
A Berkeley View of Teaching CS at Scale

Kevin Lin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-99
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-99.html

May 28, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Over the past decade, undergraduate Computer Science (CS) programs across the nation have

experienced an explosive growth in enrollment as computational skills have proven increasingly

important across many domains and in the workforce at large. Motivated by this unprecedented

student demand, the CS program at the University of California, Berkeley has tripled the size of its

graduating class in �ve years. The �rst two introductory courses for majors, each taught by one

faculty instructor and several hundred student teachers, combine to serve nearly 2,900 students

per term. This report presents three strategies that have enabled the e�ective teaching, delivery,

and management of large-scale CS courses: (1) the development of autograder infrastructure and

online platforms to provide instant feedback with minimal instructor intervention and deliver

the course at scale; (2) the expansion of academic and social student support networks resulting

from changes in teaching assistant responsibilities and the development of several near-peer

mentoring communities; and (3) the expansion of undergraduate teacher preparation programs to

meet the increased demand for quali�ed student teachers. These interventions have helped both

introductory and advanced courses address capacity challenges and expand enrollments while

receiving among the highest student evaluations of teaching in department history. Implications

for inclusivity and diversity are discussed.

Contents

1 Introduction 5
1.1 National CS Capacity Crisis . 6

1.2 UC Berkeley Case Study . 8

1.2.1 Course Format . 10

2 Automation 11
2.1 Grading and Feedback . 12

2.1.1 Gradescope . 12

2.1.2 OK . 13

2.2 Managing Student Learning . 15

2.2.1 O�ce Hours . 15

2.2.2 Online Course Delivery . 17

2.2.3 Exam Administration . 19

3 Support 20
3.1 Undergraduate Teaching Assistants . 21

3.2 Center for Student A�airs . 22

3.3 Near-Peer Student Mentors . 24

4 Preparation 27
4.1 Introduction to Teaching Computer Science . 27

4.2 Mentoring at Scale . 29

4.3 Course-Speci�c Preparation . 29

5 Discussion 32

Bibliography 35

4

1 Introduction

Computer science classrooms are over�owing at colleges and universities across the

United States. Enrollments are rising quickly, not only for majors, but also for non-

majors who recognize the importance of computing skills in today’s economy. This

enrollment growth puts enormous pressure on computer science departments, which

have not been able to expand to keep pace. [41]

In the decade between 2008 and 2018, CS departments across the United States have experienced

double-digit undergraduate enrollment increases while “the overall growth in teaching capacity

woefully lags the growth in students [with] the vast majority of departments [reporting] increased

di�culty in managing the situation” [55]. From 2006 to 2015, the average number of CS majors

in large departments (25 or more tenure-track faculty) increased from 341 to 970 and for small

departments from 158 to 499 majors [8]. While growth varies between programs, the data make it

clear that “signi�cant growth is under way at many institutions,” and that “the conditions exist for

continued growth in the demand for CS and related jobs, degrees, and courses” [26].

In this report, we present three strategies which have enabled the e�ective teaching of large

enrollment CS courses at the University of California, Berkeley (UC Berkeley):

Automation The autograder infrastructure and online platforms which are now able to provide

instant feedback, minimize manual grading, and deliver courses at scale.

Support The expansion of student support networks through changes in teaching assistant

responsibilities and the development of several near-peer mentoring communities.

Preparation The expansion of undergraduate teacher preparation programs to meet the increased

demand for student teachers.

These strategies support recommendations previously published by the Association for Computing

Machinery [45], Computing Research Association (CRA) [8], the National Academies [26], and

other research universities [3, 15, 16, 17, 18, 22, 23, 24, 35, 38, 42]. In light of the national CS capacity

crisis and the increasing size of CS courses, this report identi�es automation as the force which

has driven subsequent changes in support and teacher preparation practices.

5

1.1 National CS Capacity Crisis

Current pressures on computer science units are extremely di�cult to manage and

will also intensify if enrollments continue to grow. Institutional administrators need to

work with computer science units to �nd sustainable approaches to meet the student

demand, accounting for important factors such as (1) lack of space for classes and

units, (2) academic support required, (3) the limited pool of quali�ed teaching faculty,

(4) the goals and needs of nonmajors taking CS classes, (5) the e�ect of class size on

the course experience, and (6) the desired retention of both students and faculty. [8]

According to the 2017 CRA Enrollment Survey, “66% of the 134 responding doctoral-granting units

reported that the enrollment growth is having a big impact (i.e., causing signi�cant challenges) on

their unit,” with more than 50% of doctoral-granting institutions citing 6 signi�cantly increasing

problems due to growing enrollments: classroom space shortages, insu�cient numbers of fac-

ulty/instructors, insu�cient numbers of teaching assistants (TAs), increased faculty workloads,

o�ce space shortages, and lab space shortages [8].

In response to these challenges, more than 50% of doctoral-granting institutions have already

taken 4 actions to manage student enrollments: signi�cantly increase class sizes, increase the

number of academic year sections, increase summer o�erings, and reduce low-enrollment classes.

More than 65% of doctoral-granting institutions have already taken 4 actions to increase teaching

capacity: use undergraduate TAs and tutors, use more adjuncts or visitors as instructors, use

graduate students as instructors, and increase the number of teaching faculty [8]. A survey of 78 CS

professors from 65 di�erent institutions identi�ed the following three most common approaches

for addressing the capacity crisis: (1) altering course o�erings by increasing class sizes, o�ering

more sections, and reducing elective o�erings; (2) hiring more faculty and TAs; and (3) restricting

access to classes, directing non-majors to other classes, and “weeding out” students [30].

Research suggests that certain interventions can signi�cantly a�ect the recruitment and retention

of women and underrepesented minorities (URM) in CS [5, 7, 8, 14, 19, 25, 26, 27, 39, 45].

The underrepresentation of women and people from groups underrepresented in

computing raises concerns for a variety of reasons, including (1) issues of equity

and fairness, (2) the economic and competitive imperative of ensuring a large and

diverse U.S. workforce, (3) the fact that better solutions are developed by teams with a

diversity of people and perspectives, and (4) the increasing interdependency between

American democracy and the ability to understand and navigate the presentation of

information through technology. [45]

6

Course-level and department-level policies can directly a�ect which students pursue the major

or have access to advanced coursework. More than 40% of doctoral-granting institutions limit

enrollments in high-demand courses, advise less-successful students to leave the major, and require

that students are in a major or minor in order to enroll in an advanced course [8]. Even nominally

objective policies such as restricting access to the major based on GPA can disproportionately dis-

advantage URM students [14, 45]. Furthermore, “imposing such restrictions makes the relationship

between faculty and students adversarial, causing students to become more competitive and, in

many cases, angry,” with students concluding that they aren’t wanted and perpetuating the idea

that “computer science [is] competitive and unwelcoming” [29, 30, 40].

In the face of increasing enrollments institutions would do well to take lessons from the

past. The share of CIS [Computer and Information Science] and CS bachelor’s degrees

going to women decreased precipitously beginning in the mid-1980s, and again during

the dot-com bust. These drops coincided with past peaks in CS degree production,

suggesting that high-enrollment conditions or the actions taken by institutions in

response to these surges may have contributed to the decrease in representation of

women in undergraduate CS during these times. [26]

Indeed, many of the actions taken by universities today mirror the actions undertaken in the

earlier enrollment surge in the 1980s which included (1) increasing teaching loads and class sizes,

(2) hiring more part-time and adjunct faculty, (3) retraining faculty from other disciplines, and (4)

limiting enrollments and access to the major [9]. Many departments have since adopted some of

the recommendations cited in the 1982 report including diversifying academic opportunities by

creating teaching-track faculty positions and using technology to make education more e�cient.

CS education has only recently advanced to the national agenda [1], slowing the adoption

of these ideas and practices. “There are few researchers with CS education PhDs, and right

now few or no active formal CS education PhD programs,” [11] stymieing the development of

pedagogical methods and computer science education as a discipline. “Teaching large computer

science courses has become a more specialized endeavor,” which grows capacity in impacted lower-

division courses but results in an increase in student demand for upper-division courses without

necessarily solving the underlying instructional bottleneck [40]. There are simply not enough CS

teachers. Furthermore, this capacity crisis is occurring at a time of institutional disinvestment due

in part to “administrators who are convinced that they [. . .] know when students will next lose

interest” but whose “very decision ensures a capacity collapse” [40] in spite of evidence pointing

to the opposite: “While there will probably be �uctuations in the demand for CS courses, demand

is likely to continue to grow or remain high over the long term” [26].

7

1.2 UC Berkeley Case Study

This report presents a case study of three strategies for teaching CS at scale as developed in the

Department of Electrical Engineering and Computer Sciences (EECS) at the University of California,

Berkeley. Some historical context is necessary to understand the undergraduate CS education

program which allowed the development of these strategies. The e�ectiveness of implementing

them at other institutions will vary based on factors such as the institution’s size and values [26].

There are two paths into the CS program at UC Berkeley:

EECS The Electrical Engineering and Computer Sciences major in the College of Engineering, to

which students apply directly in their application to the university, with a cohort of about

400 students matriculating in 2018.

LSCS The Computer Science major in the College of Letters and Sciences, where students are

admitted into the college without declaring a major. Letters and Sciences students can

declare the CS major after meeting the requirements for the major. During periods of high

student demand and low supply, the LSCS declaration process can be very selective [2, 40].

In 2019, the LSCS major is a capped major, admitting any student with an average 3.3 GPA across

three introductory courses with an appeal process for students near the threshold. In 2018, about

800 students were accepted into the LSCS major. Based on current introductory CS course GPA

trends, on expectation, about half of students who take the required courses will be eligible to

declare the LSCS major, though these enrollments also include EECS majors and a large number of

non-majors. Tracking students by their interest in the LSCS major, between 60–70% of interested

students successfully declare the LSCS major each year. However, this leaves an estimated 470

interested students unable to declare the LSCS major, including 170 women. This also leaves out

students who do not even consider CS due to its reputation as a selective, capped major.

In 2018, between EECS and declared LSCS majors, the undergraduate CS program included

over 3,200 majors, representing over 10% of the university’s undergraduate student population. In

recent years, enrollment pressure has increased not only due to a growth in the number of majors,

but also a growth in the number of courses students take per semester. The average number of

upper-division EECS courses taken by a CS major throughout their undergraduate degree has

recently increased from 5 courses to 7 courses. Students are taking more EECS courses to ful�ll

major requirements rather than electives o�ered by other departments. At the same time, the

average time to graduation is only 7.89 semesters, as more students in the program are completing

their degree in 3 or 3.5 years. Taken together, CS majors are choosing to take more upper-division

CS courses in a shorter period of time, in�ating enrollment pressure and demand for courses.

8

Several factors contribute to this growth. Most upper-division CS courses have a short prerequi-

site chain, usually only requiring the introductory CS sequence, so students can easily switch into

another upper-division CS course if enrollment in their �rst-choice course is full. Furthermore,

the program does not require a capstone project which, at many other institutions, introduces an

individual advising requirement upon the faculty and consumes student attention in their �nal

year of study. Department surveys show that students’ post-graduation plans are increasingly

focused on working in software engineering roles, so students value the technical expertise gained

from taking technical, CS courses over breadth or personal interest courses.

