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Abstract

Computer vision is applied in an ever expanding range of applications, many of which require
custom training data to perform well. We present a novel interface for rapid collection and labeling
of training images to improve computer vision based object detectors. LabelAR leverages the
spatial tracking capabilities of an AR-enabled camera, allowing users to place persistent bounding
volumes that stay centered on real-world objects. The interface then guides the user to move
the camera to cover a wide variety of viewpoints. We eliminate the need for post-hoc manual
labeling of images by automatically projecting �D bounding boxes around objects in the images
as they are captured from AR-marked viewpoints. In a user study with �� participants, LabelAR
signi�cantly outperforms existing approaches in terms of the trade-o� between model performance
and collection time.
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� Introduction

Computer vision is being used in an increasing number of user-facing systems. Deep neural
networks used in modern computer vision can require copious amounts of training data. Modern
applications often rely on large datasets (��-���GB) to train these models. Often these datasets
are collected by scraping the internet for existing images and then manually labeling them, for
example through crowdsourcing [�].

Figure �: We use an AR device to jointly collect and label training images. Typically this is
performed separately by a camera and a web-based labeling tool. The resulting images
captured using the LabelAR interface can be immediately used to train a computer
vision model for multiple-object detection.
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However, existing datasets produced in this fashion do not cover the “long tail” of use cases —
where users have a need to detect speci�c classes of items that are not already labeled in existing
datasets. An example would be that we may want to ask a robot to “bring me my jacket.” Although
there is plenty of training data of jackets, there are no e�cient ways to collect training data
for a speci�c instance of a category (“my jacket”). Another example is needing a vision system
to distinguish between di�erent types of industrial hardware. Datasets for such �ne grained
categories can be di�cult to source due to the e�ort needed in collecting them.
Existing approaches to overcome this bottleneck include parallelizing the labeling task with

post-hoc annotation tools [��] or simple camera interfaces to guide image collection such as
putting a bounding box in a view�nder to avoid post-collection labeling [��]. The �rst approach
can produce high quality data but is a very time intensive process that scales linearly with the
number of objects or images that you wish to label. The second approach is signi�cantly faster,
but produces fairly low quality data, as the bounding box accuracy is compromised.
We propose LabelAR, an augmented reality interface that allows users to rapidly collect and

label high quality training image datasets for computer vision (see Figure �). LabelAR is applicable
to any setting where a user needs to adapt a computer vision object detection model (see Figure �).
Transfer learning is a technique that can leverage a model pre-trained on large datasets to recognize
new objects. Training data needed for transfer learning needs to be situated in context and diverse
in viewpoint variety.
Two illustrative use cases where such adaptation is necessary are augmented reality assembly

and home robotics. In augmented reality assembly, a worker employs a head-mounted AR device
to project visual, step-by-step instructions that demonstrate how to assemble a collection of
object parts. Object detection can be used for identifying and tracking particular parts throughout
the assembly. A recent study concluded that better tracking capabilities are still needed for AR
assembly to be su�ciently robust for industrial applications [��]. In home robotics, a robot owner
would adapt a computer vision model for use on a robotic platform to recognize individual items
in a household that may be signi�cantly di�erent from items in existing training sets.
Our interface design is based on the observation that computer vision model performance

depends on the quality of the training data. Two important aspects of high quality training data
are accurate bounding boxes for labels and a diversity of images (orientations, sc,lesa etc) of the
objects to be recognized [�]. Our interface embodies the following two insights:
First, the spatial tracking algorithms used for AR can be harnessed to enable users to quickly

and accurately place spatially stable �D bounding volumes around objects of interest in their
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Figure �: LabelAR produces additional training data to adapt computer vision models to recognize
additional objects in a user’s environment.

immediate environment, which can be used to automatically generate accurate bounding boxes at
any camera angle (Figure �).
Second, interactive guides in the AR interface can prompt the user to collect training data

instances of the bounded objects frommany viewpoints. We show that these appearance variations
combined with accurate bounding box labels improve detection accuracy.
Through empirical experimentation, we show that our interface enables a better trade-o�

between time costs and model performance than existing baseline methods. We conduct a user
study with �� participants that compares collection times and model performance (when trained on
collected images) between LabelAR and two alternative interfaces [��][��]. Compared to post-hoc
labeling, collection times improved by over �⇥ on average with LabelAR (p<�.��), while model
performance was similar. Compared to an existing rapid collection application, model performance
increased by a factor of �⇥ on average (p<�.���), while collection times were similar. Additional
empirical analysis shows that the equally spaced viewing angle intervals a�orded by LabelAR are
e�ective for low-sample learning and fast computer vision model training.
The main contributions of this work are the design, implementation and evaluation of an

augmented reality interface for fast computer vision image collection. We demonstrate both
AR-capable smartphone or head-mounted device implementations and show gains in collection
time and model performance over existing approaches.
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� Related work

Prior work falls in the areas of image collection methods, post-hoc labeling interfaces, and other
spatial user interfaces for interacting with �D content. We review each area in turn.

