
FPGA-Accelerated Evaluation and Verification of RTL
Designs

Donggyu Kim

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-57
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-57.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

FPGA-Accelerated Evaluation and Verification of RTL Designs

by

Donggyu Kim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Krste Asanović, Chair
Adjunct Assistant Professor Jonathan Bachrach

Professor Rhonda Righter

Spring 2019

FPGA-Accelerated Evaluation and Verification of RTL Designs

Copyright c© 2019

by

Donggyu Kim

1

Abstract

FPGA-Accelerated Evaluation and Verification of RTL Designs

by

Donggyu Kim
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Krste Asanović, Chair

This thesis presents fast and accurate RTL simulation methodologies for performance,
power, and energy evaluation as well as verification and debugging using FPGAs in
the hardware/software co-design flow.

Cycle-level microarchitectural software simulation is the bottleneck of the hard-
ware/software co-design cycle due to its slow speed and the difficulty of simulator
validation. While simulation sampling can ameliorate some of these challenges, we
show that it is often insufficient for rigorous design evaluations. To circumvent the
limitations of software-based simulation and sampling, this thesis presents MIDAS
v1.0, which automatically generates the FPGA-accelerated RTL simulator as an in-
stance of FAME1 from any RTL. These simulators are not only up to three orders-of-
magnitude faster than existing microarchitectural software simulators, but also truly
cycle-accurate, as the same RTL is used to build the silicon implementation.

The increasing complexity of modern hardware design makes verification chal-
lenging, and verification often dominates design costs. While formal verification and
unit-level tests can improve the confidence in some blocks or some aspects of a de-
sign, dynamic verification using simulators or emulators with real-world applications
is usually the only plausible strategy for system-level RTL verification. Therefore, this
thesis presents DESSERT, an effective simulation-based RTL verification methodol-
ogy using FPGAs. The target RTL design is automatically transformed and instru-
mented to allow deterministic simulation on the FPGA with initialization and state
snapshot capture. Assert statements, which are present in RTL for error checking
in software simulation, are automatically synthesized for quick error checking on the
FPGA, while print statements in the RTL design are also automatically transformed
to generate logs from the FPGA for more exhaustive error checking. To rapidly
provide waveforms for debugging, two parallel simulations are run spaced apart in
simulation time to support capture and replay of state snapshots immediately before
an error.

Energy efficiency is the primary metric for all computing systems, requiring
designers to evaluate energy efficiency quickly and accurately throughout the design
process. Prior abstract energy models are only accurate for designs closely matching

2

the template for which the model was constructed and validated. Any energy model
must be calibrated to a ground truth, usually a real physical system or a gate-level
energy simulation. Validation of energy models is difficult because only a few design
points will ever be fabricated as real systems and real systems typically lack adequate
energy instrumentation, and gate-level simulation of proposed designs is extremely
slow.

For fast and accurate power and energy evaluation of RTL, this thesis first
presents Strober, a sample-based energy simulation methodology. Strober uses an
FPGA to simultaneously simulate the performance of an RTL design and to collect
samples containing exact RTL state snapshots. Each snapshot is then replayed in
RTL/gate-level simulation, resulting in a workload-specific average power estimate
with its confidence interval. For arbitrary RTL and workloads, Strober guarantees
orders-of-magnitude speedup over commercial CAD tools and gives average energy
estimates guaranteed to be within very small errors with high confidence.

Runtime power modeling is also necessary for dynamic power/thermal optimiza-
tions. This thesis finally presents Simmani, an activity-based runtime power mod-
eling methodology which automatically identifies key signals for the runtime power
dissipation of any RTL design. The toggle pattern matrix, in which each signal is
represented as a high-dimensional point, is constructed from the VCD dumps of a
small training set. By clustering signals showing similar toggle patterns, an opti-
mal number of signals are automatically selected, and then the design-specific but
workload-independent activity-based power model is trained with regression against
power traces obtained from industry-standard CAD tools. Simmani also automati-
cally instruments the target design with activity counters to collect activity statistics
from FPGA-based simulation, enabling runtime power analysis of real-world work-
loads at speed.

i

In loving memory of my mother, Jeongja Seo (1963 - 2014).

Contents

Contents ii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Why RTL-Based Computer Architecture Research? 1
1.2 Thesis Outline . 4

2 Background 6
2.1 History of Evaluation Methodologies for Computer Architecture Research 6

2.1.1 Analytic Modeling . 6
2.1.2 Software-Based Simulators . 7
2.1.3 Simulation Sampling . 9
2.1.4 FPGA-Accelerated Simulators 9

2.2 Chisel & FIRRTL: Improving Productivity with Hardware Generators
and Compiler Transforms . 11
2.2.1 Compilers-in-a-Pass . 13

2.3 Example RTL Designs . 14
2.3.1 RISC-V Mini . 14
2.3.2 RocketChip Generator . 17
2.3.3 BOOM . 17
2.3.4 Hwacha . 17

2.4 More Challenges in RTL Implementations 19
2.4.1 Performance Evaluation . 19
2.4.2 Verification and Debugging 19
2.4.3 Power and Energy Efficiency 20

3 FPGA-Accelerated RTL Simulation 21
3.1 Motivation: Efficient and Effective Framework for RTL Evaluation and

Verification . 21

iii

3.2 MIDAS v1.0: Open-Source FPGA-Accelerated RTL Simulation Frame-
work . 22
3.2.1 Tool Flow with FIRRTL Compiler Passes 23
3.2.2 FAME1 Transform and Simulation Mapping 24
3.2.3 Platform Mapping . 24

3.3 Evaluation . 26
3.3.1 Target Designs and Host Platform 26
3.3.2 Memory System Timing Model Validation 27
3.3.3 Benchmarks . 27
3.3.4 Case Study: SPECint2006 . 27
3.3.5 Case Study: DaCapo . 38

3.4 Summary . 39

4 RTL Debugging with FPGAs 40
4.1 Motivation: How Challenging Is RTL Debugging? 40
4.2 Existing RTL Debugging Methodologies 44
4.3 DESSERT: Debugging RTL Effectively with State Snapshotting for

Error Replays across Trillions of Cycles 46
4.3.1 Deterministic RTL Simulation on the FPGA 47
4.3.2 Error Checking on the FPGA 47

4.3.2.1 Simulation APIs in Chisel 47
4.3.2.2 Assertion and Log Synthesis 48
4.3.2.3 Handling Assertions and Logs from FPGAs 49

4.3.3 State Snapshotting and Initialization 51
4.3.3.1 Automatic Scan Chain Insertion 51
4.3.3.2 I/O Traces . 52
4.3.3.3 Off-chip Memory Initialization 53

4.3.4 Optimizations to Reduce FPGA Resource Overhead 53
4.3.4.1 SVF Backannotation 53
4.3.4.2 Multi-ported RAM Mapping 54

4.3.5 State Synchronization between the Golden Model and the FPGA 55
4.3.6 Ganged-Simulation for Rapid Error Replays 56

4.4 Results . 58
4.4.1 Target Designs, Golden Model, Benchmarks, and Host Platform 58
4.4.2 FPGA Quality of Results . 59
4.4.3 Simulation Performance . 60
4.4.4 BOOM-v2 Assertion Failure Bugs Found 61
4.4.5 BOOM-v2 Commit Log Bugs found 62

4.5 Summary . 63

iv

5 Sample-Based Energy Modeling 64
5.1 Motivation: Why RTL-based Power/Energy Modeling? 64
5.2 Existing Methodologies for Design-Time Power and Energy Evaluation 66
5.3 Methodology Overview . 67

5.3.1 Statistical Sampling . 67
5.3.2 Sample-based Energy Modeling Methodology 71

5.4 The Strober Framework . 72
5.4.1 Custom Transforms for Sample Replays 72
5.4.2 Sample Replays on Gate-Level Simulation 73

5.4.2.1 Signal Name Mangling in the Gate-level Netlist . . . 75
5.4.2.2 State Snapshot Loading on Gate-level Simulation . . 75
5.4.2.3 Register Retiming 76

5.4.3 DRAM Power Modeling . 76
5.4.4 Simulation Performance Model 77

5.5 Evaluation . 78
5.5.1 Target Designs . 78
5.5.2 Benchmarks . 80
5.5.3 Simulation Performance . 80
5.5.4 Power Validation . 80
5.5.5 Case Study . 82
5.5.6 Power and Energy Efficiency for SPECint2006 83

5.6 Summary . 86

6 Runtime Power Modeling 88
6.1 Motivation: Is Activity-Based Runtime Power Modeling Necessary? . 88
6.2 Existing Runtime Power Modeling . 89

6.2.1 Power Modeling with Performance Counters 89
6.2.2 Statistical Modeling with Microarchitecture Parameters 90
6.2.3 Cycle-Level RTL Power Modeling 90

6.3 Power Model Training . 91
6.3.1 Power Modeling Background 92
6.3.2 Toggle Pattern Matrix from VCD Dumps 93
6.3.3 Automatic Signal Selection through Clustering 95
6.3.4 Finding the Optimal Number of Signals 96
6.3.5 Obtaining Cycle-Accurate Power Traces 97
6.3.6 Power-Model Regression . 98
6.3.7 Finding the Optimal Window Size 100

6.4 Power Model Instrumentation . 101
6.4.1 Activity Counter Insertion . 101
6.4.2 Runtime Power Analysis with FPGAs 103

6.5 Evaluation: Rocket and BOOM . 104
6.5.1 Experimental Setup . 104

v

6.5.2 Fine-Grained Power Prediction 106
6.5.3 Case Study: SPEC2006 and SPEC2017 107

6.6 Evaluation: Hwacha . 112
6.6.1 Experimental Setup . 112
6.6.2 Signal and Variable Selection 114
6.6.3 Automatic Window Size Selection 115
6.6.4 Power Model Validation . 116
6.6.5 Case Study: SqueezeNet . 117

6.7 Summary . 122

7 Conclusion 123
7.1 Contributions . 123
7.2 Future Work . 124

vi

List of Figures

1.1 Comparison of performance evaluation methodologies in the hardware/-
software co-design flow . 2

2.1 Single-cycle perfect caches in MARSSx86 8
2.2 IPC trace for 401.bzip2 on BOOM-2w 10
2.3 Hardware development stack with Chisel and FIRRTL 12
2.4 Compilers-in-a-pass for custom transforms 13
2.5 RISC-V mini pipeline . 15
2.6 Rocket core pipeline . 16
2.7 BOOM core pipeline . 16
2.8 Hwacha as a co-processor in the RocketChip SoC 18

3.1 Tool flow to generate FPGA-accelerated RTL simulators 23
3.2 FAME1 Transform and Simulation Mapping 24
3.3 Target design mapping to the FPGA host platform 25
3.4 Memory system timing validation of BOOM-2w with the 16 KiB L1

data cache . 28
3.5 IPCs of Rocket, BOOM-2w, and Cortex A9 for the SPECint2006 bench-

marks . 29
3.6 MPKIs of BOOM-2w with the 32 KiB L1 cache for the SPECint2006

benchmarks . 30
3.7 Issue queue utilizations of BOOM-2w for the SPECint2006 benchmarks 31
3.8 Performance traces for 400.perlbench on BOOM-2w 32
3.9 Performance traces for 401.bzip2 on BOOM-2w 33
3.10 Performance traces for 403.gcc on BOOM-2w 34
3.11 Performance traces for 473.astar on BOOM-2w 35
3.12 IPC with BTB-40 and 16KiB L1 for the DaCapo benchmarks 36
3.13 Total Cycle Ratios for the DaCapo benchmarks 36
3.14 MPKIs with BTB-40 and 16 KiB L1 for the DaCapo benchmarks . . 37

4.1 Kernel panic from 402.bzip2.ref on BOOM-v2 41
4.2 Bug found from 445.gobmk.ref on BOOM-v2 41
4.3 Segmentation fault from 464.h264ref.ref on BOOM-v2 42

LIST OF FIGURES vii

4.4 Floating-point errors from SqueezeNet inference on BOOM-v2 42
4.5 Tool flow to generate FPGA-accelerated RTL simulators 47
4.6 Non-synthesizable simulation constructs in Chisel 48
4.7 stop and printf synthesis for error checking on the FPGA 48
4.8 Mapping simulation to the host FPGA platform for RTL debugging . 50
4.9 Automatic scan chain insertion . 51
4.10 Resource efficient mapping of multi-ported RAMs on FPGAs 54
4.11 State synchronization between the function simulator and the FPGA 55
4.12 Ganged-simulation for rapid error relays 57

5.1 Theoretical sampling distribution . 68
5.2 Sample-based energy simulation methodology 70
5.3 FIRRTL compiler passes for sample-based energy modeling 72
5.4 RTL snapshot replays with CAD tools for average power estimation . 74
5.5 Floorplan of BOOM-2w . 79
5.6 Confidence intervals (theoretical error bounds) vs. actual errors . . . 81
5.7 Power breakdown with error bounds using 30 random samples from

CoreMark, LinuxBoot, and 403.gcc 82
5.8 Performance and energy efficiency for CoreMark, LinuxBoot, and 403.gcc 83
5.9 The CPI of the first 20B instructions (or 20%) of 403.gcc as executed

on Rocket . 84
5.10 Power estimates of Rocket and BOOM-2w with 32 KiB L1 caches for

the SPECint2006 benchmarks . 85
5.11 Energy efficiencies of Rocket and BOOM-2w with 32 KiB L1 caches

for the SPECint2006 benchmarks . 86

6.1 Tool flow for runtime power modeling 91
6.2 A simple example to construct toggle pattern matrix 94
6.3 RTL instrumentation flow for runtime power analysis with FPGAs . . 102
6.4 Activity counter instrumentation for runtime power analysis 102
6.5 Mapping the target system to the host platform for runtime power

analysis . 103
6.6 Fine-grained power prediction errors for microbenchmarks on Rocket

and BOOM . 107
6.7 Power traces for spmv on Rocket and BOOM 108
6.8 Prediction errors for the SPEC2006 and SPEC2017 integer benchmark

suite . 109
6.9 Power breakdowns for the SPEC2006 and SPEC 2017 integer bench-

mark suite . 110
6.10 Power traces for 600.perlbench on Rocket and 445.gobmk on BOOM 111
6.11 Floorplan of Rocket+Hwacha . 113

LIST OF FIGURES viii

6.12 The number of selected signals and the geometric mean of R2 across
module-level power models for different window sizes 115

6.13 Power prediction errors for microbenchmarks on Rocket+Hwacha . . 116
6.14 Power breakdown for SqueezeNet on Rocket+Hwacha 117
6.15 Power prediction errors for SqueezeNet on Rocket+Hwacha 118
6.16 Energy efficiency of Rocket+Hwacha for SqueezeNet 118
6.17 Power traces for the scalar SqueezeNet benchmarks on Rocket+Hwacha 119
6.18 Power traces for the vectorized SqueezeNet benchmarks on Rocket+Hwacha120

ix

List of Tables

3.1 Target processors evaluated with MIDAS v1.0 26
3.2 Dynamic instruction counts for the SEPC2006int benchmark suite with

the RISC-V ISA . 28
3.3 Dynamic instruction counts for the DaCapo benchmark suite with the

RISC-V ISA . 28

4.1 Comparison of contemporary simulation techniques for execution-driven
RTL verification . 45

4.2 Target processors verified with DESSERT 59
4.3 FPGA utilization versus instrumentation level 60
4.4 Simulation rates for various simulators 60
4.5 Assertion triggers from BOOM-v2 running the SPECint2006 bench-

mark suite. 61

5.1 Statistical parameters . 67
5.2 Target designs evaluated with Strober 79
5.3 Simulation performance for BOOM-2w 80
5.4 Simulated and replayed cycles for each benchmark on Rocket 81

6.1 Parameters for Rocket and BOOM evaluated with Simmani 105
6.2 Small and large inputs for microbenchmarks for evaluation 105
6.3 Parameters for Rocket+Hwacha evaluated with Simmani 112
6.4 Results of automatic signal and variable selection for Rocket+Hwacha 114
6.5 Performance of Rocket+Hwacha for SqueezeNet 117

x

Acknowledgments

I am very grateful I have been standing on the shoulders of giants at UC Berkeley.
First of all, I would like to thank my advisors, Krste Asanović and Jonathan

Bachrach. I was very fortunate they gave me a chance to be part of a great research
group at UC Berkeley. Even though I struggled a lot in my early days, they never
gave up on me. With their continuous encouragement and patience, they have shown
me how to build computer systems and how to do computer architecture research. I
also like to thank Bora Nikolić and Rhonda Righter for gladly being on my quals and
thesis committee.

It is a great pleasure to have many talented colleagues and friends surrounding
me. Special thanks to Chris Celio, who developed BOOM for his Ph.D, which in
turn enriched my research. Without his heroic effort, what I have done throughout
my thesis would have been much less valuable. He also cheered for my research and
inspired new research ideas like DESSERT. I also appreciate that BOOM is now
supported and maintained by Abraham Gonzalez, Ben Korpan, and Jerry Zhao.

Big thanks to the MIDAS/FireSim team including David Biancolin, Sagar Karandikar,
and Howard Mao. I really enjoyed working with them. It is amazing to see my early
work on MIDAS now becomes FireSim, one of the most successful research project
at UCB BAR. Nobody can imagine how much time and energy have been invested
in this project, and I will remember that you guys have come to the lab most of
weekends.

Thanks to everyone who makes Chisel and FIRRTL great, including Jonathan
Bachrach, Adam Izraelevitz, Jack Koenig, Richard Lin, Albert Magyar, Jim Lawson,
Chick Markley, Andrew Waterman, Stephen Twigg, Wenyu Tang, Angie Wang, Paul
Rigge, and Schuyler Eldridge. Chisel and FIRRTL are the backbone of my thesis,
without which my thesis would have been literally impossible. Beyond my creepy
hacks on Chisel2 and its tester, I am glad to see Chisel and FIRRTL are widely used
and contributed by the outside world.

I thank the Hwacha team including Yunsup Lee, Albert Ou, and Colin Schmidt.
Hwacha played an important role in evaluation for Simmani, and it is amazing to
see this sophisticated design working very well. I also thank Jerry Zhao for the
SqueezeNet port for Hwacha, without which evaluation for Hwacha would have been
much less insightful.

Thanks to Edward Wang for his contribution to HAMMER. Very interestingly,
I first met him as a lab assistant when I was a CS 61C TA. What a small world!
Without HAMMER, working with CAD tools for Simmani would have been much
more painful.

Thanks to Kevin Laeufer and Jack Koenig for the RFUZZ project. It was very
exciting we made it work on the FPGA in crunch time. Big thanks to the energy
modeling team back in the day including Adam Izraelevitz, Brian Zimmer, Hokeun
Kim, and Yunsup Lee.

LIST OF TABLES xi

Thanks to Andrew Waterman, an inventor of RISC-V, from which all greatness
starts. He also gladly answered my silly questions and never hesitated to look at
waveforms when I asked while working on DESSERT. Thanks to Martin Mass for his
porting effort to Jikes JVM and the DaCapo benchmarks used in the case study of
MIDAS. Also thanks to Scott Beamer, Henry Cook, Rimas Avizienis, Brian Zimmer,
Eric Love, Palmer Dabbelt, Ben Keller, John Wright, Alon Amid, Nathan Pember-
ton, Jenny Huang, and Vighnesh Iyer for their contributions to various projects and
tapeouts at UCB BAR.

I would like to thank my family. My father, Taegeun Kim, has always been
supportive in Korea. My younger brother, Donggyun Kim, who by chance has almost
the same first name as mine except the ending n1, has been also a great roommate
at Berkeley. I am happy he will soon receive his bachelor’s degree from UC Berkeley.
Finally, this thesis is devoted to my mother, Jeongja Seo, a true supporter for me
during her entire life.

Funding Support. My research in this thesis has been supported by the fol-
lowing sponsors:

• ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016.DARPA
POEM program Award HR0011-11-C-0100. The Center for Future Architec-
tures Research (C-FAR), a STARnet center funded by the Semiconductor Re-
search Corporation. Additional support from ASPIRE industrial sponsor, Intel,
and ASPIRE affiliates, Google, Huawei, Nokia, NVIDIA, Oracle, and Samsung.

• ADEPT Lab: The information, data, or work presented herein was funded
in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S.
Department of Energy, under Award Number DE-AR0000849. Research was
partially funded by ADEPT Lab industrial sponsor Intel, and ADEPT Lab
affiliates Google, Siemens, and SK Hynix.

I was partly supported by the Kwanjeong Educational Foundation. The views and
opinions of the author expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

1 This is a big difference in Korean

1

Chapter 1

Introduction

This thesis proposes a new evaluation and verification methodology in the hard-
ware/software co-design flow. Section 1.1 motivates why performance, power, and
energy evaluation using RTL designs instead of microarchitectural software simu-
lators is necessary for the recent hardware/software co-design trends. Section 1.2
outlines the remaining chapters of this thesis.

1.1 Why RTL-Based Computer Architecture Re-

search?

Figure 1.1 shows two alternatives for performance evaluation in the computer
system design process. Historically, cycle-level microarchitectural software simulation
(e.g. [19, 109, 143]) has been widely-used by computer architects for performance eval-
uation (Figure 1.1a). Whereas RTL implementation has been tedious, labor-intensive
and difficult to modify and verify, these microarchitectural software simulators are
flexible and easy to use. For this reason, high-level software-based simulation remains
an important tool to guide system designers in the early stages of system design, be-
fore RTL implementation has commenced. Ease-of-use concerns notwithstanding,
evaluating RTL designs remains extremely slow when using commercial CAD tools,
and thus, high-level simulation was necessary to evaluate the target systems with
real-world applications.

However, microarchitectural software simulation becomes the bottleneck of the
recent hardware/software co-design cycles nowadays for two main reasons. First of
all, microarchitectural software simulators should be carefully validated against RTL
designs and real systems. This is only feasible when new designs do not deviate
tremendously from existing hardware or similar designs from previous design cycles
that have already been validated. As shown in Figure 1.1a, there are frequent feed-
back loops from the CAD tools to the RTL designs in the hardware design cycle in

CHAPTER 1. INTRODUCTION 2

µarch
Simulation

RTL
Implementation

Hardware
Specification

CAD Tools

Tape-out

Performance
Evaluation

Validation

Software
Development

(a) Performance evaluation using microarchitectural simulation

FGPA-accelerated
Simulation

RTL
Implementation

Hardware
Specification

CAD Tools

Tape-out

Performance
Evaluation

Software
Development

(b) Performance evaluation using RTL designs

Figure 1.1: Comparison of performance evaluation methodologies in the hardware/-
software co-design flow

CHAPTER 1. INTRODUCTION 3

order to improve the quality of the silicon implementation. Whenever any changes are
made to the RTL designs, microarchitectural software simulators should also be care-
fully tuned. Moreover, microarchitectural software simulators should be exhaustively
validated against the silicon implementations running real-world software. Other-
wise, various kinds of modeling errors can be introduced by the abstraction of the
target systems [53]. Recent hardware design trends, moving toward heterogeneous
SoCs with a plethora of custom hardware accelerators, have made simulator valida-
tion more difficult as it has become harder to find an existing system against which
these software-based simulators are validated.

To make matters worse, microarchitectural software simulation is too slow to
run the full execution of today’s realistic workloads with very complicated hardware
designs. In general, any non-trivial modern application executes billions to trillions
of dynamic instructions, making it practically impossible to simulate them without
sampling even with the fastest microarchitectural software simulator. For example, it
takes roughly a month to simulate one trillion instructions with a 400 KIPS simula-
tor [109]. Therefore, the slow speed of microarchitectural software simulation prevents
an agile hardware development approach, which is required for rapid hardware/soft-
ware co-optimizations.

This thesis proposes FPGA-accelerated RTL simulation to resolve the difficulty
of performance, power, and energy evaluation for the hardware/software co-design
flow as shown in Figure 1.1b. First of all, RTL implementation is becoming more
productive for computer architects thanks to various hardware construction languages
(e.g. [10], [105], [118], [94], [135]) that greatly improve the expressivity over existing
hardware description languages like Verilog and VHDL. In addition, there are an
increasing number of open-source RTL designs (e.g. [8, 34]) with which to bootstrap
a new project, dramatically reducing RTL development time.

Next, this methodology is truly cycle-accurate as the FPGA-accelerated simu-
lator is generated using automatic transformations on any RTL design that will be
the same RTL consumed by VLSI CAD tools to produce the silicon implementations.
These transformations preserve the RTL behavior of the design, and thus do not
introduce modeling errors. Therefore, system designers do not need to re-validate
their simulator after changes on their RTL design, greatly improving the productiv-
ity of hardware/software co-optimization, where the RTL design may be frequently
modified.

Finally, using FPGAs for performance evaluation increases the simulation speed
by multiple orders of magnitude over existing cycle-level microarchitectural software
simulation, which is well demonstrated by the previous work [132]. Since FPGA-
accelerated simulators can execute tens of MIPS, it becomes possible to evaluate
complete benchmark suites, like SPEC2006int, on a cycle-accurate model of the de-
sign.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis Outline

This thesis describes fast and accurate RTL simulation methodologies using FP-
GAs for performance, power, energy evaluation as well as verification and debugging.

Chapter 2 describes the background of this thesis. Section 2.1 reviews various
existing performance modeling methodologies including analytic modeling, software-
based simulation, simulation sampling, and FPGA-accelerated simulation. Section 2.2
introduces Chisel and FIRRTL, which are crucial tools for this thesis. This section
also describes the compiler-in-a-pass technique used for various custom transforms
implemented in this thesis. Section 2.3 overviews example RTL designs including the
Rocket in-order processor, the BOOM out-of-order processor, and the Hwacha vector
accelerator evaluated in this thesis. Section 2.4 discusses various challenges arising
with RTL implementations.

Chapter 3 presents MIDAS v1.0, a framework that automatically generates
FPGA-accelerated performance simulators from any RTL designs. Section 3.1 dis-
cusses the motivation of MIDAS v1.0. Section 3.2 describes MIDAS v1.0 and its im-
plementation with FIRRTL compiler passes. Section 3.3 shows the evaluation results
of Rocket and BOOM running the SPECint2006 benchmark suite and the DaCapo
benchmarks using MIDAS. Section 3.4 concludes this chapter.

Chapter 4 presents DESSERT, an effective RTL debugging methodology using
FPGAs. Section 4.1 shows why RTL debugging can be very challenging and painstak-
ing. Section 4.2 covers existing simulation-based RTL verification and debugging
methodologies. Section 4.3 presents the DESSERT framework and its implementa-
tion for RTL debugging using FPGAs. Section 4.4 shows the debugging results for
BOOM-v2 using DESSERT. Section 4.5 summarizes this chapter.

Chapter 5 presents Strober, a sample-based energy modeling methodology for
average power and energy estimation. Section 5.1 motivates why RTL-based power
and energy evaluation is necessary for computer architecture research. Section 5.2
describes existing design-time power modeling methodologies. Section 5.3 overviews
our sample-based energy evaluation methodology. Section 5.4 presents the Strober
framework as an implementation of sample-based energy evaluation. Section 5.5
shows the evaluation results of Rocket and BOOM with Strober. Section 5.6 concludes
this chapter.

Chapter 6 presents Simmani, an activity-based runtime power modeling that
automatically identifies key signals for the runtime power dissipation of any RTL de-
sign. Section 6.1 motivates why runtime power modeling is necessary for computer
systems. Section 6.2 covers existing runtime power modeling methodologies. Sec-
tion 6.3 describes how Simmani selects key signals for runtime power dissipation with
signal clustering and then trains module-level runtime power models with regression
against power traces from CAD tools. Section 6.4 explains how Simmani automat-
ically instruments activity counters for the selected signals, enabling runtime power
analysis with FPGA-based simulation. Section 6.5 and shows the evaluation results

CHAPTER 1. INTRODUCTION 5

of Rocket and BOOM with Simmani. Section 6.6 shows the evaluation results of
Hwacha with Simmani. Section 6.7 summarizes this chapter.

Chapter 7 concludes this thesis by presenting its contributions as well as potential
future work based on the progress of this thesis.

6

Chapter 2

Background

This chapter presents the background of this thesis. Section 2.1 overviews exist-
ing evaluation methodologies for computer architecture research. Section 2.2 describes
Chisel and FIRRTL that play an important role throughout this thesis. Section 2.3
introduces example RTL designs evaluated in this thesis. Section 2.4 discusses various
challenges arising from RTL implementation, motivating the methodologies developed
in this thesis.

2.1 History of Evaluation Methodologies for Com-

puter Architecture Research

2.1.1 Analytic Modeling

There is a long history on analytic performance modeling for microprocessors.
First of all, there are a lot of efforts to determine the optimal pipeline length using
analytic models. Emma and Davidson [45] present an analytic model to predict the
optimal pipeline length for in-order processors using statistics on branches and data
dependences collected from instruction traces. Hartstein and Puzak [54] predict the
optimal pipeline length of superscalar processors with an analytic model in terms of
pipeline stalls. Sprangle and Carmean [124] find that the optimal pipeline depth is
primarily determined by branch misprediction penalties, but is independent of cache
sizes.

There are also a huge amount of studies to explain system performance with
respect to instruction-level parallelism (ILP). Jouppi [69] studies the non-uniform
distribution of ILP across various benchmarks. Debey et al. [43] model the through-
put of a processor using the ILP distribution and the cost of branches. Noonburg and
Shen [106] model the ILP distribution in the matrix form, considering available paral-
lelism in each pipeline stage. Michaud et al. [99] find the

√
N relationship between the

CHAPTER 2. BACKGROUND 7

ILP and the instruction window size, the number of instructions waiting for execution
in the pipeline, and compute the threshold fetch rate using this relationship.

Karkhanis and Smith [71] present performance modeling for out-of-order proces-
sors in terms of the rate of instructions issued per cycle (IPC) over time. They observe
the IPC rate becomes zero with pipeline miss events such as i) branch misprediction,
ii) instruction cache and TLB misses, and iii) long-latency backend events such as L2
cache and TLB misses. By extending this performance modeling, Eyerman et al. [47]
suggest a performance counter architecture, which is used to construct CPI stacks
that identify performance bottlenecks across various workloads. Taha and Wills [129]
present a similar performance model in which the IPC is modeled in terms of macro
blocks, a group of instructions divided by branch mispredicts.

The Roofline model [145] is a simple 2-D graph model for high performance
computing in terms of operational intensity (x-axis), floating-point performance (y-
axis), peak floating-point performance (a strait line), and peak memory bandwidth (a
line of unit slope). Operational intensity is application-dependent while floating-point
performance and memory bandwidth are only machine-dependent. By measuring the
operational intensity of a given application, we can readily visualize whether it is
computation-bounded or memory-bandwidth-bounded as well as whether or not its
theoretical maximum performance is achieved. This performance model is also used
to evaluate Google’s Tensor Processing Unit (TPU) [68].

There are also various studies on analytic performance modeling for memory
systems. Hill and Smith [55] present an efficient algorithm for cache performance
estimates with various cache parameters from a single run of simulation. There is a
large amount of work on cache performance modeling based on reuse distance [4, 16,
117, 13]. Sorin et al. [123] describe analytic modeling for shared memory systems.
Willick and Eager [146] present analytic modeling for interconnection networks.

Accurate analytic performance modeling has been always our dream because
analytic models are simple, intuitive and quick. However, analytic modeling is inac-
curate in many cases by its nature. In hardware designs, there are lots of overlapping
operations interacting each other. We may improve modeling accuracy by introduc-
ing more variables to explain more about these operations, which may end up being
as complex as detailed simulation. Moreover, analytic models have been effective
only for well-known hardware designs as they should be rigorously validated against
real implementations, which are unlikely available for novel hardware designs such as
domain-specific custom accelerators.

2.1.2 Software-Based Simulators

Microarchitectural software simulators [19, 143, 109] are the most popular tools
for computer architecture research. These simulators are arguably cycle-accurate as
they keep track of cycle-by-cycle microarchitectural state. However, these simulators
are truly cycle-accurate only if they are rigorously validated against RTL or silicon

CHAPTER 2. BACKGROUND 8

Figure 2.1: Single-cycle perfect caches in MARSSx86

implementations because microarchitectural state is a subset of RTL state manually
defined by hardware designers. Gutierrez et al. [53] describe possible source of errors
in these simulators due to manual abstraction and modeling.