Demand from non-majors has also increased. Despite the fact that enrollment preference is given

to students in the CS program, an increasing number of non-majors are enrolling in upper-division

CS courses with two of the most popular courses, Introduction to Arti�cial Intelligence, and

E�cient Algorithms and Intractable Problems, enrolling about 25% non-majors in 2018. Adjacent

major programs including Data Science; Cognitive Science; Applied Mathematics; Engineering

Mathematics and Statistics; Statistics; and Industrial Engineering and Operations Research either

explicitly require or credit certain CS courses towards their undergraduate major degrees. This

increase in non-major interest in CS courses mirrors the broader, national trend.

It is this context of external and internal demand for computer science that foreshadowed the

Data Science undergraduate program, the “fastest growing program in the history of Berkeley,” [2].

Berkeley’s Data Science education program aims at a comprehensive curriculum built

from the entry level upward to meet students’ varied needs for data �uency. It includes

a diverse constellation of connector courses that allow students to explore real-world

issues related to their areas of interest and continues with intermediate and advanced

courses that enable them to apply more complex concepts and approaches.
1

The Division of Data Sciences connects the School of Information, the EECS Department, the

Statistics Department, the Berkeley Institute for Data Science (BIDS), and faculty, sta�, and students

from across campus. Introductory data science courses have been developed with lessons learned

from introductory computer science [46], and upper-division courses are also designed to scale.

Starting as a pilot course with 100 students in Fall 2015, enrollment in the introductory data

science course, The Foundations of Data Science, reached 1,500 students in Spring 2019, exceeding

enrollments in introductory CS that semester. Core data science courses are commonly co-taught by

Statistics and Computer Science faculty while connector courses are o�ered by many departments

across campus to meet the diversity in demand for computational literacy and data skills.

1https://data.berkeley.edu/education

9

https://data.berkeley.edu/education

1.2.1 Course Format

The typical introductory computer science course uses the following model:

Lecture 3 hours per week introducing concepts to the entire class, led by the instructor.

Lab 1–2 hours per week of hands-on exploration activities, led by a TA, with around 30 students.

Discussion 1–2 hours per week of group problem-solving, led by a TA, with around 30 students.

O�ice Hours A drop-in space for students to ask questions and get help with course concepts

and assignments, normally o�ered on a regular basis by the instructors and TAs.

The typical upper-level computer science course consists of 3 hours of lecture and 1 hour of

discussion section per week. The EECS Department has experimented with other course formats

as well. Data Structures and Programming Methodology is o�ered during summer session in

lab-centric instruction format that consists of 1 hour of lecture and 6 hours of lab per week [49].

In part due to a shortage of large lecture halls, almost all CS courses have begun webcasting

lecture. The campus information technology group records live lecture and posts the video online a

few hours afterwards. Many students prefer webcasts over live lecture as they can speed-up, slow-

down, pause, and rewind the video, so live lecture attendance in large courses rarely exceeds one

third of the true class enrollment by the middle of the semester. Furthermore, lab and discussion

section attendance is often not mandatory. Students are typically encouraged to participate, and

the course policies may provide incentives for attendance, but attendance is rarely required.

As a consequence, there is a signi�cant number of students enrolled in CS courses who rarely

attend lecture but still learn all of the course content by watching webcasts. In 2018, this format

was o�cially adopted by Introduction to Database Systems, which was o�ered to matriculating UC

Berkeley students with the regular lecture sessions replaced entirely by professional recordings on

the same content by the professor. To keep students on track, the course expects them to submit

short, weekly quizzes on basic lecture concepts. Students are encouraged to attend discussion

sections and o�ce hours to clarify concepts from the webcast, build problem-solving skills, and

collaborate with other students in the course. While relying on online resources frees demand for

resources such as seating in lecture, these students often utilize other components of the course

such as discussion, lab, o�ce hours, study groups, and tutoring where learning occurs in smaller

group environments. Scaling capacity in these activities has become an increasingly important

focus for the department, a theme which is revisited throughout this report.

10

2 Automation

For decades, CS courses at UC Berkeley have used command-line interface autograding utilities

such as the grading package. This package allows students to submit �les (e.g. programming

assignments) to the instructor’s UNIX account for grading. Autograding is available through

make�les de�ned by the instructor for each assignment, and feedback can be automatically emailed

to students once the autograder �nishes execution. More recent autograding solutions utilize

container technology to improve reliability and web frontends to improve the user experience.

In large CS courses, much of the feedback on program correctness is provided by autograders.

This has both practical and pedagogical bene�ts as it reduces the workload of grading student

work while supporting students to make progress through independent debugging. These auto-

grading solutions have traditionally been supported by a single computing server provided by the

department dedicated to supporting the grading needs of each course. However, when hundreds of

students request autograding resources (often in the hours before assignment deadlines), student

submissions are placed in a long grading queue. This is an especially important consideration

because many UC Berkeley CS courses rely on automated feedback to provide assistance to a large

number of students, so a long grading queue is an educational denial of service.

Furthermore, large courses often require additional assistance to manage the �ow of information,

students, and sta�. Beyond the work of grading and returning graded work to students assisted

by autograding software, there is a need to improve organization of students and teachers in

o�ce hours, and to distribute announcements, assignments, and learning materials to students

as the number of students grows beyond traditional classroom capacities. As with autograding,

student-facing infrastructure needs to scale as student demand can reach thousands of requests

per hour, course rosters can grow beyond 1,000 students long, and there can be tens of thousands

of forum posts per semester. These challenges, which can easily become immense administrative

burdens at very large scale, have led to the development of specialized software to reduce the

administrative overhead of running large courses. For instance, administering exams to over

1,600 students spread across as many as 20 rooms on campus has required the development of

specialized software as well as more �exible, student-friendly policies and procedures to enable

e�cient support of hundreds of exam exceptions and accommodations each semester.

11

2.1 Grading and Feedback

Two of the most well-known grading and feedback web apps developed at UC Berkeley are

Gradescope and OK. These two web apps stand out as particularly unique in how they have

enabled new pedagogies and practices.

2.1.1 Gradescope

In Spring 2012, Pandagrader was conceived by the course sta� teaching Introduction to Arti�cial

Intelligence to streamline the process of grading paper exams. As instructors from other courses

and institutions rapidly adopted the tool, in 2014, Pandagrader was incorporated as Gradescope.
1

The exam grading work�ow begins with scanning and uploading exams to Gradescope. For

very large courses with two, high-throughput copy machines, scanning all of the exams can

take between 1–3 hours but yields signi�cant time savings during the actual grading through

Gradescope’s fast online grading interface. Exam scores can then be turned around to students

without returning physical papers: students view their graded exams online and see exactly which

rubric items were applied. All grading and regrade requests are done over Gradescope’s web

interface which normally hides the identity of the student and the instructor from each other

to minimize bias. The grading process is simpler for homework assignments as students submit

assignments online themselves.

By moving the grading work�ow online, course sta� can increase their grading e�ciency.

Instead of shu�ing papers, course sta� assign rubric items to student submissions with only a

single click or keystroke, and advance to the next submission with just another click or keystroke.

Grading assignments according to an instructor-de�ned rubric improves transparency to students,

helps ensure consistency between multiple graders, and makes it easy for the instructor to adjust

point allocations or rubric item description post-hoc. Certain types of questions such as multiple

choice or short answer blanks can be graded even more quickly with machine learning-assisted

answer grouping where student submissions are automatically categorized into unique answer

groups, allowing instructors to grade each group rather than each individual submission. Grading

progress and statistics are computed on-the-�y, providing insight into aggregate and individual

student success data. Gradescope’s distributed grading system is also helpful for grading weekly

problem sets. Students submit their work directly to Gradescope. Submissions can be graded

online, enabling students to receive feedback the same week or even the day after submission

depending on the length of the assignment and the amount of grading support.

1https://gradescope.com

12

https://gradescope.com

The fast turnaround time also makes Gradescope a platform for providing formative feedback

to students in two introductory CS courses at UC Berkeley. In these courses, students take a short

paper quiz in their discussion or lab section during the day. After the section ends, the section TA

scans their quizzes and uploads them to Gradescope. In the evening or later in the week, the course

instructor and a handful of graders then grades all of the quizzes on Gradescope, identifying the

entire class’s common misconceptions, and returns personalized feedback to students via email.

In end-of-semester course evaluations, students appreciated the additional feedback and found

the system as a whole bene�cial for their learning. Instructors and section TAs gain a detailed

view of student performance previously unavailable in large courses while minimizing additional

grading responsibilities. Using the misconceptions collected through weekly quizzes, instructors

have released additional, targeted tutorials, practice materials, and study guides to help students

improve before taking a high-stakes exams.

In 2017, Gradescope added support for autograding programming assignments. Gradescope’s

autograding platform is designed on top of container virtualization technology, allowing servers to

start new autograder instances as needed and spread load across multiple machines. This ensures

that students do not need to wait in a queue: new autograder instances can be provisioned as soon

as students submit their assignments and, in times of greatest demand, servers can be dynamically

added to the computing resource pool. This approach bene�ts instructors as they have full control

over their choice of grading language and environment in the container. But it also presents a new

cost as time needs to be invested in designing small programs or scripts which produce outputs

following a speci�c autograder speci�cation. Manual grading is also possible with grading rubrics

and inline comments through a work�ow similar to that of the homework and exam assignment

types. The recent integration of a system for detecting software similarity has the potential to

additionally simplify the work�ow for identifying and understanding cases of over-collaboration.

2.1.2 OK

OK
2

is an online autograding platform developed by the course sta� teaching introductory com-

puter science at UC Berkeley in Fall 2014. Its primary users are introductory computer science and

data science courses at UC Berkeley, each regularly serving enrollments 500–1,500 students per

semester. The OK platform provides an alternative to Gradescope’s autograding for programming

assignments, though its approach favors much deeper integration with the course. In addition to a

web interface for students to submit programming assignments, OK provides a Python client that

boasts three key features over Gradescope’s server-side grading.

2https://okpy.org

13

https://okpy.org

Student-Side Autograding

With student-side autograding, students can run a suite of tests on their computer at any time,

providing instantaneous code correctness feedback without needing to formally submit their

assignment. These test suites are written in Python doctest format, a format students are familiar

with from their practice using with the interactive Python shell, which makes the tests and results

easier for students to interpret than traditional unit tests. Complex integration tests can be written

in separate �les that are seamlessly integrated into the system [44], appearing only after the

submission passes targeted doctests. OK presents a simple interface to this feature so that students

can autograde any part of the assignment without memorizing a complicated command.

Student-side autograding has resulted in a qualitative change in the way students approach

problems as they now often use the autograder as part of a continuous edit-test feedback loop.

For every change to a piece of code, students will re-run the autograder to see how the change

a�ects the program. The immediate feedback then informs future planning, implementation, and

debugging behaviors. This real-time feedback reduces frustration and builds student con�dence by

helping them make progress where they would normally get stuck. But there is an inherent risk to

this approach. While students may be able to make more progress with the help of the student-side

autograders, they may also grow more dependent on the feedback. Several introductory CS courses

have experimented with velocity limiting which limits autograder usage (either student-side or

server-side) to a certain number of attempts which resets after a �xed amount of time. Students

are encouraged to instead try out di�erent debugging and problem-solving techniques such as

developing their own examples and running through it on paper to check their understanding.

