
Compression of Molecular Dynamics Simulation Data

Shuai Liu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-65
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-65.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compression of Molecular Dynamics Simulation
Data

Shuai Liu

Abstract Molecular dynamics (MD) simulation is an approach to explore physical,
chemical and biological systems computationally when they cannot be investigated in
nature. By modeling the interactions between atoms and/or molecules using Hamilto-
nian principles, hypotheses about physical, chemical, or biological properties of various
systems can be tested. Given that the simulations are done on atomic level, it is easy
to generate terabytes of data. MD simulation results therefore not only require large
amounts of storage, but also result in very slow to transfer simulation outcomes between
computers. In this report, I present work on designing and analyzing algorithms for MD
simulation data compression in both the time and space domain. I also present experi-
ments to understand the relationship between compression performance and underlying
physical behavior of the simulation. Specifically, I analyze the Shannon entropy of MD
simulation data in correlation with different physical parameters.

1

Acknowledgement

First, I would like to express my deepest gratitude to my research advisor, Professor Ger-
ald Friedland. I am fortunate to have the opportunity to explore this interdisciplinary field
with his mentorship. He is a rigorous mentor and scholar. In the meantime, he is also a
very nice friend. He provided me tremendous help throughout my projects and my career.
Thanks, Gerald!

Second, I would like to thank Professor Kannan Ramchandran and Dr. Alfredo Me-
tere. Kannan gives me a lot of ideas and inspirations throughout many discussions as the
second reader, which helps me make a significant improvement of this report. Alfredo is
always willing to help me when I have difficulties in physics principles, algorithms and
data analysis. Thanks again for your help during my master study in computer science.

Third, I would like to thank the professors and administration staffs from both EECS and
chemistry department, who give me generous help. I appreciate their help when I decide
to explore the interdisciplinary projects between computer science and physical science.
Touching this research area provides me useful technical skills for my future career and
gives me inspirations on the future research. The skills I learned during this study also in
turn help me develop useful toolkits for chemistry and materials studies, such as machine
learning toolkits for automatic materials structure identification, and experimental setup
stabilization using machine learning approaches. I appreciate the graduate study platform
at UC Berkeley, which allows me to develop the interdisciplinary studies.

2

Contents

1 Introduction 5
1.1 Theoretical Background . 5
1.2 Motivation of MD Simulation Data Compression 9
1.3 Overview of Subsequent Chapters . 10

2 Background and Related Works 11
2.1 Compression Algorithm . 11
2.2 MD Simulation Data Compression . 11
2.3 Inspiration from Multimedia Compression 13
2.4 Outlook of The Report . 13

3 Dataset and Experiment Setup 14
3.1 Datasets . 14
3.2 Evaluation of Algorithms in Subsequent Chapters 15

4 Compression Algorithms in Time Domain 16
4.1 Time Series Modeling . 16
4.2 Piece-wise Polynomial based Predictors 18
4.3 MD Simulation Data Compression Using Deep Learning Models 23
4.4 Summary . 31

5 Compression Algorithms in Space Domain 32
5.1 Data Rearrangement . 32
5.2 Paeth Filter and Quantization . 36
5.3 Summary . 39

6 Comparison of Compression Algorithms 40
6.1 Comparison of Different Compression Algorithms 40
6.2 Future Directions . 42
6.3 Summary . 43

7 Compression Performance and Underlying Physics 44
7.1 Study I: Performance of Piece-wise Polynomial Based Compression Al-

gorithm . 44

3

7.1.1 What is a Phase Transition? . 44
7.1.2 Experimental result . 45

7.2 Study II: Information Entropy of Quantized Data 47
7.2.1 Gibbs Entropy and Shannon Entropy 47
7.2.2 Experimental result . 47

7.3 Summary . 50

8 Conclusion and Outlook 51
8.1 Conclusions . 51
8.2 Future Outlook . 52

4

1 Introduction

In this chapter, we discuss the motivation, related theoretical background and the overview
of subsequent chapters.

1.1 Theoretical Background

It is challenging to understand complex chemical and biological systems at atomic scale
using experimental approaches. Therefore, computational algorithms are designed to in-
vestigate the atomic level interactions and dynamics in these systems. In the past a few
decades, high performance computer clusters have enabled large scale scientific comput-
ing and simulations [1, 2, 3, 4]. Here are several examples to show how simulations can
solve real world problems in physics, chemistry and biology:

1. Predict the properties of chemical, biological or material systems [5].

2. Calculate important physical parameters in certain systems [6].

3. Understand the interactions between large bio-molecules [7].

Figure 1.1 Atomic level simulation in materials science and biological systems. The balls
in different colors stand for different atoms, such as hydrogen and oxygen. The left figure
is reprinted from The Chemical Engineering Science, Volume 127, Jafar Azamat et al.,
Molecular dynamics simulation of trihalomethanes separation from water by functional-
ized nanoporous graphene under induced pressure, Pages 285-292, Copyright 2015, with
permission from Elsevier. The right figure is reprinted in literature [8] Copyright 2005
National Academy of Sciences.

5

Figure 1.1 shows two simulated systems: water purification [9] and protein salvation [8].
Specially, molecular dynamics (MD) simulation is commonly used to model and simu-
late the dynamics of chemical and biological systems at atomic level. By constructing
the potential functions between atoms, MD programs can calculate the positions and mo-
mentums of atoms as a function of time using the principles of Hamiltonian mechanics.
In the MD systems we investigate in this report, Hamiltonian H is composed of potential
energy U and kinetic energy K:

H(qqq,ppp) = U(qqq) +K(ppp) (1)

where qqq is the position vector and ppp is the momentum vector. The kinetic energy is
determined by the momentum ppp of particles:

K(ppp) =
NX

i=1

||pppi||2
2mi

(2)

Potential energy is a function of the position qqq. In the MD simulation systems, the pair-
wise potential energy is most commonly used:

U(qqq) =
N�1X

i=1

N�1X

j=i+1

V (qqqi, qqqj) (3)

For example, the Lennard-Jones [10] potential is used to approximate the potential energy
between two particles, which is a function of distance r between two particles: r =

||qqqi � qqqj||. The mathematical formula of the Lennard-Jones potential is

V (r) = 4✏(
�

r12
� �

r6
) (4)

where ✏ and � depend on the physical system. The function is plotted as shown in Figure
1.1 when we set � = 1, ✏ = 1

4 .

6

Figure 1.1 Lennard-Jones potential energy as a function of pair-wise distance r.

In each simulation step, forces FFF is calculated based on the gradient of potential en-
ergy

FFF = �rU(qqq) (5)

and then update the velocity and position accordingly. In the time domain, the motion
follows Newton’s equation:

˙qqq =
ppp

m
(6)

˙ppp = FFF (7)

MD simulation is to solve these differential equations numerically using symplectic inte-
grator. Figure 1.2 shows a flowchart of MD simulation algorithm.

7

Figure 1.2 MD simulation process.

First, the initial configurations are set, including the initial position, velocity and po-
tential energy function. At each timestep, the simulator will calculate the forces and
update the velocities and positions accordingly. In detail, one typical MD simulation
algorithm has the following steps:

1. Set the initial position qqq0, velocity vvv0 and other parameters, such as time t = 0 and
timestep i = 0.

2. Calculate the force FFF and acceleration aaa

FFF = �rU(qqqi) (8)

aaa =

FFF

m
(9)

3. Update the velocities vvv
vvvi+1 = vvvi + aaa�t (10)

8

4. Update the positions qqq

qqqi+1 = qqqi + vvvi�t+
1

2

aaa�t2 (11)

5. Go to step 2, i i+ 1

At each simulation timestep i, the simulator will save the position qqq of all the atoms as
a single frame. The whole MD simulation dataset is composed of the frames ordered by
the timesteps.

1.2 Motivation of MD Simulation Data Compression

Given the simulation is performed on molecular level, MD simulator can easily generate
large scale datasets. MD simulation expedites the scientific discovery process, but also
raises some problems for the data storage and analysis:

1. For data storage, MD simulation datasets can be in TB to PB scale. To address
this issue, we design different types of algorithms, such as conventional piece-wise
polynomial predictors and novel deep learning methods, to compress the MD sim-
ulation data.

