incorporate information about previous actions in the form of an
accumulated hidden state.

Our model also includes a side- or privileged-information learning aspect. This occurs
when a learning algorithm has additional knowledge at training time; i.e., additional labels
or meta-data. This extra information helps training of a better model than possible using
only the view available at test time. A theoretical framework for learning under privileged
information (LUPI) was explored in [Vapnik and Vashist, 2009]; a max-margin framework for
learning with side-information in the form of bounding boxes, image tags, and attributes was
examined in [Sharmanska et al., 2013] within the DPM framework. Recently [Hoffman et al.,
2016] exploited deep learning with side tasks when mapping from depth to intensity data.
Below we exploit a privileged/side-training paradigm for learning to drive, using semantic
segmentation side labels.

Recent advances in recurrent neural network modeling for sequential image data are also
related to our work. The Long-term Recurrent Convolutional Network (LRCN) [Donahue
et al., 2015] model investigates the use of deep visual features for sequence modeling tasks
by applying a long short-term memory (LSTM) recurrent neural network to the output of a
convolutional neural network. We take this approach, but use the novel combination of a
fully-convolutional network (FCN) [Long et al., 2015] and an LSTM. A different approach is
taken by [Xingjian et al., 2015], as they introduce a convolutional long short-term memory
(LSTM) network that directly incorporates convolution operations into the cell updates.

2.3 Deep Generic Driving Networks

We first describe our overall approach for learning a generic driving model from large-scale
driving behavior datasets, and then propose a specific novel architecture for learning a deep
driving network.

Generic Driving Models

We propose to learn a generic approach to learning a driving policy from demonstrated
behaviors, and formulate the problem as predicting future feasible actions. Our driving model
is defined as the admissibility of which next motion is plausible given the current observed
world configuration. Note that the world configuration incorporates previous observation and
vehicle state. Formally, a driving model F is a function defined as:

F (s, a) : S × A→ R (2.1)

where s denotes states, a represents a potential motion action and F (s, a) measures the
feasibility score of operating motion action a under the state s.

CHAPTER 2. END-TO-END DRIVING MODELS 11

Dilated

FCN
CNNConv-LSTM

Internal Architecture

Conv-

LSTM

Conv-

LSTM

Input

(a) FCN-LSTM (b) Conv-LSTM (c) LRCN

Output

Seg

Loss

...

......LSTM LSTM

Motion Motion

Previous

Motion

Video Video

Figure 2.2: Comparison among novel architectures that can fuse time-series information with
visual inputs.

Our approach is generic in that it predicts egomotion, rather than actuation of a specific
vehicle. Our generic models take as input raw pixels and current and prior vehicle state
signals, and predict the likelihood of future motion. This can be defined over a range of
action or motion granularity, and we consider both discrete and continuous settings in this
chapter.2 For example, the motion action set A could be a set of coarse actions:

A = {straight, stop, left-turn, right-turn} (2.2)

One can also define finer actions based on the car egomotion heading in the future. In that
case, the possible motion action set is:

A = {~v|~v ∈ R2} (2.3)

where, ~v denotes the future egomotion on the ground plane.
We refer to F (s, a) as a driving model inspired by its similarity to the classical N-gram

language model in Natural Language Processing. Both of them take in the sequence of prior
events, such as what the driver has seen in the driving model, or the previously observed
tokens in the language model, and predict plausible future events, such as the viable physical
actions or the coherent words. Our driving model can equivalently be thought of as a policy
from a robotics perspective, but we presently only train and test our model from fixed existing
datasets, as explained below, and consequently we feel the language model analogy is the
more suitable one.

2We leave the most general setting, of predicting directly arbitrary 6DOF motion, also to future work.

CHAPTER 2. END-TO-END DRIVING MODELS 12

FCN-LSTM Architecture

Our goal is to predict the distribution over feasible future actions, conditioned on the
past and current states, including visual cues and egomotions. To accomplish our goal, an
image encoder is necessary to learn the relevant visual representation in each input frame,
together with a temporal network to take advantage of the motion history information.
We propose a novel architecture for time-series prediction which fuses an LSTM temporal
encoder with a fully convolutional visual encoder. Our model is able to jointly train motion
prediction and pixel-level supervised tasks. We can use semantic segmentation as a side
task following “previleged” information learning paradigm. This leads to better performance
in our experiments. Figure 2.2 compares our architecture (FCN-LSTM) with two related
architectures [Donahue et al., 2015,Xingjian et al., 2015].

Visual Encoder

Given a video frame input, a visual encoder can encode the visual information in a
discriminative manner while maintaining the relevant spatial information. In our architecture,
a dilated fully convolutional neural network [Yu and Koltun, 2015, Donahue et al., 2015]
is used to extract the visual representations. We take the ImageNet [Russakovsky et al.,
2015] pre-trained AlexNet [Krizhevsky et al., 2012] model, remove POOL2 and POOL5
layers and use dilated convolutions for conv3 through fc7. To get a more discriminative
encoder, we finetune it jointly with the temporal network described below. The dilated FCN
representation has the advantage that it enables the network to be jointly trained with a
side task in an end-to-end manner. This approach is advantageous when the training data is
scarce.

Temporal Fusion

We optionally concatenate the past ground truth sensor information, such as speed and
angular velocity, with the extracted visual representation. With the visual and sensor states
at each time step, we use an LSTM to fuse all past and current states into a single state,
corresponding to the state s in our driving model F (s, a). This state is complete, in the sense
that it contains all historical information about all sensors. We could predict the physical
viability from the state s using a fully connected layer.

We also investigate below another temporal fusion approach, temporal convolution, instead
of LSTM to fuse the temporal information. A temporal convolution layer takes in multiple
visual representations and convolves on the time dimension with an n× 1 kernel where n is
the number of input representations.

Driving Perplexity

Our goal is to learn a future motion action feasibility distribution, also known as the
driving model. However, in past work [Pomerleau , 1989,Chen et al., 2015a,Bojarski et al.,

CHAPTER 2. END-TO-END DRIVING MODELS 13

2016a], there are few explicit quantitative evaluation metrics. In this section, we define an
evaluation metrics suitable for large-scale uncalibrated training, based on sequence perplexity.

Inspired by language modeling metrics, we propose to use perplexity as evaluation metric
to drive training. For example, a bigram model assigns a probability of:

p(w1, · · · , wm) = p(w1)p(w2|w1) · · · p(wm|wm−1)

to a held out document. Our model assign:

p(a1|s1) · · · p(at|st) = F (s1, a1) · · ·F (st, at) (2.4)

probability to the held out driving sequence with actions a1 · · · at, conditioned on world states
s1 · · · st. We define the action predictive perplexity of our model on one held out sample as:

perplexity = exp
{
− 1

t

t∑
i=1

logF (si, ai)
}

(2.5)

To evaluate a model, one can take the most probable action predicted apred = argmaxaF (s, a)
and compare it with the action areal that is carried out by the driver. This is the accuracy
of the predictions from a model. Note that models generally do not achieve 100% accuracy,
since a driving model does not know the intention of the driver ahead of time.

Discrete and Continuous Action Prediction

The output of our driving model is a probability distribution over all possible actions. A
driving model should have correct motion action predictions despite encountering complicated
scenes such as an intersection, traffic light, and/or pedestrians. We first consider the case
of discrete motion actions, and then investigate continuous prediction tasks, in both cases
taking into account the prediction of multiple modes in a distribution when there are multiple
possible actions.

Discrete Actions. In the discrete case, we train our network by minimizing perplexity
on the training set. In practice, this effectively becomes minimizing the cross entropy loss
between our prediction and the action that is carried out. In real world of driving, it’s more
prevalent to go straight, compared to turn left or right. Thus the samples in the training set
are highly biased toward going straight. Inspired by [Zhang et al., 2016], we investigated the
weighted loss of different actions according to the inverse of their prevalence.

Continuous Actions. To output a distribution in the continuous domain, one could
either use a parametric approach, by defining a family of parametric distribution and regressing
to the parameters of the distribution, or one can employ a non-parametric approach, e.g.
discretizing the action spaces into many small bins. Here we employ the second approach,
since it can be difficult to find a parametric distribution family that could fit all scenarios.

CHAPTER 2. END-TO-END DRIVING MODELS 14

Driving

Decision Stage
Driving Loss Driving Loss

Scene

Parsing Stage

(a) Mediated

Perception

(b) Privileged

Training

(c) Motion

Visual

Encoder

Visual

Encoder

Seg Loss

Figure 2.3: Comparison of learning approaches. Mediated Perception relies on semantic-class
labels at the pixel level alone to drive motion prediction. The Motion Reflex method learns a
representation based on raw pixels. Privileged Training learns from raw pixels but allows
side-training on semantic segmentation tasks.

Driving with Privileged Information

Despite the large-scale nature of our training set, small phenomena and objects may be
hard to learn in a purely end-to-end fashion. We propose to exploit privileged learning [Vapnik
and Vashist, 2009,Sharmanska et al., 2013,Hoffman et al., 2016] to learn a driving policy that
exploits both task loss and available side losses. In our model, we use semantic segmentation
as the extra supervision. Figure 2.3 summarizes our approach and the alternatives: motion
prediction could be learned fully end to end (Motion Reflex Approach), or could rely fully
on predicted intermediate semantic segmentation labels (Mediated Perception Approach),
in contrast, our proposed approach (Privileged Training Approach) adopts the best of both
worlds, having the semantic segmentation as a side task to improve the representation, which
ultimately performs motion prediction. Specifically, we add a segmentation loss after fc7,
which enforces fc7 to learn a meaningful feature representation. Our results below confirm
that even when semantic segmentation is not the ultimate goal, learning with semantic
segmentation side tasks can improve performance, especially when coercing a model to attend
to small relevant scene phenomena.

2.4 The BDDV Dataset

The Berkeley DeepDrive Video dataset (BDDV) is a dataset comprised of real driving
videos and GPS/IMU data. The BDDV dataset contains diverse driving scenarios including
cities, highways, towns, and rural areas in several major cities in US. We analyze different
properties of this dataset in the following sections and show its suitability for learning a

CHAPTER 2. END-TO-END DRIVING MODELS 15

Figure 2.4: Example density of data distribution of BDDV in a major city. Each dot represents
the starting location of a short video clip of approximately 40 seconds.

generic driving model in comparison with sets of benchmark datasets including KITTI,
Cityscapes, Comma.ai dataset, Oxford Dataset, Princeton Torcs, GTA, each of which varies
in size, target, and types of data. A comparison of datasets is provided in Table 2.1.

Scale

BDDV provides a collection of sufficiently large and diverse driving data, from which it is
possible to learn generic driving models. The BDDV contains over 10,000 hours of driving
dash-cam video streams from different locations in the world. The largest prior dataset is
Robotcar dataset [Maddern et al., pear] which corresponds to 214 hours of driving experience.
KITTI, which has diverse calibrated data, provides 22 sequences (less than an hour) for
SLAM purposes. In Cityscapes, there are no more than 100 hours driving video data provided
upon request. To the best of knowledge, BDDV is at least in two orders larger than any
benchmark public datasets for vision-based autonomous driving.

CHAPTER 2. END-TO-END DRIVING MODELS 16

Datasets settings type Approx scale Diversity Specific Car

KITTI
city, highway
rural area

real less than 1 hour
one weather condition

one city, daytime
Yes

Cityscape city real less than 100 hours
multiple weather conditions

German cities, daytime
Yes

Comma.ai mostly highway real 7.3 hours highway, N.A. , daytime and night Yes

Oxford city real 214 hours
multiple weather conditions

one city (Oxford), daytime
Yes

Torcs highway synthesis 13.5 hours N.A. N.A.

GTA city, highway synthesis N.A. N.A. N.A.

BDDV(ours)
city, highway
rural area

real 10k hours
multiple cities,daytime and night

multiple weather conditions
No

Table 2.1: Comparison of our dataset with other driving datasets.

Modalities

Besides the images, our BDDV dataset also comes with sensor readings of a smart phone.
The sensors are GPS, IMU, gyroscope and magnetometer. The data also comes with sensor-
fused measurements, such as course and speed. Those modalities could be used to recover
the trajectory and dynamics of the vehicle.

Diversity

The BDDV dataset is collected to learn a driving model that is generic in terms of driving
scenes, car makes and models, and driving behaviors. The coverage of BDDV includes various
driving, scene, and lighting conditions. In Figure 2.5 we show some samples of our dataset
in nighttime, daytime, city areas, highway and rural areas. As shown in Table 2.1, existing
benchmark datasets are limited in the variety of scene types they comprise. In Figure 2.4 we
illustrate the spatial distribution of our data across a major city.

2.5 Experiments

For our initial experiments, we used a subset of the BDDV comprising 21,808 dashboard
camera videos as training data, 1,470 as validation data and 3,561 as test data. Each video
is approximately 40 seconds in length. Since a small portion of the videos has duration just
under 40 seconds, we truncate all videos to 36 seconds. We downsample frames to 640× 360
and temporally downsample the video to 3Hz to avoid feeding near-duplicate frames into
our model. After all such preprocessing, we have a total of 2.9 million frames, which is
approximately 2.5 times the size of the ILSVRC2012 dataset. To train our model, we used
stochastic gradient descent (SGD) with an initial learning rate of 10−4, momentum of 0.99
and a batch size of 2. The learning rate was decayed by 0.5 whenever the training loss
plateaus. Gradient clipping of 10 was applied to avoid gradient explosion in the LSTM. The

CHAPTER 2. END-TO-END DRIVING MODELS 17

Figure 2.5: Sample frames from the BDDV dataset.

LSTM is run sequentially on the video with the previous visual observations. Specifically,
the number of hidden units in LSTM is 64. Models are evaluated using predictive perplexity
and accuracy, where the maximum likelihood action is taken as the prediction.

Discrete Action Driving Model

We first consider the discrete action case, in which we define four actions: straight, stop,
left turn, right turn. The task is defined as predicting the feasible actions in the next
1/3rd of a second.

Following Section 2.3, we minimize perplexity on the training set and evaluate perplexity
and accuracy of the maximum likelihood prediction on a set of held out videos. In Table 2.2,
we do an ablation study to investigate the importance of different components of our model.

Table 2.2 shows the comparison among a few variants of our method. The Random Guess
baseline predicts randomly based on the input distribution. In the speed-only condition,
we only use the speed of the previous frame as input, ignoring the image input completely.
It achieves decent performance, since the driving behavior is largely predictable from the
speed in previous moment. In the “1-Frame” configuration, we only feed in a single image at
each timestep and use a CNN as the visual encoder. It achieves better performance than

CHAPTER 2. END-TO-END DRIVING MODELS 18

Configuration Image Temporal Speed Perplexity Accuracy

Random-Guess N.A. N.A. No 0.989 42.1%
Speed-Only N.A. LSTM Yes 0.555 80.1%
CNN-1-Frame CNN N.A. No 0.491 82.0%
TCNN3 CNN CNN No 0.445 83.2%
TCNN9 CNN CNN No 0.411 84.6%
CNN-LSTM CNN LSTM No 0.419 84.5%
CNN-LSTM+Speed CNN LSTM Yes 0.449 84.2%
FCN-LSTM FCN LSTM No 0.430 84.1%

Table 2.2: Results on the discrete feasible action prediction task. We investigated the influence
of various image encoders, temporal networks and the effect of speed. Log perplexity (lower
is better) and accuracy (higher is better) of our prediction are reported. See Section 2.5 for
details.

the two baseline models (random and speed-only). This is intuitive, since human drivers can
get a good, but not perfect, sense of feasible motions from a single frame. In the TCNN
configuration we study using temporal convolution as the temporal fusion mechanism. We
used a fixed length window of 3 (TCNN3) and 9 (TCNN9), which is 1 and 3 seconds in
time respectively. TCNN models further improves the performance and the longer the time
horizon, the better the performance. However, it needs a fixed size of history window and is
more memory demanding than the LSTM based approach. We also explore the CNN-LSTM
approach, and it achieves comparable performance as TCNN9. When changing the visual
encoder from CNN to FCN, the performance is comparable. However, as we will show later
2.3, a FCN-based visual encoder is vital for learning from privileged segmentation information.
We also found that the inverse frequency weighting of the loss function [Zhang et al., 2016]
encourages the prediction of rare actions, but it does not improve the prediction perplexity.
Thus we do not use this in our methods above.

In Figure. 2.6, we show some predictions made by our model. In the first pair of images
(subfig. a&b), the car is going through an intersection, when the traffic light starts to change
from yellow to red. Our model has predicted to go straight when the light is yellow, and the
prediction changes to stop when the traffic light is red. This indicates that our model has
learned how human drivers often react to traffic light colors. In the second pair (c& d), the
car is approaching a stopped car in the front. In (c), there is still empty space ahead, and
our model predicts to go or stop roughly equally. However, when the driver moves closer to
the front car, our model predicts stop instead. This shows that our model has learned the
concept of distance and automatically map it to the feasible driving action.

CHAPTER 2. END-TO-END DRIVING MODELS 19

(a) go at yellow light (b) stop at red light

(c) stop & go equal weight at medium
distance

(d) stop when too close to vehicle ahead

Figure 2.6: Discrete actions predicted by our FCN-LSTM model. Each row of 2 images
show how the prediction changes by time. The green bars shows the probability of doing
that action at that time. The red bars are the driver’s action. The four actions from top to
bottom are going straight, slow or stop, turn left and turn right.

Table 2.3: Continuous lane following experiment. See Section 2.5 for details.

