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Abstract

Inverse Reinforcement Learning for Dynamics

by

McKane Andrus

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anca Dragan, Chair

Inverse Reinforcement Learning (IRL), as standardly defined, entails learning an unknown
reward function of a Markov Decision Process (MDP) from demonstrations. As Herman
et al. [10] describe, however, learning a reward function from demonstrations is highly reliant
on having a correct transition function, which is not always a given. We take interest in
this problem from the perspective of Human-Robot Interaction, where we can often observe
demonstrations of known tasks but do not have a necessarily correct model of human capability.
As such, we specifically consider the case where the goal, or reward, of the demonstrations
is known, but the dynamics, or transition function, are not. We refer to this alternate
formulation as Inverse Reinforcement Learning for Dynamics (IRLD).

In Chapter 2 we formalize the IRLD problem statement and provide a method that is able
to learn unobserved dynamics in environments of limited size and scope. We compare this
method to one that estimates both the reward and the dynamics to show the advantages of
incorporating knowledge of a goal. In Chapter 3 we propose an alternate, scalable approach
to the IRLD problem statement that permits numerous variants of Maximum Likelihood
Estimation algorithms using function approximators. Though we were not able to produce a
generally applicable method, in chapter 4 we provide a roadmap of the various algorithms we
developed and issues that must be addressed for this approach to succeed in future work.
Chapter 5 contains a reflection section where our work is positioned in a broader social
context.
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Chapter 1

The Place for Capability Inference in
Human Robot Interaction

1.1 Context
As robots and humans come to occupy more of the same environments, seamless interaction
becomes an increasingly important goal. For human-to-human interaction, we are able to
operate in the same locations in large part because of our own internal models of how those
around us interact with the environment. We have a general idea of both what our spatial
neighbors are likely to do and what they are capable of doing. These intuitions, however,
are highly complex and difficult to mirror in artificial systems. Bestick et al. [4] explore the
fault lines of this dearth of intuition in their exploration of the notably difficult yet mundane
task of handing another agent an object. In this case, it might be possible to build a general
human model for the robot to reason with, but there will be times where the human has a
disability or restriction, such as an amputated limb, and the robot will need to learn what
those restrictions are. Given observations of the human executing some known task, it should
be possible for the robot to identify the difference in behaviour and update its model, as the
human’s plan will reflect their condition even if it is not visible. We see this work as an early
attempt at designing robots for inclusion, actively resisting the defaults-based approaches
that tend to be inaccessible or maladapted to individuals of varying disabilities [8].

1.2 Previous Approaches
Up to this point, there have not been many proposed solutions to IRLD. Approaches like
those taken by OhnBar, Kitani, and Asakawa [14] generally assume prior knowledge of the
dynamics, such that they can update their human model based on a measure of which
one provides the best predictive accuracy. Herman et al. [10] outline a method for the
“Simultaneous Estimation of Reward and Dynamics” (SERD) in MDPs by maximizing the
likelihood of the demonstrations. Crucially, they rely on an exact tabular method that they
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call "soft Q-Gradient iteration," which can be broken down into maximizing the sum of the
log-likelihoods of the actions taken and the log-likelihoods of the transitions observed. As
the algorithm requires solving a linear system of equations on the order of the parameters,
states, and actions for each gradient step, it becomes intractable for moderately sized state-
and action-spaces, not to mention continuous state spaces.

Reddy, Dragan, and Levine [16] tackle a problem similar to IRLD, but instead focus on
learning the human’s internal dynamics model, meaning that they solve for the dynamics
model that best describes the observed behavior, not one that both describes the real-world
dynamics observations as well as the observed behavior. Unlike the task we would like to
solve, they assume access to the true dynamics, which serves as an important reference point
for regularizing their learned internal dynamics model. Building off this work, we re-commit
ourselves to the assumption that an agent’s internal dynamics model is the same as the real
world’s in order to infer unobserved components of the real world dynamics. To do this, we
adjust the method used by Reddy, Dragan, and Levine [16] to approximately solve the IRLD
problem with neural nets or other function approximators.
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Chapter 2

IRLD in Finite State and Action MDPs

2.1 Formalizations of IRL
Define a Markov Decision Process (MDP) as a tuple M = {S,A, T, γ, R}, where S denotes
the state space, A the action space, T the transition function defined over state, action, and
next state tuples (s, a, s′), γ the discount factor, and R the reward function defined over
states. Given an MDP M , there exists an optimal policy π∗ that maximizes the expected
cumulative reward for an agent acting in the MDP. Reinforcement Learning (RL) is generally
centered around learning this optimal policy.

Inverse Reinforcement Learning (IRL) [13] is the reverse problem of learning the reward
function of an MDP given some observed behaviors of an agent assumed to be operating under
π∗. With respect to the MDP formalization, the IRL addresses the case where we receive
M/R +Dπ∗ , or M = {S,A, T, γ,Dπ∗}, where Dπ∗ is a set of demonstration trajectories, and
we would like to recover the true rewards R.