This automated feedback has become an important cornerstone of introductory CS at UC Berkeley.

Test Unlocking

One of the risks of student-side autograding is that students can access tests without thinking

through the problem which can lead to a dependency on this development cycle. With test

unlocking, the expected output of each doctest is stored as an encrypted string until it is successfully

unlocked. Before students can run the student-side autograder, they must explore the problem by

unlocking each automated test and determining the expected outputs by hand. Test unlocking

reduced the number of conceptual questions (misunderstandings or clari�cations of the problem),

allowing instructors to spend more time assisting students with more involved questions: unlocking

the tests helped students better understand the problem speci�cations and “work through the

thought process” [6]. This result has been cited to provide metacognitive sca�olding [36]. Students

later have the opportunity to write and run their own tests, reinforcing program understanding.

14

Automatic Backups

Each time the student-side autograder is invoked, student work is automatically backed up to

the OK server along with metadata on their current progress. This submission and metadata

collected by the automatic backup mechanism helps instructors answer questions about student

learning. Together with the code backup, the OK client program records analytics such as the

current question the student is working on, number of times the student-side autograder has

been invoked thus far, and correctness. In addition, because the student-side autograder is run

as part of a continuous edit-test feedback loop, the OK server aggregates a large number of

intermediary student submissions. Instructors can then track student progress in aggregate and at

the individual level to a high degree of detail. Frequent intermediary code snapshots have also

bene�ted the research community as it has generated a massive dataset for education researchers

to model student learning and performance [20, 33, 51], deploy learning interventions at scale [31,

44], understand excessive collaboration [54], and propagate feedback at scale [13, 53]. Students

have the option to disable automatic backups and metadata collection but still run the student-side

autograder by running the OK client with the appropriate command-line arguments.

2.2 Managing Student Learning

Beyond grading and feedback, many other components of a traditional lecture-format course such

as o�ce hours, exam scheduling, and discussion and lab scheduling are more di�cult to organize

at scale as they often require coordinating a large number of students.

2.2.1 O�ice Hours

Drop-in o�ce hours in computer science courses have historically been organized as single-

instructor events. The instructor announces their o�ce hours time and place, and students visit

o�ce hours to interact with the instructor, often asking questions about assignments, concepts

from lecture, as well as topics not directly related to the course such as undergraduate research

opportunities and their own personal interests. However, as enrollments have increased, this

model has proven increasingly di�cult to scale especially as the number of homework questions

has grown with the number of students. Questions left unanswered during discussion and lab

section are clari�ed in o�ce hours, leading to more demand for teaching assistance in o�ce hours.

Until recently, this model was also true for teaching assistant o�ce hours. In TA o�ce hours,

students mostly ask questions related to their assignments. TA o�ce hours often used the same

model with one TA walking around and answering each question. As more students arrive at

15

o�ce hours and the number of students waiting increases, students sign themselves up on a queue

to reserve their place in line, ensuring that students who have waited the longest get helped

next. While this model works up until about 10 students in o�ce hours, as more students join

the queue, there is pressure on the course sta� to resolve all of the questions on the queue or risk

ending o�ce hours with several disappointed students. Overcrowded o�ce hours are one of the

highest-visibility issues for large lecture courses and a common source of student complaints.

Double, triple, and quadruple-sta�ng o�ce hours has helped to alleviate supply and demand

mismatches. Instead of o�ce hours simply being the responsibility of a single TA, multiple TAs

sta� each o�ce hour to meet student demand. However, one of the side e�ects of increasing the

supply of TAs is that o�ce hours can quickly grow out of control and unmanageable. Students

may jump ahead in the queue and get help from multiple di�erent instructors which not only

takes teaching resources away from other students, but can also potentially shortcut the student’s

learning. Locating the next student in the queue is often a mess as instructors shout names across

the room and need to navigate a maze of students to reach the next student on the queue.

Software can be used to streamline drop-in o�ce hours by matching TAs to the next unresolved

student help request through an online �rst-come, �rst-served queue. The O�ce Hours Queue

web app, developed by undergraduate teaching assistants in the EECS Department on top of the

OK platform, presents an interface for students and TAs to interact with the queue in much the

same work�ow as before. Students login and request help through the web app, specifying the

assignment, question, location, and a brief description of the help request. TAs access the web

app on their smartphones to view students on the queue. When a TA chooses to help the next

student, the system marks the request as currently being helped, displays the name of the student

to the TAs, and sends a noti�cation to the student’s device. The TA then works with the student

to help resolve their question and make progress on their assignment. Finally, the TA marks the

help request as resolved, or, if the help request was not resolved, returns the help request back to

its original place on the queue. Similar systems have been deployed at peer institutions [21, 43].

An introductory computer science student commented that,

The additional o�ce hour sta� and expanded hours during [the �nal project] was

great! I remember having to wait 2–3 hours and not being able to receive help for

projects and assignments at the beginning of the school year because o�ce hours were

so packed and there wasn’t really an orderly way to identify students who needed

help.

Other institutions have taken this model even further by moving o�ce hours into highly-frequented,

open spaces on campus for the convenience of students and course sta� [21]. In spite of these

16

improvements, o�ce hours remains oversubscribed, and �nding spaces large enough and �exible

enough for o�ce hours remains a challenge.

This model for drop-in o�ce hours treats student help requests as discrete, individual tickets.

However, other models for o�ce hours, such as The Tao of TALC, can also be highly productive.

Instead of directly assisting students, The Tao of TALC encourages instructors to be guides

wherein “students drive as much as possible” and the instructor acts “more as a facilitator between

the confused student and their ‘peer instructors’” [4]. This has been used successfully both by

instructors of small-group o�ce hours and by TAs running large-group o�ce hours. This group

learning model has informed one of the features of the o�ce hours queue which enables a single

instructor to help a group of students working on the same question all at once.

The use of online o�ce hours queues has generated a large amount of data on o�ce hours

usage patterns [43]. Data dashboards for the o�ce hours queue give instructors a view of which

assignments students are asking questions about and when. Using this information, course sta�

have been able to shift resources and sta� the most heavily-impacted o�ce hours with more TAs

where they were needed the most, further reducing student wait times. We have found that the

majority of o�ce hours are utilized by a very small minority of students: in a class of over 1,400

students, 50 students asked half of all the questions in o�ce hours that semester.

2.2.2 Online Course Delivery

Course delivery is the process of o�ering a course to students. O�ce hours, lab, and discussion

section are but a few ways students learn in large lecture courses. CS courses at UC Berkeley

emphasize solving problems which can occur through lecture, o�ce hours, lab, and discussion

section, but is often further emphasized in homework assignments and programming projects

which combine multiple concepts presented in the course. As enrollments for several lower-

division and upper-division CS courses regularly exceed the capacity of the largest lecture halls

on campus, lectures in most CS courses are now webcasted. Making attendance at lecture, lab, and

discussion section optional has had profound impacts on the way large lecture courses are run

and has required special attention from the instructor.

In webcasted courses, it is much easier for students to fall behind and out-of-sync with content

from lecture. Course policies need to be designed such that webcasted courses demand enough

attention and consistent e�ort from students so that they stay on track. The assignment of frequent,

small quizzes checks that students are keeping up with lecture. At UC Berkeley, simulcasts are not

o�ered so live lecture recordings are often delayed by at least two hours. Nonetheless, even with

interventions to keep students at pace with the course, it is often the case that many students will

17

be at least a few days behind schedule at various times during the semester due to commitments

from other courses taking priority.

In order to keep asynchronous classes up-to-speed, most large CS courses at UC Berkeley

deliver their content via course websites or online discussion forums such as Piazza. The largest

introductory CS courses update the front page of their website frequently with announcements so

that students treat it as the de�nitive authority for the course, reducing student questions about

assignments, deadlines, and exams. All materials in the course, including lecture videos, lecture

notes, assignments, and readings, are always posted online which enables students to choose how

they would like to learn: either with a long-distance learning model, or by attending activities in a

more traditional classroom setting.

Experienced TAs have also devised workarounds to make Piazza more robust for large courses.

Piazza will routinely be �ooded with questions, especially near exams. Managing

Piazza e�ectively does not necessarily mean keeping up with this �ood of questions; it

means directing the �ow of questions e�ciently so that students with similar questions

can easily �nd previous students’ questions and avoid asking repeat questions.

Each week, keep a pinned Piazza thread for each separate homework question.

This is the most important rule to follow, as homework questions will comprise the

majority of all Piazza questions. Also, we recommend creating separate threads for

each lecture note and discussion. Once these threads are in place, aggressively mark

student questions as duplicates and move them to the appropriate threads so that all

similar questions are in one place.

To help students �nd these various threads, create a pinned master index which

contains links to all of the above threads, as well as threads containing homework

grade distributions, TA resources, weekly posts, events (guerrilla sections, exam

review sessions, etc.), and other announcements. The index requires maintenance,

so either consciously assign the management of the index as a TA duty, or make it

understood within the team that each person who posts new material on the Piazza is

also responsible for adding a link in the index.

Automation has also bene�ted online course delivery by streamlining administrative processes.

In order to facilitate rapid updates, course websites are deployed using static website generators

such as Jekyll for easy updating by course sta�. Small programming questions and math problems

are checked into a version-controlled question bank consisting of every question ever developed

in the course so that developing a homework assignment can be as simple as specifying which

questions to include and running a make�le to deploy the assignment to the website. TAs have

18

even developed scripts to automatically extract screenshots and compose Piazza threads for each

question. GitHub Classroom allows instructors to easily provision private GitHub repositories for

student work and automatically con�gure instructor permissions. Some courses which require

more advanced con�guration have developed their own custom web scripts for provisioning private

repositories. By automating these tasks, more time can be spent supporting student learning.

2.2.3 Exam Administration

Administering exams at scale is a particular pain point for large courses. One of the reasons for this

is the number of students who need to be organized together, on-campus, at one time. In the largest

introductory CS courses, it is common for exams to be simultaneously proctored across all of the

largest lecture halls on campus, as well as spread across a dozen smaller classrooms. Traditionally,

the course sta� assigns students to exam rooms based on name or student identi�cation number

ranges. While, in theory, this system should allow the sta� to distribute students however they like,

large courses are hampered by the number of students requesting exam accommodations. In the

largest introductory CS courses, there can be as many as 100 students requesting accommodations

which makes coordinating exam seating a challenge of its own.

Undergraduate teaching assistants in the EECS Department developed the Seating web app to

solve this problem. The exam seating tool allows instructors to design seating charts, populate

them with students based on their individual preferences, and send personalized emails to students

with their particular exam room and exact seat location. Seating charts can be speci�ed to assign

students to every-other seat, or to skip entire rows of seats to make it easier for TAs to answer

questions from students in the middle of a long row in a packed lecture hall.

Adopting this software has enabled large courses to provide better accommodations to all

students, both students with and without documented disabilities. Students who are left-handed,

or those who simply prefer to sit on a particular side of the room, near the aisle, or near the front

can mark their preferences in a form. The Seating app will then take those preferences into account

when randomly assigning a seat to the student. Since seats are assigned, it is easy to account for

missing students and produces a paper trail making it more di�cult for students to cheat on exams.