Indeed, we can easily introduce software hacks for unrealistic hardware con-
figurations in software-based simulators. Figure 2.1 shows 10 lines of C++ code for
single-cycle perfect caches in MARSSx861, which may be useful for hypothetical stud-
ies. However, this also shows that one can be easily unaware of constraints in the real
implementation, leading to unrealistically-optimistic conclusions (for publications),
which can happen when new design ideas are evaluated only with software-based
simulators.

Another issue is microarchitectural software simulators are too slow to execute
real-world applications to completion. These cycle-level simulators run only at tens or
hundreds of kilo instruction per second (KIPS), orders-of-magnitude slower than real
machines. To overcome the slowness of cycle-level microarchitectural simulators, a
variety of software simulators that trade off accuracy for speed are proposed [102, 28,
113]. Another popular technique is simulation sampling as explained in Section 2.1.3.
However, these workarounds are sometimes unacceptable as they can further increase
modeling errors.

1This was done when I was an undergraduate student.

CHAPTER 2. BACKGROUND 9

2.1.3 Simulation Sampling

Simulation sampling is a popular technique to overcome the sluggishness of cycle-
level microarchitectural software simulators. There are two major approaches: phase-
based sampling [121] and statistical sampling [148].

Phase-based sampling [121] provides simulation points through phase analysis
on dynamic basic-block traces. Here, the underlying assumption is the dynamic
execution of software consists of short periods of phases and each phase will exhibit
similar microarchitectural behavior, and thus instructions per cycle (IPC), whenever
repeated. The simulation points produced by this methodology are those centered
about the basic blocks that are most frequently visited. This approach provides no
guaranteed error bounds.

However, this is not necessarily true because the periods of phases can be lengthy
and the performance characteristics of each phase depend on the dynamic state of
the systems. Figure 2.2 shows the IPC trace over the entire execution of 401.bzip2
in the SPEC2006int benchmark suite with its reference input, running on BOOM-2w
(Table 3.1). A sample was collected every 100 million cycles: each point represents
the average IPC over that 100 million cycle interval. Samples were collected from the
FPGA as the simulation executed. Even though there are some distinct execution
phases, each phase has a non-trivial length period and shows different performance
characteristics when repeated. Thus, running a couple of million instructions in
dozens of representative points from phase analysis is not enough to characterize the
machine’s performance for real-world applications.

On the other hand, statistical simulation sampling [148] provides performance
estimates with statistically-bounded errors. The main idea is the intervals between
detailed simulation points are fast-forwarded using fast functional simulation. How-
ever, for this approach to be effective, the microarchitectural state of the machine
must be reconstituted in a warming phase. This requires considerable execution
time in the detailed simulator even before evaluating the sample point.

Various methods (e.g. [143]) have been suggested to address this state warming
problem, most of which propose keeping track of some microarchitectural state in
functional simulation. Of course, this slows down the fast functional simulation,
making it difficult to recollect simulation samples. Thus, architects must choose
between either the increased design iteration time to perform sample recollection, or
potential simulation inaccuracy that may result from using stale samples. Finally,
it is not clear what subset of state should be warmed for non-traditional hardware
designs such as custom hardware accelerators.

2.1.4 FPGA-Accelerated Simulators

Motivated by the dawn of the multicore era, the multi-university RAMP project [142]
was initiated to improve the simulation speed of multi-core processors using FPGAs.

CHAPTER 2. BACKGROUND 10

F
ig

u
re

2.
2:

IP
C

tr
ac

e
fo

r
4
0
1
.
b
z
i
p
2

on
B

O
O

M
-2

w

CHAPTER 2. BACKGROUND 11

Under the umbrella of the RAMP project, there have been significant efforts to de-
velop techniques for FPGA-based performance simulators [38, 36, 132, 131, 111, 130].
ProtoFlex [38] implements a multi-core functional simulator on the FPGA. FAST [36]
is a hybrid approach simulating a function model in software and a timing model on
the FPGA. Tan et al. [132] describe different FAME levels. FAME0 simulators di-
rectly emulate the RTL design on the FPGA. FAME1 simulators are decoupled from
the host memory simulation to match the target DRAM timing models. FAME7 sim-
ulators implement abstract models and simulation multi-threading on top of FAME1.
RAMP Gold [131] and HASim [111] are examples of FAME7 simulators. To model
a datacenter-scale system, DIABLO [130] leveraged RAMP Gold’s multithreading to
simulate 3072 servers on 24 FPGAs with abstract network interface card (NIC) and
switch models.

The simulators above are orders of magnitude faster than software simulators,
but they require simulator engineers to manually describe abstract models in RTL,
which may be more difficult than writing RTL for the target design. In contrast, this
thesis presents a methodology to automatically generates FAME1 simulators directly
from target RTL designs to accurately model the target design’s timing behavior.

2.2 Chisel & FIRRTL: Improving Productivity with

Hardware Generators and Compiler Transforms

In this section, we introduce Chisel and FIRRTL, which have been the heart of re-
search tools at Berkeley Architecture Research and widely adopted by both academia
and industry nowadays. Figure 2.3 highlights the hardware development stack using
Chisel and FIRRTL.

Chisel [10] is a hardware construction language embedded in Scala [107] that
helps hardware designers generate RTL with various parameters by providing access
to advanced parameterization systems 2. Note that Chisel is not a high-level synthesis
tool; like Perl or Python scripts that modify or generate Verilog, a designer uses
Chisel’s host language Scala to create and connect structural RTL components.

A core idea of design methodologies using Chisel is writing reusable libraries
with hardware generators instead of single instances of hardware designs, which can
be accomplished by high-level language features and advanced parameterization. As
a result, RTL implementation is much more productive since designers can reuse well-
verified existing libraries for their own designs without pain. Otherwise, they need
to rewrite similar instances of existing hardware blocks or end up with error-prone
scripts to generate them.

The hardware design productivity can be further enhanced by custom com-
piler transforms. For example, memory blocks are technology-dependent and need to

2 Available at https://github.com/freechipsproject/chisel3.git

CHAPTER 2. BACKGROUND 12

Projects

Libraries

Language

Compiler

Platforms

Figure 2.3: Hardware development stack with Chisel and FIRRTL
(Courtesy of Adam Izraelevitz)

CHAPTER 2. BACKGROUND 13

FIRRTL Compiler

FIRRTL Pass

FIRRTL
Compiler

Design IR

RTL Block
(e.g. Scan Chain)

Block IR

Transformed IR

Figure 2.4: Compilers-in-a-pass for custom transforms

change their instantiations in RTL whenever new technologies are employed. Instead
of manually modifying RTL, we may want to write a compiler pass to automatically
map technology-independent memory blocks into technology-dependent macros.

The FIRRTL compiler [64] is a language-agnostic framework to support compiler
passes operating on its well-defined intermediate representation, FIRRTL (Flexible
Intermediate Representation for RTL) [91] 3. A FIRRTL design in memory is repre-
sented as an abstract syntax tree (AST) structure consisting of IR nodes, each of which
is one of the following IR abstract classes: circuit, module, port, statement,

expression, type. Therefore, compiler passes in the FIRRTL compiler in general
transform or analyze a given circuit by recursively visiting IR nodes based on their
class types.

Custom transforms in the FIRRTL compiler is the crux of methodologies in this
thesis. Indeed, most of techniques in this thesis would have been unavailable if it
were not for the FIRRTL compiler. We will introduce various custom transforms and
instrumentation techniques using the FIRRTL compiler throughout this thesis.

2.2.1 Compilers-in-a-Pass

Notably, for a wide range of instrumentations, it may be very tedious and cum-
bersome to express logic blocks only using the FIRRTL IR nodes that are appended
to the target design. A core technique to reduce this burden is compilers-in-a-pass
as shown in Figure 2.4. Instead of explicitly writing different IR code for different
configurations of the same hardware module, we can automatically generate the corre-
sponding IR to be instrumented from parameterized Chisel RTL using this technique,
greatly reducing manual effort. This technique is used for various custom transforms

3 Available at https://github.com/freechipsproject/firrtl.git

CHAPTER 2. BACKGROUND 14

including scan chain insertion (Section 4.3.3) throughout this thesis.

2.3 Example RTL Designs

In this section, we introduce various RTL designs evaluated in this thesis. Since
our goal is general evaluation and verification methodologies for any RTL designs, we
need a various range of target designs from simple to complex.

To test and validate our ideas on evaluation methodologies, we should always
start from extremely simple examples such as the greatest common divisor (GCD). If
some idea does not work for these small examples, there is no way it will work for more
complicated designs. Before moving on with real-world designs, our methodologies are
tested with RISC-V mini (Section 2.3.1) as an intermediate example. Finally, to see
the effectiveness of our methodologies, we should apply these methodologies to more
realistic hardware designs such as RocketChip (Section 2.3.2), BOOM (Section 2.3.3),
and Hwacha (Section 2.3.4).

Even though all RTL examples in this section are written in Chisel, for method-
ologies introduced in this thesis, there is no fundamental limitation on the frontend
language in which the target design is written. In fact, all custom transforms imple-
mented in this thesis operate on the language-agnostic IR in the FIRRTL compiler,
and thus, designs in any frontend language such as Verilog should work with our
frameworks once this frontend language is supported by FIRRTL.

2.3.1 RISC-V Mini

RISC-V mini is a simple RISC-V 3-stage pipeline (Figure 2.5) written in Chisel.
It has served as a crucial example in various project developments, including Chisel3,
FIRRTL, and simulation and verification methodologies. It implements RV32I of
the user-level ISA version 2.0 [138] and the machine-level ISA of the privileged ar-
chitecture version 1.7 [140]. Unlike other simple pipelines, it also contains simple
direct-mapped instruction and data caches.

RISC-V mini is now open-source and publicly available 4. In addition, we can
run custom C programs on RISC-V mini as a script is provided to install the necessary
RISC-V tools.

From my experience, RISC-V mini could catch many idea and implementation
bugs of our methodologies not found by simpler examples. On the other hand, when
tests with RISC-V mini passed, our methodologies worked pretty well with much
more complex designs like RocketChip and BOOM, too. This is why RISC-V mini
plays a central role in developing methodologies in this thesis although there is no
evaluation with it.

4 https://github.com/ucb-bar/riscv-mini.git

CHAPTER 2. BACKGROUND 15

P C

I R

I$

Addr

Data

ir[
19

:1
5]

ir[
24

:2
0]

R
eg

Fi
le

ra
dd

r1

ra
dd

r2

rd
at

a2

rd
at

a1

Im
m

 G
en

im
m
_s

el

RS
2

P C

RS
1

A L U

D
$

Addr

RData

WData

w
en

R
eg

Fi
le

w
en

WData

w
ad

dr

I R
ir[

11
:7

]

B_
se

l

A_
se

l

wb
_s

el

fw
d1

fw
d2

Br
Co

nd
ta

ke
n?

+4

PC
_s

el
,

st
al

l,
br

_t
ak

en
,

ex
ce

pt
io

n

Fe
tc
h

Ex
ec
ut
e

W
rit
e
Ba
ck

no
p

in
st

_k
ill,

br
_t

ak
en

,
ex

ce
pt

io
n

B

A
LUAl
uO

p

A

Out

CS
R

Inst

RData

Addr

cs
r_

cm
d,

 ill
eg

al
,

st
_t

yp
e,

 ld
_t

yp
e,

pc
_s

el

HT
IF

st
al

l

w
en

re
n

St
or

e
st

_t
yp

e[1
:0

]

P C
+4

Lo
ad

ld
_t

yp
e[1

:0
]

br
_t

yp
e

Sum

ex
ce

pt
io

n?

PC

EP
C
EV

EC
C S R

In

im
m
_s

el

F
ig

u
re

2.
5:

R
IS

C
-V

m
in

i
p
ip

el
in

e

CHAPTER 2. BACKGROUND 16

Figure 2.6: Rocket core pipeline
(Source: [8])

F1
(IC)

Fetch
Buffer

Front-end Back-end

F2/
BPD

DEC/
REN

B1
(BTB)

ISS/
RRD

SEL/
FMT

WB

Out-of-order processing

WB

branch
redirects

EX EX EX EX

EX

EX DC

notes:
- not showing iterative dividers

WB

Figure 2.7: BOOM core pipeline
(Courtesy of Christopher Celio)

CHAPTER 2. BACKGROUND 17

2.3.2 RocketChip Generator

RocketChip [8] is an open-source SoC generator suitable for research and indus-
trial purposes. Rather than being a single instance of an SoC design, RocketChip is a
hardware design generator, capable of producing many design instances from a single
piece of Chisel source code. Multiple industry products as well as silicon prototypes
are manufactured using RocketChip. A RocketChip instance generally consists of
three major components: processors, a cache hierarchy, and an uncore.

RocketChip instantiates an in-order processor, Rocket, by default, but also
supports various core implementations including an out-of-order processor, BOOM.
Rocket is a 5-stage in-order processor (Figure 2.6) that implements the RISC-V
ISA [141, 139]. It has an MMU that supports page-based virtual memory, a non-
blocking data cache, and a frontend with branch prediction. Branch prediction is
configurable and provided by a branch target buffer (BTB) with its associative branch
history table (BHT), and a return address stack (RAS).

A RocketChip cache hierarchy can include L1 instruction caches, L1 blocking
or non-blocking data caches, and TLBs with configurable sizes, associativities, and
replacement policies. A RocketChip uncore consists of networks of cache coherent
agents and the associated cache controllers for multi-core systems. These components
are shared across both Rocket and BOOM instances.

2.3.3 BOOM

BOOM [34, 32] is a superscalar out-of-order processor with a unified physical
register file (Figure 2.7) with configurable fetch widths, issue widths, and instruction
window sizes. BOOM supports full branch speculation using a BTB, RAS, and a
parameterizable backing branch predictor. BOOM is written in only 14K lines of
Chisel code as it reuses many of RocketChip’s components.

BOOM v2 [33] is a major microarchitecture update on BOOM v1, motivated
by the tapeout process with the TSMC 28 nm technology. Major changes are i) the
issue window and physical register file have been distributed, and ii) an additional
cycle has been added to the fetch and rename stages. However, since BOOM v2 went
through dramatic design changes in a short period of time, its RTL debugging with
long-running applications became a big challenge, which is a strong motivation of
Chapter 4.

2.3.4 Hwacha

Hwacha [87, 85, 86, 84] is a decoupled-vector accelerator within the RocketChip
SoC. Hwacha is connected to Rocket as a co-processor through the Rocket Custom
Coprocessor (RoCC) interface (Figure 2.8). Therefore, Hwacha’s instructions are

CHAPTER 2. BACKGROUND 18

Figure 2.8: Hwacha as a co-processor in the RocketChip SoC
(Source: [85])

CHAPTER 2. BACKGROUND 19

encoded as a custom extension of RISC-V. The Hwacha ISA manual [87] explains
custom instructions and the programming model for Hwacha.

Hwacha achieves high performance by i) executing multiple data operations with
a single instruction, and ii) having address calculations run ahead of data operations.
In this thesis, Hwacha serves as an example of non-conventional hardware designs for
the evaluation of runtime power modeling in Chapter 6.

2.4 More Challenges in RTL Implementations

Even though Chisel and FIRRTL greatly improve hardware design productivity,
there are still remaining challenges for RTL implementations, which stems from the
fact that contemporary hardware designs are fairly complicated and their real-world
applications are very long for detailed simulation.

2.4.1 Performance Evaluation

An RTL design needs to be simulated for its performance evaluation before
expensive tape-out. There are various commercial or open-source software RTL sim-
ulators available. However, these simulators are far slower than real machines, with
which we can only run microbenchmarks for target designs.

On the other hand, FPGA emulation is fast enough to execute real-world applica-
tions to completion on complex hardware designs. However, performance evaluation
with FPGA emulation can be misleading unless the timing of the DRAM and the
I/O peripherals are properly modeled. Moreover, FPGAs are lack of visibility and
controllability, which makes debugging extremely difficult.

In Chapter 3, we present FPGA-accelerated RTL simulation for accurate per-
formance modeling on the FPGA, which is also as fast as FPGA emulation.

2.4.2 Verification and Debugging

RTL verification and debugging may be the biggest challenge for hardware de-
signs because:

• Formal verification is not scalable, and therefore, cannot be used for system-
level verification.

• Software simulation is too slow to execute real-world applications. Also, it is
very hard to generate small input sets that exercise conner cases during software
simulation.

• FPGA emulation lacks controllability and visibility. When the execution
crashes, it is extremely hard to figure out the root of the error.

In Chapter 4, we present an effective RTL debugging methodology using FPGAs.

CHAPTER 2. BACKGROUND 20

2.4.3 Power and Energy Efficiency

Power and energy efficiency are primary constraints for hardware designs. First
of all, power is highly correlated with heat dissipation. We do not want our systems
melt down from high heat dissipation. Moreover, high power dissipation may affect
the timing and the functionality of the silicon implementation.

On the other hand, energy efficiency is important for embedded systems because
energy is a precious resource for these systems. For example, we want batteries in our
smart phones to last as long as possible. Also, energy efficiency is crucial to reduce
the cost of operation for large-scale systems such as datacenters. The more energy
these systems burn per workload, the more money we should pay for computing as
well as cooling.

Unfortunately, measuring power and energy efficiency is also non-trivial because
dynamic power is a function of signal activities, which are another function of appli-
cations running on the system. Therefore, we should collect signal activities from the
simulation of each application for power and energy estimation.

Existing power and energy modeling methodologies fall into the following cate-
gories:

• Commercial CAD tools such as Synopsys PrimeTime PX provide the most
accurate power and energy estimation with RTL/gate-level simulation. How-
ever, these tools are extremely slow for complex hardware designs executing
real-world workloads.

• Analytic power modeling such as McPAT [92] is a de-facto methodology
for computer architecture research. However, this model needs to be carefully
validated against RTL or the silicon implementation, which is very challenging
for novel hardware designs.

• Performance counters can be used for runtime power estimation, which
is successful for traditional microprocessors in real machines. However, this
methodology requires designers’ careful intuition about which signals or events
are highly correlated with dynamic power dissipation. For novel hardware de-
signs, it can be very difficult to manually find key signals for power dissipation.

In Chapter 5, we present sample-based energy modeling for fast and accurate
average power and energy estimation. In Chapter 6, we present an activity-based
runtime power modeling, which automatically selects key signals for dynamic power.
This runtime power modeling is useful for dynamic power/thermal optimizations such
as dynamic voltage and frequency scaling (DVFS).

21

Chapter 3

FPGA-Accelerated RTL
Simulation

In this chapter, we present a methodology to simulate RTL designs hosted on
FPGAs along with their abstract memory and I/O device models. Section 3.1 de-
scribes the motivation of our methodology over existing frameworks for RTL evalu-
ation and verification. Section 3.2 describes MIDAS v1.0, our initial framework for
FPGA-accelerated RTL simulation in detail. Section 3.3 shows performance evalua-
tion results for Rocket [8] and BOOM [34] using MIDAS. Section 3.4 summarizes this
chapter.

3.1 Motivation: Efficient and Effective Framework

for RTL Evaluation and Verification

For efficient and effective RTL evaluation and verification, an RTL simulation
framework is expected to have the following properties:

• Fast: RTL simulation should be fast enough to run realistic workloads to com-
pletion.

• Accurate: RTL simulation should provide accurate performance, power, and
energy evaluations.

• General and easy-to-use: An RTL simulator should be automatically gen-
erated from any RTL design.

• Deterministic: The results of RTL simulation should be always the same
whenever repeated.

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 22

• Controllable: RTL simulation should be paused and resumed whenever nec-
essary. Moreover, its internal state and signal values should be loaded and
changed when required.

• Visible: The internal state and signals of RTL simulation should be visible to
the outside world.

• Portable: RTL simulation should be hosted on various platforms.

• Affordable: The simulation framework should not be expensive for availability.

As the complexity of modern hardware designs increases, existing RTL simula-
tion frameworks have failed to meet all these requirements. For example, software
RTL simulation is too slow to run realistic workloads, while FPGA emulation lacks
controllability and visibility. On the other hand, commercial emulation machines are
extremely expensive, and thus, unavailable for most people.

For this reason, MIDAS is developed to meet all these requirements. First of
all, we use FPGAs to enable RTL simulation for trillions of cycles at speed. Next,
we use the FIRRTL compiler [64] to automatically generate the FPGA-accelerated
RTL simulator from any RTL design, which makes MIDAS a general and easy-to-
use framework. This FPGA-accelerated RTL simulator is an instance of synchronous
data flow (SDF) [81] that ensures accurate timing modeling as well as determinis-
tic and controllable simulation on the FPGA. The controllability, visibility, and the
deterministic execution of the FPGA-based simulator can be further enhanced by
additional compiler passes as discussed in Chapter 4. Finally, MIDAS is portable and
affordable as the FPGA-accelerated simulator can be hosted either on cheap FPGA
boards or on the FPGA cloud such as Amazon EC2 F1 instances without large initial
capital expense.

3.2 MIDAS v1.0: Open-Source FPGA-Accelerated

RTL Simulation Framework

In this section, we present the implementation details of MIDAS v1.0, an open-
source FPGA-accelerated RTL simulation framework1. Section 3.2.1 describes its
overall tool flow to generate the FPGA-accelerated simulator automatically from any
RTL design using the FIRRTL compiler. Section 3.2.2 describes compiler transforms
for accurate timing modeling on the FPGA. Section 3.2.3 describes how various sim-
ulation models can be hosted together on the heterogeneous FPGA platform for
high-speed RTL simulation.

1https://github.com/ucb-bar/midas-release

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 23

Hardware(Host FPGA) Software(Host CPU)
FI

RR
TL

Co

m
pi

le
r

Target RTL Design

FAME1 Transform
Simulation Mapping
Platform Mapping

FPGA Backend Flow

Simulation Driver

I/O Devices

C++ Compiler

Driver Binary

Target Specific
C++ Header

Bitstream

Verilog

Figure 3.1: Tool flow to generate FPGA-accelerated RTL simulators

3.2.1 Tool Flow with FIRRTL Compiler Passes

For MIDAS to be general and easy-to-use, the target RTL design needs to be
automatically transformed and instrumented without designers’ manual effort. For
this purpose, we use the FIRRTL compiler passes to transform RTL into an FPGA-
hosted model. Figure 3.1 describes the complete tool flow for MIDAS.

For FPGA-hosted RTL models, the FAME1 Transform is performed to decouple
the target clock from the host clock, while Simulation Mapping is applied to augment
the logic for timing token communications between simulation models, which is ex-
plained in more detail in Section 3.2.2. Platform Mapping glues RTL models as well
as abstract FPGA models together by adding platform-specific logic as explained in
more detail in Section 3.2.3. Note that Simulation Mapping and Platform Mapping
use the compilers-in-a-pass technique (Section 2.2.1) to generate their necessary logic.

To control the FPGA-accelerated RTL simulator, the simulation driver that runs
on the host CPU is built by compiling a generated, target-specific header, which con-
tains a memory map of software-addressable state on the FPGA-host; the simulation
driver source code, which controls the advance of simulation; and software models of
I/O devices not hosted on the FPGA. Once the host FPGA has been programmed,
the simulation driver initiates the simulator state and then commences simulation
and advances the I/O device models as soon as it is possible to do so.

Note that this framework is language-agnostic as all custom transforms in this
thesis are implemented as compiler passes in the FIRRTL Compiler. Once the tar-
get design is translated into FIRRTL from its language frontend, we can apply the
compiler passes presented in this thesis regardless of the design’s host HDL.

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 24

FAME1
Transform /
Simulation
Mapping

Token

Communication
Channel
Module PortRAMen RAMen

fire

Figure 3.2: FAME1 Transform and Simulation Mapping

3.2.2 FAME1 Transform and Simulation Mapping

The FAME1 Transform and Simulating Mapping automatically generate a FAME1
model from any RTL design, similar to token-based timing simulators manually im-
plemented in previous work [132, 130, 38, 36, 111]. Note that these simulators are
also instances of synchronous dataflow [81].

Figure 3.2 depicts an automatic transformation on an arbitrary RTL design to
generate a FAME1 model. The FAME1 Transform adds a mux, globally enabled by
the fire signal, in front of each register allowing it to capture its own output. For
memory blocks, this transform masks their enable signals with the fire signal. As a
result, this compiler pass enables the entire design to stall when fire is not set by
external events.

In addition, Simulation Mapping attaches communication channels, which buffer
timing tokens from other simulation models, to the I/O ports of the FAME1 model.
The FAME1 model asserts fire when timing tokens for all input communication
channels are available, and simulates one cycle by consuming input timing tokens and
generating output timing tokens. On the other hand, the FAME1 model stalls when
any input communication channel is empty or any output communication channel is
full.

These transformations allow heterogeneous simulation models to run decoupled,
which is an important optimization when all components including software models
cannot be hosted on a single FPGA as shown in Section 3.2.3.

3.2.3 Platform Mapping

Another challenge is how to map heterogeneous simulation models, including
FAME1 models, software models, and abstract timing models hosted on the FPGA,
to the FPGA host platform for fast simulation. Figure 3.3 shows how the target
designs are mapped to the FPGA host platform.

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 25

I/O
Devices

Processor
L2 Cache

/ Main
Memory

FPGA Board(e.g. Xilinx Zynq)

Software FPGA

I/O
Devices Processor

Memory
System
Timing

Simulation
Driver

Board DRAM

L2 Cache /
Main Memory

I/O
Endpoints

Figure 3.3: Target design mapping to the FPGA host platform

The processor models are generated from RTL designs and mapped to the FPGA
as described in Section 3.2.2. The I/O devices are modeled in software and run along-
side the simulation driver as their transactions are infrequent. However, without
careful optimizations, the simulation rate is not fast enough to run real-world work-
loads to completion due to frequent timing token exchanges between the CPU-hosted
software models and the FPGA-hosted RTL models.

A novel technique to optimize the communications between the CPU and the
FPGA is I/O endpoints, special hardware widgets that translate low-level timing
tokens to high-level transactions and vice versa. In other words, instead of exchanging
low-level timing tokens, the I/O devices efficiently communicate the processor with
high-level transactions through I/O endpoints only when necessary. As a result, this
technique greatly improves the simulation rate very close to the FPGA operating
frequency.

We implement an abstract timing model hosted on the FPGA for last-level caches
(LLCs) and DRAM, while their actual data are hosted on the board main memory.
Using an abstract model for the LLC was compelling for three reasons. Firstly, LLCs
are missing in the open-source version of RocketChip, it is easier at first to write an
abstract LLC model than to implement a complete LLC. Second, abstract models
can provide runtime configurable parameters with low overhead. In our case, the
size, associativity, and the latency of the LLC can be reconfigured without needing
to recompile an FPGA bitstream. Finally, since we model the timing of the memory
systems by only keeping the tags of LLCs on the FPGA, we can model an LLC that
would be too large to fit on our FPGA. However, the downside is the simulation
needs to stall even with LLC cache hits to obtain the actual data from the board

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 26

Parameter Rocket BOOM-2w
Fetch-width 1 2
Issue-width 1 3
Issue slots - 20
ROB size - 80

Ld/St entries - 16/16
Physical registers 32(int)/32(fp) 110
Branch predictor - gshare: 16 KiB history

BTB entries 40 40
RAS entries 2 4

MSHR entries 2 2
L1 $ capacities 16 KiB or 32 KiB

ITLB and DTLB reaches 128 KiB / 128 KiB
L2 $ capacity and latency 1 MiB / 23 cycles

DRAM latency 80 cycles

Table 3.1: Target processors evaluated with MIDAS v1.0

main memory, slightly slowing down the simulation rate.
MIDAS has been hosted on the Xilinx Zynq boards, Amazon EC2 instances [1],

and Microsoft Catapult [29]. However, thanks to the portability of MIDAS, other
FPGA platforms can also be used in principle.

3.3 Evaluation

3.3.1 Target Designs and Host Platform

We evaluated two open-source RISC-V processors, Rocket, a productized scalar
in-order processor, and BOOM, an industry-competitive, open-source out-of-order
processor, using MIDAS. Table 3.1 shows the processor configurations used for this
study.

The processor and its L1 caches represent the design-under-test (DUT) and are
supplied as RTL, which are automatically transformed into a FAME1 model (Sec-
tion 3.2.2). On the other hand, the supporting L2 cache and the DRAM are imple-
mented as abstract timing models, which can be configured at runtime (Section 3.2.3).

We used the Xilinx Zynq ZC706 board for performance evaluation. The average
simulation rate of BOOM-2w was 18 MIPS for the SPECint2006 benchmark suite.

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 27

3.3.2 Memory System Timing Model Validation

Since we introduce abstract timing models for the LLC and the DRAM, these
models should be carefully validated. Specifically, we should validate 1) the size of
the LLC, and 2) the latencies of the LLC and the DRAM.

Figure 3.4 shows the timing validation of the memory systems using caches,
a pointer-chase benchmark from ccbench [30]. While caches runs, a pointer-chase
through increasing sizes of arrays demonstrates the load-to-load latency of different
levels of the memory hierarchy. In this validation, the target design observes the
16KiB L1 data cache (6 cycles), the 1MiB L2 data cache (6 + 23 cycles), and the
main memory (6 + 23 + 80 cycles) as configured in Table 3.1.

3.3.3 Benchmarks

The SPECint2006 benchmark suite is widely used for computer architecture
research as well as performance evaluation of real systems. However, only small
fractions of the whole benchmark suite have been evaluated in computer architecture
research with microarchitectural software simulators due to its non-trivial execution
lengths as shown in Table 3.2. In our evaluations, all SPECint2006 benchmarks were
compiled using Speckle [31] and simulated to completion. Unfortunately, 445.gobmk,
456.hmmer, and 462.libquantum failed on the current version of BOOM-2w, and
thus were excluded from our evaluations.

The DaCapo benchmarks [21] are widely used Java benchmarks that represent
full Java applications. We run the DaCapo benchmarks on JikesRVM [5], a research
Java Virtual Machine that is widely used in managed-language research. We used
version 9.12 of the benchmark suite and excluded the benchmarks that did not run on
recent versions of JikesRVM and the current version of the target processors. Table 3.3
also shows the dynamic instruction counts for the benchmarks with the default inputs
running on BOOM-2w, accounting for class loading, Just-in-Time compilation, and
garbage collection. We believe this provides a comprehensive and realistic view of
Java applications.

We built an initramfs image including all necessary files for each benchmark that
runs under RISC-V Linux kernel version 4.6.2. For complex workloads, such as our
JVM, we built library dependencies using the Yocto (riscv-poky) Linux distribution
generator.