�.� Image collection

Several projects seek to shorten or eliminate post-hoc labeling time through novel capture-time
interfaces and techniques. Raptor [��] modi�es the camera interface by overlaying a pre-sized
bounding box. The user points it to a new object, ensuring it is displayed within the pre-de�ned
box area. Since the object is �t to the box with known image coordinates, there is no subsequent
labeling task required. However, this results in images that are all collected at the same scale.
The Doubleshot technique [��] asks users to take two images, one with the object, one without
the object (my manually removing it) to automatically calculate labels. Sermanet et al. [��]

use a two-person collection strategy for capturing multiple views of an object simultaneously.
This allows training to be “self-supervised”. Our work di�ers in that it uses spatial tracking and
user-placed �D bounding volumes to create labeled images.
Another set of collection approaches use head-mounted cameras to collect video along with

separate audio recording devices to allow the user to speak the labels verbally, either simultane-
ously [��] or immediately after video collection [�]. Both of these approaches rely on speech
recognition APIs to extract functional labels from the user recordings. While these prove e�ective
for categorization labeling, they do not aid in the placement of bounding box labels.

Other approaches employ robots to perform the image collection [��, ��, ��] The Amazon Robot
Picking Challenge shows joint collection and labeling applied to a challenging real-world task [��].

They use a robot arm to capture multiple angles of a single object and, with knowledge of the
background, automatically obtain segmentation labels by foreground masking. The idea behind
LabelAR is similar, but of course the collector is a human. Furthermore, LabelAR is applicable to
more than one object at a time and does not rely on prior knowledge of the background appearance.
Recent work at the intersection of cognitive development and computer vision shows deep

neural networks categorization performance can be improved by increasing the variety of viewing
angles. [�]. We seek to exploit AR to guide the user to capture such a variety of images.

Our work is also related to applications for building �D models from images. For example, the
Vuforia AR toolkit supports creation of a �D model of an object by �rst scanning the object with
an Android phone [��]. Our work seeks to improve object detection performance without relying
on �D model creation.
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�.� Interfaces for Post-Hoc Labeling

Image and video annotation for computer vision model training and adaptation is typically done
via web interfaces where a human annotator sits at a terminal and uses a mouse to draw bounding
boxes or segmentation boundaries on various objects of interest. [��].

Web-based �D bounding box labeling interfaces such as LabelMe [��] have been integral in
constructing some of the most in�uential computer vision data-sets to date [�, ��], allowing labeling
tasks to be distributed in the form of global crowdsourcing campaigns.

There are a few works that use �D labeling tools to label a �D scene, then leverage the �D labels
to generate large amounts of �D labels. [�, ��] Our work makes use of �D to �D label transfer, but
for real-time collection of interactive objects rather than post-hoc passive labeling of �D scenes.

Several works leverage interactivity between the learner and predictive model to reduce human
labeling time and e�ort by having the model predict labels that can then be approved or improved
by the user [�]. Crayons [��] uses a simple interactive painting metaphor to reduce classi�er
creation time. A more recent approach incorporates interactivity into web-based crowdsourcing
tools showing that interactive modes can reduce the number of annotator mouse-clicks by as
much as �� percent [�]. CueFlik [�] presents a design and evaluation of new approaches to guiding
users in selected training examples interactively based on model predictions. Our work does not
incorporate interactivity in this sense, rather it focuses on the interaction between the user and
real-world objects of interest. Eye-patch [��] is a tool for designing camera-based interactions. The
authors identify a need to accelerate the example-collecting process as a result of their deployment,
which is aligned with LabelAR’s goals.

�.� Spatial User Interfaces for Interacting with �D Objects

Technologies and interaction techniques for spatially tracked screens and near-eye displays have
been a focus of HCI research since pioneering e�orts by Sutherland [��], Fitzmaurice [��] and
others. A number of spatial interaction techniques can now be found in the literature — e.g. in
surveys by Hinckley [��] and Argelaguet Sanz [�]. Early interfaces such as Peephole Displays [��]
and the Boom Chameleon [��] used translational and rotational tracking of a hand-held display to
navigate, view and annotate with large virtual maps and �D models, respectively. Most relevant to
LabelAR are interfaces for Situated Modeling where real-world context is used to create and place
�D geometry such as our bounding volumes [��, ��]. Our contribution di�ers in that our created
�D geometry is a means towards the end of collecting image sets and we study the bene�ts of such
an approach for computer vision.
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Figure �: Process for extracting two dimensional bounding boxes from virtual bounding volumes.
� - a virtual bounding volume is placed over a real object, � - the corners (red) of the
volume are projected into camera space, � - a min/max is taken over those points to �nd
a two dimensional bounding box (green), � - annotations are saved for the object.