An increasingly common approach to solving the IRL problem is to use the Maximum
Causal Entropy (MCE) framework [26, 5]. MCE IRL models the demonstrations as being
drawn from a policy πsoft, defined as:

πsoft(a|s) = exp(βQsoft(s, a))∑
a′∈A exp(βQ

soft(s, a′))
. (2.1)

In this formulation, β acts as what is referred to as a "rationality coefficient," [7] deter-
mining the bias with which the agent selects higher value actions. While we do not assume
that this model is sufficient to model human behavior, there is a grounding for this method
in psychology, where it is referred to as bounded [15] or noisy [3] rationality, so we accept
it for our current purposes. The Qs in this formulation are subject to optimizing the soft
Bellman Equations
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Qsoft(s, a) = R(s, a) +
∑
s′

T (s, a, s′)V soft(s′) (2.2)

V soft(s) = softmax
a

(βQsoft(s, a))) (2.3)

=
∑
a

eβQ
soft(s,a)∑

a′∈A e
βQsoft(s,a′)

Qsoft(s, a).

For this work we conducted tests using both the weighted log-sum-exp [9]:

V soft
wlse(s) =

log
(∑

a∈A e
βQsoft(s,a)

)
β

, (2.4)

and the mellowmax [1] variants of the soft value function:

V soft
mellow(s) =

log
(

1
|A|
∑

a∈A e
βQsoft(s,a)

)
β

. (2.5)

While the Boltzmann softmax value function given in (2.3) is a more principled definition
of the expected value of each state, from [1] we know that it is not a contraction mapping,
meaning that there are multiple solutions to the Bellman equations it induces. The two
alternate variants, on the other hand, are contraction mappings. The solution to the weighted
log-sum-exp Bellman equations is a slight overestimation of the solution to the hard-max
Bellman equations, with the degree of overestimation depending on the the magnitude
of β. The mellowmax Bellman equations, on the other hand, are guaranteed to be an
underestimation of the hard-max solution [1].

With the Bellman equations thus defined, the log likelihood of an observed expert
trajectory not including side information (i.e. initial state distributions and transitions) is:

L(τ) =
∑

(s,a)∈τ

log πsoft(a|s), (2.6)

with causal entropy:

H(πsoft) = Eτ∼πsoft(−L(τ)). (2.7)

The solution to the MCE IRL formalization is then the maximization of (2.7) subject to
a constraint that the expected feature counts of trajectories from the induced policy are the
same as the observed feature counts.
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2.2 Formalizing IRLD
Unlike the standard definition of IRL, the problem that we are looking to solve is M/T +
Dπθ , where the demonstrations are drawn from a policy that had access to the dynamics
parameterization θ. Thus, we want to infer the dynamics given the demonstrations and the
reward function. Though nearly all past formalizations of IRL require prior knowledge of the
dynamics, Herman et al. [10] provide a framework that learns both the rewards and dynamics
of an MDP, aptly named Simultaneous Estimation of Rewards and Dynamics (SERD) IRL.
For the finite state and action MDP, this formalization is easily adapted to our setting,
where we assume knowledge of the reward or goal, but not the dynamics. We provide the
formalization of the reduced Estimation of Dynamics (ED) IRL problem below.

We begin with the parameterization of the Q function with respect to the dynamics
parameters θ:

Qsoft
θ (s, a) = R(s, a) +

∑
s′

Tθ(s, a, s
′)V soft

θ (s′). (2.8)

The log likelihood of a demonstration, or set of expert trajectories is then:

Lθ(D) := logP (D|θ) (2.9)

=
∑
τ∈D

logP (s0) + ∑
(s,a,s′)∈τ

[
log πsoft

θ (a|s) + log Tθ(s
′|s, a)

] (2.10)

subject to D ∈ WObserved

We are then interested in finding the maximum likelihood estimate (MLE) of θ:

θ∗ = argmax
θ

Lθ(D) (2.11)

Drawing from [10] and [5], we can optimize this objective via a gradient-based method
if we analytically define the gradients. Derived in the formulation of Maximum Discounted
Causal Entropy (MDCE) IRL [5], the gradient of the log policy, ∇θ log π

soft
θ (a|s), is built up

by the partial derivatives

∂

∂θi
log πsoft

θ (a|s) = ∂

∂θi
Qsoft
θ (s, a)− Ea′∼πsoft

θ (a′|s)

[
∂

∂θi
Qsoft
θ (s, a′)

]
(2.12)

Herman et al. [10] treat the state-action specific Q-value partial derivative differently
depending on whether the parameter is a part of the reward or dynamics model, but here we
only consider parameters in the dynamics model. The transition-parameter partial derivative
is as given:
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∂

∂θi
Qsoft
θ (s, a) =γ

∑
s′∈S

[(
∂

∂θi
Tθ(s

′|s, a)
)
V soft
θ (s′)

]
(2.13)

+ γ
∑
s′∈S

{
Tθ(s

′|s, a)Ea′∼πsoft
θ (a′|s′)

[
∂

∂θi
Qsoft
θ (s′, a′)

]}
(2.14)

The gradient of log Tθ(s′|s, a) is model specific, and is assumed to be well-defined. Using
these evaluations, it is possible to solve ∇Qsoft

θ as a system of equations, or iteratively as with
Q-learning. This method is known as soft-Q gradient iteration [10].

2.3 Comparing SERD and ED
Seeing as ED is far more well-determined than SERD, we expect it to have a number of
advantages. In this section we show that ED does outperform SERD on a number of metrics
and in certain environments. This then provides the foundation for chapter 3, where we seek
to exploit these determinedness advantages in order to develop a more general dynamics
learning method that can handle both continuous and large state-space MDPs assuming that
we know the agent’s goal.