3.3.4 Case Study: SPECint2006

Figure 3.5 shows the instructions per cycle (IPCs) of Rocket and BOOM-2w
with the configurations in Table 3.1 across the SPECint2006 benchmark suite with
its reference inputs. These IPCs are computed from the complete execution of each
benchmark. Note that the parameters of BOOM-2w are chosen to approximate the

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 28

1 kB 2 kB 4 kB 8 kB 16 kB
32 kB

64 kB
128 kB

256 kB
512 kB

1 MB
2 MB

4 MB
8MB

Array Size

0
10
20
30
40
50
60
70
80
90

100
110

Cy
cle

s

Figure 3.4: Memory system timing validation of BOOM-2w with the 16 KiB L1 data
cache

Benchmark Instructions (T) Benchmark Instructions (T)
400.perlbench 2.48 458.sjeng 2.85

401.bzip2 3.08 462.libquantum 2.09
403.gcc 1.37 464.h264ref 5.07
429.mcf 0.29 471.omnetpp 0.61

445.gobmk 2.04 473.astar 1.05
456.hmmer 2.95 483.xalanbmk 1.10

Table 3.2: Dynamic instruction counts for the SEPC2006int benchmark suite with
the RISC-V ISA

Benchmark Instructions (B)
avrora 137.0
luindex 48.0
lusearch 263.8

pmd 156.8
xalan 193.3

Table 3.3: Dynamic instruction counts for the DaCapo benchmark suite with the
RISC-V ISA

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 29

1.4
1

0.00.20.40.60.81.01.2

400
.pe

rlb
enc

h
401

.bz
ip2

403
.gc

c
429

.mc
f

445
.go

bm
k

456
.hm

me
r

458
.sje

ng
462

.lib
qu

ant
um

464
.h2

64r
ef

471
.om

net
pp

473
.as

tar
483

.xa
lan

cb
mk

ge
om

ean

IPC

Ro
cke

t 16
KiB

 L1
Ro

cke
t 32

KiB
 L1

BO
OM

-2w
 16

KiB
 L1

BO
OM

-2w
 32

KiB
 L1

Co
rte

x A
9

F
ig

u
re

3.
5:

IP
C

s
of

R
o
ck

et
,

B
O

O
M

-2
w

,
an

d
C

or
te

x
A

9
fo

r
th

e
S
P

E
C

in
t2

00
6

b
en

ch
m

ar
k
s

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 30

010203040

40
0.p
erl
be
nch

40
1.b
zip
2

40
3.g
cc

42
9.m
cf

45
8.s
jen
g

46
4.h
26
4re
f

47
1.o
mn
etp
p

47
3.a
sta
r

48
3.x
ala
ncb
mk

MPKI

Co
nd

itio
na

l B
ran

ch
Ind

ire
ct

Br
an

ch
L1

 I-C
ac

he
ITL

B
L1

 D
-C

ac
he

DT
LB

L2
 C

ac
he

52
.5

41
.3

F
ig

u
re

3.
6:

M
P

K
Is

of
B

O
O

M
-2

w
w

it
h

th
e

32
K

iB
L

1
ca

ch
e

fo
r

th
e

S
P

E
C

in
t2

00
6

b
en

ch
m

ar
k
s

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 31

0

20

40

60

80

100

400.perlbench 401.bzip2 403.gcc 429.mcf 458.sjeng 464.h264ref 471.omnetpp 473.astar 483.xalancbmk

Is
su

e
Sl

ot
s

/ I
ss

ue
 W

id
th

(%

) Non-issued Slots
Empty Slots
Issued Slots

Figure 3.7: Issue queue utilizations of BOOM-2w for the SPECint2006 benchmarks

configuration of the ARM Cortex-A9 processor. For reference, the IPCs of ARM
Cortex A9 for the SPECint2006 benchmark suite are also presented in Figure 3.5.

In this case study, we are mainly interested in the performance impact of the
increase in the L1 cache sizes from 16 KiB to 32 KiB. As seen from Figure 3.5,
there are big performance improvements for several benchmarks (e.g. 400.perlbench,
458.sjeng, 464.h264ref) from this change. Therefore, it is desirable to have 32 KiB
L1 caches unless it lengthens the critical path.

To understand the performance evaluations more deeply, we collect more perfor-
mance statistics from the performance counters. Figure 3.6 shows the misses per kilo
instructions (MPKIs) of BOOM-2w with the 32 KiB L1 caches. This gives us a hint
for potential performance improvement. First of all, there is a big gap between the
MPKIs of the L1 data cache and the L2 cache for 464.h264ref, which explains why
BOOM-2w underperforms ARM Cortex A9 for 464.h264ref. Note that ARM Cortex
A9 also has a 32 KiB L1 data cache. Therefore, having more aggressive prefetchers
in the data cache may reduce the L1 data cache miss rate for 464.h264ref. In addi-
tion, some benchmarks such as 471.omnetpp and 483.xalancbmk suffer from a large
number of indirect branch mispredicts, which indicates the BTB size may need to be
increased.

We can also figure out the pipeline utilization by examining the issue queue
utilization. Intuitively, issued slots per cycle of the issue queue are equal to the IPC.
As shown in Figure 3.7, more than 60 % of issue slots are wasted. The first case
is issue slots are empty, which is caused by the frontend hazards including branch
mispredicts and instruction cache misses, and/or lack of pipeline resources such as
physical registers and re-order buffer (ROB) entries. For example, 403.gcc exhibits
lots of empty slots even though it has relatively small frontend MPKIs, which im-
plies the benchmark wants more pipeline resources. Another case is issue slots are
neither empty nor issued due to the backend hazards. For instance, 429.mcf and
471.omnetpp suffer from high data cache miss rates, therefore having a large fraction
of non-empty non-issued slots.

We can also get comprehensive views on the time-based performance behaviors
for each benchmark from its full execution with MIDAS. Figure 3.8, 3.9, 3.10, and 3.11
show performance traces for selected benchmarks. All instantaneous performance
statistics are sampled every 100 million cycles from performance counters in BOOM-

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 32

F
ig

u
re

3.
8:

P
er

fo
rm

an
ce

tr
ac

es
fo

r
4
0
0
.
p
e
r
l
b
e
n
c
h

on
B

O
O

M
-2

w

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 33

F
ig

u
re

3.
9:

P
er

fo
rm

an
ce

tr
ac

es
fo

r
4
0
1
.
b
z
i
p
2

on
B

O
O

M
-2

w

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 34

F
ig

u
re

3.
10

:
P

er
fo

rm
an

ce
tr

ac
es

fo
r
4
0
3
.
g
c
c

on
B

O
O

M
-2

w

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 35

F
ig

u
re

3.
11

:
P

er
fo

rm
an

ce
tr

ac
es

fo
r
4
7
3
.
a
s
t
a
r

on
B

O
O

M
-2

w

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 36

0

0.1

0.2

0.3

0.4

0.5

avrora luindex lusearch pmd xalan

IP
C Rocket

BOOM-2w

Figure 3.12: IPC with BTB-40 and 16KiB L1 for the DaCapo benchmarks

1

1.05

1.1

1.15

1.2

avrora luindex lusearch pmd xalan

BO
OM

-2
w

/ R
oc

ke
t

BTB-40, 16KiB L1
BTB-480, 32KiB L1

1

1.1

1.2

1.3

avrora luindex lusearch pmd xalan

BT
B-

40
, 1

6K
iB

 L
1

/
BT

B-
48

0,
 3

2K
iB

 L
1

Axis Title

Rocket
BOOM-2w

Figure 3.13: Total Cycle Ratios for the DaCapo benchmarks

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 37

01020304050

av
ro

ra
lu

ind
ex

lu
se

ar
ch

pm
d

xa
lan

av
ro

ra
lu

ind
ex

lu
se

ar
ch

pm
d

xa
lan

Ro
ck

et
BO

OM
-2

w

MPKI

Co
nd

itio
na

l B
ra

nc
h

In
di

re
ct

 B
ra

nc
h

L1
I

IT
LB

L1
D

DT
LB

L2

F
ig

u
re

3.
14

:
M

P
K

Is
w

it
h

B
T

B
-4

0
an

d
16

K
iB

L
1

fo
r

th
e

D
aC

ap
o

b
en

ch
m

ar
k
s

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 38

2w. From this time-based analysis, we can get intuitions on which microarchitectural
events are the most effective for each benchmark. For example, the instantaneous
CPIs of 400.perlbench are highly correlated with the instantaneous L1 instruction
and data cache miss rates (Figure 3.8), while the instantaneous CPIs of 402.bzip2

change along with the instantaneous L1 data cache and DTLB miss rates (Figure 3.9).
On the other hand, the instantaneous CPIs of 403.gcc follow the instantaneous data
cache miss rates (Figure 3.10), while the instantaneous CPIs of 473.astar are highly
affected by both the short-term branch misprediction rate and the spontaneous L2
cache miss rate (Figure 3.11). Also, time-based performance evaluations help figure
out which parts of the code cause important microarchitectural events, enabling rapid
hardware/software co-optimizations.

3.3.5 Case Study: DaCapo

The initial performance evaluations in Figure 3.12 and 3.13 show BOOM-2w
underperforms Rocket for the DaCapo benchmarks. Interestingly, BOOM-2w spends
more cycles than Rocket does for avrora even with the higher IPC. In general,
BOOM-2w has lower IPCs than Rocket but similar instruction counts as Rocket
for the DaCapo benchmarks.

To figure out the performance bottlenecks, we collect the microarchitectural
event statistics as in Figure 3.14, which shows both Rocket and BOOM-2w suffer
from high rates of L1 instruction cache misses and indirect branch mispredicts. This
is even worse for BOOM-2w since the frontend hazards cause the underutilization
of the pipeline backend. Moreover, misspeculations also incur unnecessary pipeline
hazards. Therefore, the configurations in Table 3.1, which are good enough for the
SPEC2006int benchmarks, are not good at all for these Java applications.

To reduce the instruction cache misses, we doubled the L1 cache sizes by increas-
ing the associativity from four ways to eight ways. The number of sets cannot be
increased by just changing the parameters because the L1 caches are virtually-indexed
physically-tagged. Also, to reduce indirect branches mispredicts, we increased the en-
tries of the fully-associative BTB from 40 to 480, which may be unrealistic for the
silicon implementations. In reality, a small size fully-associative BTB can be backed
by a large SRAM-based secondary BTB to increase the prediction accuracy for indi-
rect branches. In this section, we want to see the potential performance improvement
for bigger instruction caches and BTBs. Unfortunately, pmd does not run on BOOM-
2w with this configuration.

Figure 3.13 also shows the speedups of Rocket and BOOM-2w with the new BTB
and L1 cache parameters. Note that to compute the speedups for Java applications,
we should use the total execution cycles instead of IPCs because dynamic instruction
counts can change with different microarchitectures. BOOM-2w still underperforms
Rocket, but the performance gains are larger with its new configurations. We believe
BOOM will eventually outperform Rocket for Java applications if more aggressively

CHAPTER 3. FPGA-ACCELERATED RTL SIMULATION 39

optimizations are introduced in the frontend. This case study also implies that we
may need significant hardware/software co-optimizations for managed-language ap-
plications running on RocketChip and BOOM.

3.4 Summary

In this chapter, we presented MIDAS v1.0, an open-source FPGA-accelerated
RTL simulation framework. MIDAS v1.0 is general and easy-to-use as the FPGA-
accelerated RTL simulator is automatically generated from any RTL design. This
simulator is not only fast, running at the FPGA speed and orders-of-order-magnitude
faster than cycle-level microarchitectural software simulators, but also truly cycle-
accurate, as it uses RTL identical to that used in the silicon implementation. As
a result, MIDAS v1.0 enables the complete execution of the full-software stack for
long-running applications with little loss of fidelity. We demonstrated how MIDAS
v1.0 can be employed in practice for performance evaluation of Rocket and BOOM
for the SPECint2006 benchmark suite and the DaCapo benchmarks.

40

Chapter 4

RTL Debugging with FPGAs

This chapter presents an effective RTL debugging methodology using FPGAs.
Section 4.1 motivates our methodology by showing how difficult and painstaking
RTL debugging can be. Section 4.2 covers existing simulation-based RTL debugging
methodologies. Section 4.3 explains the implementation details of DESSERT, our
RTL debugging methodology with FPGAs. Section 4.4 shows the debugging results
of BOOM-v2 with DESSERT. Section 4.5 summarizes this chapter.

4.1 Motivation: How Challenging Is RTL Debug-

ging?

The increasing complexity of modern hardware design makes verification chal-
lenging and verification often dominates design costs. While formal verification ap-
proaches are increasing in capability and can be successfully employed for some blocks
or some aspects of a design, and while unit-level tests can improve confidence in indi-
vidual hardware blocks, dynamic verification using simulators or emulators is usually
the only feasible strategy for system-level verification. As well as verifying directed
and random test stimuli, it is also important to validate the system specifications
and design by running application software on the design. In addition to the large
effort to create a system-level testbench, each bug found requires considerable effort
to diagnose and repair.

Debugging errors found at the system-level while running realistic workloads is
a notoriously difficult task. Since software RTL simulation is not fast enough, FPGA
emulation is a popular way to boot Linux and run real-world applications on top
to catch bugs before tape-out. However, because FPGAs are lack of visibility, it is
extremely difficult to debug the target design when we encounter unexpected errors
from long simulations.

Figure 4.1, 4.2, 4.3, and 4.3 show such cases when we run real-world applications

CHAPTER 4. RTL DEBUGGING WITH FPGAS 41

Figure 4.1: Kernel panic from 402.bzip2.ref on BOOM-v2

Figure 4.2: Bug found from 445.gobmk.ref on BOOM-v2

CHAPTER 4. RTL DEBUGGING WITH FPGAS 42

Figure 4.3: Segmentation fault from 464.h264ref.ref on BOOM-v2

Figure 4.4: Floating-point errors from SqueezeNet inference on BOOM-v2

CHAPTER 4. RTL DEBUGGING WITH FPGAS 43

on BOOM-v2 [33]. When we encounter these errors on the FPGA, what we want
to try first might be replaying them in software RTL simulation. Assume we use
VCS for the two-way out-of-order processor BOOM. If we have waveform dumps
enabled, the simulation rate is only 200 Hz. Typically, Linux-boot takes 700 million
cycles, and thus, the time for BOOM-v2 to boot Linux in VCS will be 41 days.
Unfortunately, these errors happen way beyond Linux-boot. Therefore, we can easily
see that software RTL simulation is impractical for this kind of RTL debugging.

To cope with these difficulties, this chapter presents DESSERT, an FPGA-
accelerated methodology for effective simulation-based RTL verification and debug-
ging with the following contributions:

• We build upon earlier work in FPGA-accelerated RTL simulation to accelerate
RTL verification and debugging. We extend MIDAS v1.0 in Chapter 3, which
automatically generates the FPGA-accelerated RTL simulator as synchronous
dataflow [81] from any RTL design to ensure deterministic execution on the
FPGA given the same initial target state. For state initialization as well as
state snapshotting, we also automatically insert scan chains with FIRTL com-
piler passes. The target memory space in the off-chip DRAM is also initialized
through an automatically-instrumented loadmem unit.

• We implement FIRRTL custom compiler passes to automatically synthesize as-
sert and print statements existing in RTL for error checking from the FPGA.
Assertion synthesis provides quick error checking on the FPGA with a negli-
gible simulation performance penalty. Print-statement synthesis, on the other
hand, provides more exhaustive error checking by generating commit logs from
the FPGA, which are compared on the fly against a functional golden-model
software simulator.

• Since our FPGA-accelerated RTL simulators are deterministic, we run two iden-
tical FPGA simulation instances in parallel, spaced apart in simulation time,
to allow errors detected by the lead instance to be replayed from an RTL snap-
shot captured by the trailing instance, significantly reducing state snapshotting
overhead compared to periodic checkpoints. With this technique, DESSERT
can provide fully-visible error traces of a buggy design without needing to rerun
the simulator and without sacrificing simulation performance.

• We demonstrate a fast and easy-to-use methodology for system-level debugging.
We demonstrate our methodology by simulating an open-source RISC-V in-
order processor, Rocket [8], and an open-source RISC-V out-of-order processor,
BOOM [33], to catch and fix bugs that occur hundreds of billions cycles into the
SPECint2006 benchmark suite running under Linux. While in this chapter we
study RISC-V processors and pipe a generated commit log to a reference ISA
simulator, our approach can be generalized to other RTL designs for which a

CHAPTER 4. RTL DEBUGGING WITH FPGAS 44

golden model exists. In lieu of a golden model, inspecting synthesized assertions
already present in the RTL is often a sufficient means to detect a simulation
error.

4.2 Existing RTL Debugging Methodologies

Existing approaches for simulation-based system-level verification and debugging
fall into a few categories as shown in Table 4.1.

Software RTL simulation with assertion detection can be an effective method-
ology for RTL verification and debugging, by producing waveform dumps that give
full visibility into bugs. However, software RTL simulation is far too slow (up to tens
of KHz) to run realistic workloads on complex hardware designs and becomes even
slower when waveform dumps are enabled.

Hardware emulation engines, such as Cadence Palladium and Mentor Veloce,
provide a software-like debug environment while being fast (around 1 MHz). But these
custom emulation engines are extremely expensive, and can only be justified by the
largest projects. Even in these projects, they remain a scarce resource that must be
shared across multiple teams.

FPGA prototyping is a mainstay of pre-silicon full-system validation, as it is
significantly cheaper than commercial hardware emulation engines and can be faster:
single-FPGA prototypes can execute at tens to hundreds of MHz. (However, multi-
FPGA prototypes are significantly slower or require expensive proprietary platforms
like Synopsys HAPS). However, FPGA prototypes provide limited visibility for sig-
nal activities, making it extremely difficult to debug any errors encountered. More-
over, many bugs are sometimes difficult to reproduce, as they may depend on the
non-deterministic initial state and latencies in the host-platform, such as DRAM or
network I/O. While vendors provide FPGA signal monitoring tools, such as Chip-
Scope [150] and SignalTap [58], these require manual selection of a few signals, leading
to long debug loops as the design must be re-instrumented, re-synthesized, and re-
executed to change the observed signals. There has been significant research towards
improving controllability and visibility in FPGA prototypes by providing GDB-like
interfaces [27, 63, 11] that allow emulations to be carefully advanced, halted, and re-
sumed, selected internal signals to be read and forced, breakpoints to be set at runtime,
and emulation to be rewound. Unfortunately, like the vendor-provided tools, effective
debugging is predicated on selecting the right subset of signals to be instrumented
for reads, forces, and breakpoints.

Checkpointed FPGA prototyping removes the need to intelligently select
signals to instrument [95, 151, 37, 12, 75, 115] by allowing error waveforms to be
reconstructed in software RTL simulation. While this provides full visibility of the
design in a region of interest (ROI), checkpoint intervals must be carefully chosen
as frequent checkpointing of large designs can easily become a simulation bottleneck,

CHAPTER 4. RTL DEBUGGING WITH FPGAS 45

R
T

L
V

e
ri

fi
ca

ti
o
n

A
p
p
ro

a
ch

S
p

e
e
d

E
a
sy

to
U

se
D

e
te

rm
in

is
ti

c
C

o
n
tr

o
ll
a
b
il
it

y
V

is
ib

il
it

y
C

o
st

S
of

tw
ar

e
si

m
u

la
ti

on
V

er
y

S
lo

w
3

3
H

ig
h

F
u

ll
L

ow
H

ar
dw

ar
e

em
u

la
ti

on
en

gi
n

e
F

as
t

3
3

H
ig

h
F

u
ll

V
er

y
H

ig
h

F
P

G
A

pr
ot

ot
yp

e
V

er
y

F
as

t
3

7
L

ow
L

im
it

ed
L

ow
In

st
ru

m
en

te
d

F
P

G
A

pr
ot

ot
yp

e
F

as
t

7
7

M
o
d

er
at

e
L

im
it

ed
H

ig
h

C
he

ck
po

in
te

d
F

P
G

A
pr

ot
ot

yp
e

M
o
d

er
at

e
7

7
L

ow
F

u
ll

M
o
d

er
at

e
D

E
S

S
E

R
T

V
er

y
F

as
t

3
3

H
ig

h
F

u
ll

in
R

O
I

L
ow

T
ab

le
4.

1:
C

om
p
ar

is
on

of
co

n
te

m
p

or
ar

y
si

m
u
la

ti
on

te
ch

n
iq

u
es

fo
r

ex
ec

u
ti

on
-d

ri
ve

n
R

T
L

ve
ri

fi
ca

ti
on

CHAPTER 4. RTL DEBUGGING WITH FPGAS 46

while taking fewer snapshots lengthens the required I/O trace and the time it takes
to replay the error in software simulation.

RTL verification against a golden model at a high-level description is an-
other popular technique for functional verification. Brier et al. [25] verify DSP mod-
ules by comparing all the intermediate results between C/C++ models and software
RTL simulation. Lee et al. [82] presents a technique for low-overhead state consis-
tency checking with hash signatures. Iskander et al. [63] run FPGA RTL emulation
for a SHA-1 core and compare the results between FPGA emulation and its high-level
model.

There is also a commercial product that provides a verification solution for RISC-
V processors running Spike, a golden model for RISC-V ISA, in tandem with software
RTL simulation or FPGA emulation [22]. However, FPGA emulation does not guar-
antee deterministic execution, which makes functional validation much more difficult.
In this chapter, commit logs are obtained from deterministic RTL simulation on the
FPGA and compared against Spike.

Chatterjee et al. [35] also discusses how to prevent the divergence between the
software model and the hardware emulation engine for instruction-by-instruction
checking, but we discuss more cases that arise from real-world workloads instead
of synthetic instruction streams. Also, we focus more on exact error checking than
log compression as bulk data transfer is supported by host platforms through inter-
FPGA-CPU DMA.

4.3 DESSERT: Debugging RTL Effectively with

State Snapshotting for Error Replays across

Trillions of Cycles

This section describes implementation details on the DESSERT framework. Fig-
ure 4.5 shows the tool flow of the DESSERT framework, which is extended from
Figure 3.1 for effective RTL debugging on the FPGA.

Section 4.3.1 explains how we can achieve deterministic simulation on the FPGA.
Section 4.3.2 explains how errors are detected on the FPGA. Section 4.3.3 describes
how scan chains are automatically instrumented for state snapshotting and initial-
ization. Section 4.3.4 describes compiler optimizations to reduce the FPGA resource
overhead from instrumentation. Section 4.3.5 describes how to synchronize state
between the golden model and the FPGA, preventing execution divergence. Sec-
tion 4.3.6 shows how two identical simulation instances are run in parallel to efficiently
detect and replay errors from the FPGAs.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 47

Hardware(Host FPGA) Software(Host CPU)
FI

RR
TL

 C
om

pi
le

r
Target RTL Design

Assertion & Log Synthesis

FAME1 Transform
Scan Chain Insertion
Simulation Mapping
Platform Mapping

FPGA Backend Flow

Simulation Driver

I/O Devices

C++ Compiler

Driver BinaryMetadata
Text Files

Functional
Simulator

Target Specific
C++ Header

Bitstream

Verilog

SVF Backannotation
Multi-ported RAM Mapping

Figure 4.5: Tool flow to generate FPGA-accelerated RTL simulators

4.3.1 Deterministic RTL Simulation on the FPGA

Section 3.2.2 describes compiler transforms that enables accurate RTL perfor-
mance modeling on the FPGA. The DESSERT framework takes advantage of these
transforms to ensure deterministic RTL simulation on the FPGA for RTL debug-
ging, which is crucial for pre-error state snapshotting using two identical simula-
tion instances (Section 4.3.6). The FAME1 Transform and Simulation Mapping in
Figure 4.5 generates a token-based simulator, an instance of synchronous dataflow
(SDF) [81], which ensures deterministic execution on the FPGA with the same initial
state.

4.3.2 Error Checking on the FPGA

4.3.2.1 Simulation APIs in Chisel

Target designs in this thesis such as RocketChip [8] and BOOM [34] are written
in Chisel [10]. Chisel, like Verilog or VHDL, provides non-synthesizable print and
assert constructs for software RTL simulation. Figure 4.6 demonstrates their use.
The module contains a counter that increments until 10 when enabled (line 8). In this
example, we expect the counter will never increment past 10: we check this with an
assert on line 14. A printf in line 18-20 lets the engineer inspect the counter value
without looking at the waveform. RocketChip and BOOM use assertions extensively

CHAPTER 4. RTL DEBUGGING WITH FPGAS 48

1 class Count extends Module {

2 val io = IO(new Bundle {

3 val en = Input(Bool())

4 val done = Output(Bool())

5 val cntr = Output(UInt(4.W))

6 })

7 // count until 10 when ‘io.en’ is high

8 val (cntr, done) = Counter(io.en, 10)

9 io.cntr := cntr

10 io.done := done

11

12 // assertion for software simulation

13 // ‘cntr’ should be less than 10

14 assert(cntr < 10.U)

15

16 // printing for software simulation

17 // show the counter value when ‘io.en‘ is high

18 when(io.en) {

19 printf("count: %d\n", cntr)

20 }

21 }

Figure 4.6: Non-synthesizable simulation constructs in Chisel

to check their designs. In addition to asserts, traces of important activities, like
commit logs, are generated with printf. assert and printf in Chisel are represented
as stop and print in FIRRTL, respectively, to be synthesized by Assertion and Log
Synthesis (Figure 4.5) as described in Section 4.3.2.2.

4.3.2.2 Assertion and Log Synthesis

DESSERT supports two ways to detect RTL bugs: quick hardware-based as-
sertion checking and more exhaustive software-based checking that compares logs
against a software golden-model functional simulator. Rather than manual instru-

Top-level Module

Module A

Module B

stop(a)

printf(…, b, …)

Top-level Module

Module A

Module B

a

b

Assertion
Checker

Log
Stream

Unit

Sim
ulation &

Platform
 M

apping

Assertion & Print
Synthesis

Top-level Module

Module A

Module B

a

b

Figure 4.7: stop and printf synthesis for error checking on the FPGA

CHAPTER 4. RTL DEBUGGING WITH FPGAS 49

mentation, DESSERT automatically transforms assertions and logs that are already
present in the source code for software RTL simulation (Assertion and Log Synthesis
in Figure 4.5).

In FIRRTL there are two constructs to support assertions and logs: stop and
printf [91]. stop is used to halt the simulation for a certain condition, while printf

is used to print a formatted string when its condition is met. In general, assertions
in HDL (e.g. assert in Chisel) are expressed as stop 1 with their error messages
printed out by printf. Also, logs in HDL (e.g. printf in Chisel) are expressed as
formatted messages in terms of RTL signal values with printf.

By default, stop and printf are emitted as non-synthesizable functions in Sys-
tem Verilog (e.g. $fatal and $fwrite). However, Figure 4.7 depicts how to auto-
matically transform stop and printf into synthesizable logic for error checking on
the FPGA. Note that their conditions and arguments are logic expressions of RTL
signals. Thus, Assertion and Log Synthesis (Figure 4.5) inserts the combinational
logic and the signals for the conditions and the arguments of stop and printf. This
pass also creates output ports and connects the signals inserted for assertions and
logs to these ports so that RTL errors are detected at the boundary of the top-level
module. In addition, this compiler pass emits encodings of the assertions and logs
that are synthesized (e.g. the error message for each assert and the print format for
each printf) into text files that are used by the software simulation driver running
on the host CPU.

4.3.2.3 Handling Assertions and Logs from FPGAs

After assertions and logs are synthesized, their top-level output ports are treated
in the same way as the other top-level I/Os of the target design by Simulation Mapping
in Figure 4.5. As a result, these output ports also generate their own timing tokens,
which contain the cycle-by-cycle values of the output ports, every simulation cycle
(Figure 4.7).

The timing tokens generated by assertions and logs are crucial for cycle-exact
error checking from FPGAs, which will deterministically occur at the same target
cycle both in software simulation and on the FPGA. Figure 4.7 also shows how these
timing tokens are handled by instrumented hardware units in the FPGA, which are
automatically inserted by Platform Mapping in Figure 4.5.

The assertion checker consumes timing tokens generated by assertions and in-
spects their values, which has no effect on simulation progress with no assertion
failures. The assertion checker detects an error at cycle t if the value of the timing
token at cycle t is non-zero, which means at least one assertion has fired. In this case,

1We assume the conditions of assertions are propositional. Temporal assertions found in SVA,
which can be expressed as stop statements along with state machines, will be supported in the
future.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 50

I/O
Devices

Processor
L2 Cache

/ Main
Memory

Host FPGA Platform (e.g. Amazon EC2 F1 Instance)
Host CPU Host FPGA

MMIO
I/O Devices

RTL
Memory
System
TimingSimulation

Driver

FPGA DRAM

Main
 Memory

I/O Tranport

Assertion Checker

Log Stream UnitDMAFunctional
Simulator

Loadmem
UnitScanchains

: Target Module :Existing Simulation Component : Debugging Module

Figure 4.8: Mapping simulation to the host FPGA platform for RTL debugging

the checker records the target cycle t and the assertion id inferred from the timing
token’s value, and then stops accepting new tokens, which will halt simulation.

In parallel, the software simulation driver infrequently polls the assertion checker
through memory-mapped I/O (Figure 4.8), and thus cycle-exact assertion detection
can be achieved with negligible loss of simulation speed. When an assertion is detected
from the FPGA, the simulation driver reads the target cycle and the assertion id from
the checker and reports the assertion message along with its target cycle.

While the assertion checker simply drops timing tokens after inspecting them, in
a log, these tokens along with their timestamps must be stored. Suppose a processor
simulates at a clock rate of 50 MHz with an IPC of 0.5. If we print 64 bytes per
committed instruction, this simulation would produce a commit log at 1.6 GiB/s.
To manage this bandwidth, the log stream unit relies on inter-FPGA-CPU DMA
to transfer the generated log en masse (Figure 4.8). Between DMA events, the log
is buffered in a large BRAM FIFO2. When the buffer is full, the log stream unit
stops consuming timing tokens to pause simulation until the buffer is drained, which
prevents loss of log entries3.

Once log entries are transferred from the FPGA to the buffers in the software
simulation driver through DMA, they can be output on a console, piped to a file or
consumed by a software golden model for exhaustive error checking.

2We plan to host this buffer in DRAM in the future.
3 This may slow down simulation speed.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 51

Add Register
Scan Chains

copy/
shift

load

scan_out scan_in

(a) Scan chains for registers

Add Memory
Scan Chains

Memory
Array

rdata

ren

raddr

wdata

wen

waddr

Address
Generator

Memory
Array

rdata

ren

raddr

wdata

wen

waddr

copy

scan_out scan_in

load

shift

ad
dr

read

sc
an

(b) Scan chains for memory arrays

Figure 4.9: Automatic scan chain insertion

4.3.3 State Snapshotting and Initialization

4.3.3.1 Automatic Scan Chain Insertion

For state snapshotting and initialization, DESSERT implements automatic scan
chain insertion (Figure 4.9) with a compiler pass in the FIRRTL compiler (Scan
Chain Insertion in Figure 4.5). For registers, this compiler pass inserts platform-
independent design-level shadow scan chains (Figure 4.9a), while for RAMs and large
register files, it inserts specialized scan chains that automatically generate addresses
to read out the whole data of large memory arrays without destroying their structures
(Figure 4.9b). Imagine how tedious it would be if we implement these scan chains
only with low-level IR nodes. To reduce this implementation overhead, we instead
take advantage of the compilers-in-a-pass technique (Section 2.2.1) to generate scan
chain IRs from parameterized scan chain modules written in Chisel.

Register Scan Chains. Figure 4.9a shows the instrumented logic for register
scan chains. First, we insert multi-bit shift registers4 that contain the values copied
from or loaded to all registers in the target design. The scan chain is connected to
the scan in port and the scan out port for its input and output, respectively. We
also insert three control signals for these scan chains: copy, shift, and load.

For state snapshotting, we stall the simulation and assert the copy signal to copy
the register values to the scan chain. Next, we pull out these values in the scan chain
through the scan out port one by one by asserting the shift signal.

4The width of shift registers is in general equal to the width of the data bus between the CPU
and the FPGA.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 52

For state initialization, we provide the values to be loaded through the scan in

port one by one by asserting the shift signal. When all necessary values are fed into
the scan chain, we assert the load signal to load the values from the scan chain to
the registers in the target design.

We insert these platform-independent design-level shadow scan chains to mini-
mize the snapshotting latency and improve the portability5. However, the DESSERT
framework can be extended to use more resource-efficient scan chains [75] or platform-
dependent readback [144] to save FPGA resources that may significantly increase the
snapshotting delay and sacrifice the portability.

Memory Scan Chains. We insert specialized scan chains to capture the state
of RAMs and large register files due to their large volume and their limited numbers
of read ports. Figure 4.9b shows the instrumented logic for memory scan chains.
In addition to shift registers, ports, and control signals for each scan chain, we also
add additional logic, the address generator, which not only generates addresses for
the memory array but also asserts additional control signals (read and scan) for the
memory array and the scan chain. All control signals are properly connected to the
enable ports of the memory array as well as the muxes that are inserted to select the
read/write addresses and the write data.