� LabelAR Interaction Design

At a high level, LabelAR seeks to lower the time that a user needs to spend collecting and annotating
images of objects for training neural networks. We identi�ed two key areas for improvement in
existing work�ows.
Hand annotating bounding boxes: hand annotated bounding boxes are often pixel perfect

and very high quality, but take a long time to author. Today, this process is sometimes parallelized
through crowdsourcing, which reduces time but not the total amount of labor required. We
hypothesize that AR technology can automate the process of producing bounding boxes to a high
degree, given an initial �D bounding volume of an object.
Capturing a large variety of training examples: when users need to train a model to

recognize instances of an object, they need to provide training data. We hypothesize that o�ering
a guided experience with feedback to the user about how much of a variety they have collected
can help them produce training sets that will result in better model performance.

�.� Placing �D Bounding Volumes

In existing work�ows, when annotating a series of images that contain the same objects, users
have to annotate a given object multiple times. LabelAR speeds up this process by asking the user
to place a bounding volume around an object once, and then tracks it in all subsequent images.
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To this end, we utilize AR technology. One of the important technologies in AR devices is the
ability for them to self-localize, e.g. using SLAM [�]. This allows virtual objects to be placed in the
real world environment, and for their positions and orientations to remain coherent.
LabelAR allows users to place virtual bounding boxes (holocubes) over objects in the envi-

ronment so their positions can be tracked. When an image is taken in our interface, the two-
dimensional bounding box can be computed for every object in the scene by projecting the holocube
into the video frame and �nding the bounding box of its vertices (Figure �). It is thus important
that the holocubes �t the size and shape of the objects if interest as closely as possible. To this
end, we provide users translation, rotation, and scaling (TRS) widgets tools to manipulate the �D
position and size, as well as rotation around the axis normal to ground plane of the holocubes. The
interaction design for the TRS manipulators mimics conventional widgets in �D graphics software
(Figure �).

Users can also place cubes over multiple objects. In traditional approaches, the labeling e�ort
grows as the product of ima�es⇥objects , which becomes prohibitive for long sequences containing
many objects. In LabelAR, each additional object to be captured only incurs the one-time e�ort of
placing and adjusting another bounding volume.

Figure �: Users can move, re-size, and rotate bounding volumes by interacting with the TRS
widget.
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�.� Encouraging Diverse Image Perspectives

LabelAR helps users collect a wide variety of images of given objects. In particular, it may direct
users to capture objects from many azimuth and altitude angles. To accomplish this, we provide
an interface to assist users in taking pictures of their objects. LabelAR will automatically take a
picture if the user has a signi�cantly di�erent viewpoint than all previous pictures taken. This
encourages the user to move the camera around the objects they wish to capture to ensure they
get a variety of angles.

To facilitate this movement, our interface shows the user where they have already taken pictures
and suggests new positions at which to take pictures while also requiring them to keep the
holocubes in frame. This constraint means that there is a ray to which the user must move their
camera and orient it such that they capture all of the holocubes.

We visualize this constraint to the user as a series of line segments that we refer to as markers
(Figure �). Markers change their color as users approach the correct position, providing them with
real-time feedback about their progress. There is also a targeting cursor to direct the camera’s
orientation (Figure �). A target for the cursor appears at the location in space that the user should
point the camera to. Images are taken for the user automatically as soon as they are in position
and the targeting cursors are aligned.

� Implementation

We implemented LabelAR on two di�erent AR platforms: hand-held, video-see-through on iOS
devices, and head-mounted AR using Microsoft’s HoloLens. Both versions were developed in the
Unity game engine. A custom application was written to perform the function of LabelAR, and
platform APIs were used to tie into hardware speci�c features.
The iOS version of LabelAR uses Apple’s ARKit library, in particular the camera localization

and plane detection functionality. As surfaces in the environment are detected, they are converted
into planes that can be utilized in a Unity application. When the user places holocubes, they are
automatically snapped to surfaces by performing raycasts onto these planes. To create new cubes,
the user can press and hold a “new object” button that hovers a cube in front of them, which
they can drop onto a table. Interaction with the holocubes and interface happen with the device’s
touch screen. When running ARKit apps on iOS, the camera is put into a special video mode that
has a di�erent �eld of view than the standard camera mode. Because of this, images are saved
directly from the Unity rendering pipeline to make sure that the projected bounding boxes are
guaranteed to line up. We down sample these images before saving to improve serialization times,
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Figure �: Markers indicate to the user where good next potential images should be taken from,
and change color to indicate the user’s proximity to the correct location (red) or if
they have already captured an image at that location (green). Images are automatically
captured when the user is in position and the two targeting circles align.

and because many cv model training pipelines down sample training data. Images are saved at
��� ⇥ ��� resolution, and annotations are saved in the COCO json format. Images and annotations
are automatically saved to the persistent storage of the application, which can be downloaded
through XCode. This was chosen instead of saving images to the iOS Photos app so that images
and annotations could be co-located.

