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ABSTRACT
Public alert systems are neither new, novel, nor ready for
the future. They are unprepared for the changing domain of
media consumption and the growing threat of network-based
attacks. Here we present a simple design for an architecture
to reliably and securely distribute emergency alerts through
the Internet. Rather than treating the network as a black
box, we incorporate it into our design, enabling us to make
stronger guarantees. We build off of a clean-slate framework
that supports multiple, specialized architectures.

1 MOTIVATION
More and more people consume media from client-server
based sources (e.g., Facebook, Netflix, Spotify, etc.) instead of
traditional one-to-many sources (e.g., television, radio, etc.)
that usually carry emergency alerts. The current solution
to alerting users of client-server systems is to provide an
emergency alert feed that websites and providers can peri-
odically poll and then push to users. While television and
radio broadcasters (and providers) are legally required to
disseminate these messages, websites and ISPs1 are not.[3]

More importantly, the existing systems treat the internet
as a reliable black box, ignoring the increasing frequency
and strength of cyber-attacks. In ‘traditional’ emergency
scenarios the internet is either present or not; physical cables
are down or up. However, in a denial of service attack, the
physical infrastructure is intact, but the ability for useful
communication is heavily degraded. In a scenario where
either terrorist or state actors decide to attack in both the
physical and cyber realms, citizens still need to be able to
receive these critical alerts.

2 BACKGROUND
2.1 Trotsky
The foundation for this project is Trotsky, a clean-slate in-
ternet framework that separates intra (L3) and inter (L3.5)
domain abstractions, and allows for a proliferation of spe-
cialized network architectures. The forwarding appliance in
Trotsky is the Trotsky Processor (TP): an end-point for an
L3.5 pipe that forwards based on the L3.5 protocol agent of
the incoming packet. New inter-domain architectures can be
developed and deployed by simply adding a routing agent
1Companies that provide both (like AT&T), only are required to send via
the mandated medium

to TPs. In addition, new intra-domain architectures can be
created and replaced within a domain without affecting the
L3.5 architecture.
We leverage Trotsky both as a way of deployment and

as a rationale for our design. Deployment in Trotsky is as
simple as pushing a software update to TPs. We also use
the L3.5 abstraction of domain-to-domain communication
to simplify the problem from sending a message to every
end-host to sending a message to every ISP. We aim to solve
one specific problem: emergency broadcast—with Trotsky
this is allowed and even encouraged. There is no reason to
add complexity to existing architectures or create a new all-
encompassing architecture because Trotsky allows for an
ecosystem of specialized architectures.

2.2 Existing Infrastructure
The US public alert system has been around for over a half
century2. The system begins with FEMA initiating an alert
and sending it to Primary Entry Points (PEPs) across the
country via robust RF communication. PEPs are hardened
sites that help spread the alert to local radio and TV stations
(and can also serve as origin points for local alerts). FEMA
(at the same time as the aforementioned broadcast) publishes
alerts to an online information feed. All cellular providers
and, as seen in a 2018 test of the system, a majority of radio
& television providers use this online feed. Ultimately, the
FEMA message first goes to distributors, which then, in turn,
deliver the alert to individual citizens. [6]
The 2018 system test showed some interesting results

about the effectiveness of the system. Overall only about 80%
of people received the alert, showing that there is room for
improvement. Furthermore, most people that were surveyed
received the alert on their smartphone, rather than radio
or television (combined less than 10% of respondents ). The
cellular transmission caused a variety of issues, ranging from
ensuing service outages, to receipt of dozens of duplicate
alerts.[4, 5]

3 DESIGN OVERVIEW
Our design combines the abstractions provided by Trotsky
with the hierarchical broadcast design provided by the cur-
rent emergency broadcast infrastructure. Concretely, this

2This paper focuses on the US, but most countries (if they have such systems)
have similar designs.
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Figure 1: Step-by-step process of a nation-wide broad-
cast

means flooding an alert on L3.5, and then having ISPs push
the message directly to citizens.

