
Building a Target Recognition Pipeline for Mechanical
Search and Algorithmically Generating Adversarial Grasp

Objects with Minimal Random Perturbations

David Wang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-94
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-94.html

May 22, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Building a Target Recognition Pipeline for Mechanical Search and
Algorithmically Generating Adversarial Grasp Objects with Minimal Random

Perturbations

by

David Wang

A technical report submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor Trevor Darrell

Spring 2019

Building a Target Recognition Pipeline for Mechanical Search and
Algorithmically Generating Adversarial Grasp Objects with Minimal Random

Perturbations

Copyright 2019
by

David Wang

1

Abstract

Building a Target Recognition Pipeline for Mechanical Search and Algorithmically
Generating Adversarial Grasp Objects with Minimal Random Perturbations

by

David Wang

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Robots will become more prevalent in industry and our everyday lives as we continue on
the current trend of automation. In a variety of settings, robots need to robustly interact
with their environment to successfully accomplish various tasks. Towards this goal of robust
robotic systems, I have worked on two projects during the course of my master’s studies.

The first project is Mechanical Search, a class of tasks that requires a robot to locate
and extract a target object. We implement a physical system for a particular instance of the
Mechanical Search problem that involves retrieving a target object from a heap of objects
in a bin by leveraging recent advancements in computer vision and using action primitives
such as grasping and pushing. For this project, I worked on improving and evaluating the
target recognition segment of the pipeline through experiments with varying Siamese network
architectures and dataset augmentation techniques.

The second project is Adversarial Grasp Objects, in which we explore an analog of
adversarial images in the domain of robust robot grasping to synthesize objects that are
difficult for a robot to grasp, but appear similar in shape to existing objects. By doing so, we
can analyze the failure modes of a grasp planner. We explore two algorithms for generating
such objects: an analytical algorithm and a deep learning algorithm. For this project,
I developed one variant of the analytical algorithm that minimally perturbs vertices on
antipodal faces in randomly sampled directions subject to geometric constraints to maintain
similarity to the input object. I also conducted experiments and analyses on the objects
generated by both types of algorithms and evaluated adversarial grasp objects on a physical
system.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1

2 Mechanical Search 2
2.1 Overview . 2
2.2 Individual Contributions . 2
2.3 Related Work . 4
2.4 Problem Formulation . 4
2.5 Perception and Decision System . 5
2.6 Target Recognition: Siamese Networks . 7
2.7 Target Recognition Experiments . 10
2.8 Physical Experiments . 14
2.9 Discussion . 17

3 Adversarial Grasp Objects 18
3.1 Overview . 18
3.2 Individual Contributions . 19
3.3 Related Work . 20
3.4 Problem Statement . 21
3.5 Analytical Algorithm: Minimal Random Vertex Perturbations 23
3.6 Deep Learning Algorithm: CEM + GAN . 25
3.7 Simulation Experiments . 27
3.8 Physical Experiments . 32
3.9 Discussion . 35

4 Conclusion 36
4.1 Mechanical Search . 36
4.2 Adversarial Grasp Objects . 37

ii

Bibliography 38

iii

List of Figures

2.1 Mechanical Search Overview. To locate and extract the target object from the
bin, the system selects between 1) grasping objects with a parallel-jaw gripper,
2) pushing objects, or 3) grasping objects with a suction-cup gripper until the
target object is extracted, a time limit is exceeded, or no high-confidence push or
grasp is available. 3

2.2 Mechanical Search System Architecture. At each timestep, the perception system
attempts to segment and locate the target object, while the decision system
decides which object to manipulate and which action primitive to use. This
process continues until the target object is retrieved. 6

2.3 Target Recognition Overview. From the original bin image, we use SD Mask-
RCNN [13] to obtain color masks of individual segmented objects in the bin.
Given several images of varying viewpoints and stable poses of the target object,
the goal is then to find the color mask that corresponds to the target object if it
is currently visible in the bin. 8

2.4 Siamese Network Dataset Examples. In the target recognition task, we are trying
to match unoccluded images of a target object to a (possibly occluded) image of
the target object in the bin. Thus, some examples in the dataset include rotations
of the object and simulated occlusions to attempt to train a more robust neural
network for object matching. 8

2.5 Siamese Network Baseline Architecture. We take the element-wise L1 distance
between ResNet featurization vectors of the two images and learn a single fully
connected layer to the output probability that the two images are of the same
object. The vertical double arrows represent shared weights in the neural network. 9

2.6 Siamese Network Learned Metric Architecture. We use several fully connected
layers after concatenating the ResNet feaurizations of the two input image, giving
the neural network sufficient capacity to learn its own distance metric between
featurizations to come up with an output probability. The vertical double arrows
represent shared weights in the neural network. 10

iv

2.7 Triplet Example for Training Embedding Network. A triplet consists of an anchor,
positive, and negative images, where the anchor and positive are of the same
object, and the negative is a different object. The goal is to learn an embedding
such that the Euclidean distance between the embeddings of the anchor and the
positive is closer than those of the anchor and the negative. 10

2.8 Siamese Network Learned Embedding Architecture. We use a custom embedding
network that converts the ResNet featurizations of the two input images to cus-
tom featurizations. Then, we use fully connected layers after concatenating the
featurizations of the two input image to allow the network to learn a metric on
the custom embeddings. The vertical double arrows represent shared weights in
the neural network. 11

2.9 Data Augmentation Examples. Top Row: original image and images resulting
from applying histogram equalization, Gaussian noise, and salt and pepper noise.
Bottom Row: four different lookup-table transformations that simulate variations
in lighting and color. 13

2.10 Example of More Realistic Object Occlusions. Left: original image. Middle:
binary mask of an object in a synthetic dataset. Right: resulting image after
overlaying the binary mask of the original image to simulate occlusion. 14

2.11 Mechanical Search Physical Experiment Results. Performance of policies on real
heaps of 15 objects. The largest-first search policies are the most efficient, and
are able to extract the target object in the least number of actions. All policies
have similar reliability, although pushing shows potential to avoid more failures
in simulation. The human was allowed to look at the RGBD image inputs and
choose an object to push or grasp. Means and standard deviations for successful
extractions are shown in parentheses for each policy. 16

3.1 Adversarial Grasp Objects Overview. The most robust 25 of 100 parallel-jaw
grasps sampled on each object are displayed as grasp axes colored by relative
reliability on a linear gradient from green to red. Left: original object from a
synthetic intersected prisms dataset. Middle: adversarial object generated by
an analytical algorithm. Right: adversarial object generated by a deep learning
algorithm. 19

3.2 GAN Architecture. The generator takes in a random noise vector of length 200
and outputs an SDF representation of a 3D object of resolution 32×32×32. The
discriminator takes in batches of SDF representations of 3D objects from either
the training dataset or samples from the the generator network and attempts to
distinguish between the two. 26

3.3 Analytical Algorithm Graspability Distributions. We show the distribution of
graspabilities for 100 objects from each of the three datasets for the original
versions as well as adversarial versions using α = 10, α = 15, and α = 20
for the shape similarity constraint. Left: intersected cylinders dataset. Middle:
intersected prisms dataset. Right: ShapeNet bottles dataset. 28

v

3.4 Analytical Algorithm Examples. We show the progression of an example from
each dataset as we increase the surface normal constraint angle α: each row (from
left to right) shows the original object and then the perturbed versions using the
surface normal constraint with α = 10, α = 15, and α = 20, respectively. The
objects have been smoothed for visualization purposes with OpenGL smooth
shading. Top Row: example from intersected cylinders dataset. Middle Row:
example from intersected prisms dataset. Bottom Row: example from ShapeNet
bottles dataset. 29

3.5 CEM + GAN Algorithm Graspability Distributions. We show the distribution of
graspabilities for 100 objects from each of the three datasets after varying number
of training and resampling iterations. As the algorithm progresses through the
episodes, the probability mass shifts towards lower graspability. Left: intersected
cylinders dataset. Middle: intersected prisms dataset. Right: ShapeNet bottles
dataset. 30

3.6 CEM + GAN Algorithm Examples. Left: sample object from the original inter-
sected prisms dataset. Middle: sample from the GAN output distribution after
fitting the geometric prior. Right: sample from the GAN output distribution
after several resampling iterations. The CEM + GAN algorithm tends to reduce
graspability of objects through larger structural changes. The objects have been
smoothed for visualization purposes with OpenGL smooth shading. 31

3.7 Cube Objects for Physical Experiments. Left to Right: original cube and then
adversarial versions of 10, 15, and 26 degrees for θ. For the adversarial cubes, we
only show the distorted faces; the remaining faces are unchanged. 33

3.8 Cuboctahedron Objects for Physical Experiments. Left to Right: original cuboc-
tahedron and then adversarial versions of 10, 15, and 26 degrees for θ. These
were generated by a version of the analytical algorithm. 33

3.9 Adversarial Intersected Cylinder Objects for Physical Experiments. These objects
were generated by the CEM + GAN method. 34

3.10 Objects and Gripper for Physical Experiments. Left: 3D printed objects used
in physical experiments. Right: gripper used to simulate point contacts on a
physical system. 34

vi

List of Tables

2.1 Siamese Network Results on Held-Out Objects. The Learned Metric architecture
performs best on objects not seen in the training dataset. 12

2.2 Siamese Network Architecture Results on WISDOM. On WISDOM [13], a dataset
to better simulate the target recognition task in Mechanical Search, the Learned
Metric architecture performs significantly better than the others. 12

2.3 Learned Metric Siamese Network Architecture Results with Additional Strategies.
The data augmentation strategies actually hurt performance, but using the more
realistic object occlusions slightly increases performance. 14

3.1 Analytical Algorithm Graspability Results. We report the mean normalized
graspibility for 100 objects on each of the three datasets for shape similiarity
constraints using α = 10, α = 15, and α = 20. The analytical algorithm is able
to decrease graspability on objects from all three datasets. 28

3.2 CEM + GAN Algorithm Graspability Results. We report the mean normalized
graspibility for 100 objects generated by the learned model for each of the three
datasets at various stages in the algorithm. The “Before Resampling” column
shows the graspability after fitting a generative model to the geometric prior,
and the “End of Training” column shows the graspability after several alternating
training and resampling iterations. The CEM + GAN Algorithm is able to learn
a distribution of objects with reduced graspability for all three datasets. 30

3.3 Smoothing Experiment Graspability Results. Comparison of the normalized
mean graspability (reported with 95% confidence intervals) of objects generated
by both the analytical algorithm and the GAN algorithm before and after Lapla-
cian smoothing. After smoothing, the objects generated by the GAN have lower
graspability metrics than the corresponding objects generated by the analytical
algorithm for all three datasets, which suggests that the GAN generates more
global adversarial geometries, whereas the analytical algorithm uses local surface
roughness to reduce graspability. 32

3.4 Physical Experiments on Cubes. We attempted 5 grasps with 3 trials each for
each object and report the number of successful grasps on each object. 35

vii

Acknowledgments

First, I would like to thank my research advisor, Professor Ken Goldberg, for the opportunity
to conduct research in the AUTOLAB over the past two years. Through working on various
projects, I have grown a lot, both as a student and as a person. I greatly admire Professor
Goldberg’s curiosity, creativity, and passion for research, and his insights, feedback, and
guidance have helped me tremendously in my projects. I also thank him for pushing me to
improve in other areas as well, such as developing better presentation and communication
skills.