The HoloLens version (Figure �) uses Microsoft’s Mixed Reality Toolkit (MRTK), which contains
a set of assets for building native HoloLens applications within Unity. Interactions on the HoloLens
are performed by using the standard gaze plus thumb-and-index-�nger pinch gesture. MRTK
contains a set of widgets for manipulating the size and orientation of virtual objects, so these
were used in liu of our own TRS widget. Objects are moved by using the built in hand tracking
detection native to the hardware. Interacting with screen space interface elements has some issues
on head mounted AR devices because the interactions are gaze driven, so we opted to use the
phrase detection and dictation engines available on the hardware to allow the user to place new
holocubes and initiate or stop the capture process. Images are saved at ����⇥ ��� pixels. Captured
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images and bounding boxes are sent over a network connection to a server for collection, and
bounding box data is converted in the COCO json format.

Figure �: The translate, rotate, scale widget in the HoloLens version of the interface uses platform
speci�c widgets. Sub pictures depicts the interface in use.

� Evaluation

To evaluate the ability of our interface to meet our stated goals, we conducted a user study along
with supporting ablation experiments to answering the following questions:

�. Is AR based data collection faster? How much time does it take to collect and annotate
images compared to existing baseline methods?

�. Does our AR interface result in better object detectionmodels? Does training on data
collected via our interface result in a better model than training on data captured with other
baseline collection-and-labeling methods?

�. How accurate are the labels produced by AR based image collection?

�. How sensitive is detection performance to design choices such as the number of
angles presented in the guidance interface?
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Our goal in de�ning an experimental setup was to portray a challenging object detection task
in an environment that is both realistic and representative of plausible of use-cases. We constrain
the problem to the computer vision task of multiple object detection: That is the joint task of
categorizing and localizing (via bounding boxes) any instances of a prede�ned set of objects. This
is the type of problem that would need to be solved for our in home robotics and augmented reality
assembly motivations.

�.� Variables

The primary independent variable in our study is the interface used to capture and label images:
We compare LabelAR to two baseline methods: image capture with post-hoc annotation using
the Scalabel annotation tool [��]; and �D guided capture using using an overlayed �D bounding
box collection tool, such as the one in the Raptor project. Thus we have one independent variable
with three levels: �) LabelAR; �) Post-hoc annotation; and �) overlayed bounding box interface
(referred to henceforth as “overlayed interface”).

The two primary dependent variables in our comparative study are collection time for an
image set and object detection model performance when trained on collected images. We de�ne
collection time as the total time required for a participants to capture and completely label a set of
images for � objects, each from multiple angles.

We de�ne object detection performance as average precision (AP) of a trained object detection
model at a given intersection-over-union (IOU) threshold between predicted and gold-standard
bounding boxes. IOU is the area of intersection of two boxes (participant-generated vs. gold-
standard) divided by the area of their union. See Figure �� for a visual example of di�erent IOU
values. We used AP as our performance metric because is a standard metric for object detection in
popular computer vision benchmarks [��]. We chose to investigate IOU thresholds of �.�� and �.�.
Data collected during our experiment was used to train a Fast R-CNN model [��].

We also investigate bounding box accuracy on collected images by calculating IOU between sets
of randomly chosen participant-collected images and gold-standard annotations performed by the
authors on those images.
We also collect qualitative feedback through a post-study survey.
Participants: �� participants were recruited through email invitations sent to the departmental

list-serves of the EE and CS departments at our university. The mean age is ��.� years. � of the
participants are male and � are female. Half of the participants had at least some prior experience
with machine learning, computer vision, or both. All participants had taken classes in computer
science. Although our study audience all have a technical background relative to the general
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population, we believe that this makes themwell suited to perform better in using the non-LabelAR
interfaces as they likely have more prior understanding of data-driven how algorithms work. We
also recognize that our study participants have high levels of technical literacy that will likely
make all tested interfaces perform better than the general population average.

Apparatus: Each study took place in the same o�ce space with one participant and one researcher
administering the experiment. Each participant performed three separate collection-plus-labeling
tasks using a dedicated app for each task on an iPhone �plus. Each task asked the user to capture
a series of images of multiple objects placed on a round table in the center of the room. The object
sets were switched out in-between each task so that no user had the same set twice. The table
was covered with a patterned table cloth to ensure the ARKit low-level functions had a su�cient
amount of visual features for stable plane detection and tracking. All three apps were built with
Unity and ARKit �.�, and were deployed to the same iPhone �plus running iOS ��.� to ensure that
all images were recorded in the same encoding, resolution, and aspect ratio (sRGB, ��� x ���) as
the evaluation set. The Scalabel interface was run on a ���� ��-inch MacBook Pro running macOS
Mojave version ��.��.�. The participants were given the choice of using a mouse or the laptop
track pad for drawing bounding box labels.

Procedure: Each study proceeded as follows. Upon receiving the user’s consent for participation,
the researcher gave a �-minute introduction of the LabelAR project starting with the following
description:

Let’s say you just bought a robot that cleans up your living room. You might want it to
recognize your personal items so it knows where to put them. LabelAR would help you teach
the robot to recognize those things. So what you’re going to do is basically take a bunch of
pictures of (these) items we have laid out on the table with a few di�erent apps.