2. It is computationally intensive to analyze the whole TB scale datasets. On the
contrary, in some datasets, the important events (for example, phase transition) may
only happen in some of the frames. In order to capture these events, in this report,
we calculate several parameters from an information viewpoint, such as Shannon
entropy. We observe that the Shannon entropy drastically changes during the phase
transition. These results and methods can be potentially applied to an open but
challenging problem: phase transition detection.

In the past, these two problems are usually addressed separately. In fact, these two prob-
lems are coherently related: the underlying physics determines the optimal compression
performance; the anomaly event happens when the physical behavior drastically changes.
In this report, we first start with the empirical analysis of the compression algorithms.
Then, we use two studies to investigate the relationship of compression performance and
underlying dynamics.

9

1.3 Overview of Subsequent Chapters

Here is the detailed flow of this report:

1. Chapter 2 gives a brief review about the related work of compression algorithms
and data analysis methods.

2. Chapter 3 describes the datasets and experiment setups.

3. Chapter 4 discusses the compression algorithms in time domain.

4. Chapter 5 discusses the compression algorithms in space domain.

5. Chapter 6 gives an analysis of experimental results by comparing the performance
of different compression algorithms.

6. Chapter 7 presents two empirical studies to show the relationship of compression
performance and the underlying phase behavior.

7. Chapter 8 draws a conclusion of the report. We also provide the limitations of
current work and the outlooks of the future directions.

10

2 Background and Related Works

Both the physics and signal processing communities have engaged in the process of data
processing, analysis and compression. In the physics community, compression algorithms
are designed with limitations based on the understanding and conditions of a given phys-
ical system. Likewise, in the signal processing community, one main focus is development
of mathematical tools and statistical models towards better compression performance.
This chapter gives a brief overview of the algorithms developed by both communities.

2.1 Compression Algorithm

Compression algorithms usually contain two modules: the encoder and decoder. The en-
coder transforms the original data into a compressed format. The decoder reverses this
process: it transforms the compressed data back to its original format. There are two
types of compression algorithms [11]: lossless and lossy compression algorithms. Loss-
less compression algorithms, such as entropy-based compression [12], can fully recover
the original data through this encoding-decoding process. In this case, the compression
performance can be evaluated by the number of bits required per sample. The lower
bound of the lossless compression algorithm can be determined by the Shannon entropy.

Lossy compression algorithms are designed to store the data more efficiently while losing
redundant or detailed information, which means that some original information cannot be
fully reconstructed once the data is compressed. In this case, in order to evaluate the com-
pression performance, the reconstruction error is measured as a function of compression
rate.

2.2 MD Simulation Data Compression

MD production runs usually consist of several hundred millions to several trillions timesteps
on system configurations of at least 104 particles, up to several billions, and occasionally
even a few trillion particles. In the real world, the positions and velocities are real num-
bers. However, in order to perform the numerical calculations and store the data using
binary coding, the data must be quantized and stored as double precision floating point
numbers. From this viewpoint, there is always an error when the positions and velocities
are quantized.

11

To efficiently store these large-scale MD simulation datasets, many compression algo-
rithms have been proposed in the past a few decades. Most of them focus on the compres-
sion of MD simulation data in time domain, which is to compress the trajectory of single
atoms at different timesteps.

One naive strategy is differential encoding [13]. Rather than saving the position qi of
each atom at each single timestep i, the differences between two consecutive frames are
calculated and stored. At the beginning of the simulation, the initial value q0 will be
stored. At each timestep t, the position differences with the last frame (t � 1): qt � qt�1

are calculated and stored. This algorithm is suitable for the datasets where the differences
are small and ideally constrained in some intervals qi+1 � qi 2 [A,B]. With these prop-
erties, the data can be quantized and stored efficiently. The disadvantage of differential
encoding is that the quantization error may propagate as a function of time.

Recently, Jan Huwald et al [14] proposed a lossy compression algorithm using linear
predictors to compress MD simulation data. The idea was to search piece-wise linear
predictors that could bound the residual errors uniformly within a certain threshold ✏. By
setting the absolute error threshold to 10

�1, they obtained 1 bit per sample compression
performance on certain datasets.

Other lossy compression algorithms have also been proposed [15, 16] by assuming cer-
tain aspects of the simulation data, such as sparsity or low rank properties. For example,
the data may be represented by a few parameters in the frequency domain if it has certain
periodicities; if the simulation data has low rank approximation, it can be projected to a
low dimension subspace by calculating the principle components. However, these algo-
rithms require certain assumptions on the datasets, which may not be applied to general
MD simulation compression.

12

2.3 Inspiration from Multimedia Compression

Figure 2.1 DCT based compression algorithm. The figure is adapted from literature [17].

Both MD simulation datasets and video datasets are composed of frames. In the computer
science field, many multimedia compression algorithms have been developed for image
and video datasets. Discrete cosine transform (DCT) based compression (scheme shown
in Figure 2.1), for example, JPEG [17], is a type of well-established standard compres-
sion algorithms. DCT transforms the data from real space to discrete cosine space. For
example, JPEG is based on block-wise DCT followed by quantization and entropy cod-
ing steps. Another type of compression algorithm is to design the filter using local spatial
correlations explicitly, such as Paeth filter based compression algorithm [18]. These al-
gorithms have been applied to many real-world image and video datasets.

2.4 Outlook of The Report

In this report, we start with time series modeling to analyze the MD simulation datasets in
the time domain. Then, we present a general framework for MD simulation data compres-
sion using the piece-wise polynomial predictors. Moreover, we utilize the deep learning
based methods, such as autoencoder [19] and LSTM gers1999learning, on this MD simu-
lation data compression. In the space domain, we assign the data points onto the 3D cubic
grid using a greedy approach. Then, Paeth filter based compression algorithm can be ap-
plied on these structured datasets. Moreover, the compression performance is dependent
on the underlying physics. We will illustrate the relationship of compression performance
and underlying phase behavior using two examples.

13

3 Dataset and Experiment Setup

In this chapter, we give a detailed description on the datasets we will use in this report. In
the following chapters, the empirical evaluation of the compression algorithms are based
on these two datasets.

3.1 Datasets

In this report, we test our algorithms on two datasets:

1. MOFCOOL dataset: formation of the metal organic framework crystals from the
liquid [20].

2. LIQCRY dataset: formation of the liquid crystals from the liquid phase. [21].

In both datasets, there are 16,384 particles. Each particle has three dimensions: x, y, z

coordinates. The first dataset has 6,000 timesteps and the second dataset has 192,000
timesteps.

MOFCOOL Dataset LIQCRY Dataset

Figure 3.1 Visualization of the physical systems. The MOFCOOL dataset represents a
type of system containing rigid framework structures. The LIQCRY dataset represents the
liquid crystal formation process. The left figure is reprinted Reprinted from The Journal
of Chemical Physics, 141, Alfredo Metere et al., Formation of a new archetypal Metal-
Organic Framework from a simple monatomic liquid, 234503, Copyright 2014, with per-
mission from with permission from AIP Publishing LLC.

14

In the MOFCOOL dataset, there are two different phases. The system is in the liquid
phase during the first 1,000 timesteps. There is a phase transition from the liquid phase to
the solid phase from timestep 1,000 to timestep 1,500. From timestep 1,500 to timestep
6,000, the physical system is in the solid phase. The LIQCRY dataset is similar: during
the first 120,000 timesteps, the system is in the liquid phase. There is a phase transition
from the liquid phase to the liquid crystal phase between timestep 120,000 and timestep
125,000. From timestep 125,000 to timestep 192,000, the system is in the liquid crystal
phase. Figure 3.1 shows the visualization of these physical systems. The motivation
of choosing these two datasets is that their phase transition behaviors are different: the
phase transition from the liquid phase to the liquid crystal phase is more subtle than the
phase transition from the liquid phase to the solid phase. By testing on both datasets,
we claim that these compression algorithms are applicable for various MD simulation
datasets. Also, we will compare the compression results to illustrate how the underlying
physics and the compression performance are correlated.