Configuration Angle Perplexity
Random Guess 1.86
Linear Bins -2.82
Log Bins -3.66
Data-Driven Bins -4.83

Continuous Action Driving Model

In this section, we investigate the continuous action prediction problem, in particular,
lane following. We define the lane following problem as predicting the angular speed of the
vehicle in the future 1/3 second. As proposed above, we discretize the prediction domain
into bins and turn the problem into a multi-nomial prediction task.

We evaluated three different kinds of binning methods (Table 2.3). First we tried a linear
binning method, where we discretize [−90◦, 90◦] into 180 bins of width 1◦ . The linear binning

CHAPTER 2. END-TO-END DRIVING MODELS 20

method perplexity accuracy

Motion Reflex Approach 0.718 71.31%
Mediated Perception Approach 0.8887 61.66
Privileged Training Approach 0.697 72.4%

Table 2.4: Comparison of the privileged training with other methods.

method is reasonable under the assumption that constant controlling accuracy is needed
to drive well. Another reasonable assumption might be that constant relative accuracy is
required to control the turns. This corresponds to the log bins method. We use a total of
180 bins that is evenly distributed in logspace(−90◦,−1◦) and logspace(1◦, 90◦). We also
tried a data-driven approach. We first compute the distribution of the drivers’ behavior (the
vehicle’s angular velocity) in the continuous space. Then we discretize the distribution to 180
bins, by requiring each bin having the same probability density. Such data-driven binning
method will adaptively capture the details of the driver’s action. During training we use a
Gaussian smoothing with standard deviation of 0.5 to smooth the training labels in nearby
bins. Results are shown in Table 2.3; The data-driven binning method performed the best
among all of them, while the linear binning performed worst.

Figure 2.7 shows examples of our prediction on video frames. Sub-figure (a) & (b) shows
that our models could follow the curving lane accurately. The prediction has a longer tail
towards the direction of turning, which is expected since it’s fine to have different degrees of
turns. Sub-figure (c) shows the prediction when a car is starting to turn left at an intersection.
It assigns a higher probability to continue turning left, while still assigning a small probability
to go straight. The probability in the middle is close to zero, since the car should not hit the
wall. Close to the completion of the turn (sub-figure (d)), the car could only finish the turn
and thus the other direction disappears. This shows that we could predict a variable number
of modalities appropriately. In sub-figure (e), when the car is going close to the sidewalk on
its right, our model assigns zero probability to turn right. When going to the intersection,
the model has correctly assigned non-zero probability to turning right, since it’s clear by that
time.

Learning with Privileged Information (LUPI)

In this section, we demonstrate our LUPI approach on the discrete action prediction
task. Following Section 2.3, we designed three approaches: The Motion Reflex Approach
refers to the FCN-LSTM approach above. The Privileged Training approach takes the
FCN-LSTM architecture and adds an extra segmentation loss after the fc7 layer. We used
BDD Segmentation masks as the extra supervision. Since the BDDV dataset only contains
the car egomotion and the BDD Segmentation dataset only contains the segmentation of
individual images, we pair each video clip with 10 BDD Segmentation images during training.

CHAPTER 2. END-TO-END DRIVING MODELS 21

(a) lane following left (b) lane following right

(c) multiple possible actions: turn left
or go straight

(d) collapsed to single action after the
turn

(e) single sided prediction due to side
walk

(f) right turn becomes available at inter-
section

Figure 2.7: Continuous actions predicted by our model. The green sector with different
darkness shows the probability map of going to a particular direction. The blue line shows
the driver’s action.

The motion prediction loss (or driving loss) and the semantic segmentation loss are weighted
equally. For the Mediated Perception Approach, we first compute the segmentation output
of every frame in the videos using the Multi-Scale Context Aggregation approach described
in [Yu and Koltun, 2015]. We then feed the segmentation results into an LSTM and train
the LSTM independently from the segmentation part, mimicking stage-by-stage training. In
theory, one would not need side task to improve the performance of a neural network with
unlimited data. To simulate a scenario where we only have limited amount of training data,

CHAPTER 2. END-TO-END DRIVING MODELS 22

(a)

(b)

(c)

Figure 2.8: We show one example result in each column from each of the three models. (a)
is the Behavior Reflex Approach. (b) is the Mediated Perception Approach and (c) the
Privileged Training Approach.

we run experiments on a common subset of 1000 video clips.
As shown in Table 2.4, the Privileged Training approach achieves the best performance in

both perplexity and accuracy. These observations align well with our intuition that training
on side tasks in an end-to-end fashion improves performance. Figure 2.8 shows an example
in which Privileged Training provides a benefit. In the first column, there is a red light far
ahead in the intersection. The Privileged Training approach has successfully identified that
and predicted stop in (c), while the other two methods fail. In the second column, the car is
waiting behind another car. In the frame immediately previous to these frames, the vehicle
in front had an illuminated brake light. The second column of images shows the prediction of
the three methods when the brake light of the car goes out but the vehicle has not yet started
to move. The Privileged Training approach in (c) predicts stop with high probability. The
other two methods behave more aggressively and predict going straight with high probability.

CHAPTER 2. END-TO-END DRIVING MODELS 23

2.6 Discussion

We introduce an approach to learning a generic driving model from large scale crowd-
sourced video dataset with an end-to-end trainable architecture. It can learning from
monocular camera observations and previous egomotion states to predict a distribution over
future egomotion. The model uses a novel FCN-LSTM architecture to learn from driving
behaviors. It can take advantage of semantic segmentation as side tasks improve performance,
following the privileged learning paradigm. To facilitate our study, we provide a novel
large-scale dataset of crowd-sourced driving behaviors that is suitable for learning driving
models. We investigate the effectiveness of our driving model and the “privileged” learning
by evaluating future egomotion prediction on held-out sequences across diverse conditions.

24

Chapter 3

Recover Motion from Egocentric
Video

Current methods for extracting 3D scene structure fail on typical driving sequences
collected by consumer-grade cameras. These methods generally rely on geometric cues
and have difficulties distinguishing moving from static objects for many scene conditions.
Recent advances in pixel-level semantic labeling offer a new approach: leveraging monocular
semantic cues prior to reconstruction. We propose static-object Semantic Filtering for
Structure-from-Motion, Sf2M, using a fully convolutional network to directly predict the
keypoints belonging to the static background in each frame. Our method can be utilized with
many existing SfM methods, including both classic and deep learning-based reconstruction
algorithms. Leveraging a learned monocular cue to exclude keypoints on moving objects
allows our method to succeed with rolling shutter cameras without explicitly modeling the
rolling shutter, even in scenes dominated by multiple moving objects with a relatively narrow
field-of-view. We report the performance of our method on a recently released crowdsourced
driving video dataset, both for scene and camera trajectory reconstruction.

3.1 Background

In this chapter we investigate structure from motion (SfM) on crowdsourced driving video
sequences, and show that the addition of a simple yet novel semantic filter leads to successful
reconstruction with consumer-grade camera sensors. From a computer vision perspective, the
problem of reconstructing camera motion and scene structure is amongst the oldest problems
in the field and is generally considered solved in many important cases. It is well known that
many classic SfM and simultaneous localization and mapping (SLAM) methods can succeed
at visual odometry and 3D reconstruction; somewhat surprisingly, however, we show below
that existing solutions fail to handle typical videos from a mobile phone sensor mounted on a
vehicle dashboard.

Crowdsourced dashcam videos are more challenging compared to previous visual odometry

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 25

Figure 3.1: Comparison of a KITTI image (left) and a BDD dashcam image (right). The
BDD image features a narrower field of view and more surrounding moving objects, which
makes the monocular visual odometry problem much more challenging than that in the
KITTI dataset.

benchmarks for driving scenarios, such as the KITTI odometry benchmark [Geiger et al., 2013].
Several recent publicly available monocular visual odometry methods fail on the crowdsourced
dashcam videos in the dataset released by [Xu et al., 2016], including DSO [Engel et al., 2016],
ORB-SLAM [Mur-Artal et al., 2015], Libviso2 [Geiger et al., 2011], and OpenSFM [Adorjan,
]. Compared to KITTI, the crowdsourced videos have much denser traffic, they are recorded
by rolling shutter cameras, there are motion blur and jitter, and the camera is generally
mounted at a lower height and, hence, a larger fraction of the image is covered by other road
users (c.f. Fig. 3.1). Moreover, neither camera mounting locations nor camera calibrations are
available. Among all the challenging factors, our experiments indicate that moving objects in
the scene create the biggest problem.

We propose a learning-based approach that is able to overcome these limitations, and can
reconstruct road scenes without a complex camera setup, calibration of each individual camera
sensor, nor explicit modeling of the rolling shutter. We argue that semantic understanding of
the image should be a primary component for correspondence estimation in visual odometry.
While some SfM models have included object recognition cues, as discussed below, in general,
previous systems only make use of geometric cues and/or appearance consistency when
forming keypoint correspondences, as in [Engel et al., 2016,Mur-Artal et al., 2015,Geiger
et al., 2011, Adorjan, , Klein and Murray, 2007]. Such methods are prone to forming an
incorrect hypothesis on moving objects.

Traditionally, robust estimation using RANdom SAmpling and Consensus (RANSAC)
has been used to discount the effect of moving objects. However, in the case of uncalibrated
dashcam videos, fairly generous inlier thresholds may be required due to the uncertainty
induced by the unknown calibration and rolling shutter artifacts; with sequences where moving
objects occupy a large proportion of the scene, this can lead to erroneous reconstructions.
While one solution would be to try to model all the effects in the image formation process,
such that very strict inlier thresholds can be used to reject moving objects, this becomes very
challenging for large collections of videos captured with different cameras in a crowdsourced

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 26

manner. Moreover, motion estimation with more complicated camera models that model
the rolling shutter is generally more difficult and requires more point correspondences. We
propose a complementary solution, making the correspondence estimation more robust from
the beginning. Our method, which we call Semantic Filtered Structure-from-Motion, or Sf2M,
simply rejects keypoint correspondences when they are lying on objects which potentially
move (c.f. Fig. 3.2). In our experiments we show that this is a very powerful yet simple way
of making SfM and SLAM more robust, allowing us to reconstruct crowdsourced dashboard
video sequences using lightly modified state-of-the-art SfM or SLAM systems.

We compare Sf2M to baseline visual odometry methods on the BDD dashcam video
dataset [Xu et al., 2016]. Baseline methods significantly under-perform our method on a
majority of videos in this dataset. While we build and will make publicly available a reference
implementation of our method using the OpenSfM framework, our approach is general and
potentially applicable to a wide range of SfM and SLAM approaches.

3.2 Related Work

Structure from Motion has attracted considerable attention in computer vision since
the early stages of the field, and existing techniques are able to reconstruct large scale
3D scenes, e.g., [Wu et al., 2011, Snavely et al., 2006, Snavely et al., 2008, Agarwal et al.,
2010,Frahm et al., 2010]. However, although we have a thorough theoretical understanding of
the geometry [Hartley and Zisserman, 2003,Pollefeys et al., 1999] of the problem, we still face
two practical problems that keep SfM from working robustly: finding reliable correspondences
in real scenes and reconstructing scenes which contain moving objects. Various feature
detectors and descriptors (e.g., [Lowe, 1999,Bay et al., 2006,Mur-Artal et al., 2015]) have
been proposed to robustly detect and match keypoints between images. Yet in practice, these
methods may not be sufficient to resolve difficulties with moving objects, rolling shutters,
and other challenges present in crowdsourced video data. We conjecture that humans can
find correspondences in those images based on high level semantic cues; therefore we propose
a semantic convolutional network filter to identify unlikely correspondences.

Surprisingly, to the best of our knowledge, no previous work has taken advantage of static
semantic information to improve the robustness of initial correspondence matching in SfM.
Semantic information has been exploited in previous SfM approaches, but in a post-hoc
manner. Several papers [Alcantarilla et al., 2016, Song et al., 2016, Song and Chandraker,
2015,Vineet et al., 2015,Kundu et al., 2014] assume that a reconstruction of the static scene
can be acquired using SfM and subsequently use semantic cues to refine the reconstruction
by tracking moving objects or augmenting the reconstruction with semantic information.
For example, [Song et al., 2016] first produces a 3D reconstruction, which is subsequently
used with a bounding box detector to further estimate the ground plane and retrieve the 3D
vehicle detections. In our work we consider situations where state-of-the-art methods already
fail on the initial reconstruction of the static environment. [Salas-Moreno et al., 2013,Bao
and Savarese, 2011] use monocular object detections to augment the information acquired

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 27

Figure 3.2: Keypoints matching comparison of our method (left) versus the standard structure
from motion method (right) [Snavely et al., 2006,Snavely et al., 2008]. Matches are obtained
after nearest neighbor matching between two images, followed by the ratio test and RANSAC
fundamental matrix estimation filtering. Our method has excluded matches on all moving
objects, thus improving the overall robustness of the system. Matches are between adjacent
video frames. Correspondences are omitted for visualization purpose.

from keypoint matches. However, this means that the objects are assumed to be static, which
is not the case in general environments. The method closest to ours is [Kundu et al., 2010],
which designs a motion segmentation procedure to segment out different rigid body motions
in the scene based on geometric cues. In our work we utilize semantic information to aid the
SfM computation.

Multi-body SfM [Ozden et al., 2010, Fitzgibbon and Zisserman, 2000, Kundu et al.,
2011,Roussos et al., 2012] is an extension of SfM that enables the reconstruction of multiple
rigidly moving objects. The main idea is to cluster tracks into several independently moving
objects and apply traditional multi-view geometry on each object. The presence of multiple
motions has long been recognized to be a challenge. Without the help of semantics, it is
considered hard both in theory and in practice to recover the camera motion, even under a
relaxed rigid multi-body assumption [Ozden et al., 2010,Fitzgibbon and Zisserman, 2000].
Recently, semantic cues have been utilized for optical flow computation [Sevilla-Lara et al.,
2016,Bai et al., 2016], further motivating our approach. With our method, we can separate
the static and dynamic parts of the images so that we can use different SfM algorithms to
focus on different parts of the scene.

Note that many of these SfM systems take an unordered collection of images as input and
the focus is reconstructing the structure, and, hence, often only a subset of the input images
is reconstructed. However, for Simultaneous Localization and Mapping (SLAM) problems,
images are sequential and the goal is to reconstruct the entire trajectory, hence, all images
need to be registered. Many SLAM systems have been proposed in the literature, a few
recent examples being [Engel et al., 2014,Mur-Artal et al., 2015,Engel et al., 2016,Song and
Chandraker, 2015]. They generally exploit the smooth motion assumption to track feature
points through the image sequence. Some works use learning-based techniques to improve
egomotion estimation. [Hartmann et al., 2014] proposes predicting how matchable an extracted
SIFT feature is in order to make the matching procedure more efficient. DeMon [Ummenhofer
et al., 2016] replaces the traditional motion estimation between two frames with a purely

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 28

learning-based approach. Using these stronger assumptions about the motion allows for a
more complete reconstruction of the trajectory within SLAM systems as compared to SfM,
which generally makes no assumptions about the motion.
Semantic image segmentation is one of the classic problems in computer vision. Re-
searchers used to design features by hand to classify pixel categories [Shotton et al., 2008].
With the advent of representation learning by convolutional networks, significant performance
improvement was obtained [Long et al., 2015,Ronneberger et al., 2015,Badrinarayanan et al.,
2015,Yu and Koltun, 2015,Yu et al., 2017]; with state of the art methods the majority of
the static pixels can be detected reliably. These methods provide semantic labeling of the
image pixels, which is complementary to the geometrical understanding obtained by SfM. We
build on the recent success of semantic image segmentation [Long et al., 2015,Yu and Koltun,
2015], and use pixel semantics as a filter to improve the robustness of correspondences used
in SfM.

3.3 Semantically Filtered Structure-from-Motion

One of the key steps in SfM and SLAM systems is finding the relative pose (rotation
and translation) between two images. The predominant paradigm for this task is finding a
sufficiently large set of corresponding points in both images using keypoint detectors and
feature matching, and subsequently using algorithms such as the 5 point or 8 point algorithm
to find the essential or the fundamental matrix, respectively [Hartley and Zisserman, 2003].
Once a good transformation is found, a least squares solution that takes into account all
established keypoint correspondences can be computed for a more accurate estimate. The
key to a robust SfM or SLAM system is being able to reliably and accurately estimate these
pairwise transformations.

We propose an SfM method that explicitly incorporates an end-to-end learned Fully
Convolutional Neural Network model to predict matching confidence. The FCN is used
as a semantic filter in our formulation, so we refer to our method as Semantic Filtered
Structure-from-Motion, or Sf2M.

Matching with Semantics

Given two images I1 and I2, we want to find points in the set P1 and their corresponding
points in set P2 and vice versa, where P1 and P2 are sets of all the matchable points in I1
and I2. Formally, we use a matchability score MI1I2(i1, i2) to denote our preference over
all pairs of points between i1 ∈ P1 and i2 ∈ P2. Traditionally, the matchability score only
depends on the appearance of two images at i1 and i2:

MI1I2(i1, i2) =
1

‖fI1(i1), fI2(i2)‖
,

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 29

where fI(i) is a function that calculates local image descriptors at location i for image I and
‖ · ‖ is a distance metric for the pair of descriptors. For example, most SfM pipelines use
SIFT [Lowe, 2004,Lowe, 1999] as local descriptors and a corresponding L2 distance metric.
Retrieving the nearest neighbor of a descriptor in another image corresponds to a special
kind of matchability score ranking.