Model Description

We evaluate our modified Estimation of Dynamics (ED) algorithm on a grid world environment
where we can gather our data by simulation and validate against ground truth. We begin
with a consciously constructed grid world with known optimal behavior to make it easy
to qualitatively test accuracy. We then continue to test on semi-randomly generated grid
worlds to quantitatively check the ability for our method to work in generalized environments.
To generate these grid worlds, we define a ’clustering factor’ to encourage like tiles to be
located close to one another. This soft constraint leads to maps that are traversible by the
demonstration agent, as bad areas can be avoided. We specify our grid worlds to match
previous work [10, 25]. Each grid world has N ×M states organized into a N ×M grid.
There are two tile types that can be associated with a state, which we will refer to as land
and pits. There will also be a separate texture map which specifies the reward in each state.

In each state there are 5 available actions {up, right, down, left, stay}. The effect of each
of these actions depends on the tile type. In pits, any action you take will result in no
movement, remaining in the same state in the next time step. On land, all of the actions will
act as expected the majority of the time; up will usually go up, down will usually go down.
However, for all of the directional actions there is a small probability that the agent will ’slip’
and end up in a square in a perpendicular direction to the one in which it intended to go, we
will refer to this probability as the ’slip factor’. If an agent tries to go up it will end up one
square to the left or one square to the right with probability ’slip factor’. An agent will never
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Figure 2.1: Ground Truth and Method Learned Dynamics and Q-Values of a grid world with
known optimal behavior. The left diagram displays the learned dynamics for each tile type,
action, and method. The right diagram shows the learned value function of each method.
The arrows in each tile show that state’s most likely action, while the magnitude of the arrow
encodes how much more likely that action is over the others.

slip while trying to stay in place. For simplicity we will allow the map to wrap around such
that agents that should move up from the top square arrive at the bottom of the map and
vice-versa. Similarly, agents that move left from the left most squares will show up in the
corresponding rightmost square.

Experimental Results

In the pre-constructed map there is a large reward in the middle, but this reward is surrounded
by pits. Therefore, all demonstrations will show that the agent avoids the center, instead
going for the lower rewards on the corners. From this, an observer who knows that the
center square is the agent’s true goal should reasonably infer that the agent knows that it
cannot make it through the pits surrounding the high reward so it settles for the lesser goal.
Figure 2.1 shows that ED can successfully infer these dynamics, while SERD instead finds an
explanation that puts extremely low reward on the center square, as we would expect. To be
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Figure 2.2: A comparison of SERD and ED Q-Value and Dynamics errors of a grid world with
known optimal behavior. This is an example of where SERD falls prey to unidentifiability.

Figure 2.3: Ground Truth and Method Learned Dynamics and Q-Values in a semi-randomly
generated grid world.

clear, this is not a failing of SERD, this is just an extreme case of prior reward knowledge
being necessary to learn the dynamics.

In Figure 2.3 we see the opposite case. The semi-random maps that we generated
trajectories on could all be solved by SERD as well as by ED. Thus, we can assume reward
information is not always necessary to learn the true dynamics. At the very least, learning
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will not be hindered by obtaining accurate reward information. With mis-specified reward
information, however, our experiments suggest that a less general dynamics model will
be learned. As such, before this method is implemented in non-simulated settings, high
confidence in the rewards is required. Realistically, this is only possible in the case of known
goals, or where the learner has prior knowledge over the agent’s task.

As a brief aside, for the randomly generated grid-worlds seen in Figure 2.3, they are
created such that, even with the ’slip factor’, the demonstrations of the agents do not result
in moving into pits. If this were allowed, we would either need to prune trajectories, biasing
the observed dynamics, or cut trajectories short when a pit is entered, adding a survivorship
bias to the observed transitions.
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Chapter 3

IRLD in General MDPs

3.1 A General Approach to IRLD
Transitioning to less restricted MDPs with either very large or continuous state-spaces requires
us to abandon the analytical solutions to the soft Q-values and soft Q-gradients that we had
in the previous section. We instead model our Q-function with a function approximator as is
common in Deep Reinforcement Learning [12, 22, 9, 18, 25], now denoted as Qφ(·, ·). Now, in
order to find a best fit model for our demonstrations, we require two components, a dynamics
model that best fits the observed transitions and a policy model that best matches the agents
observed actions. Crucially, we assume that there are unobserved parts of the dynamics that
influence the likelihood of the observed policy. Depending on the strength of this influence,
by optimizing over the likelihood of the demonstrated actions our method should make
inferences over the types of unobserved dynamics that could motivate the observed behavior.
By ensuring that our policy and dynamics models are consistent with each other, meaning
that Qφ(·, ·) is close to the optimal solution to the MDP M = {S,A, Tθ, γ, R}, we enable
a transfer of information from the observed policy to the unobserved components of our
dynamics model. For simplicity we assume the ground truth discount factor γ to be known,
but this is generally not a safe assumption outside of simulation, meaning that it must be
learned before our method begins or as a variable in our method.

Given our parameterization of the Q function we now require a different formalization of
the IRLD objective. Firstly, we consider an updated definition of the log likelihood of the
demonstrations:

Lθ,φ(D) := logP (D|θ, φ) (3.1)

=
∑
τ∈D

logP (s0) + ∑
(s,a,s′)∈τ

[log πφ(a|s) + log Tθ(s
′|s, a)]

 (3.2)

subject to D ∈ WObserved



CHAPTER 3. IRLD IN GENERAL MDPS 11

SERD relies on gradient updates over a fully parameterized Q-function that are intractable
for continuous environments. Our method moves towards extending the dynamics learning
component of SERD to these types of settings where we make fewer assumptions about the
form of the dynamics and policy models, similar to the neural approach used by Wulfmeier
et al. [25]. In order to do so, we still need our parameterizations θ and φ to be consistent (or
nearly consistent) with the soft-Bellman equations, (2.2) and (2.3), or their variants, (2.4)
and (2.5). To do this, we first define the soft-Bellman error of a state action pair, δφ,θ(s, a),
to be equal to the following.