3.2 Evaluation of Algorithms in Subsequent Chapters

In the following chapters, we will evaluate the performance of compression algorithms
using these two datasets. The compression algorithms are evaluated by the number of bits
needed per sample as a function of mean absolute error and/or absolute error threshold.
In detail:

1. In chapter 4, we focus on the compression of single particle trajectories at different
timesteps.

2. In chapter 5, we focus on the MD simulation data compression in a single timestep.

3. In chapter 6, we will compare the performance of different compression algorithms
on these two datasets.

4. In chapter 7, we investigate how the underlying phase behavior influences the com-
pression performance using two case studies.

15

4 Compression Algorithms in Time Domain

In this chapter, we design algorithms to compress the trajectories of single particles. We
start with conventional time series analysis to understand the patterns in the trajectories.
Then, we design several compression algorithms for MD simulation dataset: piece-wise
polynomial based compression algorithms and deep learning based compression algo-
rithms.

4.1 Time Series Modeling

Before the discussion of compression algorithms, we start with traditional time series
modeling on the MD simulation datasets. Here, we examine the MOFCOOL dataset as
an example. To simplify the problem, we only consider the trajectory of a single atom at
different timesteps i = 1, ..., n. There are several traditional time series models, such as
autoregression (AR), moving average (MA) and autoregressive integrated moving average
(ARIMA). The mathematical formula are:

AR(p) Model: Xt =

pX

i=1

↵iXt�i + ✏t (12)

MA(q) Model: Xt = µ+

qX

i=1

✓i✏t�i + ✏t (13)

ARIMA(p, q) Model: Xt =

pX

i=1

↵iXt�i +

qX

i=1

✓i✏t�i + ✏t (14)

where Xi, ✏i are data and white noise at timestep i, respectively. ↵ and ✓ are parameters of
the model. To determine the order p, q, we calculate the autocorrelation function (ACF)
and partial autocorrelation function (PACF) of position q as a function of time shown in
Figure 4.1.

ACF: �(h) =
Cov(Xt, Xt�h)

V ar(Xt)
(15)

PACF: ↵(h) =
Cov(Xt, Xt�h|Xt�1, ..., Xt�h+1)p

V ar(Xt|Xt�1, ..., Xt�h+1)V ar(Xt�h|Xt�1, ..., Xt�h+1)
(16)

16

Figure 4.1 Autocorrelation function (ACF) and partial autocorrelation function (PACF)
of position q in MOFCOOL dataset.

In the time domain, the MOFCOOL dataset (and some general MD simulation datasets)
has the following properties:

1. From ACF, we observe that the positions are highly correlated. AR could be a good
candidate to model the data in time domain.

2. From PACF, the components from lag 1 to 5 are significant (p value< 0.05), which
indicates that the order p = 5 in the AR model. The current position could be
approximated by a linear combination of the positions in last five timesteps.

In physics, Newtonian mechanics also describes the movement of particles as a func-
tion of time. The positions and velocities of particles can be approximated as:

qi+1 = qi + vi�t+
1

2

ai�t2 (17)

vi+1 = vi + ai�t (18)

where qi, vi, ai are the position, velocity, acceleration of the atom at timestep i. An im-
portant note is that these two equations only provide a finite approximation, because the
physical parameters q, v, a are changing continuously. This quadratic form is also the
motivation for us to investigate the piece-wise polynomial based compression algorithms.
We will discuss the details in section 4.2.

17

Position Data Velocity Data

Figure 4.2 Position and velocity data in discrete cosine space by DCT transformation.

We also analyze the data in discrete cosine domain by taking DCT transformation.
The DCT transformation is

DCT: fm =

n�1X

k=0

xk cos[
m⇡

n
(k +

1

2

)] (19)

where f and x are the data in cosine space and physical space, respectively. DCT trans-
formations of position and velocity data are shown in Figure 4.2. From the analysis, we
summarize the properties of the MOFCOOL dataset (and some general MD simulation
datasets):

1. For the velocity data, the spectrum has strong intensity in high frequency regime.
On the contrary, for position data, the frequency spectrum has high intensity in low
frequency regime.

2. In contrast to the datasets in literature [14, 15], the spectrum of position data has
a long and flat tail. Thus, in the MOFCOOL dataset (and in many general MD
simulation datasets), the frequency distribution is not sparse.

4.2 Piece-wise Polynomial based Predictors

In Hamiltonian mechanics, the positions and velocities are real values. There is always
a quantization step when we perform numerical calculations and store them as finite pre-

18

cision numbers. MD simulation data may require a certain error threshold. There are
several reports [14, 22] of MD simulation data compression based on this error threshold.

Under this error threshold setting, the compression problem can be reduced to a search
problem: find the predictor function f such that the residual error is uniformly bounded
by the threshold ✏ given by

max

i=1...n
|f(ti)� qi|  ✏ (20)

Ideally, function f has the following properties:

1. The function can be expressed by a small number of parameters, which is essential
for decent compression performance.

2. The predictors are mathematically and computationally easy to compute.

3. The models are ideally interpretable and consistent with the physics nature.

Piece-wise polynomial functions can be fully parameterized by the coefficients of the
polynomials, which is a good candidate. Mathematically, we iteratively search the poly-
nomial functions that can fit the data points q1, ..., qi+1 with a uniform error threshold ✏. If
the parameter space is not empty, then we try q1, ..., qi+2. Otherwise, we save the current
function for q1, ..., qi (ending at timestep i) and start another function from qi+1. Also, the
end timesteps need to be stored. By solving the linear programming (LP) with incremen-
tally added constraints, we can easily solve this problem and transform the position data
from physical space to polynomial coefficient space. Algorithm 4.1 provides the details
of the encoding and decoding algorithms. We use aj,k to denote the kth coefficient of jth
polynomial function.

19

Algorithm 4.1 Piece-wise Polynomial Compression
1: procedure ENCODING(q1, ..., qn, d, ✏) . d: order of polynomial
2: Start with initial parameter space: A0

= Rd+1

3: Index of the first polynomial function: j = 1

4: The ending timestep: e0 = 0

5: for i = 1, ..., n do
6: Add |Pd

k=0 aj,k(i�ej�1)
k�qi|  ✏ as additional constraint 8aaaj 2 Ai ✓ Ai�1

7: if Ai is empty then
8: Save an arbitrary predictor aaa⇤j 2 Ai�1 at ending timestep ej = i� 1

9: Restart another function with index j j + 1

10: Find Ai ✓ Rd+1 such that 8aaaj 2 Ai: |Pd
k=0 aj,k(i� ej�1)

k � qi|  ✏
Save the parameters of the final predictor aaa⇤m and em = n

11: return predictors aaa⇤1, ..., aaa⇤m and ending timesteps e1, ..., em
1: procedure DECODING(aaa⇤1, ..., aaa⇤m, e1, ..., em)
2: Start with the first predictor aaa⇤j with j = 1

3: The valid time window for aaa⇤j is between ej�1 to ej (e0 = 0)
4: for i = 1, ..., n do
5: if ej < i then
6: Get the next predictor aaa⇤j+1, j j + 1

7: Reconstruct the data by q̂i =
Pd

k=0 a
⇤
j,k(i� ej�1)

k

8: return reconstructed data q̂1, ..., q̂n

We test algorithm 4.1 on MOFCOOL and LIQCRY datasets. The results are plotted
in Figure 4.3. We evaluate the compression performance by calculating the number of
bits needed per sample (NBPS) at certain error threshold:

NBPS =

32⇥Nparameters

3⇥Nparticles

(21)

The factor 32 is based on the storage of coefficients using 32 bits single precision floating
point number. The factor 3 is to normalize over 3 different directions.