We propose that matching only based on local low level image descriptors is insufficient.
Instead, the matching process has to take higher level semantic information into account. We
propose that the matchability score should have the form:

MI1I2(i1, i2) =
SI1I2(i1, i2)

‖fI1(i1), fI2(i2)‖
, (3.1)

where SI1I2 is a learnable function that outputs pairwise semantic compatibility between
all matches. The semantic compatibility provides a much higher level of global information
than the local descriptors, such as the class of objects and physical knowledge of whether the
object can be moving.

Matching FCN

In this section, we develop a factorized semantic term based on a fully convolutional
network approach to pixel-level category prediction. The semantic term SI1I2(i1, i2) takes the
semantics of both images, as well as their interaction into account. Our factored term drops
the pairwise semantic interaction:

SI1I2(i1, i2) = pI1(i1) · pI2(i2),

where pI(i) gives dense semantic score at pixel i for image I. The pI(i) could be easily
implemented by an Fully Convolutional Network.

The Dilated FCN is a recently proposed network architecture for semantic segmentation [Yu
and Koltun, 2015], which achieves dense outputs by using dilated convolution. We take a
dilated VGG-16 [Yu and Koltun, 2015] architecture and train it with semantic segmentation
annotation provided by Cityscapes [Cordts et al., 2016]. We define the pI(i) function by:

pI(i) = 1[sI(i)∈S]

where sI(i) is the semantic segmentation output at the pixel corresponding to keypoint i, S
is a set of object classes that is always static.

We thus learn p as a segmentation network defined by classes which have the potential
for motion. In practice, this choice shows strong results, as presented in our experimental
evaluation below; however, it will inevitably miss some static objects, such as parked vehicles.
We explored a bootstrap method to further distinguish moving versus static within a single
object class, using points labeled with re-projection errors to finetune the model. Somewhat
surprisingly, our experiments with this approach failed to significantly improve performance,

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 30

Figure 3.3: Left: Frames from two videos in the BDD Dataset. Middle: The 3D point cloud
reconstructed by Sf2M, seen from camera view. Right: The 3D point cloud reconstructed
by Sf2M, seen from side-viewan alternate viewpoint. Points are colored by the segmentation
label. The road is purple, vegetation is green, poles are light gray, traffic signs are light
yellow, and buildings are dark gray.

reinforcing the message of this chapter that monocular semantics are a powerful cue for
reconstructing the challenging type of data we are exploring. We hypothesize that the frontal
motion of the camera, along with keypoints being too far away, makes the triangulation
non-trivial. We additionally note that some datasets do include pixel level labels which
distinguish moving from non-moving vehicles, and future work is to finetune our model with
such labels and see what effect that has on the performance.

Base SfM Model

We experiment below using our framework with a traditional SfM pipeline, based on
OpenSFM. Our base SfM model is comprised of the following steps. First, a set of sparse
image keypoints, along with their descriptors, are extracted from the images. Then, for all
pairs of images which are within a sequential window, all feature points are exhaustively
matched. A distance ratio test and fundamental matrix estimation with RANSAC [Fischler
and Bolles, 1981] are used to prune bad matches and find a motion estimate. After that, all
2D keypoints that correspond to a potential single 3D point are collected together, which
is called a track. Finally, a reconstruction is grown by incrementally adding images by
resection, and bundle adjustment is applied to improve the quality further. We note that our
overall framework is generic, and can be broadly developed incorporating any SfM or visual
odometry method that allows a pairwise matching confidence term to be integrated into the

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 31

Figure 3.4: Reconstructed Trajectories with different methods. Red boxes highlight the errors.
Our method outputs a convincing reconstruction for all the trajectories. ORB-SLAM [Mur-
Artal et al., 2015] reconstructs the straight line in the beginning well, but fail after turning.
Libviso2 [Geiger et al., 2011] is robust in a coarse manner but misses most of details. Coarse
GPS are also shown for reference. The four visualizations are obtained from the corresponding
software interfaces. Detailed Analysis is shown in Section3.4

reconstruction process. This is more straightforward in OpenSFM than in some frameworks,
but it is uncommon that an SfM framework does not allow weighted matchings at least in
theory, we note.

While OpenSFM is traditionally designed for unordered collections we adopt the following
changes to apply it to videos. Since a video is inherently sequential, we limit the keypoint
matching to a temporal neighborhood of 10 images. SIFT features are employed to extract
around 4000 keypoints per image. To avoid the degenerate case of little or no motion, we
adaptively downsample the sequence based on the inlier ratio of homography between adjacent
frames. Specifically, we keep a frame if the homography inlier ratio between a current frame
and the previously kept frame is less than 0.85.

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 32

3.4 Experiment

Experiment Setup

We aim to study the robustness of our proposed method on challenging driving videos.
The recently released BDD Video Dataset [Xu et al., 2016] provides a suitable testbed.The
videos were recorded by recent iPhones with rolling shutter cameras at 30fps and 1280× 720
resolution. All videos are 40 seconds long. The videos are challenging for 3D reconstruction.
The city scenes are complicated and covered by moving objects such as heavy traffic and
crowded pedestrians. Rolling shutter artifacts are visible in some highway scenes, where the
vehicle moves at high speed. In some videos, the camera jitters seriously due to road surface
vibrations. Precise geometric calibration for each camera is not available. Instead, we provide
a single approximate calibration for all videos. From an iPhone5’s camera calibration, we set
camera intrinsics as fx = fy = 1200, cx = 640, cy = 360 and skew coefficient as 0, distortion
correction are omitted. All the following experiments adopt the same calibration.

We experiment with a dilated FCN [Yu and Koltun, 2015] model pre-trained on Cityscapes [Cordts
et al., 2016] with 19-category segmentation, by specifying pedestrians, the sky, and all types
of vehicles as matching outliers.

Baselines

We investigate ORB-SLAM and Libviso2 as two baselines. We choose these baselines as
they have shown strong performance on driving sequences and are designed to reconstruct
video sequences. Standard SfM systems are not suitable as baselines as they are usually
optimized for unordered image collections and do not exploit the sequential nature of the
data.

ORB-SLAM [Mur-Artal et al., 2015] is a recent effort in the SLAM community that
combines many recent advances in an indirect framework. The default settings of ORB-SLAM
fail on most of our videos. We have to increase the number of ORB keypoints from 2000 to
6000. To get better results, we also increased the number of pyramid levels from 8 to 12.
Other parameters such as scale factor between levels in the pyramid and FAST [Rosten and
Drummond, 2005,Rosten and Drummond, 2006] threshold are kept as default.

Libviso2 [Geiger et al., 2011] is especially tuned for driving scenarios, such as the KITTI
visual odometry benchmark. We tried to adapt it to the BDD Video Dataset but the default
setting fails on all sequences. We change the non-maximum suppression threshold to 1 pixel.
We also increase the RANSAC iteration limit to 10000, which experimentally improves the
matching stability. In addition, we increase the motion threshold to 40, to ensure resection
will only happen when there is enough motion. The multi stage parameter is kept as 0, since
we do not observe much difference by having multiple stages.

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 33

Visualization

As a first qualitative result, we show the 3D scene reconstruction obtained after running
Sf2M on two BDD Dataset videos. In Figure 3.3, notice the 3D point cloud reconstructions
of the videos, colored according to the segmentation labels. We present the point cloud from
both the camera view and a side view, to illustrate that our reconstructions look reasonable
from different angles. In the first row, one can easily identify various different objects: the
road, vegetation, street signs, and a well-defined lamppost. In the second example, notice how
the 3D reconstruction accurately detects the left side buildings and the right side trees, which
are visible in the image as well. These two visual examples provide an initial demonstration
of the efficiency of Sf2M.

Robustness Evaluation

We randomly select videos from the BDD Video Dataset [Xu et al., 2016], representing
a wide range of dashcam videos recorded in the wild. The videos contain very challenging
cases, including city scenes with heavy traffic and lane changing, and highway scenes with few
feature keypoints, rolling shutter effects, and significant camera shaking. As we are interested
in having a system which generates accurate trajectories even in challenging conditions we
focus our evaluation on the robustness of each method when running on the BDD dataset.

Measures such as scale drift and accumulated rotational drift do not quantify the robustness
of the methods, since these measures assume the reconstruction does not fail, i.e. outputs a
plausible trajectory for all the frames. Some common failures include:

• Multiple reconstructions are returned, i.e. the camera trajectory is broken into several
parts.

• Incorrect speed. This happens when large moving objects are predominant in the
images and get tracked. They are then assumed to be the static background by the
reconstruction algorithm.

• Erroneous rotations. This easily happens when keypoints from both the static back-
ground and a moving object are tracked at the same time.

With these failure cases present, we use the following measures to quantify the robustness
of the reconstruction algorithms: the number of reconstructed frames until the first failure,
and the number of reconstructed frames in total. Tracking failures are identified by manually
analyzing the trajectories. If no keypoints are tracked or the reconstructed trajectory deviates
significantly from the GPS signal (more than 10 meters or 30 degrees) we consider it a failure.

Although ORB-SLAM has taken advantage of many recent advances, it still fails when
there are a large number of moving vehicles, especially when moving vehicles are close to the
camera, such as sequences 2, 6, 7 and 8 (Table 3.1). When encountering a large number of
moving vehicles, ORB will gradually lose its original tracks on the static objects and start to
focus on the vehicles. After that, ORB will wrongly infer super slow motion and, thus, fail.

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 34

Table 3.1: Robustness of Sf2M, ORB-SLAM and Libviso2 on 8 randomly selected video
sequences. Each pair of numbers in the table denotes how many frames have succeeded before
the first failure, and how many frames have succeeded in the whole video. Each video has
1200 frames in total, thus 1200/1200 means a robust reconstruction on all frames.

Sequence Id 1 2 3 4 5 6 7 8

Scenario city city city city city highway bridge highway
Traffic Level light heavy medium light medium light heavy heavy
Characteristics turns lane change slopes simple long stop large cars many cars large cars
Sf 2M 1200/1200 1200/1200 1200/1200 1200/1200 1078/1177 1200/1200 1200/1200 1200/1200
ORB-SLAM 104/104 352/352 290/1195 1200/1200 1185/1185 355/410 480/480 455/455
Libviso2 746/1065 60/938 1200/1200 1200/1200 1200/1200 0/200 1200/1200 96/1001

On the other hand, it succeeds in the simple cases, such as sequences 3, 4 and 5, where there
is only slight to medium level of traffic.

Experimentally, Libviso2 is slightly more robust than ORB-SLAM. We attribute this to
its scene specific optimization. However, it suffers from the same moving vehicle problem, as
the ORB-SLAM: the motion is underestimated when the camera is in a crowd of moving
vehicles. The failed sequences (2, 6, 8) are similar to that of ORB-SLAM.

Our method, on the other hand, explicitly excludes all moving vehicles and thus works
much more robustly than the other methods. Among the subset of videos in Table 3.1, our
method succeeds on all of them.

Effect of Moving Vehicles

In Figure 3.4, we show results for which all methods output a smooth trajectory (we exclude
cases with large motion discontinuities). However, even in these cases the reconstructions
can be erroneous due to moving objects in the scene. For example, in Sequence 8 (Fig.
3.4), a large truck is on the side of the image and most methods, including ORB-SLAM,
track a large portion of features on the moving truck, since it is the dominant object in
the scene and has rich texture. Since the truck is moving slowly and steadily, all methods
return a reconstruction; however the erroneously tracked points induce a large error, i.e. the
reconstruction algorithm considers the slowly moving object as static, which leads to wrong
pose estimations.

Comparison with GPS+IMU Fusion

The crowdsourced video dataset that we are using does not contain accurate ground truth
trajectories. The only trajectory data that is contained in the dataset is consumer grade
GPS and IMU data, which is recorded with the sensors built into the mobile phones used for
the data collection. This type of trajectory data is in practice not very accurate, e.g. lane
changes cannot be identified. Despite that it still contains important information. By adding

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 35

Figure 3.5: Both our reconstructed trajectory (blue) and GPS (red) trajectory are shown in
this figure (left). At the starting point, zoomed-in trajectories are shown (right). The GPS
trajectory does not contain the backing up and lane changing maneuver at the beginning of
the sequence while our reconstruction recovers this motion.

Figure 3.6: Three frames extracted from the starting point of the sequence reconstructed in
Fig. 3.5. Visually, it is clear that the car first backs up and then changes to the other side
of the road to go forward. This maneuver is correctly recovered by our algorithm but not
present in the GPS+IMU trajectory.

the coarse GPS locations as a soft constraint (l2 loss) to the bundle adjustment absolute
scale can be recovered and scale drift [Strasdat et al., , Song and Chandraker, 2014,Song and
Chandraker, 2015] can be effectively avoided.

In Figure 3.5, we compare the reconstructions recovered from our approach using the
visual information and the GPS+IMU data with a trajectory acquired by fusing only the
GPS+IMU signal without using the visual information. Two scenarios are analyzed, lane
changes and backing up. In both cases the trajectory from GPS+IMU does not contain

CHAPTER 3. RECOVER MOTION FROM EGOCENTRIC VIDEO 36

the maneuver, while in the trajectory reconstructed with our approach these details are
recovered. As an example, Fig. 3.6 shows the backing up maneuver conducted by the car at
the beginning of the sequence, which is correctly recovered by our algorithm. The fact that
GPS+IMU is unable to recover such maneuvers underlines the importance of being able to
use the visual information to robustly recover accurate trajectories in crowedsourced driving
data.

3.5 Discussion

We presented a method for reconstructing scenes in 3D from a single moving camera
suitable for large-scale crowdsourced driving videos. We demonstrated that state-of-the-art
methods fail on this type of data due to the challenges posed by the rolling shutter, motion
blur, and, most importantly, the many moving objects which are present in general driving
sequences. We developed a semantic filtering method that employs a Fully Convolutional
Network (FCN) to directly predict the keypoints belonging to the static background in each
frame. This allows us to robustly reconstruct the trajectories and scene structures from
driving videos acquired in a crowdsourced manner, recorded with mobile phones mounted on
a dashboard. As such, our method succeeds even in scenes dominated by moving objects. In
future, semantic information can be further used to improve and densify the 3D reconstructions
to eventually form a complete system for road scene reconstruction and understanding from
crowdsourced data. Our work can help bridge 2D and 3D scene semantic analysis and
introduce geometric properties back to segmented images. This will make crowedsourced
driving data an important asset for research on self-driving applications in challenging city
environments.

37

Chapter 4

Perception-Logical Policy

Human driving behavior can not be explained solely by traffic rules, rather, people take a
lot of scene factors into account, e.g. driving slower than speed limit when many pedestrians
are around. Autonomous driving system should obtain those behaviors as well, since it
not only ensures natural interactions with non-autonomous divers and pedestrians, but also
improves driving safeness. There are numerous scene factors that are related to driving, for
which labeling each of them extensively can be a cumbersome job. We propose to leverage
only demonstrative driving data to unsupervisely learn the reactions to those scene factors.
Moreover, scene conditioned driving behavior have complex logical dependencies on the scene
factors. We propose to combine the learned scene factors with a logic network, to finally
output the driving behaviors. We end-to-end train the perception and the logic network,
as retrieving intermediate supervision signals is expensive. Our experiments show that the
proposed Perception-Logic network can unsupervisely learn meaningful scene factors and
generalize almost perfectly in terms of scene conditioned behavior. The driving performance
is significantly better than strong state-of-the-art baselines.

4.1 Background

Human vehicle driving is a complex behavior. People not only follow written traffic rules,
but also tend to behave differently in various contexts. For example, people would drive as
fast as the speed limit on an empty road. However, when passing through an urban narrow
road with lots of pedestrians on the sidewalk, he probably won’t drive as fast as the speed
limit, even if there are no other vehicles on the road. The reason is simple and rather intuitive:
it is more safe to drive slowly on the urban setting just in case some pedestrian suddenly
goes off the sidewalk, while it is more efficient to drive fast in an empty, rural environment.
We use the term Scene Conditioned Driving Behavior to refer to this phenomenon. It is an
important but often ignored rule for the autonomous driving system to make an appropriate
driving behavior according to the current scenario.

The scene conditioned driving behavior is highly dependent on the current scenario, and

CHAPTER 4. PERCEPTION-LOGICAL POLICY 38

Figure 4.1: Human driving behavior varies dramatically according to the current scenes. For
example, people will drive much more cautiously in a rainy weather, compared to a sunny
weather. Those scene conditioned behavior often depends on multiple scene factors, and
the dependency between the behavior and the scene factors might be connected through a
complex logic rule. For example, we may drive faster only if there is no pedestrian nearby and
the weather is not rainy and it is not dark. To solve this problem, we propose a Perception-
Logic Network that unsupervisely learns the scene factors and combine them with a logic
network. In terms of executing the scene specific driving behaviors, we find that our method
significantly outperforms strong baselines.

might change dramatically with the presence of a scenario factor. As in the previous example,
it is fine to drive fast without any vehicles on the road; however, it is better to drive cautiously
when there are lots of pedestrians on the sidewalk, even if the road is empty. But if we note
that the sidewalk is well separated from the main road by a traffic road barrier, then we can
still drive according to the speed limit. Those conditions can be summarized with a single
logical clause, namely, drive-fast if and only if empty-road and (has-barrier or no-pedestrian).
Ideally, the autonomous driving system can strictly follow the aforementioned rule.