For state snapshotting, we stall the simulation and assert the copy signal to copy
the data at address 0 to the scan chain. The address generator generates 0 for the
read address and asserts the read signal simultaneously to read out the corresponding
data. In the next cycle, the data at address 0 is available and the address generator
asserts the scan signal to copy this data into the scan chain. We eventually read this
data from the scan out port by asserting the shift signal. To read the next data,
we assert the copy signal again and the address generator generates the next address.
We repeat this process until all data from the memory array is read out.

For state initialization, we first assert the copy signal to generate address 0 from
the address generator. Next, the data at address 0 is fed into the scan in port by
asserting the shift signal. Finally, we assert the load signal to write the data from
the scan chain to the memory array. We repeat this process until all necessary data
is loaded into the memory array.

4.3.3.2 I/O Traces

We also need I/O traces for error replays in software simulation. Specifically,
if an RTL snapshot is to be replayed for L cycles, the inputs and the outputs for L
cycles must be recorded by communication channels (Figure 3.2), which is added by
Simulation Mapping in Figure 4.5, after the RTL snapshot is taken. When the RTL
snapshot is loaded in software simulation, the input traces are fed to the inputs of
the target design to drive the replay, while the output traces are compared cycle by
cycle against the outputs of the target design to check the correctness of the replay.

5 The trade-offs for various checkpoint implementations are discussed by Koch et al. [75]

CHAPTER 4. RTL DEBUGGING WITH FPGAS 53

4.3.3.3 Off-chip Memory Initialization

As the target design’s DRAM is mapped to the off-chip DRAM, it needs to
be initialized for deterministic simulation. The loadmem unit (Figure 4.8), which is
automatically added by Platform Mapping (Figure 4.5), not only loads the program
to execute but also initializes the remaining target main memory space.

4.3.4 Optimizations to Reduce FPGA Resource Overhead

4.3.4.1 SVF Backannotation

The FIRRTL compiler applies word-level optimizations such as constant prop-
agation, common-subexpression elimination, and dead-code elimination. However,
these optimizations are not enough to eliminate redundant logic in the target design.
In fact, during logic synthesis, CAD tools prune out more unnecessary logic with
more aggressive bit-level optimizations. The problem is that this dead logic is alive if
we insert scan chains without deleting it in the FIRRTL pass. This is because dead
registers are connected to scan chains, and thus, they cannot be eliminated during
FPGA synthesis, which is detrimental for the FPGA resource utilization.

Instead of implementing these bit-level optimizations in FIRRTL, we back-
annotate the dead registers from existing CAD tools to eliminate them. If we delete
these registers from the backannotation, other related combinational logic is also
eliminated by FIRRTL optimizations or CAD tools.

In this section, we use Synopsys Design Compiler for the backannotation. Design
Compiler dumps its optimization information to the SVF file that is in turn consumed
by Synopsys Formality for equivalence check. We use the text file that is generated
when the SVF file is processed by Synopsys Formality. This text file contains the
following information:

• Renamed Signals: Optimizations may change signal names. Specifically, each
bit in a signal word may have its own name by bit-level optimizations.

• Uniquified Instances: A module can have multiple instances in the entire
design. However, theses instances may be uniquified as they can diverge after
optimizations.

• Constant Registers: Some registers become constant zero or one by opti-
mizations.

• Merged Registers: Two identical registers are merged into a single register,
which removes duplicate registers.

SVF Backannotation in Figure 4.5 uses the above information to conduct ag-
gressive bit-level optimizations, which in turn greatly reduces the FPGA resource

CHAPTER 4. RTL DEBUGGING WITH FPGAS 54

read_0

write_0

write_1

write_n

…

read_1

write_0

write_1

write_n

…

read_m

write_0

write_1

write_n

…

raddr_0 raddr_mraddr_1

write_0

write_1

write_n

…

rdata_0 rdata_1 rdata_m

select
vector

…

…

…

Figure 4.10: Resource efficient mapping of multi-ported RAMs on FPGAs

overhead. This pass first uniquifies instances and rename each bit of optimized regis-
ters. Next, it replaces constant registers with their constant values. Finally, this pass
merges registers to eliminate duplicate registers.

4.3.4.2 Multi-ported RAM Mapping

Large multi-ported RAMs are building blocks for physical registers in high-
performance out-of-order processors. These RAMs can be efficiently implemented
with SRAMs or latches in the silicon, but are inefficiently mapped to flip-flops con-
suming lots of LUTs on the FPGA without cares. Dwiel et al. [44] present efficient
mappings of multi-ported RAMs with replication and time multiplexing. Inspired
by this idea, in this section, we automatically transform multi-ported RAMs into re-
source efficient register files, each of which is implemented with duplicate distributed
RAMs and the select vector.

Figure 4.10 shows a resource efficient mapping of multi-port RAMs on FPGAs.
For a multi-port RAM with m read ports, n write ports, and k elements, we need
m×n copies of k-element memory arrays with the k×dlog2 ne select vector to emulate
this multi-ported RAM. When a value is written at address α through the ith write
port, this value is written to the ith memory array of each read port (m copies in
total). In addition, the αth element of the select vector is updated to i, the id of
the memory array that contains the up-to-date value at address α. When the value
at address β is read through read port j, all n memory arrays assigned to this read

CHAPTER 4. RTL DEBUGGING WITH FPGAS 55

Instruction Execution

Functional Simulation

FPGA RTL Simulation

Ti
m

in
g

De
ta

ils

Execution divergence
• Interrupts
• Performance counters
• AMO instructions
• OoO completion in

in-order processors
• TLB permission bits

Runtim
e

Inform
atio

n

In Commit
Lo

gs

Lock-stepped

Figure 4.11: State synchronization between the function simulator and the FPGA

port are accessed. To select the up-to-date value among them, the βth element of the
select vector is also read and provided to the jth mux.

Each memory array has one read port and one write port, and thus, these mem-
ory arrays are efficiently mapped to distributed RAMs. This custom transform is
also implemented using the compilers-in-a-pass technique with a parameterized Chisel
module (Section 2.2.1).

4.3.5 State Synchronization between the Golden Model and
the FPGA

DESSERT is a general methodology that can be applied to any hardware de-
signs. As such, for software-based error checking, logs generated from FPGAs are
compared against a software golden model of any RTL. However, if we use DESSERT
for microprocessor verification, the state of the software functional simulator must
be carefully maintained to prevent divergence from the RTL implementation. Fig-
ure 4.11 depicts a high-level idea of state synchronization between the golden model
and the RTL implementation.

First, the physical memory and device configurations of the functional software
simulator and the RTL implementation should be identical. This ensures the memory

CHAPTER 4. RTL DEBUGGING WITH FPGAS 56

zones of Linux are the same in both implementations, resulting in the same page
allocation.

Next, interrupts in both implementations must be synchronized. It is incredibly
difficult to make interrupts happen simultaneously in both implementations since
the functional simulator has no timing model. Instead, interrupts in the functional
simulator are disabled by default. Whenever an interrupt is raised from the RTL
implementation, the interrupt cause is passed along with the commit log from the
FPGA to the functional simulator. Then, the functional simulator is forced to handle
the interrupt on the same instruction as the RTL.

In addition, microarchitecture-dependent state needs to be synchronized. Ex-
amples include performance-counter reads, atomic memory operations, and memory-
mapped I/Os. Performance-counter reads and atomic memory operations are easily
identified by their instruction encoding while memory-mapped I/Os are identified
by their memory addresses. Whenever such events happen, the destination register
values of the functional simulator are updated with those in the FPGA’s commit log.

Some processors support out-of-order completions for long-latency instructions
using a scoreboard to maintain register dependencies (e.g. the Rocket processor [8]).
In this case, the destination register values may not be available even though instruc-
tions have retired. We cannot ignore these instructions due to microarchitecture-
dependent state. Therefore, the commit log also includes the information of whether
or not the scoreboard is set by each instruction. When the scoreboard is set, the des-
tination register value is not compared immediately. Instead, the functional simulator
saves the destination register value with its address. When the instruction completes
in the FPGA, its destination register value as well as the register address are delivered
from the FPGA to the functional simulator and compared. For microarchitecture-
dependent state, the destination register value of the functional simulator is updated
with the value from the FPGA.

Finally, the permission bits in TLBs are modeled in the functional simulator.
This is because TLB flushes can be delayed by an OS as a performance optimization,
resulting in accesses to stale page-table entries. Thus, whenever the TLBs in the
FPGA are refilled, the functional simulator updates its TLB model by using the TLB
tag and the permission bits of the page-table entry from the FPGA. Memory accesses
in the functional simulator also go through the TLB model to match page faults
between the function simulator and the FPGA.

Other forms of complex golden functional model, such as out-of-order memory
systems, will require similar strategies to track cycle-level interleaving of the RTL
design.

4.3.6 Ganged-Simulation for Rapid Error Replays

Redundant multi-threading is a popular technique for fault-tolerant computing
and post-silicon validation (e.g. [56]) where two identical threads are required for error

CHAPTER 4. RTL DEBUGGING WITH FPGAS 57

FPGA-accelerated RTL Simulation

Functional Simulation
Master Simulation Instance

Slave Simulation Instance

(Trillions of Instructions) Commit Log
Comparisons

Error

RTL State Snapshot

SW RTL Simulation

(Trillions of Instructions)

FPGA-accelerated RTL Simulation
(Trillions of Instructions)

Error

Error

(Hundreds of Instructions)

Public FPGA Cloud

Local Machine with
CAD Tool Licenses

Figure 4.12: Ganged-simulation for rapid error relays

checking. In our case, only a single simulation run is necessary for error checking.
We, instead, need another simulation instance that always runs behind for pre-error
state snapshotting.

To detect and replay errors efficiently, we exploit the determinism of our FPGA-
accelerated simulation by running two identical simulators concurrently: a leading
master instance, which detects the target RTL bugs, and a lagging slave, which
checkpoints the target RTL state (Figure 4.12).

The leading master checks for simulation errors by detecting either an assertion
failure or a mismatch between the golden model and the simulator-generated log
(Section 4.3.2). The master controls the advance of the slave by periodically sending
it packets over TCP, each of which contains a target cycle timestamp and an error
detection bit, indicating whether or not the master has encountered an error at the
timestamped target cycle6.

The slave cannot proceed until it receives a timestamped message from the
master. When it receives a message with a clear error bit, it can safely advance up
to the timestamped target cycle of the message. On the other hand, when the slave
receives the message with a set error bit, it advances up to the timestamped target
cycle minus L cycles to capture an L-cycle snapshot of the ROI (Section 4.3.3). Since
simulations are deterministic (Section 4.3.1), the same error, which is detected by the
master, also is captured by the slave at the same target cycle.

6 Alternatively, we may use f1.4xlarge instances with 2 FPGAs, which are recently provided
by Amazon.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 58

Finally, the captured RTL state snapshot can be replayed L cycles in software
RTL simulation until the same error appears, thus providing a fully-visible error wave-
form of the target over the ROI. This waveform dramatically improves debuggability,
helping RTL designers find and fix the cause of the bug.

To mitigate the monetary costs, we use FPGAs in the cloud. This provides a
cheap, elastic source of very large FPGAs, without the large initial capital expense.
On the other hand, commercial CAD tools are not allowed to run in the public cloud,
and thus, error snapshots are copied to and replayed in the local machine with the
CAD tool licenses.

4.4 Results

We demonstrate the effectiveness of our methodology with a case study of two
RISC-V processor core designs and report on the types of bugs found.

4.4.1 Target Designs, Golden Model, Benchmarks, and Host
Platform

Target Designs: We apply DESSERT to two open-source RISC-V processors
implemented with Chisel [10]: Rocket [8], a productized scalar in-order processor,
and BOOM-v2 [34], an industry-competitive, open-source out-of-order processor. Ta-
ble 4.2 shows the processor configurations used for this study with the number of
assertions and the size of log entries. Log entries are generated when instructions are
committed. The processor and L1 cache represent the design under test (DUT) and
are supplied as RTL, while the supporting L2 cache and DRAM are implemented as
abstract timing models, which can be configured at runtime.

Software Golden Model: We employ Spike [137] as a golden model for the
RISC-V ISA, which is modified for commit log comparison (Section 4.3.5). For
software-based checking, commit logs generated by Rocket or BOOM-v2 from the
FPGA are compared against Spike.

Benchmarks: We execute the SPECint2006 benchmark suite on the target
processors hosted on the FPGA. All benchmarks are compiled using gcc version 6.1.0,
and run on Linux kernel version 4.6.2. For each benchmark, we built a BusyBox image
including all necessary files for a given benchmark within an initramfs.

Host Platform: We use Amazon F1 instances (f1.2xlarge) as simulation host
platforms. An f1.2xlarge instance is equipped with Xilinx UltraScale+ VU9P and
1.5GB/s FPGA-CPU DMA.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 59

Parameter Rocket BOOM-v2
Fetch-width 1 2
Issue-width 1 4
Issue slots - 60
ROB size - 80

Ld/St entries - 16/16
Physical registers 32(int)/32(fp) 100(int)/64(fp)
Branch predictor - gshare: 16 KiB history

BTB entries 40 256
RAS entries 2 4

MSHR entries 2 2
L1 $ capacities 16 KiB or 32 KiB

ITLB and DTLB reaches 128 KiB / 128 KiB
L2 $ capacity and latency 1 MiB / 23 cycles

DRAM capacity and latency 2 GiB / 80 cycles
Assertions 123 601

Commit log entry width 60 B 64 B

Table 4.2: Target processors verified with DESSERT

4.4.2 FPGA Quality of Results

We compiled bitstreams using Vivado 2017.1 targeting the Xilinx UltraScale+
VU9P parts present in Amazon EC2 F1 instances. Pure FPGA mappings for both
designs close timing at 62.5 MHz, which is bounded by the unretimed double-precision
FMA in both cores7. The compile time is about 2 hours for Rocket and 4 hours for
BOOM on c4.8xlarge (about $1 and $2 with spot instances, respectively).

Table 4.3 shows the total utilization of the VU9P after place and route, with
varying levels of instrumentation enabled:

• Prototype: just the processor without transformations

• FAME1 : FAME1 simulator for deterministic simulation (Section 4.3.1)

• Debug : FAME1 simulator with assertion and print synthesis (Section 4.3.2)

• Scan: FAME1 simulator with scan chain insertion (Section 4.3.3)

• All : FAME1 simulator with all transforms and instrumentation

7Vivado cannot retime the 3-cycle double-precision FMA present in both cores. Manually pipelin-
ing the unit increases fmax to 190 MHz.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 60

Processor Resource Prototype FAME1 Debug Scan All

Rocket
Logic LUTs 18.0% 18.4% 18.5% 24.6% 24.7%

Registers 10.8% 10.8% 10.9% 13.6% 13.7%
BRAMs 18.1% 19.6% 24.9% 21.2% 26.6%

BOOM-v2
Logic LUTs 28.0% 28.4% 30.7% 51.5% 52.1%

Registers 12.9% 12.8% 13.4% 22.4% 22.5%
BRAMs 19.4% 20.9% 27.4% 22.6% 30.1%

Table 4.3: FPGA utilization versus instrumentation level

Processor Verilator VCS
Rocket 6.9 kHz 6.1 kHz

BOOM-v2 1.8 kHz 0.2 kHz
Processor FPGA No-Checking FPGA Assertion FPGA Log

Rocket 52.7 MHz 52.6 MHz 21.3 MHz
BOOM-v2 52.3 MHz 52.1 MHz 13.7 MHz

Table 4.4: Simulation rates for various simulators

LUTRAMs, DSP48s, and URAMs are omitted as they are lightly used (<1%, <5%
and 0%).

The FAME1 transform has marginal overhead over the prototype due to FPGA
tool optimizations. The debug instrumentation uses slightly more LUTs for assertion
synthesis and more BRAMs for log buffers. As expected, the scan chain instrumen-
tation has large overhead on both LUTs and Registers. However, the DESSERT
framework can be extended to adopt more resource-efficient checkpoint implementa-
tion as discussed by Koch et al [75].

4.4.3 Simulation Performance

Table 4.4 compares the simulation rates of software RTL simulators and a sin-
gle instance of FPGA-accelerated simulation with no error checking (FPGA No-
Checking), hardware-based checking from assertion synthesis (FPGA Assertion),
and software-based checking comparing logs from the FPGA against a golden model
(FPGA Log).

In software simulation, waveforms are recorded for debugging. In this evaluation,
intermediate signals generated by Chisel and FIRRTL are not traced in Verilator,
while all signals are traced in VCS. As we can see, software RTL simulation does not
ensure sufficient simulation performance for debugging with real-world applications
and is even slower with complex hardware designs.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 61

Benchmark Assertion Cycle (B) Simulation
Failure Time (mins)

483.xalancbmk.test Invalid writeback in ROB 1.9 3.4
464.h264ref.test Pipeline hung 3.2 3.8

471.omnetpp.test Pipeline hung 3.3 3.9
445.gobmk.test Invalid writeback in ROB 14.9 9.0

471.omnetpp.ref Pipeline hung 62.6 22.2
401.bzip2.ref Wrong JAL target 473.7 164.6

Table 4.5: Assertion triggers from BOOM-v2 running the SPECint2006 benchmark
suite.

On the other hand, FPGA-accelerated RTL simulation guarantees high simu-
lation rates regardless of design complexities. In addition, hardware-based assertion
checking has almost no performance overhead as the assertion checker is infrequently
polled by the software driver (Section 4.3.2.3).

Software-based checking decreases simulation rates because, in this case study,
the functional simulator must be run and compared in lock step (Section 4.3.5).
As a result, the log buffer is not quickly drained, resulting in frequent simulation
stalls. Notably, software-based checking has a larger performance impact on BOOM-
v2, which has greater IPCs, and thus, generates more commit log entries per cycle.
However, exhaustive software-based checking is still worthwhile as it can discover
subtle bugs not found by hardware-based assertion checking (Section 4.4.5). We
believe the simulation performance can be further improved with decoupling and
speculation of functional simulation, to reduce synchronization frequency.

4.4.4 BOOM-v2 Assertion Failure Bugs Found

BOOM-v2 is a major microarchitectural update of the original BOOM processor
to improve its physical realizability [34]. BOOM-v2 passes all ISA tests, random
instruction tests, microbenchmark tests, and boots Linux. However, we noticed that
some of the SPECint2006 benchmarks that passed in BOOM-v1 failed in BOOM-v2.
Therefore, we used DESSERT to debug BOOM-v2.

Table 4.5 shows assertions caught from BOOM-v2 when running the SPECint2006
benchmarks. Note that assertion messages were shown in FPGA-accelerated RTL
simulation when these assertions were triggered. In addition, RTL state snapshots
were taken before the assertions were triggered (Section 4.3.6) and replayed in soft-
ware RTL simulation for full visibility of the internal signals.

With the waveform from the 1024-cycle error replay, we quickly tracked down
the cause of the invalid writeback in ROB assertion to a buggy interaction between
back-pressure queuing and branch misspeculation that did not correctly kill instruc-

CHAPTER 4. RTL DEBUGGING WITH FPGAS 62

tions moving data from the integer register file to the floating-point register file. In
general, the pipeline hung assertion was caused by pipeline resource scarcities for var-
ious reasons, which were not found in the 1024-cycle window, suggesting assertions
describing more specific properties be necessary. Also, the waveform from the 1024-
cycle error replay revealed that the wrong JAL target assertion, which was triggered
at almost a half trillion target cycles, was caused by incorrectly handled signed arith-
metic in computing jump target addresses, which is latent until the processor touches
instructions allocated in a high-address memory region.

We caught all these assertion triggers and obtained full visibility within 3 hours
using two Amazon EC2 F1 instances. Therefore, the total cost to catch and replay
these errors is roughly $2 (compilation) +2 × $1.56 (simulation) = $5.12 with spot
instances, which is extremely economical compared to commercial emulation tools.

4.4.5 BOOM-v2 Commit Log Bugs found

Software-based error checking, which compares logs from an FPGA against a
software golden model, can discover subtle bugs that may not immediately affect the
results of applications. We verified Linux boot in Rocket and BOOM against the
software golden model using commit logs from the FPGA (Section 4.3.5). Linux boot
in Rocket was successfully verified against the golden model8. However, Linux boot
in BOOM-v2 failed with the following message:

Instruction mismatch at cycle: 669432906

PRIV PC INST REG

Last: 0 0x0000000000069ce0 (0 x00100793) x15 0x0000000000000001

SW : 0 0x0000000000069ce4 (0 x1404272f) x14 0x0000000000000000

FPGA: 1 0xffffffff80422a9c (0 x14011173) x 2 0xfffffffffcc54000

This shows BOOM jumped into Linux’s exception handler (PC = 0xffffffff80422a9c)
while executing lr.w a4, zero, (s0) (0x1404272f). The waveform from the 1024-
cycle replay showed BOOM incorrectly triggered a store access fault for load-reserved
instructions. After fixing this bug, Linux boot in BOOM-v2 fully matched against
the golden model. This bug was found in less than three minutes including target
memory initialization, but would have taken a month using VCS.

Commit log comparisons are also helpful to catch bugs that are not easily dis-
covered by assertions. For example, 403.gcc.test fails in BOOM without assertion
triggers. However, from commit logs, the following mismatch is found:

Instruction mismatch at cycle: 2909587019

PRIV PC INST REG

Last: 0 0x00000000001d15fc (0 x14d76e63)

SW : 0 0x00000000001d1600 (0 x03079793) x15 0x0000000000000000

8 We could not easily match floating-point loads due to what was a legally valid ambiguity due to
microarchitectural implementation differences between Rocket Chip and the golden model (Spike).
Newer versions of the RISC-V ISA close this specification ambiguity.

CHAPTER 4. RTL DEBUGGING WITH FPGAS 63

FPGA: 0 0x00000000001d1600 (0 x01813483) x 9 0x00000000004322e8

Note that this bug is found at 2.9 billion cycles in just 6 minutes ; Verilator
would have taken nearly three weeks to reach this bug.

The commit log shows BOOM fetching the wrong instruction at PC = 0x1d600.
The waveform from the 1024-cycle replay shows that BOOM’s fetch buffer is unable
to accept more instructions and applies back-pressure to the instruction cache, which
experiences a cache miss at the same time. Once the cache miss is resolved, the wrong
instruction is returned from the instruction cache. BOOM-v2 shares the frontend and
the instruction cache with RocketChip, and we used an old version of RocketChip 9 on
which the current version of BOOM-v2 10 is based. The frontend and the instruction
cache in the current version of RocketChip has since been completely rewritten. We
will verify BOOM-v2 again with a newer RocketChip code base in the future.

4.5 Summary

In this chapter, we presented DESSERT, an effective RTL debugging method-
ology using FPGAs. Motivated by the fact that RTL debugging can be extremely
challenging and painstaking, we developed a framework that helps rapidly catches
and helps fix bugs that only manifest after hundreds of billions of target clock cy-
cles, with little developer effort and at extremely low cost, by taking advantage of
cloud-hosted FPGA platforms. With automatic transforms and instrumentation of
the target RTL design, DESSERT ensures deterministic simulation on the FPGA;
supports both quick error checking with assertion failures on the FPGA and more ex-
haustive error checking with commit log comparisons between the golden model and
the FPGA; and captures RTL state snapshots for error replays in software simulation
for full visibility. DESSERT also quickly provides the error trace from pre-error RTL
state snapshots captured by two identical simulations that are run in parallel. We
also demonstrated the usefulness of DESSERT with debugging of BOOM-v2 for errors
encountered at up to half trillion cycles, when running the SPECint2006 benchmark
suite.

9 Commit Hash: 8c8d2af7141102adf8ccc65b929e740ce7ce189, Date: Feb 9th, 2017
10 Commit Hash: 70b94eefe6658a1444ca420ab86953c25665dae8, Date: Sep 12th, 2017

64

Chapter 5

Sample-Based Energy Modeling

This chapter presents Strober, a sample-based energy modeling methodology for
average power and energy estimation. Section 5.1 motivates why RTL-based power
and energy evaluation is necessary for computer architecture research. Section 5.2
describes existing design-time power modeling methodologies. Section 5.3 overviews
our sample-based energy evaluation methodology. Section 5.4 presents the Stober
framework as an implementation of sample-based energy evaluation. Section 5.5
shows the evaluation results of Strober with Rocket and BOOM. Section 5.6 concludes
this chapter.

5.1 Motivation: Why RTL-based Power/Energy

Modeling?

Energy efficiency has become the primary design metric for both low-power
portable computers and high-performance servers. As technology scaling slows down,
computer architects must use architectural innovation rather than semiconductor pro-
cess improvement to improve energy efficiency. This trend necessitates accurate and
fast energy evaluation of various long-running applications on novel designs for archi-
tectural design-space exploration.

The most accurate way to evaluate energy efficiency is by running applications
on a silicon prototype with power consumption measured directly. Prototyping is
accurate and can run large workloads rapidly, but each prototyping cycle is expensive
and has a long latency, prohibiting extensive design-space exploration.

Computer architects instead mostly rely on analytic power models calibrated
against representative RTL designs [26, 134, 92, 90, 120]. These must be driven by
activities from micro-architectural simulation [19, 109, 143]. This approach helps de-
signers gain some intuition in early design phases, but is limited to microarchitectures
resembling those for which the abstract model was built, and requires long simulation

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 65

times to gather microarchitectural activities. As power model validation depends
on the existence of representative RTL, constructing abstract power models is more
difficult for non-traditional architectures such as application-specific accelerators.

When complete RTL designs are available, they can be used to evaluate not
only energy efficiency, but also cycle time and area using commercial CAD tools. Al-
though existing commercial CAD tools provide extremely accurate performance and
power estimates from detailed gate-level simulation, the simulation runtime of com-
plex designs is painfully slow, preventing large architecture studies of many hardware
configurations.

This chapter describes a sample-based RTL energy-modeling methodology, which
enables fast and accurate energy evaluation of long-running applications. First, a de-
sign’s performance is evaluated using full-system RTL simulation, during which a set
of replayable RTL snapshots is captured randomly over the course of a program’s
execution. Next, the design’s average power is estimated by replaying the samples
on a gate-level power simulator, which also provides the confidence interval for the
average power estimate.

This chapter also presents the open-source Strober framework, an example im-
plementation of sample-based energy simulation. Strober is implemented with cus-
tom transforms in the FIRRTL compiler [64] to automatically generate an FPGA-
accelerated FAME1 simulator from any RTL design for rapid performance modeling.
The FAME1 simulator is enhanced with the ability to capture a full replayable RTL
snapshot at any sample point, which can then be replayed on a commercial gate-level
simulator to obtain power numbers. The Strober framework is evaluated using the
in-order processor Rocket [8] and the out-of-order processor BOOM [34].

The main contributions of this chapter are as follows:

• General and Easy-to-Use Framework: Strober automatically generates FPGA-
accelerated FAME1 simulations from any RTL design including the ability to
snapshot simulation state for replay on gate-level simulation, thus minimizing
designers’ manual effort. We present results using RTL designs of in-order
and out-of-order processors, but note that the approach applies to any RTL
including application-specific accelerators.

• Accurate Estimation: Performance measurement is truly cycle-accurate, since
it is based on the RTL design modeled using a token-based timing simulation.
For average power, we can achieve less than 5% error with 99.9% confidence
against commercial CAD tools. This indicates Strober can be a framework to
provide ground truth for other models.

• Fast Simulation: We achieve more than two orders of magnitude speedup over
existing microarchitectural simulators and four orders of magnitude speedup
over commercial Verilog simulators. This implies Strober can support large

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 66

design-space exploration using long-running applications on complex hardware
designs.

5.2 Existing Methodologies for Design-Time Power

and Energy Evaluation

Analytical power modeling [26, 134, 92, 90, 120] combined with microarchitec-
tural software simulators [19, 109, 143] is widely-used for computer architecture re-
search. This method enables early architecture-level design-space exploration, helping
designers gain high-level intuitions before RTL implementation. However, microar-
chitectural software simulators execute far more slowly than real systems, requiring
application runs to be subset. Moreover, the power models should be strictly vali-
dated against real systems or detailed gate-level simulations, which is difficult when
exploring new non-traditional designs. This chapter also suggests sample-based en-
ergy simulation as a way of obtaining accurate ground truth to train abstract power
models rapidly.

There are significant efforts to validate analytic power models. Shafi et al. [119]
validate an event-driven power model against the IBM PowerPC 405GP processor.
Mesa-Martinez et al. [98] validate power and thermal models by measuring the tem-
perature of real machines. The authors measure temperature using an infrared camera
and translate temperature to power using a genetic algorithm. Xi et al. [149] validate
McPAT against the IBM POWER7 processor and illustrate how inaccuracies can
arise without careful tuning and validation. Lee et al. [83] propose a regression-based
calibration of McPAT against existing processors to improve its prediction accuracy.
McKeown et al. [96] characterize power and energy of an open-source 25-core processor
from its silicon implementation. However, these methodologies can only be applied
using existing machines or proprietary data. Jacobson et al. [65] suggest a power
model from pre-defined microarchitectural events and validate it against RTL simu-
lation. However, the approach relies on designer annotations and microbenchmarks
exploiting familiarity with a particular family of processor architectures. In contrast,
Strober can be used for validation of novel hardware designs and long-running real
world applications.

There are a number of significant attempts to accelerate power estimation using
an FPGA. Sunwoo et al. [127] generate power models from manually specified signals,
which requires designers’ intuition. This technique also requires additional manual
efforts to instrument existing FPGA simulators with power models. Bhattacharjee
et al. [17] also manually implement event counters in FPGA emulators to speed up
event-driven power estimation. Coburn, Ravi, & Raghunathan [39] implement de-
tailed power models directly on the FPGA, which suffers from large FPGA resource
overhead. Ghodrat et al. [49] extend Coburn et al. by employing a software/FPGA
co-emulation approach to reduce FPGA resource overhead, but introduces commu-

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 67

Population Sample
size N size n

mean X mean x̄
variance σ2 variance s2

x

sampling mean X
sampling variance V ar(x̄)

confidence level (1− α)

confidence interval x̄± z1−(α/2)

√
V ar(x̄)

Table 5.1: Statistical parameters

nication overhead between the software and FPGA, which can bottleneck emulation
performance without careful partitioning. Atienza et al. [9] implement a special mod-
ule to monitor selected signal activities on FPGA.

Our Strober framework differs in that the hardware design is automatically in-
strumented to generate samples instead of manually implementing power models on
an FPGA, while still minimizing FPGA resource overhead.

5.3 Methodology Overview

In this section, we present our sample-based energy simulation methodology
using RTL designs for fast and accurate energy estimation. First, we present a brief
theoretical background of statistical sampling in Section 5.3.1 with parameters in
Table 5.1. Next, we describe how statistical sampling is applied to RTL energy
simulation in Section 5.3.2.

5.3.1 Statistical Sampling

A population P of size N is the set of all elements (e1, e2, ... eN) which could be
selected in an experiment. Each element ei has a corresponding measurable quantity,
Xi. A population’s parameters such as its mean, X, and its variance, σ2, can be
exactly calculated if all elements within the population are measured:

X =

∑N
i=1Xi

N
(5.1)

σ2 =

∑N
i=1(Xi −X)

N
(5.2)

Unfortunately, evaluating every element in P is usually infeasible due to any
number of resource constraints. Instead, a subset of the population, a sample, is

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 68

selected according to a sampling strategy, and is used to estimate some parameters
of the original population.

While there are many sampling strategies, the most statistically robust strategy
is random sampling without replacement, where every ei in P has an equal probability
of being selected in a sample. For simplicity and clarity, the following assumes this
specific sampling strategy.

To estimate population parameters, every element in a sample of size n is mea-
sured (xi), and the sample mean x̄ and sample variance s2

x are calculated. These
sample values are used to estimate the corresponding true population values.

X ≈ x̄ =

∑n
i=1 xi
n

(5.3)

s2
x =

∑n
i=1(xi − x̄)2

n− 1
(5.4)

σ2 ≈ (N − 1)s2
x

N
(5.5)

Population parameter estimates depend entirely on which sample, out of all pos-
sible samples, was selected in the experiment. To address this, statistical procedures
have been developed to judge the quality of an estimated parameter.

fr
eq

u
en

cy

sample mean

sampling
distribution

!"#$%&'#!'()'*')

Figure 5.1: Theoretical sampling distribution

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 69

Suppose the mean for each possible sample of size n of our population (totaling
N !

n!(N−n)!
possible samples) was calculated and plotted as a histogram (Figure 5.1).

