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Abstract

Stateful Detection of Black-Box Adversarial Attacks

by

Steven Chen

Master of Science in

University of California, Berkeley

Professor David Wagner, Chair

The problem of adversarial examples, evasion attacks on machine learning classifiers, has
proven extremely difficult to solve. This is true even when, as is the case in many practical
settings, the classifier is hosted as a remote service and so the adversary does not have direct
access to the model parameters.

This paper argues that in such settings, defenders have a much larger space of actions
than have been previously explored. Specifically, we deviate from the implicit assumption
made by prior work that a defense must be a stateless function that operates on individual
examples, and explore the possibility for stateful defenses.

To begin, we develop a defense designed to detect the process of adversarial example
generation. By keeping a history of the past queries, a defender can try to identify when a
sequence of queries appears to be for the purpose of generating an adversarial example. We
then introduce query blinding, a new class of attacks designed to bypass defenses that rely
on such a defense approach.

We believe that expanding the study of adversarial examples from stateless classifiers to
stateful systems is not only more realistic for many black-box settings, but also gives the
defender a much-needed advantage in responding to the adversary.
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Chapter 1

Introduction

Over the past few years, neural networks have driven advancement in a wide range of do-
mains. Deep learning based methods have achieved state of the art performance in areas
including, gameplaying AIs for Go and chess [34], machine translation between different
languages [39], and classification and object detection for images [32]. Accordingly, neural
networks are also increasingly used in safety-critical applications, where the reliable perfor-
mance of these networks and their security against a malicious adversary is paramount. In
some cases, such as a local image recognition system, the network and its parameters may
be available to the adversary (the white-box case). However, when the classifier is hosted
remotely (e.g., as a cloud service), only the output of the neural network is available to the
adversary (the black-box case).

Worryingly, these neural networks have been shown to be highly vulnerable to adversarial
examples : inputs crafted by an adversary to deliberately fool a machine learning classifier.
Defending against adversarial examples has proven to be extremely difficult. Most defenses
that have been published have been found to have significant flaws [8, 4], and even those few
defenses that have thus far withstood validation offer only partial robustness [28].

Adversarial examples might not actually be problematic in practice, where models are
often held private by companies and hosted on the cloud. However, surprisingly, adversarial
examples can even be generated in a fully black-box threat model. Such an adversary in this
threat model can only make queries of the model and receive the predicted classification label
as output. While there certainly are domains where the adversary will have white-box access
to a deployed neural network, in many production environments when neural networks are
deployed, the user is only allowed to make queries of the classifier and observe the output.
For example, services such as Clarifai [12] and Google Cloud Vision AI [18] offer image
classification APIs where users can submit images and receive only the label of that image.
Similarly, for spam classification, a feature offered by many email providers, a user cannot
directly access the actual spam classifier, but only observe whether an email is classified as
spam or not.

We study the problem of detecting the generation of adversarial examples, as opposed
to trying to (statelessly) detect whether or not any individual input is malicious (which has
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proven to be difficult [8]). To do this, we consider the task of detecting the sequence of
queries made to the classifier when creating an adversarial example. The central hypothesis
we evaluate is whether the sequence of queries used to generate a black-box adversarial
example is distinguishable from the sequence of queries when under benign use.

Operating under this hypothesis, we propose a defense that relies on the specific obser-
vation that existing black-box attacks often make a sequence of queries, where each query
is similar to the prior. In contrast, benign users rarely make queries for multiple nearly-
identical copies of the same image. We train a similarity-detector neural network to identify
such query patterns, and find that the existing state-of-the-art black-box adversarial exam-
ple attack algorithms can be easily detected through this strategy. Our proposed strategy
can trivially compose with any existing defense for defense-in-depth.

Then, we study adaptive attacks against our scheme, to understand whether an attacker
who is aware of our detection strategy could evade it. We develop query blinding, a general
strategy for attacking defenses which monitor the sequence of queries in order to detect ad-
versarial example generation. Query blinding attacks pre-process each input with a blinding
function before querying the classifier, so that (1) the pre-processed inputs match the benign
data patterns, but (2) it is possible to deduce the classifier’s output from the result of these
queries. We show that our defense remains secure against query blinding.

Given the difficulty in defending or detecting attacks statelessly, we believe that this
new research direction—stateful methods for detecting black-box attacks—presents renewed
hope for defending against adversarial example attacks in the black-box threat model.
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Chapter 2

Background & Problem Statement

2.1 Preliminaries

This paper studies evasion attacks on neural networks [6], commonly referred to as adversarial
examples [35]. We briefly cover background which will be familiar to readers who have
followed this line of work.

Neural Networks. A neural network is a function f(·) consisting of multiple layers. Each
layer computes a weighted linear combination of the outputs of the previous layer, followed
by a non-linearity. Because neural networks can have arbitrarily many layers, as well as
various non-lineariaties, they can provably approximate arbitrarily complicated functions.
The weights θ of a neural network refer to the parameters used in the weighted linear
combinations. To be explicit we may write fθ(·) to refer to the network f(·) with weights θ.
Most of the recent impressive results in machine learning have come from applying neural
networks [34, 39, 32]. This paper focuses on classification neural networks, where some
example x is processed by the neural network to return the predicted label y = f(x) of the
example.

Training Neural Networks. A neural network begins with randomly initialized weights
θ. The process of training a neural network allows the network to iteratively learn better
weights to solve the given task.

Neural networks are most often trained with stochastic gradient descent. Given a set of
labeled training examples X with examples xi and corresponding labels yi, gradient descent
attempts to solve the problem

argmin
θ

E
(x,y)∈X

`(fθ(x), y)

where `(·) measures the loss : intuitively, how “wrong” the prediction fθ(x) is compared to
the true label y. The process of stochastic gradient descent solves the above problem by



CHAPTER 2. BACKGROUND & PROBLEM STATEMENT 4

iteratively updating the weights

θ ← θ − ε · ∇θ

( ∑
(x,y)∈B

`(fθ(x), y)
)

where ∇θ is the gradient of the loss with respect to the weights θ; B ⊂ X is a randomly
selected mini-batch of training examples drawn i.i.d. from X ; and ε is the learning rate
which controls by how much the weights θ should be changed.