Much of the work in this technical report is the result of collaboration with other lab
members. I would like to thank David Tseng, Jeff Mahler, Ashwin Balakrishna, Yiding
Jiang, Pusong Li, Michael Danielczuk, Matthew Matl, Kate Sanders, and Menglong Guo for
their helpful suggestions and their work on these projects. I would especially like to thank
David Tseng, whom I have worked closely with on several projects over the past several
years, for all the conversations and debates and for being a great friend. I would also like to
thank other lab members I had the pleasure of working with in the past: Carolyn Matl, Jim
Ren, and Michael Laskey. Thank you all for contributing to a friendly, collaborative, and
fun research environment.

In addition, I would like to thank Professor Trevor Darrell for taking the time to serve
as a second reader for my technical report.

I would also like to thank my friends for supporting me and for the fun memories over
the last five years at Berkeley. Finally, I would like to thank my family for their continual
love and support throughout my life. Mom, Dad, and Brian, thank you for always being by
my side, celebrating accomplishments with me and helping guide me through the difficulties.

1

Chapter 1

Introduction

As we move forward in time, robots will play an increasingly larger role in a variety of
environments, ranging from industrial warehouses to homes. In a variety of applications,
robots need the ability to effectively interact with their surroundings to accomplish tasks,
such as searching for or grasping objects, even in the presence of uncertainty.

Through the course of my master’s studies, I have worked on making progress towards
building robust robotic systems through two projects. The first involves the Mechanical
Search problem [12], a class of tasks that requires a robot to locate and extract a known
target object in a heap of objects. For this project, I worked on developing a robust computer
vision system based on a Siamese neural network [32] to reliably identify the desired target
object from an image of a heap of objects with possible occlusions.

The second project involves studying how to improve learning-based grasp planners by
algorithmically synthesizing objects that are difficult to grasp, but still similar in shape to
existing objects. We call such objects “adversarial grasp objects” [64], analogous to adver-
sarial images in the computer vision domain, which are images that visually look similar to
original images, but actually fool an image classifier. We study two variants of algorithms for
generating adversarial objects: an analytical algorithm where we perform small perturba-
tions to vertex locations of existing objects subject to geometric constraints to enforce shape
similarity, and a deep-learning based where we use generative adversarial networks (GANs)
[20] and the cross-entropy method (CEM) [14] to synthesize a distribution of adversarial
objects using a set of objects (i.e., bottles or prisms) as a geometric prior.

These two projects have been the result of collaboration with many fellow lab mem-
bers. In this report, I describe some of the greater context of the work in addition to my
contributions to these projects.

2

Chapter 2

Mechanical Search

2.1 Overview

In unstructured settings such as warehouses or homes, robotic manipulation tasks are often
complicated by the presence of dense clutter that obscures desired objects. Whether a robot
is trying to retrieve a can of soda from a stuffed refrigerator or pick a customer’s order from
warehouse shelves, the target object is often either not immediately visible or not easily
accessible for the robot to grasp. In these situations, the robot must interact with the
environment to localize the target object and manipulate the environment to expose and
plan grasps. Mechanical Search describes a class of tasks where the goal is to locate and
extract the target object, and poses challenges in visual reasoning, task, motion, and grasp
planning, and action execution.

Significant progress has been made in recent years on sub-problems relevant to Mechan-
ical Search. Deep-learning methods for segmenting and recognizing objects in images have
demonstrated excellent performance in challenging domains [24, 46, 59] and new grasp plan-
ning methods have leveraged convolutional neural networks (CNNs) to plan and execute
high-quality grasps directly from sensor data [34, 21, 40]. By combining object segmen-
tation and recognition methods with action selectors that can effectively choose between
different motion primitives in long horizon sequential tasks, multi-step policies can search
for a target object and extract it from clutter. In this project, we propose a framework that
integrates perception, action selection, and manipulation policies to address a version of the
Mechanical Search problem shown in Figure 2.1.

2.2 Individual Contributions

Several of these sections are adapted from our publication for the Mechanical Search project
[12], which will appear in at the 2019 IEEE International Conference on Robotics and Au-
tomation (ICRA). This work is the result of collaboration with Michael Danielczuk, Andrey

CHAPTER 2. MECHANICAL SEARCH 3

Figure 2.1: Mechanical Search Overview. To locate and extract the target object from the
bin, the system selects between 1) grasping objects with a parallel-jaw gripper, 2) pushing
objects, or 3) grasping objects with a suction-cup gripper until the target object is extracted,
a time limit is exceeded, or no high-confidence push or grasp is available.

Kurenkov, Ashwin Balakrishna, Matthew Matl, Kate Sanders, Dr. Roberto Mart́ın-Mart́ın,
Dr. Animesh Garg, Professor Silvio Savarese, and Professor Ken Goldberg.

My work on this project involved developing and evaluating the target recognition seg-
ment of the Mechanical Search pipeline through experimentation with varying architectures,
dataset augmentation techniques, and training strategies. My contributions to this project
are detailed in Sections 2.6 and 2.7. I also assisted in running the physical experiments in
Section 2.8.

The core team leading the Mechanical Search project consists of Michael Danielczuk,
Andrey Kurenkov, Ashwin Balakrishna, and Matthew Matl. They developed the formulation
of the Mechanical Search problem in Section 2.4, much of the design and implementation of
the pipeline described in Section 2.5 for a particular instance of Mechanical Search involving
retrieval of a target object from a heap of clutter, and the infrastructure of the physical
experiments in Section 2.8.

In particular, I would like to highlight several contributions that were integral to my part
of the project. Matthew Matl developed the initial version of the target recognition pipeline
that provided a starting point for me to improve upon. Ashwin Balakrishna provided lots
of valuable suggestions in our weekly meetings for this project. Kate Sanders assisted in
labeling data and conducting additional experiments on the target recognition pipeline.

Dr. Roberto Mart́ın-Mart́ın, Dr. Animesh Garg, Professor Silvio Savarese, and Professor
Ken Goldberg were the advisors for this project. I would like to thank Professor Goldberg

CHAPTER 2. MECHANICAL SEARCH 4

in particular for providing suggestions and insights on my portion of the project.

2.3 Related Work

Perception for Sequential Interaction

Searching for an object of interest in a static image is a central problem in active vision [62,
54, 45]. There has also been work on optimizing camera positioning for improving visual
recognition (i.e., active perception [4, 3]) and embodied interactions to explore (i.e., interac-
tive perception [6, 22]). Mechanical Search differs from prior works in interactive perception
in that it deals with long grasping sequences.

Recent deep learning based methods achieve remarkable success in segmentation of
RGB [55, 51] and depth images [10], as well as in localizing visual templates in unclut-
tered [32, 63] and cluttered scenes [59, 46]. Furthermore, one-shot learning approaches using
Siamese Networks for matching a novel visual template in images [32, 63] can translate well
to pattern recognition in clutter [59, 46]. We build on Mask R-CNN [24] by training a vari-
ant for depth-image based instance segmentation and leverage a Siamese network for target
template matching for localization.

Other Related Work

Mechanical search also touches other areas, such as grasping and manipulation in clutter,
sequential decision making, and search-based methods. As this report primarily focuses on
the perception portion of the Mechanical Search pipeline, we refer the reader to [12] for a
more comprehensive survey of existing work in these other areas.

2.4 Problem Formulation

In Mechanical Search, the objective is to retrieve a specific target object (x∗) from a physical
environment (E) containing a variety of objects X within task horizon H while minimizing
time. The agent is initially provided with a specification of the target object in the form of
images, text description, a 3D model, or other representation(s). We can frame the general
problem of Mechanical Search as a Partially Observable Markov Decision Process (POMDP),
defined by the tuple (S,A, T ,R,Y).

• States (S). A bounded environment E at time t containingN objects st = {O1,t, ...,ON,t}.
Each object state Oi,t includes a ground truth triangular mesh defining the object ge-
ometry and pose. Each state also contains the pose and joint states of the robot as
well as the poses of the sensor(s).

• Actions (A). A fixed set of parameterized motion primitives.

CHAPTER 2. MECHANICAL SEARCH 5

• Transitions (T). Unknown transition probability distribution P : S × S × A →
[0, ∞).

• Rewards (R). Function given by Rt = R(st, at) → R at time t that estimates the
change in probability of successfully extracting the target object x∗ ∈ X within task
horizon H.

• Observations (Y). Sensor data, such as an RGB-D image, yt from robot’s sensor(s)
at time t (see Figure 2.1).

In this project, we focus on a specific version of Mechanical Search: extracting a target
object specified by a set of k RGB images from a heap of objects in a single bin while mini-
mizing the number of actions needed. For this problem, we precisely specify the observations,
the action set, and the reward function. All other aspects of the problem formulation are
sufficiently captured by the general POMDP formulation above.

• Observations. An RGB-D image from an overhead camera.

• Actions.

– Parallel Jaw Grasping: A center point p = (x, y, z) ∈ R3 between the jaws,
and an angle in the plane of the table ϕ ∈ S1 representing the grasp axis [41].

– Suction Grasping: A target point p = (x, y, z) ∈ R3 and spherical coordinates
(ϕ, θ) ∈ S2 representing the axis of approach of the suction cup [42].

– Pushing: A linear motion of the robot end-effector between two points p and
p′ ∈ R3.

• Reward. Let vt, derived from yt, denote the estimated grasp reliability on the target
object. An intuitive reward function would be the increase in estimated grasp reliability
on the target object:

R(st, at) = vt+1 − vt
The policies used in this project do not directly optimize this reward function because it
is difficult to compute; instead, they continue to remove and push objects via heuristic
methods until the target object is extracted.

2.5 Perception and Decision System

We implement the system shown in Figure 2.2 for physical experiments for the specific
instance of Mechanical Search described in Section 2.4 for retrieving a target object from a
heap of clutter. The system consists of a perception system and a decision system.

CHAPTER 2. MECHANICAL SEARCH 6

Figure 2.2: Mechanical Search System Architecture. At each timestep, the perception system
attempts to segment and locate the target object, while the decision system decides which
object to manipulate and which action primitive to use. This process continues until the
target object is retrieved.

Perception

The system first processes the RGB-D image into a set of segmentation masks using an
object instance segmentation pipeline trained on synthetic depth images. Then, a Siamese
network is used to attempt to identify one of the masks as the target object, and a target
mask is returned if a high confidence match is found. If no high confidence match is found,
the perception system reports that no masks match the target object.

Object Instance Segmentation We first compute a mask for each object instance. Each
mask is a binary image with the same dimensions as the input RGB-D image. These masks
are computed with SD Mask R-CNN, a variant of Mask R-CNN trained exclusively on
synthetic depth images [13]. It converts a depth image into a list of unclassified binary
object masks, and generalizes well to arbitrary objects without retraining. Recent results
suggest that depth cues alone may be sufficient for high-performance segmentation, and this
network’s generalization capabilities are beneficial in a scenario where only the target object
is known and many unknown objects may be present.