The distribution of these sample means (sampling distribution) has a variance V ar(x̄)
(sampling variance) and a mean (sampling mean) that is equivalent1 to X.

Like σ2, directly computing V ar(x̄) is too expensive but can be accurately esti-
mated.2

V ar(x̄) ≈ s2
x(N − n)

Nn
(5.6)

Once an estimator and its estimated accuracy have been computed, we can use
normal theory to obtain approximate confidence intervals under a given confidence
level (1 − α) for the unknown parameter being estimated. The constant z1−(α/2) is
the 100[1− (α/2)]th percentile of the standard normal distribution.

x̄± z1−(α/2)

√
V ar(x̄) (5.7)

A confidence interval interpretation is if n elements are sampled from a popu-
lation repeatedly, with a given sampling strategy, 100[1 − (α/2)]% of each sample’s
confidence interval would include the true (but unknown) population parameter.

A critical assumption of confidence intervals is of normality, or that the sampling
distribution is Gaussian in shape. Fortunately, the central limit theorem of statistics
guarantees that for large enough sample sizes (n > 30), sampling distributions tend
to be normal, regardless of the underlying distribution of the element characteristics
in the sample.3

In other words, given random sampling, enough samples, and no mea-
surement error, calculated confidence intervals are always representative
of the accuracy of an estimator.

To determine the minimum sample size, the previous equations can be analyzed
to derive the following approximate relationship, where ε represents the maximum
relative difference allowed between the estimated parameter and the unknown true
population parameter.

n ≥ max

{(z2
1−(α/2)s

2
x

ε2x̄2

)
, 30

}
(5.8)

By using this equation, we can validate whether our sample size was large enough
to give adequate accuracy.

1Assuming no measurement error, which is a valid assumption given our simulation technique.
2This estimation again assumes no measurement error, as well as a sample size greater than 30.
3This guarantee of normality is only for linear estimators (e.g. a mean estimator).

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 70

 F
u
ll
P
ro
g
ra
m
 E
xe

cu
ti
o
n
 (
h
u
n
d
re
d
s
o
f
b
ill
io
n
 c
yc
le
s)

 R
e
p
la
ye

d
 R
T
L
 S
n
ap

sh
o
ts
 (
L
 =
 a
 f
ew

 t
h
o
u
sa
n
d
 c
yc
le
s)

...
...

S
1

...

R
a

n
d

o
m

 S
a

m
p

lin
g

S
2

S
3

S
4

S
5

S
6

S
3

0
S

2
9

C
yc
le
 s
e
le
ct
ed

 t
o
 c
re
at
e
 a
 r
ep

la
ya

b
le
 R
T
L
 s
n
ap

sh
o
t.

A
 r
ep

la
ya

b
le
 R
T
L
 s
n
ap

sh
o
t
co

n
ta
in
in
g
 a
ll
re
g
is
te
r
st
at
e

an
d
 I
/O

 t
ra
ce

s
o
ve

r
th
e
re
p
la
y
le
n
g
th

S
#

A
 r
ep

la
ye

d
 R
T
L
 s
n
ap

sh
o
t
o
n
 s
lo
w
 p
o
w
er
 s
im

u
la
to
r

F
u
ll
R
T
L
 s
im

u
la
ti
o
n
 r
u
n
n
in
g
 o
n
 f
as
t
si
m
u
la
to
r

F
ig

u
re

5.
2:

S
am

p
le

-b
as

ed
en

er
gy

si
m

u
la

ti
on

m
et

h
o
d
ol

og
y

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 71

5.3.2 Sample-based Energy Modeling Methodology

Our sample-based RTL energy simulation methodology quickly and accurately
estimates both performance and power of long running applications on arbitrary hard-
ware designs. This methodology obtains random sample points from a fast simulator
and replays them on a slow but detailed simulator. Figure 5.2 shows the basic idea
behind our methodology.

First, a design’s performance is evaluated by an accelerated full-system RTL
simulation, during which a set of replayable RTL snapshots is obtained. A replayable
RTL snapshot, at cycle c, of a given replay length L, consists of all information
necessary to replay from c to c+L on a very slow but extremely detailed RTL/gate-
level simulation. More specifically, a replayable RTL snapshot contains all RTL state
at cycle c and a trace of all I/O signals of length L starting at cycle c. As an
optimization, the I/O traces of a given replayable RTL snapshot are read out from
the simulation only when the next replayable RTL snapshot is sampled.

We can obtain the best statistical properties when the replayable RTL snapshots
are randomly captured over the course of the program’s execution (Section 5.3.1).
Since knowing the length of a full program execution is impossible a priori, we employ
reservoir sampling [136] to address this problem. With this algorithm and a desired
sample size n, the first n replayable RTL snapshots are recorded with the sample
size. The kth element where k > n is recorded with the probability of n/k, and
then randomly replacing one of the existing replayable RTL snapshots. Note that
the probability of selection decreases with longer execution, thus diminishing the
sampling overhead. At the end of the program execution, we have n replayable RTL
snapshots that were selected at random, without replacement. The simulation time
of very long-running applications with sampling is very close to the simulation time
without sampling.

In order to replay each replayable RTL snapshot, the RTL state is loaded into
the detailed simulator. For each cycle in the replay, the inputs from the I/O trace
are fed to the input of the target design, and outputs are verified against the output
values of the design. Note that unlike the previous statistical simulation sampling
techniques [148], there is no state warming problem due to the exactness of the
replayable RTL snapshot. In addition, all replayable RTL snapshots are independent,
so we can parallelize their replays on multiple instances of the detailed simulator.

To estimate power, the detailed simulator is a gate-level simulation of the given
RTL design. The simulation computes the signal activities of the gate-level design,
accounting for detailed timing from floorplanning, placement and routing. An indus-
trial power analysis tool computes the power of each replayable RTL snapshot from
the detailed signal activities. By aggregating the power of all replayable RTL snap-
shots, we can predict the average power and corresponding confidence interval of a full
execution of benchmarks.In general, the derived confidence intervals are very small
with a small number of replayable RTL snapshots and 99.9% confidence, regardless

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 72

FI
R

RT
L

C
om

pi
le

r

FPGA-Accelerated RTL Simulator

Target RTL Design

Macro Mapping

FAME1 Transform

Scan Chain Insertion

Simulation Mapping

Platform Mapping

List of Macros

Scan Chain
Metadata

Figure 5.3: FIRRTL compiler passes for sample-based energy modeling

of the length of simulation.

5.4 The Strober Framework

In this section, we describe the Strober framework, our implementation of the
sampling-based energy-modeling methodology for RTL designs. Section 5.4.1 shows
additional FIRRTL transforms that are necessary for energy modeling in addition
to custom passes in Section 3.2.2. Section 5.4.2 describes how RTL snapshots are
replayed on gate-level simulation using commercial CAD tools. Section 5.4.3 explains
how to estimate DRAM’s power consumption using activity counters. Lastly, a simple
analytic performance model for the Strober framework is introduced in Section 5.4.4.

5.4.1 Custom Transforms for Sample Replays

Section 3.2.2 describes the FIRRTL compiler passes minimally necessary for
FPGA-accelerated RTL simulation. To enable sample-based energy modeling pro-
posed in Section 5.3.2, we need additional custom transforms (yellow boxes in Fig-
ure 5.3.2) in the FIRRTL compiler.

By default, the FIRRTL compiler instantiates flip-flops for memory arrays in the
RTL design. FPGA tools automatically infer these memory arrays and map them into
FPGA-specific block RAMs. However, ASIC tools do not have this capability, and
thus, designers need to manually instantiate technology-dependent macro blocks for
memory arrays. Unfortunately, this manual mapping should be repeated whenever
the target technology is changed, deteriorating the productivity of hardware designs.

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 73

Instead, a compiler pass can automatically map technology-independent memory
arrays into technology-dependent macros. Specifically, Macro Mapping automatically
finds the optimal mapping of each memory array within a pool of macros in the target
technology and generates required logic for the mapping, greatly reducing designers’
manual effort.

Note that, Macro Mapping is necessary for both FPGA-accelerated RTL simula-
tion and the replay flow (Section 5.4) to ensure the same RTL is used for both flows,
which is important for RTL state snapshot loading on RTL/gate-level simulation.
On the other hand, Macro Mapping instantiates flip-flops in macro block that are
mapped to block RAMS for FPGA-accelerated RTL simulation, while it leaves them
as black boxes for the ASIC tool flow.

The FAME1 Transform and Simulation Mapping are necessary to pause simu-
lation before taking RTL state snapshots. By shutting down the timing token flow
toward the target RTL hosted on the FPGA, the simulation can stall at the desired
cycle, which is randomly determined by reservoir sampling.

To take RTL state snapshot from FPGAs, scan chains are automatically in-
strumented from parameterized Chisel RTL using the compilers-in-a-pass technique
(Section 2.2.1). As shown in Section 4.3.3, Scan Chain Insertion inserts basic scan
chains that copy register values immediately after the simulation stalls. On the other
hand, special scan chains, which sequentially read each element of memory arrays
through address generation, are inserted for large register files and RAMs to preserve
their structures. Scan Chain Insertion also emits the meta data file that contains
the decoding information for the data from scan chains. Unlike RTL debugging,
sample-based energy modeling only requires read capabilities of scan chains.

5.4.2 Sample Replays on Gate-Level Simulation

The FPGA-accelerated RTL simulators generated by compiler passes in Sec-
tion 5.4.1 provide cycle-exact performance estimates, but the replayable RTL snap-
shots must be simulated on a RTL/gate-level simulator to compute average power.
Figure 5.4 shows the tool flow to replay RTL snapshots on gate-level simulation.

We use the same RTL design for both the ASIC tool flow and FPGA-accelerated
RTL simulation. The FIRRTL Verilog backend generates Verilog RTL from a given
RTL design (e.g. Chisel RTL) for the ASIC tool flow. Next, a gate-level design is
generated from the Verilog RTL using a synthesis tool4 as well as place-and-route
tool5. Gate-level simulation6, with very detailed timing, simulates the post place-
and-route (PnR) design to compute signal activities for replayable RTL snapshots.

Replayable RTL snapshots are randomly sampled from the FPGA-accelerated
RTL simulator, as explained in Section 5.4.1. The RTL state is loaded into the

4For synthesis, we used Synopsys Design Compiler J-2014.09-SP4.
5For place-and-route, we used Synopsys IC Compiler J-2014.09-SP4.
6For gate-level simulation, we used Synopsys VCS H-2013.06.

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 74

RTL Design

FIRRTL Verilog Backend

Verilog RTL

Matching Points RTL Sample
Snapshots

FPGA-Accelerated
RTL Simulation

Post-layout Design

Formal Equivalence
Checking Tool

Gate-level Simulation

Signal Activities

Power Analysis Tool

Average Power

Logic Synthesis Tool

Placement and Route Tool

FIRRTL
Custom Transforms

Figure 5.4: RTL snapshot replays with CAD tools for average power estimation

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 75

gate-level simulation, and the input traces are fed to the inputs of the design for
each sample replay. Moreover, the output values of the design are compared with the
output traces, which ensures samples are replayed correctly. Samples are independent
of one another, so we can replay them on multiple instances of gate-level simulation
in parallel.

The generated signal activities are consumed by the power analysis tool7 to
estimate total power consumption for that replayable RTL snapshot. By calculating
the mean of each power result, we can obtain the average power of all replayable RTL
snapshots. As explained in Section 5.3.1, this average is an accurate estimation of
the total application’s power consumption on the given RTL design.

However, there are three key challenges to replay samples on gate-level simula-
tion, addressed in the following subsections.

5.4.2.1 Signal Name Mangling in the Gate-level Netlist

One difficulty in initializing the RTL state is that register signal names are
mangled by the optimizations performed by CAD tools. Because we cannot use the
RTL signal names to load the state snapshots on gate-level simulation, we use a
commercial formal equivalence checking tool8 to match nodes between RTL designs
and gate-level designs (Figure 5.4).

The synthesis tool generates information about optimizations applied to a de-
signs to help formal equivalence checking. By using this information, the formal
verification tool first finds the matching points between RTL and the gate-level de-
sign (including registers) and then verifies the equivalance of the two designs. The
matching results of this tool enable us to construct a name mapping table and trans-
late RTL names into gate-level netlist names.

5.4.2.2 State Snapshot Loading on Gate-level Simulation

To load the register values into the gate-level simulation, we originally trans-
lated the values into scripts that were read by our commercial Verilog simulator.
Unfortunately, this simulator could only execute 400 commands per second, which
for a design of 35k flip-flops with 30 replayable RTL snapshots takes 40 minutes to
load. While this is unacceptably slow for Strober’s framework, writing a customized
testbench for each design configuration is very cumbersome and error-prone.

We address this issue by writing a custom state snapshot loader that uses the
Verilog Programming Language Interface [128]. The commercial Verilog simulators
are compiled with this loader, which handles the snapshot loading commands effi-
ciently. With this implementation, gate-level simulation can handle 20000 commands

7For power analysis, we used Synopsys PrimeTime PX J-2014.12-SP2.
8 We used Synopsys Formality J-2014.09-SP4.

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 76

per second, reducing runtime to only 54 seconds for 30 samples with the example
in-order processor.

5.4.2.3 Register Retiming

Another big challenge in loading state snapshots is handling register retiming.
Register retiming is a technique to move datapath registers, reducing the critical path,
area, or both [89]. For example, RTL designers often depend on this technique for
writing floating-point units (FPUs), relying on CAD tools to automatically balance
the stages in a datapath pipeline. Unfortunately, we cannot easily reconstruct the
values of retimed registers from the RTL state snapshot.

Instead, we can capture the I/O values of the retimed datapath. First, note the
retimed datapaths are annotated by the designers with the desired latency. For the
n-cycle-latency datapath, a custom transform adds shift registers which capture the
I/O values for the last n cycles (and the corresponding scan chains). The I/O signals
of the retimed datapaths are forced externally in the simulation for n cycles before
loading the snapshots to recover their internal state. By starting replays at this point,
we can simulate each sample snapshot with fully-recovered state.

5.4.3 DRAM Power Modeling

DRAM power consumption is affected by the DRAM’s internal operations (which
can be triggered by memory access requests) and its internal state. For example,
DRAM’s internal read and write operations trigger data transfer through DRAM’s
I/O bus, causing dynamic power consumption. However, knowing the physical ad-
dress mapping, the DRAM controller’s policies, and all memory access requests is
enough to predict any given DRAM’s internal operations, and thus predict its power
consumption. As in the experimental settings specified in Kim et al. [74], we use
Micron’s LPDDR2 SDRAM S4 [101] with eight banks, and 16K (16× 1024) rows for
each bank. We assume a bank-interleaved memory mapping where adjacent memory
addresses are distributed across different banks. Finally, we assume an open-page
policy, where DRAM banks are kept active after a row access.

To capture the DRAM memory requests, we attach counters to the memory
request output ports. Using the known memory mapping, the physical address of
each emory request is translated into the bank number and the row number. The
previously accessed row and bank numbers are stored with the counter data to enable
determining whether the row activation operation will occur. From the counter values,
we know the number of read/write operations and the number of row activation
operations. With this information and DRAM configurations, the DRAM power can
be calculated using a spreadsheet power calculator provided by Micron [100].

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 77

5.4.4 Simulation Performance Model

To demonstrate the opportunity for significant speedup over the existing CAD
tools, we present a simple analytic performance model of the Strober framework in
this section. To estimate the overall time, we should consider (1) the synthesis time
for the FPGA-accelerated RTL simulator, (2) the FPGA-accelerated RTL simula-
tion time, (3) the ASIC tool chain time (logic synthesis, placement, routing, and
formal verification), and (4) the replay time for sample snapshots. Note that (3) is
independent from (1) and (2), so the overall time is expressed as follows:

Toverall = max(TFPGAsyn + TFPGAsim, TASIC) + Treplay

The ASIC tool chain time, TASIC , tends to be long for complex designs. How-
ever, we run very long-running application on the FPGA simulator, thus resulting
in TASIC < TFPGAsyn + TFPGAsim. In this chapter, the synthesis time for the FPGA
simulator, TFPGA syn, can be up to one hour with a two-way out-of-order processor
while TASIC is around three or four hours. Also note that TFPGAsyn � TFPGAsim for
real-world long-running applications.

To estimate TFPGAsim, assume the FPGA simulation runs at Kf Hz. Let N
and L be the total simulation cycles and the replay length respectively. Reservoir
sampling [136] ensures that the number of elements recorded during the simulation
is roughly 2nln((N/L)/n)) with the sample size n. The FPGA simulation time,
TFPGAsim, is therefore:

TFPGAsim = Trun + Tsample ≈ N/Kf + Trec × 2nln(N/nL)

where Trun, Tsample, Trec are the simulation running time, the total sampling time,
and the time to read out a single replayable RTL snapshot, respectively.

Treplay is decomposed into (1) the snapshot loading time, (2) the snapshot replay
time, and (3) the power analysis tool time. The snapshot loading time is considered
because it can be very slow without a proper implementation (Section 5.4.2.2). For
the snapshot replay time, suppose the RTL/gate-level simulation runs at Kg Hz. In
addition, only L cycles are replayed for each sample snapshot. We provide the switch-
ing activity interface format (SAIF) files to the power analysis tool for the average
power of each sample snapshot, and thus, the power analysis time is independent of
the length of each sample snapshot. Lastly, each snapshot replay is independent one
another, and thus, can be parallelized. Therefore, assuming P instances of gate-level
simulation, the total replay time is:

Treplay =
n× (Tload + (L/Kg) + Tpower)

P

where Tload is the time to load each RTL state into the gate-level simulation, and
Tpower is the time to run the power analysis tool for a single sample snapshot.

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 78

For the example two-way out-of-order processor used in this chapter, the FPGA
synthesis time with Strober was around one hour9, the FPGA simulation runs at
3.6 MHz, and the gate-level simulation runs at 12 Hz. In addition, the recording time
per replayable RTL snapshot is 1.3 seconds, the sample loading time on gate-level
simulation is 3 seconds, and the time for power analysis10 is around two and a half
minutes. Suppose we simulate a benchmark whose execution length is 100 billion
cycles on the two-way out-of-order, has a sample of 100 replayable RTL snapshots
(with replay length of 1000 cycles), on 10 instances of gate-level simulation. Plugging
these numbers to the equations, we can calculate the overall simulation time:

TFPGAsyn = 3600 s

Trun =
1011cycles

3.6× 106Hz
= 27778 s

Tsample = 1.3× 100× 2× ln(
1011

100× 103
)) = 3592 s

Treplay =
100× (103cycles/12Hz + 150)

10
= 2333 s

Thus, Toverall = Trun + Tsample + Treplay = 33703 seconds or 9.4 hours. Note that it
will take 1011cycles/300KHz = 3.86 days even on fast microarchitectural software
simulators and 1011cycles/12Hz = 264 years on gate-level simulation!

5.5 Evaluation

5.5.1 Target Designs

To demonstrate Strober’s ability to augment arbitrary Chisel RTL, we evaluated
two different synthesizable open-source cores, both which leverage the open-source
Rocket-Chip SoC generator [8]. The first core is Rocket, a 5-stage single-issue in-order
core. The second core is BOOM, a parameterized, superscalar out-of-order core [34].
Both cores implement the full 64-bit scalar RISC-V ISA, which includes support for
atomics, IEEE 754-2008 floating-point, and page-based virtual memory.

Note that the Strober framework is built upon commercial CAD tools, which
report accurate timing and area for RTL designs. Figure 5.5 shows a sample floorplan
of the two-way superscalar out-of-order processor. We synthesize and place-and-route
the designs in TSMC 45nm. For this evaluation, both cores were simulated at 1 GHz
frequency, however silicon implementations of Rocket have been demonstrated to
reach 1.3 GHz [88] and 1.65 GHz [126] in an IBM 45nm SOI technology.

9For FPGA synthesis, we used Vivado R© 2014.4.
10For power analysis, we again used PrimeTime R© PX J-2014.12-SP2.

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 79

Rocket BOOM-1w BOOM-2w
Fetch-width 1 1 2
Issue-width 1 1 2
Issue slots - 12 16
ROB size - 24 32

Ld/St entries - 8/8 8/8
Physical registers 32(int)/32(fp) 100 110

L1 I$ and D$ 16KiB/16KiB 16KiB/16KiB 16KiB/16KiB
DRAM latency 100 cycles 100 cycles 100 cycles

Table 5.2: Target designs evaluated with Strober

RegFile

ICache

Uncore

LSU

Rename
Table

FPU

ROB

Free List

Issue
Window

Branch
Predictor

ALUs

Fetch
Buffer

DCache

DCache
Control

IDIVIMUL Busy
Table

Bypasses

Figure 5.5: Floorplan of BOOM-2w

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 80

LinuxBoot Coremark gcc
Simulation Cycles (109) 0.5 3.92 73.39

Record Counts 980 1116 1497
Simulation Time

12.88 32.80 344.00
with Sampling (min)

Simulation Time
3.68 11.00 312.25

without Sampling (min)

Table 5.3: Simulation performance for BOOM-2w

5.5.2 Benchmarks

We chose three disparate workloads to demonstrate Strober’s ability to mea-
sure target design performance, power, and energy usage. The first is CoreMark,
a benchmark designed to stress processor pipelines [3]. The second workload boots
the RISC-V port of Linux on a small BusyBox disk image, executes the uname and
ls commands, and then powers down. The third workload executes the SPECint
benchmark 403.gcc [2] on Linux. For gcc, we execute the first 20B instructions (or
20%) of the SPECint reference input workload “gcc 166.in”.

5.5.3 Simulation Performance

For Rocket Chip target systems running under Strober, target I/O devices are
mapped to software on the host CPU, not the FPGA, causing a communication
overhead that stalls the simulator every 256 cycles. The target simulator is also
stalled while capturing a replayable RTL snapshot.

Table 5.3 shows the performance evaluation of Strober with BOOM-2w running
long benchmarks showed in 5.5.2. The record counts, the number of sample recording
during each simulation run, only moderately increases as explained by reservoir sam-
pling. Therefore, the sampling overhead is very small for long-running simulations.

For the gcc runs of 70 billion cycles, Strober achieved a simulation speed of
around 3.56 MHz. For comparison, the unmodified Rocket and BOOM cores both
can be synthesized at 50 MHz on the same ZC706 FPGA.

5.5.4 Power Validation

To validate our Strober framework and the sample-based RTL energy modeling
methodology, we run the microbenchmarks included in the Rocket-Chip framework to
completion on a gate-level-simulation of Rocket. The switching activity for he entire
benchmark is used to calculate the actual average power. Also, we obtain 30 random
sample snapshots of 128 cycles from the FPGA simulation, and by replaying these,

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 81

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

vvadd towers dhrystone qsort spmv dgemm

Er
ro

r

Theoretical Error Bound (99% Confidence) Actual Error

Figure 5.6: Confidence intervals (theoretical error bounds) vs. actual errors

Benchmark Simulated Cycles Replayed Cycles Coverage
vvadd 200521 30× 128 1.92%

towers 410752 30× 128 0.93%
dhrystone 396790 30× 128 0.97%

qsort 187160 30× 128 2.05%
spmv 927144 30× 128 0.41%

dgemm 1833075 30× 128 0.21%

Table 5.4: Simulated and replayed cycles for each benchmark on Rocket

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 82

0

50

100

150

200

250

300

350

400

450

500

rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w

Coremark Linux Boot gcc

m
W

DRAM
Misc
Uncore
L1 D-cache control
L1 D-cache meta+data
L1 I-cache
ROB
FPU
LSU
Integer Unit
Issue Logic
Register File
Rename + Decode Logic
Fetch Unit

Figure 5.7: Power breakdown with error bounds using 30 random samples from Core-
Mark, LinuxBoot, and 403.gcc

we calculate the average power as well as their error bounds with 99% confidence.
Then, we compare those error bounds over the actual errors as in Figure 5.6. We
repeated this process five times for each benchmark.

Note that even though the samples cover only less than 2.1% of the cycles as
shown in Table 5.4, the errors tend to be very small. Moreover, in most cases, the
actual errors are within the error bounds computed from the samples. This also
shows that the errors are independent of the length of execution. While the third
sampling of towers, and the third of qsort are slightly outside their error bounds, this
result is somewhat expected due to the probabilistic nature of statistical sampling.
Nevertheless, their actual errors are still very small, less than 2%.

5.5.5 Case Study

Figure 5.7 compares the energy breakdown of the Rocket, BOOM-1w, and
BOOM-2w cores using 30 random sample snapshots for each benchmark. The per-
formance differences between the cores is easiest to see when running CoreMark, a
small benchmark designed to fit in L1 caches and stress processor’s integer pipelines.
BOOM-1w is 9.8% faster than Rocket, and BOOM-2w is 58% faster. However,
BOOM-2w uses 3× the power, while Rocket is the most energy-efficient.

The other benchmarks use a much larger memory footprint than CoreMark, as
seen in the increased DRAM power usage. On Linux-boot, clock for clock, Rocket’s

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 83

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.5

1

1.5

2

2.5

3

3.5

4

rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w rocket boom 1-w boom 2-w

Coremark Linux Boot gcc

EP
I(

nJ
/In

st
)

C
PI

CPI EPI(nJ)

Figure 5.8: Performance and energy efficiency for CoreMark, LinuxBoot, and 403.gcc

shorter branch resolution latency allows it to outperform BOOM, which has only a
simple branch predictor in the version used in this case study.

Details aside, this case study shows the validity of using Strober as a basis for
design-space exploration in architecture research. With Strober, researchers now have
the ability to run real programs on RTL with a full evaluation of energy, area, and
performance. In addition, each sample snapshot contains a timestamp, so by using
performance counters we can correlate performance and power at a specific point
as shown in Figure 5.9. The CPI is sampled every 100M cycles by a separate user
program running on Rocket. Grey vertical lines denote when a Strober snapshot was
taken. Using this case study as an example, the turn-around time for evaluating 70
billion cycles on BOOM-2w is approximately 7 hours for a complete evaluation. We
believe this is fast enough to enable realtime feedback in the RTL design loop.

5.5.6 Power and Energy Efficiency for SPECint2006

With significant improvements on FPGA-accelerated RTL simulation as shown
in Chapter 3, we can evaluate power and energy efficiency of Rocket and BOOM with
each benchmark in SEPCint2006 [2] to completion. Specifically, with I/O endpoints
that significantly reduce the communication overhead between the FPGA and the
CPU (Section 3.2.3), the average simulation rate of BOOM-2w was 18 MIPS with
Xilinx ZC706 for the SPECint2006 benchmark suite. In this section, the simulation
setup is the same as in Section 3.3. For power estimation, we used the Synopsys
32nm Educational Technology and randomly sampled 50 RTL state snapshots from
each benchmark.

We can check whether or not the designs are realistic by examining their power
consumption. Figure 5.10 shows the power breakdowns for Rocket and BOOM-2w
with 32 KiB L1 caches for SPECint2006 with 95% confidence intervals. We can see

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 84

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
cy

cl
e
s

(b
ill

io
n
s)

2468
1
0

CPI

in
st

a
n
ta

n
e
o
u
s

C
P
I

cu
m

u
la

ti
v
e
 C

P
I

0
2

0
4

0
6

0
8

0
1

0
0

sa
m

p
le

s
0

2
0

4
0

6
0

8
0

1
0
0

Power (mW)

M
is

c

U
n
co

re

D
-T

LB

I-
T
LB

L1
 D

-c
a
ch

e
 c

o
n
tr

o
l

L1
 D

-c
a
ch

e
 d

a
ta

+
m

e
ta

L1
 I
-c

a
ch

e

FP
U

D
a
ta

p
a
th

Fe
tc

h
 U

n
it

F
ig

u
re

5.
9:

T
h
e

C
P

I
of

th
e

fi
rs

t
20

B
in

st
ru

ct
io

n
s

(o
r

20
%

)
of

4
0
3
.
g
c
c

as
ex

ec
u
te

d
on

R
o
ck

et

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 85

0

10
0

20
0

30
0

40
0

50
0

60
0

Rocket

BOOM-2w

Rocket

BOOM-2w

Rocket

BOOM-2w

Rocket

BOOM-2w

Rocket

Rocket

Rocket

BOOM-2w

Rocket

Rocket

BOOM-2w

Rocket

BOOM-2w

Rocket

BOOM-2w

Rocket

BOOM-2w

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc
42

9.m
cf

44
5.g

ob
mk

45
6.h

mm
er

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f
47

1.o
mn

etp
p

47
3.a

sta
r

48
3.x

ala
nc

bm
k

Power (mW)

Mi
sc

Un
co

re
L1

 D
-ca

ch
e c

on
tro

l
L1

 D
-ca

ch
e m

eta
 +

da
ta

L1
 I-c

ac
he

RO
B

LS
U

FP
U

Int
eg

er
Un

it
Iss

ue
 Lo

gic
Re

gis
ter

 Fi
le

Re
na

me
 +

Co
ntr

ol
Br

an
ch

 Pr
ed

ict
ior

Fe
tch

 U
nit

F
ig

u
re

5.
10

:
P

ow
er

es
ti

m
at

es
of

R
o
ck

et
an

d
B

O
O

M
-2

w
w

it
h

32
K

iB
L

1
ca

ch
es

fo
r

th
e

S
P

E
C

in
t2

00
6

b
en

ch
m

ar
k
s

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 86

0

200

400

600

800

1000

400.perlbench 401.bzip2 403.gcc 429.mcf 458.sjeng 464.h264ref 471.omnetpp 473.astar 483.xalancbmk

EP
I(p

J
/ I

ns
t)

Rocket 32 KiB L1
BOOM-2w 32 KiB L1

1923.4 1027.0

Figure 5.11: Energy efficiencies of Rocket and BOOM-2w with 32 KiB L1 caches for
the SPECint2006 benchmarks

out-of-order processors can easily be power inefficient. Specifically, the register file
and the rename logic are unrealistic as they consume up to 40% of the total power.
Improving energy efficiency is a key motivation of a new version of BOOM [33], which
improves its microarchitecture from BOOM v1 [34].

Figure 5.11 shows the energy efficiencies of Rocket and BOOM-2w with 32 KiB
L1 caches. BOOM-2w is much less energy efficient than Rocket: BOOM-2w burns
more power (Figure 5.10) without proportionally increasing IPC (Figure 3.5). No-
tably, the energy efficiency of 429.mcf is worse than any other benchmarks although
it consumes the least power. Therefore, evaluating just either performance or power
but not both is insufficient if energy efficiency is a primary concern, as it is for most
classes of computer systems.

5.6 Summary

In this chapter, we presented a sample-based RTL energy modeling methodol-
ogy that captures replayable RTL snapshots from a fast performance simulation and
replays them on a detailed power simulation. We showed the statistical robustness of
this methodology, including the ability to generate confidence intervals for any power
prediction.

Next, we introduced Strober, a framework for taking existing RTL designs writ-
ten in the Chisel hardware construction language, and generating a cycle-accurate,
decoupled simulator that can be executed on an FPGA. The instrumented simulator
can be used to not only measure the cycle-accurate performance of the RTL design,
but to generate random RTL snapshots that can be replayed (in parallel) in a detailed
gate-level simulator. We also demonstrated significant theoretical speedups using an
analytical model for simulation performance.

We then validated our methodology and framework for simulation performance,
and power accuracy. Finally, we demonstrated our framework by running three com-
plex RTL designs through our toolchain to obtain timing, area, performance, and
average power for a variety of benchmarks. These case studies serve as an example of
how Strober can not only provide ground truth for building faster and more flexible

CHAPTER 5. SAMPLE-BASED ENERGY MODELING 87

abstract power models, but can in and of itself be a tool for design-space exploration
at the RTL level.

Strober is open-source and freely available 11. The commercial CAD tools used
in this chapter are industry-standard, and widely available to academics through
academic licensing programs.