Adversarial Examples. To formalize the definition of adversarial examples and make
their study well-defined, most existing work [17, 28, 4] defines an adversarial example as an
input x′, which is a slightly modified version of a naturally occurring example x, such that a
neural network classifies them differently. Formally, an adversarial example x′ satisfies two
properties: (1) for some d(·), a distance metric, d(x, x′) < ε, but (2) for the neural network,
f(x) 6= f(x′). As long as ε is set to be small enough, the perturbation that is introduced
should not change the actual true classification of the object in the image (e.g. a dog with
small peturbations is still a dog).

Generating Adversarial Examples. The problem of generating adversarial examples can
be formalized as a minimization problem

δ∗ = argmax
δ

`(f(x+ δ), y)

subject to the constraint that δ is small according to some metric.
White-box attacks to generate adversarial examples largely rely on using the same gradient-

descent process used to train a neural network. Initially, we set δ0 = 0 and then update

δi+1 = δi +∇x`(f(x+ δi), y)

for some chosen loss function `.
Black-box attacks, by definition, are unable to perform the above optimization because

they are not able to compute the gradient of the loss. Instead, black-box attacks must
perform gradient-free optimization. This paper considers two possible state-of-the-art black-
box attacks: NES [21] and the BoundaryAttack [1]. While their implementations differ
(significantly so), at a very high level they both rely on the same strategy. Starting from some
initial perturbation δ0, the attacks slowly query the classifier on a sequence of perturbations
f(x+ δi), each highly similar to the previous, with the objective of finding an input that is
(a) misclassified and (b) introduces a small distortion.

A thorough understanding of these black-box attacks is not necessary yet; we defer a
complete description to Section 6.

Problem Domain: Image Classification. Following most prior work on the space of
adversarial examples [4], this paper studies the domain of image classification. Here, images
are represented as h ·w · c dimensional vectors (with height h, width w, and c color channels)
drawn from [0, 1]hwc.
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2.2 Threat Model

As discussed earlier, we focus on detecting black-box attacks for crafting adversarial exam-
ples. In a black-box threat model, the adversary can query the model on any input and learn
its classification, but the weights and parameters of the model are not released to users. We
envision, for example, a platform that makes available a machine learning model as a service,
where the model can be queried by a user after he/she creates an account, but cannot down-
load the model itself. Under this threat model, we aim to increase the difficulty for attackers
to craft adversarial examples. While an attacker can query the model any number of times
in trying to generate an adversarial example, our goal is to detect such attacks before they
are successful.

We focus on an account-oriented setting, where users must create an account before they
can query the model. Attackers may be free to create as many accounts as they wish, but we
assume there is some practical cost associated with creating each account (e.g., linking to a
valid credit card or phone number, paying an account fee, etc.). In our scheme, the attacker’s
account can be cancelled as soon as an attack-in-progress is detected, requiring the attacker
to create a new account at that point. A key metric for the effectiveness of our defense
is the number of accounts that an attacker must create to successfully craft an adversarial
example. Each time the attack is detected, the attacker must create a new account, so we
measure this by counting the number of times the attack is detected before it is successful
(number of detections); this determines the attacker’s cost to defeat the system.

Notice that our goal of detecting when an adversarial attack is in progress over a sequence
of queries to the model is different from detecting whether or not any individual input is
adversarial (as in previous detection based defenses [8]). Thus, our scheme involves retaining
history of prior queries and scanning this history to check for patterns that indicate if an
attack is in progress. Such a defense is not feasible in the white-box threat model, where the
defenders have no visibility into the attacker’s offline computation.

We focus on the hard-label setting, where each query to the model returns only the
categorical label assigned by the classifier, but not a numerical confidence score associated
with it. Our approach would extend naturally to other settings, but as argued in prior work
[6] we believe the hard-label setting is the most realistic black-box threat model.1

There are two broad types of black-box attacks in the literature: query-based attacks,
which make a sequence of queries to the model, and zero-query attacks, which work entirely
offline without interacting with the model. While significant prior work has been dedicated
to constructing defenses against the latter [36], limited work studies defenses against query-
based attacks. Our main contributions lie in defending against query-based attacks. Our
approach, monitoring the sequence of queries against the classifier, by definition can not
detect zero-query attacks.

1We have some evidence (see Appendix E) that solving the soft-label setting may be more challenging.
We leave it to future work to study that problem area.
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2.3 Query-Based Attacks

Our defense is motivated by the sequential nature of query-based black box adversarial
attacks, such as NES [21] and the Boundary Attack [1]. Query attacks iteratively perturb a
source example to slowly transform it into an adversarial example according to some policy,
usually by estimating gradients or boundary proximity. This information is inferred by
querying the current proposed adversarial example and points near the example.

If the defense considers these attack queries as a sequence, then successive queries are
likely to be close together (by some distance metric), because (1) each iteration of the
attack makes a small estimated-gradient or boundary-based step from the current proposed
adversarial example to the next proposed example, and (2) since only labels are accessible, the
attack requires querying a random sample of points near the current example (to approximate
the actual gradient or decision boundaries of the model). Therefore, a scheme that tracks
the sequence of queries made to a model should be able to detect an attack based on an
anomalous pattern of suspiciously close queries.

As a concrete example, the label-only version of the NES attack [21] starts with an im-
age that is already adversarial (it has a different class from the original image) and then
sequentially takes “gradient” steps from the adversarial image towards the original image.
Because obtaining a true gradient is not possible in the hard-label setting, the attack uses
the gradient-free optimization method, NES, which estimates the gradient using the soft-
max scores of a random sample of points nearby the original example x. For this gradient
estimation to be accurate, queries must necessarily be made within a small distance of each
other, which creates a pattern that we will use to detect the NES attack.