Target Recognition Next, the set of masks is combined with the RGB image to create
color masks of each object. Each of the m color masks is cropped, scaled, rotated, and
compared to each of the k images in the target object image set using a Siamese network [32].
For each pair of inputs, the Siamese network outputs a recognition confidence value between 0
and 1, with a mask’s recognition confidence score set to the maximum recognition confidence
value over the k target object images. If the mask with the highest score has a score above
recognition confidence threshold tr, the mask is labeled as the target object. Otherwise, we
report that no masks match the target object. The following sections of this technical report
further detail this part of the pipeline.

CHAPTER 2. MECHANICAL SEARCH 7

Search Policy

Given the RGB-D image and the output of the perception pipeline, the system executes
the next action in the search procedure by selecting the object to act on and the action to
perform on it.

Action Selection The search policy first determines which object masks to send to the ac-
tion policies. Then, using the actions and associated quality metric returned by the low level
policies, the high level planner determines whether to execute the action in the environment.

The action selector takes as input from the perception system the set of all m visible
object masks ([o1, . . . om]), possibly including an object mask that is positively identified as
the target object (oT), from the perception system. It then selects an action policy and a
goal object, ogoal, from [o1, . . . om] and sends the action policy a query q(ogoal). The action
policy pi responds with an action ai = pi(ogoal) and a quality metric Q(ai, ogoal) for the
action, which is used to decide whether to execute the action.

Action Policies Each action policy pi takes as input an object mask from the action
selector (ogoal) and the RGBD image observation and returns an action ai = pi(ogoal) and a
quality metric Q(ai, ogoal). In physical experiments, depth images are obtained using a depth
sensor and object masks are generated by the perception pipeline. The set of action policies
in our system are parallel jaw grasping, suction grasping, and pushing.

2.6 Target Recognition: Siamese Networks

In this section, we describe the approach we used to develop target recognition segment of
the Mechanical Search pipeline. Figure 2.3 shows an illustration of the task: after obtaining
color masks of the individual objects in the bin using SD Mask-RCNN [13], the goal is then
to find the mask that best matches the target object. We utilize a Siamese network [32] that
takes in two RGB images and outputs the probability that the two masks are of the same
object.

Dataset

To create a dataset to train the Siamese network, we first take 5 RGB images of common
household objects, such as toys and tools, in varying stable poses. For the target recognition
task, we need to be able to match complete images of the target images to extracted masks of
objects in the bin, which may be occluded. Thus, some positive pairs of images consist of an
unoccluded image of an object and the same view of the object with a simulated occlusion:
we randomly draw a line through the object and only keep the pixels on one side of the line,
such that at least 30% of the pixels of the original object remain (so that the remaining
object is still recognizable). Some negative pairs of images consist of an unoccluded image

CHAPTER 2. MECHANICAL SEARCH 8

Figure 2.3: Target Recognition Overview. From the original bin image, we use SD Mask-
RCNN [13] to obtain color masks of individual segmented objects in the bin. Given several
images of varying viewpoints and stable poses of the target object, the goal is then to find
the color mask that corresponds to the target object if it is currently visible in the bin.

Figure 2.4: Siamese Network Dataset Examples. In the target recognition task, we are trying
to match unoccluded images of a target object to a (possibly occluded) image of the target
object in the bin. Thus, some examples in the dataset include rotations of the object and
simulated occlusions to attempt to train a more robust neural network for object matching.

of an object and a occluded image of an entirely different object, using the same occlusion
strategy as before. Finally, we also include positive and negative example pairs without any
occlusion, as it is also possible for the target object to be fully visible in the bin. Figure 2.4
show both positive and negative dataset examples.

CHAPTER 2. MECHANICAL SEARCH 9

Siamese Network Architectures

We utilize a Siamese network for the target recognition task to output the probability that
two given images are of the same object. The two images are passed through identical layers
in the neural network, and the resulting activations are then combined in some manner to
form the final prediction. As a starting point, we use ResNet [23] as a feature extractor for
the images before further processing the features.

We consider several Siamese network architectures:

• Baseline: For a baseline architecture, after obtaining the ResNet featurizations of both
images, we take the absolute value of the difference between corresponding elements
in the feature vectors (element-wise L1 distance). Then, we have a fully connected
layer with one output neuron for the final predicted probability. Figure 2.5 shows an
illustration of the network.

Figure 2.5: Siamese Network Baseline Architecture. We take the element-wise L1 distance
between ResNet featurization vectors of the two images and learn a single fully connected
layer to the output probability that the two images are of the same object. The vertical
double arrows represent shared weights in the neural network.

• Learned Metric: Similar to the baseline architecture, we first obtain the ResNet
featurizations of both images. Then, the featurizations are concatenated and followed
by two fully connected layers, one with 1024 neurons and one with 1 neuron for the
final output. This method is motivated by Zagoruyko et al. [67] to allow the network
to learn its own distance metric between the featurizations through the fully connected
layers. Figure 2.6 shows an illustration of the network.

• Learned Embedding: Similar to the previous two architectures, we first obtain the
ResNet featurizations of both images. Then, the featurizations are passed through
a custom embedding network consisting of two fully connected layers with 128 and
64 neurons. This network is trained separately using the triplet loss with semi-hard
negative mining [58], and Figure 2.7 shows an example of a triplet used to train the

CHAPTER 2. MECHANICAL SEARCH 10

Figure 2.6: Siamese Network Learned Metric Architecture. We use several fully connected
layers after concatenating the ResNet feaurizations of the two input image, giving the neural
network sufficient capacity to learn its own distance metric between featurizations to come
up with an output probability. The vertical double arrows represent shared weights in the
neural network.

embedding. Afterwards, the featurizations are concatenated and the rest of the archi-
tecture is the same as the Learned Metric architecture. Figure 2.8 shows an illustration
of the network.

Figure 2.7: Triplet Example for Training Embedding Network. A triplet consists of an
anchor, positive, and negative images, where the anchor and positive are of the same object,
and the negative is a different object. The goal is to learn an embedding such that the
Euclidean distance between the embeddings of the anchor and the positive is closer than
those of the anchor and the negative.

2.7 Target Recognition Experiments

We trained the Siamese network architectures in Section 2.6 using the following experimental
setup. Each Siamese network architecture involves first passing each input 512 × 512 RGB

CHAPTER 2. MECHANICAL SEARCH 11

Figure 2.8: Siamese Network Learned Embedding Architecture. We use a custom embed-
ding network that converts the ResNet featurizations of the two input images to custom
featurizations. Then, we use fully connected layers after concatenating the featurizations of
the two input image to allow the network to learn a metric on the custom embeddings. The
vertical double arrows represent shared weights in the neural network.

image through a ResNet-50 architecture pretrained on ImageNet. During training of the
Siamese network, these weights remained fixed. In all subsequent layers besides the output
layer, the ReLU activation function is used. In the output layer, the sigmoid activation
function is used to obtain an output between zero and one. The training dataset for the
Siamese network consists of 5 views of each of the objects used in physical experiments. For
each view, we generated a total of 10 additional images: 5 randomly rotated versions of the
original image as well as 5 rotated versions that are partially occluded using the linear slicing
strategy. For training, we sampled 10,000 positive and 10,000 negative image pairs. Each
network is then trained with a contrastive loss function for 10 epochs using a batch size of 64
and the Adam optimizer with a learning rate of 0.0001. We use several methods to measure
the performance of the resulting networks.

Held-Out Validation

When generating the training dataset for the Siamese network, we hold out 20% of the
objects. From these objects, we can generate 1000 positive and 1000 negative example pairs
of images using the same process used to construct the training dataset. We evaluated the
classification accuracy using on the validation set using a probability threshold of 0.5 as
well as the AUC-ROC to show the accuracy over many threshold values. The results are
shown in Table 2.1. We observe the Learned Metric architecture performs the best on both
metrics. One possible explanation is that the embedding network for the Learned Embedding
architecture overfits to the objects in the training dataset and does not generalize well to
the held-out objects in the validation dataset.

CHAPTER 2. MECHANICAL SEARCH 12

Architecture Accuracy AUC-ROC
Baseline 93.20% 0.9739

Learned Metric 96.37% 0.9940
Learned Embedding 94.15% 0.9844

Table 2.1: Siamese Network Results on Held-Out Objects. The Learned Metric architecture
performs best on objects not seen in the training dataset.

Evaluation on WISDOM

As a validation set comprised of held-out objects but constructed in the same way as the
training set may not be indicative of performance on real heaps of objects, we also evaluated
the trained Siamese network architectures on a separate dataset. We used WISDOM (Ware-
house Instance Segmentation Dataset for Object Manipulation), the dataset used to train
SD Mask-RCNN in [13]. WISDOM contains 400 images of heaps of objects and ground truth
segmentations for the individual objects in each heap. However, as the SD Mask-RCNN is
used primarily for segmentation and not for classification of the individual objects, there
are no ground truth labels of the identity of the objects. We labeled all of the objects in
the WISDOM dataset for evaluation of the Siamese network architectures. Then, for each
of 100 heaps in WISDOM, we treat each visible object as the target object and attempt to
find the best corresponding mask from the data. In particular, given k images of the target
object and m masks of individual objects in the heap, we run all km combinations through
the Siamese network and see if the pair resulting in the highest probability of being the
same object is correct. The results of repeating this process 481 times (481 total objects
in the 100 heaps we evaluated) are shown in Figure 2.2. Again, we observe that Learned
Metric architecture performs best, and the discrepancy in performance between the different
architectures is much higher.

Architecture Number of Successful Matches Accuracy
Baseline 298 61.95%

Learned Metric 437 90.85%
Learned Embedding 348 72.34%

Table 2.2: Siamese Network Architecture Results on WISDOM. On WISDOM [13], a dataset
to better simulate the target recognition task in Mechanical Search, the Learned Metric
architecture performs significantly better than the others.

Other Experiments

We attempted several other strategies in an effort to increase the performance of the Siamese
network on the WISDOM dataset. First, we examined several data augmentation techniques

CHAPTER 2. MECHANICAL SEARCH 13

to increase the number of images in the training set:

• Histogram Equalization: Scales the range of pixel values within each color channel
to occupy the whole 0 to 255 range to increase contrast.

• Gaussian Noise: Adds i.i.d. zero-mean Gaussian noise with standard deviation of
15 to each individual pixel, clipping values to be between 0 and 255.

• Salt and Pepper Noise: Randomly selects 0.4% of the pixels within the image and
sets these pixels to either white or black.

• Lookup-Table Transformations: Deterministic mappings of pixel values that can
alter lighting effects.

Examples of these data augmentation techniques are shown in Figure 2.9.

Figure 2.9: Data Augmentation Examples. Top Row: original image and images resulting
from applying histogram equalization, Gaussian noise, and salt and pepper noise. Bottom
Row: four different lookup-table transformations that simulate variations in lighting and
color.