11strober.org

88

Chapter 6

Runtime Power Modeling

This chapter presents Simmani, an activity-based runtime power modeling that
automatically identifies key signals for power dissipation of any RTL design. Sec-
tion 6.1 motivates why runtime power modeling is necessary for computer systems.
Section 6.2 covers existing runtime power modeling methodologies. Section 6.3 de-
scribes how Simmani selects key signals for power dissipation with signal clustering
and then trains model-level runtime power models with regression against power
traces from CAD tools. Section 6.4 explains how Simmani automatically instruments
activity counters collecting runtime statistics to enable runtime power analysis with
FPGA-based simulation. Section 6.5 and shows the evaluation results of Simmani
with Rocket and BOOM. Section 6.6 shows the evaluation results of Simmani with
Hwacha. Section 6.7 summarizes this chapter.

6.1 Motivation: Is Activity-Based Runtime Power

Modeling Necessary?

As power and energy efficiency has been the primary concern for both low-
power portable computers and high-end servers, runtime power estimation plays an
important role not only in validation of hardware design ideas during the design
process but also in effective runtime power, energy, and thermal optimizations and
management. As a result, there has been significant prior work on various power-
modeling methodologies.

Power modeling using performance counters has been widely adopted for run-
time power and thermal management for real microprocessors [14, 93, 60, 20, 15, 125].
Power models are constructed in terms of statistics from existing performance coun-
ters, and calibrated against power measurement from real systems. These power mod-
els provide quick power estimates by profiling full execution of applications, which can
be further taken advantage of by runtime power and thermal optimizations such as

CHAPTER 6. RUNTIME POWER MODELING 89

dynamic voltage and frequency scaling (DVFS). However, this method has been only
successful for well-known traditional microprocessors with their existing prototypes.
With a novel hardware design, designers should manually identify microarchitectural
activities highly correlated with dynamic power dissipation, which is also extremely
difficult for non-traditional hardware designs.

With the slow down in historical transistor scaling, the only way to sustain
performance gain is through specialization with application-specific accelerators. In-
deed, RTL implementation has become a standard procedure in computer architecture
research to estimate the area, power, and energy for novel design ideas. However, dy-
namic power dissipation is not one-dimensional and cannot be statically determined
as it heavily depends on signal activities that can vary across different workloads.
Moreover, runtime power, energy, and thermal-management techniques should be
studied for novel hardware designs to improve their energy efficiency. For this reason,
a general, accurate, and efficient runtime power modeling methodology is required for
future architecture research.

In this chapter, we present Simmani, a novel activity-based runtime power mod-
eling methodology using automatic signal selection for any RTL designs. Our method-
ology is developed from the observation that signals showing similar toggle patterns
have similar effect on dynamic power dissipation. In the power modeling flow, the
toggle pattern matrix, where each RTL signal is represented as a high-dimensional
point, is constructed from VCD dumps generated from RTL simulation of the train-
ing set. As similarities of signals are quantified by the Euclidean distances between
two points, an optimal number of signals are selected through clustering with di-
mensionality reduction. Then, the power model is trained through regression against
cycle-accurate power traces from industry-standard CAD tools.

6.2 Existing Runtime Power Modeling

6.2.1 Power Modeling with Performance Counters

Power modeling based on performance-monitoring counters is also popular for
power estimation [14, 93, 60, 20, 15, 125]. This method provides a quick power
estimate, which is also useful for runtime power/thermal optimizations, by profiling
full execution of applications. On the other hand, LeBeane et al. [77] shows a power
modeling methodology that maps platform-specific event counters to McPAT’s event
counts.

There are also studies on phase/kernel-based power modeling. Isci et al. [62]
characterized power phases with event counter statistics collected with dynamic bi-
nary instrumentation. Zheng et al. [152] present a cross-platform phase-based power
modeling methodology that predicts the target design’s power from the host plat-
form’s counter statistics. Wu et al. [147] and Greathouse et al. [51] develop a GPGPU

CHAPTER 6. RUNTIME POWER MODELING 90

performance and power modeling methodology that clusters training kernels based
on performance scaling behaviors and classifies the group of a new kernel with neural
nets based on performance counter values.

However, these methodologies are limited to well-known microprocessors with
existing silicon implementations. For novel hardware designs, computer architects
need intuition to define representative microarchitectural events highly correlated
with power dissipation, which is extremely difficult without collecting empirical data
from real silicon implementations. Even if we can identify important events for power
consumption, it is very hard to collect their statistics for long-running applications
without existing implementations.

Unlike the previous work on event-based power modeling, Simmani trains high-
fidelity runtime power models by automatically selecting an optimal number of signals
for any RTL designs. In addition, activity counters collecting signal statistics are also
automatically instrumented to provide quick power estimates with FPGAs, which
enables various power/thermal case studies in the SW/HW co-design flow for novel
hardware designs with non-trivial applications.

6.2.2 Statistical Modeling with Microarchitecture Parame-
ters

There are a significant amount of previous work on statistical performance/power
modeling for uniprocessors [78, 79, 67, 66, 42] and chip multiprocessors [59, 73, 80].
Regression [78, 79, 80, 67, 42] or neural network [59, 66, 73] models in terms of
microprocessor parameters are trained from simulations of a small number of config-
urations to predict performance and power for unseen configurations without detailed
simulations.

However, all these models are constructed in the microprocessor context. For
non-traditional hardware designs, high-level microarchitectural parameters should as
be carefully identified with designers’ intuition. In contrast, Simmani inspects all
signal activity in the RTL design and selects a small number of signals with statistical
techniques without requiring manual effort.

6.2.3 Cycle-Level RTL Power Modeling

Activity-based cycle-level RTL power modeling is also explored in previous
work [97, 52, 24]. Metha et al. [97] build table-based power models for small-size
modules by clustering their input transitions resulting in similar energy dissipation
to reduce the number of entries in the table. Our approach is different in that we
cluster signals based on their toggle patterns to choose a small number of signals as
regression variables. Gupta et al. [52] construct four-dimensional table-based macro
models for combinational logic indexed by input/output signal switching activities.

CHAPTER 6. RUNTIME POWER MODELING 91

Po
w

er
 M

od
el

 T
ra

in
in

g
+

Au
to

m
at

ic
 W

in
do

w
 S

el
ec

tio
n

Simulated Annealing

RTL Design

RTL Simulations Logic Synthesis

Place-And-Route

Gate-level Design

Power Analysis Tool

VCD Dumps

VCD Reader

Toggle Pattern Matrix
(CSR format)

Module-Level Power Model
Regression

Cycle-by-Cycle
Power Traces

Signal Clustering

Selected Signals

Activity-based Power Model

Technology Library

Figure 6.1: Tool flow for runtime power modeling

Bogliolo et al. [24] build regression-based RTL power models in terms of input
and output signals of combinational macro blocks divided by registers. This approach
is not scalable since all switching activity of registers needs to be tracked, which is
intractable for complex hardware designs. In contrast, Simmani is scalable as it
automatically selects a small number of signals from a large-scale design for power-
model regression.

Zoni et al. [153] select signals from input/output signals in the module bound-
aries of the design hierarchy, construct a linear power model in terms of these signals,
and instrument the runtime power model visible by software. In general, input and
output signals are not the most correlated with power dissipation of a given module,
and thus, a smaller number of internal signals are preferred to a larger number of
input and output signals for accurate power modeling.

6.3 Power Model Training

In this section, we present the Simmani framework that automatically selects
signals most correlated with power dissipation and trains power models in terms of
the selected signals for any RTL design. The core idea is to cluster signals showing

CHAPTER 6. RUNTIME POWER MODELING 92

similar toggle patterns to choose distinctive signals, and then, train power models in
terms of these signals using cycle-accurate power traces. The intuition is that signals
showing similar toggle patterns have similar effect on dynamic power dissipation and
can be factored to share the same coefficient in the power model, minimizing modeling
error. Figure 6.1 describes the overall power modeling flow in the Simmani framework.

Section 6.3.1 introduces the power modeling background. Section 6.3.2 explains
how the toggle patten matrix is constructed from VCD dumps. Section 6.3.3 de-
scribes how important signals for power dissipation are found through clustering.
Section 6.3.4 explains how the optimal number of signals is determined through
model selection with simulated annealing. Section 6.3.5 explains how to obtain de-
tailed cycle-accurate power traces from commercial CAD tools. Section 6.3.6 shows
how power models in terms of selected signals are trained through regression against
cycle-accurate power traces. Section 6.3.7 presents how the optimal window size for
the toggle pattern matrix is automatically selected.

6.3.1 Power Modeling Background

CMOS power consumption can be decomposed into three major factors:

Ptotal = Pdyn + Pdp + Pleak = αf(CLV
2
DD + VDDIpeakts) + VDDIleak

The dynamic power, Pdyn, is consumed when the capacitance, CL, is charged or
discharged, while the direct-path power, Pdp, is consumed during rise/fall times due
to short-circuit current, Ipeakts, when transistors are switching. Both cause power
dissipation when signals toggle, the ratio of which is captured by the activity factor,
α. The leakage power, Pleak, is, on the other hand, consumed due to leakage current,
Ileak, even when transistors are not switching.

We may assume leakage power is constant under the condition that the tempera-
ture is well-controlled and the threshold voltage does not change dynamically. In this
case, the leakage power can be statically computed by CAD tools. In addition, the
direct-path power is minimized by CAD tools, and thus, much smaller than dynamic
power. However, dynamic power, a primary factor in power dissipation, is hard to de-
termine statically since the activity factor is highly workload-dependent. Therefore,
we should collect activity statistics from simulations to measure the dynamic power
dissipation.

Dynamic power can be computed by summing signal toggle densities over all
CMOS gates [104]:

Pdyn =
1

2
V 2
DD

∑
g∈{gates}

CgDg

where Cg and Dg are the load capacitance and the toggle density of gate g, re-
spectively. Unfortunately, such toggle densities are only available through extremely

CHAPTER 6. RUNTIME POWER MODELING 93

detailed gate-level simulation, which is not practical for collecting related statistics
from real-world workloads running on complex hardware designs.

Therefore, for large-scale designs, we approximate the dynamic power in terms
of event statistics associated with their effective capacitances:

Pdyn ≈
1

2
V 2
DD

∑
e∈{events}

CeDe

where Ce and De are the effective capacitance and the statistics of event e, respec-
tively.

Microarchitectural power models such as Wattch [26] and McPAT [92] analyti-
cally compute capacitances for regular structures [108] and collect manually identified
event statistics from microarchitectural software simulators [19, 143, 109] before RTL
implementation. Performance-counter-based power modeling [14, 93, 60, 20, 15, 125]
uses existing counters in the system, and finds the effective capacitance of each counter
event through regression against power measurement of the real machine. These
methodologies have been effective for well-known traditional microarchitectures.

However, for arbitrary novel designs, these approaches are very challenging as
1) manually selecting important signal/event activities is difficult and 2) finding the
effective capacitance can be also hard. In the following sections, we tackle both
problems for any RTL design automatically and systematically.

6.3.2 Toggle Pattern Matrix from VCD Dumps

The first step for power-model training is to construct the toggle pattern matrix
using VCD dumps from RTL simulations of the training set. For accurate power
modeling, we carefully choose small workloads that represent real-world applications.
If the training set is too small, the trained model cannot accurately predict power
consumption of unseen workloads. If the training set is too large, the model training is
bottlenecked by RTL simulation and power analysis tools that need to process a large
volume of VCD dumps. In this paper, we choose ISA tests and microbenchmarks and
replays of random sample snapshots from long-running applications.

The toggle-pattern matrix is a collection of toggle-density vectors of all signals
in the RTL design. Each element of this matrix is constructed as follows:

vij =
total number of toggles of signal i over window j

width of signal i× window size

where vij is the element at row i and column j of the toggle pattern matrix.
Figure 6.2 shows a simple example of how the toggle-pattern matrix is con-

structed from VCD dumps with a window size of two cycles. For single-bit signals,
the number of toggles is just the number of value transitions. For example, the total
number of value transitions of signal a over window 1 is 2, and thus, va0 = 2/2 = 1.0.
The other elements for signal a and b are computed in the same way.

CHAPTER 6. RUNTIME POWER MODELING 94

Clock

a

b

c[1:0]

Window 0 Window 1 Window 2 Window 3

2'b01 2'b10 2'b00 2'b11 2'b10

a

b

c

0 1 2 3
Windows

Si
gn

al
s

cycle 0 cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7

0.50 1.00 0.50 0.00
0.00 1.00 0.50 1.00
0.50 0.25 0.00 0.75

Figure 6.2: A simple example to construct toggle pattern matrix

CHAPTER 6. RUNTIME POWER MODELING 95

For multi-bit busses, the number of toggles is the Hamming distance between
the value at the previous cycle and the value at the current cycle. For example, the
Hamming distance of signal c at cycle 1 is 2. The reason each matrix element is
divided by the width of the signal is we want to group busses of different widths
together in the same cluster if they show similar toggle patterns. Hence, vc0 =
2/(2× 2) = 0.5.

The similarity matrix is very large for a complex hardware design. But most
entries in this matrix are zeros for a typical hardware design, since only a small number
of signals tend to be active in a given time slot. Therefore, the similarity matrix is
represented as a sparse matrix using the compressed sparse row (CSR) format.

The similarity of two signals is measured by the Euclidean distance between two
vectors. It is intuitive that two signals having a short distance between them have a
similar effect on power dissipation. In this case, the window size plays an important
role in quantifying similarities. Selecting the optimal window size is discussed in
Section 6.3.7

6.3.3 Automatic Signal Selection through Clustering

Once the toggle pattern matrix is constructed, we want to partition signals into
a handful of groups, each of which collects signals showing similar toggle patterns.
Since the similarity is measured as the Euclidean distance between two signal vectors,
this problem is identical to a clustering problem.

There are several challenges in signal clustering. First, exact clustering is known
as an NP-hard problem, and thus, a randomized algorithm such as k-means should
be used, where clustering results are different with different initial seeds. Moreover,
with a non-trivial hardware design, there are a large number of signals, each of which
is represented as a very high-dimensional point, which makes clustering more chal-
lenging. Specifically, if we have signal traces of N cycles with window size w, the
dimension of each signal is N/w, which can be easily a very large number with a long
trace.

Spectral clustering is a class of algorithms for clustering of high-dimensional
data points through dimensionality reduction [23]. In this paper, we reduce the
dimension of data by projecting data into principal components from singular vector
decomposition (SVD). The algorithm to partition the data set into k clusters is as
follows:

1. Find the space V spanned by the top k right singular vectors from SVD.

2. Project the data points into V through matrix multiplication.

3. Cluster the projected points through k-means++ [6], which selects better initial
seeds than random initial centroids.

CHAPTER 6. RUNTIME POWER MODELING 96

4. Repeat multiple times and select the clustering with the best score.

It is also proven that the projection brings the data points closer to their cluster
centers 1. In addition, this algorithm can be efficiently implemented with high-
performance linear algebra libraries.

Once signal clustering is done, the signals that are the closest to the center of
each cluster are selected, which will be regression variables in power model training.
The rationale is these signals have the smallest variance of similarities to other points
in the same cluster, and thus, we expect them to introduce the smallest errors in
regression than any other signals.

6.3.4 Finding the Optimal Number of Signals

The clustering algorithm in Section 6.3.3 finds the optimal clustering when the
number of signals is given, but does not determine the number of clusters. In many
cases, it is hard to know in advance what is the optimal number of signals for power
modeling with an arbitrary hardware design. We want to select as many signals
as possible for accurate power modeling, but not too many signals to avoid model
overfitting and to enable power model instrumentation (Section 6.4).

Finding the optimal number of signals is the same as a model selection problem.
We want to select the best clustering among candidate models for a given data. The
idea is we run the clustering algorithm with different numbers of clusters and find the
one having the best objective score.

For model selection, we use the Bayesian Information Criterion (BIC) [116],
which is commonly used beyond the hypothesis tests. The BIC is a penalized model-
fit statistic as it prefers a model having less parameters to a model having more
parameters but only fitting marginally better. 2 Formally, for model Mj, the BIC is
formulated as follows:

BICj = pjln(n)− 2ln(Lj)

where n is the number of points in the data, and pj and Lj are the size and the
likelihood of model Mj, respectively. The absolute value of the BIC is barely inter-
pretable. However, the difference of values, ∆BIC = BICnew−BICold, is of interest.
For example, we determine the new model is very strong compared to the old model
if ∆BIC < −10 3.

For clustering, we use the formula derived by Pelleg and Moore [112], assuming
underlying distributions are spherical Gaussians. The maximum likelihood estimate

1For the theorem and its proof, refer to [23]
2Compared to the Akaike information criterion (AIC), the BIC assigns more penalties on the

number of parameters, having higher chances to reject models with more signals.
3 The Bayes factor is equal to exp (−∆BIC/2)

CHAPTER 6. RUNTIME POWER MODELING 97

for the variance is:

σ̂2 =
1

n− k

n∑
i=1

‖xi − µ(xi)‖2

where k is the number of clusters and µ(xi) is the cluster center of xi. Intuitively, this
quantity explains how far points in each group are scattered away from their cluster
center.

Then, the log likelihood of model Mj is the summation of log likelihoods of all
clusters:

ln(Lj) = −n
2
ln(2π)− nd

2
ln(σ̂2)− n− k

2
+

k∑
i=1

niln(
ni
n

)

where d is the dimension of points and ni is the number of points in cluster i. The
number of parameters, pj, is (k−1)+dk+1 for (k−1) cluster probabilities, k centroids
of dimension d, and one variance estimate. Intuitively, this quantity expresses how
well signals in each group are clustered around their cluster center. This metric is
also used by SimPoint [121] to find the optimal clustering for program phases.

To select the optimal number of signals, we keep track of ∆BIC by increasing the
number of clusters, k. To avoid getting stuck at local minima, we employ simulated
annealing as follows:

1. Run the clustering algorithm with the initial k, and compute the BIC, which is
the initial best clustering.

2. Increase k, and run the clustering algorithm and compute the BIC.

3. If ∆BIC = BICcur −BICbest < −10, update the best clustering, and go to 2.

4. Otherwise, decrease the temperature, T, and go to 2 with the probability of
exp(∆BIC

T
).

This algorithm starts with a high temperature, which gradually decreases over
iterations. Therefore, this algorithm is not likely to terminate in early iterations even
if no better clustering is found, helping escape from local minima. However, with
low temperatures, the algorithm has a very high probability to terminate in later
iterations as the current best clustering is very likely to be the global optimum.

6.3.5 Obtaining Cycle-Accurate Power Traces

For accurate power modeling for RTL designs, cycle-accurate power traces are
necessary. We obtain these power traces using commercial CAD tools as shown in
Figure 6.1. We first obtain the gate-level design from target RTL using logic synthesis4

4We used Synopsys Design Compiler version O-2018.06-SP4

CHAPTER 6. RUNTIME POWER MODELING 98

with a target technology library5. Clock gating is also automatically inferred during
synthesis. Since commercial SRAM compilers were not available, we characterize
SRAMs used in the target design with CACTI 6.5 [103], and generate library files
using commercial library compilers6. To obtain accurate estimates for the timing,
area, and the floorplan of the final silicon, we also place and route the post-synthesis
design7.

After place-and-route, the commercial power analysis tool8 can compute cycle-
accurate power traces from RTL VCD dumps. In this detailed power analysis, RTL
signal activities are propagated into gate-level signals and the cycle-by-cycle power
for modules in the design is computed. Since the full cycle-by-cycle power traces are
generated instead of just the average power, this process tends to be the bottleneck
for power modeling. For example, it takes a couple of days to obtain the training and
test power data for the target designs used in this chapter.

Throughout this chapter, we assume the cycle-accurate power traces obtained
in this section are the true power for training and evaluation.

6.3.6 Power-Model Regression

Once n signals are automatically selected (Section 6.3.3), we train the power
model in terms of these signals against the cycle-accurate power traces from commer-
cial CAD tools (Section 6.3.5). As discussed in Section 6.3.1, power model training
finds the effective capacitances for the signal activities. We are also interested in
module-level power modeling for thermal analysis [122].

Formally, for each module k, we want to find a function fk that accurately
approximates the actual power dissipation in terms of signal activities:

pkj ≈ fk(x1j, x2j, · · · , xnj)

for all time window j, where pkj and xij are the power consumption of module k and
the toggle density of signal i in window j, respectively. The total power consumption
of the target design in window j is just the sum of power consumptions in window j
over all modules.

Power models need to be as simple as possible to minimize the computation over-
head for runtime power and thermal analysis. On the other hand, power models need
to be more complex than linear regression since, in general, power dissipation is not a
linear function of the activities of the selected signals. To cope with non-linearity, we
use linear regression with interactions and high-order terms. One justification is that,
theoretically, a non-linear function can be approximated with its Taylor expansion

5 We used the TSMC 45nm technology
6We used Synopsys Library Compiler version J-2014.09-SP4 and Synopsys Milkyway version

J-2014.09-SP4
7 We used Synopsys IC Compiler version O-2018.06-SP4
8 We use Synopsys PrimeTimePX version O-2018.06-SP4

CHAPTER 6. RUNTIME POWER MODELING 99

with polynomial terms. There is also a large amount of empirical evidence that linear
regression with polynomial terms of manually selected events and signals is reason-
ably accurate for microprocessors [60, 20, 80, 127, 65, 15]. Lastly, these interactions
and high-order terms can be viewed as an approximation to hidden activities that are
not solely captured by the selected signals.

Therefore, we also assume power dissipation is a function of the following form:

pkj = α+β1x1j + β2x2j + · · · βnxnj+
β11x

2
1j + β22x

2
2j + · · ·+

β12x1jx2j + · · ·+ β123x1jx2jx3j + · · ·

where α and β’s are parameters to be trained. As there are an infinite number of
terms in the Taylor expansion, we limit the order of terms to two. However, the
number of terms still grows exponentially on the number of signals. For instance, if
50 signals are selected, there will be 2550 terms in the model. Linear regression with
this many terms tends to be unstable and suffers from high variance, losing prediction
accuracy.

Moreover, models with a large number of variables are less interpretable, as
well as increasing the compute overhead. From the perspective of activity-based
power modeling, each regression variable represents a certain activity in the design
and its coefficient is its effective capacitance. However, all these activities are not
equally important for power modeling across different modules. Indeed, we want to
systematically select most of the single-order terms but only a small number of higher-
order terms to correlate between signal activities and power consumption without
prior knowledge of these signals.

The previous two issues can be viewed as a problem of regularization and vari-
able selection in linear regression. Prediction accuracy can be improved by shrinking
coefficients through regularization with penalized regression, which reduces the vari-
ance of coefficients while trading off the bias. Variable selection can further improve
the prediction accuracy, preventing overfitting, as well as the interpretability.

In this chapter, we employ the elastic net [154] for both regularization and
variable selection. The elastic net is penalized regression with a convex combination
of the L1 and L2 penalties of coefficients. As a result, the elastic net behaves mostly
like LASSO [133], while preserving the prediction power of ridge regression.

We assume the training data is standardized having the zero mean and the
unit standard deviation before regression. Then, to find the optimal coefficients β
with given power trace p and toggle densities X, the elastic net solves the following
optimization problem:

min
β

{
1

2n
||p−Xβ||2 + λ

(
1− ρ

2
||β||2 + ρ||β||1

)}
(6.1)

where ρ and λ are determined by K-fold cross-validation, a technique that splits
the training data into K groups for both training and validation. We also restrict

CHAPTER 6. RUNTIME POWER MODELING 100

that all coefficients are non-negative9. This optimization can be efficiently solved by
coordinate descent [48]. Notice that ridge regression and LASSO are special instances
of the elastic net when ρ = 1 and ρ = 0, respectively.

When we apply the elastic net for power modeling, many unimportant variables
are desirably eliminated as shown in Section 6.6.2

6.3.7 Finding the Optimal Window Size

As alluded in Section 6.3.2, the window size plays an important role in quanti-
fying similarities in the toggle pattern matrix. If the window size is too small, two
very similar signals (e.g. the input and the output of shift registers) may have a
long distance between them. On the other hand, if the window size is too large, two
distinctive signals can have a very small distance. Therefore, the window size affects
the number of selected signals and in turn prediction accuracies.

The optimal window size is dependent on the target design and the training data
set. We also observed that the clustering algorithm tends to select more signals with
a larger window size. This is because a shorter window size dramatically increases
distances between points, and thus, having more clusters does not help improving the
quality of clustering.

Indeed, manual selection of the window size is another challenge and requires
many trials and errors. Instead, we propose automatic signal selection as follows:

1. For a given window size,

(a) Select signals with clustering (Section 6.3.3 and 6.3.4).

(b) Train a power model for each submodule (Section 6.3.6) and compute its
BIC.

2. Select the window size that minimizes the total score of power models.

Note that Step 1 can be parallelized for different window sizes to minimize
runtime overhead as trainings are independent of one another. For the score of each
power model in Step 2, we use the BIC for linear regression:

BIC =

∑N
i error

2
i

σ2
+ ln(N) · df

where errori is the error of each data point i, df is the degree of the freedom of the
model, which is a function of λ in Equation (6.1), and N and σ2 are the size and the
variance of data, respectively. Intuitively, the BIC finds the model with small errors
as well as a small number of variables.

9 We do not have this constraint on uncore in our example target design, whose power is given
by subtracting the sum of power of all other modules from the total power.

CHAPTER 6. RUNTIME POWER MODELING 101

Computing exact df for the elastic net is computationally expensive. However,
when λ in Equation (6.1) is small, which is the case when only a small number of
variables are selected, df is very close to the degree of the freedom of LASSO, which
is equal to the number of nonzero coefficients [155]. Therefore, we approximate df
with the number of nonzero coefficients in the model when we compute the BIC.

Since we have multiple power models for each submodule in the design, we may
want to select the new window over the old window if the geometric mean of all Bayes
factors [72] of each model is greater than 1, which is expressed as follows:

K

√√√√ K∏
k=1

exp

(
−∆BICk

2

)
= exp

(
−
∑K

k=1 ∆BICk

2K

)
> 1

⇔
K∑
k=1

∆BICk =
K∑
k=1

BICk
new −

K∑
k=1

BICk
old < 0

where K is the number of models and BICk is the BIC of model k. Therefore, we
select the window size that minimizes the sum of all BICs of each model.

Section 6.6.3 presents evaluations on how window sizes affect the number of
selected signals and the accuracy of power models.

6.4 Power Model Instrumentation

Once the power model is trained as in Section 6.3, the target RTL needs to be
instrumented for runtime power analysis and evaluation. The target RTL design is
automatically instrumented with the power model using custom transforms inserted
in the FIRRTL compiler as shown in Figure 6.3. Section 6.4.1 shows how activity
counters collecting toggle activities of the selected signals are automatically inserted
into the target RTL by a custom compiler pass. Section 6.4.2 shows how runtime
power traces are obtained from FPGA-accelerated RTL simulation for various case
studies.

6.4.1 Activity Counter Insertion

As shown in Figure 6.3, activity counters are automatically inserted by the com-
piler pass using the information from the power model. Figure 6.4 shows components
instrumented by the compiler pass to collect toggle activities of the selected signals.

For each selected signal, the HD unit is inserted to compute the Hamming dis-
tance between the value at the current cycle and the value at the previous cycle. For
a single-bit signal, it is just an XOR gate. For a multi-bit bus, the HD unit computes
XORs of individual bits and counts the number of 1’s. If the selected signal is a
wire, a shadow register that keeps the value at the previous cycle is also inserted, and

CHAPTER 6. RUNTIME POWER MODELING 102

FPGA-Accelerated
RTL Simulation

FI
R

RT
L

C
om

pi
le

r

Target RTL Design

Transforms for FPGA-
Accelerated Simulation

Activity Counter Insertion

Verilog

Power Model

FPGA Backend

Bitstream FPGA

CPU

Periodically Read
Activity Counters

Runtime
Power Trace

Figure 6.3: RTL instrumentation flow for runtime power analysis with FPGAs

Top-level Module

 Counter Register File

Module B
Module C

Module A

HD
HD

reg bwire a

rdata

wdata_2

raddr

wdata_1 … wdata_n

Figure 6.4: Activity counter instrumentation for runtime power analysis
Gray boxes are automatically instrumented by the compiler pass.

CHAPTER 6. RUNTIME POWER MODELING 103

I/O
Devices

Processor
RTL

LLC
/ Main

Memory

Host FPGA Platform (e.g. Amazon EC2 F1 Instance)

Host CPU Host FPGA

I/O
Devices

Processor
RTL

Memory
System
Timing

Simulation
Driver

FPGA DRAM

LLC /
Main

 MemoryI/O
Tranport

Counter
Reader

Power
Trace Counter

RegFile

Figure 6.5: Mapping the target system to the host platform for runtime power analysis

then the input and the output of this shadow register are fed into the HD unit. On
the other hand, if the selected signal is a register, we do not need a shadow register.
Instead, the input and the output of the selected register are connected to the HD
unit.

We also need counters that increment by the Hamming distance on each cycle.
For this purpose, a counter register file is instantiated in the top-level module, with
the number of write ports equal to the number of selected signals. The HD units in
submodules are connected to the counter register file across different module hierar-
chies, and thus, the compile pass creates module ports along the connections to the
write ports.

The counter register file has one read port and can be visible as architectural
state for software running in the target design. Alternatively, this read port can
be directly connected to the top-level I/O for FPGA-accelerated RTL simulation as
explained in Section 6.4.2.

6.4.2 Runtime Power Analysis with FPGAs

FPGA-accelerated RTL simulation is the only viable way for performance, power,
and energy evaluation of complex RTL designs running real-world software before
tape-out. We extend MIDAS v1.0 (Chapter 3) to automatically generates FPGA-
accelerated RTL simulators from any RTL designs with custom compiler passes. We
use this framework to obtain runtime power traces from FPGAs. Once the activity
counters are inserted, the instrumented target design is consumed by the following

CHAPTER 6. RUNTIME POWER MODELING 104

custom transforms for FPGA-accelerated RTL simulation (Figure 6.3).
After the FPGA-accelerated RTL simulator is compiled into the bitstream, it is

run on the FPGA along with the software simulation driver. Figure 6.5 shows how
the transformed target design is mapped to the host platform. The processor RTL is
mapped into the FPGA while the data for the last-level cache (LLC) and the DRAM
are mapped into the FPGA DRAM. For the timing of the memory system, we have
an abstract timing model that only keeps the tags of the LLC on the FPGA. The
software driver with abstract I/O devices runs on the host CPU. The processor RTL
infrequently communicates with the I/O devices through the I/O transport unit on
the FPGA only when necessary (e.g. console I/O), minimizing simulation slowdown.

To obtain power traces, the simulation driver periodically reads the activity
counter values through the activity counter unit on the FPGA, which is connected
to the read port of the counter register file. When the counter values are read,
the simulation is stalled so that it does not change the behavior of the target system.
Counter sampling is infrequent, and thus, the simulation infrequently polls the counter
read unit that only pauses the simulation when the counters are sampled.

After activity statistics are collected from the FPGA, the software driver, which
has the power model information, does the rest of computations for model-level power
and dumps runtime power values to a file. As such, we obtain the power traces over
the whole execution of real-world applications at the end of the simulation.

We also estimate the power dissipation of the LLC and the DRAM with event
counters in the memory timing model. For the LLC, we characterize its read and write
energy per access as well as its static power with CACTI [103], and collect the number
of read/write accesses to the LLC. For the DRAM, we assume Micron’s LPDDR2
SDRAM S4 [101] and use the spreadsheet power calculator provided by Micron [100]
with statistics on read/write operations and row activations of the DRAM.

6.5 Evaluation: Rocket and BOOM

6.5.1 Experimental Setup

The Simmani framework is first demonstrated with the Rocket in-order proces-
sor [8] and the BOOM out-of-order processor [34]. Table 6.1 shows their configura-
tions with the power modeling results. We have abstract timing models for the L2
cache and the DRAM since we do not have corresponding RTL implementations for
now. However, power dissipation of these regular array structures can be analytically
modeled associated with their primary activities [103]. The cycle time, area, and the
floorplan of each processor are obtain from Synopsys Design Compiler (logic synthe-
sis) and Synopsys IC Compiler (place-and-route) with the TSMC 45nm technology.