2.4 Zero-Query Attacks

One of the most surprising properties of adversarial examples is their transferability [17]:
given two different models (even trained on different datasets) for the same task, it turns out
that adversarial examples generated on one will often transfer to the other. This observation
motivated the earliest black-box attack algorithms: train a “surrogate model” [30] on the
same task as the target model, perform a white-box attack on the surrogate model, and
replay this generated adversarial example on the target model. This zero-query attack,
while not 100% successful, is surprisingly effective.

As mentioned earlier, our approach cannot defend against transfer attacks and other
zero-query attacks. However, others have proposed possible defenses to transfer attacks.
Perhaps the best known example is Ensemble Adversarial Training (EAT) [36] which has
been shown to be effective against zero-shot adversarial attacks.

The major limitation of these zero-query defenses (including EAT) is that they are not
effective against query-based attacks. Fortunately, the prior work of defenses targeting the
zero-query threat model perfectly complements our approach: we envision combining our de-
fense (to detect query-based attacks) with an existing defense (to detect zero-query attacks).
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In Section 8 we combine EAT with our defense to develop a complete defense to black-box
adversarial examples.
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Chapter 3

Our Scheme

We now introduce and explain our scheme to detect black box, query based, adversarial
attacks by tracking the sequence of queries the attacker makes in the process of generating
an adversarial example.

3.1 The Query Detection Defense

1) Per user, encode each query to the 
model by the user, and save the query 
encoding

2) For a new query, compute its k-
neighbor distance—the mean distance 
between the query and its k nearest 
neighbors: d= !" ∑$%!

" &$

Similarity
Encoder 
Network

Similarity 
Encoder

Detector Buffer
(k-neighbor distance)x0, x1…xn

e0, e1…en Attack 
in progress

3) Set the detection threshold, δ, 
as the k-neighbor distance for the 
0.1 percentile of the training set. If 
d < δ, an attack is detected and the 
user is blocked.

d < δ

x0

x1

x2.
.
.xn-1

xn

d0
d1

dk

Figure 3.1: Query Detection Defense: The high-level process for detecting a query-based
adversarial attack.
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We propose a simple strategy to detect query-based attacks for generating adversarial
examples. At a high level, our defense is applied as an access monitor on top of an existing
classifier. Our detector records all queries to the classifier and stores them in a temporary
history buffer. For each new query, the detector computes the number of “nearby” examples
in this temporary history buffer. If we determine there are too many nearby examples, we
report this as part of an attack sequence and take appropriate action (e.g., block this user’s
account).

In more detail, for each user, we save every query from that user for a bounded dura-
tion (this period can be tuned according to the defender’s resources, for example either a
fixed amount of time or a fixed number of queries). Then, for each new query the system
receives, we compute its k-nearest-neighbor distance to the previously seen examples—the
mean pairwise distance between the query and its k nearest neighbors among the previously
saved queries (i.e., for each of the k nearest neighbors, we compute the distance between the
neighbor and query, then take the mean over these k distances). To measure the distance
between queries, we first encode the queries using a deep similarity encoder [5], that maps
perceptually similar images to nearby points in a reduced dimensional space, and then use
the `2 distance in this encoded space.

If the mean distance falls below some chosen threshold, then we flag this example as a
potential attempt at generating an adversarial example. We choose the detection threshold
so that benign use of the classifier is not flagged. In particular, we set the threshold so that
if the entire training set were to be randomly streamed as queries, 0.1% of the training set
would be flagged as attacks (i.e. the false positive rate would be 0.1%). 1 After an attack
is detected, the buffer containing the previously saved queries for that user can then be
cleared. Moreover, in response to the attempted attack, the user may then be banned from
the service either immediately, or after a random number of subsequent queries, in order to
reduce the attacker’s knowledge of when exactly their attack was detected. A diagram of
our scheme is shown in Figure 3.1.

3.2 Similarity Encoder

A key question in the design of our method is the metric to use for the k-nearest-neighbor
search. Naively, we might imagine choosing a simple metric—for example, the `2 distance
between two images. However, using such a simple method has two drawbacks:

1. Most importantly, simple metrics, such as `2, may not accurately capture distance in
adversarial situations and are too easy for an attacker to evade. A small rotation or
translation in pixel space can cause dramatic changes according to `2 norm, which
experimentally we find allows an adversary to evade detection.

1In practice, a lower false positive rate may be necessary. However, some existing defense research for
detecting adversarial examples sets the false positive rate at approximately 5% [41]. Our value is thus 50×
lower than prior work.
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2. Additionally, computing `2 distance requires storing an entire copy of every queried
image. This could potentially pose a significant cost to the hosting service from both
the storage costs, as well as the potential privacy risks that come with storing user
queries for longer than strictly necessary.

To increase the difficulty of such circumvention techniques, we use perceptual similarity
as the starting point for our distance metric, as by construction, adversarial attacks intend
to generate examples perceptually similar to the original image. To measure the perceptual
similarity of two images, we train a deep neural network to encode images into a lower-
dimensional space of dimension d, such that similar images are mapped to similar points in
the encoded space. For example, for a given picture of a dog, after rotating or translating the
image slightly, the perceptual content of the image is still the same (i.e., the same dog), and
we train the encoder so that both of these images have similar d-dimensional representations.

This construction resolves both of the difficulties identified earlier. By design, small
modifications to an image are less likely to cause dramatic increases in encoded-space `2
distance. Further, because the encoded space is much smaller than the total image size, this
allows us to save on storage costs.

Encoder Setup & Training. We represent the encoder E(·) as a neural network
mapping images x ∈ Rh·w·c to an encoded space e ∈ M of dimension M . As described,
the objective of this encoder is to map visually similar inputs x, x̃ to encodings e = E(x),
ẽ = E(x̃) that are similar under `2 distance, so that e− ẽ is small.