Another strategy we used was to simulate object occlusions in a more realistic manner
compared to the linear slicing strategy. To do so, we took binary masks of objects from a
synethetic dataset, randomly scaled and rotated the masks, and overlay them on the images
in the dataset. We only used occlusions that covered at least 20% and at most 80% of the
original pixels of the object. An examples is shown in Figure 2.10.

We evaluated these additional techniques on the Learned Metric Siamese architecture,
which performed best on WISDOM. The results are shown in Table 2.3. We observe that the
data augmentation actually hurts performance, possibly due to the augmentation techniques

CHAPTER 2. MECHANICAL SEARCH 14

Figure 2.10: Example of More Realistic Object Occlusions. Left: original image. Middle:
binary mask of an object in a synthetic dataset. Right: resulting image after overlaying the
binary mask of the original image to simulate occlusion.

not matching the distribution of images seen in WISDOM. However, the alternative strategy
for simulating occlusions appears to be helpful, and this was used in the final implementation
of the Mechanical Search pipeline.

Strategy Number of Successful Matches Accuracy
Original 437 90.85%

Data Augmentation 429 89.19%
Realistic Object Occlusions 439 91.27%

Table 2.3: Learned Metric Siamese Network Architecture Results with Additional Strategies.
The data augmentation strategies actually hurt performance, but using the more realistic
object occlusions slightly increases performance.

2.8 Physical Experiments

We evaluate the Mechanical Search pipeline by exploring several different action select poli-
cies, which determine which type of action (parallel jaw grasp, suction grasp, or push) to
take and which object in the bin to interact with.

Action Selection Policies

All action selection methods use input from the perception system to generate a specific
object priority list. Each action selection method generates a priority list in a different way
but all have the same action execution criteria.

Each action selection method iterates through its priority list, queries the grasping action
policies for each object mask, and executes the returned action with the highest quality
metric among the two grasping policies if it satisfies the action execution criteria. If the

CHAPTER 2. MECHANICAL SEARCH 15

target object is grasped, the policy terminates and reports a success. If no grasping action
satisfies the criteria and the policy does not have pushing, the policy terminates and reports
a failure. If the policy does have pushing, it iterates through its priority list, queries the
pushing action policy for each object mask, and executes the first action that satisfies the
criteria. If no pushing action satisfies the criteria, or if a pushing action has been selected
more than three consecutive times, the policy terminates with a failure.

Action Selection Methods The action selection methods are distinguished by whether
or not they have pushing as an available action policy and by their generated object priority
list:

1. Random Search: Prioritizes objects randomly, with no preference for the target
object mask (oT).

2. Preempted Random Search (with and without pushing): Always prioritizes
oT and prioritizes other objects randomly.

3. Largest-First Search (with and without pushing): Always prioritizes oT and
ranks the other objects by their visible area. If the target object isn’t visible, this
strategy will increase the likelihood of removing objects that may be occluding the
target object.

For comparison, we also benchmark a human supervisor’s performance as an action se-
lector. At each timestep, the human is asked to draw a mask in the scene on which to plan
a push or a grasp. Then, grasps and pushes are planned and executed on the specified mask
with the same action primitives described above (parallel jaw grasps, suction grasps, linear
pushes). Thus, the human is limited by the available action primitives, but is allowed to use
their own judgement for perceptual reasoning and high level action planning.

Physical Experiments Setup

We randomly sample 50 heaps of 15 items each from a set of 75 common household objects
with relatively simple shapes, such as boxes and cylinders, as well as more complex geome-
tries, such as plastic climbing holds and scissors. We also include several 3D-printed items,
which present a challenge for both segmentation and target object recognition due to their
unusual shapes and uniform texture. A target object is chosen at random from each 15 item
heap. Then, in order to generate adversarial bin configurations, each rollout is initialized by
first shaking the target object in a box to randomize its pose and dumping into the center
of the bin, and then shaking the other fourteen objects and pouring them over the target
object.

CHAPTER 2. MECHANICAL SEARCH 16

Results

Figure 2.11 shows results on the physical system. A total of 300 physical experiments were
conducted over all policies. All policies retrieved the target object within the given number of
timesteps at least 90% of the time, and success rates were not statistically different between
policies. The largest-first policies successfully extract the target object within 5 or fewer
actions on on 50% of the heaps, while the preempted random and random policies only do
so for 40% and 10% of heaps respectively.

Figure 2.11: Mechanical Search Physical Experiment Results. Performance of policies on real
heaps of 15 objects. The largest-first search policies are the most efficient, and are able to
extract the target object in the least number of actions. All policies have similar reliability,
although pushing shows potential to avoid more failures in simulation. The human was
allowed to look at the RGBD image inputs and choose an object to push or grasp. Means
and standard deviations for successful extractions are shown in parentheses for each policy.

93% of failure cases on the physical heaps arise from the policy being unable to plan an
action. Failure to plan actions is almost always due to the target object lying flat on the
bottom of the bin (e.g., the dice, sharpie pens, or another blister-pack object), making it
difficult to obtain accurate segmentation. Another common reason for failure to plan actions
is when no mask is identified as the target object, which often occurs for 3D printed objects.

The human supervisor outperforms all policies presented here, requiring an average of just
3.1 actions to extract the target object due to more intelligent action selection. Specifically,
we noticed that a human operator chose to push far more frequently (26% of all actions,
compared to 6% for the other action policies with pushing), especially when objects were
heaped in the center of the bin and the target was not visible. These pushes tend to spread
many objects out over the bottom of the bin, as opposed to a grasping action that would
remove only a single object from the top of the heap.

CHAPTER 2. MECHANICAL SEARCH 17

2.9 Discussion

In this chapter, we presented the Mechanical Search problem and discussed the implemen-
tation of a specific instance, in which we attempt to retrieve a target object from a heap
of clutter using grasping and pushing action primitives. We evaluate several types of action
selection policies on a physical robotic system.

Throughout the course of working on the target recognition portion of the Mechanical
Search pipeline, I learned several lessons. First, it is important to develop software infrastruc-
ture for easily iterating on different dataset generation techniques and network architectures.
This makes conducting experiments and presenting results much more efficient. In addition,
finding a way to realistically simulate the physical target recognition task by labeling and
using the WISDOM dataset [13] was helpful. By doing so, we were able to see significant
performance differences among the different attempted Siamese network architectures, which
all performed relatively well on held-out data from the initial training dataset.

18

Chapter 3

Adversarial Grasp Objects

3.1 Overview

In the computer vision domain, adversarial images [60, 49, 33, 2] are images with minimal
added perturbation in pixel-space that drastically alter the prediction made by a classifier.
This project defines “adversarial grasp objects,” an analog of adversarial images in the
domain of robust robot grasping. Similar to adversarial images, adversarial grasp objects
reduce graspability while retaining geometric similarity to input objects.

Robust robot grasping of a large variety of objects can benefit a diverse range of appli-
cations, such as the automation of industrial warehousing and home decluttering. Recent
research suggests that robot policies based on deep learning can grasp a variety of previously
unseen objects [35, 37, 52, 42], but can be prone to failures on objects that may not be
encountered during training [43].

Adversarial image generation techniques involve performing constrained gradient-based
optimization algorithms on the image classification loss [60]. However, a central challenge
in applying these algorithms to deep grasping policies is that grasping performance is not a
differentiable function of the network output. Instead, the grasp planned by a policy is the
result of scoring, ranking, and pruning a set of grasp candidates for each object.

We present two algorithms for synthesizing adversarial objects: an algorithm that mod-
ifies objects by perturbing vertices on antipodal faces subject to geometric constraints to
maintain similarity to the input object, and an algorithm for synthesizing adversarial 3D
object models using 3D Generative Adversarial Networks (GANs) [20] and the Cross En-
tropy Method (CEM) for derivative-free optimization. Examples of objects generated by
both algorithms are shown in Figure 3.1. We conduct experiments in simulation studying
adversarial grasp objects of several categories (bottles, intersected cylinders, and intersected
prisms) generated by the two algorithms for the Dexterity Network (Dex-Net) 1.0 robust
grasp planner, which plans parallel-jaw grasps based on a robust quasi-static point contact
model [39]. We also conduct some physical experiments to evaluate adversarial grasp objects
using an ABB YuMi arm.

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 19

Figure 3.1: Adversarial Grasp Objects Overview. The most robust 25 of 100 parallel-jaw
grasps sampled on each object are displayed as grasp axes colored by relative reliability on
a linear gradient from green to red. Left: original object from a synthetic intersected prisms
dataset. Middle: adversarial object generated by an analytical algorithm. Right: adversarial
object generated by a deep learning algorithm.

3.2 Individual Contributions

Parts of this chapter are adapted from our paper for the Adversarial Grasp Objects project
[64], which will appear at the 2019 IEEE International Conference on Automation Science
and Engineering (CASE), and this work is the result of collaboration with David Tseng,
Yiding Jiang, Pusong Li, Menglong Guo, Michael Danielczuk, Dr. Jeffrey Mahler, and
Professor Ken Goldberg.

My work on this project involved developing and implementing the analytical algorithm
described in Section 3.5, conducting experiments and analyses on the objects generated by
both the analytical and deep-learning based (described in Section 3.6) methods, and running
physical experiments (described in Section 3.8).

Many others also made significant contributions to this work. David Tseng worked on
developing alternative versions of the analytical algorithm described in Section 3.5 that
considers convexity of the resulting shapes and rotational perturbations, ran experiments to
characterize the analytical algorithms on simple shapes, ran many experiments to train the
GAN in Section 3.6 on a variety of datasets, and helped me run physical experiments.

Yiding Jiang and Pusong Li initially started this project before David Tseng and I joined.
They developed the initial versions of the problem formulation and the CEM + GAN algo-
rithm in Section 3.6 through lots of experimentation with different datasets and architectures.
We also thank them for their continued support and advice on the project even after already
graduating from Berkeley.

Michael Danielczuk and Menglong Guo assisted us tremendously on the physical experi-
ments. Michael Danielczuk helped develop the software used to conduct physical experiments

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 20

and also spent lots of time helping debug various hardware issues on the real robot. Meng-
long Guo designed several versions of a new gripper for us to help simulate point contacts on
a physical system and also provided lots of 3D printing of objects that we used in physical
trials.

Finally, we were fortunate to have been advised by Dr. Jeffrey Mahler and Professor Ken
Goldberg throughout this project. They helped steer us in the right direction when we were
lost or stuck and provided countless insights and helpful suggestions.

3.3 Related Work

Adversarial Images

Adversarial images [60, 49, 33, 2] are images with a small added perturbation that can change
the output of an image classifier. The problem of finding adversarial images is typically
formulated as a constrained optimization problem that can be approximately solved using
gradient-based approaches [60]. Yang et al. developed a method to perturb the texture maps
of 3D shapes such that their projections onto 2D image space can fool classifiers [66]. We
build on this line of research by studying adversarial examples in the context of generating
adversarial 3D objects for robotic grasping.

Grasp Planning

Grasp planning considers the problem of finding a gripper configuration that maximizes
the probability of grasp success. Approaches generally fall into one of three categories:
analytic [53], empirical [5], and hybrid methods.