δφ,θ(s, a) := Qφ(s, a)−
(
R(s, a) + γ

∫
s′
Tθ(s, a, s

′)Vφ(s
′)ds′

)
(3.3)

∀s ∈ S, a ∈ A

As opposed to only considering state-action pairs observed in the demonstrations, we
want the Q-values to be consistent with the dynamics over all state action pairs, and as such
define δ over all S and A. Equipped with these Bellman residuals, our desired parameters θ
and φ are the solutions to the following constrained optimization problem:

minimizeθ,φ
∑
τ∈D

∑
(s,a,s′)∈τ

− log Tθ(s, a, s
′)− log πφ(a|s) (3.4)

subject to δφ,θ(s, a) = 0 ∀(s, a) ∈ (WObserved +WUnobserved)

However, we would like our models to be general function approximators, so the objective
should be trainable with standard gradient methods, motivating a relaxation of the constraint
as in [16]. The Bellman error is incorporated into the optimization objective with a constant
penalty term:

minimizeθ,φ

∑
τ∈D

∑
(s,a,s′)∈τ

− log Tθ(s, a, s
′)− log πφ(a|s)

+ ρ

(∫
s∈S

∑
a∈A

δφ,θ(s, a)

)
(3.5)

When optimizing this objective over MDPs with discrete, finite state spaces, we can treat
the constraint integral as a sum. When using this method on continuous state MDPs, we can
use constraint sampling as in [16]. Finally, for easier reference, we define the following:

LT :=
∑
τ∈D

∑
(s,a,s′)∈τ

− log Tθ(s, a, s
′) (3.6)

Lπ :=
∑
τ∈D

∑
(s,a,s′)∈τ

− log πφ(a|s) (3.7)

BRφ,θ :=

∫
s∈S

∑
a∈A

δφ,θ(s, a). (3.8)
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This allows a more concise restatement of our objective:

minimizeθ,φ LT + Lπ + ρ · BRφ,θ (3.9)

3.2 Implementation Details
We implement this approach through approximating both the Q-function and the Transition
function with MLPs parameterized by φ and θ respectively. We make the Bellman-error
gradient terms more stable by using a target Q-network [22] and use weight norms [17] to
increase training speed. In practice we find the weighted log-sum-exp soft-Bellman residual
(2.4) has the best performance, so we use it in most cases. Further details of our method are
given in the next chapter.
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Chapter 4

Of Methods and Fault Lines

Having formulated the problem statement, we move to a number of empirically encountered
fault lines that occur when optimizing our given objective and the algorithms we developed in
an attempt to surmount them. As we were unable to develop a generally effective algorithm,
we instead provide a road-map of our different lines of inquiry and the numerous pitfalls
encountered along the way.

A brief warning: Given that we were ultimately unsuccessful, this is a more narrative
exposition of methodology than is standard. Most importantly, it was only after testing
Algorithm B.2 on a broader suite of environments that we discovered a core flaw that existed in
each earlier iteration of Algorithm B. If this flaw had been found earlier, the entire trajectory
of the inquiry would have been fundamentally altered. However, as we believe some of the
steps that lead to Algorithm B.1 can be applied to other approaches, we initially present
them as we understood them at the time and not as we understand them now. This also
allows us to traverse our research as a continuous thread. To avoid any confusion on what
worked and what did not, the final section of this chapter explicitly covers what should be
used in future work.

4.1 Initial Trajectory
Algorithm A.0: Weighted Optimization

Our formulation of IRLD makes reducing the total loss with a well-tuned penalty parameter
ρ an intuitive first approach. Ideally, we would be able to find a good default value of ρ
that generalizes well to a number of similar environments. After an extensive search through
possible values, however, it became clear that such a ρ does not exist. Instead, each value
results in a unique local minimum that exhibits the qualities of a Pareto point. At the local
minimum there is a careful balance between the action likelihoods, transition likelihoods, and
Bellman residuals, where improving one incurs too great a cost on the others.

Furthermore, in Figures 4.1 and 4.2 we can see that when the value of ρ is low, meaning
that the Bellman residuals are not strictly enforced, there is more leeway in arbitrarily shifting
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Figure 4.1: A representation of the dynamics learned by Algorithm A.0 for different values of
ρ.

the Q-values to improve the action likelihoods, as we would expect. When the value of ρ is
increased and the Q-values are more tightly constrained to reality, we see that the observed
dynamics are greatly distorted to improve the action likelihood. Figure 4.3 shows how despite
the predictive power of the model being massively reduced, the negative log-likelihood of the
transitions is not actually increased by much. This calls attention to the first fault line of our
IRLD formulation.