20

MOFCOOL dataset

LIQCRY dataset

Figure 4.3 Number of bits per sample (NBPS) using piece-wise polynomial based com-
pression algorithm (Algorithm 4.1) under different error thresholds. The algorithm is
tested on both MOFCOOL and LIQCRY datasets.

In previous reports [22], the authors calculated the predictor from scratch at each
timestep, which was computationally intensive. Also, they did not perform systematic

21

study on the compression performance with different polynomial order d. For example,
Jan Huwald et al. proposed compression algorithms based on linear predictors where the
first order approximations were calculated. However, based on Newton’s 2nd law, the sec-
ond order terms also carry the information of the positions. In our algorithm, we extend
the original linear functions to quadratic and cubic functions. By adding second and third
order information, we get better compression performance. Interestingly, when the sec-
ond order information is added, the compression performance is significantly improved
(20%-23% NBPS decrease in some error thresholds). However, when the third order
information is added, the performance is not improved significantly (the NBPS even in-
creases in some cases). Another interesting observation is that when we increase the error
threshold to 1, the performances are almost the same. There is a trade-off on choosing
the order d of polynomial function. On one side, polynomial functions with lower or-
der d can possibly underfit the data, which in turn requires more segments. However, a
higher order polynomial function is prone to overfitting. Moreover, the time complexity
and the number of parameters per function are also scaled with d. Therefore, the optimal
polynomial order needs to be determined empirically. For these two datasets, piece-wise
quadratic function (d = 2) achieves the best compression performance.

Piece-wise polynomial based compression algorithms are efficient and scalable. The en-
coding process solves the linear programming with incrementally added constraints. The
total number of constraints is NpT , where Np is the number of particles and T is the num-
ber of timesteps. The total number of coefficients is Nf (d + 1), where Nf is the number
of polynomial functions and d is the order. The complexity of the decoding process is
O(dNT). Moreover, this algorithm can be easily implemented in a parallel way, because
it treats the trajectory of each single particle independently.

From the physics point of view, this algorithm is to the find polynomial function to ap-
proximate the position in each segment. Thus, we can easily approximate the velocity
and acceleration in a continuous fashion (except the discontinuous points). The velocity
v, acceleration a and the force F can be approximated respectively:

v = q̇(t), a = q̈(t), F = mq̈(t) (22)

where q(t) is the piece-wise polynomial function.

22

4.3 MD Simulation Data Compression Using Deep Learning Models

In the previous section, we examine the performance of the piece-wise polynomial based
compression algorithm. A more complex function class for compression is neural net-
work. Recently, many research areas have shown interests in deep neural networks [23].
Vanilla neural network is composed of multi-layer perceptron (MLP) with nonlinear acti-
vation functions. There are several variants of deep neural networks, which are designed
for certain applications. For example, convolutional neural networks (CNNs) are designed
to capture the local correlations in image and video data [24, 25]. Recurrent neural net-
works (RNNs) are designed for sequential data modeling, such as time series modeling
[26] and semantic analysis [27]. In the scope of this report, we choose autoencoder and
long short term memory (LSTM) for MD simulation data compression task.

Figure 4.4 Architecture of autoencoder.

First, we hypothesize that the trajectory of atoms can be expressed in a lower dimen-
sion latent space. With this hypothesis, Ardita Shkurti et al. proposed the PCA based MD
simulation data compression toolkits [15]. However, the MD simulation data is not linear.
Here, we propose to apply the autoencoder as a learnable non-linear projection. Figure
4.4 shows the architecture of autoencoder [19]. The autoencoder has the same input and
output size (blue nodes in Figure 4.4). The middle layer (red nodes in Figure 4.4) is the

23

compressed data. The encoder is to map the original data from Rd to lower dimension
space Rk0 . The decoder is to approximate the reverse mapping to reconstruct the data.
The encoder and decoder are both neural networks. Mathematically, we are searching

w⇤
1, w

⇤
2 = argmin

w1,w2

1

n

nX

i=1

||g(f(xi;w1);w2)� xi||1 (23)

where f and g are encoder and decoder networks; w1 and w2 are their weights, respec-
tively. These weights are optimized through back-propagation using first order optimiza-
tion methods. It is uncommon to use maximum absolute error threshold as a constraint in
deep learning model fitting. To quantitatively compare the compression performance of
the autoencoder with the piece-wise polynomial predictors, we set the objective function
to be mean absolute error as eq. 25.

Here, we perform experiments on the MOFCOOL and LIQCRY datasets. The structure
of the autoencoder is the same as Figure 4.4. The input and output are both the trajectories
of atoms in one direction, which has 6,000 dimension. In order to compare the results in
these two datasets with the same input dimension, we divide the LIQCRY dataset into
segments with size 6,000. Both the encoder and the decoder have a single hidden layer
with constant size 1,000 (green nodes in Figure 4.4). Then, we tune the dimension of
middle layer k0 from 1 to 1,000. The mean absolute errors are calculated as a function of
middle layer size (Figure 4.5).

24

Figure 4.5 Mean absolute errors with different middle layer size.

Figure 4.6 Compression performance of autoencoder based algorithm on MOFCOOL and
LIQCRY datasets. The mean absolute errors are calculated at different compression rates.
The dash lines are calculated only based on the storage of the compressed results in latent
space, whereas the solid lines also take the storage of decoder weights into consideration.

25

As expected, by increasing the dimension of the latent space, the reconstruction error
decreases. The compressed data in latent space and the weights of the decoder can be
stored as single precision floating point numbers. Figure 4.6 shows the quantitative re-
sults of mean absolute errors at different compression rates. In comparison to the results
of piece-wise polynomial models (Figure 4.3), the autoencoder based compression algo-
rithm does not outperform the piece-wise polynomial based algorithm. The hypothesized
reasons are

1. The autoencoder does not consider how the data follows Newton’s 2nd Law.

2. The overhead: the weights of the decoder needs to be saved. However, if a single
autoencoder can be generalized to many datasets, the overhead can be ignored in
comparison to the storage of the datasets.

Figure 4.7 Architecture of LSTM. The � is the sigmoid function. The xt and ht are input
and output at time t, respectively. it, ft and Ot are the input gate, forget gate and output
gate, respectively.

As we discussed in the previous section, one of issues in the autoencoder model is
that it does not explicitly model the time dependency in the trajectory. To address this
issue, we use a recurrent neural network to model the trajectory in this section. A well-
established example of recurrent neural network is the Long Short-Term Memory (LSTM)
model [28]. The architecture of LSTM is shown in Figure 4.7. There are several modules
in LSTM:

26

1. Inputs: 1) the input in the current timestep xt and 2) the information flow from last
timestep Ct�1, ht�1.

2. Gating functions: the sigmoid functions as multipliers.

3. Outputs: 1) the output in current timestep ht, 2) the information flow to next step
ht, Ct, 3) the final output of neural network.

Mathematically, the functions in Figure 4.7 are

ft = �(Wf ⇤ [ht�1, xt] + bf) (24)

it = �(Wi ⇤ [ht�1, xt] + bi) (25)

C⇤
t = tanh(WC ⇤ [ht�1, xt] + bC) (26)

Ct = ft ⇤ Ct�1 + it ⇤ C⇤
t (27)

Ot = �(WO ⇤ [ht�1, xt] + bO) (28)

ht = Ot ⇤ tanh(Ct) (29)

where W are weight matrices and b are the bias vectors. By combining these modules,
LSTM can get, filter and process the input of the current timestep (including the informa-
tion passed from last timestep) and feed them into the next timestep.

We implement LSTM for the MD simulation data compression task (Algorithm 4.2).
The basic idea is to generate prediction of the current position based on the position data
in previous timesteps using LSTM. Then, the residual will be stored by quantization. In
comparison to the algorithms we discussed in the previous sections, the residual error
must be saved in order to recover the data in future timesteps.