3.1 Detailed Proposed Process
The steps for a national alert solution using our proposed
architecture are shown in Figure 1, and are described in detail
below.

1. Some approved entity sends an out-of-band signed mes-
sage to the PEPs3 across the country. This step helps ensure
that the message is inserted into multiple points of the inter-
net, reducing the impact of network partition.

2. & 3. PEPs confer with each other (out-of-band) to reduce
the risk of a compromised PEP (described in section 4).

4. PEPs then send the message to their ISP where the first
TP receives the message. The TP ensures that the message
has the correct signature (described in section 4), dropping
the message if it does not.

5. The TP initiates L3.5 flooding4 of the packetized mes-
sage, encoding the data using a fountain code (described in
section 5). Every TP that receives a packet from the message
also checks the signature before forwarding. If the signature
does not match, the packet is dropped.

6. Each TP floods until its neighbor responds with ‘Mes-
sage Received.’

7.When each TP is able to decode the message, the owner
of the TP (an ISP) will begin internal, intra-domain broadcast
to its customers.

3These are the same PEPs mentioned in section 2.2
4Continual broadcast to all neighbors.

Figure 2: Packet layout

Once messages get to an ISP, the ISP is responsible for the
‘last-mile’ delivery to people. This delivery service can differ
domain to domain. For a wireless provider, they may use the
same SMS-based emergency alert system that is in use today.
ISPs can use multicast, existing modem communication sys-
tems, or whatever technologies they may have. Finally, the
host-based delivery is as simple as having browsers or OS
vendors accepting special, verified ‘alert’ packets.

A local emergency broadcast would follow a similar pro-
cedure, but still differs in two main ways. First, it may not
require cross validation with other PEPs. This is because a
locality may only have one PEP, and an initiating author-
ity would go directly to that PEP for broadcasting. Second,
when the message is flooded on L3.5, TPs in different locali-
ties would not continue the broadcast5.
To draw our discussion of the overall design to a close,

we will now discuss how the packet layout enables the func-
tionality of our architecture. The fields in the packet are
shown in Figure 2; everything ‘inside’ of the L3.5 header was
created as part of our proposal. The L3.5 header specifies
that the TP should pass the packet to the Emergency Broad-
cast processing agent. The Broadcast ID is a flow number
to differentiate between messages. The Total Number Sent
specifies how many packets the TP should receive before
sending ‘Message Received.’ This number will be larger than
the number of packets needed for decoding the message and
will be described in section 5. Location specifies what region6
the message is for, enabling local broadcast. The Crypto Sig-
nature is integral to the verifying that the packet came from
an authorized origin and has not been tampered. The Time
Stamp states when the message was initially sent. Together
these two fields prevent replay-based attacks (messages with
a valid signature and a stale time stamp will be dropped).

3.2 Rationale
The goal for this architecture is two-fold: 1) robust mes-
sage delivery and 2) access control. We further worked with

5If a TP knew its neighbors were in the same location as the broadcast, it
would forward the packets.
6Any standardized location format works (e.g., ZIP code, city, etc.)
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several key assumptions: A) emergency broadcasts are rel-
atively infrequent, B) Trotsky is the standard framework,
and C) some central authority that must be trusted7. This
prioritization led to the design we have here.

Goal 1 and assumptionsB allowed us to consider in-network
solutions. End-to-end arguments over many lossy links8
are weak because the per-link drop-probabilities are com-
pounded and result in low chance of delivery. Trotsky allows
us to place functionality in the network, reducing the num-
ber of links between logical endpoints, increasing robustness.
In-network support also allows for extensions like increasing
QoS levels for these alerts9.
Goal 1 and assumption A led us to the idea of flooding.