To achieve this we train the similarity encoder neural network with a contrastive loss
function [5]. Specifically, we consider two pairs of images. Pair 1 consists of a training set
image xi, and an image perceptually similar to xi: a positive, xp. Pair 2 consists of a different
training image xj with an image not perceptually similar to xj: a negative, xn. We then
define the loss for their encodings (ei, ep), (ej, en) as the contrastive loss function

L(xi, xp, xj, xn) = ‖ei − ep‖22 + max
(

0,m2 − ‖ej − en‖22
)
.

The first term encourages similar encodings for positives and the second term encourages
different encodings for negatives by penalizing encodings less than a certain margin m apart
for negatives.

3.3 Experimental Setup

We evaluate our defense on the CIFAR-10 dataset: a collection of 60,000 low-resolution
(32 × 32) color images drawn from 10 classes. Because ach pixel is a color value between
0 and 1, each image is drawn from [0, 1]32×32×3. We choose this dataset for three reasons.
First, CIFAR-10 is the most popular dataset for studying adversarial examples [4]. Second,
defenses on ImageNet have thus far proven to be far beyond our current capabilities [13],
and no propose neuradl network defense remains robust to attack. Finally, CIFAR-10 is
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Figure 3.2: The mean k-Neighbor distance (in encoded space) of the 0.1% percentile of the
CIFAR-10 training set as a function of k. We select the threshold k so that it is large enough
to support a wide margin, but not so large as to be computationally prohibitive.

significantly less computationally expensive than ImageNet, allowing for us to perform a
wide range of experiments.

We train a ResNet classifier [20] on the CIFAR-10 dataset for 100 epochs with Adam [25]
on a 1080 Ti GPU with Keras [11] and TensorFlow [2], achieving 92% test accuracy.

3.4 Encoder Training and Threshold Selection

To train the similarity encoder for the scheme, we follow the advice of prior work [5] and
initialize our encoder with the same architecture and weights as a network trained to classify
the desired images. For CIFAR-10, we first train a three layer CNN (architecture given in the
appendix) for 100 epochs using data augmentation and reach a validation accuracy of 76%.
Then the similarity encoder is constructed by replacing the logits layer of the network with a
dense layer of 256 units, to produce an encoding of dimension d = 256. A margin of m =

√
10

was found experimentally to result in the best encodings. A more complex architecture such
as a ResNet [20] might yield even better results, but this simpler architecture was sufficiently
effective.

The similarity network was trained to minimize the contrastive loss function described in
Section 3.2, with a learning rate α = 1e− 4, momentum µ = 0.9, and a batch size of b = 32.
To generate a batch of positive pairs for training, b images were randomly selected from
the training set; then, a random image transformation (that should retain the perceptual
content of the image) was selected and applied to each of the b images (similar to traditional
data augmentation used for network training). For negative pairs, b pairs (2b images total)
of different images were randomly selected without replacement. The transformations used
are enumerated in Section 5.1.
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Threshold selection. The choice of k for our scheme is important, since the detection
threshold is determined by the k-neighbor distance of the 0.1 percentile of the training
set. The value for k should be selected such that the detection threshold is maximized
(increasing the separation between suspicious and benign queries), while keeping k relatively
low (to reduce the computational cost of calculating the k-neighbor distance). However, also
important is that k is now the minimum number of queries before our defense could possibly
flag a possible attack: and so a smaller k should be preferred whenever possible. We set k
by exploring the threshold needed to ensure a 0.1% false positive rate as a function of k.

As seen in Figure 3.2, this distance increases sharply until k = 50, where the distance
begins to plateau and marginally continues to increase as k increases. Therefore, we select
k = 50 for the rest of this paper.
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Chapter 4

Non-Adaptive Evaluation

Having described our defense proposal, we begin by demonstrating that it has at least some
potential utility: it effectively detects existing (unmodified) black-box query attacks. While
there are many black-box (hard-label) attacks, they fall roughly into two categories:

• Gradient estimation attacks at their core operate like standard white-box gradient-
based attacks (as described in Section 2.1). However, because they do not have access to
the gradient, these types of attacks estimate the gradient through repeatedly querying
the model.

• Boundary following attacks, in contrast, first identify the decision boundary of the
neural network, at a potentially far-away point, and then take steps following the
boundary to locate the nearest point on the boundary (i.e., an adversarial example) to
the given input.

We evaluate against one attack from each category as representative examples.

4.1 Attack Setup

For each attack studied, we use the targeted variant, where the adversary generates an
adversarial example chosen so that the resulting adversarial example x is classified as a
target class t and is within a distance ε of an original image x. The original image and
target class are chosen randomly. We call an attack successful if the `∞ distortion is below
ε = 0.05. While most white-box work on CIFAR-10 considers the smaller distortion bound
of ε = 0.031 ≈ 8/255, we choose this slightly larger distortion because black-box attacks are
known to be more difficult to generate and so we give the adversary slightly more power to
compensate.

NES [21] is one of the two most prominent gradient-estimation attacks (along with SPSA
[38]). It estimates the gradient at a point by averaging the confidence scores of randomly
sampled nearby points, and then uses projected gradient descent to perturb an image of
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Attack Success Rate Num. Queries Detections

NES 100% 325,200±153,300 6,377
Boundary 100% 14,720±8,923 288

Table 4.1: Success rate of unmodified attacks on a neural network protected with
our scheme. While attacks succeed with 100% probability, the attacks trigger between
hundreds to thousands of detections.

the target class until it is sufficiently close to the original image. In the hard label case,
the confidence score for a point is approximated by taking a Monte Carlo sample of nearby
points, and then computing the score for a class as the fraction of nearby points with that
class.

The Boundary Attack [1] was the first attack to propose following the decision bound-
ary to generate black-box adversarial examples. Since its publication, there have been mul-
tiple proposals to improve this attack [24, 22]. We still evaluate our defense on the vanilla
boundary attack; the other attacks are more query efficient, but at their core still perform
the same operation. To compare directly with the NES attack, we use `∞ distance with the
Boundary attack (instead of the usual `2 distance).