27

Algorithm 4.2 LSTM For MD Data Compression
1: procedure ENCODE(q1, ..., qn, p) . p: the sequence length of LSTM model
2: Train LSTM model to predict the current position using last p timesteps
3: Store the full data from timestep 1 to timestep p: q1, ..., qp
4: for i = 1, ..., n� p do
5: Predict q̂i+p using LSTM model with the data in last p timesteps qi, ..., qi+p�1.
6: Store the residual ri+p = qi+p � q̂i+p by quantization and entropy encoding
7: return q1, ..., qp, rp+1, ..., rn, LSTM model
1: procedure DECODE(q1, ..., qp, rp+1, ..., rn, model)
2: for i = 1, ..., n� p do
3: Estimated q̂i+p from qi, ..., qi+p�1 using LSTM model
4: Reconstruct the data qi+p = q̂i+p + ri+p.
5: return Reconstructed data q1, ..., qn

Figure 4.8 Distribution of residual error r in the MOFCOOL dataset.

In comparison to naive differential encoding (residual r = qi � qi�1), LSTM model
gives a smaller residual error (result shown in Figure 4.8).

To further improve the LSTM model, we take the neighbour particles into consideration.

28

In the MOFCOOL and LIQCRY datasets, there exists a cutoff distance T in the potential
energy function shown in Figure 4.9. An equivalent assumption is: there is no interaction
between two particles when their distance is greater than the cutoff T .

Figure 4.9 Potential energy V (r) as a function of Euclidean distance r. The figure is
reprinted Reprinted from The Journal of Chemical Physics, 141, Alfredo Metere et al.,
Formation of a new archetypal Metal-Organic Framework from a simple monatomic liq-
uid, 234503, Copyright 2014, with permission from AIP Publishing LLC.

Based on the cutoff T , we can define the neighbour of atom i as:

Ni = {j : rij  T} (30)

Then, the potential energy can be simplified as

U(qqq) =
X

i

X

j2Ni,j>i

V (qqqi, qqqj) (31)

Therefore, the positions of neighbour particles may carry the information of the potential
energy function. We test the optimized LSTM model, which contains the coordinates

29

of 9-nearest neighbour atoms as extra input. With this extra information, the prediction
performance is improved, which is evident by a narrower distribution of residual r (Figure
4.8). We also compare the performance of LSTM with the traditional time series models
as a function of input sequence length shown in Figure 4.10.

Figure 4.10 Mean absolute error as a function of input sequence length (lag) using differ-
ent models.

From the result, increasing the sequence length does not improve the prediction per-
formance significantly. This is consistent to the result of our basic time series modeling
in section 4.1. In the time domain, the dependency can be mostly represented by the in-
formation in the last 5 timesteps.

To quantitatively evaluate the compression performance of algorithm 4.2, we quantize
the residuals r to 2

n bins uniformly (in order to represent data using n bits). Then, the
quantized data are passed through the Huffman encoder. The compression performance
is shown in Figure 4.11. From the result, we clearly observe that the reconstruction error
becomes very large when we quantize the data to a very few number of bits. The large er-
ror (103) occurs because the error propagates as a function of time. In this algorithm, the
current position prediction depends on the noisy reconstructed data in previous timesteps.
Thus, the reconstruction error in previous timesteps will propagate to current and future

30

timesteps. Since the trajectories in the LIQCRY dataset are longer, the propagation error is
more significant. In comparison to the algorithms discussed in the previous sections, such
as piece-wise polynomial based compression algorithm and autoencoder based compres-
sion algorithm, LSTM based compression algorithm usually requires more bits to store
the data under the same mean absolute error.

Figure 4.11 Number of bits needed per sample under different mean absolute error using
LSTM based compression algorithm. The compression performance is evaluated on both
MOFCOOL and LIQCRY datasets.

4.4 Summary

In this chapter, we implemented two types of models to compress the MD simulation
data in time domain: piece-wise polynomial functions and deep learning based models.
The piece-wise polynomial function is more consistent with Newton’s law, which also
gives better compression performance than deep learning based models. Using the piece-
wise polynomial function-based compression algorithm, we can achieve 1 bit per sample
compression performance with Angstrom level error.

31

5 Compression Algorithms in Space Domain

In chapter 4, we focus on MD simulation data compression in the time domain. In this
chapter, we design the compression algorithms in the space domain: compression of a
single frame. MD simulation datasets are similar to the video datasets: both of them are
composed of frames at different timesteps. For video datasets, each frame is an image,
which is a well-indexed data format. Most of the compression algorithms for images and
videos are based on spatial correlation (with neighbour pixels). However, in the space
domain, the MD simulation data is not well-ordered: there is no correlation between its
index i and position q. The conventional multimedia compression algorithms cannot be
directly applied to the MD simulation datasets. In this chapter, we start with a greedy
approach to index the MD simulation data in the 3D space. Then, we apply a 3D-Paeth
filter based compression algorithm as an example to illustrate how multimedia compres-
sion algorithms can be modified to compress MD simulation data.

5.1 Data Rearrangement

We propose a greedy algorithm to index the particles (Algorithm 5.1). We initialize a 3D
cubic grid with size d = d 3

p
ne and assign the particles to their nearest grids. The distance

metric is defined as the distance between the particle and the center of the cube. We also
generate an indicator grid in case that some cubes are not filled.

Figure 5.1 Schematic drawing of indexing algorithm. We greedily assign particles into
nearest cubes.

32

Algorithm 5.1 Greedy Data Indexing
1: procedure INDEX(A1, ..., An) . A: atom
2: Initialize the 3D Grid G with bounding box size lbb.
3: A list U of particles that have been assigned (initially empty).
4: d = d 3

p
ne, l = lbb

d

5: for i, j, k = 0, ..., d� 1 do
6: Calculate the coordinate (x, y, z) of the center of the grid:

x = (i+
1

2

)l, y = (j +
1

2

)l, z = (k +

1

2

)l (32)

7: Find the nearest atom A⇤ that is not in U :

A⇤
= argmin

A 62U
(Ax � x)2 + (Ay � y)2 + (Az � z)2 (33)

where Ax, Ay, Az are the x, y, z coordinate of particle A, respectively
8: Put A⇤ in to the current grid position Gijk = A⇤

9: Append A⇤ to U
10: return G

To visualize the result, we start the experiment by assigning the particles into a 2D
grid, where only x, y coordinates are considered. The first frame in the MOFCOOL
dataset is indexed and visualized in Figure 5.2. There are several observations:

1. In the x, y directions, the greedy algorithm shows promising indexing result. The
indices of the atoms in the x, y directions are approximately linear with their posi-
tions qx, qy. The artifacts (misindexed samples) only occur on the edges.

2. The velocity does not have correlation with its coordinate. The distribution of ve-
locity is still random.

3. On the unindexed (z) direction, the positions are still random.

To avoid the third issue, in the following sections, the data are indexed in the 3D grid.
After greedy data indexing, many multimedia and machine learning algorithms can be
applied to the MD simulation dataset. For example,

1. By the spatial locality, multimedia compression algorithms, such as Paeth filter
based compression algorithm, can be implemented for the MD simulation data com-
pression.

33

2. The neighbours of an atom can be easily tracked.

3. Machine learning algorithms on the structured 3D grids, such as 3D convolutional
neural networks, can be applied to the MD simulation datasets.

34

qx qy

qz vx

vy vz

Figure 5.2 Visualizations of position and velocity data after greedy indexing on the 2D
grid. For this indexing task, only x and y coordinates are considered.

35

5.2 Paeth Filter and Quantization

The Paeth filter [29] based portable network graphics (PNG) compression algorithm is a
multimedia compression algorithm designed for image. In the indexed MD simulation
dataset, the position qqq (a vector that has x, y, z components) and its index i, j, k are cor-
related. We extend the Paeth filter into 3D case. The set of neighbour N here is defined
as {qqqi�1,j,k, qqqi,j�1,k, qqqi,j,k�1}. The boundary is padded with 0.