The purpose of the study and a procedural overview were then explained to the user.
The �rst task was to use the conventional camera app to collect images of an initial set of objects

(Figure �). A �-minute tutorial was given on a single practice object to ensure the participant
knew how to work the app. Once complete, the initial set of �ve objects were introduced and the
participant was given guidance on how to proceed. A few simple suggestions, consistent with
common computer vision knowledge and best practices, were made to each user:

�. Take images from varied viewpoints.

�. Balance the number of times each object appears among the collected images and make sure
each object appears at least a few times.
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Figure �: Top: screenshot of the traditional camera application used to collect images for post-hoc
annotation. Bottom: Picture of the overlayed interface, the onscreen bounding box has
been highlighted in green for visibility, but is actually white. This box remains constant
in size and the user positions the camera such that the subject �lls the bounding box.

Additionally, the users were advised that they have a time limit of seven minutes to take as many
pictures as they wish, but that they can stop early if they felt they’d captured enough data. They
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were reminded that the hypothetical robotic assistant would need to recognize objects from various
angles around a room and the training images they collect should re�ect that. They were also told
that they can move the objects around the table if they want, but that they might not want to
bother �ipping the object on their side or upside down since those views are not captured in the
evaluation data.

The second task proceeded much like the �rst but instead with the overlayed interface, which is
essentially a traditional camera app but with a �D box guide on the screen so that the user can �t
the object to the box (Figure �). In the overlayed interface tutorial, the participant was again given
a practice object, but this time was advised to take images of only one object at a time and to ensure
the object �t in the box on the screen without exceeding the boundaries and without appearing
too small within the box. The researcher was careful to explain that to maximize performance, the
other objects on the table should not appear within the box or elsewhere in the image, or else it
could confuse the robot during training. The same guidance on viewpoints, time limit, and number
of images was given as in the �rst task. A new set of � objects was placed on the table and the
participant was given seven minutes to take as many images as they wanted.

The third task used our interface. This time the researcher opened and initialized the app before
handing it over by scanning the table for a few seconds to let ARKit �nd low-level visual features
to establish a spatial plane on the table. The participant was advised to keep the phone generally
pointed towards the table so that the app doesn’t lose track of the table position. The participant
was guided to place and �t an AR-box over a practice object, �rst �tting the sides of the object by
positioning for a top-down view, then adjusting box-height from a side view. Then, the participant
was told how to activate the capture marker system and how to capture an individual marker.
Similar to the other tasks, a new set of �ve objects was placed in a rough circle on the table. Again,
the participant was told they could move the objects, but that they should not do so once the
capture markers were activated. For this task, we did not give advice on viewpoints or number of
images, rather just to ensure each capture marker turns green.
The fourth task was to use a post-hoc annotation tool to label the images collected with the

conventional camera app (the �rst task). A �-minute tutorial was given on how to categorize and
draw accurate �D boxes around objects in the images with Scalabel in a time-e�cient manner.
The participant was advised to label overlapping objects to the extents of their respective visual
features. Similarly, if an object was truncated by the image boundary, the participant was advised
to label it only if ��% or more of the object was visible.

Our evaluation was always conducted in this order as to not introduce any bias in results for a
user using LabelAR �rst. We believe that the user’s natural instinct is to take a relatively small
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number of pictures from a non-diverse set of angles (con�rmed in our results), and that by using
an interface that guides them to take a large, diverse set of images might pre-load that as a strategy
for all interfaces, precluding counterbalancing the order.
Design & Analysis
Computer vision task. In our experiment, we focus on the computer vision task of object

detection where the goal is to categorize and locate objects by drawing bounding boxes around
them. For each set of training images collected by the user study participants, we train a Faster
R-CNN [��] detection model until convergence and test its performance on a hold-out set of ���
images (each with � object instances) collected by scattering objects on �oors and table throughout
several rooms in each of � di�erent buildings. Each object instance in the test set was meticulously
labeled with a �d bounding box. Some example test images are shown in �gure �
Object categories. We ran our experiments with three sets of objects: Coke bottles, toys, and

industrial hardware. Each set consist of �ve distinct instances of its respective object category.
Each set was chosen for its �ne level of categorical granularity - each is �ner than a typical
category in the ImageNet-���� set [��], thus a detector that is only pre-trained on the ImageNet or
COCO dataset would not su�ce without additional training images. In order to fairly evaluate the
collection capabilities of the three interfaces, the objects were also chosen to to ensure a variety of
sizes and shapes: the bottles are tall, the hardware is �at, and the toys are small

Figure �: We use three sets of objects in our experiments: Coke bottles, toys, and industrial
hardware, each with �ve distinct instances.

Environmental constraints. We constrained our experiment environment to static objects
placed on a table. This multiple-objects-on-a-table setup is common across cognitive development
literature, robot learning (e.g. visual pick and place tasks), and �ts with a common AR use case of
multi-object assembly.
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� Results

In this section, we present and discuss the results of our user study.

�.� �antitative results

Figure � shows collection times and average precision (AP) at �.�� IOU for all users and the three
tested interfaces. Figure �� shows average precision when the IOU threshold is raised to �.�.
These �gures allow us to investigate the trade-o� between collection time and object detection
performance. Table .� summarizes the mean values for collection time and average precision across
all users.