4.2 Results

We run the default, unmodified implementations of each attack against our scheme and
find that they can be detected. The results are presented in Table 4.1. (Attack specific
parameters for NES are given in 6.1). An attack is considered successful if an adversarial
example is found within an `∞ distortion of ε = 0.05 from the original image, and of the
target class is produced. The attack also terminates as soon as it finds such an example.
Each attack does eventually succeed at a high rate, but is detected frequently with at least
200 detections on average. Thus, an attacker would need to create at least 200 accounts in
order to generate a single adversarial example with these attacks. This demonstrates that
our query sequence based scheme can reliably detect existing black box attacks.
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Chapter 5

Query Blinding

While showing that our proposed defense can detect existing attacks is a useful first step, it
is not sufficient for a complete evaluation. We must also evaluate whether our defense can
detect future attacks. Doing this requires developing adaptive attacks specifically designed
to bypass the defense proposal.

Thus, we introduce query blinding1: a general strategy which can be used to hide the
query sequence from the defender. At its core, the objective of a query blinding attack is
to learn the value of f(x), for some specific x, without actually querying the point x. We
define two functions: a randomized blinding function b(x; r) = {x′0, x′1, . . . , x′n} that maps
from one example to a set of modified examples so that x′i− x ≥ ε, and a revealing function
r(f(x′0), f(x′1), . . . , f(x′n)) = y ≈ f(x) that approximates what f(x) would return given the
classifier outputs. In this paper for simplicity we restrict ourselves to the case where b(x) = 1
for simplicity. In the appendix we give an example of a more sophisticated blinding function
that deviates from this simplifying assumption.

5.1 Image Transformations

Image processing transformations, such as image translation and brightness adjustment,
are natural and readily available blinding functions. Let x be the image that an attacker
would like to query the model for, f(x) be the model’s output for the query, and Tc(x; r)
be a randomized image processing transform (e.g., by rotating it or shifting it by a random
amount c). We would then set b(x; r) = {Tc(x; r)}. Because the purpose of our blinding
function is to fool the query-detector by transforming a sequence of queries which are pairwise
similar to a sequence of queries which are not, we would like the `2 distortion between
the original image and the transformed image to be large. For example, for a 3 x 32 x
32 CIFAR-10 image, adjusting the brightness (i.e. individual pixel values) by a factor of
just c = 0.001 increases the `2 distortion by 0.001(3)(32)(32) = 3.072. However, despite
increasing distortion, these transformations still retain the primary content of the image,

1We call this query blinding because of its similarities to blind signatures [10].
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and a model of high accuracy/performance should produce relatively similar outputs for
the original and transformed images, so the corresponding revealing function for an image
processing transformation is simply r(f(x′)) = f(x′). This paper considers eight different
possible transformations:

• Uniform Noise: add uniform noise to the image, where the noise is drawn from a
uniform distribution c ∼ U(−r, r).

• Translate: translate the image horizontally and vertically by ch and cv fractional pixels,
where ch and cv are sampled randomly from a uniform distribution ch ∼ U(−r, r) and
cv ∼ U(−r, r), using bilinear interpolation and filling in empty space with zeroes.

• Rotate: rotate the image cπ radians, where c is sampled randomly from a uniform
distribution c ∼ U(−r, r), using bilinear interpolation and filling in empty space with
zeroes.

• Pixel-wise Scale: scale each pixel by the same factor c, where c is sampled randomly
from a uniform distribution c ∼ U(1− r, 1 + r)

• Crop and Resize: crop the image to box coordinates of [c, c, 1− c, 1− c] and then resize
image to original size (using bilinear interpolation), where c is sampled randomly from
a uniform distribution c ∼ U(0, r) and box coordinates of [0, 0, 1, 1] represent the
uncropped image.

• Brightness : adjust the brightness of the image by adding to each pixel the same con-
stant c, where c is sampled randomly from a uniform distribution c ∼ U(−r, r).

• Contrast : adjust the contrast of the image by a random contrast factor c, where c is
sampled randomly from a uniform distribution c ∼ U(r, 1).

• Gaussian Noise: add Gaussian noise to the image, where the noise is drawn from a
Gaussian distribution c ∼ N (0, I) ∗ r.

5.2 Auto-Encoder Attack

While simple image transformations are one possible method for performing query blinding,
it is certainly not the optimal strategy. We now develop a strategy for learning a blinding
function.

Our proposed approach directly trains a type of auto-encoder neural network α(x). Typ-
ical auto-encoders are trained with the property that α(x) ≈ x. Instead, given an in-
put image x, we train a randomized auto-encoder α(x; r) to satisfy two properties: (1)
α(x; r1)− α(x; r2)|2 is large, but (2) f(α(x; r)) ≈ f(x). Satisfying property (1) ensures that
the augmented image will evade detection by the encoder, while property (2) ensures that
the actual classification of the image will remain unchanged.
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Specifically, we train the autoencoder to minimize the loss

`(x) = H
(
f(α(x, r)), f(x)

)
− c ·min

(
α(x; r1)− α(x; r2)

2
2, d

2
)

where H(·) is the cross-entropy loss between the two distributions, c is a constant that
controls the relative importance of the two loss terms, and d is a constant that sets the
maximum desired `2 distance between transformed examples.

We train the autoencoder with stochastic gradient descent for 10 epochs on the CIFAR-
10 training data. In order to ensure that we are not “cheating” by training on the exact
function f(·) which we will be attacking, we train a new classification neural network f ′(·)
on 10% of the CIFAR-10 training data. In practice, we set c = 1.

To determine the threshold d, we try values between 2 and 20 and pick the one that is most
effective at fooling the detector. We found that in practice d = 10 is well-balanced between
being big enough so the detector is fooled, but not so big that f(α(x; r)) is substantially
different from f(x).