One way to solve this problem is to label every aspect of the driving scenario we care
about, and code the driving system with the trained classifier. However, in practice, it is
extremely time-consuming to label training data with all the attributes that matter. Due
to the inherent complexity of the driving behavior, in the end of the day, there will be too
many attributes that is requires prohibitive human labor. In this chapter, we propose to

CHAPTER 4. PERCEPTION-LOGICAL POLICY 39

learn those factors in an unsupervised manner. Given a set of expert driving videos, and the
scene conditioned rules we need to follow, we would like to unsupervisely learn each factor
from the images, and ground them to the factors in the logical formula. Most importantly,
we would like the learned model to strictly follow the logic rules.

Most of the previous learning based driving agents [Pomerleau, 1989a, Bojarski et al.,
2016b,Chen et al., 2015b,Amini et al., 2019,Codevilla et al., 2018] do not use any explicitly
designed network architecture to strictly follow the logical rules. Rather, many of them rely
on the generalizability of a generic CNN to follow the rules presented in the training data [Xu
et al., 2017]. A well-established way is to use Mixture-of-Expert [and others Jacobs, Robert
A and Jordan, Michael I and Nowlan, Steven J and Hinton, 1991] to handle this; however,
we empirically show that a simple MoE might easily fail when the scene become complicated.
Many of the previous works [Dong et al., 2019, Evans and Grefenstette, 2018] as well as
our experiment show that a generic CNN generalizes poorly when there are complex logic
patterns in the data.

In this chapter, we propose a Perception-Logic Network that can unsupervisely learn
and ground logical factors directly from raw images. To achieve this goal, we designed a
neural network architecture that takes in images, and unsupervisely output intermediate
logic factors, which is later assembled according to the logic formula using a neural network.
The proposed perception-logic network can be end-to-end trained with the demonstration
data. We also proposed a batch-diversity loss to make sure we are learning the correct logic
concepts. We have shown significant improvements in terms of following the logic rules
compared to a number of baselines, and at the same time, our model also outputs explainable
intermediate decision logic factors.

4.2 Related Work

Autonomous Driving The seminal work of Pomerleau [Pomerleau, 1989a] proposed
to use learning method and neural networks to automatically learn driving policies from
the data. Recently, the learning based autonomous driving has received a great attention.
Nvidia [Bojarski et al., 2016b, Xu et al., 2017] adapted modern CNN to the driving task
and used 3 cameras to provide both positive expert demonstrations and negative correction
samples. Codevilla et al. [Codevilla et al., 2018] proposed conditional imitation learning, which
resolved the inherent multi-modality of the driving task by assuming a high level command
and a corresponding network architecture. [Chen et al., 2015b] proposed an intermediate level
of abstraction, i.e. driving affordance, to combine the best of machine learning and classical
control methods. Sauer et al. [Sauer et al., 2018] combined the affordance learning with the
conditional imitation learning idea, which results in further improvements of the method.
Beyond those works, people also have been making progress in architectures [Amini et al.,
2019], driving models [Xu et al., 2017], planning algorithms [Bansal et al., 2018], etc.

However, none of the previous works deal with perceptual-logic reasoning on the driving
domain: most of them use some form of CNN, and the intermediate neurons within those

CHAPTER 4. PERCEPTION-LOGICAL POLICY 40

CNN do not correspond to physical concepts. As a result, the logic behind the training data
do not generalize well to the test data, as we will show in the scene conditioned driving
experiments. We proposed a perception-logic network that can unsupervisely discover physical
meaningful concepts and combine them with a logic network.

Perception and Logic Joint Models
Recently, people have extensively studied how to use learning method for logic tasks, such

as inductive learning and logic reasoning [Richardson and Domingos, 2006,Kersting et al.,
2000,Kimmig et al., 2012]. However, most of the aforementioned methods assume we have
already abstracted the domain (image, language, or knowledge base) to a few logical variables.
We are interested in how to complete a task with logic involved from raw perceptual inputs,
such as images. Both Dong et al. [Dong et al., 2019] and Evans & Grefenstette [Evans and
Grefenstette, 2018] designed end-to-end differentiable models that can learn logic rules from
the data. They both demonstrate how their designed method could be applied to simple
image domains, such as MNIST [and others LeCun, Yann and Bottou, L{\’e}on and Bengio,
Yoshua and Haffner, 1998]. However, the ∂ILP method [Evans and Grefenstette, 2018] needs
to pre-train the perception CNN on digit classification, violating our assumption that no
previous knowledge is required. NLM [Dong et al., 2019] claims to be able to learn perception
representations and logic rules in an end-to-end manner, but only on simple image domains.

Many works [Hu et al., 2018,Hu et al., 2019,Mascharka et al., 2018] in vision and language
domain jointly learns over raw sensory data, such as images, and reason with logic on top of
it. Neural Module Networks [Andreas et al., 2016] propose to compose per-instance inference
network by composing neural modules together on the fly. The neural modules are assembled
by instructions from the parsing of natural language sentences. Later works have extended it
in many aspects, such as learning the language parser end-to-end [Hu et al., 2017a], extends
into the multi-task RL setting [Andreas et al., 2017]. Some works [Santoro et al., 2017,Hu
et al., 2017b] deal with special kinds of reasoning, i.e. pairwise relation reasoning, because
they are common in many vision and language tasks. Though related, those methods differ
from ours because they utilize rich language priors to instruct the logic part.

Architectures Part of our proposed Perception-Logic Network architecture is similar to
Mixture of Experts (MOE) model [and others Jacobs, Robert A and Jordan, Michael I and
Nowlan, Steven J and Hinton, 1991,Jordan and Jacobs, 1994]. MOE architectures aim to
divide the output concept into several easier concepts, and at the same time, use a switching
network to automatically switch from those experts. MOE can only deal with simple switching
logic, while our proposed method can in theory handle any complex pre-defined logic rule.
The vanilla MOE method suffer from “mode collapse”, i.e. when learning the experts and
switching network at the same time, the switching network tends to assigning higher weight
to the one or few better performing experts. Those experts with higher switching weights
are trained more rapidly than the other experts. The two process reinforce each other. As a
result the switching network will only select the best experts. Many works have been done to
alleviate this issue [Shazeer et al., 2017]. We found that this issue is even more severe when
we have a logic network, since the order of the experts matter in our case. We proposed the
diversity loss on logic network to resolve this issue.

CHAPTER 4. PERCEPTION-LOGICAL POLICY 41

Figure 4.2: (a) The overall architecture of our method. The backbone is the same as the
Conditional Imitation Learning baseline. The logic and gating network architectures are
shown in (b) and (c) respectively. (b) The Logic network architecture. The logic network takes
input from the scene factor prediction and combines them with continuous approximation
to logical operations. (c) The Gating network architecture. The gating network outputs a
continuous approximation to the discrete logic factor with the Sigmoid layer.

Figure 4.3: Visualization of the conditional imitation learning [Sauer et al., 2018] baseline.
The CIL method assumes a high level navigational input to the network and the neural
network has one branch for each high level command. The high level command selects the
branch during training and testing time.

4.3 The Perception-Logic Network

In this section, we will describe the scene conditioned driving problem formulation, and
our proposed Perception-Logic Network to solve this problem.

CHAPTER 4. PERCEPTION-LOGICAL POLICY 42

Problem Formulation

Let’s first formulate the scene conditioned driving problem. At each timestep t, we have
a representation of the whole driving scenario st, such as the current image observation. We
would like to learn from a set of expert driving demonstrations, denoted by:

{(st, at)}

where at is the corresponding expert actions. In practice, a large amount of expert demon-
stration can be easily collected by recording human driving behaviors. The expert driving
behaviors are scene conditioned, i.e. the behavior of the driver differs across scenarios. Here,
we assume the scene can be described by a set of k Boolean factors, denoted by:

{x1, x2, · · · , xk}

such as: is this a rural area (x1) or an urban area (¬x1), or is it a rainy weather (x2) or a
sunny weather (¬x2). We do not assume knowing the annotations for those scene factors,
since in practice, it is cumbersome to annotate a large amount of possible scene factors for
many images. On the contrary, it took much less man hours to provide rules, under which
condition to perform a certain driving style. For example, we should drive more cautiously
when it is rainy or it is a crowded urban area. Those conditions can be described by Boolean
functions of the scene factors, such as ¬x1 ∨ x2 for the case above. We assume we have a set
of rules, that each of them describes a particular driving style. Those rules can be represented
by r Boolean functions, fi(x1, · · · , xk), i = 1 · · · r, where when fi is true, one should follow
the corresponding driving style.

The unsupervised scene conditioned driving problem is defined as: given a set of driving
demonstrations {(st, at)}, and the corresponding set of scene conditioned symbolic rules
fi(x1, · · · , xk), i = 1 · · · r, to learn a driving agent a = π(s) that exhibits the scene conditioned
driving behavior. Note that the problem is unsupervised in terms of the scene factors x1 · · ·xk,
since they are not provided as labeled data.

Perception-Logic Network

It is hard for a vanilla CNN to learn the exact behaviors when the data is generated by
an inherent process involving complex logic [Dong et al., 2019]. As shown in our experiment
section, the vanilla CNN method almost completely fails to capture the complex logic behind
the scenes. In this section, we propose the Perception-Logic Network that allows the model
to learn meaningful scene factors and compose them according to the logic rules. Besides
the model architecture, we also proposed two techniques to make training the network more
stable, i.e. a diversity loss on logic network and a batch wise logic-value re-normalization.
The experiments show that our method achieves almost perfect action generalization in terms
of scene conditioned behavior modeling.

Figure 4.2 shows our proposed solution to the aforementioned problem. We proposed to
use Conditional Imitation Learning (CIL) [Sauer et al., 2018] as our backbone network. In

CHAPTER 4. PERCEPTION-LOGICAL POLICY 43

the autonomous driving application, the agent sometimes have multiple potential actions
to take at an intersection, such as turning left, turning right and going straight. The usual
regression method will not work in this scenario, since there are multiple ground-truth labels.
CIL assumes we are given the navigational command (LEFT, RIGHT or STRAIGHT) during
training and testing time, and it proposes to use multiple branches in the neural network to
deal with each command separately. Our method modifies each branch of the backbone in a
similar manner, thus for the remainder of this section, we only describe our method in terms
of one branch.

Scene Factors The proposed Perception-Logic Network outputs the probability of each
of the k scene factors being true. This is achieved by using k Sigmoid functions following
the backbone. Each of the k scene factors lies in the range of 0 to 1, and they can be seen
as a continuous approximation to the discrete Boolean variables. There is no supervised
loss attached to those k scene factors, rather, they are trained in an end-to-end manner.
Figure 4.2 (c) shows the gating network used to output one scene factor. Figure 4.2 (b) shows
the case for outputting 3 scene factors. Those gating networks are connected to the backbone
network.

Logic Network We propose to use a neural network to approximate logical computations
among Boolean variables, as shown in Figure 4.2 (b). In particular, we propose to use x× y,
min(x + y, 1) and 1 − x to approximate the logical computations of x ∧ y, x ∨ y and ¬x.
Similarly, these can be seen as continuous approximations. We compose r logic networks,
based on the r input logical rules. The network will output true if the agent should drive
according to a particular scene. Abusing the notation a little bit, we represent the outputs of
those logic network as fi, i = 1 · · · r. Figure 4.2 (b) shows one instance of the logic network,
and Figure 4.2 (a) uses two logic network, one for each expert branch.

Scene Behavior Experts and Experts Fusion We also output r scene experts driving
behaviors a1, a2, · · · , ar, denoting how to drive under each of r possible scenarios. Those r
scene experts are fused by the r logic network outputs: a =

∑r
i=1 ai × fi. We note that there

is no training loss for each expert, since we do not get that supervision. Instead, the r scene
experts are also automatically learned from the data.

Diversity Loss on Logic Network We found that simply using the above mentioned
architecture suffers from the “mode collapse” issue [Shazeer et al., 2017]. The scene factors
typically converge to true or false all the time, no matter what is the input. The network
degenerates to the vanilla CIL in this case. We propose to fix this by enforcing a diversity
loss on the logic network. Assuming we know the empirical distribution of each scene factors,
for example, 70% of the days are sunny days and the remaining 30% are rainy days. We can
compute the expected distribution of any intermediate logic variables in the logic network.
We propose to enforce the empirical distribution of each input and intermediate logic variable
v of the logic network by:

Ld =
∣∣∣||v||22 − ||t||22∣∣∣+

∣∣∣||1− v||22 − ||1− t||22
∣∣∣

where the loss is computed over a training batch of size B. v is a size B column vector of the

CHAPTER 4. PERCEPTION-LOGICAL POLICY 44

values v in this batch. t is the target vector composed of pvB 1s and (1− pv)B 0s. pv is the
expected probability of v being true. This loss makes sure the distribution of a single node
matches the expectation. We need both the v and 1− v side losses because otherwise the
optimizer can easily find non 0/1 solutions to v values in a batch to minimize the diversity
loss.

Note that the diversity loss is applied on every node of the logic network, including both
the input unsupervised learned scene factors and the intermediate logic variable during the
computation of the logic network. We name the diversity loss on the input logic factors as
Gating Network Diversity Loss, and name the diversity loss on the intermediate computations
as Switch Weight Diversity Loss. We will ablate the two components of the whole diversity
loss in the experiment section.

Batch Logic Value Re-Normalization Since we use a continuous approximation to
the discrete logic value, the approximated logic values will accumulate error after a few
logical operations. This problem is similar to the inaccuracy problem when computing using
analog circuit. For example, if the two inputs to an and gate are 0.6 and 0.6, the continuous
output would be 0.36, i.e. False. However, the correct output should be True. We propose
to resolve this issue by using Batch Logic Value Re-Normalization. The intuition is that
although 0.36 is smaller than the standard threshold 0.5, however, it is much larger than
the continuous and result of a False value, such as the result of 0.1 and 0.9. We propose to
normalize each of the output of a logic operation with:

onormi =
oi − omin
omax − omin

where oi is one logic output in the current batch, and omin, omax are the min and max
logic output in this batch.

Other Losses Besides the diversity loss, we also apply an MSE regression loss to regress
the action output a. In this work, the action is a 3-dimensional vector, including the steer,
throttle and brake. We weight each action prediction by 1.0 and each diversity loss on the
logic network node by 0.001.

4.4 Experiments

Experimental Setup

We use the CARLA [Dosovitskiy et al., 2017] simulator, which is one of the closest proxy
to the real world driving environment, to train and evaluate our model. We collect our
training data from a simulated internal autonomous driving agent. Our data is collected in
an episodic fashion that in each episode, the agent is initialized at a random location and
set to drive to a certain destination. During data collection, the autonomous driving agent
is given explicit commands, such as follow, straight, left and right and is supposed to make
corresponding actions. We choose CARLA 0.8.4 version specifically for our experimentation.

CHAPTER 4. PERCEPTION-LOGICAL POLICY 45

Logic
Network

GND
Loss

SWD
Loss

Speed
Accuracy

Weather
Accuracy

Temporal
Accuracy

Collision
Percentage

Intersection
Percentage

Two Logic Factors
(Clear vs. Rainy &
Noon vs. Sunset)

- - - 76% N/A N/A 27% 3%
X - - 77% 51.15% 51.47% 0% 0%
X X - 90% 70.99% 72.21% 0% 0%
X X X 99% 85.87% 86.86% 0% 0%

Table 4.1: Evaluation Performance of Logic expression with 2 Variables. Our logic network
consists of a weather factor and a temporal factor. GND Loss represents the use of a Gating
Network Diversity Loss; SWD Loss represents the use of a Switch Weight Diversity Loss.
We use Speed Accuracy to indicate the accuracy of the model action. We use Weather
Accuracy to indicate how well the model tells apart different weather conditions, such
as Clear vs. Sunny. We use Temporal Accuracy to indicate how well the model tells
apart different time conditions, such as Noon vs. Sunset. Collision Percentage indicates
the number of collision frames over total frames. Intersection Percentage measures the
number of frames the driving agent intersects the wrong lane.

Logic
Network

GND
Loss

SWD
Loss

Speed
Accuracy

Weather
Accuracy

Temporal
Accuracy

Landscape
Accuracy

Collision
Percentage

Intersection
Percentage

Three Logic Factors
(Clear vs. Rainy &
Noon vs. Sunset &
Rural vs. Urban)

- - - 43% N/A N/A N/A 37% 0%
X - - 45% 50.82% 52.46% 53.91% 18% 0%
X X - 48% 55.47% 64.06% 53.13% 18% 0%
X X X 99% 78.34% 70.83% 85.88% 10% 0%

Table 4.2: Evaluation Performance of logic expression with 3 Variables. We incorporate an
additional landscape factor in our logic network. We use Landscape Accuracy to indicate
how well the model tells apart different geographical conditions, such as Rural vs. Urban.

Our training data consists of 7 different configurations to learn a robust policy: two
different camera positions (height of 1.4m and 1.8m above the ground), two different image
sizes (longer side of images rescaled to 700 and 800 pixel) and three camera rotational pitches
(angle of -5, 0, and 5 degrees with the ground). We capture training data in the form of a
stream of images together with measurements (e.g. speed values) across each time step. Each
image is of resolution 576× 768. To simulate real-life driving, we also add spike noise to the
action (eg. throttle, steering) of our Carla agent. We pre-process the collected images by
downsampling images to 144× 192 resolution. We also do data augmentation as mentioned
in [Codevilla et al., 2017] that apply a random subset of a large set of transformations with
randomly sampled magnitudes, including change in contrast, brightness, region dropout and
Gaussian noise.

All experiments were trained on a NVIDIA Tesla m40 GPU with 24GB memory storage
and 3072 CUDA cores. We utilize the ADAM optimizer for training with learning rate 1e-4
for all of our experiments.