Analytic approaches typically assume knowledge of the object and gripper state, in-
cluding geometry, pose, and material properties, and consider the ability to resist external
wrenches [53] or constrain the object’s motion [56], possibly under perturbations to model
robustness to sensor noise. Examples include GraspIt! [19], OpenGRASP [36], and the
Dexterity Network (Dex-Net) 1.0 [39]. To satisfy the assumption of known state, analytic
methods typically assume a perception system based on registration: matching sensor data
to known 3D object models in the database [8, 11, 18, 25, 27, 31].

Empirical approaches use machine learning to develop models that map from robotic
sensor readings directly to success labels from humans or physical trials. Research in this area
has largely focused on associating human labels with graspable regions in RGB-D images [35,
26, 30] or using self-supervision to collect labels from successes and failures on a physical
system [37, 52]. A downside of empirical methods is that data collection may be time-
consuming and prone to errors.

Hybrid approaches make use of analytic models to automatically generate large training
datasets for machine learning models [29, 50]. Recent results suggest that these methods
can be used to rapidly train grasping policies to plan grasps on point clouds that generalize

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 21

well to novel objects on a physical robot [42, 43, 7]. In this project, we consider synthesizing
adversarial 3D objects for the analytic supervisor used to train these hybrid grasp planning
methods.

Generative Adversarial Networks (GANs)

Deep generative models map a simple distribution, such as a multivariate Gaussian distri-
bution, to a much more complex distribution, such as natural images. In this work, we use
a GAN as a generative model to learn distributions of 3D objects that are difficult to grasp.
During training of a GAN, a discriminator tries to distinguish the generated samples apart
from the samples from the real data while a generator tries to generate samples to confuse
the discriminator. At the optimum of the optimization, the discriminator is unable to dis-
tinguish the generated samples from the real data. However, the optimization is difficult
and can have problems such as mode collapse [61]. Training GANs involves searching for
a saddle point rather than a local minimum due to the 2-player nature of the architecture,
and such an optimization is inherently more difficult.

Applications of deep generative models to 3D data are relatively under-explored. Some
notable works in this area include the 3D GAN work by Wu et al. [65], which uses a GAN
on the latent code learned by a variational autoencoder to generate 3D reconstruction from
an image, and the signed distance-based, higher-detail object generation by Jiang et al. [28],
where the low frequency components and high frequency components are generated by two
separate networks. We expand upon previous efforts in this direction by incorporating recent
advances in GANs for 2D image data to synthesize 3D objects.

3.4 Problem Statement

Adversarial Grasp Objects

Let X be the set of all 3D objects. Let π be a robot grasping policy mapping a 3D object
x ∈ X specified as a 3D triangular mesh to a grasp action u. In this work, we consider a
parallel-jaw grasping policy. We assume that the policy can be represented as:

π(x) , arg max
u∈U(x)

Q(x,u) (3.1)

where U(x) denotes the set of all reachable grasp candidates on x, and Q is a quality function
measuring the reliability or probability of success for a candidate grasp u on object x.

We define the graspability g(x, π) of x with respect to π as a measure of how well the
policy can robustly grasp the object. We measure graspability by the γ-percentile of grasp
quality [44]:

g(x, π) , Pγ(Q(x,u)) (3.2)

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 22

We then consider the problem of generating an adversarial grasp object: a 3D object that
systematically reduces graspability under a grasping policy with constrained changes to
the input geometry. Let σ(A,B) for subsets A,B ⊂ X be a binary-valued shape similarity
constraint between the two subsets of objects. We study the following optimization problem,
which defines an adversarial grasp object x∗:

x∗ = arg min
x∈X

g(x, π) subject to σ({x}, S) = 1, (3.3)

where S ⊂ X is a subset of objects that the generated object should be similar in shape to.

Robust Grasp Analysis

In this paper, we optimize adversarial examples with respect to the Dexterity Network (Dex-
Net) 1.0 grasping policy [39]. In this setting, the action set U(x) is a set of antipodal points
on the object surface that correspond to a reachable grasp, where a pair of opposite contact
points v1, v2 are antipodal if the line between the v1, v2 lie entirely within the friction cones
[39]. The quality function Q measures the robust wrench resistance, or the ability of a grasp
to resist a target wrench under perturbations to the object pose, gripper pose, friction, and
wrench under a soft-finger point contact model [43].

When calculating g, both the reward and policy are based on the Dex-Net 1.0 robust
grasp quality metric and the associated maximal quality grasping policy. Within the Dex-Net
1.0 robust quality metric, Q(x,u) is defined as:

Q(x,u) , Eu′∼p(·|u),x′∼p(·|x)[R(x′,u′)]

where p(u′|u) and p(x′|x) denote distributions over possible perturbations conditioned on x
and grasp u, and R represents a measure of grasp quality if the grasp is executed exactly as
given; that is, executed with zero uncertainty in object and gripper pose. In this case, we
use the epsilon metric by Ferrari and Canny with a soft-finger point contact model [15].

To calculate g(x, π) in practice, both the expected value over the distributions of object
and grasp pose p(x′|x) and p(u′|u) and the γ-percentile are calculated using sample esti-
mates [17]. To do this, we first uniformly sample a constant number of antipodal grasps
across the surface of the object. We then approximate the robustness for each grasp by
sampling perturbations in object and gripper pose and taking the average grasp quality over
all sampled configurations.

The empirical robust grasp quality is:

Q̂(x,u) =
1

N

N∑
i=1

R(xi,ui)

where {ui}Ni=1, {xi}Ni=1 are i.i.d. samples drawn from p(u′|u) and p(x′|x) respectively.
The empirical graspability ĝ(x, π) is estimated by taking the discrete γ-percentile of

Q̂(x,u) for all sampled grasps.

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 23

3.5 Analytical Algorithm: Minimal Random Vertex

Perturbations

We consider an analytical approach for modifying an existing 3D triangular mesh x ∈ X
to decrease the graspability of x. Let the mesh x be specified by a set of vertices V =
{v1, v2, . . . vn} ⊂ R3, a set of faces F = {f1, f2, . . . fm}, where each face fi is the triangle
defined by three distinct elements of V , and a set of face normals N = {n1, n2, . . . nm}, where
ni ∈ R3 is the unit normal of face fi. Finally, let the antipodality angle ϕ between two faces
be defined as ϕ(fi, fj) = arccos(−ni

Tnj).
Dex-Net 1.0’s graspability metric specifically considers the robustness of a parallel jaw

grasp, which requires antipodal point pairs and can be susceptible to small pose variations.
Consider a mesh x ∈ X . We want to perturb vertices while constraining the movement such
that the surface normals of adjacent faces do not deviate by more than some angle α from
the original object. We define this to be the shape similarity constraint σ in Equation 3.3,
and in this case, S = {x}, the original object itself.

Sampling-Based Algorithm

For an object with many vertices and faces, it is computationally expensive to keep track
of all antipodal face pairs: those whose antipodality angle is less than some threshold angle
ϕ corresponding to the friction angle. Furthermore, we also are not guaranteed to be able
to perturb vertices in such a way that all pairs of antipodal faces are eliminated. Thus, we
consider a sampling-based algorithm perturb vertices to increase the antipodality angle as
much as possible between two faces while satisfying the shape similarity constraint σ. We
also want the perturbations to be minimal to further preserve similarity in shape to the
original object.

Pseudocode for the analytical minimal random perturbation algorithm is given in Al-
gorithm 1. Let N be the number of iterations we want to run and ε to be the mimimal
perturbation amount to apply. Denote the sets of vertices, faces, and face normals of the
adversarial version of the object by V ′, F ′, and N ′, respectively. In each iteration, we sample
a pair of antipodal faces f ′i and f ′j from F ′, where i, j ∈ {1, 2, . . .m}. We then randomly
sample one of the vertices v′k ∈ V ′ of f ′i and f ′j. Let I ⊂ {1, 2, . . .m} denote the set of indices
of the faces adjacent to v′k.

We consider a set of 6 possible perturbation directions W , which consists a set of unit
vectors {w1,−w1,w2,−w2,w3,−w3}, where w1, w2, and w3 are randomly selected and
orthogonal, forming a basis for R3. The intuition is to search along all three directions by
adding both a positive and negative perturbation. For each direction w ∈ W , we compute
the perturbation δw ∈ R+ such that the antipodality angle ϕ between faces f ′i and f ′j is
maximized subject to the constraints that cos−1(ni

Tn′i) < α for all i ∈ I, where n′i ∈ R3

denotes the unit surface normal of face f ′i after moving vertex v′k to v′k + δww. This amount
is computed via an approximation: we start with a perturbation amount of ε and continue

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 24

Algorithm 1 Minimal Random Perturbation Algorithm. The algorithm takes in the sets
of vertices, faces, and face normals for the original object: V , F , N . It also takes in the
number of iterations N , α for the shape similarity constraint, and ε > 0 for the minimal
perturbation amount.

1: procedure Min Random Perturbation(V , F , N , N , α, ε)
2: V ′ ← V
3: F ′ ← F
4: N ′ ← N
5: diam← Diameter(V)
6: for i ∈ 1, 2, . . . N do
7: f ′i , f

′
j ← SampleAntipodalFacePair(F ′)

8: v′k ← SampleVertexFromFaces(f ′i , f
′
j)

9: I ← ComputeAdjacentFaceIndices(F ′, v′k)
10: W ← SamplePerturbationDirections()
11: best dir← None
12: min overall perturb←∞
13: curr angle← AntipodalityAngle(f ′i , f

′
j)

14: for w ∈ W do
15: d← ε
16: best antipodality angle change← 0
17: best perturbation amount← 0
18: while d < diam do
19: v′k ← v′k + dw
20: if not NormalConstraintsSatisfied(N ,N ′, α) then
21: v′k ← v′k − dw
22: break
23: antipodality angle← AntipodalityAngle(f ′i , f

′
j)

24: if antipodality angle− curr angle > best angle change then
25: best angle change← antipodality angle− curr angle
26: best perturbation amount← d

27: d← 2d
28: if best perturbation amount < min overall perturb then
29: min overall perturb← best perturbation amount
30: best dir← w
31: v′k ← v′k + min overall perturb · best dir

32: return V ′

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 25

doubling it until either the shape similarity constraint is violated or d is no longer less than
the diameter of the original object (the maximum Euclidean distance between any pair of
vertices). Since we ensure that the shape similarity constraint is satisfied for the resulting
object at the end of each iteration, for ε > 0 sufficiently small, applying an ε-perturbation
in any direction should yield an object that still satisfies the constraint. For computational
efficiency, we aggressively double the tested perturbation amount to quickly find out how
much perturbation is needed to violate the constraint.

After computing the perturbation necessary to apply along each direction to maximize the
antipodality angle change of f ′i and f ′j, we move in the direction corresponding to the minimal
perturbation. By constraining the perturbations, the algorithm attempts to maintain local
similarity of the region of perturbation while decreasing the graspability.