For this evaluation, we empirically selected the window size for toggle matrices
(Section 6.3.2) without automatic window selection. We trained power models with

CHAPTER 6. RUNTIME POWER MODELING 105

Parameter Rocket BOOM
Fetch width 1 2

Decode width 1 1
Issue width 1 4
Issue slots - 12

ROB entries - 16
Ld/St entries - 8/8

Physical registers 32(int)/32(fp) 56(int)/48(fp)
L1 I$ and L1 D$ capacities 32 KiB / 32 KiB

L1 D$ MSHR entries 2
ITLB and DTLB reaches 128 KiB / 128 KiB

L2 TLB reaches 4 MiB
L2 $ capacity and latency 1 MiB / 23 cycles

DRAM latency 80 cycles
Cycle time 1 ns 1 ns

Area 1 mm x 1 mm 1.2 mm x 1.2 mm
Total number of RTL signals 42494 64540

Window size for toggle matrices 80 cycles 140 cycles
Number of selected signals 47 56

Table 6.1: Parameters for Rocket and BOOM evaluated with Simmani

Microbenchmark Small Input Large Input
median 400 elements 10000 elements

multiply 100 elements 1000 elements
vvadd 300 elements 10000 elements
towers 7 disks 11 disks

dhrystone 500 runs 1000 runs
qsort 2048 elements 500 elements
dgemm 24x25x24 matrix 36x36x36 matrix

spmv
500x500 matrix with 2000x1000 matrix with

2399 nonzero elements 4666 nonzero elements

Table 6.2: Small and large inputs for microbenchmarks for evaluation

CHAPTER 6. RUNTIME POWER MODELING 106

LASSO, a special case of the elastic net (Section 6.3.6).
For FPGA-accelerated RTL simulation, we use AWS F1 instances. Theses sim-

ulators are synthesized at the frequency of 90 MHz, but the simulation rate for SPEC
benchmarks is 42.3 MHz on average due to the overhead of counter sampling for
power analysis. For accurate validation, we carefully matched the timing of the
memory system and the I/O devices between FPGA-accelerated RTL simulation and
software RTL simulation.

The training data set consists of 1) the RISC-V ISA tests, 2) microbenchmarks
with their small input sets, and 3) 30 random sample snapshots of 1024 cycles from
each benchmark of SPECint2006 and SPECrate/speed 2017 Integer with their test
input sets. The test data set consists of 1) microbenchmarks with their large input
sets for validation of fine-grained runtime power prediction (Section 6.5.2), and 2) 50
random sample snapshots of 1024 cycles from selective benchmarks of SPECint2006
and SPECrate/speed 2017 Integer with their reference inputs for validation with
realistic workloads (Section 6.5.3). Table 6.2 compares the small and large input sets
for each microbenchmark.

6.5.2 Fine-Grained Power Prediction

In this section, we validate the capability of fine-grained power prediction. We
ran microbenchmarks with their large input sets on the FPGA, sampled activity
counter values every 128 cycles, and obtained power traces over the entire execution.
These power traces were validated against cycle-accurate power traces from Synopsys
PrimeTime PX (Section 6.3.5).

Figure 6.6 shows the normalized mean-squared errors (NMSREs) and the average
errors (AVGEs) for Rocket and BOOM. For N samples, NRMSEs and AVGEs are
calculated as follows:

NRMSE =

√∑N
i (pi − ppredi)2/N

pavg

AV GE =
|pavg − ppredavg |

pavg

The NRMSE accounts for sample-by-sample errors while the AVGE cares the
average values only.

Figure 6.7 highlights the power traces for spmv in which power modeling has
large errors as shown in Figure 6.6. Large errors are caused by the fact that the
predicted power tends to be less variable than the actual power. Note that this is
expected due to regularization and variable selection (Section 6.3.6). To improve the
accuracy, we can use more flexible models like the elastic net and employ automatic
window selection (Section 6.3.7).

CHAPTER 6. RUNTIME POWER MODELING 107

0

2

4

6

8

10

12

Rocket BOOM Rocket BOOM Rocket BOOM Rocket BOOM Rocket BOOM Rocket BOOM Rocket BOOM Rocket BOOM

median multiply vvadd towers dhrystone qsort dgemm spmv

Er
ro

r (
%

)

NRMSE AVGE

Figure 6.6: Fine-grained power prediction errors for microbenchmarks on Rocket and
BOOM

6.5.3 Case Study: SPEC2006 and SPEC2017

We also validate the capability of power prediction for realistic workloads that
execute trillions of cycles. Since we cannot obtain the cycle-accurate power traces
over the entire execution from commercial CAD tools, the validation strategy is as
follows.

First, we take random 50 sample snapshots of 1024 cycles from each benchmark.
When each of the random snapshots is taken, the simulation driver can also predict
the power dissipation of this period of 1024 cycles from activity counters. As a result,
we can obtain snapshot-by-snapshot power estimates with random snapshots as well
as the full power traces at the end of the simulation.

Then, we obtain power estimates for each snapshot from commercial CAD tools
through state replays. Using these power estimates and the power predictions from
the FPGA, we can compute the NRMSE for 50 sample points. For the AVGE, we
compare the average over the whole power trace against the average power from the
replays with confidence intervals.

Figure 6.8 shows the prediction errors with the 95% confidence intervals across
benchmarks in SPECint2006 and SPECrate/speed 2017 Integer. Unfortunately, we
could not run 403.gcc and 502.gcc to completion on BOOM. In general, we have
good prediction accuracy for both processors.

Figure 6.9 compares power breakdowns from the sample replays (Strober) and
the power traces from the FPGA (Simmani). It seems that we have large errors
when the processor utilization is low such as 429.mcf. We believe this is because the
training set only consists of workloads that highly utilize processors. Interestingly,
Rocket has larger errors than BOOM even though it is a simpler processor. We believe
this is because fewer signals are selected for Rocket and automatic window selection
(Section 6.3.7) can mitigate such errors.

Figure 6.10 shows example power traces. We chose 600.perlbench from SPEC-

CHAPTER 6. RUNTIME POWER MODELING 108

(a) Rocket

(b) BOOM

Figure 6.7: Power traces for spmv on Rocket and BOOM

CHAPTER 6. RUNTIME POWER MODELING 109

024681012

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

Ro
ck

et
BO

OM
Ro

ck
et

BO
OM

40
0.

pe
rlb

en
ch

40
2.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
me

r
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

50
0.

pe
rlb

en
ch

50
2.

gc
c

50
5.

m
cf

52
0.

om
ne

tp
p

53
1.

de
ep

sje
ng

54
1.

le
ela

54
8.

ex
ch

an
ge

2
60

0.
pe

rlb
en

ch
62

0.
om

ne
tp

p
64

1.
le

ela
64

8.
ex

ch
an

ge
2

SP
EC

20
06

int
SP

EC
ra

te
 2

01
7

SP
EC

sp
ee

d
20

17

Error(%)

NR
M

SE
AV

GE
95

%
 C

on
fid

en
ce

 In
te

rv
al

F
ig

u
re

6.
8:

P
re

d
ic

ti
on

er
ro

rs
fo

r
th

e
S
P

E
C

20
06

an
d

S
P

E
C

20
17

in
te

ge
r

b
en

ch
m

ar
k

su
it

e

CHAPTER 6. RUNTIME POWER MODELING 110

010203040506070809010
0

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

40
0.

pe
rlb

en
ch

40
2.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m4

71
.o

m
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k5

00
.p

er
lb

en
ch

50
2.

gc
c

50
5.

m
cf

52
0.

om
ne

tp
p5

31
.d

ee
ps

je
ng

54
1.

lee
la

54
8.

ex
ch

an
ge

26
00

.p
er

lb
en

ch
62

0.
om

ne
tp

p
64

1.
lee

la
64

8.
ex

ch
an

ge
2

SP
EC

20
06

in
t

SP
EC

ra
te

 2
01

7
SP

EC
sp

ee
d

20
17

Power(mW)

Un
co

re

L1
 D

Ca
ch

e

L1
 IC

ac
he

Fe
tc

h
Un

it

FP
U

In
te

ge
r U

nit

(a
)

R
o
ck

et

02040608010
0

12
0

14
0

16
0

18
0

20
0

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

Strober

Simmani

40
0.

pe
rlb

en
ch

40
2.

bz
ip

2
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k5

00
.p

er
lb

en
ch

50
5.

m
cf

52
0.

om
ne

tp
p

53
1.

de
ep

sje
ng

54
1.

lee
la

54
8.

ex
ch

an
ge

26
00

.p
er

lb
en

ch
62

0.
om

ne
tp

p
64

1.
lee

la
64

8.
ex

ch
an

ge
2

SP
EC

20
06

in
t

SP
EC

ra
te

 2
01

7
SP

EC
sp

ee
d

20
17

Power(mW)

Un
co

re

L1
 D

Ca
ch

e

L1
 IC

ac
he

Lo
ad

 S
to

er
 U

nit

RO
B

Iss
ue

 U
ni

t

Re
na

m
e

Un
it

Fe
tc

h
Un

it

FP
U

In
te

ge
r U

ni
t

(b
)

B
O

O
M

F
ig

u
re

6.
9:

P
ow

er
b
re

ak
d
ow

n
s

fo
r

th
e

S
P

E
C

20
06

an
d

S
P

E
C

20
17

in
te

ge
r

b
en

ch
m

ar
k

su
it

e

CHAPTER 6. RUNTIME POWER MODELING 111

(a) 600.perlbench running on Rocket

(b) 445.gobmk running on BOOM

Figure 6.10: Power traces for 600.perlbench on Rocket and 445.gobmk on BOOM

CHAPTER 6. RUNTIME POWER MODELING 112

Parameter Rocket+Hwacha

Processor Rocket 5-stage in-order processor
Accelerator 2048-bit wide vector unit and 64-bit wide scalar unit

Registers 32(int)/32(fp)/64(scalar)/256(vector)
L1 I and D $ Capacity: 32 KiB, Associativity: 8 ways

ITLB & DTLB Reach: 128 KiB, Associativity: fully-associative
L2 TLB Reach: 4 MiB, Associativity: direct-mapped

Cycle time 1 ns
Area 1.79 mm x 1.52 mm

L2 $
Capacity: 1 MiB, Latency: 23 cycles,

Read energy: 116.1 pJ, Write energy: 95.9 pJ,
Leakage power: 21.0 mW

DRAM
Latency: 80 cycles, Number of banks: 8,

Number of rows in each bank: 16K, Open-page policy

Table 6.3: Parameters for Rocket+Hwacha evaluated with Simmani

speed 2017 Integer for Rocket and 456.gobmk from SPECint2006 for BOOM. The
topmost graphs show the total power over time, while the graphs below show the
power densities of selected modules over time. We sampled activity counters every
100K cycles over trillions cycles of execution to obtain these traces.

6.6 Evaluation: Hwacha

6.6.1 Experimental Setup

Most of the power training algorithm (Section 6.3) is implemented in Python
with the SciPy’s sparse matrix libraries, while the toggle matrix construction algo-
rithm (Section 6.3.2) is implemented in C++. We import k-means++ (Section 6.3.3)
and the elastic net solver (Section 6.3.6) from scikit-learn [110].

The Simmani framework is demonstrated with the heterogenous processor com-
posed of the Rocket in-order core10 [8] and the Hwacha vector accellerator11 [87, 85]
(Rocket+Hwacha). Table 6.3 shows its configuration for the evaluation. We have
abstract timing models for the L2 cache and the DRAM since we do not have corre-
sponding RTL implementations for now.

The cycle time, area, and the floorplan of each processor are obtained from
Synopsys Design Compiler (logic synthesis) and Synopsys IC Compiler (place-and-

10 Commit: 50bb13d7887e5f9ca192431234b057ae9d8edb6c
11 Commit: 519ed1642674909d89769eae1bd4fc35fa383e49

CHAPTER 6. RUNTIME POWER MODELING 113

ICache

Vector
Register

File

Vector Execution Unit

Uncore

DCache

Rocket
FPU

Rocket Core
Scalar
Unit

Vector
Memory Unit

Vector
Sequencer

L2 TLB

PTW

ITLB

DTLB

Rocket Frontend

Figure 6.11: Floorplan of Rocket+Hwacha

CHAPTER 6. RUNTIME POWER MODELING 114

Total number of RTL signals 115,285

Module
Selected Single-order Second-order Average Standard
Signals Terms Terms Power (mW) Dev (mW)

Total 113 72 599 143.22 14.40
Rocket Fetch Unit 18 14 123 3.84 1.19

Rocket Core 27 30 134 7.55 2.24
Rocket FPU 1 7 72 2.00 1.87
Scalar Unit 1 16 70 3.43 1.16

Vector Sequencer 17 13 16 4.69 2.80
Vector Register File 1 24 74 36.30 4.57
Vector FP MulAdd 7 14 41 1.76 3.74

Vector Execute Unit 10 27 114 24.48 3.25
Vector Memory Unit - 13 22 2.24 0.48
L1 ICache & ITLB 8 15 79 16.38 6.31

L1 DCache & DTLB 19 12 72 9.76 4.69
Uncore 4 15 75 30.77 3.58

Table 6.4: Results of automatic signal and variable selection for Rocket+Hwacha

route) with the TSMC 45nm technology. Figure 6.11 shows the floorplan result of
Rocket+Hwacha.

For FPGA-based simulation, we use AWS F1 instances. The FPGA-based sim-
ulator is synthesized at the frequency of 75 MHz, but the simulation rate for the
case study was 39.3 MHz on average due to the overhead of counter sampling. For
accurate validation, we carefully matched the timing of the memory system and the
I/O devices between FPGA-based RTL simulation and software RTL simulation.

The training data set consists of 1) ISA tests, 2) microbenchmarks with their
small input sets, and 3) 200 random sample snapshots from each benchmark of
SqueezeNet with two images (dog and mousetrap).

For power model validation in Section 6.6.4, we used microbenchmarks with
their large input sets. For case study in Section 6.6.5, we used different 11 images for
each benchmark of SqueezeNet.

6.6.2 Signal and Variable Selection

Table 6.4 shows the results of automatic signal selection by the algorithm in
Section 6.3.3 with the average power and the standard deviation of each module for
the training set. We counted all signals and data busses shown in the VCD dump
except intermediate signals generated by the FIRRTL compiler (starting with GEN).
Our signal clustering algorithm selected 113 signals out of 115 thousand signals.

At glance, it is surprising only one signal was selected for the vector register file
even though it dissipates a significant amount of power. If we had selected signals
manually, the enable signals for this module would have been our primary choice.

CHAPTER 6. RUNTIME POWER MODELING 115

Figure 6.12: The number of selected signals and the geometric mean of R2 across
module-level power models for different window sizes

However, it turns out that those signals were clustered together with related signals
in other modules but are not selected as representative signals. For example, its
write enable and mask signals were clustered with a control signal of the floating
point multiply-add unit, which is the representative signal of this cluster. Similarly,
signals in the vector memory unit are clustered with signals in the load-store units of
the vector execution unit, while signals in the FPU are clustered with signals in the
Rocket core.

Table 6.4 also presents the variable selection results from power-model regression
(Section 6.3.6). Note that some of terms appear across multiple modules, and thus,
the total number of terms is smaller than the summation of the number of terms from
each submodules. Our power modeling keeps 671 terms in total out of 6554 candidate
terms for training.

We also notice that cross-order terms can capture events across different mod-
ules. For example, our power modeling finds the interaction between a predicate
signal in the vector execute unit and a hit signal in the data cache, which has a
positive effect on the power dissipation of the vector register file.

6.6.3 Automatic Window Size Selection

Figure 6.12 shows how the window size affects the number of selected signals
and the geometric mean of the R2 values, a statistic for how well the model fits the
training data, across module-level power models. First of all, more signals are selected
as the window size increases. This is because a bigger window size makes data points

CHAPTER 6. RUNTIME POWER MODELING 116

0

2

4

6

8

10

VVADD SAXPY DAXPY HSAXPY SDAXPY HGEMM SGEMM DGEMM HSGEMM SDGEMM

Er
ro
r(
%
)

NRMSE

AVGE

Figure 6.13: Power prediction errors for microbenchmarks on Rocket+Hwacha

closer, and therefore, having more clusters improves the quality of clustering. We can
also see that this effect diminishes as the window size gets bigger.

Another trend is selecting more signals does not necessarily result in more ac-
curate models. A model fits the training set well if its R2 value is closer to 1.012. As
seen in Figure 6.12, the geometric mean of R2 is the max at the window size of 340
cycles, and the sum of BICs, the score for window size selection in Section 6.3.7, is
also the smallest at this point. Therefore, our training algorithm selects 113 signals
with the window size of 340 cycles.

6.6.4 Power Model Validation

In this validation, we used well-known floating-point microbenchmarks vector-
ized for Rocket+Hwacha with various precisions. We estimated runtime power by
sampling activity counters from the FPGA every 128 cycles, and compared it against
power traces from Synopsys PrimeTime PX.

We computed the normalized mean-squared errors (NMSREs) and the average
errors (AVGEs) across benchmarks. For N samples, NRMSEs and AVGEs are calcu-
lated as follows:

NRMSE =

√∑N
i (pi − ppredi)2/N

pavg

AV GE =
|pavg − ppredavg |

pavg

The NRMSE accounts for sample-by-sample errors while the AVGE cares the
average values only. The NRMSE also tends to be bigger than the AVGE.

12However, we do not use R2 for model selection because a high R2 may result from overfitting

CHAPTER 6. RUNTIME POWER MODELING 117

Benchmark
Cycles per inference (B)

Speedup
Scalar Vector

SqueezeNet 22.89 1.58 14.45
SqueezeNet-8bits 26.53 1.57 16.94
SqueezeNet-Comp 16.02 1.37 11.72

Table 6.5: Performance of Rocket+Hwacha for SqueezeNet

0

50

100

150

200

250

300

SqueezeNet SqueezeNet-8bits SqueezeNet-Comp SqueezeNet SqueezeNet-8bits SqueezeNet-Comp

Scalar Vector

Po
we

r(
m

W)

DRAM

L2 Cache
Uncore

L1 DCache
L1 ICache

VectorUnit
VectorRegFile

RocketFPU
RocketCore+Fetch

Figure 6.14: Power breakdown for SqueezeNet on Rocket+Hwacha

Figure 6.13 shows both errors are within 9 % and our power modeling is reason-
ably accurate for these microbenchmarks.

6.6.5 Case Study: SqueezeNet

In this section, we demonstrate how Simmani can be used for custom accelerators
targeting emerging applications in the HW/SW co-design flow. For this case study, we
use SqueezeNet [57], a neural network for image classification that achieves AlexNet-
level accuracy with very small models. We evaluated three versions of SqueezeNet.
In addition to the base variant (SqueezeNet), we evaluated a variant with 8-bit
weight quantization (SqueezeNet-8bits), and a variant with both quantization and
compressed weight storage (SqueezeNet-Comp).

We ported and vectorized SqueezeNet so that these three benchmarks can run
on Rocket+Hwacha. For FPGA-based simulation, we made initramfs Linux images
that contain SqueezeNet binaries as well as 11 images for inference. To obtain power
traces, we sampled counters from the FPGA every 100K cycles. For comparison, we

CHAPTER 6. RUNTIME POWER MODELING 118

0

2

4

6

8

10

SqueezeNet SqueezeNet-8bits SqueezeNet-Comp SqueezeNet SqueezeNet-8bits SqueezeNet-Comp

Scalar Vector

Er
ro

r (
%

)

NRMSE

AVGE

95% CI

Figure 6.15: Power prediction errors for SqueezeNet on Rocket+Hwacha

0

1

2

3

4

5

6

SqueezeNet SqueezeNet-8bits SqueezeNet-Comp

En
er

gy
 (m

J)
/ I

nf
er

en
ce

(a) Scalar

0.44

0.46

0.48

0.5

0.52

0.54

0.56

SqueezeNet SqueezeNet-8bits SqueeezNet-Comp

En
er

gy
 (m

J)
/ I

nf
er

en
ce

(b) Vector

Figure 6.16: Energy efficiency of Rocket+Hwacha for SqueezeNet

CHAPTER 6. RUNTIME POWER MODELING 119

Ba
by

Be
ar

Be
d

Bo
at

C
ar

C
at

M
on

ke
y

Pe
nc

il
Pl
an

e
Ra

bb
it

Ta
xi

(a
)
S
q
u
e
e
z
e
N
e
t

Ba
by

Be
ar

Be
d

Bo
at

C
ar

C
at

M
on

ke
y

Pe
nc

il
Pl
an

e
Ra

bb
it

Ta
xi

(b
)
S
q
u
e
e
z
e
N
e
t
-
8
b
i
t
s

Ba
by

Be
ar

Be
d

Bo
at

Ca
r

Ca
t

Mo
nk

ey
Pe

nc
il

Pla
ne

Ra
bb

it
Tax

i

(c
)
S
q
u
e
e
z
e
N
e
t
-
C
o
m
p

F
ig

u
re

6.
17

:
P

ow
er

tr
ac

es
fo

r
th

e
sc

al
ar

S
q
u
ee

ze
N

et
b

en
ch

m
ar

k
s

on
R

o
ck

et
+

H
w

ac
h
a

CHAPTER 6. RUNTIME POWER MODELING 120

Ba
by

Be
ar

Be
d

Bo
at

C
ar

C
at

M
on

ke
y

Pe
nc

il
Pl

an
e

Ra
bb

it
Ta

xi

W
ei

gh
t L

oa
d

Lin
ux

 Boo
t

Po
w

er
off

(a
)
S
q
u
e
e
z
e
N
e
t

Ba
by

Be
ar

Be
d

Bo
at

C
ar

C
at

M
on

ke
y

Pe
nc

il
Pl

an
e

Ra
bb

it
Ta

xi

W
ei

gh
t L

oa
d

Lin
ux

 Boo
t

Po
w

er
off

(b
)
S
q
u
e
e
z
e
N
e
t
-
8
b
i
t
s

Bab
y

Bea
r

Bed

Boa
t

Car

Cat
Mon

ke
y

Pen
cil

Plan
e

Rab
bit

Tax
i

W
ei

gh
t L

oa
d

Lin
ux

 Boo
t

Po
w

er
off

(c
)
S
q
u
e
e
z
e
N
e
t
-
C
o
m
p

F
ig

u
re

6.
18

:
P

ow
er

tr
ac

es
fo

r
th

e
ve

ct
or

iz
ed

S
q
u
ee

ze
N

et
b

en
ch

m
ar

k
s

on
R

o
ck

et
+

H
w

ac
h
a

CHAPTER 6. RUNTIME POWER MODELING 121

also evaluated unoptimized scalar SqueezeNet benchmarks, which do not utilize the
vector unit at all.

Table 6.5 shows the performance of Rocket+Hwacha for these three benchmarks
without and with vectorization. First of all, vectorization significantly improves its
performance. Without vectorization, quantization decreases the performance, while
with vectorization, it marginally improves the performance. However, in both cases,
there is a significant performance improvement with compression on top of vectoriza-
tion.

Figure 6.14 shows the average power breakdowns for SqueezeNet. For the scalar
benchmarks, we assume the vector accelerator is perfectly power-gated. Without
vectorization, both quantization and compression reduce power consumption as they
require less memory accesses. Surprisingly, Simmani reveals that Rocket+Hwacha
consumes almost the same power across the vectorized benchmarks. This is because
the vector accelerator is highly utilized during inferences thanks to small model sizes.

Figure 6.15 shows the power prediction errors with the 95 % confidence intervals.
To validate the power estimates in Figure 6.14, we took random 50 sample snapshots
of 1024 cycles from each benchmark. When each of these random snapshots was taken,
its runtime power was also estimated by sampling activity counters for this period of
1024 cycles. After the FPGA-based simulation was done, the power estimate of each
sample point was obtained from sample replays, which was in turn compared against
its runtime power estimate from the FPGA to compute the NRSE for 50 sample
points. For the AVGE, we compared the average over the whole power trace against
the average power estimate from sample replays, which also provided its confidence
interval. From this validation, we can see that our power modeling also achieves good
prediction accuracy for SqeeuzeNet.

Figure 6.16 shows the energy efficiency for SqueezNet. First of all, we can
significantly improve energy efficiency with vectorization, which achieves significant
speedups despite the increase in power consumption. Also, with vectorization, both
quantization and compression gain energy efficiency as they require the same-level of
power consumption.

Figure 6.17 and Figure 6.18 shows the entire power traces without L2 and DRAM
power for the scalar and the vectorized SqueezeNet benchmarks, respectively, while
booting Linux, loading the model weights, and running inferences for 11 images. We
can also detect power phase changes over the whole execution of the benchmark,
which will be useful for runtime power/energy managements. For example, we can
observe more power variance in the later layers than in the earlier layers for each
inference because the later layers are more memory-intensive.

As demonstrated in this case study, we believe Simmani will bring up future
research opportunities on performance/power/energy optimizations for emerging ap-
plications with both software and hardware techniques.

CHAPTER 6. RUNTIME POWER MODELING 122

6.7 Summary

In this chapter, we presented a novel runtime power modeling methodology for
any RTL designs by automatically selecting key signals for power dissipation. Our
observation was that RTL signals with similar toggle patterns have similar effects
on power dissipation. We identified similar signals through clustering with high-
dimensional points from the toggle pattern matrix, which is constructed from the
VCD dumps of the training set. We selected representative signals from each cluster
and constructed the power model with these signals through polynomial regression
with regulation and variable selection to avoid overfitting.

We also automatically instrumented the target design with activity counters
using custom compiler passes to collect statistics from FPGAs, without requiring
manual effort. As such, Simmani enables various case studies for complex hardware
designs running non-trivial applications by quickly providing their runtime power
estimates.

We validated power modeling accuracy with a heterogeneous processor com-
posed of an in-order core and a custom accelerator with microbenchmarks. We also
demonstrated the capability of Simmani with a case study of HW/SW co-design for
machine learning applications.

Simmani is truly general and easy-to-use for any RTL designs. We believe Sim-
mani will provide more research opportunities on runtime performance, energy, and
thermal optimizations with novel hardware designs in the HW/SW co-design process.
Simmani will be open-source soon so that our methodology can be easily integrated
into various accelerator research projects.

123

Chapter 7

Conclusion

This thesis demonstrated fast and accurate RTL simulation methodologies us-
ing FPGAs for performance, power, energy evaluation as well as verification and
debugging in the hardware/software co-design flow. Section 7.1 summarizes the con-
tributions of this thesis. Section 7.2 suggests potential future work based on the
progress of this thesis.

7.1 Contributions

The contributions of this thesis are summarized as follows:

• MIDAS v1.0 (Chapter 3): This thesis presented MIDAS v1.0, a open-source
framework that automatically generates FPGA-accelerated performance simu-
lators from any RTL designs. This framework is built upon custom compiler
passes in the FIRRTL compiler, significantly improving productivity by min-
imizing manual effort. Performance simulators generated by MIDAS v1.0 are
truly cycle-accurate and orders of magnitude faster than software-based simula-
tors. Therefore, MIDAS v1.0 enables accurate performance evaluation of RTL
designs by executing real-world workloads to completion.

MIDAS v1.0 is also improved by a more realistic DRAM timing model hosted
on the FPGA [18]. In addition, MIDAS v1.0 is extended for the datacenter sim-
ulator, FireSim [70], which connects RocketChip nodes with hardware network
interface cards and software-based switch models deployed on the FPGA cloud.

• DESSERT (Chapter 4): This thesis demonstrated DESSERT, an effective
framework for RTL debugging using FPGAs. The target RTL is automatically
transformed and instrumented to enable deterministic simulation on the FPGA
with state initialization and state snapshot capture. Assert statements, which
are already present in target RTL for software simulation, are automatically

CHAPTER 7. CONCLUSION 124

synthesized for quick error checking on the FPGA, while print statements are
automatically synthesized for more exhaustive error checking from commit log
comparisons between the golden model and the FPGA. To rapidly provide pre-
error waveforms for effective debugging, two parallel deterministic simulations
are run simultaneously to capture and replay state snapshots immediately before
an error. DESSERT helps finding and fixing bugs in BOOM-v2, which only
appear after billions of cycles up to a half trillion cycles.

• Strober (Chapter 5): This thesis presented Strober, a sample-based energy
modeling for any RTL designs. Strober uses FPGAs for fast simulation of
workloads, from which random RTL state snapshots as well as I/O traces are
captured. RTL state snapshots are loaded into RTL/gate-level simulation for
sample replays, during which input traces are fed into the input ports of the
target design, while output traces are compared against the output ports of the
design. The power analysis tool such as PrimeTime PX uses the signal activities
from sample replays for average power estimation across the whole execution.
This methodology achieves significant speedups over commercial CAD tools
while providing accurate power and energy estimates with confidence intervals.

• Simmani (Chapter 6): This thesis lastly presented Simmani, an activity-based
runtime power modeling by identifying key signals for power dissipation. Sim-
mani is developed from the observation that signals showing similar toggle pat-
terns have similar effect on power dissipation. Simmani selects key signals from
signal clustering using the toggle pattern matrix constructed from VCD dumps
of the training set. With these signals, Simmani constructs module-level power
models with regression against power traces from CAD tools. Simmani also
automatically instruments activity counters for the selected signals to collect
statistics for runtime power analysis with FPGA-based simulation. Simmani is
demonstrated with Hwacha running SqueezeNet as well as Rocket and BOOM
running SPEC 2006/2017 integer benchmark suite. Power models trained by
Simmani will be useful for thermal modeling and studies on dynamic pow-
er/thermal optimizations for custom accelerators.

7.2 Future Work

We believe there are lots of opportunities on future work based on the progress
of this thesis. Therefore, this section alludes some ideas on promising future work.

First of all, there are a list of improvements that need to be done on top of
MIDAS v1.0:

• Multi-FPGA Simulation. Today’s high-end processors are too big to fit
into a single FPGA for simulation, and thus, it is necessary to partition these

CHAPTER 7. CONCLUSION 125

designs across multiple FPGAs. This partitioning should be done very carefully
to minimize simulation performance degradation. Schelle et al. [114] and Assad
et al. [7] demonstrate multi-FPGA emulation of industry processors. Likewise,
we may also want to extend MIDAS v1.0 for multi-FPGA simulation, preserving
all useful features supported by the current framework.

• Multi-Clock Support. MIDAS v1.0 only supports designs with a single-
clock domain. However, real-world hardware designs are likely to have multiple
clock domains having different voltages and clock frequencies. We may want to
extend MIDAS v1.0 to support multi-clock domains. This new version needs
to automatically detect different clock domains, transform each domain into
a FAME1 model, and connect them with specialized channels. The operating
frequency of each domain can be changed by writing control registers in these
channels. This extension will also be useful for studies on fine-grained DVFS.

• Auto FAME5 Transform. FAME5 is a host multithreaded model on top of
FAME1 [132]. This technique improves FPGA resource utilization by simulat-
ing a multi-core processor through multithreading with shared resources. We
believe FAME5 models can be automatically generated from RTL by identify-
ing shared resources across different modules and duplicating state elements to
keep the context of each module. We believe this technique will enable more
scalable simulation using a single FPGA.

Even though DESSERT helps debugging of single-core systems, we still need the
following improvements:

• Debugging Multi-Core Systems. The difficulty of debugging multi-core
systems is that memory operations across different cores can be arbitrary in-
terleaved, and thus, values returned by loads are non-deterministic. To make it
worse, real-world processors allow more relaxed memory models than sequential
consistency, which makes it much more difficult to decide the correct value of a
load.

When we use DESSERT for multi-core systems, we should assume all values
returned by loads are correct. In addition, we should check whether or not the
memory consistency model is violated for a given instruction/memory trace.
Unfortunately, verifying memory consistency is NP-complete unless the order
of all memory operations to the same address is known [50]. We believe that the
future version of DESSERT can support not only low-overhead but incomplete
memory model checking with commit logs but also high-overhead but complete
memory model checking with traces from memory bus monitors.