Fault Line 1: Likelihood Scales

Unexpected transitions in probabilistic environments are generally along the same order of
log-likelihood magnitude as expected transitions. Consider our running example with the
’slip factor’: the likely occurrence, moving in the desired direction, has probability P = 0.6
(ll = log 0.6 ≈ −0.22), where slipping in either orthogonal direction has probability P = 0.2
(ll = log 0.2 ≈ −0.7). Unexpected actions given a Boltzmann rational actor, on the other
hand, can result in log-likelihoods being multiple orders of magnitude larger than transition
log-likelihoods. Again using our running example, for an agent with β = 50 and Q-values tied
to the true dynamics, taking the action to move directly into a pit has probability P ≈ 1e−13
(ll ≈ log 1e−13 = −13.0). Given that our model learns Q-values over mis-specified or
unlearned dynamics, we can expect the observed behavior to deviate quite strongly from the
expected behavior, resulting in action log-likelihoods multiple orders of magnitude worse than
the transition log-likelihoods like those shown above. Thus, while the ground truth models
minimize our objective, the directions of steepest gradient descent from most initializations
will be those that improve action likelihood with little regard for transition likelihood. Then,
once action likelihood and transition likelihood are on the same scale, there will be a tug and
pull between them that disallows movement towards the true optimum. So long as Algorithm
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Figure 4.2: A representation of the values learned by Algorithm A.0 for different values of ρ.

A.0 is operating in an environment where this difference in scales exists, we should continue
to expect this wildly suboptimal behavior.

Objective Redefinition 1: Weighting the Likelihoods

As motivated by the previous section, we modify our objective, and Algorithm A.0 in turn,
by adding individual weights to the transition and action likelihoods.

minimizeθ,φ λT · LT + λπ · Lπ + ρ · BRφ,θ (4.1)

Algorithm A.1: Separated Likelihood Weighted Optimization

In practice, we find that attempting to balance these new weights is far more art than science.
While we would like to weight the transition likelihood sufficiently to put it on the same scale
as the action likelihoods, this higher weighting often results in the dynamics model being so
tightly optimized over the observations that no changes to it can be made by optimizing the
Bellman Residuals. This, however, raises the ’stalemate’ point of the Bellman residuals and
the action likelihoods. If in turn the weighting on the Bellman residuals is increased, the
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Figure 4.3: Graphs of the values for the negative log-likelihood and Bellman residual terms.
The negative log-likelihood for actions hits a peak of over 100× the peak of the negative
log-likelihood for transitions.

Q-values are just kept at the optimal solution for the observed dynamics, maintaining a near
optimal transition likelihood with Bellman residuals close to zero. In this case the method is
effectively just not learning from the observed behavior of the agent. This illustrates that the
IRLD objective has a deeper antagonism than just that between the likelihoods.

Fault line 2: Bellman Residual Antagonism

Matching the observed policy will often come at the cost of initially increasing the Bellman
residuals, so they then must be reduced by modifying the dynamics and updating the Q
values accordingly. This process can be stifled both by the residuals having too strong a pull
on the dynamics and by the residuals stalemating with the action likelihoods.

Objective Redefinition 2: Splitting the Bellman Residual

A possible solution to Fault line 2 is to more meticulously manage the antagonism between
the IRLD loss components. To do this, we define two new residuals, one parameterized by θ
that treats φ as given and the other parameterized by φ that treats θ as given,
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δφ(s, a|θ) := Qφ(s, a)−
(
R(s, a) + γ

∫
s′
T (s, a, s′|θ)Vφ(s′)ds′

)
(4.2)

δθ(s, a|φ) := Q(s, a|φ)−
(
R(s, a) + γ

∫
s′
Tθ(s, a, s

′)V (s′|φ)ds′
)
. (4.3)

Updating our conciser notation, we now have

BRφ :=

∫
s∈S

∑
a∈A

δφ(s, a|θ) (4.4)

BRθ :=

∫
s∈S

∑
a∈A

δθ(s, a|φ). (4.5)

Finally, the objective is updated to match the new definitions.

minimizeθ,φ λT · LT + λπ · Lπ + ρT · BRθ + ρπ · BRφ (4.6)

This redefinition does not change the θ’s or φ’s that minimize our objective. In fact, the
evaluation of this objective is the same as before just with ρ = ρT + ρπ.

Algorithm A.2: Stop-Gradient Weighted Optimization

This change is implemented by defining two residual losses in our technical method, one with
stop gradients over the transitions and the other with stop gradients over evaluations of the
Q-function. With this alteration, we can weight δθ and δφ individually. Such granularity
allows us to effectively tune each antagonism separately – if the observed dynamics are being
quashed, the weight on δθ can be lowered, and if the Q-values are not being sufficiently
consistent with the dynamics, the weight on δφ can be raised without conflict. Though we
were eventually able to find some success with this method after putting the weights on
training schedules, the amount of fine tuning required to get it to work decently on a single
instantiation of a single environment led us to seek out a different approach.