3.6 Deep Learning Algorithm: CEM + GAN

An alternative approach for the problem of generating adversarial grasp objects is to use a
data-driven approach to learn a distribution over objects X and extract adversarial grasp
objects by sampling from it. As opposed to the analytical algorithm, which generates an
adversarial version of an existing object, the CEM + GAN algorithm takes as input a set
S ⊂ X of objects and can output of a set of generated objects similar to those in S.

One challenge in performing the optimization in Equation 3.3 is that the graspability
function g(x, π) is not differentiable; therefore, we need to perform the derivative-free op-
timization by querying the function with different inputs and adjust the model parameters
based on the responses of the function. Let pθ(x) be a probability distribution over X pa-
rameterized by some θ ∈ Θ. Then, we can formulate a similar objective to Equation 3.3,
but instead optimizing for a distribution of objects that we want to be similar to some prior
subset S ⊂ X :

θ∗(π) = arg min
θ∈Θ

Ex∼pθ(·)[g(x, π)] subject to DKL(PS||Pθ) < ε, (3.4)

where Pθ is the distribution over X induced by the generative model with parameter θ, PS
is the uniform distribution over objects in S, and DKL is the Kullback-Leibler divergence
between two probability distributions.

We propose a deep learning method using the cross-entropy method (CEM) and genera-
tive adversarial networks (GANs) to approach this optimization problem.

Cross-Entropy Method (CEM) for Optimization

The cross-entropy method (CEM) [57] is an adaptive derivative-free optimization algorithm.
We are interested in finding the distribution of objects that minimize the real-valued gras-
pability function g(x, π) over X .

As a starting point, the GAN is initialized with a prior distribution of objects S ⊂ X so
that it generates objects similar in shape. We start by training the GAN on this prior set of

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 26

objects. Then, in a resampling step, we use the GAN to generate objects and take a subset
of the objects with the lowest graspability to use as training data to retrain the GAN. We
continue alternating between training and resampling steps for a number of iterations.

Signed Distance Function (SDF) Generative Adversarial Network
(GAN)

Generative adversarial networks (GANs) [20] are a family of implicit generative models that
can generate high-quality samples with relatively low inference complexity. We use the Signed
Distance Function (also known as signed distance field or SDF) [48] as a representation for
generating 3D geometry. The SDF of a closed object x with a well-defined inside and outside
at point v can be given as the Euclidean distance from the closest boundary point to v.

Figure 3.2: GAN Architecture. The generator takes in a random noise vector of length
200 and outputs an SDF representation of a 3D object of resolution 32 × 32 × 32. The
discriminator takes in batches of SDF representations of 3D objects from either the training
dataset or samples from the the generator network and attempts to distinguish between the
two.

We draw on techniques used in Spectral-Normalization GAN (SNGAN) [47], which can
generate high-fidelity images, and apply them to SDFs. We denote the standard Gaussian
noise vector as z ∈ R200 drawn from pz, the empirical distribution defined by training

data as pdata, the Generator as G : R200 →
[
−1, 1

]32×32×32
, and the Discriminator as D :[

−1, 1
]32×32×32 → R. For the training objective, we use the hinge version of adversarial loss

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 27

[38] as we empirically found that it stabilizes training. The GAN objective is then

LdataD = −Ex∼pdata(·)[min(0,−1 +D(x))]

LgenD = −Ez∼pz(·)[min(0,−1−D(G(z)))]

LD = LdataD + LgenD
LG = −Ez∼pz(·)[D(G(z))],

where LD corresponds to the loss function for the discriminator, and LD corresponds to the
loss function for the generator. More in-depth visualizations of the GAN architecture are
shown in Figure 3.2. This GAN loss function implicitly enforces this shape similarity con-
straint in Equation 3.4 as it has been shown that at the global optimum, the KL-divergence
between the generated distribution and the original distribution is zero [38]. The ε in the
shape similarity constraint accounts for the fact that GANs do not usually reduce the loss
to 0 in practice and that we use multiple resampling iterations.

3.7 Simulation Experiments

We run the two algorithms to minimize overall graspability on two synthetic datasets as
well as on the ShapeNet [9] bottles category. To allow a fair comparison between our two
algorithms, we converted all three datasets to SDFs. For the synthetic datasets, we used the
process presented by Bousmalis et al. [7] where they generated objects to grasp in simulation
by randomly attaching rectangular prisms of varying sizes together at varying angles. The
intersected cylinders dataset consists of one large central cylinder with two smaller cylinders
randomly grafted onto it. The intersected prisms dataset is similar to previous dataset but
uses prisms instead: it consists of one central rectangular prism with two other rectangular
prisms randomly grafted onto it. All three prisms have a wide distribution of sizes. The
bottle, cylinder, and prism datasets have averages of 1,391 vertices and 2,783 faces, 1,202
vertices and 2,400 faces, and 2731 vertices and 4739 faces, respectively, and have 479, 1000,
and 1000 total objects, respectively. Examples from each of these datasets are shown in
Figure 3.4.

In the following experiments, we set the angle of the friction cone to be arctan(0.5). For
the graspability metric g(x, π), we chose γ = 75%: often, one of the top 25% of grasps is
accessible, so we choose to look at the worst case from this set. Consider a set of generated
objects {x1,x2, . . .xn} ⊂ X from a prior dataset of objects. We define mean normalized
graspability as c · 1

n

∑n
i=1 g(xi, π), where c is a normalizing constant. We note that the

objects in the figures in the section have been smoothed for visual clarity to demonstrate
the behavior of the algorithms, but the metrics represent the results of the objects without
smoothing. Meshes in all datasets have large numbers of vertices and faces, and displaying
all of them makes it difficult to distinguish differences within and between algorithms.

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 28

Analytical Algorithm

We run the analytical algorithm for local perturbations of vertices on antipodal faces on
100 objects from each of the three datasets. We experimented with α values of 10, 15, and
20 degrees for the shape similarity constraint for maximum deviation in surface normals
described in Section 3.5. We find that the analytical algorithm decreases the graspability
metric for all datasets. With a value of α = 10 degrees, the mean normalized graspability
is decreased by 32% on the intersected cylinders dataset, 12% on the intersected prisms
dataset, and 32% on the ShapeNet bottles dataset. At each level of α, we observe that the
objects from the prism dataset have the highest graspability; we conjecture that it is difficult
to decrease the antipodality of large, flat prism surfaces with only local perturbations. The
full graspability results for each dataset and level of α are shown in Table 3.1, and the
distributions of graspabilities are shown as histograms in Figure 3.3. Sample object examples
along with their adversarial versions for varying levels of α are shown in Figure 3.4. Increasing
α decreases the graspability at the cost of similarity to the original object, corresponding to
an increasingly relaxed shape similarity constraint.

Dataset Original α = 10 α = 15 α = 20
Intersected Cylinders 1.00 0.68 0.53 0.42

Intersected Prisms 1.00 0.88 0.75 0.65
ShapeNet Bottles 1.00 0.68 0.54 0.42

Table 3.1: Analytical Algorithm Graspability Results. We report the mean normalized
graspibility for 100 objects on each of the three datasets for shape similiarity constraints
using α = 10, α = 15, and α = 20. The analytical algorithm is able to decrease graspability
on objects from all three datasets.

Figure 3.3: Analytical Algorithm Graspability Distributions. We show the distribution of
graspabilities for 100 objects from each of the three datasets for the original versions as well
as adversarial versions using α = 10, α = 15, and α = 20 for the shape similarity constraint.
Left: intersected cylinders dataset. Middle: intersected prisms dataset. Right: ShapeNet
bottles dataset.

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 29

Figure 3.4: Analytical Algorithm Examples. We show the progression of an example from
each dataset as we increase the surface normal constraint angle α: each row (from left to
right) shows the original object and then the perturbed versions using the surface normal
constraint with α = 10, α = 15, and α = 20, respectively. The objects have been smoothed
for visualization purposes with OpenGL smooth shading. Top Row: example from inter-
sected cylinders dataset. Middle Row: example from intersected prisms dataset. Bottom
Row: example from ShapeNet bottles dataset.

CEM + GAN Algorithm

We train the resampling GAN on the previously described intersected prisms and cylinders
datasets, as well as the ShapeNet bottles category. All three datasets are preprocessed into
signed distance field format with stride 0.03125 after being scaled such that the entire set
has bounding boxes of approximately 1× 1× 1.

For all three datasets, we sample 2500 new objects and keep 500, and train the GAN
for 16000 iterations between resampling steps. Resampling in all experiments rejects output
grids that produce non-watertight meshes, as producing meshes with non-orientable faces,
gaps, self-intersection, or disjoint pieces is not desirable when generating a distribution of
3D objects. Such outputs are possible because the GAN does not explicitly enforce such
constraints.

Table 3.2 shows the graspability results of 100 objects sammpled from the learned gen-
erative models at different points of the algorithm. After 3 resampling iterations on the
intersected cylinders dataset, the mean normalized graspability is reduced by 22% relative
to objects in the original dataset. Similarly, graspability is reduced by 36% on the intersected

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 30

prisms datset after 4 resampling iterations and by 17% on the ShapeNet bottles dataset af-
ter 5 resampling iterations. Histograms showing the overall distribution of graspability over
resampling episodes for each of the three datasets are shown in Figure 3.5. Finally, examples
from the GAN output distributions at the beginning and end of training for the intersected
prisms dataset are shown in Figure 3.6.

Dataset Original Before Resampling End of Training
Intersected Cylinders 1.00 0.98 0.78

Intersected Prisms 1.00 0.95 0.64
ShapeNet Bottles 1.00 1.02 0.83

Table 3.2: CEM + GAN Algorithm Graspability Results. We report the mean normalized
graspibility for 100 objects generated by the learned model for each of the three datasets at
various stages in the algorithm. The “Before Resampling” column shows the graspability
after fitting a generative model to the geometric prior, and the “End of Training” column
shows the graspability after several alternating training and resampling iterations. The CEM
+ GAN Algorithm is able to learn a distribution of objects with reduced graspability for all
three datasets.

Figure 3.5: CEM + GAN Algorithm Graspability Distributions. We show the distribu-
tion of graspabilities for 100 objects from each of the three datasets after varying number
of training and resampling iterations. As the algorithm progresses through the episodes,
the probability mass shifts towards lower graspability. Left: intersected cylinders dataset.
Middle: intersected prisms dataset. Right: ShapeNet bottles dataset.

Shape Similarity

Experiments suggest that both the analytical and the CEM + GAN algorithms decrease the
graspability metric, but in different manners. The analytical algorithm maintains local shape
similarity through the constraints on surface normal changes, while the GAN introduces
geometric changes that decrease graspability while maintaining shape similarity at a more

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 31

Figure 3.6: CEM + GAN Algorithm Examples. Left: sample object from the original inter-
sected prisms dataset. Middle: sample from the GAN output distribution after fitting the
geometric prior. Right: sample from the GAN output distribution after several resampling
iterations. The CEM + GAN algorithm tends to reduce graspability of objects through
larger structural changes. The objects have been smoothed for visualization purposes with
OpenGL smooth shading.

global level (e.g., generates a tapered bottle that resembles a bottle but was not in the
original dataset).