First, we define an average value ¯qqq. There are multiple ways to define the average value
in 3D. For example, Schmitt et al. did a grid search to find an optimal combination [30].
Here, we use one simple combination:

¯qqq =
2

3

[qqqi�1,j,k + qqqi,j�1,k + qqqi,j,k�1]� qqqi�1,j�1,k�1 (34)

Then, in the neighbour N , we find the value ˜qqq that is closest to ¯qqq:

˜qqq = argmin

qqq2N
||qqq � ¯qqq||1 (35)

Finally, ˜qqq is subtracted from the original data qqqi,j,k. The residual ˆqqqi,j,k is saved:

ˆqqqi,j,k = qqqi,j,k � ˜qqq (36)

We apply this process to the indexed MD simulation dataset by looping over indices i, j, k.
To recover the data, we reverse this process in the same order: find the neighbour ˜qqq that
is closest to ¯qqq and add it back to the residual ˆqqqi,j,k:

qqqi,j,k = ˆqqqi,j,k + ˜qqq (37)

36

Figure 5.3 Distribution of raw data q and the residual q̂ in MOFCOOL dataset.

(a) Error on different directions (b) Error with different quantizations

Figure 5.4 Mean absolute error under different conditions: (a) on different directions by
quantizing the data into 4 bits (24 bins), (b) quantized by different number of bits and
average over 3 directions. The errors are calculated based on timestep 2000-3000 in the
MOFCOOL dataset.

37

Figure 5.5 Number of bits per sample under different mean absolute errors. We evaluate
the compression performance of Paeth filter based compression algorithm on indexed
MOFCOOL and LIQCRY datasets.

We first index all the particles in the MOFCOOL and LIQCRY datasets following
Algorithm 5.1. Then, we apply the 3D-Paeth filter based compression algorithms on the
indexed datasets. Figure 5.3 shows the distribution of the residuals ˆqqqi,j,k and the raw data
qqqi,j,k (the vectors are flatted to 1D scalars). The residuals have a narrower distribution
(within boundary [-1, 2]) in comparison to the raw data. This indicates that the residuals
could be saved using fewer bits under the same quantization precision. We quantize the
data uniformly between [-1, 2] with 2

n bins (in order to represent them using n bits).
We further apply entropy encoding on the quantized data through the Huffman encoder.
Figure 5.4 shows the reconstruction errors of the 3D-Paeth filter based compression al-
gorithm on different directions, and under different quantizations in timestep 2000-3000.
3D-Paeth filter based compression algorithm achieves similar performance along different
directions, which overcomes the drawbacks in 2D-based indexing method (the random-
ness of qz in Figure 5.2). We evaluate the algorithm by calculating the mean absolute
error under different compression rates. The results are shown in Figure 5.5. Using data
indexing and the 3D-Paeth filter, we can compress the data using only 1/8 of original
storage with the mean absolute error at 0.01 Angstrom level.

38

5.3 Summary

In this chapter, we design a greedy indexing method for the MD simulation datasets.
The indexing method provides a solution to order the MD simulation data based on their
position values. Then we compress the indexed data using the 3D-Paeth filter based com-
pression algorithm. Multimedia compression algorithms can take advantage of the spatial
correlation in the indexed data, which achieves promising compression performance.

39

6 Comparison of Compression Algorithms

In this chapter, we will make a comparison of the compression algorithms we investigated
in Chapter 4 and Chapter 5.

6.1 Comparison of Different Compression Algorithms

MOFCOOL Dataset

LIQCRY Dataset

Figure 6.1 Compression performance of different compression algorithms on the MOF-
COOL and LIQCRY datasets. We evaluate the algorithms by calculating the number of
bits per sample (NBPS) under different mean absolute error. The dash line is the error
threshold for the quadratic predictor (details discussed in chapter 4.2).

40

We plot the results in Figure 6.1. Here are several remarks:

1. The piece-wise polynomial function-based algorithm can compress the data to less
than 1 bit per sample, with Angstrom level absolute error. However, LSTM and
Paeth filter based compression algorithms cannot break 1-bit limit, because at least
one bit is required to represent each residual.

2. Quadratic predictor provides good compression performance in a wide range of
mean absolute error.

3. Paeth filter based compression algorithm provides the best compression perfor-
mance in the low error regime.

Table 6.1 Summary of Different Compression Algorithms
Algorithm Principle Pros

Piece-wise Polynomial Linear Programming Low NBPS
Autoencoder Neural Network Easy to Implement

LSTM Neural Network Small Model
3D-PAETH Spatial Correlation Fast, High Accuracy

Table 6.1 gives a brief summary of different compression algorithms. One can choose the
suitable algorithm to achieve good storage-precision balance. In detail:

1. The piece-wise polynomial based compression algorithm transforms the data from
physical space (positions) to polynomial space (coefficients of polynomials). The
highlight of this algorithm is that it can break 1-bit per sample limit. This algo-
rithm takes the assumption that the trajectory segments can be approximated by
polynomial functions, which is consistent with the underlying physics: the pre-
diction step in MD simulation is quadratic (Newton’s equation). Mathematically,
the coefficients are calculated by formulating linear programming with incremen-
tal constraints. However, the time complexity of linear programming cannot be
ignored. Another limitation is that, this work is based on a manually determined
error threshold (L1 norm of the error) ✏. This setting is reasonable when certain
precision is required in specific MD simulation dataset, which has been studied in
many previous literature (details in Chapter 4.2). However, in most of the lossy
compression settings (for other data formats such as image), the error is usually
based on the average over large number of samples, rather than a hard threshold for
all the samples.

41

2. Some deep learning methods can be modified for MD simulation data compres-
sion. Deep neural networks can express and fit nonlinear functions, which can
possibly capture the dependencies and correlations in the time domain. Moreover,
these models can be implemented easily using the deep learning packages, such as
Tensorflow and Pytorch. There are also several disadvantages of the deep learning
based approaches. First, the optimization of neural network is a non-convex prob-
lem and thus the performance is not guaranteed. Second, the decoder is not free:
the weights of the neural networks need to be stored to reconstruct the data, which
is an storage overhead.

3. The 3D-Paeth filter based compression algorithm utilizes the spatial locality of the
indexed data explicitly: the residual is calculated as the difference with its neigh-
bour’s value. The advantage of this algorithm is that the arithmetic calculation is
simple. The disadvantage is that it requires data preprocessing, which is an over-
head.

4. In LSTM and 3D Paeth filter based compression algorithms, the residuals must be
saved. On the contrary, in piece-wise polynomial based compression algorithm, the
coefficients must be saved.

6.2 Future Directions

There are some possible improvements on these compression algorithms:

1. The encoding process of the piece-wise polynomial based compression algorithm
is solved by linear programming with incremental constraints. The time cost is
considerable when the dataset is large. One possible future direction is to parallel
this algorithm and make it scalable.

2. For deep learning based methods, if the neural networks can be generalized to many
different datasets, the overhead of saving the decoder can be ignored. In the future,
different neural network architectures and numerical tricks can be tested to make
the neural network more generalizable.

3. In recent years, several neural network architectures are proposed for the point
clouds, such as pointCNN [31]. These algorithms can possibly improve the cur-
rent compression and analysis methods in the space domain.

42

4. In LSTM and 3D Paeth filter based compression algorithms, we implement the
naive quantization with fixed step size. In the future, the quantization method can
be optimized to achieve better compression performance.

6.3 Summary

In this chapter, we make comparisons of different compression algorithms based on anal-
ysis of the empirical results. Among these algorithms, piece-wise quadratic function
provides the best performance on the MOFCOOL and LIQCRY datasets. Moreover, we
provide future outlooks on the possible improvements of these compression algorithms.
We expect that the compression performance can be further optimized by exploring these
possible directions.

43

7 Compression Performance and Underlying Physics

Compression performance depends on both the efficiency of compression algorithm and
the underlying physics of the MD simulation system. In chapter 6, we discussed the
performance of different compression algorithms. In this chapter, we will discuss the
relationship of compression performance and underlying physics. As we discussed in
chapter 3, there are phase transitions in both MOFCOOL and LIQCRY datasets. We will
illustrate how the phase behavior affects the compression performance.

7.1 Study I: Performance of Piece-wise Polynomial Based Compres-
sion Algorithm

In this section, we study how the underlying phase behavior affects the compression per-
formance of piece-wise polynomial based algorithms.