Before, during, and after the exam, instructors can lookup any student on the seating chart and

immediately identify adjacent students. When used with Gradescope, the Seating app makes it

easier to compare suspicious student work against other students sitting in their vicinity.

Peer institutions have developed specialized computer-based testing facilities [28, 52] and re-

stricted computing environments for test-taking [32] which have demonstrated bene�ts for student

learning while reducing the amount of course sta� resources spent administering exams.

19

3 Support

First popularized in the 1980s [38], undergraduate students have been increasingly utilized in

teaching positions at institutions of all sizes [10, 12, 34, 37, 42, 45]. In the EECS Department at UC

Berkeley, undergraduate teaching assistants (TAs) have been utilized since before 1987.

Undergraduates have the potential to provide signi�cant help and reduce the workload

for graduate TAs and for faculty and other instructors. Undergraduates are typically

paid per hour of e�ort, which can cost signi�cantly less than graduate TAs. In addition,

the shared experience of undergraduates may make them particularly attuned to

understanding the problems and the challenges facing their peers around speci�c

content. Furthermore, from a pedagogical perspective, peer teaching and evaluation

can be valuable learning experiences in and of themselves, and can help empower

students and build their con�dence with the material. Finally, the undergraduate

pool is larger than those of graduate students or faculty, and typically more diverse,

presenting an opportunity for a more diverse set of instructors, which could contribute

to a more inclusive culture. [26]

One of the de�ning features of the undergraduate teaching program at UC Berkeley is the culture

of student-directed innovation. Tools such as Gradescope and OK were developed by teaching

assistants to solve grading and feedback challenges. Undergraduates have di�erent opportunities

to engage with the teaching community and receive feedback on their teaching. Situated within

this existing infrastructure, the role of the instructor is part role model and part leader with the

goal of fostering a productive undergraduate teaching culture.

Beyond course sta�, a constellation of extracurricular opportunities for students has grown over

the past few years. Dedicated sta� have developed several services for the CS student community

such as the CS Scholars program in which cohorts of 30 students take classes together for three

semesters. With rising enrollments, more students than ever before are involved in EE and CS

student organizations. The programs developed by sta� and students for recruiting and retaining

women in CS have been recognized by the National Center for Women & Information Technology.
1

1https://www.ncwit.org/2019-ncwit-extension-services-transformation-next-award-recipients

20

https://www.ncwit.org/2019-ncwit-extension-services-transformation-next-award-recipients

3.1 Undergraduate Teaching Assistants

In the literature, it is common for the term Undergraduate Teaching Assistant to describe an

undergraduate student teaching in a non-traditional role such as providing assistance to students

in drop-in o�ce hours or o�ering optional small-group or one-on-one tutoring. Notably, this

de�nition refers to students who have a set of responsibilities which are distinct from graduate

TAs. At UC Berkeley, undergraduate students hired as teaching assistants are responsible for the

same set of duties as their graduate student counterparts: they teach weekly lab and discussion

sections, grade assignments and exams, and assist with course delivery. These undergraduate

students are o�cially hired under the title Graduate Student Instructor (GSI), though they are

sometimes referred to as Undergraduate Student Instructors (UGSIs) to more accurately describe

their academic standing.

EECS PhD students have a teaching requirement of 30 hours of service as a GSI, including 20

hours of service in an undergraduate course. However, the demand for TAs far exceeds the supply

of graduate students. This is exacerbated by the fact that the vast majority of EECS PhD students

are supported by research grants or fellowships that enable them to focus on their research. The

hiring situation is particularly impacted in lower-division CS courses as graduate students often

prefer to teach courses in their speci�c research area and taught by their faculty research advisors.

As such, most introductory CS courses at UC Berkeley are taught with primarily undergraduate

teaching assistants despite the fact that graduate TAs receive priority for these positions.

As the number of declared CS majors has increased, the demand for TAs in upper-division

courses has also exploded beyond the supply of graduate TAs. Compared to peer institutions, the

design of the undergraduate CS program makes it easier for the EECS Department to identify

quali�ed undergraduates to sta� upper-division courses and meet demand in spite of a shortage of

interested graduate students. CS upper-division coursework is relatively �at with short prerequisite

chains. Courses such as Introduction to Arti�cial Intelligence, Operating Systems, or Computer

Security do not require any courses beyond the introductory course sequence. Students often

satisfy the core introductory courses within two or three semesters so that, by the end of their

second year, many students will have taken a couple upper-division CS courses that they can then

teach over the remaining two years of their undergraduate degree program. Additionally, students

are not required to complete a capstone project, leaving them more time to commit to coursework

or extracurricular activities such as teaching or research.

In 2011, the largest introductory CS courses at UC Berkeley would hire 10 teaching assistants to

serve classes with enrollments of about 350 students. Typical TA duties included both teaching

and administrative responsibilities, usually split evenly across the entire course sta�.

21

Teaching Leading lab and discussion sections each week; holding weekly o�ce hours; advising

students; preparing for these teaching activities; and participating in weekly sta� meeting.

Administrative Developing handouts, lab exercises, homeworks, and projects; grading assign-

ments; handling accommodations for exceptional circumstances; managing announcements

and student questions on the course forum; and proctoring and grading exams.

In recent years, however, grading and feedback tools such as Gradescope and OK have auto-

mated or streamlined many grading tasks. Tools have been developed to simplify traditionally

expensive processes such as exam administration and assignment extensions. Furthermore, as

course enrollments increase, the workload for certain aspects of course administration remain

�xed. For example, the number of assignments and exams in the course is generally independent

of the number of students enrolled in the course. In contrast, the teaching load grows linearly

with respect to the number of students in the course.

Course sta� composition has changed to re�ect this new context. In a class of over 600 students

with more than 20 TAs, there might be only a handful of 5–10 head TAs who are responsible for all

of the course’s administrative tasks. Instead of splitting tasks evenly, these 5–10 head TAs are each

assigned one or two administrative responsibilities in addition to their regular teaching duties.

There may be one or two TAs responsible for developing handouts, lab exercises, homeworks, and

projects, which allows them to become domain experts in developing assignments for the course

and maintaining a high quality of assignments with fewer bugs and greater consistency. This

shift allows the remaining TAs to focus on teaching their students as e�ectively as possible. The

number of these teaching-focused TA positions can be scaled at the same rate as course enrollment

without signi�cantly a�ecting course administration activities. Managing this greater number of

teaching-focused TAs has become an administrative responsibility in and of itself so there may

also be a head TA whose duty is to manage the course sta�, communicate expectations, announce

upcoming activities, and improve the quality of teaching.

3.2 Center for Student A�airs

The EECS Department served over 27,000 student enrollments across all course o�erings during

the 2018 academic year. Managing this number of students presents an administrative challenge

for operating the program at scale, and can easily create feelings of anonymity among students,

harming recruitment and retention e�orts. The Center for Student A�airs (CSA), an EECS sta�

unit that provides several functions for undergraduate and graduate CS education, has developed

a number of programs and solutions to tackle these challenges.

22

Starting Fall 2013, the CS Scholars Program,
2

based on student retention theories of �rst year

college students [47, 48] and minority engineering students [50], is one such solution.

CS Scholars is a �rst-year student support program intended to serve those from

under-represented communities who have had little or no exposure to Computer

Science. A learning community, CS Scholars integrates several components of support

to meet the academic, social, and developmental needs of students intending to study

Computer Science. Those components include:

• Cohort-style course discussions

• CS Scholars only seminars for personal and professional development

• Solidarity and community building activities

• Dedicated CS Scholars Advising

Data analysis has shown that the CS Scholars cohorts outperform students in the general population

by 10–20%, and students maintain a higher GPA than the overall class. In earlier cohorts, among

students who identify as having no prior programming experience, CS Scholars had a 0.3 GPA

advantage over non-scholars, and a greater di�erence for students who self-identi�ed as female.

The CSA-led EECS Resiliency Project is another retention initiative, which draws attention to

stories from students and faculty who struggled with computer science at some point in their lives

but persevered through those experiences of failure.

To diversify participation in and access to research experiences and graduate work in computer

science, the CSA developed the Summer Undergraduate Program in Engineering Research at

Berkeley (SUPERB),
3

an NSF-funded Research Experience for Undergraduates (REU) program.

Participants include junior and senior undergraduate students at Berkeley or elsewhere, and each

participant receives faculty mentorship, graduate student support, and graduate school advising.

95% of the students who participated in SUPERB continued to graduate school in STEM �elds [2].

Due to the large number of students in the EECS major or considering declaring the LSCS major,

most undergraduate advising is provided by professional EECS and LSCS major advisors. The

advising sta� assists with student questions and concerns including those related to the CS degree

programs, coursework, undergraduate research, as well as students’ broader plans and how they

might �t into their life or career goals. The advising sta� also manages a team of undergraduate

peer advisors.

2https://eecs.berkeley.edu/cs-scholars
3https://eecs.berkeley.edu/resources/undergrads/research/superb

23

https://eecs.berkeley.edu/cs-scholars
https://eecs.berkeley.edu/resources/undergrads/research/superb

Getting into CS courses has become an often-cited grievance for undergraduates enrolled in

universities, both large and small, across the nation. One of the CSA’s functions is to coordi-

nate between faculty and students to ensure that teaching supply is properly calibrated to meet

enrollment demands, so the CSA has dedicated sta� members for managing course scheduling

and enrollment. Course capacity in the EECS Department is primarily limited by availability of

classrooms and teaching assistants. Allocation of most discussion classrooms and large lecture

halls involves close cooperation with central campus administrative sta�. However, campus spaces

do not provide enough capacity for all CS courses, so space often needs to be found within EECS-

managed buildings. This is complicated by the fact that many spaces are already earmarked for

strictly research purposes or strictly academic purposes. The challenge of e�ciently allocating

the remaining shared spaces is further exacerbated by enrollment growth as research functions

compete with rapidly-growing academic functions. Increasing enrollments has also increased

the number of teaching assistant hires, which has resulted in a signi�cantly enlarged payroll

that, unfortunately, does not increase at a rate su�cient to meet teaching needs, let alone match

enrollment trends. Additionally, hiring more TAs requires additional coordination with campus

training for �rst-time GSIs, as well as department-level and course-level preparation (chapter 4).

3.3 Near-Peer Student Mentors

As of 2018, there are 42 student organizations o�cially registered with the EECS Department,

many of which host events and provide services to the broader CS community, such as:

Mentorship Student organizations provide mentorship opportunities by hosting one-on-one or

small-group mentoring sessions, blending academic support with a sense of community.

Invited Speakers External speakers and alumni give talks on topics including diversity in tech,

overcoming adversity, and well-being, as well as workshops on bias, equity, and inclusion.

Industry Events With a student organization as their sponsor, employers can host info sessions,

tech talks, or other events such as puzzle hunts or trivia nights to network with students.

One of the unusual features of the EECS Department is the amount and diversity of student-driven,

near-peer mentorship opportunities available to students. In the near-peer mentor model, mentors

are only a couple years more senior than their mentees. Near-peer mentoring “provides younger

students with a positive, inspiring experience to learning about computing from college near-

peer mentors,” and “helps students feel like they belong in CS, especially if their mentors have

backgrounds or experiences similar to their own” [45].