To quantify shape similarity, we use 1 iteration of Laplacian smoothing on the generated
objects from each of the three datasets by both algorithms to minimize surface roughness
and measure the effect of smoothing on object graspability. The objects generated by the
analytical algorithm use α = 10 degrees for the surface normal deviation constraint. The
full results are shown in Table 3.3. Before smoothing, the mean normalized graspability
for objects from the analytical algorithm is 10% lower, 30% higher, and 15% lower than
objects from the GAN on the intersected cylinders, intersected prisms, and bottles datasets,
respectively. After smoothing, the mean normalized graspability of objects generated by
the GAN are lower by 10%, 18%, and 8% on the same datasets. The mean graspability of
smoothed objects from the analytical algorithm is at least 95.9% of the original datasets
in all cases, suggesting that surface roughness accounts for almost all of the decrease in
graspability. Although the GAN also introduces surface roughness (smoothing still increases
graspability in all cases), it appears to learn more global geometric changes to decrease
graspability.

Alternative GAN Architecture

GANs are prone to mode collapse [61], the phenomenon where a GAN can learns to only
outputs one distinct object regardless of the input. Furthermore, since resampling decreases
diversity of objects in the dataset due to similar generated objects tending to have similar
metric scores, complete mode collapse tends to occur after enough resampling episodes.

We experimented with several variations of the GAN architecture and observed that
removing spectral normalization can lead to more diverse objects on the intersected cylinders
dataset. In this experiment, mode collapse does not occur before the metric quality mean
stops improving, reaching a decrease of 83% from the original dataset. However, these
generated objects deviate quite significantly from the prior dataset.

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 32

Dataset Graspability Before Smoothing Graspability After Smoothing
Analytical CEM + GAN Analytical CEM + GAN

Intersected Cylinders 0.677± 0.031 0.783± 0.011 0.959± 0.048 0.862± 0.031
Intersected Prisms 0.876± 0.036 0.577± 0.012 0.961± 0.047 0.777± 0.037
ShapeNet Bottles 0.682± 0.034 0.827± 0.012 0.980± 0.038 0.899± 0.033

Table 3.3: Smoothing Experiment Graspability Results. Comparison of the normalized
mean graspability (reported with 95% confidence intervals) of objects generated by both the
analytical algorithm and the GAN algorithm before and after Laplacian smoothing. After
smoothing, the objects generated by the GAN have lower graspability metrics than the
corresponding objects generated by the analytical algorithm for all three datasets, which
suggests that the GAN generates more global adversarial geometries, whereas the analytical
algorithm uses local surface roughness to reduce graspability.

3.8 Physical Experiments

While we showed that both the analytical algorithm and the CEM + GAN algorithm can
systematically reduce the computed graspability of different types of objects, we also wanted
to develop a physical system to evaluate the graspability of objects using a real robot.

Objects

We consider several types of objects to study in physical experiments.
First, we consider a unit cube, which is highly graspable with its three pairs of parallel

faces. To manually develop an adversarial version of the cube with minimal perturbation
such that any pair of faces of the resulting object have an antipodality angle of at least θ
degrees, we considered raising the midpoint of three adjacent faces of the cube by tan θ

2
in the

direction of the surface normal of the original face. We considered other variations without
adding additional vertices, but observed that such strategies tend to add require increased
volume change to the cube, increasing the visual distortion. The cubes we studied in physical
experiments are shown in Figure 3.7.

We also consider a cuboctahedron, a polyhedron with 6 square faces and 8 triangular
faces. As it is more difficult to manually design an adversarial version satisfying the property
that all pairs of faces have an antipodality angle of at least θ, we used a modificaiton of
the analytical algorithm described in Section 3.5. We apply random perturbations until
the property above is satisfied, rejecting perturbations if they introduce concavities in the
objects, as these can introduce feasible areas to grasp on a physical system. We find that
this algorithm can converge on simpler objects. The resulting cuboctahedrons are shown in
Figure 3.8.

Courtesy of HP, we have some 3D prints shown in Figure 3.9 of the adversarial intersected
cylinders objects generated using the alternative GAN architecture described at the end of

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 33

Figure 3.7: Cube Objects for Physical Experiments. Left to Right: original cube and then
adversarial versions of 10, 15, and 26 degrees for θ. For the adversarial cubes, we only show
the distorted faces; the remaining faces are unchanged.

Figure 3.8: Cuboctahedron Objects for Physical Experiments. Left to Right: original cuboc-
tahedron and then adversarial versions of 10, 15, and 26 degrees for θ. These were generated
by a version of the analytical algorithm.

Section 3.7. We chose these class of objects to explore in physical trials, since they were the
outputs generated by the CEM + GAN algorithm with the lowest graspability in simulation.

Experimental Setup

We used a parallel jaw gripper designed for the ABB YuMi to simulate point contacts: the
grippers are 3D printed, and each jaw holds a small metal bearing that makes contact with
the target object to grasp. Images of the 3D printed objects and the gripper are shown in
Figure 3.10.

In physical trials, for each object, we first compute the stables poses of the object and
potential grasps along with their associated confidences using the Dex-Net [43] system in
simulation. Then, on the physical system, we sample 5 grasps and execute each one 3 times.
To sample the grasps, we first sample a stable pose, using probabilities for each stable pose
proportional to the computed feasibility probability of the stable pose. We then take the
grasp with the highest confidence of success that has not yet been executed. When executing
the grasp, we place the object in a bin, use a depth sensor to obtain a point cloud of the
object, and then align it to the known 3D model of the object using the 4-Points Congruent

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 34

Figure 3.9: Adversarial Intersected Cylinder Objects for Physical Experiments. These ob-
jects were generated by the CEM + GAN method.

Figure 3.10: Objects and Gripper for Physical Experiments. Left: 3D printed objects used in
physical experiments. Right: gripper used to simulate point contacts on a physical system.

Sets (4PCS) algorithm [1]. A grasp is defined as successful if the robot arm is able to lift
the object out of the bin and successfully transport it to an adjacent bin.

Results

Using the setup described in the previous subsection, we conducted a total of 15 trials for
each of the ten objects, and the success rates are shown in Table 3.4. We find that the
adversarial cube of 26 degrees is never successfully grasped, and the success rate increases
with lesser perturbations to the original cube, which was successfully grasped in all trials.
We observe a very similar trend for the cuboctahedrons. Finally, the adversarial intersected
cylinder objects generated by the CEM + GAN method are very difficult to grasp, as only
we observed success in only 3 of 30 total trials for the two objects. Common failure cases on
the physical system involve errors in the registration of the object as well as one jaw of the

CHAPTER 3. ADVERSARIAL GRASP OBJECTS 35

gripper making contact with the object first and moving it such that the other jaw cannot
make contact with the gripper.

Object Grasp Success Rate
Original Cube 15/15

Adversarial Cube (10 Degrees) 12/15
Adversarial Cube (15 Degrees) 2/15
Adversarial Cube (26 Degrees) 0/15

Original Cuboctahedron 15/15
Adversarial Cuboctahedron (10 Degrees) 9/15
Adversarial Cuboctahedron (15 Degrees) 2/15
Adversarial Cuboctahedron (26 Degrees) 0/15

Adversarial Intersected Cylinder 1 2/15
Adversarial Intersected Cylinder 2 1/15

Table 3.4: Physical Experiments on Cubes. We attempted 5 grasps with 3 trials each for
each object and report the number of successful grasps on each object.

3.9 Discussion

We introduce adversarial grasp objects: objects that look visually similar to existing objects,
but decrease the predicted graspability given by a robot grasping policy. We present two
algorithms that generate adversarial grasp objects. The first is an analytical method that
performs constrained vertex perturbations to eliminate antipodal pairs of faces in an exist-
ing triangular mesh of an object. The second method combines CEM and GANs to learn
a distribution of objects parameterized by a SDF GAN that minimizes graspability. We
empirically show that the two methods can decrease the grasp quality given by the DexNet
1.0 grasping algorithm.

The analytical algorithm was designed to be specifically designed to be adversarial to the
Dex-Net 1.0 grasping policy by attempting to reduce pairs of antipodal faces. In contrast,
the CEM + GAN algorithm can apply to other grasping policies through the generality of
the resampling step: the algorithm takes the least graspable objects with respect to any
arbitrary policy to use as training data for the next iteration of the generative model.

36

Chapter 4

Conclusion

We conclude this technical report by discussing potential future directions of work for each
of the two projects: Mechanical Search and Adversarial Grasp Objects.

4.1 Mechanical Search

For the target recognition pipeline I worked on, there are several potential areas of improve-
ment. We used a pretrained ResNet to extract features from RGB images, but it might be
interesting to try featurizations from other layers in the network or completely different pre-
trained networks altogether. In addition, the Siamese networks we developed take in RBG
images as input. There may be potential performance benefits by using depth images as
well. As we were obtaining strong performance results empirically with the current version
of the target recognition pipeline, we did not actively pursue these directions as much.

Instead, there are currently efforts to explore alternative versions of the entire perception
pipeline. For my project, we wanted to optimize the target recognition portion, since we
were getting reliable segmentations from SD Mask-RCNN [13]. However, an alternative
strategy is to merge the segmentation and target recognition portions to extract the target
mask in one shot, which could cut down on the computation time for the perception system.
Another potential direction being explored is using dense object descriptors [16] to find
correspondences between the ground truth target object and the visible portions of the
target object in the bin to locate it.

On a broader level, other directions of work currently being pursued on this project
include exploring how to use reinforcement learning to bridge the performance gap between
the heuristic action selection policies and the human supervisor. Improving the individual
primitive actions may also result in better overall performance to extract the target object
from the heap of clutter in fewer total actions. Mechanical Search is a broad class of tasks,
and it would be very interesting to study other instances of the problem in more complex
settings as well, possibly those that involve navigation of a robot.

CHAPTER 4. CONCLUSION 37

4.2 Adversarial Grasp Objects

In this project, the metric we explore in this project models point contacts instead of area
contacts, which can be disproportionately affected by surface roughness, as we saw with the
analytical algorithm. Replacing the point contact model with one that considers the full
contact area could counteract the outsized effect of local surface roughness. In this case,
different types of analytical algorithms would need to be explore to design objects that are
adversarial to the area contact model, but the CEM + GAN method can still work by finding
objects that are most adversarial to the new metric through iterative resampling.

Another extension is to consider different types of grasps. In this work, we focus on
parallel jaw grasps, but it would also be interesting to explore suction grasps. Similar to
above, we would need newly designed analytical algorithms to generate adversarial objects
in this case, but the CEM + GAN method can still apply.

We also demonstrated the grasping performance of a robot on both adversarial and
non-adversarial objects. It would be interesting use this physical system to conduct more
extensive physical trials to evaluate the graspability of other objects.

Finally, in this project, we developed algorithms that can efficiently generate many ad-
versarial grasp objects. However, the long-term vision of this work is to close the loop and
use these synthesized objects to train better grasp planners based on neural network policies.
This is similar to the idea of using adversarial images to train more robust image classifiers.
This is a difficult direction to pursue, but can be extremely valuable in the ultimate goal
improving robot grasping performance.