This architecture is used for infrequent and urgent events,
meaning that degradation of other traffic is tolerable. Using
BGP (or any ‘normal’ inter-domain routing) paths increase
the probability of message failure if links go down or are
unstable; it also introduces unnecessary complexity. The
use of many PEPs to introduce the message to the system
also reduces the single-point-of-failure of having a truly
centralized network entry point.
In the following section, we will focus on goal 2 and as-

sumption C.

4 ACCESS CONTROL
The goal of access control in our design is to protect users
from false broadcasts and to ensure that they receive criti-
cal information in times of emergency. We limit the ability
to broadcast messages on the network to a small group of
trusted parties such as local and federal governments. Our
network architecture is responsible for preventing malicious
users from disseminating misinformation or spamming the
network and its users with their messages.

4.1 Overview
To ensure that only authorized users can broadcast emer-
gency messages on the network, we need to be able to verify
the identity of the sender. We use a public key infrastructure,
such as X.509 certificates[2], to authenticate the identity of
the sender. The federal government will act as the root cer-
tificate authority, which signs a root certificate to be stored
in the trust store of every TP’s Emergency Broadcast agent.
The federal government is responsible for signing certificates
for local governments to act as intermediate certificate au-
thorities. Both the root certificate authority and intermediate
certificate authorities are able to sign end entity certificates
7This is meant in both having some sort of centralized key storage and also
in the sense of having someone with absolute ability to launch an alert (the
president)
8While the internet is usually not lossy, in congestion-attack scenarios that
we are concerned with, packet loss is common.
9To reiterate: this is an extension.

for members of their organization to use to send messages
through the network.

4.2 Signing/Verifying Process
In order to send a message using the Emergency Broadcast
Architecture, the sender first encodes the message using
fountain codes (described in section 5) and signs the encoded
message along with the packet header. The signature and
chain of certificates are included in the packet’s header and
the encoded message is sent in the body of the packet.
To verify the validity of a packet at a TP, the chain of

certificates is first validated by making sure the end entity
certificate is signed by a valid intermediate certificate or the
root certificate, and if there is an intermediate certificate
it must be signed by the root certificate. Next, the location
field is enforced by checking that the intermediate certificate
belongs to the correct local authority specified in the location
field of the header. If packet is part of a national broadcast,
then the end entity certificate must be signed directly by
the root certificate. Finally, the signature of the packet and
timestamp are checked to make sure that the packet has not
been tampered with and that it was sent recently to prevent
replay attacks.

4.3 Threat Model
In our architecture, we trust that the government, both lo-
cal and federal is not malicious. Network operators, and
hardware vendors can be singularly malicious as their im-
pact would only affect their local domain (a national alert
would not happen). We assume that network operators and
hardware vendors are not collectively malicious. The main
threats we protect against are other users of the internet.
Since anyone is able to send a packet that uses the Emer-
gency Broadcast L3.5 header, we must prevent malicious
users of the internet from trying to broadcast their own mes-
sage to all the other users of the internet. We also need to
make sure that the legitimate messages that get sent are ac-
tually correct and received by every user. This is why our
architecture provides authenticity, integrity, and reliability.
By using certificates and having the sender sign both the
message and the timestamp, we ensure the authenticity and
integrity of the message and prevent replays of the same
message. With Trotsky, we are able to provide reliability
as part of the network and we further improve reliability
through encoding the message with RaptorQ fountain codes
which we describe in section 5.

4.4 Extensions
Security could be further improved upon at the application
layer through private key management. One possible im-
provement is the sharing of private keys across multiple PEPs
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through secret sharing. With one private key split across
multiple PEPs, it would require multiple PEPs to agree on a
message in order to recover the private key required to sign
the packet. By requiring the consensus of multiple PEPs to
send a message, we protect against rogue PEPs from sending
messages by themselves and from accidental message broad-
casts. Another extension is to handle lost or stolen keys to
prevent malicious use of the stolen keys. We can achieve
this through the use of certificate revocation lists(CRL) to
invalidate existing signed certificates before their expiration
in the case that the private key associated with the certificate
is compromised. Every TP could periodically poll and store
this list locally and not accept any messages that are signed
with an invalidated certificate.