Collection Time

Collecting labeled images with LabelAR (µ = �.�� min) is signi�cantly faster (by �.� min or
�.�⇥ faster) than using post-hoc annotation (µ = ��.�� min), t(��) = �.��,p < .���. LabelAR is
signi�cantly slower (by �.� min or �.��⇥) than the overlayed interface (µ = �.�� min) t(��) =
�.��,p < .��.

Average Precision

At an IOU threshold of �.��, LabelAR (µ = �.��) has signi�cantly higher detection performance
than both the post-hoc annotation (µ = �.��) t(��) = �.��,p < �.�� and the overlayed interface
(µ = �.��) t(��) = ��.��,p < �.���. At an IOU threshold of �.�, LabelAR (µ = �.��) has a lower
detection performance than post-hoc annotation (µ = �.��), but the di�erence is not statistically
signi�cant t(��) = �.��,p = �.��. LabelAR remains signi�cantly better than the overlayed interface
(µ = �.��) t(��) = �.��,p < �.���.

To summarize, LabelAR was more than twice as fast in collecting and labeling images than post-
hoc annotation, while its associated object detection performance either approaches or outperforms
post-hoc annotation, depending on the chosen IOU threshold for detection. LabelAR is somewhat
slower to use than �D overlayed bounding boxes (by �.� minutes on average). That di�erence
is much smaller than the di�erence to post-hoc annotation. LabelAR signi�cantly outperforms
overlayed bounding boxes in object detection by at least a factor of �⇥ at both investigated IOU
levels.
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Figure �: For each dot in the �gure, a user collected and labeled a set of training images using
post-hoc annotation, overlayed �D bounding box interface, or LabelAR that were then
used to train an object detection model. The resulting model performance (y-axis)
was obtained by evaluating each trained model on a hold-out test set of images of the
respective object sets.

Bounding Box Accuracy of Collected Images

We compared the accuracy of bounding boxes on objects in collected images produced by partici-
pants against a meticulously labeled “gold-standard” set for randomly chosen participant-collected
images in terms of intersection-over-union (IOU). ��� images for each condition were sampled
at random, and a single annotation per image was hand annotated and then analyzed against
the annotation produced during the study. The prior section used IOU of predicted versus gold-
standard boxes on holdout test images, while this analysis focuses on collected bounding boxes
versus gold-standard boxes on participant-collected training images.
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Figure ��: While post-hoc annotation precision holds up the best to increasing the minimum
bounding box accuracy of the AP metric to �.� intersection-over-union (IOU)), the
superior precision/time tradeo� of LabelAR remains.

Mean IOU for the post-hoc interface (µ = �.��) was signi�cantly higher than for LabelAR
(µ = �.��), t(���) = ��.��,p < �.���. The IOU for LabelAR was slightly higher than for the �D
overlay condition (µ = �.��), but the di�erence is statistically signi�cant t(���) = �.��,p < �.��.
We show some example images for each condition in Figure ��.

Number of Images Taken

The results we obtained are dependent on the number and variety of images participants take in
di�erent conditions. While LabelAR guides users, the other two conditions do not. We investigate
how many images participants took organically across three conditions here, then investigate how
sensitive LabelAR performance is to the number of images and angles captured in the next section.
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Object detection performance

Interface Collect time (min) mAP .��IOU mAP .�IOU

Post-hoc ��.�� �.�� �.��
Overlayed �.�� �.�� �.��
LabelAR �.�� �.�� �.��

Table .�: Performance is measured in terms of mean-average-precision (mAP) which is the mean
across participants’ resulting average precisions of the detectors trained on their respective
data. This is computed at two di�erent minimum bounding box accuracy thresholds: �.��
and �.� intersection-over-union (IOU). The Time column shows the mean time across
participants in minutes taken to capture and label the training images.

Bounding box accuracy

Interface Intersection-over-union (IOU)

Post-hoc �.��
Overlayed �.��
LabelAR �.��

Table .�: Bounding box accuracy is measured against a meticulously labeled “gold-standard” set of
randomly chosen participant-collected images in terms of intersection-over-union (IOU).
IOU is the area of intersection of two boxes (participant-generated vs. gold-standard)
divided by the area of their union.
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Figure ��: To measure the intersection-over-union (IOU) accuracy of the �D bounding box labels
produced by participants in the study (purple boxes), we had a researcher create
meticulous ’gold-standard’ labels to compare against (gold boxes). The best and worst
IOU examples for each technique are shown.