5.3 Increasing Attack Diversity

While, on average, the above query-blinding attacks generate images with an `2 difference
of some distance d between them, in the worst case (if we are unlucky with the choice of
randomness) it may be possible that we have blinded images which are nearly identical. This
is true especially when we generate a large number of transformations xi = b(x, ri). By the
birthday paradox, we should expect that as we generate increasingly many images, at least
some fraction will be similar to each other.

For simplicity of analysis, assume for the moment that our defense relied exclusively on
the `2 distance between images being less than some threshold τ to detect attacks. After
we have made queries q0, q1, . . . , qj−1 we could now check whether or not making the query
qj = b(x; rj) would be detected as an attack against our own history. If it would be, we can
simply re-sample a new value rj′ and generate a new candidate query qj = b(x; rj′) until we
obtain a sample that is above the detection threshold.

While this greedy approach is simple, we could do better if we knew a priori how many
queries we would need to make of the target classifier. Begin by generating a large number
of candidates xi = b(x, ri). We construct a graph G where each candidate xi is a node, and
we connect node i to node j if the distance between xi and xj is less than the threshold τ
(i.e., querying both would result in a detection. Formally, G = (V,E) where V = 1, . . . N
and E = {(i, j) : xi − xj < τ}. Identifying the maximum subset of examples that would not
cause a detection by our hypothetical `2-based detector then reduces to finding the maximum
independent set of this graph G. While this problem in general is NP-Hard and NP-Hard
to approximate, we find that simple approximation algorithms identify sub-graphs with a
cardinally on average twice as large as our initial greedy querying approach.

While we in practice use an encoder and do not rely directly on `2 distance, we find that
this approach still reduces the number of detections with the encoder.
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Chapter 6

Adaptive Attack Evaluation

Given that our proposed defense effectively prevents existing black-box attacks, we now ask
the question: can it prevent more sophisticated attacks designed to bypass this defense? We
find that while it is possible to degrade the effectiveness of the defense, we can not defeat it
completely.

6.1 The NES Attack

We first elaborate on the NES attack [21] in more detail. The NES attack generates an adver-
sarial example by starting with an image of the target class (i.e. that is already adversarial)
and then using projected gradient descent to perturb the example until it’s within ε of the
original image, while still classified as the target class. The gradient at a particular point,
x, is approximated effectively as a finite differences estimate on a random Gaussian basis.
Full details can be found in [21], but simplified, the gradient is estimated by: (1) sampling
n instances of Gaussian noise from δ ∼ N (0, 1) and adding them each to x as θ = x+ σδ to
generate n basis points (2) for each of the n basis points, estimating the confidence scores
at a point, θ, by querying the labels for s points around the point taken from a sampling
ball of l∞ radius µ (and computing the proportion of each label as that class’s score), (3)
averaging the estimated confidence scores while scaling by some σ to reduce variance.

The attack-specific parameters used for NES were the default parameters suggested in
[21], and are as follows: σ = 0.001, n = 4, s = 50, µ = 0.001, and learning rate = 0.01.

Parameter Tweaking

Aware of the scheme, an attacker may attempt to modify the NES attack in order to increase
the `2 distance between queries. This would be sufficient to subvert the scheme if `2 is used
as the distance metric. Even for a similarity based distance metric, since the similarity
encoder is not available to the attacker, increasing `2 distance instead would be a natural



CHAPTER 6. ADAPTIVE ATTACK EVALUATION 19

0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.096 0.128

Confidence Estimation Radius

0

20

40

60

80

100

P
e
rc

e
n
t

NES attack success vs. estimation radius

Success

Failure

Figure 6.1: NES Attack Success Rate over increasing µ. For each value of sampling radius,
µ, the NES attack was run 100 times, with the attack succeeding if an adversarial example
(of a randomly chosen target and within ε = 0.05) was found within 5 million queries, and
failing otherwise.

proxy to attempt to circumvent detection. We now explore two natural modifications to the
NES attack that an attacker could make.

First, the attacker could tweak different NES attack parameters to increase the `2 distance
between queries. The attacker could increase µ, the radius of the sampling ball used when
sampling points to estimate the confidence score for an image. The original version of the
NES attack uses a radius of µ = 0.001, but as shown in Figure 6.1, radii up to µ = 0.064
may be used before the attack drastically fails. For µ = 0.064, k = 50, and using `2, the
k-nearest-neighbor distance between an image and k sampled points is on average equal to
2.32 compared to just 0.032 for µ = 0.001.

By similar logic to increasing µ, the attacker could also increase σ such that the sampled
Gaussian basis points are further apart. Additionally, the attacker could decrease s such that
less queries are guaranteed to be within an l∞ distance of µ at each iteration. Experimentally,
we found that the success of the NES attack with increased σ and/or decreased s are both
sensitive to the confidence estimation procedure (i.e. more accurate estimation procedures
allow for higher σ and lower s). The effect of modifying these parameters is investigated
further in the appendix.

Query Blinding

The second natural modification is for an attacker to transform their queries to have greater
`2 distortion, as described previously. Each query is transformed by an independent random
amount, as opposed to transforming each query by the same amount of distortion, because
the sampling procedure for estimating confidence scores in NES requires a random sam-
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ple of different points. Transforming by a random amount also increases the likelihood of
consecutive queries being further from each other.

Accordingly, we modify the confidence score estimation procedure (step 2 from the pre-
vious attack description) to sample s points using the different transformations listed in
Section 5.1 (instead of sampling just from a l∞ ball of uniform radius). The parameters for
each transformation were chosen such that the expected `2 distortion from each transfor-
mation was equal to 2.32 (the expected `2 distortion after increasing the uniform sampling
radius to µ = 0.064, the largest value/potential distortion where the original NES attack still
succeeds), and are given in the appendix. This set of transformations and their respective
parameters were also then used when training the similarity encoder, as described in Section
3.2.