CHAPTER 4. PERCEPTION-LOGICAL POLICY 46

Data Collection

We setup two scenarios to test our proposed method, one with two scene factors and
the other with three scene factors. In the two factor experiments, we consider the weather
scene factor (either rainy or clear) and the temporal factor (either noon or sunset). If it is a
rainy weather and at sunset, we would like to drive more carefully. We ask the agent to drive
slower in this particular combination of the scene factors. In the other settings, we drive
normally. The logic rule in this setting is: rainy and sunset ⇐⇒ drive normally. We set
normal driving speed to be 20 km/h, and slow driving to be 10 km/h.

As our experiments show, even for this simple and logic, both of the vanilla CNN baseline
and the Mixture of Experts baseline already fail. To test how our method performs in a
more logical complex setting, we also collect a 3-scene-factor dataset. In this more complex
example, we include a new landscape factor: rural or urban. Since rural area are usually
populated less than the urban area, we change the scene conditioned driving behavior to:
rural and (clear or noon) ⇐⇒ drive normally. i.e. we will drive normally (comparatively
faster), if and only if we are in an rural area and it is sunny or it is noon, otherwise we will
drive slowly. Here, we use the same two driving behaviors (drive normally vs. slowly) as the
two factor dataset.

Our training data consists of 20000 images for each configuration. Since there are
7 configurations, there are a total of 140000 training images and corresponding driving
commands in our training set.

Architectures

To conduct fair comparisons among experiments, we utilize a shared perception network
as a backbone architecture for all models evaluated:

The perception network consists of 8 convolution and 2 fully connected layers. The
convolution layers start with a channel size of 32 and is increased by a factor of two for every
two convolution layers. We also alternate between a stride of 1 and 2 for adjacent convolution
layers. Each convolution layer has a kernel size of 3, besides the leading one which has a
kernel size of 5. Each convolution layer is followed by a batch-normalization layer, a dropout
layer, and a nonlinear activation function. For dropout we uniformly choose a dropout rate
of 0.1. We use ReLU or rectified linear unit as our activation function. The final output
of the convolution layers is then fed into two side-by-side fully connected layers with final
output dimension 512.

The input images are passed through the perception network pipeline. The speed
measurements are passed through a normal multi-layer fully connected network and has an
output dimension of 128. Then, we concatenate the encoded image vector with speed vector,
and use an additional dense layer to reduce the concatenated vector to a dimension of 512,
which is then used as the input vector to each expert branch. Each expert branch is simply a
two-layer fully connected network with an output dimension of 512.

CHAPTER 4. PERCEPTION-LOGICAL POLICY 47

Figure 4.4: Four sampled images for the qualitative study. The first two images are sampled
from the rural area and the last two images are sampled from the urban area.

Model
Image 1 Image 2 Image 3 Image 4

WT TP TN SP WT TP TN SP WT TP TN SP WT TP TN SP
G 1 1 1 20 1 1 1 20 1 1 0 10 1 1 0 10
A - - - 10 - - - 10 - - - 10 - - - 10
B - - - 10 - - - 10 - - - 10 - - - 20
C 0 1 1 10 0 1 1 10 1 1 1 10 1 1 1 10
D 1 1 1 20 1 1 1 20 1 1 0 10 1 1 0 10

Table 4.3: Gating Network prediction accuracy and driving speed accuracy. The row with
Model G is the ground-truth label for weather Gating Network (WT), Temporal Gating
Network (TP), Town Gating Network (TN) and output driving speed (SP) in unit km/h.
For weather gating, 1 represents clear and 0 represents rainy; for temporal gating, 1 represents
noon and 0 represents sunset; for town gating, 1 represents rural area and 0 represents urban
area and for speed, 10 represents slow driving at 10km/h and 20 represents fast driving at
20km/h, which is the speed of experts’ driving behaviour in our training data. The row with
Model A is the output of single branch baseline. The row with Model B is the output of
Mixture-of-Experts(MoE). The row with Model C is the output of our double branch network
without any diversity loss and the row with Model D is the output of our proposed network
with diversity loss and batch logic value re-normalization.

We use L-2 loss between the network output actions and the expert’s actions collected
from CARLA simulator.

Training

Besides the details mentioned above, for all the methods, we train the networks for 60k
iterations in an end-to-end manner. To speedup training, we have a scheduled learning rate
that decreases when the loss plateaus with a factor of 1/3. Also, we stop the training process
when the prediction accuracy of each logical factor and the overall driving action loss converge.
Otherwise, the model may overfit and affect the driving behaviour of our autonomous driving

CHAPTER 4. PERCEPTION-LOGICAL POLICY 48

agent.
Moreover, as our diversity loss is batch-wise and its effectiveness is theoretically guaranteed

by Central Limit Theorem, we set our training batch size to a large number, e.g. 128. Also,
for each batch, we randomly sample data from our training dataset so that the data with
different scene conditions are evenly distributed in each batch.

Baselines and Ablations

We compare the proposed method with the following baselines and ablated versions:
Single Branch Network Our first baseline is the Conditional Imitation Learning architec-
ture proposed in [Codevilla et al., 2017]. We call it a single branch network because there is
only one branch for each command. Each branch learns a mapping from images and driving
command to the expert’s driving behavior. This baseline is shown in Figure 4.3.
Mixture of Experts We also compare to the mixture of experts [Jordan and Jacobs, 1994]
baseline. We use two experts in this setting. We also use a generic neural network as the
gating network. This method is equivalent to our method without the logic network. By
comparing to the MOE method, we could investigate the importance of the logic network.
Perception-Logic without SWD Loss We also would like to ablate the diversity loss on
the network. This method ignores the Switch Weight Diversity Loss, such that we have the
logic network and the Gating Network Diversity Loss (GND).
Perception-Logic without Diversity Loss Similar to the Perception-Logic without SWD
Loss, we leave out the whole diversity loss, including both the SWD and the GND Loss. This
ablative method will show the role of the diversity loss.

Evaluation Metrics

To evaluate each method, we propose to use multiple evaluation metrics. The most critical
evaluation metric is how the agent follows the scene conditioned driving behavior. In our
setting, the scene conditioned behavior is driving normally (20 km/h), or driving slowly (10
km/h). We use a speed accuracy to measure the quality of the scene conditioned behavior.
The computation of speed accuracy is similar to a classification accuracy: we round the
current speed to 10 km/h or 20 km/h, and count how many frames during testing has the
correct speed.

We would also like to see how our unsupervised scene factor learning works. Specifically,
we would like to know the answer to the following question: Does the unsupervisely learned
scene factor correspond to the ground truth factor? Fortunately, we can easily verify this in
the Carla simulator. We use the factor accuracy to measure them. In our 3-factor experiment,
we measure the factor accuracy for weather, time of the day and the landscape.

We would also like to evaluate how much collision our agent experienced during the
testing. Following previous work [Dosovitskiy et al., 2017], we use the collision percentage
and intersection percentage to measure the driving quality in general. They refer to the

CHAPTER 4. PERCEPTION-LOGICAL POLICY 49

number of collision frames over total frames, and the number of vehicle invading other lanes
over total frames respectively.

Quantitative Results

We present results of two-factor and three-factor environmental settings in this section.
For each condition, we compare our Perception-Logic Model with one baseline model as
well as several ablated versions of the full architecture. The baseline model consists of a
single-branched command-conditional network as proposed by [Codevilla et al., 2017]. The
ablated versions of the Perception-Logic Network consists of: a model with only Gating
Network and no diversity loss, a model with Gating Network and diversity loss per gate
only. We utilize 5 metrics to consider the performance of each model on the two-factor
setting, which consists of Speed Accuracy, Weather Accuracy, Temporal Accuracy, Collision
Percentage, and Intersection Percentage. We introduce a sixth metric for the three-factor
setting to account for the additional landscape factor.

Two-factor Results and Analysis The results of the previously discussed 2-factor and
3-factor settings are presented in Tables 4.1 and 4.2 respectively. For the two-factor setting,
the single-branch baseline achieves a speed accuracy of 76% and also has a relatively high
error rate. It is more prone to make wrong decisions as seen in a collision percentage of 27%
and intersection percentage of 3%, most likely due to the model’s inability to learn different
driving styles across multiple environment settings.

On the contrary, all models implemented the Gating Network achieves a 0% collision
percentage and a 0% intersection percentage. The model that only implements the Gating
Network achieves an on-par performance with the baseline model in speed accuracy, while
avoids making any erroneous behavior as compared to the baseline model. This shows the
ability of the Gating Network to capture and separate general driving rules from environment-
specific driving styles. However, this model only learns a 51.15% and 51.47% accuracy in
predicting weather and temporal factors respectively, which is in fact similar to a random
switch.

During experimentation, we find that the use of a diversity loss contributes significantly
to the model performance by improving logic-learning for our Gating Network. We conclude
that the diversity is one of the key component of our method. The model that implements the
Gating Network as well as a Gating Network Diversity Loss (GND) achieves an increased
speed accuracy of 90% while also learns a 70.99% and 72.21% accuracy in predicting weather
and temporal factors respectively.

Our Perception-Logic Model, on the other hand, achieves a superior speed accuracy of
99%. The use of diversity loss across outputs of different logic operation helps maintain a
close relationship between the input data distribution and the output distribution. In turn,
we are able to produce a 85.87% accuracy on weather prediction, as well as a 86.86% accuracy
on temporal prediction.

Three-factor Results and Analysis For the three-factor setting, we add an additional
landscape factor into the environment. Due to the increased complexity of logic present in the

CHAPTER 4. PERCEPTION-LOGICAL POLICY 50

training data, all models produce relatively worse results than their two-factor counterparts.
The baseline, for instance, achieves a speed accuracy of only 43% while being more likely
to make incorrect actions with a collision percentage of 37%. However, the use of a Gating
Network still manages to eliminate most cases of incorrect behavior, decreasing the collision
percentage from 37% to at most 18%. Similar to the two-factor setting, the use of both
the Gating Network Diversity Loss (GND) and the Switch Weight Diversity Loss (SWD)
greatly improves weather and temporal predictions, as well as the newly introduced landscape
variable prediction. Our Perception-Logic Model achieves accuracy of 99%, 78.34%, 70.83%,
85.88% for speed, weather, temporal and landscape respectively.

Qualitative Results

In Table 4.3, the single branch baseline tends to prefer driving slowly even in a sunny
noon of a rural area. Also, the naive Mixture-of-Experts network has similar performance as
the single branch network as one gating network is hard to learn the complex logical rule
corresponding to each visual scenario. After adding our proposed logic network, including a
gating network for each logic variable with continuous approximation of logical operations,
the network still suffers from mode collapse of Mixture-of-Experts as the output of each gating
network aren’t restrained to match the expected distribution. Thus, the row with Model C
predicts weather and town incorrectly sometimes, causing the speed output to be incorrect.
For instance, in both Image 1 and 2 of Figure 4.4, the weather is clear, but the model without
diversity loss predicts it as rainy; in both Image 3 and 4 of Figure 4.4, the town is of an
urban setting, but the model without diversity loss predicts it as a rural environment. And
as shown in the last row, by adding diversity losses for each gating network and output after
each continuous approximation of logical operation, we achieve perfect accuracy in terms of
driving speed and significantly improve the prediction accuracy of each logic variable.

4.5 Limitations

First, our proposed method needs a pre-defined logic rule to manage the connections of
different neural logic modules. This is theoretically hard to solve as the search space for
the rules can be exponentially large in terms of the number of logic variables. Moreover,
providing logic rules are much less time-consuming and realistic than labeling every driving
images, which makes our method practical in the real-world.

Second, our method might have the problem of extending to a very large number of
logical variables. This is understandable that as the number of logic variables increases, their
possible combinations grow factorially, making it extremely hard to find the correct ordering
of the variables to fit the pre-determined logic rule.

CHAPTER 4. PERCEPTION-LOGICAL POLICY 51

4.6 Discussion

In this chapter, we study how to utilize visual information more wisely in order to improve
the accuracy of driving behaviour, and unsupervisely capture important logical decision
factors in images. We propose a new architecture, called the Perception-Logic Network
and systematically evaluate the performance of our model in comparison to the state-of-art
single branch network and mixture-of-experts network. We find that our network produces
significantly better results than other baselines and ablated models.

In the future, we’d like to explore better methods and architectures to further improve our
logic factor prediction accuracy and understand why an imperfect prediction of logic factors
still leads to an almost perfect driving behavior. Additionally, we believe our Perception-Logic
Network is easy to generalize to other domains, such as natural language processing, which
we also leave as our future work.

52

Chapter 5

Combining Imitation Learning and
Reinforcement Learning

Robust real-world learning should benefit from both demonstrations and interactions with
the environment. Current approaches to learning from demonstration and reward usually
perform supervised learning on expert demonstration data and use reinforcement learning
to further improve performance based on the reward received from the environment. These
two tasks have divergent losses which are difficult to jointly optimize, and such methods
can be very sensitive to suboptimal demonstrations. We propose a unified reinforcement
learning algorithm, Soft Advantage Learning (SAL), that effectively normalizes the Q-function,
reducing the Q-values of actions unseen in the demonstration data. SAL learns an initial
policy network from demonstrations and refines the policy in the environment, surpassing
the demonstrator’s performance. Crucially, both learning from demonstration and interactive
refinement use the same objective, unlike prior approaches that combine distinct supervised
and reinforcement losses. This makes SAL robust to suboptimal demonstration data, since
the method is not forced to mimic all of the examples in the demonstration. We show that
our unified reinforcement learning algorithm can learn robustly and outperform existing
baselines when evaluated on several realistic driving games.

5.1 Background

Deep reinforcement learning (RL) has achieved significant success on many complex
sequential decision-making problems. However, RL algorithms usually require a large amount
of interactions with an environment to reach good performance [Kakade et al., 2003]; initial
performance may be nearly random, clearly suboptimal, and often rather dangerous in
real-world settings such as autonomous driving. Learning from demonstration is a well-known
alternative, but typically does not leverage reward, and presumes relatively small-scale noise-
free demonstrations. We develop a new robust algorithm that can learn value and policy
functions from state, action and reward (s, a, r) signals that either come from imperfect

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 53

demonstration data or the environment.
Recent efforts toward policy learning which does not suffer from a suboptimal initial

performance generally leverage an initial phase of supervised learning and/or auxiliary
task learning. Several previous efforts have shown that demonstrations can speed up RL by
combining imitation loss with reinforcement learning loss [Hester et al., 2017,Rajeswaran et al.,
2017,Sun et al., 2018,Nair et al., 2018,Večeŕık et al., 2017], yet these methods presume near-
optimal demonstrations. Prior works that also leverage imperfect demonstrations assumes
extra information is available, such as confidence scores on the demonstrated actions [Wu et al.,
2019]. [Jaderberg et al., 2016] and [Shelhamer et al., 2016] obtained improved initialization
via auxiliary task losses (e.g., predicting environment dynamics) in a self-supervised manner;
policy performance is still initially random with these approaches.

A simple combination of several distinct losses can learn from demonstrations; however, it
is more appealing to have a single principled loss that is applicable to learning both from the
demonstration and from the environment. Our approach, Soft Advantage Learning (SAL),
when given a set of demonstrations consisting of transitions (s, a, r, s′) and the corresponding
MDP definition, uses a unified loss function to process both off-line demonstration data
and on-line experience based on the underlying maximum entropy reinforcement learning
framework [Toussaint, 2009, Haarnoja et al., 2017a, Schulman et al., 2017]. This learning
protocol is widely applicable in a variety of domains, including robotics and autonomous
driving, where demonstration data is available but additional interaction is necessary for
the mastery of skills. Our method also enables robust learning from corrupted, or imperfect
demonstrations, because it does not assumes the optimality of the demonstrations.

We demonstrate our approach in a toy Minecraft Game with discrete states and tabular
Q functions as a proof-of-concept experiment. We also evaluate the proposed method on
a 3D simulated environment, Torcs , where inputs are raw images and Q functions are
approximated by neural networks. Our experimental results outperform previous approaches
on driving tasks with only a modest amount of demonstrations while tolerating significant
noise in the demonstrations.

In summary, we propose the Soft Advantage Learning (SAL) method. It utilizes a unified
objective, capable of learning from both demonstrations and environments, that outperforms
methods including the ones with an explicit supervised imitation loss. Moreover, unlike the
other methods that purely imitate from the demonstrations, our proposed method is robust
to noisy demonstrations.

5.2 Preliminaries

In this section, we will briefly review the reinforcement learning techniques that our method
is built on, including maximum entropy reinforcement learning and the soft Q-learning.

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 54

Maximum Entropy Reinforcement Learning

The reinforcement learning problem we consider is defined by a Markov decision process
(MDP) [Thie, 1983]. Specifically, the MDP is characterized by a tuple < S,A,R,T,γ >, where S
is the set of states, A is the set of actions, R(s, a) is the reward function, T (s, a, s′) = P (s′|s, a)
is the transition function and γ is the reward discount factor. An agent interacts with the
environment by taking an action at a given state, receiving the reward, and transiting to the
next state.

In the standard reinforcement learning setting [Sutton and Barto, 1998], the goal of an
agent is to learn a policy πstd, such that an agent maximizes the future discounted reward:

πstd = argmax
π

∑
t

γt E
st,at∼π

[Rt]

Maximum entropy policy learning [Ziebart, 2010,Haarnoja et al., 2017a] uses an entropy
augmented reward. The optimal policy will not only optimize for discounted future rewards,
but also maximize the discounted future entropy of the action distribution:

πent = argmax
π

∑
t

γt E
st,at∼π

[Rt + αH(π(·|st))]

, where α is a weighting term to balance the importance of the entropy. Unlike previous
attempts that only adds the entropy term at a single time step, maximum entropy policy
learning maximizes the discounted future entropy over the whole trajectory. Maximum
entropy reinforcement learning has many benefits, such as better exploration in multi-modal
problems and connections between Q-learning and the actor-critic method [Haarnoja et al.,
2017a,Schulman et al., 2017].