On average, users took ��.� (� = ��.�) images using the traditional camera app and annotated
anywhere from �-� objects per image in the post-hoc annotation tool. Users took an average of ��.�
(� = ��.�) images using the overlayed interface, with at most � annotation per image. Users took
exactly �� images in LabelAR, as that is the number of images suggested by our guided interface,
each image having � annotations.
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Angle Ablation for LabelAR

How many di�erent angles should LabelAR ask a user to collect? To drive design decisions of the
LabelAR interface, we performed an angle ablation on the coke bottles object set, starting with ��
angles and decreasing to � by increments of � (and by � on the last one). Figure �� shows a linearly
increasing relationship between the number of angles and detection performance, up to �� equally
space horizontal angles. That is, there is no “knee” in the curve at which point adding angles has a
diminishing return on investment in terms of object detection performance. For this evaluation
set, the more angles we capture of objects in our training data the better the performance, so a
trade-o� must be made in terms of desired collection time. The slight dips along the linear trend,
including the one at the end are likely due to the pattern at which angles were dropped out during
the ablation. We would expect an more linear relationship if every number of angles were perfectly
spaced apart.

Figure ��: Object detection performance in terms of average precision (AP) steadily increases as
images at various angles are added to the training set.
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�.� �alitative Results

In a post-study survey, we elicited qualitative responses by participants on their experience using
LabelAR as well as the comparison interfaces.
Ten of twelve participants stated they would prefer to use LabelAR over the other interfaces.

One found the overlayed interface easier to use, and one stated that their answer depended on
LabelAR producing better results (our analysis was performed o�ine after the study so participants
could not see the performance of models trained on their images).
Participants appreciated that they were able to place spatially stable boxes around real-world

objects (four of twelve mentioned this explicitly). One commented that it was particularly useful
to track multiple objects simultaneously. Suggestions for improvement largely centered around
the e�ciency of the widgets for initial box placement and sizing, which four participants felt
could be improved. These di�culties did not prevent users from completing their tasks: “I was
able to get to a high degree of precision (regarding the boxes being drawn around the objects)”. These
di�culties could be overcome with an additional round of re�ning the interaction design of the
manipulation widgets. Also, several participants suggested dynamically changing the coloring of
interface widgets based on the underlying image pixels to ensure legibility in a variety of settings.
Six of twelve participants commented positively how the capture markers provided a very

engaging way to capture a variety of viewpoints: “I really liked that it felt like a game. I loved
turning the red vantage point bars green”; “I also liked how the red rods guided you on where to
point the camera”; “The angle targets were fun to use”. However, some orientations were harder to
capture than others for two participants: “I did think it was di�cult to capture the rods/ handles
that were nearly perpendicular to the object”; “In certain capturing angles (only at the top) it was
sometimes di�cult to line up two circles”.

Finally, one participant noted they experienced temporary issues with the underlying tracking
technology (ARKit), which in some instances lost the table plane and subsequently recomputed it
several inches above or below the prior plane. As we discuss in the Limitations section, LabelAR
is fundamentally dependent on the accuracy of the underlying AR tracking.

� Discussion

Object detection performance. We have shown LabelAR can be over �⇥more precise on average
than overlayed bounding box tools, and comparable or slightly better in performance to post-hoc
annotation tools. This suggests that AR-based image collection tools can have a signi�cant impact
on training CV models. For this result, average precision was assessed at an IOU of �.��, which is
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an acceptable evaluation criteria depending on the application. For example, in a hypothetical
key-�nder app, a detector does not need highly accurate boxes to indicate to a user where the keys
are located. Conversely, in robotic-grasping applications, highly accurate IOU is very important
since the robot needs to know exactly where the extents of the objects are to place a grabber.
None of the collection apps resulted in desirable AP’s at an IOU of �.�, the best being post-hoc
annotation (AP�.�IOU = �.��). In other words, ��% or more of the predictions made by any of
the apps at this IOU-level would be false-positives. This suggests that more training images or
more e�cient learning algorithms are needed to have quickly-created object detectors perform
well enough to create actual value for end-users in high IOU applications. Future work that can
improve the bounding box accuracy of LabelAR would be highly valued.
Collection time. The collection time results from the user study show that, on average, LabelAR

is over �⇥ faster than post-hoc annotation and competitive with the overlayed interface. The
signi�cantly larger time cost with post-hoc annotation is due to the need to label every image
individually by drawing �D boxes after the capturing process. With LabelAR, there is a relatively
small upfront time cost of placing one �D box for each object. The time it takes to move the camera
around the objects and capture the angle-markers does not depend on the number of objects and
would stay constant if the number of objects were increased. The overlayed interface is the fastest
method since there are no annotation tasks required by the user. However, since the user has
no control over the size or ratio of the �D box, a lot of bounding box accuracy is sacri�ced for
speed. It is worth noting that the time advantage of the overlayed interface over LabelAR would
potentially disappear as more objects were added. The time needed to fully annotate an additional
object with the overlayed interface scales with the number of images desired, whereas the time
needed to annotate an additional object with LabelAR is the �xed up-front cost.
�D bounding box accuracy. LabelAR performed similarly to the overlayed interface in terms