5 RELIABLE TRANSMISSION
In order to increase the speed and reliability of message
transmission, we will use RaptorQ fountain codes. We will
use RaptorQ and rateless codes interchangeably throughout
this paper. The idea of fountain codes is that a finite source of
k symbols can be transformed into an arbitrarily long stream
of non-redundant symbols. Furthermore, the receiver only
needs to receive any k + ϵ symbols to recover the original
message. For RaptorQ, ϵ = 0 and ϵ = 2 give, respectively, a
99% and 99.9999% chance of recovery.[7, 8]

RaptorQ encoding also provides high performance through
linear time encoding and decoding, reducing the burden on
TPs10. Codornices, a RaptorQ package from ICSI, recently
released performance results. For a 128 kB message on x86,
the encode and decode took under 0.5ms each, and was able
to produce/consume at a rate of 2 Gbps[9]. This performance
is definitely sufficient for our application, as will be described
in the following section.

5.1 Use in our system
In our design we encode a message once; it is only encoded
when it arrives at the first TP. All subsequent TPs (in other
domains) decode the message (for intra-domain broadcast)
and resend the already encoded message to neighbors. Since
we are reducing a potentially infinite stream to a finite length,
we must ensure that nodes receive more packets than are
needed to only reconstruct the message. For a message of
k blocks, we set the Total Number Sent packet field (refer
to Figure 2) to k · fovershoot . This overshoot value is not
permanently fixed and can be tuned: a large fovershoot uses
more bandwidth, but ensures more packets for future nodes
to re-transmit, while a small fovershoot (specifically 1) is just
blind sending of a message.

10Specifically that the encoding/decoding scheme does not rely on special-
ized hardware

Figure 3: Basic simulation algorithm used

The choice to not use full RaptorQ decoding and encod-
ing capabilities at each step was based on the concern of
blocking11, or waiting for an entire message to arrive before
flooding. All the time that one node spends waiting to receive
the remainder of a message is time wasted in transmission.
This is further explored in the evaluation.

6 EVALUATION
For our evaluation we used the python networkx library
to model the high level behavior of different propagation
modes.[1] For network topologies, we used an abridged Rock-
etfuel ISP level map. [10]

6.1 Simulation Design
The simulator provides a step-based simulation of propaga-
tion of packets until all nodes have received the full mes-
sage. The pseudocode is provided in Figure 3. The simulator
makes sure that this abstraction of lock-step propagation is
maintained. For example, when on iteration i , and node u
sends pa+1 to v , when v gets its turn to send on iteration i ,
it cannot send pa+1. The simulation stops when all nodes
have received the message (this metric differs per sending
method).

We modeled ACK-based senders, rateless senders (decode-
only), and blocking rateless senders (encode and decode at
each step). To simulate ACK-based sending, each node keeps
track of the largest ‘sequence number‘ that each neighbor
has received. Nodes repeatedly send one packet until the
neighbor explicitly tells it to move on.

For rateless senders, each node sequentially goes through
received packets and blindly sends them (there is no knowl-
edge if the receiver has received it). The first node is given
len(MSG) · fovershoot packets to begin sending. The simula-
tion ends when all nodes have received any set of len(MSG)
distinct packets. The blocking rateless sender cannot trans-
mit until it has received len(MSG) packets, but, unlike the

11‘Blocking’ was chosen over ‘store-and-forward’ in order to emphasize
that this is on a permessage basis
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Figure 4: Box-and-Whisker plot of the ACKing sender

rateless one, it sends an infinite stream of packets until the
simulation ends.