24

One such mentorship program is CS Kickstart.
4

CS Kickstart is a week-long program open to any incoming UC Berkeley students that

introduces them computer science while meeting other computer science students and

professionals. This program primarily targets women who are interested in the �elds

of science, technology, engineering, and math. Participants get hands-on experience

in programming introducing them to the creativity and diversity of computer science.

Participants also get the opportunity to visit tech companies in the Bay Area to see

what life is like for computer scientists in industry. For several years it served 25

incoming students, but recently this doubled. It draws almost all of its support from

industry and individual donors. [2]

The 2019 cohort will consist of about 50 participants. The program is organized by a group of

undergraduate and graduate women in computer science, and is o�ered free to participants despite

housing, transportation, and activity costs thanks to industry sponsors. As a result of the program,

96 percent of participants felt more prepared to take their �rst CS course at Berkeley, and 95

percent had a greater motivation to pursue computer science.

Once students are on campus, there are several student organizations forming communities

around various identities or a�nity groups, many of which o�er mentorship programs of their

own. Serving the woman-identifying EECS community is the Association of Women in Electrical

Engineering and Computer Science (AWE).

The AWE Mentorship Program provides a framework for EE and CS women to develop

and sustain mentoring relationships by matching incoming students with upper divi-

sion women. As new students, mentees connect with their mentors at the beginning

of the school year, receiving personalized academic and social help when needed.

Throughout the academic year, mentees receive advice, encouragement, information,

and insight from experienced peers. Mentors, in turn, gain satisfaction and knowledge

from guiding fellow students while fostering a sense of community.
5

Similarly, the Society of Women Engineers provides mentorship to the broader community of

women in all kinds of Engineering, and the more recent FEMTech student organization engages

with the broader campus community by providing outreach and mentorship activities such as

FEMTech Launch, which “provides o�ce hours, extra help, and weekly tutoring sessions speci�cally

4https://cs-kickstart.berkeley.edu
5https://eecs.berkeley.edu/resources/undergrads/eecs/women/mentoring

25

https://cs-kickstart.berkeley.edu
https://eecs.berkeley.edu/resources/undergrads/eecs/women/mentoring

geared towards women and underrepresented minorities in lower level CS courses.”
6

Honor

societies such as Eta Kappa Nu (HKN) and Upsilon Pi Epsilon (UPE) o�er free drop-in tutoring to

the EECS undergraduate community across a majority of the undergraduate coursework.

Computer Science Mentors (CSM)
7

is a student organization which, like other programs o�ers

academic support together with the community-building bene�ts of near-peer mentorship, but is

o�ered at large scale, serving nearly 2,000 students per semester across 6 introductory computer

science and electrical engineering courses. A typical mentoring group consists of 4–6 students and

1 near-peer mentor. The mentor facilitates student discussions and group work with a focus on

mastery learning. Mentors adapt each session to meet the group’s needs, drawing on additional

examples to clarify concepts and build student con�dence. Over the course of the semester, the

mentor gets to know each student on an individual basis, and students grow more comfortable

with each other too. The development of these relationships makes it easier for the mentor to keep

in touch with their students by setting up individual check-ins in addition to the group sessions,

sharing their experiences and study advice, and referring students to free tutoring services o�ered

by other members of the EECS community. Participation in CSM small-group mentoring has been

shown to have a signi�cant positive association with exam scores. Organizing, preparing, and

mentoring the mentors has become a challenge of its own (chapter 4).

6https://femtechberkeley.com/index.php/education/
7https://csmentors.berkeley.edu

26

https://femtechberkeley.com/index.php/education/
https://csmentors.berkeley.edu

4 Preparation

Utilizing undergraduates in teaching positions is not without its risks.

Undergraduates who are unclear on the material may cause confusion among their

peers. In addition, not all undergraduates have the knowledge or maturity to success-

fully teach, assess, or mentor their peers, or understand con�ict-of-interest situations.

If poorly implemented or not properly supervised, this approach can place additional

strain on course instructors. [26]

Preparation is especially important as the program expands in size and hires more undergraduate

TAs to support large enrollment courses in both lower-division and upper-division courses.

4.1 Introduction to Teaching Computer Science

[CS 370: Introduction to Teaching Computer Science] is a course designed help

aspiring teachers hone their teaching skills, become a part of the teaching community

here at UC Berkeley, and expose them to the foundations of computer science pedagogy.

Students in this class will receive �rst-hand experience through one-on-one tutoring

and an enriched teaching knowledge through research-based pedagogical studies.

CS 370 has three key components that distinguish it from other pedagogical courses.

First, we cover student interactivity and teaching in one-on-one settings. This is

applicable to all levels of teachers [. . .] since one-on-one interactions are a critical

component of all teaching experiences. Next, we cover group teaching through in-

class demonstrations, as mastering pacing and understanding the individualities of

students in a group setting is key to being a successful TA. Last, we socratically

discuss current issues in CS pedagogy, including atmosphere-related questions such

as: underrepresentation, stigmas associated with computer science, the issue of prior

experience, and how these factors heavily in�uence student learning.
1

1http://inst.eecs.berkeley.edu/~cs370/policies.html

27

http://inst.eecs.berkeley.edu/~cs370/policies.html

Students are introduced to pedagogical concepts during an 80-minute seminar each week that

includes discussion of ideas and re�ection on their teaching experiences in small groups. Outside

of the classroom, students read scholarly articles on the practice and theory of teaching computer

science, host three, hour-long one-on-one tutoring sessions per week, and re�ect on their tutoring

as part of a weekly written assignment. Combining theory and practice together helps students

learn and retain material, treating topics taught in class as a frame for questions brought up in

self-re�ections on their teaching experiences. Group discussions are facilitated by experienced

TAs whose experience students identify with and more closely relate. To facilitate discussion,

these weekly seminars are held in an active learning classroom with students seated around tables

and facing each other rather than the front of a lecture hall. Between the weekly seminar, tutoring,

tutoring preparation, tutoring re�ection, and weekly assignments, CS 370 is a total commitment

of 9 hours per week.

CS 370 was designed originally as a course to prepare and engage new teachers which in�uenced

its decision to use one-on-one tutoring as the context for teaching practicum. Unlike other programs

at peer institutions, a large number of aspiring undergraduate student-teachers take the course

before they become TAs. This results in a diversity of students composed of �rst-year students who

just recently took the courses they want to someday teach as well as older, second or third-year

students, which makes for engaging conversations as their di�erent experience levels provide

greater opportunities to learn from each other. More-experienced student-teachers in the group

and the experienced TA facilitators can chime in and provide nuanced viewpoints to questions

less-experienced teachers might have about teaching one-on-one or leading small groups.

This design of CS 370 has a number of consequences which has made it particularly well-suited

for preparing undergraduate TAs. First, the outline of topics includes concerns which are especially

important for teaching at the undergraduate level such as diversity, unconscious bias, and tackling

misconceptions. CS 370 is complemented by CS 375 which is geared toward a graduate student

audience and, notably, includes coverage of topics such as developing course syllabi, exam problems

or rubrics, and student surveys, all of which are tasks that concern head TAs responsible for the

administrative component of a course but not necessarily teaching-focused TAs. CS 370, CS 375,

as well as other pedagogy courses at peer institutions have also found success running the course

in a workshop style with a signi�cant portion of the materials presented at the beginning of the

semester to maximize their e�ect on teaching, and then later fading away to more infrequent

check-ins later in the semester [42].

28

4.2 Mentoring at Scale

Near-peer student mentors, such as the students who lead small-group sessions for CSM, are

organized into a family system to prepare for their weekly group sessions and build community.

Like TA families, mentors are grouped into families of about 6 mentors, each consisting of two

experienced senior mentors and about four less-experienced junior mentors. In addition to

providing feedback, checking-in, and bonding over social events, mentors also meet together

regularly for one hour each week to prepare for the upcoming week’s group sessions with mentees.

Family meetings are a mix between active problem-solving, 3-minute teaching demonstrations,

real-time critiques, and moments of written self-re�ection. In these weekly family meetings, senior

mentors lead and facilitate group discussions with junior mentors about the challenges and pitfalls

of upcoming concepts, and assist mentors in personalizing their session to meet their mentees’

needs. In order to make this hour e�ective, junior mentors prepare for the family meetings in

advance by spending half an hour reviewing concepts in advance and preparing a mental outline

of the lesson they have in mind for their session.

Most mentors only lead one or two group mentoring sessions. Since these mentoring sections

only consist of 4–6 students each, for larger classes, over 100 sections are o�ered each week.

In order to support this structure, CSM delegates the task of organizing mentors to the course

coordinators, highly-experienced mentors who manage the entire operation. Course coordinators

play a similar role as Section Leader Coordinators and Meta-TAs implemented at peer institutions

[37, 38, 42]. They hold weekly meetings with all of the senior mentors to prepare content for the

family meetings and group mentoring sessions and assist the senior mentors in preparing for

facilitating their own family meetings.

4.3 Course-Specific Preparation

Large classes make it harder for instructors to provide individual feedback to students. Likewise,

large course sta�s make it harder for instructors to provide personalized mentorship to their

TAs. As course sta�s have grown beyond 20, 30, 40, and even 50 TAs, several CS courses have

begun grouping their course sta� members into smaller families as well. Each TA family consists

of 4–6 TAs with a mix of experienced and inexperienced teachers. As part of their preparation

duties, TAs are occasionally expected to shadow and provide feedback to other family members

to improve their teaching. Mirroring mentoring families, lead TAs check-in with their family

members throughout the semester and organize occasional social outings with the entire group,

building a community between undergraduate TAs.

29

In addition to the formal CS 370 pedagogy course and the more informal family system, under-

graduate student-teachers also receive support and mentorship at the course level. The instructor

of record and more-experienced TAs will often share their preparation materials, re�ne assign-

ment guides, discussion walkthroughs, and other documents designed to support newer teachers.

Discussions handouts are often reused between semesters so course sta� share potential ways of

teaching the concepts. Assignment guides provide answers to frequently-asked questions, identify

common student bugs and their �xes, and suggest relevant connections to previous concepts and

prerequisites to bridge knowledge gaps.

It is also common for course sta� to run their own preparation sessions at the beginning of each

semester to on-board new course sta� members, set expectations, and provide course-speci�c

guidance. Topics include preparing for discussion, lab, and o�ce hours; modeling behavior and

setting student expectations for the course’s pace, format, and recommended learning strategy;

course-speci�c resources and policies that need to be shared with students early in the semester;

and upcoming changes for the current o�ering of the course. The course sta� set four ground

rules for one-on-one interactions in o�ce hours:

1. If you don’t know what to do, ask.

2. Be sensitive because learning computer science can be hard.

3. Let the student drive.

4. Do not give away the answer, if you can help it.

These conversations are continued throughout the semester during weekly sta� meetings where

the entire course sta� meets to make decisions on open administrative questions, give and receive

feedback on new ideas or proposals, and plot out the next few weeks’ content in the course. At

the �nal meeting, time is set aside for course sta� to re�ect on the entire semester as a whole and

determine where improvements can be made to assignments, teaching, policies, and the overall

design of the course.