of box accuracy, but post-hoc annotation had the best accuracy over all, due to the �ne-level of
control the user can exercise in the Scalabel interface to place and �t nearly pixel-perfect boxes
around objects in each image. Some causes of IOU degradation include poor box placement by the
user (a�ects all three apps), �xed box ratio (overlay interface only), and projection error from �D
to �D boxes due to spatial tracking errors (LabelAR only). Underlying AR spatial tracking errors
might have signi�cantly a�ected at least one of the collections in our study, where the �D box
results are all shifted down by about �� pixels relative to the object positions. We are unable to
con�dently diagnose whether this was spatial tracking, user-related errors or both, so we included
this data in the �nal results.
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Diverse image perspectives. While the results show that the post-hoc annotation tool pro-
duces superior IOU numbers, the average precisions results show that LabelAR performs compa-
rably well. We believe this is due to the diversity in image perspectives produced by LabelAR’s
guided capture interface. While in theory it is possible to produce a similarly diverse set of data
using post-hoc annotation, we believe that the results of the user study show that people’s natural
instinct on how many distinct views are needed to train a cv model are signi�cantly lower than
reality, and that AR guided interfaces should be considered a good way to ensure that users can
produce quality training datasets.
Angle ablation. The angle ablation results inform the design choice of maximizing the number

of angle-markers within the constraints of usability and time (too many angle markers might be
overwhelming in terms of user experience, or take too long to capture all of them.) Future work
could try to establish an upper bound on performance gains from number of angles and �nd ways
to collect more angles from the user without increasing time or decreasing usability.

� Limitations

Some limitations of the interface we present are inherent to AR devices, while others result from
assumptions that we make, such as static objects.
Spatial tracking reliance The quality of the training data produced by LabelAR is in�uenced

heavily by the AR device’s ability to maintain spatial tracking of the environment. All AR devices
we’ve tested our interface on were subject to some amount of drift, which manifests in holocubes
no longer being physically on top of the real-world objects. This can cause problems leading to a
decreased IOU.
Static objects assumption. An obvious limitation arises from our assumption of static objects,

that is the objects must remain in-place or else the �D bounding volumes do not track if those
objects are displaced in the scene. In other words, if a wearer were to pick up and move an
object of interest, the video annotation capabilities will be lost. We see this as a major limitation
for machine learning research since humans tend to pick things up and manipulate them for
closer examination when confronted with a novel object (especially toddlers, who are constantly
engaging in interactive visual learning).
Also, our approach only works for objects of small enough size where it is easy for a user to

capture di�erent viewpoints e�ciently — for example, one couldn’t e�ciently get a lot of di�erent
viewpoints of a large building.
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Cuboid bounding volumes. Although we chose the cuboid as our bounding volume shape for
easy scaling and �tting, it does not always allow for a perfect �t. In particular, there is signi�cant
space around spherical and cylindrical objects that, when projected into image space, can contribute
to inaccuracies when calculating IOU.

� Future Work

In addition to addressing the limitations already discussed, there are a few particularly interesting
research directions we would like to pursue:
Real-time iterative model training. We are excited about possible research directions in-

volving interactive adaptation for object recognition. LabelAR’s ability to collect high quality
training data in a short period unlocks a promising research direction to explore user interfaces
and computer vision methods for iterative in-situ re-training that leverages user interaction. In
this work, we have explored interactive collection followed by a single re-training step. In future
work, we’d like to explore what the user can do with the training results and how additional in-situ
re-training could bene�t both the user and model.
Crowd-sourcing with LabelAR We think that LabelAR is a �rst step in creating a crowd-

sourced image database along the lines of ImageNet [��] where collections of objects annotated
from a large variety of angles can be uploaded and shared. There are many signi�cant engineering
challenges in building such a system, and interface improvements would need to be built on top of
LabelAR to support a hierarchical labeling structure to the data.
Extensions to robotic-platform-cameras. Our data collection interfaces need not stay lim-

ited to hand-held or head-mounted devices. Conceivably, a wearer of a VR headset could control
a robotic video platform such as a drone to overcome accessibility constraints. For example, an
engineer could use our system to quickly train a computer vision model to recognize particular
types of cracks or visible damage on buildings or bridges that would be di�cult to collect otherwise.

�� Conclusion

We introduce LabelAR, an augmented reality interface for collecting computer vision model
training data. LabelAR utilizes the spatial tracking technology in AR devices to localize bounding
volumes over physical objects in the environment, and can use these volumes to automatically
label �D bounding boxes for these objects. It also provides a guided interface to assist users in
collecting a variety of training data.
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In a user study, we show that LabelAR is able to collect training data signi�cantly faster than
baseline post-hoc annotation tools, such as Scalabel, while producing comparable quality or better
output. We also compared LabelAR against an overlayed �D bounding box interface, a tool designed
to collect training data very quickly, to which LabelAR was able to produce signi�cantly better
results. In short, LabelAR combines the speed of a tool like the overlayed interface with the output
quality of post-hoc annotation tools.

We believe our work opens up many avenues for future joint computer vision and HCI research
projects with real-time iterative model training feedback or interesting crowdsourcing opportuni-
ties. We also believe our tool can serve as a new benchmark in the computer vision community as
a tool for collecting training data for instance recognition problems.
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