Algorithm 1 Weighted Optimization IRLD
1: function IRLD(τ , weights)
2: θ ← MLE(Tθ|τ)
3: φ← Converged optimization of BRφ

4: objective← weights · [LT , Lπ,BRθ,BRφ]
ᵀ

5: Optimize objective to convergence
6: end function
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Algorithm B.0: Stop-Gradient Coordinate Optimization

Though the previous method showed glimmers of promise, that type of hyperparameter
tuning both may not be feasible in more complex cases and is highly dependent on the scale
of rewards and Boltzmann coefficient. We instead would like to have a method with minimal
tuning and scale-invariance. Towards this end we propose an iterative, coordinate descent
training regime for minimizing the IRLD objective. In the previous sections we have seen
numerous insidious local minima that seem to make up a Pareto frontier for the weighted
method. Intuitively, we would like to navigate around these local minima until we get close
to what we know the global optima looks like – very low negative action log-likelihood, a
negative transition log-likelihood close to what can be achieved by an MLE estimate over
the transitions, and a Bellman Residual that is essentially zero. A coordinate method, if
implemented properly, has the benefit of being able to explore beyond that Pareto frontier
and push towards this global minimum that we have constructed a priori. Designing the
coordinate method, however, is by no means a straightforward task. There are numerous
ways our optimizations could be ordered and combined (e.g. train on likelihoods only →
train on residuals only → train on both likelihoods and residuals, repeat). While we tested
many iterations of coordinate methods, in this paper we present a regime that reflects a
deductive reasoning approach to the problem of inferring the dynamics. Our method follows
the subsequent steps:

1. Start by ensuring that the dynamics model closely mirrors the observed dynamics in
the demonstrations and that the Q-function is initially fine tuned to these dynamics.
(optimize LT and BRφ)

2. Adjusts Qs to match the observed policy, almost assuredly increasing the Bellman
Residual. (optimize Lπ)

3. With the Bellman Residual high, instead of simply readjusting the Qs, lower the Bellman
Residual by manipulating the dynamics. In other words, adjust the dynamics to be
most consistent with the Qs inferred from the policy. (optimize BRθ)

4. Having updated the dynamics, ensure that they are in line with the observed dynamics.
Retrain the Q-function to generate values that are consistent with the dynamics model.
(optimize LT and BRφ)

5. Repeat the process by returning to step 2.

Fault line 3: Unintentional Training of Unobserved Dynamics

Looking to Figure 4.4, when the coordinate method reaches step 4 it erases much of what was
learned in step 3, even for the unobserved dynamics. Given that in our environment there
is no correlation between the two types of dynamics, in theory the unobserved dynamics
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Algorithm 2 Coordinate Descent IRLD
1: function IRLD(τ)
2: θ ← MLE(Tθ|τ)
3: φ← Converged optimization of BRφ

4: optimization_progression ← [ [Lπ], [BRθ], [LT ,BRφ] ]
5: while overall objective not sufficiently converged do
6: objective ← next(optimization_progression)
7: Optimize objective to convergence
8: end while
9: end function

Figure 4.4: The first two graphs from the left show the dynamics errors compared to ground
truth in the default grid world for Algorithm B.0. The rightmost graph directly shows the
difference between the observed and unobserved dynamics. Steep ticks downwards, meaning
the observed and unobserved dynamics are being brought together, occur each time the
algorithm starts optimizing LT and BRφ.

should not be impacted by optimizing the observed dynamics. The interconnectedness of
neural networks, however, makes it such that when trained only on states of type 0 and given
no explicit training to distinguish between states of type 0 and 1, the dynamics of type 1
states are pulled towards the dynamics of type 0 states. This effect is not limited to early
training where we expect the dynamics to be weakly differentiated; it occurs even after the
unobserved dynamics have been uniquely altered.

Objective Redefinition 3: Scale-Invariant Observed Dynamics Enforcement

As one step towards resolving Fault line 3 while also in part addressing Fault lines 1 and 2,
we would like to have an optimization term for the dynamics that more strictly enforces its
adherence to the observed behavior so that it is less dependent on fine-tuning to the scale of
other components of the objective. Inspired by the notion of Trust Regions used elsewhere in
Reinforcement Learning [18], on top of optimizing directly over the transition likelihoods we
propose a secondary constraint term that encourages the learned dynamics to remain close to
the Maximum Likelihood Estimation of θ over the observed transitions, which we denote as
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θ′, without optimizing so tightly so as to erase the learned unobserved dynamics. We include
a confidence measure ε that is proportional to the breadth of observation data.

DD
KL(θ, θ

′) := E(s,a,s′)∈D DKL (Tθ(s, a, s
′)‖Tθ′(s, a, s′)) (4.7)

DD
KL(θ, θ

′) < ε (4.8)

Critically, we note that the expected KL-divergence term is only calculated over (s,a,s’)
triplets in the demonstration space, we say nothing about the distributional distances for the
unobserved space. Also, as we have direct access to both probability functions, we calculate
the bidirectional KL-divergence to increase stability. We again relax this constraint and
adding it to the optimization objective, though this time with the hinge penalty method as it
is an inequality constraint.

minimizeθ,φ λT · LT + λπ · Lπ + ρT · BRθ + ρπ · BRφ + ρKL ·max(DD
KL(θ, θ

′)− ε, 0) (4.9)

In this way, by setting a high weight on ρKL we can effectively form an epsilon-ball of
acceptable dynamics exploration around the observed dynamics. We also find that the λT ·LT
term of this admittedly unruly objective is no longer required in practice. By adding this loss
term we functionally change the optimal values of θ and φ for our objective. As the loss term
is tied to data confidence, however, in the limit of data the optimal values are unchanged.
Furthermore, the correlation of ε to data confidence effectively builds a bubble of LT losses
that should be treated as equivalent.