38

Bibliography

[1] Dror Aiger, Niloy J Mitra, and Daniel Cohen-Or. “4-points congruent sets for robust
pairwise surface registration”. In: ACM transactions on graphics (TOG). Vol. 27. 3.
Acm. 2008, p. 85.

[2] Anish Athalye et al. “Synthesizing Robust Adversarial Examples”. In: CoRR abs/1707.07397
(2017). arXiv: 1707.07397. url: http://arxiv.org/abs/1707.07397.

[3] Alper Aydemir et al. “Search in the real world: Active visual object search based on
spatial relations”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE.
2011, pp. 2818–2824.

[4] R. Bajcsy. “Active perception”. In: Proceedings of the IEEE 76.8 (1988), pp. 966–1005.
issn: 0018-9219. doi: 10.1109/5.5968.

[5] Jeannette Bohg et al. “Data-driven grasp synthesisfffdfffdfffda survey”. In: IEEE Trans.
Robotics 30.2 (2014), pp. 289–309.

[6] Jeannette Bohg et al. “Interactive perception: Leveraging action in perception and
perception in action”. In: IEEE Trans. Robotics 33.6 (2017), pp. 1273–1291.

[7] Konstantinos Bousmalis et al. “Using simulation and domain adaptation to improve ef-
ficiency of deep robotic grasping”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 4243–4250.

[8] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. “Collaborative grasp planning with
multiple object representations”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE. 2011, pp. 2851–2858.

[9] Angel X Chang et al. “Shapenet: An information-rich 3d model repository”. In: arXiv
preprint arXiv:1512.03012 (2015).

[10] Xiaozhi Chen et al. “3d object proposals using stereo imagery for accurate object class
detection”. In: IEEE transactions on pattern analysis and machine intelligence 40.5
(2018), pp. 1259–1272.

[11] Matei Ciocarlie et al. “Towards reliable grasping and manipulation in household envi-
ronments”. In: Experimental Robotics. Springer. 2014, pp. 241–252.

BIBLIOGRAPHY 39

[12] Michael Danielczuk et al. “Mechanical Search: Multi-Step Retrieval of a Target Ob-
ject Occluded by Clutter”. In: 2019 IEEE International Conference on Robotics and
Automation (ICRA) [To Appear]. IEEE. 2019.

[13] Michael Danielczuk et al. “Segmenting unknown 3D objects from real depth images
using mask R-CNN trained on synthetic data”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). IEEE. 2019.

[14] Pieter-Tjerk De Boer et al. “A tutorial on the cross-entropy method”. In: Annals of
operations research 134.1 (2005), pp. 19–67.

[15] C. Ferrari and J. Canny. “Planning optimal grasps”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 1992, pp. 2290–2295.

[16] Peter R Florence, Lucas Manuelli, and Russ Tedrake. “Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation”. In: arXiv preprint
arXiv:1806.08756 (2018).

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.

[18] Corey Goldfeder and Peter K Allen. “Data-driven grasping”. In: Autonomous Robots
31.1 (2011), pp. 1–20.

[19] Corey Goldfeder et al. “The Columbia grasp database”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). IEEE. 2009, pp. 1710–1716.

[20] Ian J. Goodfellow et al. “Generative Adversarial Networks”. In: 2014.

[21] Marcus Gualtieri et al. “High precision grasp pose detection in dense clutter”. In:
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE. 2016,
pp. 598–605.

[22] Megha Gupta et al. “Interactive environment exploration in clutter”. In: Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS). IEEE. 2013, pp. 5265–5272.

[23] Kaiming He et al. “Deep residual learning for image recognition”. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[24] K He et al. “Mask r-cnn. arXiv preprint arXiv: 170306870”. In: (2017).

[25] Carlos Hernandez et al. “Team Delft’s Robot Winner of the Amazon Picking Challenge
2016”. In: arXiv preprint arXiv:1610.05514 (2016).

[26] Alexander Herzog et al. “Learning of grasp selection based on shape-templates”. In:
Autonomous Robots 36.1-2 (2014), pp. 51–65.

[27] Stefan Hinterstoisser et al. “Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes”. In: Proc. IEEE Int. Conf. on Computer Vision
(ICCV). IEEE. 2011, pp. 858–865.

BIBLIOGRAPHY 40

[28] Chiyu Jiang, Philip Marcus, et al. “Hierarchical Detail Enhancing Mesh-Based Shape
Generation with 3D Generative Adversarial Network”. In: arXiv preprint arXiv:1709.07581
(2017).

[29] Edward Johns, Stefan Leutenegger, and Andrew J Davison. “Deep learning a grasp
function for grasping under gripper pose uncertainty”. In: Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 4461–4468.

[30] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging big data for grasp
planning”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE. 2015,
pp. 4304–4311.

[31] Ben Kehoe et al. “Cloud-based robot grasping with the google object recognition
engine”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE. 2013,
pp. 4263–4270.

[32] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese neural networks
for one-shot image recognition”. In: ICML deep learning workshop. Vol. 2. 2015.

[33] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial examples in the
physical world”. In: CoRR abs/1607.02533 (2016). arXiv: 1607.02533. url: http:
//arxiv.org/abs/1607.02533.

[34] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: Int. Journal of Robotics Research (IJRR) 34.4-5 (2015), pp. 705–724.

[35] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: Int. Journal of Robotics Research (IJRR) 34.4-5 (2015), pp. 705–724.

[36] Beatriz León et al. “Opengrasp: a toolkit for robot grasping simulation”. In: Proc.
IEEE Int. Conf. on Simulation, Modeling, and Programming of Autonomous Robots
(SIMPAR). Springer. 2010, pp. 109–120.

[37] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: Int. Journal of Robotics Research (IJRR)
37.4-5 (2018), pp. 421–436.

[38] Jae Hyun Lim and Jong Chul Ye. “Geometric Gan”. In: arXiv preprint arXiv:1705.02894
(2017).

[39] Jeffrey Mahler et al. “Dex-Net 1.0: A Cloud-Based Network of 3D Objects for Robust
Grasp Planning Using a Multi-Armed Bandit Model with Correlated Rewards”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE. 2016.

[40] Jeffrey Mahler et al. “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Syn-
thetic Point Clouds and Analytic Grasp Metrics”. In: Proc. Robotics: Science and
Systems (RSS) (2017).

[41] Jeffrey Mahler et al. “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Syn-
thetic Point Clouds and Analytic Grasp Metrics”. In: CoRR abs/1703.09312 (2017).
arXiv: 1703.09312. url: http://arxiv.org/abs/1703.09312.

BIBLIOGRAPHY 41

[42] Jeffrey Mahler et al. “Dex-Net 3.0: Computing robust vacuum suction grasp targets
in point clouds using a new analytic model and deep learning”. In: Proc. IEEE Int.
Conf. Robotics and Automation (ICRA). IEEE. 2018, pp. 1–8.

[43] Jeffrey Mahler et al. “Dex-Net 3.0: Computing robust vacuum suction grasp targets in
point clouds using a new analytic model and deep learning”. In: 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 1–8.

[44] Jeffrey Mahler et al. “Privacy-preserving Grasp Planning in the Cloud”. In: Proc. IEEE
Conf. on Automation Science and Engineering (CASE). IEEE. 2016, pp. 468–475.

[45] Claudio Michaelis, Matthias Bethge, and Alexander Ecker. “One-Shot Segmentation
in Clutter”. In: Proc. Int. Conf. on Machine Learning. Ed. by Jennifer Dy and An-
dreas Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden: PMLR, 2018, pp. 3549–3558.

[46] Claudio Michaelis, Matthias Bethge, and Alexander S Ecker. “One-Shot Segmentation
in Clutter”. In: arXiv preprint arXiv:1803.09597 (2018).

[47] Takeru Miyato et al. “Spectral Normalization for Generative Adversarial Networks”.
In: CoRR abs/1802.05957 (2018). arXiv: 1802.05957. url: http://arxiv.org/abs/
1802.05957.

[48] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces.
Vol. 153. Springer Science & Business Media, 2006.

[49] Nicolas Papernot et al. “Practical Black-Box Attacks against Deep Learning Systems
using Adversarial Examples”. In: CoRR abs/1602.02697 (2016). arXiv: 1602.02697.
url: http://arxiv.org/abs/1602.02697.

[50] Andreas ten Pas et al. “Grasp pose detection in point clouds”. In: Int. Journal of
Robotics Research (IJRR) 36.13-14 (2017), pp. 1455–1473.

[51] Pedro O Pinheiro et al. “Learning to refine object segments”. In: European Conference
on Computer Vision. Springer. 2016, pp. 75–91.

[52] Lerrel Pinto and Abhinav Gupta. “Supersizing Self-supervision: Learning to Grasp
from 50K Tries and 700 Robot Hours”. In: Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA). 2016.

[53] Domenico Prattichizzo and Jeffrey C Trinkle. “Grasping”. In: Springer handbook of
robotics. Springer, 2008, pp. 671–700.

[54] Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 779–
788.

[55] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region
proposal networks”. In: Proc. Advances in Neural Information Processing Systems.
2015, pp. 91–99.

BIBLIOGRAPHY 42

[56] Alberto Rodriguez, Matthew T Mason, and Steve Ferry. “From caging to grasping”.
In: Int. Journal of Robotics Research (IJRR) (2012), p. 0278364912442972.

[57] Reuven Y. Rubinstein. “Optimization of computer simulation models with rare events”.
In: European Journal of Operational Research 99.1 (1997), pp. 89–112. issn: 0377-
2217. doi: https://doi.org/10.1016/S0377- 2217(96)00385- 2. url: http:

//www.sciencedirect.com/science/article/pii/S0377221796003852.

[58] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embed-
ding for face recognition and clustering”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 815–823.

[59] Amirreza Shaban et al. “One-shot learning for semantic segmentation”. In: arXiv
preprint arXiv:1709.03410 (2017).

[60] Christian Szegedy et al. “Intriguing Properties of Neural Networks”. In: CoRR abs/1312.6199
(2013). arXiv: 1312.6199. url: http://arxiv.org/abs/1312.6199.

[61] Hoang Thanh-Tung, Truyen Tran, and Svetha Venkatesh. “On catastrophic forgetting
and mode collapse in Generative Adversarial Networks”. In: arXiv preprint arXiv:1807.04015
(2018).

[62] Koen EA Van de Sande et al. “Segmentation as selective search for object recognition”.
In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). IEEE. 2011, pp. 1879–1886.

[63] Oriol Vinyals et al. “Matching networks for one shot learning”. In: Proc. Advances in
Neural Information Processing Systems. 2016, pp. 3630–3638.

[64] David Wang et al. “Adversarial Grasp Objects”. In: 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE) [To Appear]. IEEE. 2019.

[65] Zhirong Wu et al. “3d shapenets: A deep representation for volumetric shapes”. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1912–
1920.

[66] Dawei Yang et al. “Realistic adversarial examples in 3d meshes”. In: arXiv preprint
arXiv:1810.05206 (2018).

[67] Sergey Zagoruyko and Nikos Komodakis. “Learning to compare image patches via
convolutional neural networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 4353–4361.