Soft Value Functions and Soft Q-Learning

Since the maximum entropy RL paradigm augments the reward with an entropy term,
the definition of the value functions becomes

Qπ(s, a) = R0 + E
(st,at)∼π

∞∑
t=1

γt(Rt + αH(π(·|st)))

and

Vπ(s) = E
(st,at)∼π

∞∑
t=0

γt(Rt + αH(π(·|st)))

, where π is a policy that value functions evaluate on. Given the state-action value function
Q∗(s, a) of the optimal policy, [Ziebart, 2010] shows that the optimal state value function
and the optimal policy could be expressed as:

V ∗(s) = α log
∑
a

exp(Q∗(s, a)/α)

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 55

Algorithm 1: Soft Advantage Learning (SAL) from Demonstrations and Environments

θ: parameters for the rapid Q network, θ′: parameters for the target Q
network, D: demonstrations collected by human or a trained policy network,
T : target network update frequency, M: replay buffer, k: number of steps to
train on the demonstrations
for step t ∈ {1, 2, ...} do

if t ≤ k then
Sample a mini-batch of transitions from D

else
Start from s, sample a from πQ, execute a, observe (s′,r) and store (s, a, r, s′) in M
Sample a mini-batch of transitions from M

end if
Update θ with gradient in Equation (5.6)
if t mod T = 0 then
θ′ ← θ

end if
end for

π∗(a|s) = exp((Q∗(s, a)− V ∗(s))/α)

With the entropy augmented reward, one can derive the soft versions of Q-learning
[Haarnoja et al., 2017b]. The soft Q-learning gradient is given by

∇θQθ(s, a)(Qθ(s, a)− Q̂(s, a))

, where Q̂(s, a) is a bootstrapped Q-value estimate obtained by R(s, a)+γVQ(s′). Here, R(s, a)
is the reward received from the environment, VQ is computed from Qθ(s, a) as mentioned
above.

5.3 Soft Advantage Learning on Demonstrations and

Rewards

We aim to design a reinforcement learning algorithm that, when given a set of demonstra-
tions consisting of transitions (s, a, r, s′) and the corresponding MDP definition, can both
perform entirely off-policy learning from these demonstrations and continue to improve from
on-policy experience when deploying in the environment. This learning protocol is natural
and desirable in a range of domains, including robotics and autonomous driving, where
demonstration data is available but additional interaction is needed to achieve mastery on a
given task. Furthermore, off-policy pre-training from demonstrations can in principle achieve
safer and more reliable environment interaction during the first few on-policy episodes.

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 56

Although prior off-policy RL algorithms such as Q-learning could in theory be used for
this purpose, they tend to work poorly when learning only from off-policy demonstrations,
as we show in our experiments. The intuition behind this is that if the Q-function in these
methods is trained only on good data, it can hardly understand why the action taken is
appropriate: it will assign a high Q-value to correct actions, but will not necessarily assign a
low Q-value to other alternative actions. Prior methods based on soft optimality, such as
soft Q-learning, also suffer from this problem. However, the framework of soft optimality
does provide us with a natural mechanism to mitigate this problem if we modify it to learn
values and advantages, rather than using a soft Q-learning style objective. This amounts to
normalizing the Q-function over the actions. Our approach, which we call Soft Advantage
Learning (SAL), trains a Q-function by separately supervising state values and advantages,
which has a normalizing effect that reduces the Q-values of actions that were not observed
in the demonstrations, while still performing Bellman error minimization. In other words,
without data to indicate otherwise, SAL will opt to follow the demonstrations.

Soft Advantage Learning

We propose a unified method, Soft Advantage Learning (SAL), that can learn from
both from the demonstrations and the environments. SAL parameterizes a Q-function, and
expresses the value function and advantage function in terms of the Q-function. Specifically:

VQ(s) = α log
∑
a

exp(Q(s, a)/α) (5.1)

AQ(s, a) = Q(s, a)− VQ(s) (5.2)

The subscripts Q of VQ and AQ emphasize that these terms are derived from the Q values.
The SAL algorithm minimizes the following objective:

1

2
(VQ(s)− V̂ (s))2 +

1

2
(AQ(s, a)− Â(s, a))2, (5.3)

where V̂ (s) and Â(s, a) are the one step backup values obtained from a target Q network [Mnih
et al., 2015] by:

V̂ (s) = E
a∼πtarget

Q

[
R(s, a) + γV target

Q (s′)
]

+ αH(πtargetQ (·|s)) (5.4)

Â(s, a) = R(s, a) + γV target
Q (s′)− V target

Q (s) (5.5)

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 57

Here, πQ is the policy induced by the Q values, as in Section 5.2. Taking the gradient of the
objective, we get:

∇VQ(s)(VQ(s)− V̂ (s)) +∇AQ(s, a)(AQ(s, a)− Â(s, a))

=∇VQ(s)(VQ(s)− V̂ (s)) + (∇Q(s, a)−∇VQ(s))

((Q(s, a)− VQ(s))− (Q̂(s, a)− V target
Q (s)))

≈∇VQ(s)(VQ(s)− V̂ (s)) + (∇Q(s, a)−∇VQ(s))

(Q(s, a)− Q̂(s, a)) (5.6)

where we define Q̂(s, a) = R(s, a) + γV target
Q (s′) and make an assumption that VQ(s) ≈

V target
Q (s), which is reasonable when the target network is not too far from the current

network. Equation (5.6) is the update we use in practice. We also use samples from the
demonstration and replay buffer. The full method is summarized in Algorithm 1.

The optimal Q∗(s, a) and the induced V ∗Q and A∗Q are the minimizers of the proposed
objective. The objective contains two terms: the advantage error term and the state value
function error term. Q value normalization falls out from the advantage term, which we
analyze further in the next section. The state value function error term ensures that the
learned Q function satisfies the Bellman equation.

Analysis of the Method

We provide a discussion as well as empirical evidence in this section to explain why SAL
has the normalization effect on the Q values that makes it well-suited for learning off-policy
from demonstrations without any explicit supervised loss. The gradient of the advantage
fitting term is approximately

(∇Q(s, a)−∇VQ(s))(Q(s, a)− Q̂(s, a))

Comparing this with the soft Q learning update:

∇Q(s, a)(Q(s, a)− Q̂(s, a))

our update mainly differs in an extra term in the gradient: −∇θVQ(s). This term falls
out naturally when we compute the gradient of the advantage error. Intuitively, this term
will decrease VQ(s) when increasing Q(s, a) and vice versa, since ∇θQ(s, a) and −∇θVQ(s)
have different signs. Because VQ(s) = α log

∑
a exp(Q(s, a)/α), decreasing VQ(s) will pre-

vent Q(s, a) from increasing for the actions that are not in the demonstrations. Thus the
aforementioned normalization effect emerges with the extra ∇θVQ(s) term.

Figure 5.1 shows a sample of the learned Q values for DQN and SAL. It empirically
confirms that our method has the normalization effect, while DQN could assign higher Q
values to the actions that are not demonstrated. Moreover, the true Q values are on the scale
of 100, since the reward each step is around 1.0 for a well trained agent, and the discount

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 58

Figure 5.1: Benefits of properly normalized q-values: typical predicted Q(s0, ·) values (y-axis)
of DQN and SAL on a state s0 for actions a1 through a9 (x-axis). Action 2 is the demonstrated
action (red bar). The actions with maximum Q values would be executed during test time
(yellow border). DQN has excessively large wrong predicted Q values, and the demonstrated
action does not receive the largest Q value and thus it will execute the wrong action. SAL does
not have those issues. Both DQN and SAL are trained on the TORCS game demonstration
set, without environment interactions and these two figures show Q values from the actual
experiments.

factor is 0.99. SAL has the correct Q values, while DQN predicts excessive large wrong Q
values, due to the lack of normalization. This is a typical phenomenon for any state, and
statistically our method assigns the largest Q value to the demonstrated action 81% of time,
while DQN does so only 8% of the time.

Besides the desirable normalization effect, SAL is also less sensitive to noisy demonstrations.
Since SAL is an RL algorithm, it maximizes the reward, and thus poor demonstration with
a low reward will be ignored by the learned policy. One could also see this with similar
analysis as above. When there is a negative reward in the demonstrations, Q(s, a) tends
to decrease and VQ(s) tends to increase, hence having the normalizing behavior acts in the
reverse direction.

Moreover, SAL provides a single and principled approach to learn from both demonstra-
tions and environments. It also avoids the use of imitation learning. Therefore, besides its
natural robustness to imperfect demonstrations, SAL does not suffer from any trade-offs due
to the divergent objective of supervised learning and reinforcement learning. For example,
SAL can improve based upon suboptimal demonstrations when starting to interact with the
environment, while imitation learning based method usually gets stuck with the demonstrated
suboptimal behavior. See Section 5.5 for details.

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 59

5.4 Related Work

Maximum entropy reinforcement learning. Maximum entropy reinforcement learning
has been explored in a number of prior works [Todorov, 2008,Toussaint, 2009,Ziebart et al.,
2008], including several recent works that extend it into a deep reinforcement learning
setting [Nachum et al., 2017,Haarnoja et al., 2017a,Schulman et al., 2017,Haarnoja et al.,
2018]. However, most of those works do not deal with the learning from demonstration
settings. [Haarnoja et al., 2017a] proposes maximum entropy RL methods to learn from
environments, where the objective is minimizing the Bellman error of the soft Q function.
[Schulman et al., 2017] points out a connection between Q learning and policy gradient.
The Soft Actor-Critic method [Haarnoja et al., 2018] parametrizes V (s), Q(s, a) and π(a|s)
separately and optimize for Bellman error of the soft Q function, KL divergence between π
and policy induced by Q, as well as square error between V (s) and value computed from π
and Q.

PCL [Nachum et al., 2017] is the only prior work that studies the learning from demon-
stration task with the maximum entropy RL framework, where the loss is derived from the
sum of Bellman error across multiple steps. We empirically outperforms PCL, which will be
shown in the experiment section.

We would like to emphasize that although our SAL method shares the same max entropy
RL framework with several other methods [Haarnoja et al., 2018, Haarnoja et al., 2017b,
Nachum et al., 2017], the actual algorithm is distinct from them. Soft Q learning [Haarnoja
et al., 2017b] and PCL [Nachum et al., 2017] minimize one step and multi-step Bellman
error respectively. SAC [Haarnoja et al., 2018] is an actor-critic method under the soft RL
framework. However, our SAL method proposes a novel value (V) plus advantage (A) error
minimization objective, which is different from all previous methods.

Learning from demonstrations. Most of the prior learning from demonstration ef-
forts [Osa et al., 2018,Schaal, 1997] assume the demonstrations are perfect, i.e. the ultimate
goal is to copy the behaviors from the demonstrations. Imitation learning is one of such
approaches, example applications including [Pomerleau, 1989b,Xu et al., 2016,Bojarski et al.,
2016a,Torabi et al., 2018].

Instead of assuming that the demonstrations are perfect, our method allows imperfect
demonstrations. Our method learns which part of the demonstrations is good and which
part is bad, unlike the methods that simply imitate the demonstrated behaviors. We follow
the Reinforcement Learning with Expert Demonstrations (RLED) framework [Chemali and
Lazaric, 2015,Kim et al., 2013,Piot et al., 2014], where both rewards and actions are available
in the demonstrations. The extra reward in the demonstrations allows our method to be
aware of poor behaviors in the demonstrations. DQfD [Hester et al., 2017] is a recent method
that also uses rewards in the demonstrations. It combines an imitation hinge loss with the
Q-learning loss in order to learn from demonstrations and transfer to environments smoothly.
Due to the use of the imitation loss, DQfD is more sensitive to noisy demonstrations, as we
show in the experiment section.

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 60

Figure 5.2: Sample frames from the Toy Minecraft and Torcs environments.

Another line of work assumes we have access to the expert oracle, i.e. we can query
the optimal action of any state. DAGGER [Ross et al., 2011] is one of the representative
algorithms under those assumptions. Recently, algorithms that try to unify DAGGER
and RL have been proposed, such as Deeply AggreVaTeD [Sun et al., 2017] which tries to
improves the sample complexity when we have a sub-optimal expert. Truncated Horizon
Policy Search (THOR) [Sun et al., 2018] more explicitly interpolates between RL and IL and
achieves superior performance when the oracle is sub-optimal. Since we only have a set of
demonstrations rather than an oracle, those works are orthogonal to our approach.

Off-policy learning. It is tempting to apply various off-policy methods to the problem
of learning from demonstration, such as policy gradient variants [Gu et al., 2017,Gu et al.,
2016, Degris et al., 2012, Wang et al., 2016], Q-learning [Watkins and Dayan, 1992] and
Retrace [Munos et al., 2016]. However, we emphasize that off-policy learning and learning from
demonstration are different problems. For most of the off-policy methods, their convergence
relies on the assumption of visiting each (s, a) pair infinitely many times. In the learning
from demonstration setting, the samples are highly biased and off-policy method can fail to
learn anything from the demonstrations, as we explained the Q-learning case in Section 5.3.

5.5 Results

Our experiments address two questions: (1) Can SAL benefit from both demonstrations
and rewards? (2) Is SAL robust to ill-behaved demonstrations? We compare our algorithm
with DQfD [Hester et al., 2017], which has been shown to learn efficiently from demonstrations
and to preserve performance while acting in an environment. Other baseline methods include
supervised behavioral cloning method, Q-learning, soft Q-learning, policy gradient with
importance sampling weighting, PCL and Q-learning, soft Q-learning without demonstrations.
Implementation details and hyperparameters are included in the Supplementary Material.

We evaluate our result in a grid world, toy Minecraft, and in a 3D simulated environments,
Torcs as shown in Figure 5.2. See Supplementary Material for environment details.

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 61

Figure 5.3: Performances on the Torcs game. The x-axis shows the training iterations. The
y-axis shows the average total rewards. Solid lines are average values over 10 random seeds.
Shaded regions correspond to one standard deviation. The left figure shows the performance
for each agent when they only learn from demonstrations, while the right one shows the
performance for each agent when they interact with the environments after learning from
demonstrations. Our method consistently outperforms other methods in both cases.

Comparisons

We compare our approach with the following methods:

• DQfD: the method proposed by [Hester et al., 2017]. For the learning from demon-
stration phase, DQfD combines a hinge loss with a temporal difference (TD) loss. For
the finetuning-in-environment phase, DQfD combines a hinge loss on demonstrations
and a TD loss on both the demonstrations and the policy-generated data. To alleviate
over-fitting issues, we also include weight decay following the original paper.

• Q-learning: the classic DQN method [Mnih et al., 2015]. We first train DQN with the
demonstrations in a replay buffer and then finetune in the environment with regular Q-
learning. Similar to DQfD, we use a constant exploration ratio of 0.01 in the finetuning
phase to preserve the performance obtained from the demonstrations. We also train
from scratch a baseline DQN in the environment, without any demonstration.

• Soft Q-learning: similar to the Q-learning method, but with an entropy regularized
reward. This is the method proposed by [Haarnoja et al., 2017b,Schulman et al., 2017].
We also include the soft Q-learning trained without demonstration, as another baseline.

• Behavior cloning with Q-learning: the naive way of combining cross-entropy loss
with Q-learning. First we perform behavior cloning with cross-entropy loss on the
demonstrations. Then we treat the logit activations prior the softmax layer as an
initialization of the Q function and finetune with regular Q-learning in the environment.

• Soft actor-critic with importance sampling: An actor-critic method on entropy
regularized reward with the importance sampling weighting. The importance weighting

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 62

term is used to correct the action distribution mismatch between the demonstration
and the current policy.

• Path Consistency Learning (PCL): the PCL [Nachum et al., 2017] method that
minimizes the soft path consistency loss. The method proposed in the original paper
(denoted as PCL-R) does not utilize a target network. We find that PCL-R does not
work when it is trained from scratch in the visually complex environment. We stabilize
it by adding a target network (denoted as PCL), similar to [Haarnoja et al., 2017b].

Experiments on Toy Minecraft

To understand the basic properties of our proposed method, we design the toy Minecraft
environment. In this experiment, the state is simply the location of the agent. We use a
tabular Q function. With those settings, we hope to reveal some differences between our SAL
algorithm and algorithms that incorporate supervised loss.

As shown in Figure 5.2, there are only two paths to reach the goal. In terms of the
discounted reward, the shorter path is more favorable. To make the problem more interesting,
we provide the longer suboptimal path as the demonstrations. We found that in the learning
from demonstration phase, both DQfD and SAL have learned the suboptimal path since both
methods do not have access to the environment and could not possibly figure out the optimal
path. When the two methods finetune their policies in the environment, SAL succeeds in
finding the optimal path, while DQfD stucks with the suboptimal one. It is because DQfD
has the imitation loss, thus preventing it from deviating from the original solution.

Comparison to Other Methods

We compare our SAL method with other methods on 300k transitions. The demonstrations
are collected by a trained Q-learning expert policy. We execute the policy in the environment
to collect demonstrations. To avoid deterministic executions of the expert policy, we sample
an action randomly with probability 0.01.