Algorithm B.1: KL Coordinate Optimization

Given the effects we observed in Figure 4.4, we want to ensure that learned unobserved
dynamics are not immediately erased. Now that we have a roughly scale-invariant way of
adhering to the observed dynamics, we can have the Bellman residuals adjust the unobserved
dynamics without greatly changing the observed dynamics. We modify the coordinate training
regime to reflect the following outline:

1. Optimize LT and BRφ, θ′ ← θ

2. Optimize Lπ

3. Optimize BRθ and max(DD
KL(θ, θ

′)− ε, 0)

4. Optimize BRφ

5. Repeat the process by returning to step 2.

In practice we found that putting the KL ε on a schedule where it starts a few orders of
magnitude above our actual confidence level allows for more early exploration and a steadier
guiding towards the global optimum.
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Figure 4.5: Ground Truth and Learned Dynamics and Q-Values of grid world with known
optimal behavior

4.2 The Reckoning
In testing the robustness of our algorithm we would often first use our default grid world with
various dynamics settings (Figure 2.1) where optimal behavior is well-understood. When it
passed those initial tests we would then run it on a set of random grid worlds to get an idea
of how well it generalizes. Next on the stack of tests was an environment where no learning
should occur. We had not gotten this far until testing Algorithm B.1.

Figure 4.5 shows our method seemingly learning the ground truth dynamics. In Figure
4.6, our method appears to quickly learn the true Q-function and the dynamics. It clearly
beats the MLE baseline dynamics and the Q-values trained on those dynamics, evidently
learning the unobserved dynamics.

Figure 4.7 seems to show that in these environments, while the MLE baseline method
cannot infer the unobserved dynamics, our method consistently can, without suffering loss on
the accuracy of the Q-function or on the likelihood of the observed dynamics.

Lastly, we have a map where no learning of the unobserved dynamics should occur, as
the unobserved tile-types are too far removed from the start and goal tiles to influence the
observed policy. As seen in Figure 4.8, however, our method managed to learn the unobserved



CHAPTER 4. OF METHODS AND FAULT LINES 22

Figure 4.6: Q-Value and Dynamics errors compared to ground truth of grid world with known
optimal behavior

Figure 4.7: Q-Value and Dynamics errors compared to ground truth of randomly generated
grid worlds

Figure 4.8: Q-Value and Dynamics errors compared to ground truth in a carefully crafted
map where no learning of the unobserved dynamics should be possible.
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Figure 4.9: The dynamics that result from training only over BRθ after initializing θ to the
MLE estimate and φ to the converged Q-values for θ.

dynamics. This counter-intuitive failure of the method illuminated two extremely important
fault lines when optimizing the IRLD objective.

Fault line 4: Limited Action Likelihood Propagation

Though this fault line does not explain the failure we observe in Figure 4.8, it was stumbled
upon while searching for the source of the failure. In step 2 of the outlines of both Algorithm
B.0 and Algorithm B.1, the action likelihoods are optimized over. In step 3, the dynamics
are adjusted to better fit the action likelihood influenced Q-values. Quite crucially, however,
those Q-values are not consistent (and we did not expect them to be). What this means for
fitting a dynamics model to them, however, is that the Q-values in unobserved states are not
updated, so there should be no dynamics model that makes the Q-values consistent. What
we should instead be optimizing over are the Q-values induced by following the observed
policy under the current dynamics model.

Fault line 5: Default Response to Optimizing BRθ

Given the definition of BRθ, optimizing it on its own while the value is high is almost
guaranteed to push all dynamics to mirror those of the NOOP action if there is one. To see this,
consider the case when BRθ is being optimized immediately following Lπ. The value of BRθ will
be high with Q-values that are not consistent. Seeing as Q-values cannot be updated during
this stage of optimization, the dynamics will be updated to push γ

∫
s′
Tθ(s, a, s

′)V (s′|φ)ds′ as
close to the static Q(s, a|φ) term as possible. Almost always, the θ that accomplishes this is
one which puts all the probability mass on any action keeping the agent in the same state, as
V (s|φ) is likely to be closest to Q(s, a|φ) of all the possible next states. The experiment in
Figure 4.9 verifies this intuition. This fault line makes for a difficult roadblock to coordinate
methods, as the whole point of optimizing BRθ on its own (or alongside the transition KL
term) is so that the action likelihood weighted Q-values are not immediately overwritten by
BRφ, but BRφ is also the only way to propagate the changes made by BRθ.
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Objective Redefinition 4: Distance from Q-values Induced by Observed Policy

As described in Fault line 4, we should be keeping an updated Q-function induced by the
observed policy to make meaningful dynamics model updates. We define this induced
Q-function as satisfying the following Bellman policy equations:

πO ← MLE(πφ|D) (4.10)

QπO(s, a) = R(s, a) +

∫
s′
Tθ(s, a, s

′)V πO(s′) (4.11)

V πO(s) :=
∑
a

πO(a|s′)QπO(s, a) (4.12)

The goal of this addition is to propagate the effects of adhering to the observed policy across
the entire MDP, not just in the observed trajectory states. As such, we define a new loss
term that can exert this more holistic pressure on the learned Qs:

LQ = ‖QπO(s, a)−Qφ(s, a)‖2 (4.13)

The QπO(s, a) component is still analytical, however, so we need a parameterization for
it. Treating these Bellman policy equations in the same fashion as the original Bellman
equations, we have the following definitions that will feed into to new optimization terms:

QπO(s, a) := Qφ̂(s, a) (4.14)

δφ̂(s, a|θ) := Qφ̂(s, a)−
(
R(s, a) + γ

∫
s′
T (s, a, s′|θ)V πO

φ̂
(s′)ds′

)
(4.15)