6.2 Experimental Setup
For each experiment we defined a link-based drop probabil-
ity value, selected a given propagation method and ran the
simulation. For each set of control variables we repeated the
simulation 100 times to get a strong sample size. For all ex-
periments, we selected one sender node (at random from the
graph) and sent a 15-packet-long message. Unless otherwise
specified, the rateless sender uses a fovershoot of 2.
We were only concerned with relative performance of

methods, not absolute performance. Drops were used to
model congestion because routing devices under attackwould
begin dropping packets once buffers filled up. We measured
performance in terms of "Numbers of Iterations," or the
amount of time the simulation ran for. Converting from
this to actual propagation time would look something along
the lines of Num_o f _Iterations · T ransmission_Latency

Link_Bandwidth
12.

6.3 Results
Our results are summarized in Figures 4, 5, 6, 7, 8, and 9 13.
The first two graphs show the performance of the ACK-

based sender (Figure 4)and rateless sender (Figure 5) relative
to themselves as the probability of packet-loss increases.
From these graphs, we can see how the message propagation
time would vary based on the severity of packet loss. These
graphs provide a stand-alone baseline for each major sending
method. It should be noted that y-axis on these graphs are
10x greater in Figure 4 as compared to Figure 5.
12We do not intend to treat these as any form of real world estimations, and
this equation is just a hypothetical in the right direction
13Note that the drop probability of 0.99 was excluded from Figure 4 and
Figure 5 in order to increase readability.

Figure 5: Box-and-Whisker plot of the rateless sender

Figure 6 compares the average performance of the ACK-
based sender and the rateless sender as drop probability
increases. The main takeaway from this graph is that the
performance of ACK-based sending rapidly degrades when
the drop probability approaches 100%. To better understand
the difference between these two senders at lower drop prob-
abilities, refer to Figure 7, which uses a logarithmic y-axis.
Even for mild conditions, the rateless sender is almost 10x
faster.

The remaining graphs focus on comparisons between rate-
less senders. Figure 8 shows a direct comparison of the block-
ing rateless and ’normal’ rateless senders. Both senders have
relatively similar performance throughout all drop probabil-
ity scenarios. The difference at the high drop probability is
more pronounced for the blocking rateless sender, but is only
1.5x bigger than the rateless sender. Returning to Figure 7,
it reveals that these two sending methods are at a roughly
constant separation of roughly 2x.
Figure 9 compares the baseline rateless sending (which

uses fovershoot = 2) , with fovershoot = 4 and fovershoot = 8.
This figure is the % difference of the ratio of Number of
Iterations on higher factors as compared with the baseline.
All values represented here are less than 1.1x different. This
shows that while increasing the overshoot factor improves
performance, the result is small.

The clearest result is not surprising: rateless sending out-
performs ACK-based sending. This makes sense because an
ACK-based sender needs to traverse each link twice for any
given packet.

The results between rateless senders are more surprising.
The blocking, rateless sender performed relatively well, stay-
ing within a roughly constant factor of the non-blocking
version. The impact of waiting to send (especially for high
drop rates) seems to be countered by the infinite stream.

5



M. Dong, I. Rodney

Figure 6: Comparison of the ACKing and rateless
senders

Figure 7: Comparison of the ACKing and two rateless
senders on a log y-axis

With regards to the standard rateless sender, the choice of
fovershoot does not seem to matter much beyond a factor of
2. The increase of fovershoot to 4 and 8 resulted in materially
similar results.

7 CONCLUSION
In this paper we presented a new Emergency Broadcast Ar-
chitecture that interleaves existing infrastructure with a flex-
ible internet framework to produce a simple, robust design.
We achieved our goal of reliability through RaptorQ encod-
ing on a hop-to-hop basis and our goal of access control
by leveraging public key cryptography and existing PEPs.
Overall, our design meets the needs of a future-proof emer-
gency alert system. With our assumption of working in a
"Trotksy World," we leave open paths for future research
into merging our designs in the existing emergency alert

Figure 8: Comparison of the blocking and non-
blocking rateless senders

Figure 9: Comparison of a Rateless senders with vari-
ous overshoot factors

and internet infrastructure to increase the robustness of the
national broadcast system.
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