Transform Success Rate Num. of Queries `2 Detections Sim. Detections

L
ow

D
is

to
rt

io
n

Uniform Noise 1% 15,700±0 308 308
Translate 4% 6,710±400 131 131
Rotate 7% 10,200±684 199 198
Scale 27% 12,600±882 246 246
Crop and Resize 7% 6,130±247 119 119
Brightness 55% 13,500±780 263 264
Contrast 23% 11,200±777 219 219
Gaussian Noise 0% n/a n/a n/a

H
ig

h Brightness 43% 24,500±2,630 60 481
Scale 42% 25,700±3,000 88 504
Contrast 37% 19,100±4,240 85 375

Auto-encoder 76% 13,400±8,400 12 97

Table 6.1: NES attack success rate for different blinding functions. Simple transfor-
mations, such as rotation or contrast adjustment, are still detected by our encoder defense,
even when the distortion introduced is large. The autoencoder attack is much more effective
(especially if we were using a pure `2-based detector) but still is detected by the encoder
defense.

We ran the NES attack, each run with a different transformation to preprocess queries
during confidence score estimation, against our scheme, and the results are shown in Table
6.1. For some of these transformations, like uniform and Gaussian noise, the NES attack
fails completely. However, for the brightness and pixel-scale transformations, the NES attack
remains reasonably successful at even better rates than the original confidence estimation
procedure of uniform noise. This suggests that estimating the confidence score for an im-
age/point may be more accurate with certain image transformations than others, and that
some transformations more significantly affect the network output for an image. For all
transformations, however, the average number of detections for each successful attack is at
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Figure 6.2: For each image in the test set (left) we show four possible images transformed
by our autoencoder (right) that have the same classification label but have high `2 distance
from each other.

least one hundred, so even after some adaption by the attacker, the scheme still detects these
attacks frequently. The exact attacker cost corresponding to this number of detections is
quantified and explained further in Section 7.

For this level of transformation distortion, using the similarity encoding as the distance
metric over `2 shows a marginal increase in the number of detections. This is understandable,
as for k = 50, the `2 detection threshold is δ = 5.093 which is greater than the transformation
distortion of 2.32 (which was selected based on the largest value for µ where the original
NES attack was still successful). Accordingly, to strengthen the attack against our scheme,
we selected the transformations with the highest success rates, and further modified their
parameters to increase the transformation distortion to an `2 distance greater than the `2
based detection threshold. Specifically, we increased σ to be σ = 0.01 (the highest value
found experimentally such that the attack still succeeds reasonably often), and increased the
distortion parameter for each transformation, such that the expected distortion was equal
to 5.40 and greater than the detection threshold δ = 5.309 (the higher distortion parameters
can be found in the appendix). To also minimize detections, we reduce s to s = 2. We then
ran these higher distortion attacks again against our scheme, and the results are also shown
in Table 6.1.

Against these higher distortion transformations, the similarity encoding distance metric
more frequently detects attacks compared to the `2 based distance metric, resulting in 6-8x
more detections. As explained later in Section 7, this multiplicative increase in detections can
cause a significant increase in the cost to the attacker of carrying out a single attack. This
demonstrates that a similarity based metric is more robust to the adaption of an attacker
using image transformations to blind their queries, and less directly circumvented compared
to using `2 distance. We also note that the number of similarity-based detections is larger
than for the lower distortion transformations shown in Table 6.1 for the same s = 2, but
observe that this is because of the attack taking more queries on average to succeed (due to
less precise gradient estimates) and thus resulting in more opportunities for detection.

When we apply the auto-encoder attack, we find that it is significantly more effective
than the simple transformations. (We give examples of the auto-encoded images which are
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sent to the classifier in Figure 6.2.) In particular, because the neural network was trained
so that it maps images to have high `2 distortion from each other, an `2-based detector
(directly on image pixel-space) is almost completely ineffective against this attack. However,
the encoder-space detection defense remains effective.

6.2 The Boundary Attack

The Boundary Attack [1] is a gradient-free attack that starts with an image of the target class
and then makes steps alternating between moving the image along the decision boundary
(while remaining adversarial) and steps which move towards the original image. In more
detail, the boundary attack alternates between the two following operations:

• Inwards step. Given the current proposed adversarial example x′i, we take a small
step ε in the direction of the original image x and let x′i+1 = x′i + ε · (x− x′i).

• Orthogonal (boundary-following) step. Instead of steeping toward the original
image, take the current adversarial example x′i and take a step along a random orthog-
onal direction r subject to the constraint that f(x′i + r) = f(x′i).

Parameter Tweaking.

Starting with the original Boundary Attack, an attacker may also use different variants of
the attack in an attempt to avoid or minimize detections by our scheme. First, instead
of sampling random directions from a Gaussian distribution, as in the original attack, an
attacker may sample from a distribution of Perlin noise patterns. This substitution was
shown to achieve higher success rates with a limited amount of queries (less than 15,000
queries) [7], and could decrease the number of queries required by the attack such that
the number of detections is significantly small. However, we find that this strategy is not
effective. Additionally, increasing the step sizes to be large enough so that they are not
detected by our similarity encoder prevents the attack from converging.

Query Blinding.

Alternatively, the use of blinding transformations can also be applied to this attack. To
evaluate this for an attacker, we take the best performing transformation with the NES attack
(brightness) and use it to preprocess all queries made by the original Boundary Attack.

The results of running these variants of the Boundary attack are shown in Table 6.2. We
allow each attack trial to make up to 200,000 queries, which is the equivalent number of
queries made by the best NES attack variants. Compared to the normal Boundary attack,
the Perlin distribution variant does not perform better, likely due to the observed decreasing
utility of the Perlin noise at these higher query numbers [7]. Preprocessing queries with
the brightness transform also does not decrease the number of detections while significantly
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decreasing the Boundary attack’s success rate. We found that this was the case because
the Boundary attack adjusts its step sizes according to the local geometry of the boundary
(estimated through queries), and considers the attack to have converged when the step
sizes are sufficiently small. The preprocessed queries, though at a further distance apart,
would cause the attack to misapproximate the local boundary geometry around the working
adversarial example and reduce its step sizes too significantly, before the example was within
the maximum amount of distortion (i.e. converge prematurely).