δθ(s, a|φ̂) := Q(s, a|φ̂)−
(
R(s, a) + γ

∫
s′
Tθ(s, a, s

′)V πO(s′|φ̂)ds′
)
. (4.16)

Putting this in terms of our conciser notation, we now have

BRO
φ̂
:=

∫
s∈S

∑
a∈A

δφ̂(s, a|θ) (4.17)

BRO
θ :=

∫
s∈S

∑
a∈A

δθ(s, a|φ̂). (4.18)

Future Methods

Though we do not have any noteworthy findings to report for Objective Redefinition 4, it is
an area that we are actively exploring. Fault line 5 made clear that coordinate methods with
BRθ at their core are doomed to fail, but we think there may be hope yet for the coordinate
method when it makes use of some variant of LQ. Fault lines 1-4 are all sufficiently addressed
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given our slew of adjustments to the objective, with the separation of BRθ and BRφ and the
addition of LQ seeming to be the most central to overcoming them. Fault line 5, however,
calls attention to a deeply fundamental concern that is very difficult to reason about in this
high-dimensional problem space. In SERD and ED, learning the unobserved dynamics comes
via solving the recursive definition of the Q-value. With this generalized approach we sought
to bypass that recursion by directly optimizing over the relaxed objective. Though this type
of optimization saw some success in [16], their method learned internal dynamics with access
to external dynamics, which they used to regularize the learned internal dynamics. This
heavy prior on the dynamics massively reduces the scope of local minima encountered and
may also aid in propagating gradients to the unobserved dynamics.

As a final aside, we would be remiss to not mention the countless hours put into imple-
menting, testing, and theorizing about the Mutliple Gradient Descent Algorithm (MGDA) [6,
11]. Inspired by the approach used in [19], where they implemented MGDA for a multi-task
computer vision problem, we had hoped that we would be able to transform our objective
function riddled with local minima into multiple objectives that could be balanced sepa-
rately. After extensive experimentation, however, we could not find an implementation that
meaningfully handled any combination of the numerous objective terms that we developed.
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Chapter 5

Discussion and Conclusions

5.1 Capability Inference Contextualized
As seen in the rise of fields, and conferences in turn, surrounding AI, Machine Learning, ethics,
and other social issues, there is increasing social and academic concern for the potential
and realized impacts of developments in AI and ML. Though this work has not centered on
questions of immediate interest to those fields, we think it is important for us to both do our
due diligence in considering the potential impacts of our contribution and to signal a vote of
confidence to the work being done in those communities.

Human Modeling for Inclusion or Control?

In the motivation we gave for this work, we discussed how having a mis-specified human model
can lead to a number of breakdowns in human-robot interaction. As with most technologies,
we can expect that robots developed with an explicit model of a ’normal’ human will lead to
a disproportionate number of breakdowns for disabled persons [8]. This project is an early
attempt at designing robotics for inclusion, and is just one of many exploratory attempts
to make human-robot interaction more inclusive in a broader sense (e.g. [21, 23, 20, 2]).
Importantly, these efforts are not limited to just robots designed explicitly for rehabilitation
and assistance, some of this work is being done for implementation on general social robots,
suggesting a trend towards inclusion in robotics research.

We must not, however, forget the political reality of AI research today. The main
commercial use of AI and ML is in advertising, recommendation systems, and data analytics.
In these contexts, the contexts in which IRLD will most realistically be used, our research
helps enable something much more questionable. As Zuboff [27] details, large tech firms’
accrual of greater and greater amounts of personal data enables not only behavioral prediction,
but behavioral modification that translates into both large profits and reliable social control,
however unintentional or well-meaning. Our method could reasonably exacerbate this trend,
enabling the deeply objectionable practice of learning about not just what a platform observes
a user do, but also what is unobserved.
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While it is highly unlikely that our method could be refined to the point where it could
learn about user activities outside the platform (Google, Facebook, Amazon, and Apple
already have numerous ways of accomplishing this anyways), our main concern is that it could
be used to learn a functional representation of the "human dynamics" of a user interacting
with a platform. This functional representation would be largely opaque, but it could be
used to optimize what is shown to the user and what is not towards some goal. We already
see this happening with the Facebook Newsfeed and Youtube Autoplay, where rough human
models are optimized over to increase "engagement" or "attention." This is an extremely
worrying trend, as the learned behaviors of the systems have little to no human oversight.
Just earlier this year we saw that the unfettered optimization of "engagement" by Youtube’s
recommendation algorithm fostered the growth of pedophilia rings.

All of this being said, we do not believe that IRLD can be classified as one of Winner’s
"inherently political technologies" [24] – we have already discussed two very different possible
use cases, one that is highly centralized with the power to diminish autonomy, and another
that is rather decentralized with potential for empowerment. IRLD is instead imbued with
the politics of its context, so we ask future practitioners to reflect on the values and stated
goals of their task before building on this work.

5.2 Conclusion
In this thesis we presented a formalization of the problem of inferring the dynamics from
unobserved parts of the environment. We formulated multiple objectives that could be
parameterized with deep neural networks and optimized via gradient decent. We similarly
proposed multiple methods to get around the empirical difficulties of optimizing such a complex
objective, though none were generally successful. It is our hope that our contributions lay the
foundation for future work extending to applications in inferring the dynamics limitations of
humans in real-wold environments.

https://www.buzzfeednews.com/article/ryanmac/youtube-disables-comments-videos-kids-pedophiles-self-harm
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