To explicitly compare different methods, we show separate figures for performances on the
demonstrations and inside the environments. In Fig 5.3, we show that our method performs
better than other methods on demonstrations. When we start finetuning, the performance of
our method continues to increase and reaches peak performance faster than other methods.
DQfD [Hester et al., 2017] has similar behavior to ours but has lower performance. Behavior
cloning learns well on demonstrations, but it has a significant performance drop while
interacting with environments. All the methods can ultimately learn by interacting with
the environment but only our method and DQfD start from a relatively high performance.
Without the demonstration data, Q-learning (Q w/o demo) and soft Q-learning (soft-Q
w/o demo) suffer from low performance during the initial interactions with the environment.
The original PCL-R method (PCL-R w/o demo) fails to learn even when trained from

CHAPTER 5. COMBINING IMITATION LEARNING AND REINFORCEMENT
LEARNING 63

Figure 5.4: Learning from imperfect data when the imperfectness is 30% and 50%. Our
SAL method does not clone suboptimal behaviors and thus outperforms DQfD and behavior
cloning. The solid lines are mean reward averaged over 10 random seeds; the error bar is one
standard deviation. We leave the 80% imperfectness plot in the Supplementary Material.

scratch in the environments. The improved PCL method (PCL) is not able to learn on the
demonstrations, but it can learn in the environment.

Effects of Imperfect Demonstrations

In the real world, collected demonstrations might be far from optimal. To study this
phenomenon in a principled manner, we collect a few versions of demonstrations with varying
degrees of noise. When collecting the demonstrations with the trained Q agent, we corrupt a
certain percentage of the demonstrations by choosing non-optimal actions (argminaQ(s, a)).
The data corruption process is conducted while interacting with the environment; therefore,
the error will affect the collection of the following steps. We get 3 sets of {30%, 50%, 80%}
percentage of imperfect data. In the left of Fig. 5.4, we show that our method performs well
compared with DQfD and behavior cloning methods. Supervised behavior cloning method is
heavily influenced by the imperfect demonstrations. DQfD is also heavily affected, but not as
severely as the behavior cloning. SAL is robust because it does not imitate the suboptimal
behaviors. The results for 50% and 80% percentage of imperfect data are similar, and they
are available in the appendix.

5.6 Discussion

We proposed a Soft Advantage Learning algorithm for reinforcement learning from
demonstrations. Our algorithm provides a unified approach for learning from reward and
demonstrations, and is robust to potentially suboptimal demonstration data. An agent can be
fine-tuned with rewards after training on demonstrations by simply continuing to perform the
same algorithm on the on-policy data. Our algorithm preserves and improves the behaviors
learned from demonstrations while receiving reward through interaction with an environment.

64

Chapter 6

Conclusion

As we have mentioned in the open question part (Section 1.4) in the introduction, there
are two main categories of challenges in using end-to-end learning for the autonomous driving
task. I.e. the architectural design and the training scheme. On one hand, an end
to end naive neural-network-based policy is unlikely to learn everything necessary for an
autonomous agent, such as reasoning about decisions logically, obeying the traffic rule strictly
and understanding the physics of various road obstacles. On the other hand, the current
non-end-to-end system suffers a lot from the coordination problem among the modules,
such as propagating the multi-modality and uncertainty in behavior prediction part to the
planning part and semantic information loss when abstracting an object by a few attributes.
Architectural design is the problem of how to design an autonomous system that can have
the benefits of both the pipeline style system and that of an end to end style system. In this
thesis, we explored enabling the autonomous system to do logical reasoning. In the future,
we still need to extend the system to enable more aforementioned capabilities. The other
problem, i.e. training scheme, refers to how the system is tuned. We had an initial attempt to
solve such a problem by combining imitation learning with reinforcement learning. However,
it is still unclear how to apply this algorithm in a real-world system, including the problem
of non-differentiable components, reward design, and safety-aware training, etc. When this
challenge is tackled, we probably could rely less on human engineers to change the code every
time the system fails.

The goal of studying an autonomous driving system is to use it as a concrete example
of the generic sensorimotor problem. On a bigger scope, the generic sensorimotor control
problem does have some quite different properties than the autonomous driving application
we mentioned here. For example, a generic robot would encounter many more scenarios
than a driving agent. People try to engineer the knowledge required by an autonomous
driving agent, however, we find it hard to cover all of the knowledge, such as the long tail
distribution of object categories. The general robot will encounter many more scenarios
and the robot needs to learn from the environment by itself since a human can not possibly
teach everything it needs. The other important difference is the representation learning of an
autonomous driving agent is largely mitigated by human knowledge. Human knows that the

CHAPTER 6. CONCLUSION 65

3D structure of the world and the object-based representation could do a large percent of the
job for driving, although a systematic representation of uncertainty and multi-modality is not
well designed yet. In the more generic robot tasks, the representation might be completely
unknown. For example, when manipulating a towel, it is hard for a human to tell what is the
internal representation for an arbitrary shape towel. Being aware of the domain knowledge
we used in driving, and trying to solve the bigger sensorimotor problem instead, might help
us to solve the driving task better.

66

Appendix A

Soft Advantage Learning Details

A.1 Environments

Toy Minecraft: The toy Minecraft is a customized grid world environment. As shown in
the main text, the agent starts from the left and would like to reach the final goal (marked as
a heart). The agent can walk on the green grass and go into the blue water ends the episode.
The input to the agent is its current (x, y) location. At each step, the agent can move Up,
Down, Left or Right. It gets a reward of 1 when reaching the goal, 0 otherwise. For more
details, please refer to the OpenAI gym Frozen-Lake environment [Brockman et al., 2016].

Torcs: Torcs is an open-source racing game that has been used widely as an experimental
environment for driving. The goal of the agent is to drive as fast as possible on the track
while avoiding crashes. We use an oval two-lane racing venue in our experiments. The input
to the agent is an 84×84 gray scale image. The agent controls the vehicle at 5Hz, and at each
step, it chooses from a set of 9 actions which is a Cartesian product between {left, no-op,
right} and {up, no-op, down}. We design a dense driving reward function that encourages
the car to follow the lane and to avoid collision with obstacles. 1

A.2 Effects of Imperfect Demonstrations

See Figure A.1 for more results for imperfect demonstrations when the amount of noise
varies.

1reward = (1−1damage)[(cos θ−sin θ−lane ratio) ×speed]+1damage [−10], where 1damage is an indicator
function of whether the vehicle is damaged at the current state. lane ratio is the ratio between distance to
lane center and lane width. θ is the angle between the vehicle heading direction and the road direction.

APPENDIX A. SOFT ADVANTAGE LEARNING DETAILS 67

Figure A.1: More results when introducing imperfect demonstrations. The figure shows the
case for 80%. Our SAL method is highly robust to noisy demonstrations.

A.3 Effects of Demonstration Amount

In this section, we show comparisons between our method and other methods with different
amounts of demonstration data. We use a trained agent to collect three sets of demonstrations
which include 10k, 150k, and 300k transitions each. In the experiments, we find that our
algorithm performs well when the amount of data is large and is comparable to supervised
methods even with a limited amount of data. In Fig. A.2 , we show when there are extremely
limited amounts of demonstration data (10k transitions or 30 minutes of experience), our
method performs on par with supervised methods. Fig. A.2 also shows the results for 150k
and 300k transitions: our method outperforms the baselines by a large margin with 300k
transitions. In summary, our method can learn from small amounts of demonstration data
and dominates in terms of performance when there is sufficient amount of data.

A.4 Effects of Reward Choice

In the experiments in the main text, we adopt a natural reward: it maximizes speed
along the lane, minimizes speed perpendicular to the lane and penalizes when the agent hits
anything. However, very informative rewards are not available under many conditions. In
this section, we study whether our method is robust to a less informative reward. We change
the reward function to be the square of the speed of an agent, irrespective of the speed’s
direction. This reward encourages the agent to drive fast, however, it is difficult to work with
because the agent has to learn by itself that driving off-road or hitting obstacles reduce its

APPENDIX A. SOFT ADVANTAGE LEARNING DETAILS 68

Figure A.2: Learning from different amount of demonstrations (10k, 150k, 300k). Even with
only 30 minutes (10k transitions) of experience, our method could still learn a policy that is
comparable with supervised learning methods. SAL method achieves superior performance
with a large amount of demonstrations.

APPENDIX A. SOFT ADVANTAGE LEARNING DETAILS 69

future speed. It is also hard because speed2 has a large numerical range. Figure A.3 shows
that SAL method still performs the best at convergence, while DQfD suffers from severe
performance degeneration.

Figure A.3: We compare SAL with other methods when only learning from the demonstrations.
We use a different reward: speed2. Our method still performs the best.

A.5 Learning from Human Demonstrations

For many practical problems, such as autonomous driving, we might have a large number
of human demonstrations, but no demonstration available from a trained agent at all. In
contrast to a scripted agent, humans usually perform actions diversely, both from multiple
individuals (e.g. conservative players will slow down before a U-turn; aggressive players
will not) and a single individual (e.g. a player may randomly turn or go straight at an
intersection). Many learning from demonstration methods do not study this challenging
case, such as [Ho and Ermon, 2016]. We study how different methods perform with diverse
demonstrations. To collect human demonstrations, we asked 3 non-expert human players
to play TORCS for 3 hours each. Human players control the game with the combination of
four arrow keys, at 5Hz, the same rate as the trained agent. In total, we collected around
150k transitions. Among them, 4.5k transitions are used as a validation set to monitor the
Bellman error. Comparing with data collected from a trained agent, the data is more diverse

APPENDIX A. SOFT ADVANTAGE LEARNING DETAILS 70

and the quality of the demonstrations improves naturally when the players get familiar with
the game.

In Fig. A.4, we observe that the behavior cloning method performs much worse than
SAL and DQfD. DQfD initially is better than our method but later is surpassed by the SAL
method quickly, which might be caused by the supervised hinge loss being harmful when
demonstrations are suboptimal. Similar to the policy generated demonstrations case, PCL,
hard Q-learning and soft Q-learning do not perform well.

Figure A.4: Performances on the Torcs game with human demonstrations. DQfD performs
well in the beginning, but overfits in the end. The behavior cloning method is much worse
than SAL and DQfD. Our SAL method performs best at convergence.

A.6 Experiment Details

Network Architecture: We use the same architecture as in [Mnih et al., 2015] to
parametrize Q(s, a). With this Q parametrization, we also output and VQ(s) by VQ(s) =
α log

∑
a exp(Q(s, a)/α).

Hyper-parameters: We use a replay buffer with a capacity of 1 million steps and update
the target network every 10K steps. Initially, the learning rate is linearly annealed from
1e-4 to 5e-5 for the first 1/10 of the training process and then it is kept as a constant (5e-5).
Gradients are clipped at 10 to reduce training variance. The reward discount factor γ is set
to 0.99. We concatenate the 4 most recent frames as the input to the neural network. For
the methods with an entropy regularizer, we set α to 0.1, following [Schulman et al., 2017].

We truncate the importance sampling weighting factor β = min
{
πQ(a|s)
µ(a|s) , c

}
at 10, i.e., c = 10

for the importance weighted soft actor-critic method.

71

Bibliography

[Adorjan,] Adorjan, M. ” opensfm ein kollaboratives structure-from-motion system”; be-
treuer/in (nen): M. wimmer, m. birsak; institut für computergraphik und algorithmen,
2016; abschlussprüfung: 02.05. 2016.

[Agarwal et al., 2010] Agarwal, S., Furukawa, Y., Snavely, N., Curless, B., Seitz, S. M., and
Szeliski, R. (2010). Reconstructing rome. Computer, 43(6):40–47.

[Alcantarilla et al., 2016] Alcantarilla, P. F., Stent, S., Ros, G., Arroyo, R., and Gherardi, R.
(2016). Street-view change detection with deconvolutional networks. In Robotics: Science
and Systems.

[Amini et al., 2019] Amini, A., Rosman, G., Karaman, S., and Rus, D. (2019). Variational
End-to-End Navigation and Localization. pages 8958–8964.

[and others Jacobs, Robert A and Jordan, Michael I and Nowlan, Steven J and Hinton, 1991]
and others Jacobs, Robert A and Jordan, Michael I and Nowlan, Steven J and Hinton,
G. E. (1991). Adaptive mixtures of local experts. Neural computation, 3:79—-87.

[and others LeCun, Yann and Bottou, L{\’e}on and Bengio, Yoshua and Haffner, 1998]
and others LeCun, Yann and Bottou, L{\’e}on and Bengio, Yoshua and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the IEEE,
86:2278—-2324.

[Andreas et al., 2017] Andreas, J., Klein, D., and Levine, S. (2017). Modular multitask
reinforcement learning with policy sketches. 34th International Conference on Machine
Learning, ICML 2017, 1:229–239.

[Andreas et al., 2016] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016). Neural
module networks. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016-December(Figure 1):39–48.

[Badrinarayanan et al., 2015] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2015). Seg-
net: A deep convolutional encoder-decoder architecture for image segmentation. arXiv
preprint arXiv:1511.00561.

BIBLIOGRAPHY 72

[Bai et al., 2016] Bai, M., Luo, W., Kundu, K., and Urtasun, R. (2016). Exploiting semantic
information and deep matching for optical flow. In European Conference on Computer
Vision, pages 154–170.

[Bansal et al., 2018] Bansal, M., Krizhevsky, A., and Ogale, A. (2018). ChauffeurNet: Learn-
ing to Drive by Imitating the Best and Synthesizing the Worst. pages 1–20.

[Bao and Savarese, 2011] Bao, S. Y. and Savarese, S. (2011). Semantic structure from motion.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages
2025–2032. IEEE.

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer.

[Bojarski et al., 2016a] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016a). End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316.

[Bojarski et al., 2016b] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., and
Zieba, K. (2016b). End to End Learning for Self-Driving Cars. pages 1–9.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., and Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[Chemali and Lazaric, 2015] Chemali, J. and Lazaric, A. (2015). Direct policy iteration with
demonstrations. In IJCAI, pages 3380–3386.

[Chen et al., 2015a] Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015a). Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2722–2730.

[Chen et al., 2015b] Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015b). DeepDriving:
Learning affordance for direct perception in autonomous driving. Proceedings of the IEEE
International Conference on Computer Vision, 2015 International Conference on Computer
Vision, ICCV 2015(Figure 1):2722–2730.

[Codevilla et al., 2018] Codevilla, F., Miiller, M., Lopez, A., Koltun, V., and Dosovitskiy,
A. (2018). End-to-End Driving Via Conditional Imitation Learning. Proceedings - IEEE
International Conference on Robotics and Automation, pages 4693–4700.

[Codevilla et al., 2017] Codevilla, F., Müller, M., Dosovitskiy, A., López, A., and Koltun, V.
(2017). End-to-end driving via conditional imitation learning. CoRR, abs/1710.02410.

[Cordts et al., 2016] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., and Schiele, B. (2016). The Cityscapes dataset for semantic
urban scene understanding. arXiv preprint arXiv:1604.01685.

BIBLIOGRAPHY 73

[Currier,] Currier, P. Team Victor Tango’s Odin: Autonomous Driving Using NI LabVIEW
in the DARPA Urban Challenge.

[Daftry et al., 2016] Daftry, S., Bagnell, J. A., and Hebert, M. (2016). Learning transferable
policies for monocular reactive MAV control. In International Symposium on Experimental
Robotics.

[De Brabandere et al., 2016] De Brabandere, B., Jia, X., Tuytelaars, T., and Van Gool, L.
(2016). Dynamic filter networks. arXiv preprint arXiv:1605.09673.

[Degris et al., 2012] Degris, T., White, M., and Sutton, R. S. (2012). Off-policy actor-critic.
arXiv preprint arXiv:1205.4839.

[Donahue et al., 2015] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Saenko, K., and Darrell, T. (2015). Long-term recurrent convolutional
networks for visual recognition and description. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2625–2634.

[Dong et al., 2019] Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D. (2019). Neural
Logic Machines.

[Dosovitskiy et al., 2017] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V.
(2017). CARLA: An Open Urban Driving Simulator. (CoRL).

[Engel et al., 2016] Engel, J., Koltun, V., and Cremers, D. (2016). Direct sparse odometry.
arXiv preprint arXiv:1607.02565.

[Engel et al., 2014] Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam: Large-scale
direct monocular slam. In European Conference on Computer Vision, pages 834–849.

[Evans and Grefenstette, 2018] Evans, R. and Grefenstette, E. (2018). Learning explanatory
rules from noisy data. IJCAI International Joint Conference on Artificial Intelligence,
2018-July:5598–5602.

[Finn et al., 2016] Finn, C., Goodfellow, I., and Levine, S. (2016). Unsupervised learning for
physical interaction through video prediction. arXiv preprint arXiv:1605.07157.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample con-
sensus: a paradigm for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395.

[Fitzgibbon and Zisserman, 2000] Fitzgibbon, A. W. and Zisserman, A. (2000). Multibody
structure and motion: 3-d reconstruction of independently moving objects. In European
Conference on Computer Vision, pages 891–906. Springer.

BIBLIOGRAPHY 74

[Frahm et al., 2010] Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R.,
Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., et al. (2010). Building rome on a
cloudless day. In European Conference on Computer Vision, pages 368–381. Springer.

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):1231–
1237.

[Geiger et al., 2011] Geiger, A., Ziegler, J., and Stiller, C. (2011). Stereoscan: Dense 3d
reconstruction in real-time. In Intelligent Vehicles Symposium (IV).

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 2672–2680.