In addition, experienced TAs propose an idealized assignment help work�ow to normalize lab

and o�ce hours expectations across the course sta�. The goal of this work�ow is to reduce the

risk of providing too much assistance, which can harm students as they grow dependent on the

guidance and are unable to solve problems on their own [43]. For programming courses, this

work�ow starts with understanding the question since students often miss important details when

focused on the problem. The TA is directed to sit down beside the student, ensuring that their

eye-lines match, and introduce themselves and learn the student’s name. These practices help to

30

build trust and rapport between the student and the TA, particularly if the student and the TA

meet again in lab or o�ce hours. The next step is to ask the student to describe their problem in

their own words. This gives the TA time to skim the student’s code and verify that the student’s

explanation matches their code, and later work with the student to identify the source and cause

of the problem. After the student gains an understanding of the problem, the TA works with the

student to formulate a plan to resolve the problem, and then gives the student time to solve it on

their own. After about 10 minutes, during which the TA helps another student, the TA returns to

check back in on the student’s progress. These last few practices give the student space to work

on the problem on their own and encourages them to build independence. Rather than sitting

with the student and solving their problems for them, the TA’s goal is to have the student in a

better position to solve the problem independently.

31

5 Discussion

While automation, support, and preparation have enabled CS courses at UC Berkeley to scale

to meet both CS major and non-major student demand, the system of incentives, particularly

the LSCS 3.3 GPA cap, strains relationships between instructors and students. Implementing

student-friendly course policies, designing collaborative assignments, and encouraging students

to take advantage of mentorship opportunities can signi�cantly improve the student learning

experience but is ultimately contrary to the message sent by the GPA cap. There is little room for

failure: students who struggle in one or two of the introductory courses face an uphill battle to

make it to the GPA cap. This is in spite of the limited evidence that, when given a second chance,

students are able to make a remarkable improvement. In Spring 2016, students who were given

the option to receive a failing grade in introductory Data Structures and retake the course in a

later semester made an average improvement of +2.54 grade bins over the grade they would have

received in Spring 2016.

The EECS Department has made signi�cant gains in improving the gender diversity of its

undergraduate student population, receiving recognition by the National Center for Women &

Information Technology (NCWIT)
1

as well as local news media
2

for its achievements. However,

there is still much work to be done to encourage participation from a broader population of students.

For some students, the time, energy, and stress necessary to meet the GPA cap makes the major

unattractive. Other students may not have the con�dence to pursue the major despite interest and

academic preparation. In order to grow capacity while maintaining an inclusive student culture,

it is important to take into account the entire system of incentives and punishments. Policies

such as the GPA cap have ripple e�ects as student perceptions of the program on campus are

shaped by its reputation of being highly rigorous, demanding, and stressful. Students may not

feel comfortable if they see the program—including its faculty, sta�, and students—as competitive

in spite of their best e�orts to design collaborative and supportive learning experiences. When

1https://www.ncwit.org/2019-ncwit-extension-services-transformation-next-award-recipients
2https://www.mercurynews.com/2018/04/16/forget-techs-bad-bros-stanford-berkeley-boost-female-
computing-grads/

32

https://www.ncwit.org/2019-ncwit-extension-services-transformation-next-award-recipients
https://www.mercurynews.com/2018/04/16/forget-techs-bad-bros-stanford-berkeley-boost-female-computing-grads/
https://www.mercurynews.com/2018/04/16/forget-techs-bad-bros-stanford-berkeley-boost-female-computing-grads/

a potential student’s sensibilities do not line up with these perceived values, students may feel

excluded from CS even if they could otherwise be successful computer scientists.

Even with technology and a large number of highly motivated support sta�, faculty teaching

load remains a signi�cant burden, particularly for new tenure-track assistant professors who also

need to balance their research output and tenure priorities with teaching. In particular, the faculty

�nd larger enrollments have resulted in greater administrative workload, one that has not yet

been fully displaced by head TAs despite all of the preparation and software in place to support

them. Furthermore, courses which rely on individually-personalized projects or deep-feedback

assignments do not easily �t into this framework of automation solutions.

Additionally, the use of some automation has the potential to impact student behavior in

unexpected ways. The o�ce hours queue, for example, compartmentalizes assignment help and

student questions into individual tickets which are then resolved one-by-one. This model works

in introductory courses due to the large number of TA o�ce hours, and because assignments are

typically sca�olded to help students make progress and facilitate e�cient resolution in o�ce hours.

But the kinds of debugging and self-regulation practices acquired through these introductory CS

o�ce hours don’t necessarily prepare students for upper-division coursework where the questions

are more open-ended and the debugging processes much less clear.

Designing a CS program that scales requires cooperation from all levels of campus, including

the students, sta�, faculty, the department, the college, and the administration. While this report

focuses on recent developments, a culture of innovation by undergraduate TAs has long existed

in the EECS Department since their introduction in the 1980’s, and by graduate students even

before then. Each class of students is supported by the preceding class of students who teach

section each week and serve as role models. Sta� have worked closely with students and faculty

to develop novel solutions to challenges of teaching CS at scale while advising triple the number

of students from just a decade ago. Faculty teaching undergraduate courses have made sacri�ces

to teach at this scale, often going far beyond their expected teaching responsibilities. The College

of Engineering, Graduate Division, and campus administration have supported the program by

committing additional faculty slots, expanding advising support, and helped to expand course

enrollments by funding additional TAs.

However, the program still faces a number of budgetary shortfalls particularly in the area of

course budgets as campus Temporary Academic Support (instructional support) has not kept up

with the unprecedented growth of the program. Contributions from private and industry donors

have enabled the department to continue funding more TAs, opening more sections and reaching

more students in spite of structural de�cits and budget cuts at the university and state level. This

33

external investment has fueled the development of software solutions, processes, and initiatives

which have made the UC Berkeley EECS Department a national model for teaching CS at scale.

34

Bibliography

1. 2018 State of Computer Science Education. 2018. url: https://advocacy.code.org/.

2. P. Alivisatos. “STEM and Computer Science Education: Preparing the 21st Century Workforce”.

Research and Technology Subcommittee, House Committee on Science, Space, and Technology. 2017.

url: https://docs.house.gov/meetings/SY/SY15/20170726/106330/HHRG-115-SY15-Wstate-

AlivisatosA-20170726.pdf.

3. C. Alvarado, M. Minnes, and L. Porter. “Micro-Classes: A Structure for Improving Student Experience

in Large Classes”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. SIGCSE ’17. ACM, New York, NY, USA, 2017, pp. 21–26. isbn: 978-1-4503-4698-6. doi: 10.

1145/3017680.3017727. url: http://doi.acm.org/10.1145/3017680.3017727.

4. O. Astrachan, N. Parlante, D. D. Garcia, and S. Reges. “Teaching Tips We Wish They’d Told Us Before

We Started”. In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education.

SIGCSE ’07. ACM, Covington, Kentucky, USA, 2007, pp. 2–3. isbn: 1-59593-361-1. doi: 10.1145/

1227310.1227314. url: http://doi.acm.org/10.1145/1227310.1227314.

5. M. Babes-Vroman, I. Juniewicz, B. Lucarelli, N. Fox, T. Nguyen, A. Tjang, G. Haldeman, A. Mehta,

and R. Chokshi. “Exploring Gender Diversity in CS at a Large Public R1 Research University”. In:

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’17.

ACM, New York, NY, USA, 2017, pp. 51–56. isbn: 978-1-4503-4698-6. doi: 10.1145/3017680.3017773.

url: http://doi.acm.org/10.1145/3017680.3017773.

6. S. Basu, A. Wu, B. Hou, and J. DeNero. “Problems Before Solutions: Automated Problem Clari�cation

at Scale”. In: Proceedings of the Second (2015) ACM Conference on Learning @ Scale. L@S ’15. ACM,

Vancouver, BC, Canada, 2015, pp. 205–213. isbn: 978-1-4503-3411-2. doi: 10.1145/2724660.2724679.

url: http://doi.acm.org/10.1145/2724660.2724679.

7. J. M. Cohoon. “Recruiting and Retaining Women in Undergraduate Computing Majors”. In: SIGCSE
Bull. 34:2, 2002, pp. 48–52. issn: 0097-8418. doi: 10.1145/543812.543829. url: http://doi.acm.

org/10.1145/543812.543829.

8. Computing Research Association. Generation CS: Computer Science Undergraduate Enrollments Surge
Since 2006. 2017. url: https://cra.org/data/Generation-CS/.

9. K. K. Curtis. Computer Manpower — Is There a Crisis? Washington, D.C., USA: National Science Foun-

dation, 1982. url: https://cs.stanford.edu/people/eroberts/Curtis-ComputerManpower/.

35

https://advocacy.code.org/
https://docs.house.gov/meetings/SY/SY15/20170726/106330/HHRG-115-SY15-Wstate-AlivisatosA-20170726.pdf
https://docs.house.gov/meetings/SY/SY15/20170726/106330/HHRG-115-SY15-Wstate-AlivisatosA-20170726.pdf
http://dx.doi.org/10.1145/3017680.3017727
http://dx.doi.org/10.1145/3017680.3017727
http://doi.acm.org/10.1145/3017680.3017727
http://dx.doi.org/10.1145/1227310.1227314
http://dx.doi.org/10.1145/1227310.1227314
http://doi.acm.org/10.1145/1227310.1227314
http://dx.doi.org/10.1145/3017680.3017773
http://doi.acm.org/10.1145/3017680.3017773
http://dx.doi.org/10.1145/2724660.2724679
http://doi.acm.org/10.1145/2724660.2724679
http://dx.doi.org/10.1145/543812.543829
http://doi.acm.org/10.1145/543812.543829
http://doi.acm.org/10.1145/543812.543829
https://cra.org/data/Generation-CS/
https://cs.stanford.edu/people/eroberts/Curtis-ComputerManpower/

10. A. Decker, P. Ventura, and C. Egert. “Through the Looking Glass: Re�ections on Using Undergraduate

Teaching Assistants in CS1”. In: Proceedings of the 37th SIGCSE Technical Symposium on Computer
Science Education. SIGCSE ’06. ACM, New York, NY, USA, 2006, pp. 46–50. isbn: 1-59593-259-3.

doi: 10.1145/1121341.1121358. url: http://doi.acm.org/10.1145/1121341.1121358.

11. L. A. Delyser, J. Goode, M. Guzdial, Y. Kafai, and A. Yadav. Priming the Computer Science Teacher
Pump: Integrating Computer Science Education into Schools of Education. 2018. url: http://www.

computingteacher.org/2018.

12. P. E. Dickson, T. Dragon, and A. Lee. “Using Undergraduate Teaching Assistants in Small Classes”. In:

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. SIGCSE

’17. ACM, New York, NY, USA, 2017, pp. 165–170. isbn: 978-1-4503-4698-6. doi: 10.1145/3017680.

3017725. url: http://doi.acm.org/10.1145/3017680.3017725.

13. E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. C. Miller. “OverCode: Visualizing Variation in Student

Solutions to Programming Problems at Scale”. In: ACM Trans. Comput.-Hum. Interact. 22:2, 2015, 7:1–

7:35. issn: 1073-0516. doi: 10.1145/2699751. url: http://doi.acm.org/10.1145/2699751.