7.1.1 What is a Phase Transition?

The concept of “phase transition” is originally from physics, which describes the process
of phases of matter changing from one to another,, such as solid phase to liquid phase, or
liquid phase to gas phase. Theoretically, phase transitions happen when the derivatives of
the partition function have discontinuities or divergences [32]. Phase transitions can be
observed either experimentally or computationally by measuring and calculating physical
parameters [33]. In terms of signal processing, a “phase transition” is generalized to
many physical and social systems. For example, Pin-Yu Chen et al. discussed about
the phase transition of community detectability [34, 35] as a function of edge connection
probability. Applied to physics, Akinori Tanaka et al. proposed to implement neural
networks to detect the phase transition in the Ising model [36]. We show two examples
of phase transitions in Figure 7.1. Moreover, as described in chapter 3, first order phase
transitions are present in both the MOFCOOL and LIQCRY datasets. In this section, we
illustrate how the compression performance is related to the underlying first-order phase
transition.

44

Figure 7.1 Phase transitions in physics and signal processing. In the physical system, the
discontinuity of entropy presents during the first order phase transition. In the community
detection system, there is a drastic drop of detectability as a function of edge connection
probabilities, which is also described as “phase transition” in literature [35]. The right
figure is from literature [35] copyright c� 2015 IEEE.

7.1.2 Experimental result

Here, we provide an empirical result to show how the compression performance and the
underlying physics are related. In order to investigate the compression performance be-
fore and after the phase transition, we divide the MOFCOOL dataset into 6 batches. Each
batch has 1,000 timesteps. In the first batch (first 1,000 timesteps), the system is in the
liquid phase. The phase transition happens in the second batch (timestep 1,000-2,000). In
all the other batches, the system is in the solid phase. The piece-wise polynomial based
compression algorithm is tested on each batch and the results are shown in Figure 7.2.

45

Figure 7.2 Number of coefficients per sample using piece-wise polynomial based com-
pression algorithms on the MOFCOOL dataset. The data is divided to batches with size
1,000. The result is calculated on each batch.

Empirically under the same error threshold, more coefficients are required when the
underlying system is in the liquid phase (first 1000 frames). This example proves that
the compression performance is strongly correlated with the underlying physics. In the
piece-wise polynomial based compression algorithm, the number of coefficients is deter-
mined by the number of segments (details in Chapter 4.2). Intuitively, if the first order
and second order derivatives (which are corresponding to velocity and acceleration) are
large and changing drastically, the trajectory will be difficult to be approximated by sim-
ple functions, and in turn more segments are required. Physically, these dynamics can be
related to the energy transfer rate in the MD simulation system. In the future, we will
develop theory to estimate this energy transfer rate to study the relationship of compres-
sion performance and underlying physics quantitatively. An outlook of this theory will be

46

provided in chapter 8.

7.2 Study II: Information Entropy of Quantized Data

7.2.1 Gibbs Entropy and Shannon Entropy

There are many good resources discussing the relationship of Gibbs entropy and Shannon
entropy [32, 37]. Here, we only provide a short discussion. In physics, the Gibbs entropy
is

SG = �kB
nX

i=1

pi log pi (38)

where pi is the probability that state i occurs in the energy fluctuation, and kB is Boltz-
mann constant. In information theory, Shannon [38] also defined the information entropy
H .

H = �
nX

i=1

pi log2 pi (39)

where p is the probability mass function of the discrete distribution. The formula of
Shannon entropy and Gibbs entropy are closely related. The differences are:

1. In physics, the definition of Gibbs entropy contains Boltzmann constant. Thus, its
unit is J ·K�1. In information theory, Shannon entropy is usually measured by bit
as unit.

2. The bases are different: Gibbs entropy takes the natural log, whereas Shannon en-
tropy takes log2 (to be measured as bits in binary coding).

There exists a bijection between Gibbs entropy and Shannon entropy, since two defini-
tions differ by a constant multiplier.

7.2.2 Experimental result

On one hand, the entropy of a physical system is discontinuous during the first order
phase transition [39]. On the other hand, Shannon entropy provides the lower bound
of entropy based compression. Therefore, the compression performance and the phase
behavior should be related. Here, we calculate the Shannon entropy of the quantized
velocity data:

47

1. In the real world, the velocities are real numbers. We first quantize the velocity data
using n bits by assigning the velocity v into m = 2

n bins uniformly in the interval
[vmin, vmax].

2. The index is calculated by

Index = [

(v � vmin)2
n

(vmax � vmin)
] (40)

where n is the number of bits to represent the data. Then, the empirical distribution
p̂ is calculated by normalization.

3. Calculate the Shannon entropy H of empirical distribution p̂.

H(p̂) = �
mX

i=1

p̂i log2 p̂i (41)

In these two datasets, we have vmin = �2 and vmax = 2, which can cover all the veloc-
ity values. From a physics viewpoint, this estimate is also related to the kinetic energy
(because it measures the spreadness of the velocity data). The entropy calculation under
different timesteps are shown in Figure 7.3.

48

MOFCOOL Dataset

LIQCRY Dataset

Figure 7.3 Shannon entropy of quantized data under different quantizations.

From the experimental result, we observe that the Shannon entropy drops drastically
during the phase transition. In the MOFCOOL dataset, the Shannon entropy drops be-
tween frame 1000 and frame 1500, which is related to the phase transition from the liquid
phase to the solid phase. In the LIQCRY dataset, the Shannon entropy drops between
frame 120,000 and frame 125,000, which can be attributed to the phase transition from
the liquid phase to the liquid crystal phase. This trend is generally consistent over dif-

49

ferent numbers of quantization bins, except when the data are quantized and represented
by less than 3 bits. This Shannon entropy change can be also applied to detect the phase
transition during the MD simulation as an on-fly analysis. In the future, we will develop
a more general phase transition detection framework. The outlook will be presented in
chapter 8.

7.3 Summary

In some previous studies, such as [14] and chapter 4-5 in this report, the compression
performance was evaluated by a limited number of datasets due to the limitation of com-
putational power, since the MD simulation datasets are usually very large. Thus, some of
the previous studies are agnostic to the underlying physical systems. In this chapter, we
provide two experimental examples to illustrate that the compression performance and
the underlying physics are closely related. In the future work, we will focus more on the
study of this relation by developing theoretical tools. Also, we aim to develop a phase
transition detection framework using these tools.

50

8 Conclusion and Outlook

In this report, we design several compression algorithms for MD simulation datasets. We
also provide an empirical analysis to understand the relationship between the compres-
sion performance and the underlying physical behavior. In this chapter, we summarize
the results in the previous chapters and give an outlook to the future.

Figure 8.1 Summary of the report. This report provides an empirical analysis of the com-
pression algorithms. We also give a brief discussion from the information theory view-
point by calculating the information entropy in different physical phases. Some future
directions are given in the blue rectangles.

8.1 Conclusions

In this report, we develop the compression algorithms and analyze their performances em-
pirically (Figure 8.1). In the time domain, we develop piece-wise polynomial based and
deep learning based compression algorithms. Piece-wise polynomial based compression
algorithms give better compression performance. Using piece-wise quadratic predictor,
we can achieve 1 bit per sample compression performance with the error at Angstrom
level.

In the space domain, we first provide a greedy approach to index the position data. After
the preprocessing, we apply the Paeth filter based compression algorithm as an example
to illustrate how the multimedia compression algorithms can be utilized on the MD sim-
ulation datasets. This method gives the best performance in small absolute error regime.

51

We can obtain 0.01 Angstrom level error with using about 1/10 to 1/8 of the original stor-
age.

The compression performance is dependent on both the algorithm efficiency and the un-
derlying physics. In chapter 6, we make a systematical comparison of different com-
pression algorithms. In chapter 7, we calculate and compare 1) the Shannon entropy
of quantized velocity data and 2) the empirical compression performance of piece-wise
polynomial predictors in different physical phases, such as solid, liquid and liquid crys-
tal phases. This study shows that the underlying physics takes an important role on the
compression performance. In the future, we will build theoretical tools to study this rela-
tionship quantitatively.