[Gu et al., 2016] Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S.
(2016). Q-prop: Sample-efficient policy gradient with an off-policy critic. arXiv preprint
arXiv:1611.02247.

[Gu et al., 2017] Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., Schölkopf, B., and
Levine, S. (2017). Interpolated policy gradient: Merging on-policy and off-policy gradient
estimation for deep reinforcement learning. arXiv preprint arXiv:1706.00387.

[Gunji et al.,] Gunji, N., Higuchi, T., Yasumoto, K., Muraoka, H., Ushiku, Y., Harada, T.,
and Kuniyoshi, Y. Scalable Multiclass Object Categorization with Fisher Based Features.

[Haarnoja et al., 2017a] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017a). Re-
inforcement learning with deep energy-based policies. In Precup, D. and Teh, Y. W.,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 1352–1361, International Convention
Centre, Sydney, Australia. PMLR.

[Haarnoja et al., 2017b] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017b). Rein-
forcement learning with deep energy-based policies. arXiv preprint arXiv:1702.08165.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290.

[Hartley and Zisserman, 2003] Hartley, R. and Zisserman, A. (2003). Multiple view geometry
in computer vision. Cambridge university press.

[Hartmann et al., 2014] Hartmann, W., Havlena, M., and Schindler, K. (2014). Predicting
matchability. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9–16.

BIBLIOGRAPHY 75

[Hester et al., 2017] Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B.,
Sendonaris, A., Dulac-Arnold, G., Osband, I., Agapiou, J., et al. (2017). Learning from
demonstrations for real world reinforcement learning. arXiv preprint arXiv:1704.03732.

[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning.
In Advances in Neural Information Processing Systems, pages 4565–4573.

[Hoffman et al., 2016] Hoffman, J., Gupta, S., and Darrell, T. (2016). Learning with side
information through modality hallucination. In In Proc. Computer Vision and Pattern
Recognition (CVPR).

[Hu et al., 2018] Hu, R., Andreas, J., Darrell, T., and Saenko, K. (2018). Explainable neural
computation via stack neural module networks. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
11211 LNCS:55–71.

[Hu et al., 2017a] Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko, K. (2017a).
Learning to Reason: End-to-End Module Networks for Visual Question Answering. Pro-
ceedings of the IEEE International Conference on Computer Vision, 2017-October(Figure
1):804–813.

[Hu et al., 2019] Hu, R., Rohrbach, A., Darrell, T., and Saenko, K. (2019). Language-
Conditioned Graph Networks for Relational Reasoning.

[Hu et al., 2017b] Hu, R., Rohrbach, M., Andreas, J., Darrell, T., and Saenko, K. (2017b).
Modeling relationships in referential expressions with compositional modular networks.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, 2017-January:4418–4427.

[Huval et al., 2015] Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J.,
Andriluka, M., Rajpurkar, P., Migimatsu, T., Cheng-Yue, R., et al. (2015). An empirical
evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716.

[Jaderberg et al., 2016] Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z.,
Silver, D., and Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397.

[Jordan and Jacobs, 1994] Jordan, M. and Jacobs, R. A. (1994). Hierarchical mixtures of
experts and the EM algorithm. Neural computation, 6:181—-214.

[Kakade et al., 2003] Kakade, S. M. et al. (2003). On the sample complexity of reinforcement
learning. PhD thesis, University of London London, England.

[Kersting et al., 2000] Kersting, K., De Raedt, L., and Kramer, S. (2000). Interpreting
Bayesian logic programs. Proceedings of the The Seventeenth National Conference on

BIBLIOGRAPHY 76

Artificial Intelligence (AAAI ’2000) workshop on learning statistical models from relational
data, (X):138–155.

[Kim et al., 2013] Kim, B., massoud Farahmand, A., Pineau, J., and Precup, D. (2013).
Learning from limited demonstrations. In Advances in Neural Information Processing
Systems, pages 2859–2867.

[Kimmig et al., 2012] Kimmig, A., Bach, S. H., Broecheler, M., Huang, B., and Getoor, L.
(2012). A Short Introduction to Probabilistic Soft Logic. Proceedings of the NIPS Workshop
on Probabilistic Programming: Foundations and Applications, (1):1–4.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-encoding varia-
tional bayes. stat, 1050:10.

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel tracking and mapping
for small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE
and ACM International Symposium on, pages 225–234. IEEE.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet
classification with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105.

[Kundu et al., 2010] Kundu, A., Krishna, K. M., and Jawahar, C. (2010). Realtime motion
segmentation based multibody visual slam. In Proceedings of the Seventh Indian Conference
on Computer Vision, Graphics and Image Processing, pages 251–258. ACM.

[Kundu et al., 2011] Kundu, A., Krishna, K. M., and Jawahar, C. (2011). Realtime multibody
visual slam with a smoothly moving monocular camera. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2080–2087. IEEE.

[Kundu et al., 2014] Kundu, A., Li, Y., Dellaert, F., Li, F., and Rehg, J. M. (2014). Joint se-
mantic segmentation and 3d reconstruction from monocular video. In European Conference
on Computer Vision, pages 703–718. Springer.

[LeCun et al., 2005] LeCun, Y., Muller, U., Ben, J., Cosatto, E., and Flepp, B. (2005).
Off-road obstacle avoidance through end-to-end learning. In NIPS, pages 739–746.

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440.

[Lotter et al., 2016] Lotter, W., Kreiman, G., and Cox, D. (2016). Deep predictive coding
networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international conference on,
volume 2, pages 1150–1157. Ieee.

BIBLIOGRAPHY 77

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110.

[Maddern et al., pear] Maddern, W., Pascoe, G., Linegar, C., and Newman, P. (to appear).
1 Year, 1000km: The Oxford RobotCar Dataset. The International Journal of Robotics
Research (IJRR).

[Mascharka et al., 2018] Mascharka, D., Tran, P., Soklaski, R., and Majumdar, A. (2018).
Transparency by Design: Closing the Gap between Performance and Interpretability in
Visual Reasoning. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 4942–4950.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533.

[Munos et al., 2016] Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. (2016).
Safe and efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems, pages 1054–1062.

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-
slam: a versatile and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163.

[Nachum et al., 2017] Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017). Bridg-
ing the gap between value and policy based reinforcement learning. arXiv preprint
arXiv:1702.08892.

[Nair et al., 2018] Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P.
(2018). Overcoming exploration in reinforcement learning with demonstrations. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 6292–6299.
IEEE.

[Oh et al., 2015] Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. (2015). Action-
conditional video prediction using deep networks in Atari games. In Advances in Neural
Information Processing Systems, pages 2863–2871.

[Osa et al., 2018] Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J.,
et al. (2018). An algorithmic perspective on imitation learning. Foundations and Trends®
in Robotics, 7(1-2):1–179.

[Ozden et al., 2010] Ozden, K. E., Schindler, K., and Van Gool, L. (2010). Multibody
structure-from-motion in practice. IEEE transactions on pattern analysis and machine
intelligence, 32(6):1134–1141.

BIBLIOGRAPHY 78

[Perronnin and Dance, 2007] Perronnin, F. and Dance, C. (2007). Fisher kernels on visual
vocabularies for image categorization. In 2007 IEEE conference on computer vision and
pattern recognition, pages 1–8. IEEE.

[Piot et al., 2014] Piot, B., Geist, M., and Pietquin, O. (2014). Boosted bellman residual
minimization handling expert demonstrations. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 549–564. Springer.

[Pollefeys et al., 1999] Pollefeys, M., Koch, R., and Van Gool, L. (1999). Self-calibration
and metric reconstruction inspite of varying and unknown intrinsic camera parameters.
International Journal of Computer Vision, 32(1):7–25.

[Pomerleau , 1989] Pomerleau , D. (1989). Alvinn: An autonomous land vehicle in a neural
network. In Touretzky, D., editor, Advances in Neural Information Processing Systems 1.
Morgan Kaufmann.

[Pomerleau, 1989a] Pomerleau, D. a. (1989a). Alvinn: An autonomous land vehicle in a
neural network. Advances in Neural Information Processing Systems 1, pages 305–313.

[Pomerleau, 1989b] Pomerleau, D. A. (1989b). Alvinn: An autonomous land vehicle in a
neural network. In Advances in neural information processing systems, pages 305–313.

[Rajeswaran et al., 2017] Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J.,
Todorov, E., and Levine, S. (2017). Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087.

[Richardson and Domingos, 2006] Richardson, M. and Domingos, P. (2006). Markov logic
networks. In Machine Learning.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Con-
volutional networks for biomedical image segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 234–241. Springer.

[Ross et al., 2011] Ross, S., Gordon, G. J., and Bagnell, D. (2011). A reduction of imitation
learning and structured prediction to no-regret online learning. In AISTATS, volume 1,
page 6.

[Rosten and Drummond, 2005] Rosten, E. and Drummond, T. (2005). Fusing points and
lines for high performance tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, pages 1508–1515. IEEE.

[Rosten and Drummond, 2006] Rosten, E. and Drummond, T. (2006). Machine learning for
high-speed corner detection. In European conference on computer vision, pages 430–443.
Springer.

BIBLIOGRAPHY 79

[Roussos et al., 2012] Roussos, A., Russell, C., Garg, R., and Agapito, L. (2012). Dense
multibody motion estimation and reconstruction from a handheld camera. In Mixed and
Augmented Reality (ISMAR), 2012 IEEE International Symposium on, pages 31–40. IEEE.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). ImageNet large scale
visual recognition challenge. International Journal of Computer Vision, 115(3):211–252.

[Rusu et al., 2016] Rusu, A. A., Vecerik, M., Rothörl, T., Heess, N., Pascanu, R., and Hadsell,
R. (2016). Sim-to-real robot learning from pixels with progressive nets. arXiv preprint
arXiv:1610.04286.

[Salas-Moreno et al., 2013] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H.,
and Davison, A. J. (2013). Slam++: Simultaneous localisation and mapping at the level
of objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1352–1359.

[Santana and Hotz, 2016] Santana, E. and Hotz, G. (2016). Learning a driving simulator.
arXiv preprint arXiv:1608.01230.

[Santoro et al., 2017] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R.,
Battaglia, P., and Lillicrap, T. (2017). A simple neural network module for relational
reasoning. Advances in Neural Information Processing Systems, 2017-December:4968–4977.

[Sauer et al., 2018] Sauer, A., Savinov, N., and Geiger, A. (2018). Conditional Affordance
Learning for Driving in Urban Environments. pages 1–15.

[Schaal, 1997] Schaal, S. (1997). Learning from demonstration. In Advances in neural
information processing systems, pages 1040–1046.

[Schulman et al., 2017] Schulman, J., Abbeel, P., and Chen, X. (2017). Equivalence between
policy gradients and soft q-learning. arXiv preprint arXiv:1704.06440.

[Sevilla-Lara et al., 2016] Sevilla-Lara, L., Sun, D., Jampani, V., and Black, M. J. (2016).
Optical flow with semantic segmentation and localized layers. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3889–3898.

[Sharmanska et al., 2013] Sharmanska, V., Quadrianto, N., and Lampert, C. H. (2013).
Learning to rank using privileged information. In International Conference on Computer
Vision (ICCV), pages 825–832. IEEE.

[Shazeer et al., 2017] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q. V., Hinton,
G. E., and Dean, J. (2017). Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. CoRR, abs/1701.06538.

BIBLIOGRAPHY 80

[Shelhamer et al., 2016] Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T. (2016).
Loss is its own reward: Self-supervision for reinforcement learning. arXiv preprint
arXiv:1612.07307.

[Shotton et al., 2008] Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic texton
forests for image categorization and segmentation. In Computer vision and pattern recogni-
tion, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE.

[Snavely et al., 2006] Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism:
exploring photo collections in 3d. In ACM transactions on graphics (TOG), volume 25,
pages 835–846. ACM.

[Snavely et al., 2008] Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world
from internet photo collections. International Journal of Computer Vision, 80(2):189–210.

[Song and Chandraker, 2014] Song, S. and Chandraker, M. (2014). Robust scale estimation
in real-time monocular sfm for autonomous driving. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1566–1573.

[Song and Chandraker, 2015] Song, S. and Chandraker, M. (2015). Joint sfm and detection
cues for monocular 3d localization in road scenes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3734–3742.

[Song et al., 2016] Song, S., Chandraker, M., and Guest, C. C. (2016). High accuracy
monocular sfm and scale correction for autonomous driving. IEEE transactions on pattern
analysis and machine intelligence, 38(4):730–743.

[Strasdat et al.,] Strasdat, H., Montiel, J., and Davison, A. J. Scale drift-aware large scale
monocular slam. Robotics: Science and Systems VI.

[Sun et al., 2018] Sun, W., Bagnell, J. A., and Boots, B. (2018). Truncated horizon pol-
icy search: Combining reinforcement learning & imitation learning. arXiv preprint
arXiv:1805.11240.

[Sun et al., 2017] Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and Bagnell, J. A.
(2017). Deeply aggrevated: Differentiable imitation learning for sequential prediction. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
3309–3318. JMLR. org.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.

[Thie, 1983] Thie, P. R. (1983). Markov decision processes. Comap, Incorporated.

[Todorov, 2008] Todorov, E. (2008). General duality between optimal control and estimation.
In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 4286–4292.
IEEE.

BIBLIOGRAPHY 81

[Torabi et al., 2018] Torabi, F., Warnell, G., and Stone, P. (2018). Behavioral cloning from
observation. arXiv preprint arXiv:1805.01954.

[Toussaint, 2009] Toussaint, M. (2009). Robot trajectory optimization using approximate
inference. In Proceedings of the 26th annual international conference on machine learning,
pages 1049–1056. ACM.

[Tzeng et al., 2016] Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P., Levine, S.,
Saenko, K., and Darrell, T. (2016). Adapting deep visuomotor representations with weak
pairwise constraints. In Workshop on the Algorithmic Foundations of Robotics.

[Ummenhofer et al., 2016] Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovit-
skiy, A., and Brox, T. (2016). Demon: Depth and motion network for learning monocular
stereo. arXiv preprint arXiv:1612.02401.

[Vapnik and Vashist, 2009] Vapnik, V. and Vashist, A. (2009). A new learning paradigm:
Learning using privileged information. Neural Networks, 22(5):544–557.

[Večeŕık et al., 2017] Večeŕık, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B.,
Heess, N., Rothörl, T., Lampe, T., and Riedmiller, M. (2017). Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817.

[Vineet et al., 2015] Vineet, V., Miksik, O., Lidegaard, M., Nießner, M., Golodetz, S.,
Prisacariu, V. A., Kähler, O., Murray, D. W., Izadi, S., Pérez, P., et al. (2015). In-
cremental dense semantic stereo fusion for large-scale semantic scene reconstruction. In
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 75–82.
IEEE.

[Wang et al., 2016] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K.,
and de Freitas, N. (2016). Sample efficient actor-critic with experience replay. arXiv
preprint arXiv:1611.01224.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine
learning, 8(3-4):279–292.

[Wikipedia,] Wikipedia. Transportation safety in the United States.

[Wu et al., 2011] Wu, C. et al. (2011). Visualsfm: A visual structure from motion system.

[Wu et al., 2019] Wu, Y.-H., Charoenphakdee, N., Bao, H., Tangkaratt, V., and Sugiyama, M.
(2019). Imitation learning from imperfect demonstration. arXiv preprint arXiv:1901.09387.

[Xingjian et al., 2015] Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and
Woo, W.-c. (2015). Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. In Advances in Neural Information Processing Systems, pages
802–810.

BIBLIOGRAPHY 82

[Xu et al., 2016] Xu, H., Gao, Y., Yu, F., and Darrell, T. (2016). End-to-end learning of
driving models from large-scale video datasets. arXiv preprint arXiv:1612.01079.

[Xu et al., 2017] Xu, H., Gao, Y., Yu, F., and Darrell, T. (2017). End-to-end learning of
driving models from large-scale video datasets. Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, 2017-January:3530–3538.

[Yu and Koltun, 2015] Yu, F. and Koltun, V. (2015). Multi-scale context aggregation by
dilated convolutions. arXiv preprint arXiv:1511.07122.

[Yu et al., 2017] Yu, F., Koltun, V., and Funkhouser, T. (2017). Dilated residual networks.
In Computer Vision and Pattern Recognition (CVPR).

[Zhang et al., 2016] Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image colorization.
arXiv preprint arXiv:1603.08511.

[Ziebart, 2010] Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle
of maximum causal entropy. Carnegie Mellon University.

[Ziebart et al., 2008] Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008).
Maximum entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438.
Chicago, IL, USA.

	Contents
	List of Figures
	List of Tables
	Introduction
	Autonomous Driving System
	Existing Autonomous Driving Systems
	End to End Autonomous Driving Systems
	Open Questions in End-To-End Driving
	Summary of the Proposed Solution

	End-To-End Driving Models
	Background
	Related Work
	Deep Generic Driving Networks
	The BDDV Dataset
	Experiments
	Discussion

	Recover Motion from Egocentric Video
	Background
	Related Work
	Semantically Filtered Structure-from-Motion
	Experiment
	Discussion

	Perception-Logical Policy
	Background
	Related Work
	The Perception-Logic Network
	Experiments
	Limitations
	Discussion

	Combining Imitation Learning and Reinforcement Learning
	Background
	Preliminaries
	Soft Advantage Learning on Demonstrations and Rewards
	Related Work
	Results
	Discussion

	Conclusion
	Soft Advantage Learning Details
	Environments
	Effects of Imperfect Demonstrations
	Effects of Demonstration Amount
	Effects of Reward Choice
	Learning from Human Demonstrations
	Experiment Details

	Bibliography