14. Google Inc. and Gallup Inc. Diversity Gaps in Computer Science: Exploring the Underrepresentation of
Girls, Blacks and Hispanics. 2016. url: http://goo.gl/PG34aH.

15. P. J. Guo. “Online Python Tutor: Embeddable Web-based Program Visualization for CS Education”. In:

Proceeding of the 44th ACM Technical Symposium on Computer Science Education. SIGCSE ’13. ACM,

New York, NY, USA, 2013, pp. 579–584. isbn: 978-1-4503-1868-6. doi: 10.1145/2445196.2445368.

url: http://doi.acm.org/10.1145/2445196.2445368.

16. J. Hug and D. D. Garcia. “Handling Very Large Lecture Courses: Keeping the Wheels on the Bus

(Abstract Only)”. In: Proceedings of the 46th ACM Technical Symposium on Computer Science Education.

SIGCSE ’15. ACM, New York, NY, USA, 2015, pp. 697–697. isbn: 978-1-4503-2966-8. doi: 10.1145/

2676723.2691867. url: http://doi.acm.org/10.1145/2676723.2691867.

17. J. Hug and C. Lee. “Handling Very Large Lecture Courses: Keeping the Wheels on the Bus III (Abstract

Only)”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.

SIGCSE ’17. ACM, New York, NY, USA, 2017, pp. 725–725. isbn: 978-1-4503-4698-6. doi: 10.1145/

3017680.3022374. url: http://doi.acm.org/10.1145/3017680.3022374.

18. D. G. Kay. “Large Introductory Computer Science Classes: Strategies for E�ective Course Management”.

In: Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer Science Education. SIGCSE

’98. ACM, New York, NY, USA, 1998, pp. 131–134. isbn: 0-89791-994-7. doi: 10.1145/273133.273177.

url: http://doi.acm.org/10.1145/273133.273177.

19. C. M. Lewis. “ACM Retention Committee: Twelve Tips for Creating a Culture That Supports All

Students in Computing”. In: ACM Inroads 8:4, 2017, pp. 17–20. issn: 2153-2184. doi: 10.1145/3148524.

url: http://doi.acm.org/10.1145/3148524.

36

http://dx.doi.org/10.1145/1121341.1121358
http://doi.acm.org/10.1145/1121341.1121358
http://www.computingteacher.org/2018
http://www.computingteacher.org/2018
http://dx.doi.org/10.1145/3017680.3017725
http://dx.doi.org/10.1145/3017680.3017725
http://doi.acm.org/10.1145/3017680.3017725
http://dx.doi.org/10.1145/2699751
http://doi.acm.org/10.1145/2699751
http://goo.gl/PG34aH
http://dx.doi.org/10.1145/2445196.2445368
http://doi.acm.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2676723.2691867
http://dx.doi.org/10.1145/2676723.2691867
http://doi.acm.org/10.1145/2676723.2691867
http://dx.doi.org/10.1145/3017680.3022374
http://dx.doi.org/10.1145/3017680.3022374
http://doi.acm.org/10.1145/3017680.3022374
http://dx.doi.org/10.1145/273133.273177
http://doi.acm.org/10.1145/273133.273177
http://dx.doi.org/10.1145/3148524
http://doi.acm.org/10.1145/3148524

20. S. N. Liao, D. Zingaro, C. Alvarado, W. G. Griswold, and L. Porter. “Exploring the Value of Di�erent

Data Sources for Predicting Student Performance in Multiple CS Courses”. In: Proceedings of the
50th ACM Technical Symposium on Computer Science Education. SIGCSE ’19. ACM, Minneapolis,

MN, USA, 2019, pp. 112–118. isbn: 978-1-4503-5890-3. doi: 10.1145/3287324.3287407. url: http:

//doi.acm.org/10.1145/3287324.3287407.

21. T. MacWilliam and D. J. Malan. “Scaling O�ce Hours: Managing Live Q&A in Large Courses”.

In: J. Comput. Sci. Coll. 28:3, 2013, pp. 94–101. issn: 1937-4771. url: http://dl.acm.org/citation.

cfm?id=2400161.2400179.

22. M. L. Maher, C. Latulipe, H. Lipford, and A. Rorrer. “Flipped Classroom Strategies for CS Education”.

In: Proceedings of the 46th ACM Technical Symposium on Computer Science Education. SIGCSE ’15. ACM,

New York, NY, USA, 2015, pp. 218–223. isbn: 978-1-4503-2966-8. doi: 10.1145/2676723.2677252.

url: http://doi.acm.org/10.1145/2676723.2677252.

23. D. J. Malan. “Reinventing CS50”. In: Proceedings of the 41st ACM Technical Symposium on Computer
Science Education. SIGCSE ’10. ACM, New York, NY, USA, 2010, pp. 152–156. isbn: 978-1-4503-0006-3.

doi: 10.1145/1734263.1734316. url: http://doi.acm.org/10.1145/1734263.1734316.

24. M. Minnes, C. Alvarado, and L. Porter. “Lightweight Techniques to Support Students in Large Classes”.

In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education. SIGCSE ’18. ACM,

New York, NY, USA, 2018, pp. 122–127. isbn: 978-1-4503-5103-4. doi: 10.1145/3159450.3159601.

url: http://doi.acm.org/10.1145/3159450.3159601.

25. S. Narayanan, K. Cunningham, S. Arteaga, W. J. Welch, L. Maxwell, Z. Chawinga, and B. Su. “Upward

Mobility for Underrepresented Students: A Model for a Cohort-based Bachelor’s Degree in Computer

Science”. In: ACM Inroads 9:2, 2018, pp. 72–78. issn: 2153-2184. doi: 10.1145/3210555. url: http:

//doi.acm.org/10.1145/3210555.

26. National Academies of Sciences, Engineering, and Medicine. Assessing and Responding to the Growth
of Computer Science Undergraduate Enrollments. The National Academies Press, Washington, DC,

2018. isbn: 978-0-309-46702-5. doi: 10.17226/24926. url: https://www.nap.edu/catalog/

24926/assessing-and-responding-to-the-growth-of-computer-science-undergraduate-

enrollments.

27. T. Newhall, L. Meeden, A. Danner, A. Soni, F. Ruiz, and R. Wicentowski. “A Support Program for Intro-

ductory CS Courses That Improves Student Performance and Retains Students from Underrepresented

Groups”. In: Proceedings of the 45th ACM Technical Symposium on Computer Science Education. SIGCSE

’14. ACM, New York, NY, USA, 2014, pp. 433–438. isbn: 978-1-4503-2605-6. doi: 10.1145/2538862.

2538923. url: http://doi.acm.org/10.1145/2538862.2538923.

28. T. Nip, E. L. Gunter, G. L. Herman, J. W. Morphew, and M. West. “Using a Computer-based Testing Facil-

ity to Improve Student Learning in a Programming Languages and Compilers Course”. In: Proceedings
of the 49th ACM Technical Symposium on Computer Science Education. SIGCSE ’18. ACM, Baltimore,

37

http://dx.doi.org/10.1145/3287324.3287407
http://doi.acm.org/10.1145/3287324.3287407
http://doi.acm.org/10.1145/3287324.3287407
http://dl.acm.org/citation.cfm?id=2400161.2400179
http://dl.acm.org/citation.cfm?id=2400161.2400179
http://dx.doi.org/10.1145/2676723.2677252
http://doi.acm.org/10.1145/2676723.2677252
http://dx.doi.org/10.1145/1734263.1734316
http://doi.acm.org/10.1145/1734263.1734316
http://dx.doi.org/10.1145/3159450.3159601
http://doi.acm.org/10.1145/3159450.3159601
http://dx.doi.org/10.1145/3210555
http://doi.acm.org/10.1145/3210555
http://doi.acm.org/10.1145/3210555
http://dx.doi.org/10.17226/24926
https://www.nap.edu/catalog/24926/assessing-and-responding-to-the-growth-of-computer-science-undergraduate-enrollments
https://www.nap.edu/catalog/24926/assessing-and-responding-to-the-growth-of-computer-science-undergraduate-enrollments
https://www.nap.edu/catalog/24926/assessing-and-responding-to-the-growth-of-computer-science-undergraduate-enrollments
http://dx.doi.org/10.1145/2538862.2538923
http://dx.doi.org/10.1145/2538862.2538923
http://doi.acm.org/10.1145/2538862.2538923

Maryland, USA, 2018, pp. 568–573. isbn: 978-1-4503-5103-4. doi: 10.1145/3159450.3159500. url:

http://doi.acm.org/10.1145/3159450.3159500.

29. E. Patitsas, M. Craig, and S. Easterbrook. “A Historical Examination of the Social Factors A�ecting

Female Participation in Computing”. In: Proceedings of the 2014 Conference on Innovation & Technology
in Computer Science Education. ITiCSE ’14. ACM, Uppsala, Sweden, 2014, pp. 111–116. isbn: 978-1-4503-

2833-3. doi: 10.1145/2591708.2591731. url: http://doi.acm.org/10.1145/2591708.2591731.

30. E. Patitsas, M. Craig, and S. Easterbrook. “How CS departments are managing the enrolment boom:

Troubling implications for diversity”. In: 2016 Research on Equity and Sustained Participation in Engi-
neering, Computing, and Technology (RESPECT). 2016, pp. 1–2. doi: 10.1109/RESPECT.2016.7836180.

31. P. M. Phothilimthana and S. Sridhara. “High-Coverage Hint Generation for Massive Courses: Do

Automated Hints Help CS1 Students?” In: Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. ITiCSE ’17. ACM, Bologna, Italy, 2017, pp. 182–187. isbn:

978-1-4503-4704-4. doi: 10.1145/3059009.3059058. url: http://doi.acm.org/10.1145/3059009.

3059058.

32. C. Piech and C. Gregg. “BlueBook: A Computerized Replacement for Paper Tests in Computer Science”.

In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education. SIGCSE ’18.

ACM, Baltimore, Maryland, USA, 2018, pp. 562–567. isbn: 978-1-4503-5103-4. doi: 10.1145/3159450.

3159587. url: http://doi.acm.org/10.1145/3159450.3159587.

33. C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. “Modeling How Students Learn to Program”.

In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education. SIGCSE ’12. ACM,

Raleigh, North Carolina, USA, 2012, pp. 153–160. isbn: 978-1-4503-1098-7. doi: 10.1145/2157136.

2157182. url: http://doi.acm.org/10.1145/2157136.2157182.

34. H. Pon-Barry, A. St. John, B. W.-L. Packard, and B. Rotundo. “A Flexible Curriculum for Promoting

Inclusion Through Peer Mentorship”. In: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. SIGCSE ’19. ACM, Minneapolis, MN, USA, 2019, pp. 1116–1122. isbn: 978-1-4503-

5890-3. doi: 10.1145/3287324.3287434. url: http://doi.acm.org/10.1145/3287324.3287434.

35. L. Porter, C. Bailey Lee, and B. Simon. “Halving Fail Rates Using Peer Instruction: A Study of Four

Computer Science Courses”. In: Proceeding of the 44th ACM Technical Symposium on Computer Science
Education. SIGCSE ’13. ACM, New York, NY, USA, 2013, pp. 177–182. isbn: 978-1-4503-1868-6. doi: 10.

1145/2445196.2445250. url: http://doi.acm.org/10.1145/2445196.2445250.