• Bug Localization. DESSERT can catch and replay errors that violate high-
level properties. Even though we can obtain waveforms for these errors, it is

CHAPTER 7. CONCLUSION 126

mentally tough to find their locations in the design by manually examining the
waveforms. For example, pipeline hung is very easy to catch during simulation,
but there are many possible reasons causing this error.

To alleviate this pain, we can develop a tool that pinpoints which part of the
design is buggy from the error trace replayed by DESSERT. One promising
approach is spec-mining for bug localization. First, fine-grained assertions are
mined from correct traces generated by small tests and periodic replays from
long simulation. Next, these fine-grained assertions are checked against the error
trace to locate bug candidates that are signals exhibiting erroneous behaviors
at the first time.

Finally, based on Strober and Simmani, we can do more exiting research with
custom accelerators as follows:

• Thermal Modeling and Analysis. As we can obtain module-by-module
power traces from FPGA-based simulation, as well as floorplans from CAD
tools, we can conduct pre-silicon thermal analysis for novel hardware designs
running real-world workloads. HotSpot [122] is one example framework for
thermal analysis.

HotSpot can be integrated into Simmani for runtime thermal analysis with
FPGA-based simulation. Specifically, CAD tools dump the design’s floorplan
in the DEF format, which can be automatically transformed into grids com-
patible with HotSpot’s grid model. As we can obtain each module’s runtime
power density from the power model and the floorplan, HotSpot can use this
information to compute fine-grained thermal distribution in runtime, which can
be also useful for studies on dynamic thermal optimizations.

• Power Model Composition. In this thesis, Simmani is demonstrated for
a relatively smaller hardware design with a single tile compared to contem-
porary heterogeneous multi-core SoCs. In heterogeneous multi-core systems,
cores(tiles) and uncore are fairly independent blocks, and thus, we can improve
Simmani’s scalability with power model composition: we can train individual
power models for each core(tile) and uncore, and then compose the total power
with statistical methods. Lee et al. [80] also present such a methodology.

• Dynamic Power/Thermal Optimizations. Runtime techniques for power
and thermal management have been widely studied in the context of CPUs
(e.g. [122, 61, 40, 41, 125, 46]). As custom accelerators are prevalent in computer
systems, it is also important to do research on these techniques in the context
of a variety of accelerators. As Simmani is generic for any hardware designs, we
believe Simmani will be a useful tool for activity-based runtime power/thermal
techniques for custom accelerators.

CHAPTER 7. CONCLUSION 127

• Auto Training Set Generation. For Simmani, it is crucial to have a good
training set for both signal selection and power model regression. We used ISA
tests, microbenchmarks, and random samples from long-running applications
using Strober as a training set. However, for some other novel hardware designs,
it is even more challenging to find a good training set that is fully representative
for their real-world applications.

A good training set should have good coverage of valid signal activities. In
fact, this challenge is also shared with input generation for simulation-based
verification. Our future work will tackle this problem in a general setting for
both hardware verification and power modeling. We believe workload generation
with coverage-based fuzzing such as RFUZZ [76] is one promising approach.

128

Bibliography

[1] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-types/f1.

[2] Cint2006. https://www.spec.org/cpu2006/CINT2006/.

[3] CoreMark EEMBC Benchmark. https://www.eembc.org/coremark/.

[4] Evaluation techniques for storage hierarchies. IBM Systems Journal, 9(2):78–
117, 1970.

[5] B. Alpern et al. The Jikes Research Virtual Machine project: Building an
open-source research community. IBM Systems Journal, 44(2):399–417, 2005.

[6] David Arthur and Sergei Vassilvitskii. K-Means++: the Advantages of Careful
Seeding. In ACM-SIAM Symposium on Discrete Algorithms, 2007.

[7] Sameh Asaad, José Tierno, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes,
Mohit Kapur, Benjamin Parker, Thomas Roewer, Proshanta Saha, and Todd
Takken. A cycle-accurate, cycle-reproducible multi-FPGA system for acceler-
ating multi-core processor simulation. In FPGA, page 153. ACM Press, 2012.

[8] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Al-
bert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg,
Huy Vo, and Andrew Waterman. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17, EECS Department, University of California, Berke-
ley, Apr 2016.

[9] David Atienza, Pablo G. Del Valle, Giacomo Paci, Francesco Poletti, Luca
Benini, Giovanni De Micheli, and Jose M. Mendias. A fast HW/SW FPGA-
based thermal emulation framework for multi-processor system-on-chip. In
DAC, 2006.

BIBLIOGRAPHY 129

[10] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing
hardware in a scala embedded language. In Design Automation Conference
(DAC), 2012.

[11] Somnath Banerjee and Tushar Gupta. Efficient online RTL debugging method-
ology for logic emulation systems. In VLSI, 2012.

[12] Somnath Banerjee and Tushar Gupta. Fast and scalable hybrid functional ver-
ification and debug with dynamically reconfigurable co-simulation. In ICCAD,
2012.

[13] Nathan Beckmann and Daniel Sanchez. Cache Calculus: Modeling Caches
through Differential Equations. IEEE Computer Architecture Letters, 16(1):1–
5, 2017.

[14] Frank Bellosa. The benefits of event: driven energy accounting in power-
sensitive systems. In The 9th ACM SIGOPS European Workshop, 2000.

[15] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and E. Ayguade. A Sys-
tematic Methodology to Generate Decomposable and Responsive Power Models
for CMPs. IEEE Transactions on Computers, 62(7):1289–1302, Jul 2013.

[16] Kristof Beyls and Erik H. D’Hollander. Reuse distance as a metric for cache
behavior. In Proceedings of the International Conference on Parallel and Dis-
tributed Computing and Systems, 2001.

[17] Abhishek Bhattacharjee, Gilberto Contreras, and Margaret Martonosi. Full-
system chip multiprocessor power evaluations using FPGA-based emulation. In
ISLPED, 2008.

[18] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Wa-
terman, Jonathan Bachrach, and Krste Asanović. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In Proceedings of the 27th ACM/SIGDA
International Symposium on Field-Programmable Architectures, FPGA ’19,
2019.

[19] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[20] W. Lloyd Bircher and Lizy K. John. Complete System Power Estimation: A
Trickle-Down Approach Based on Performance Events. In ISPASS, 2007.

BIBLIOGRAPHY 130

[21] Stehpen M. Blackburn et al. The DaCapo benchmarks. In OOPSLA, 2006.

[22] Bluespec. RISC-V Verification Factory, 2017.

[23] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data
science. Vorabversion eines Lehrbuchs, 2016.

[24] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. Regression-based
RTL power modeling. ACM Transactions on Design Automation of Electronic
Systems, 5, 2000.

[25] David Brier and Raj S. Mitra. Use of C/C++ models for architecture explo-
ration and verification of DSPs. In DAC, 2006.

[26] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. In ISCA, 2000.

[27] Kevin Camera and Robert W. Brodersen. An integrated debugging environment
for FPGA computing platforms. In FPL, 2008.

[28] Trevor E. Carlson, Wim Heirmant, and Lieven Eeckhout. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In SC, 2011.

[29] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur,
Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Pa-
pamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger.
A cloud-scale acceleration architecture. In Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-49, 2016.

[30] Christopher Celio. The ccbench micro-benchmark collection.
https://github.com/ucb-bar/ccbench/wiki.

[31] Christopher Celio. Speckle: A wrapper for the SPEC CPU2006 benchmark
suite. https://github.com/ccelio/Speckle.git, 2014.

[32] Christopher Celio. A Highly Productive Implementation of an Out-of-Order
Processor Generator. PhD thesis, EECS Department, University of California,
Berkeley, Dec 2018.

[33] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and
Krste Asanović. BOOMv2: an open-source out-of-order RISC-V core. In First
Workshop on Computer Architecture Research with RISC-V (CARRV), 2017.

BIBLIOGRAPHY 131

[34] Christopher Celio, David A. Patterson, and Krste Asanović. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Pa-
rameterized RISC-V Processor. Technical Report UCB/EECS-2015-167, EECS
Department, University of California, Berkeley, Jun 2015.

[35] Debapriya Chatterjee, Anatoly Koyfman, Ronny Morad, Avi Ziv, and Vale-
ria Bertacco. Checking Architectural Outputs Instruction-By-Instruction on
Acceleration Platforms. In DAC, 2012.

[36] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William Reinhart,
Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat. FPGA-Accelerated
Simulation Technologies (FAST): Fast, Full-System, Cycle-Accurate Simula-
tors. In 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2007), 2007.

[37] Chin-Lung Chuang et al. Hybrid Approach to Faster Functional Verification
with Full Visibility. IEEE Design & Test of Computers, 24(2):154–162, 2007.

[38] Eric S. Chung, Michael K. Papamichael, Eriko Nurvitadhi, James C. Hoe, Ken
Mai, and Babak Falsafi. ProtoFlex: Towards Scalable, Full-System Multiproces-
sor Simulations Using FPGAs. ACM Transactions on Reconfigurable Technology
and Systems, 2(2):1–32, Jun 2009.

[39] Joel Coburn, Srivaths Ravi, and Anand Raghunathan. Power emulation: A
new paradigm for power estimation. In DAC, 2005.

[40] Ryan Cochran, Can Hankendi, Ayse Coskun, and Sherief Reda. Pack & Cap:
Adaptive DVFS and thread packing under power caps. In MICRO, number 1,
pages 175–185. ACM, 2011.

[41] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch,
and Ricardo Bianchini. CoScale: Coordinating CPU and memory system DVFS
in server systems. MICRO, 2012.

[42] Christophe Dubach, Timothy M. Jones, and Michael F.P. O’Boyle. Microar-
chitectural design space exploration using an architecture-centric approach. In
MICRO, 2007.

[43] Pradeep K. Dubey, George B. Adams, and Michael J. Flynn. Instruction Win-
dow Size Trade-Offs and Characterization of Program Parallelism. IEEE Trans-
actions on Computers, 43(4):431–442, 1994.

[44] Brandon H. Dwiel, Niket K. Choudhary, and Eric Rotenberg. FPGA modeling
of diverse superscalar processors. In ISPASS, 2012.

BIBLIOGRAPHY 132

[45] Philip G. Emma and Edward S. Davidson. Characterization of Branch and
Data Dependencies in Programs for Evaluating Pipeline Performance. IEEE
Transactions on Computers, C-36(7):859–875, 1987.

[46] Stijn Eyerman and Lieven Eeckhout. A counter architecture for online DVFS
profitability estimation. IEEE Transactions on Computers, 59(11):1576–1583,
2010.

[47] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A
performance counter architecture for computing accurate CPI components. In
ASPLOS, 2006.

[48] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization Paths
for Generalized Linear Models via Coordinate Descent. Journal of Statistical
Software, 33(1):1–22, 2010.

[49] Mohammad Ali M.A. Ghodrat, Kanishka Lahiri, and Anand Raghunathan.
Accelerating system-on-chip power analysis using hybrid power estimation. In
DAC, 2007.

[50] Phillip B. Gibbons and Ephraim Korach. Testing Shared Memories. SIAM
Journal on Computing, 26(4):1208–1244, 1997.

[51] Joseph L. Greathouse and Gabriel H. Loh. Machine learning for performance
and power modeling of heterogeneous systems. In ICCAD, 2018.

[52] Subodh Gupta and Farid N. Najm. Power modeling for high-level power esti-
mation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
8(1):18–29, 2000.

[53] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge,
Chander Sudanthi, Christopher D. Emmons, Mitchell Hayenga, and Nigel
Paver. Sources of error in full-system simulation. In IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), 2014.

[54] A. Hartstein and Thomas R. Puzak. The optimum pipeline depth for a micro-
processor. In ISCA, 2002.

[55] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches.
IEEE Transactions on Computers, 38(12):1612–1630, 1989.

[56] Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Ziyad Abdel
Kaleq, Nagib Hakim, Helia Naeimi, Donald S. Gardner, and Subhasish Mitra.
QED: Quick Error Detection tests for effective post-silicon validation. In IEEE
International Test Conference, pages 1–10, nov 2010.

BIBLIOGRAPHY 133

[57] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5MB model size. Technical report, 2016.

[58] Intel. SignalTap II Logic Analyzer: Introduction & Getting Started
(ODSW1164), 2017.

[59] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin
Schulz. Efficiently exploring architectural design spaces via predictive modeling.
In ASPLOS, 2006.

[60] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors:
Methodology and empirical data. In MICRO, 2003.

[61] Canturk Isci, Alper Buyuktosunoglu, Chen Yong Cher, Pradip Bose, and Mar-
garet Martonosi. An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget. In MICRO, pages
347–358, 2006.

[62] Canturk Isci and Margaret Martonpsi. Phase characterization for power: Eval-
uating control-flow-based and event-counter-based techniques. In HPCA, pages
122–133, 2006.

[63] Yousef S. Iskander et al. Improved abstractions and turnaround time for FPGA
design validation and debug. In FPL, 2011.

[64] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Al-
bert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and
Jonathan Bachrach. Reusability is FIRRTL Ground: Hardware Construction
Languages, Compiler Frameworks, and Transformations. In Proceedings of the
36th International Conference on Computer-Aided Design, ICCAD ’17, 2017.

[65] Hans Jacobson, Alper Buyuktosunoglu, Pradip Bose, Emrah Acar, and Richard
Eickemeyer. Abstraction and microarchitecture scaling in early-stage power
modeling. In HPCA, 2011.

[66] P. J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil. A predictive
performance model for superscalar processors. In MICRO, 2006.

[67] P.J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil. Construction
and Use of Linear Regression Models for Processor Performance Analysis. In
HPCA, 2006.

[68] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

BIBLIOGRAPHY 134

Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy
Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing,
Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In ISCA,
2017.

[69] Norman P. N.P. Jouppi. The Nonuniform Distribution of Instruction-Level and
Machine Parallelism and Its Effect on Performance. IEEE Transactions on
Computers, 38(12):1645–1658, 1989.

[70] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan
Bachrach, and Krste Asanović. FireSim: FPGA-accelerated Cycle-exact Scale-
out System Simulation in the Public Cloud. In Proceedings of the 45th Annual
International Symposium on Computer Architecture, ISCA ’18, 2018.

[71] Tejas S. Karkhanis and James E. Smith. A First-Order Superscalar Processor
Model. In ISCA, 2004.

[72] E Kass, R and E Raftery, A. Bayes factors. Journal of the American Statistical
Association, 90(1995):773–795, 1995.

[73] Salman Khan, Polychronis Xekalakis, John Cavazos, and Marcelo Cintra. Using
Predictive Modeling for Cross-Program Design Space Exploration in Multicore
Systems. In PACT, number Pact, 2007.

[74] Hokeun Kim, David Broman, Edward A. Lee, Michael Zimmer, Aviral Shri-
vastava, and Junkwang Oh. A predictable and command-level priority-based
DRAM controller for mixed-criticality systems. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015.

[75] Dirk Koch et al. Efficient hardware checkpointing: concepts, overhead analysis,
and implementation. In FPGA, 2007.

BIBLIOGRAPHY 135

[76] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik
Sen. Rfuzz: coverage-directed fuzz testing of rtl on fpgas. In 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018.

[77] Michael LeBeane, Jee Ho Ryoo, Reena Panda, and Lizy Kurian John.
WattWatcher: Fine-Grained Power Estimation for Emerging Workloads. In In-
ternational Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD), 2015.

[78] Benjamin C Lee and David M Brooks. Accurate and Efficient Regression Mod-
eling for Microarchitectural Performance and Power Prediction. In ASPLOS,
2006.

[79] Benjamin C Lee and David M Brooks. Illustrative Design Space Studies with
Microarchitectural Regression Models. In HPCA, 2007.

[80] Benjamin C. Lee, Jamison Collins, Hong Wang, and David Brooks. CPR: Com-
posable performance regression for scalable multiprocessor models. In MICRO,
2008.

[81] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, 1987.

[82] Jae W. Lee, Myron King, and Krste Asanović. Continual hashing for efficient
fine-grain state inconsistency detection. In ICCD, 2007.

[83] Wooseok Lee, Youngchun Kim, Jee Ho Ryoo, Dam Sunwoo, Andreas Gerstlauer,
and Lizy K John. PowerTrain: A learning-based calibration of McPAT power
models. In IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2015.

[84] Yunsup Lee. Decoupled Vector-Fetch Architecture with a Scalarizing Compiler.
PhD thesis, University of California, Berkeley, May 2016.

[85] Yunsup Lee, Albert Ou, Colin Schmidt, Sagar Karandikar, Howard Mao, and
Krste Asanović. The hwacha microarchitecture manual, version 3.8.1. Techni-
cal Report UCB/EECS-2015-263, EECS Department, University of California,
Berkeley, Dec 2015.

[86] Yunsup Lee, Colin Schmidt, Sagar Karandikar, Daniel Dabbelt, Albert Ou, and
Krste Asanović. Hwacha preliminary evaluation results, version 3.8.1. Techni-
cal Report UCB/EECS-2015-264, EECS Department, University of California,
Berkeley, Dec 2015.

BIBLIOGRAPHY 136

[87] Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and Krste
Asanović. The hwacha vector-fetch architecture manual, version 3.8.1. Techni-
cal Report UCB/EECS-2015-262, EECS Department, University of California,
Berkeley, Dec 2015.

[88] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun,
Vladimir Stojanovic, and Krste Asanović. A 45nm 1.3 GHz 16.7 double-
precision GFLOPS/W RISC-V processor with vector accelerators. In The 40th
European Solid State Circuits Conference (ESSCIRC), 2014.

[89] Charles E. Leiserson and James B. Saxe. Optimizing synchronous systems. In
22nd Annual Symposium on Foundations of Computer Science, 1981.

[90] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch: enabling energy
optimizations in GPGPUs. In ISCA, 2013.

[91] Patrick S. Li, Adam M. Izraelevitz, and Jonathan Bachrach. Specification for
the firrtl language. Technical Report UCB/EECS-2016-9, EECS Department,
University of California, Berkeley, Feb 2016.

[92] Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.
Jouppi. McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In MICRO, 2009.

[93] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating
system power consumption. In SIGMETRICS, 2003.

[94] Derek Lockhart, Gary Zibrat, and Christopher Batten. PyMTL : A Unified
Framework for Vertically Integrated Computer Architecture Research. In Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2014.

[95] J. Marantz. Enhanced visibility and performance in functional verification by
reconstruction. In DAC, 1998.

[96] Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J. Jackson,
Yaosheng Fu, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi Zhou, and
David Wentzlaff. Power and Energy Characterization of an Open Source 25-
Core Manycore Processor. In HPCA, 2018.

[97] Huzefa Mehta, Robert Michael Owens, and Mary Jane Irwin. Energy charac-
terization based on clustering. In DAC, 1996.

[98] Francisco Javier Mesa-Martinez, Joseph Nayfach-Battilana, and Jose Renau.
Power model validation through thermal measurements. 2007.

BIBLIOGRAPHY 137

[99] Pierre Michaud, Andre Seznec, and Stephan Jourdan. Exploring Instruction-
Fetch Bandwidth Requirement in Wide-Issue Superscalar Processors. In PACT,
1999.

[100] Micron Technology. Mobile LPDDR2 system-power calculator.
https://www.micron.com/support/tools-and-utilities/power-calc.

[101] Micron Technology. Micron mobile LPDDR2 SDRAM s4. Datasheet, Micron
Technology, Mar 2012.

[102] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite:
A distributed parallel simulator for multicores. In HPCA, 2010.

[103] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi.
CACTI 6.0 : A Tool to Model Large Caches. Technical Report HPL-2009-
85, 2009.

[104] F.N. Najm. A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):446–455,
dec 1994.

[105] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level speci-
fications. In Proceedings of the Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design (MEMOCODE’04), 2004.

[106] Derek B. Noonburg and John P. Shen. Theoretical modeling of superscalar
processor performance. In MICRO, 1994.

[107] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian
Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
and Matthias Zenger. An overview of the Scala programming language. Techni-
cal report, Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[108] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-effective
superscalar processors. In ISCA, 1997.

[109] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS: a full
system simulator for multicore x86 CPUs. In 48th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2011.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

BIBLIOGRAPHY 138

[111] Michael Pellauer, Michael Adler, Michel Kinsy, Angshuman Parashar, and
Joel Emer. HAsim: FPGA-based high-detail multicore simulation using time-
division multiplexing. In HPCA, 2011.

[112] D. Pelleg and A.W. Moore. X-means: Extending K-means with efficient estima-
tion of the number of clusters. In Proceedings of the Seventeenth International
Conference on Machine Learning, 2000.

[113] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate microarchi-
tectural simulation of thousand-core systems. In ISCA, 2013.

[114] Graham Schelle, Jamison Collins, Ethan Schuchman, Perrry Wang, Xiang Zou,
Gautham Chinya, Ralf Plate, Thorsten Mattner, Franz Olbrich, Per Hammar-
lund, Ronak Singhal, Jim Brayton, Sebastian Steibl, and Hong Wang. Intel
nehalem processor core made FPGA synthesizable. In FPGA, 2010.

[115] Andrew G. Schmidt, Bin Huang, Ron Sass, and Matthew French. Check-
point/restart and beyond: Resilient high performance computing with FPGAs.
In FCCM, 2011.

[116] Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statis-
tics, 6(2):461–464, mar 1978.

[117] Rathijit Sen and David A. Wood. Reuse-based online models for caches. In
SIGMETRICS, 2013.

[118] Ofer Shacham, Sameh Galal, Sabarish Sankaranarayanan, Megan Wachs, John
Brunhaver, Artem Vassiliev, Mark Horowitz, Andrew Danowitz, Wajahat
Qadeer, and Stephen Richardson. Avoiding game over: Bringing design to
the next level. In Design Automation Conference (DAC), 2012.

[119] H Shafi, P J Bohrer, J Phelan, C A Rusu, and J L Peterson. Design and
validation of a performance and power simulator for PowerPC systems. IBM
Journal of Research and Development, 47(5.6):641–651, 2003.

[120] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Al-
addin: A pre-RTL, power-performance accelerator simulator enabling large de-
sign space exploration of customized architectures. In ISCA, 2014.

[121] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automat-
ically characterizing large scale program behavior. In Proceedings of the 10th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS X), 2002.

BIBLIOGRAPHY 139

[122] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang,
Sivakumar Velusamy, and David Tarjan. Temperature-aware microarchitecture.
In ISCA, 2003.

[123] Daniel J. Sorin, Vijay S. Pai, Sarita V. Adve, Mary K. Vernon, and David A.
Wood. Analytic evaluation of shared-memory systems with ILP processors. In
ISCA, 1998.

[124] E. Sprangle and D. Carmean. Increasing processor performance by implement-
ing deeper pipelines. In ISCA, 2002.

[125] Bo Su, Junli Gu, Li Shen, Wei Huang, Joseph L. Greathouse, and Zhiying
Wang. PPEP: Online Performance, Power, and Energy Prediction Framework
and DVFS Space Exploration. In MICRO, 2014.

[126] Chen Sun, Mark T Wade, Yunsup Lee, Jason S Orcutt, Luca Alloatti, Michael S
Georgas, Andrew S Waterman, Jeffrey M Shainline, Rimas R Avizienis, Sen Lin,
Benjamin R Moss, Rajesh Kumar, Fabio Pavanello, Amir H Atabaki, Henry M
Cook, Albert J Ou, Jonathan C Leu, Yu-Hsin Chen, Krste Asanović, Rajeev J
Ram, Miloš A Popović, and Vladimir M Stojanović. Single-chip microprocessor
that communicates directly using light. Nature, 528:534, dec 2015.

[127] Dam Sunwoo, Gene Y. Wu, Nikhil a. Patil, and Derek Chiou. PrEsto: An
FPGA-accelerated Power Estimation Methodology for Complex Systems. In
FPL, 2010.

[128] Stuart Sutherland. The Verilog PLI Handbook. The International Series in
Engineering and Computer Science. Kluwer Academic Publishers, 2nd edition,
2002.

[129] Tarek M. Taha and D. Scott Wills. An instruction throughput model of super-
scalar processors. IEEE Transactions on Computers, 57(3):389–403, 2008.

[130] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanović, and David Patterson.
DIABLO: A Warehouse-Scale Computer Network Simulator using FPGAs. In
Proceedings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’15), 2015.

[131] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook,
David Patterson, and Krste Asanović. RAMP Gold: An FPGA-based Ar-
chitecture Simulator for Multiprocessors. In Proceedings of the 47th Design
Automation Conference (DAC ’10), 2010.

BIBLIOGRAPHY 140

[132] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović,
and David Patterson. A Case for FAME: FPGA Architecture Model Execu-
tion. In Proceedings of the 37th Annual International Symposium on Computer
Architecture (ISCA ’10), 2010.

[133] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[134] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-
driven integrated hardware-software optimizations using SimplePower. In ISCA,
2000.

[135] J.I. Villar, J. Juan, M.J. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe. Python
as a hardware description language: A case study. In Southern Conference on
Programmable Logic (SPL), 2011.

[136] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software, 11(1):37–57, Mar 1985.

[137] Andrew Waterman and Yunsup Lee. Spike, a RISC-V ISA Simulator, 2011.

[138] Andrew Waterman, Yunsup Lee, Krste Asanović, and David Patterson. The
RISC-V Instruction Set Manual: User-Level ISA Version 2.0. Technical Report
UCB/EECS-2014-54, EECS Department, University of California, Berkeley.

[139] Andrew Waterman, Yunsup Lee, Krste Asanović, and David Patterson. The
RISC-V Instruction Set Manual: Privileged Architecture Version 1.9.1. Tech-
nical Report UCB/EECS-2016-161, 2016.

[140] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David Patterson, and Krste
Asanović. The RISC-V Instruction Set Manual: Privileged Architecture Ver-
sion 1.7. Technical Report EECS-2015-157, EECS Department, University of
California, Berkeley.

[141] Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanović. The
RISC-V Instruction Set Manual: User-level ISA Version 2.1. Technical Report
UCB/EECS-2016-118, 2016.

[142] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. C. Hoe,
D. Chiou, and K. Asanovic. Ramp: Research accelerator for multiple pro-
cessors. IEEE Micro, 27(2):46–57, March 2007.

[143] Thomas F T.F. Wenisch, R.E. Roland E R.E. Wunderlich, M. Ferdman, A. Ail-
amaki, B. Falsafi, and James C J.C. Hoe. SimFlex: Statistical Sampling of
Computer System Simulation. IEEE Micro, 26(4):18–31, Jul 2006.

BIBLIOGRAPHY 141

[144] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings. Using Design-Level
Scan to Improve FPGA Design Observability and Controllability for Functional
Verification. In FPL, 2001.

[145] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an in-
sightful visual performance model for multicore architectures. Communications
of the ACM, 52(4):65, apr 2009.

[146] Darryl L. Willick and D. L. Eager. An analytic model of multistage intercon-
nection networks. In SIGMETRICS, 1990.

[147] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and
Derek Chiou. GPGPU performance and power estimation using machine learn-
ing. In HPCA, 2015.

[148] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. SMARTS: accelerat-
ing microarchitecture simulation via rigorous statistical sampling. In Proceed-
ings of the 30th Annual International Symposium on Computer Architecture
(ISCA ’03), 2003.

[149] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks.
Quantifying sources of error in McPAT and potential impacts on architectural
studies. In HPCA, 2015.

[150] Xilinx. ChipScope Pro and the Serial I/O Toolkit, 2017.

[151] Zan Yang et al. Si-emulation: system verification using simulation and emula-
tion. In International Test Conference, 2000.

[152] Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. Accurate phase-level
cross-platform power and performance estimation. In 53rd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2016.

[153] Davide Zoni, Luca Cremona, William Fornaciari, and Milano Dipartimento.
PowerProbe : Run-time Power Modeling Through Automatic RTL Instrumen-
tation. In DATE, 2018.

[154] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society. Series B: Statistical Methodology,
67(2):301–320, 2005.

[155] Hui Zou, Trevor Hastie, and Robert Tibshirani. On the ”degrees of freedom”
of the lasso. Annals of Statistics, 35(5):2173–2192, 2007.

	Contents
	List of Figures
	List of Tables
	Introduction
	Why RTL-Based Computer Architecture Research?
	Thesis Outline

	Background
	History of Evaluation Methodologies for Computer Architecture Research
	Analytic Modeling
	Software-Based Simulators
	Simulation Sampling
	FPGA-Accelerated Simulators

	Chisel & FIRRTL: Improving Productivity with Hardware Generators and Compiler Transforms
	Compilers-in-a-Pass

	Example RTL Designs
	RISC-V Mini
	RocketChip Generator
	BOOM
	Hwacha

	More Challenges in RTL Implementations
	Performance Evaluation
	Verification and Debugging
	Power and Energy Efficiency

	FPGA-Accelerated RTL Simulation
	Motivation: Efficient and Effective Framework for RTL Evaluation and Verification
	MIDAS v1.0: Open-Source FPGA-Accelerated RTL Simulation Framework
	Tool Flow with FIRRTL Compiler Passes
	FAME1 Transform and Simulation Mapping
	Platform Mapping

	Evaluation
	Target Designs and Host Platform
	Memory System Timing Model Validation
	Benchmarks
	Case Study: SPECint2006
	Case Study: DaCapo

	Summary

	RTL Debugging with FPGAs
	Motivation: How Challenging Is RTL Debugging?
	Existing RTL Debugging Methodologies
	DESSERT: Debugging RTL Effectively with State Snapshotting for Error Replays across Trillions of Cycles
	Deterministic RTL Simulation on the FPGA
	Error Checking on the FPGA
	Simulation APIs in Chisel
	Assertion and Log Synthesis
	Handling Assertions and Logs from FPGAs

	State Snapshotting and Initialization
	Automatic Scan Chain Insertion
	I/O Traces
	Off-chip Memory Initialization

	Optimizations to Reduce FPGA Resource Overhead
	SVF Backannotation
	Multi-ported RAM Mapping

	State Synchronization between the Golden Model and the FPGA
	Ganged-Simulation for Rapid Error Replays

	Results
	Target Designs, Golden Model, Benchmarks, and Host Platform
	FPGA Quality of Results
	Simulation Performance
	BOOM-v2 Assertion Failure Bugs Found
	BOOM-v2 Commit Log Bugs found

	Summary

	Sample-Based Energy Modeling
	Motivation: Why RTL-based Power/Energy Modeling?
	Existing Methodologies for Design-Time Power and Energy Evaluation
	Methodology Overview
	Statistical Sampling
	Sample-based Energy Modeling Methodology

	The Strober Framework
	Custom Transforms for Sample Replays
	Sample Replays on Gate-Level Simulation
	Signal Name Mangling in the Gate-level Netlist
	State Snapshot Loading on Gate-level Simulation
	Register Retiming

	DRAM Power Modeling
	Simulation Performance Model

	Evaluation
	Target Designs
	Benchmarks
	Simulation Performance
	Power Validation
	Case Study
	Power and Energy Efficiency for SPECint2006

	Summary

	Runtime Power Modeling
	Motivation: Is Activity-Based Runtime Power Modeling Necessary?
	Existing Runtime Power Modeling
	Power Modeling with Performance Counters
	Statistical Modeling with Microarchitecture Parameters
	Cycle-Level RTL Power Modeling

	Power Model Training
	Power Modeling Background
	Toggle Pattern Matrix from VCD Dumps
	Automatic Signal Selection through Clustering
	Finding the Optimal Number of Signals
	Obtaining Cycle-Accurate Power Traces
	Power-Model Regression
	Finding the Optimal Window Size

	Power Model Instrumentation
	Activity Counter Insertion
	Runtime Power Analysis with FPGAs

	Evaluation: Rocket and BOOM
	Experimental Setup
	Fine-Grained Power Prediction
	Case Study: SPEC2006 and SPEC2017

	Evaluation: Hwacha
	Experimental Setup
	Signal and Variable Selection
	Automatic Window Size Selection
	Power Model Validation
	Case Study: SqueezeNet

	Summary

	Conclusion
	Contributions
	Future Work