8.2 Future Outlook

In chapter 6, we summarized the future directions of compression algorithms. Here, we
give an outlook to the ongoing and future works on the theoretical side.

In chapter 7, we observe that the Shannon entropy drastically changes during the phase
transition. Based on the relationship of Shannon entropy and Gibbs entropy, we aim to
build a general phase transition detection framework. Other than Shannon entropy, we
hope to find other parameters to describe the underlying physics quantitatively and to de-
tect the phase transition. For example, we aim to estimate the energy transfer rate between
the kinetic energy and the potential energy in the MD simulation systems.

The Hamiltonian in some MD systems can be formulated as eq. 1 in chapter 1.1. The
energy transfer rate between the kinetic energy K(ppp) and the potential energy U(qqq) is
calculated by

dK(ppp)

dt
=

˙ppp · ppp
m

=

˙ppp · ˙qqq (42)

dU(qqq)

dt
=

˙qqq · dU(qqq)

dqqq
= � ˙qqq ·FFF = � ˙qqq · ˙ppp (43)

Here, we define | ˙ppp · ˙qqq| as the energy transfer rate S

S = | ˙ppp · ˙qqq| = |dqqq
dt

· dppp
dt

| = |FFF · vvv| (44)

52

We take the absolute since the transfer rate value is calculated. The energy transfer rate
of MOFCOOL and LIQCRY datasets at different timesteps are calculated and shown in
Figure 8.2.

MOFCOOL Dataset

LIQCRY Dataset

Figure 8.2 Energy transfer rate between kinetic and potential energy at different
timesteps.

53

These two curves are similar. In detail, in MOFCOOL dataset, the system is in liq-
uid phase at the first 1000 frames, which has the higher energy transfer rate. In the later
frames, when the system is in solid state, the energy transfer rate drops. For LIQCRY
dataset, during the first 120,000 frames, the system is in liquid phase, which has higher
energy transfer rate. The energy transfer rate drops during the phase transition. Given the
observation that this parameter drastically changes during phase transition, in the future,
we aim to develop a phase transition detection tool using this parameter. Moreover, the
energy flux reflects the magnitude of velocity and force. These physical parameters are
related to the first and second order derivatives of position data, which may potentially
explain the performance of polynomial compression algorithm under different phase be-
havior (chapter 7.1).

54

References

[1] Giovanni Ciccotti, Mauro Ferrario, Christof Schuette, et al. Molecular dynamics
simulation. Entropy, 16:233, 2014.

[2] Wm G Hoover. Molecular dynamics. In Molecular Dynamics, volume 258, 1986.

[3] Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of
biomolecules. Nature Structural and Molecular Biology, 9(9):646, 2002.

[4] DC Rapaport. Molecular dynamics simulation. Computing in Science & Engineer-
ing, 1(1):70–71, 1999.

[5] Anthony K Rappe and William A Goddard III. Charge equilibration for molecular
dynamics simulations. The Journal of Physical Chemistry, 95(8):3358–3363, 1991.

[6] Shūichi Nosé. A molecular dynamics method for simulations in the canonical en-
semble. Molecular physics, 52(2):255–268, 1984.

[7] R Tycko, G Dabbagh, RM Fleming, RC Haddon, AV Makhija, and SM Zahurak.
Molecular dynamics and the phase transition in solid c 60. Physical review letters,
67(14):1886, 1991.

[8] M. Karplus and J. Kuriyan. Molecular dynamics and protein function. Proceedings
of the National Academy of Sciences, 102(19):6679–6685, 2005.

[9] Jafar Azamat, Alireza Khataee, and Sang Woo Joo. Molecular dynamics simulation
of trihalomethanes separation from water by functionalized nanoporous graphene
under induced pressure. Chemical Engineering Science, 127:285 – 292, 2015.

[10] John Edward Jones. On the determination of molecular fields.—ii. from the equation
of state of a gas. Proc. R. Soc. Lond. A, 106(738):463–477, 1924.

[11] Anil K Jain. Image data compression: A review. Proceedings of the IEEE,
69(3):349–389, 1981.

[12] David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[13] Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2017.

55

[14] Jan Huwald, Stephan Richter, Bashar Ibrahim, and Peter Dittrich. Compressing
molecular dynamics trajectories: Breaking the one-bit-per-sample barrier. Journal
of computational chemistry, 37(20):1897–1906, 2016.

[15] Anand Kumar, Xingquan Zhu, Yi-Cheng Tu, and Sagar Pandit. Compression in
molecular simulation datasets. In International Conference on Intelligent Science
and Big Data Engineering, pages 22–29. Springer, 2013.

[16] Ardita Shkurti, Ramon Goni, Pau Andrio, Elena Breitmoser, Iain Bethune, Modesto
Orozco, and Charles A Laughton. pypcazip: A pca-based toolkit for compression
and analysis of molecular simulation data. SoftwareX, 5:44–50, 2016.

[17] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions
on consumer electronics, 38(1):xviii–xxxiv, 1992.

[18] Alan W Paeth. Image file compression made easy. In Graphics Gems II, pages
93–100. Elsevier, 1991.

[19] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint
arXiv:1312.5663, 2013.

[20] Alfredo Metere, Peter Oleynikov, Mikhail Dzugutov, and Michael O’Keeffe. Forma-
tion of a new archetypal metal-organic framework from a simple monatomic liquid.
The Journal of Chemical Physics, 141(23):234503, 2014.

[21] Alfredo Metere, Sten Sarman, Tomas Oppelstrup, and Mikhail Dzugutov. Formation
of a columnar liquid crystal in a simple one-component system of particles. Soft
matter, 11(23):4606–4613, 2015.

[22] H Ohtani, K Hagita, AM Ito, T Kato, T Saitoh, and T Takeda. Irreversible data
compression concepts with polynomial fitting in time-order of particle trajectory for
visualization of huge particle system. In Journal of Physics: Conference Series,
volume 454, page 012078. IOP Publishing, 2013.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

56

[24] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks, 3361(10):1995,
1995.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[26] Ken-ichi Kamijo and Tetsuji Tanigawa. Stock price pattern recognition-a recurrent
neural network approach. In Neural Networks, 1990., 1990 IJCNN International
Joint Conference on, pages 215–221. IEEE, 1990.

[27] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Eleventh Annual Con-
ference of the International Speech Communication Association, 2010.

[28] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Contin-
ual prediction with lstm. 1999.

[29] Alan W Paeth. A fast algorithm for general raster rotation. In Graphics Interface,
volume 86, 1986.

[30] R Schmitt and P Fritz. Lossless compression of computer tomography point clouds.
In Advanced Mathematical And Computational Tools In Metrology And Testing:
AMCTM VIII, pages 291–297. World Scientific, 2009.

[31] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. Pointcnn. arXiv preprint
arXiv:1801.07791, 2018.

[32] David JC MacKay and David JC Mac Kay. Information theory, inference and learn-
ing algorithms. Cambridge university press, 2003.

[33] T Schneider and E Stoll. Molecular-dynamics study of a three-dimensional one-
component model for distortive phase transitions. Physical Review B, 17(3):1302,
1978.

[34] H Eugene Stanley. Phase transitions and critical phenomena. Clarendon Press,
Oxford, 1971.

57

[35] Pin-Yu Chen and Alfred O Hero. Phase transitions in spectral community detection.
IEEE Transactions on Signal Processing, 63(16):4339–4347, 2015.

[36] Akinori Tanaka and Akio Tomiya. Detection of phase transition via convolutional
neural networks. Journal of the Physical Society of Japan, 86(6):063001, 2017.

[37] Leon Brillouin. Science and information theory. Courier Corporation, 2013.

[38] Claude E Shannon. A note on the concept of entropy. Bell System Tech. J,
27(3):379–423, 1948.

[39] Herbert B Callen. Thermodynamics and an introduction to thermostatistics, 1998.

58