36. J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters, Z. Albrecht, and K. Masci. “First

Things First: Providing Metacognitive Sca�olding for Interpreting Problem Prompts”. In: Proceedings
of the 50th ACM Technical Symposium on Computer Science Education. SIGCSE ’19. ACM, Minneapolis,

MN, USA, 2019, pp. 531–537. isbn: 978-1-4503-5890-3. doi: 10.1145/3287324.3287374. url: http:

//doi.acm.org/10.1145/3287324.3287374.

38

http://dx.doi.org/10.1145/3159450.3159500
http://doi.acm.org/10.1145/3159450.3159500
http://dx.doi.org/10.1145/2591708.2591731
http://doi.acm.org/10.1145/2591708.2591731
http://dx.doi.org/10.1109/RESPECT.2016.7836180
http://dx.doi.org/10.1145/3059009.3059058
http://doi.acm.org/10.1145/3059009.3059058
http://doi.acm.org/10.1145/3059009.3059058
http://dx.doi.org/10.1145/3159450.3159587
http://dx.doi.org/10.1145/3159450.3159587
http://doi.acm.org/10.1145/3159450.3159587
http://dx.doi.org/10.1145/2157136.2157182
http://dx.doi.org/10.1145/2157136.2157182
http://doi.acm.org/10.1145/2157136.2157182
http://dx.doi.org/10.1145/3287324.3287434
http://doi.acm.org/10.1145/3287324.3287434
http://dx.doi.org/10.1145/2445196.2445250
http://dx.doi.org/10.1145/2445196.2445250
http://doi.acm.org/10.1145/2445196.2445250
http://dx.doi.org/10.1145/3287324.3287374
http://doi.acm.org/10.1145/3287324.3287374
http://doi.acm.org/10.1145/3287324.3287374

37. S. Reges. “Using Undergraduates As Teaching Assistants at a State University”. In: Proceedings of the
34th SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’03. ACM, New York, NY,

USA, 2003, pp. 103–107. isbn: 1-58113-648-X. doi: 10.1145/611892.611943. url: http://doi.acm.

org/10.1145/611892.611943.

38. S. Reges, J. McGrory, and J. Smith. “The E�ective Use of Undergraduates to Sta� Large Introductory CS

Courses”. In: Proceedings of the Nineteenth SIGCSE Technical Symposium on Computer Science Education.

SIGCSE ’88. ACM, Atlanta, Georgia, USA, 1988, pp. 22–25. isbn: 0-89791-256-X. doi: 10.1145/52964.

52971. url: http://doi.acm.org/10.1145/52964.52971.

39. P. Rheingans, E. D’Eramo, C. Diaz-Espinoza, and D. Ireland. “A Model for Increasing Gender Diversity

in Technology”. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education.

SIGCSE ’18. ACM, New York, NY, USA, 2018, pp. 459–464. isbn: 978-1-4503-5103-4. doi: 10.1145/

3159450.3159533. url: http://doi.acm.org/10.1145/3159450.3159533.

40. E. Roberts. A History of Capacity Challenges in Computer Science. 2016. url: https://cs.stanford.

edu/people/eroberts/CSCapacity/ (visited on 04/01/2019).

41. E. Roberts. Resources for the CS Capacity Crisis. 2018. url: https://cs.stanford.edu/people/

eroberts/ResourcesForTheCSCapacityCrisis/ (visited on 04/01/2019).

42. E. Roberts, J. Lilly, and B. Rollins. “Using Undergraduates As Teaching Assistants in Introductory

Programming Courses: An Update on the Stanford Experience”. In: Proceedings of the Twenty-sixth
SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’95. ACM, New York, NY, USA,

1995, pp. 48–52. isbn: 0-89791-693-X. doi: 10.1145/199688.199716. url: http://doi.acm.org/10.

1145/199688.199716.

43. A. J. Smith, K. E. Boyer, J. Forbes, S. Heckman, and K. Mayer-Patel. “My Digital Hand: A Tool for

Scaling Up One-to-One Peer Teaching in Support of Computer Science Learning”. In: Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’17. ACM, Seattle,

Washington, USA, 2017, pp. 549–554. isbn: 978-1-4503-4698-6. doi: 10.1145/3017680.3017800. url:

http://doi.acm.org/10.1145/3017680.3017800.

44. S. Sridhara, B. Hou, J. Lu, and J. DeNero. “Fuzz Testing Projects in Massive Courses”. In: Proceedings of
the Third (2016) ACM Conference on Learning @ Scale. L@S ’16. ACM, Edinburgh, Scotland, UK, 2016,

pp. 361–367. isbn: 978-1-4503-3726-7. doi: 10.1145/2876034.2876050. url: http://doi.acm.org/

10.1145/2876034.2876050.

45. C. Stephenson, A. Derbenwick Miller, C. Alvarado, L. Barker, V. Barr, T. Camp, C. Frieze, C. Lewis,

E. Cannon Mindell, L. Limbird, D. Richardson, M. Sahami, E. Villa, H. Walker, and S. Zweben. Retention
in Computer Science Undergraduate Programs in the U.S.: Data Challenges and Promising Interventions.
New York, NY, USA, 2018. url: https://www.acm.org/binaries/content/assets/education/

retention-in-cs-undergrad-programs-in-the-us.pdf.

39

http://dx.doi.org/10.1145/611892.611943
http://doi.acm.org/10.1145/611892.611943
http://doi.acm.org/10.1145/611892.611943
http://dx.doi.org/10.1145/52964.52971
http://dx.doi.org/10.1145/52964.52971
http://doi.acm.org/10.1145/52964.52971
http://dx.doi.org/10.1145/3159450.3159533
http://dx.doi.org/10.1145/3159450.3159533
http://doi.acm.org/10.1145/3159450.3159533
https://cs.stanford.edu/people/eroberts/CSCapacity/
https://cs.stanford.edu/people/eroberts/CSCapacity/
https://cs.stanford.edu/people/eroberts/ResourcesForTheCSCapacityCrisis/
https://cs.stanford.edu/people/eroberts/ResourcesForTheCSCapacityCrisis/
http://dx.doi.org/10.1145/199688.199716
http://doi.acm.org/10.1145/199688.199716
http://doi.acm.org/10.1145/199688.199716
http://dx.doi.org/10.1145/3017680.3017800
http://doi.acm.org/10.1145/3017680.3017800
http://dx.doi.org/10.1145/2876034.2876050
http://doi.acm.org/10.1145/2876034.2876050
http://doi.acm.org/10.1145/2876034.2876050
https://www.acm.org/binaries/content/assets/education/retention-in-cs-undergrad-programs-in-the-us.pdf
https://www.acm.org/binaries/content/assets/education/retention-in-cs-undergrad-programs-in-the-us.pdf

46. V. Swamy. Pedagogy, Infrastructure, and Analytics for Data Science Education at Scale. Technical

report UCB/EECS-2018-81. EECS Department, University of California, Berkeley, 2018. url: https:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-81.html.

47. P. T. Terenzini and E. T. Pascarella. “Toward the Validation of Tinto’s Model of College Student Attrition:

A Review of Recent Studies”. In: Research in Higher Education 12:3, 1980, pp. 271–282. issn: 03610365,

1573188X. url: http://www.jstor.org/stable/40195370.

48. V. Tinto. Leaving college: Rethinking the causes and cures of student attrition. ERIC, 1987.

49. N. Titterton, C. M. Lewis, and M. J. Clancy. “Experiences with lab-centric instruction”. In: Computer
Science Education 20:2, 2010, pp. 79–102. doi: 10.1080/08993408.2010.486256. eprint: https://doi.

org/10.1080/08993408.2010.486256. url: https://doi.org/10.1080/08993408.2010.486256.

50. U. Treisman. “Studying Students Studying Calculus: A Look at the Lives of Minority Mathematics

Students in College”. In: The College Mathematics Journal 23:5, 1992, pp. 362–372. issn: 07468342,

19311346. url: http://www.jstor.org/stable/2686410.

51. L. Wang, A. Sy, L. Liu, and C. Piech. “Deep Knowledge Tracing On Programming Exercises”. In:

Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale. L@S ’17. ACM, Cambridge,

Massachusetts, USA, 2017, pp. 201–204. isbn: 978-1-4503-4450-0. doi: 10.1145/3051457.3053985.

url: http://doi.acm.org/10.1145/3051457.3053985.

52. M. West and C. Zilles. “Modeling Student Scheduling Preferences in a Computer-Based Testing Facility”.

In: Proceedings of the Third (2016) ACM Conference on Learning @ Scale. L@S ’16. ACM, Edinburgh,

Scotland, UK, 2016, pp. 309–312. isbn: 978-1-4503-3726-7. doi: 10.1145/2876034.2893441. url:

http://doi.acm.org/10.1145/2876034.2893441.

53. L. Yan, A. Hu, and C. Piech. “Pensieve: Feedback on Coding Process for Novices”. In: Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. SIGCSE ’19. ACM, Minneapolis,

MN, USA, 2019, pp. 253–259. isbn: 978-1-4503-5890-3. doi: 10.1145/3287324.3287483. url: http:

//doi.acm.org/10.1145/3287324.3287483.

54. L. Yan, N. McKeown, M. Sahami, and C. Piech. “TMOSS: Using Intermediate Assignment Work

to Understand Excessive Collaboration in Large Classes”. In: Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. SIGCSE ’18. ACM, Baltimore, Maryland, USA, 2018, pp. 110–

115. isbn: 978-1-4503-5103-4. doi: 10.1145/3159450.3159490. url: http://doi.acm.org/10.1145/

3159450.3159490.

55. S. Zweben and B. Bizot. 2018 CRA Taulbee Survey. 2019. url: https://cra.org/resources/taulbee-

survey/.

40

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-81.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-81.html
http://www.jstor.org/stable/40195370
http://dx.doi.org/10.1080/08993408.2010.486256
https://doi.org/10.1080/08993408.2010.486256
https://doi.org/10.1080/08993408.2010.486256
https://doi.org/10.1080/08993408.2010.486256
http://www.jstor.org/stable/2686410
http://dx.doi.org/10.1145/3051457.3053985
http://doi.acm.org/10.1145/3051457.3053985
http://dx.doi.org/10.1145/2876034.2893441
http://doi.acm.org/10.1145/2876034.2893441
http://dx.doi.org/10.1145/3287324.3287483
http://doi.acm.org/10.1145/3287324.3287483
http://doi.acm.org/10.1145/3287324.3287483
http://dx.doi.org/10.1145/3159450.3159490
http://doi.acm.org/10.1145/3159450.3159490
http://doi.acm.org/10.1145/3159450.3159490
https://cra.org/resources/taulbee-survey/
https://cra.org/resources/taulbee-survey/

	Introduction
	National CS Capacity Crisis
	UC Berkeley Case Study
	Course Format

	Automation
	Grading and Feedback
	Gradescope
	OK

	Managing Student Learning
	Office Hours
	Online Course Delivery
	Exam Administration

	Support
	Undergraduate Teaching Assistants
	Center for Student Affairs
	Near-Peer Student Mentors

	Preparation
	Introduction to Teaching Computer Science
	Mentoring at Scale
	Course-Specific Preparation

	Discussion
	Bibliography