Nonetheless, even with the most efficient variant being the normal Boundary attack,
our defense still detects this attack with high frequency of at least 200 detections and one
detection per 50-55 queries (i.e. almost every k queries), on average. Therefore, to be
detected a small number of times (say less than 10), a future variant of the Boundary attack
would need to succeed consistently within less than 500 queries on average.

Attack Success Rate Num. of Queries Similarity Detections

Boundary (Normal) 100% 14,700±892 288
Boundary (Perlin) 40% 31,100±976 609
Boundary (Brightness) 2% 24,100±1,470 473
Boundary (Auto-encoder) 61% 34,200 ± 8,000 240

Query Surrogate (Untargeted) 14% 8,192±0 82

Table 6.2: Attack success and detection rate of the Boundary Attack and the
Surrogate Attack. Applying simple transforms (such as with perlin noise) performs worse
than using transformation; applying an autoencoder-based blinding function slightly reduces
detection rate but does not succeed as often.

6.3 Hybrid Query Based Surrogate Attack

Query based attacks iteratively modify a working adversarial example, so they naturally
require queries that are nearby each other and made sequentially. To use queries that can
be made in any order and are a large distance apart (i.e. detection-minimizing queries),
we design a simple attack that per attack instance, trains a surrogate model (similar to
zero-query attacks) over a set of well-distanced queries. Specifically, for an image x, we
randomly sample n points, xfar = x + δ, δ ∼ U(D, 1), where D is large enough that in
expectation a sample would not be detected, and query the sampled points for their labels.
To ensure that some training points of x’s class are present, we also sample m points,
xnear = x + δ, δ ∼ U(0, d), where d is small, but do not query these points and assume
their labels are of the same class as x, which is normally the case unless x is very close to
a decision boundary. We then train a surrogate model on these n+m points, and then run
a white box attack, the Carlini-Wagner attack [9] with high confidence (κ = 100), in order
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to generate an adversarial example that hopefully transfers. In our scheme, the similarity
encoder is not made public, so the attacker would not know the exact value of D, but we
consider this optimal setting of information for the attacker/worst case for the defender as
a baseline to evaluate this attack.

In practice, we found that targeted version of this attack had difficulty succeeding, as it
was difficult to consistently sample queries both of the target class and sufficiently distant
from the original image. Therefore, for the evaluation of this attack, we relaxed the attack
to target the class for which the surrogate training set had the most instances of and was
not the same as the original image’s class. The results of running the attack are shown in
Table 6.2, and attack-specific parameter values are given in the appendix. As a simple, naive
approach, the attack is still able to succeed at a non-trivial rate, while having significantly
less, 3-8x, detections compared to the other attacks. This indicates that there is potential
for constructing query based attacks that do not rely on sequences of nearby points, but
such attacks may still be reasonably detected. We leave it to future work that could be done
on improving such attacks (e.g. informed instead of random sampling) against this defense.
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Chapter 7

Economics of Performing an Attack

Assuming our defense was in place, what would the economics look like for an attacker who
wished to fool the defense?

Evading the detector First, let us consider the case where an attacker has perfect in-
formation for whether or not each query to the detection scheme will be detected as part of
an attack sequence. Further assume the attacker knew the exact number of queries k which
could be issued before a detection would trigger. Recall that, typically, this is not the case:
normally, the encoder is not made public in our scheme. How should an adversary proceed
to optimally generate an adversarial example?

Recall that we proposed two defense setups. In one, the defender holds a time-bounded
history of prior queries, and in the other, the defender holds a fixed number of queries (e.g.,
in a circular buffer).

Case 1: time-bounded buffer. Consider the first case where the buffer holds queries
until a fixed amount of time has passed. If the buffer has a duration of t hours, the attacker
can only make k − 1 queries, every t hours or have their attack be detected. Therefore,
an attack that would otherwise have had d detections would take an attacker dt hours to
execute. Because the lowest average number of detections per targeted attack is at least 97
detections (for the NES attack with Auto-encoder blinding in Table 2), the average amount
of time to execute a single attack, with a buffer duration of 1 hour, would be 97 hours or a
little over 4 days, which is a significant amount of time for an attacker to expect on average
to generate a single targeted adversarial image without being detected.

In practice, the defender can set the buffer duration according to their resource capacity.
For example, Google’s Cloud Vision API currently has a rate limit of 1800 queries per
minute per user. If we were using a `2 encoder, we would have to store every queried image
completely. Because CIFAR-10 images are 32 x 32 x 3 bytes, a buffer duration of 1 hour
would equate up to at most (without any image compression) 1800 · 60 · 32 · 32 · 3 = 0.33GB
per user for a maximum of one hour. This is a small storage cost, considering that Google’s
cloud storage is priced at 0.026$/GB/month per user.
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However, with our similarity encoder, the cost is even smaller. Our similarity encoder
maps each input to a 256-dimensional output. At this size, storing all 1800 examples (with
16-bit floating point values) would be under 55 MB of storage, over 6× smaller.

Case 2: query-bounded buffer. Now we consider the case where the buffer holds a
limited number of queries for an unbounded (or much longer) amount of time. Assume the
buffer held at most N queries. After the attacker has issued k− 1 queries, the attacker must
now flush the buffer to remove these queries before continuing with their attack. In the best
case (for the attacker—the worst case for the defender) the attacker may only have to flush
just one query from the buffer before being allowed to continue the attack. Thus, in order
to execute an attack that otherwise would have had d detections would take an attacker
d(N − k) total queries.

For example, Google’s Cloud Vision API currently costs $1.50 USD per 1000 queries. If
the buffer held just N = 104 examples, for N >> k (as is true in our case), and again the
lowest number of detections on average for a targeted attack being 97 ≈ 100 detections, an
attack would cost ($1.50/1000 queries)·(d·N) = ($1.50/1000 queries)·(100·10000) = $1, 500,
a sizeable amount of money for an adversary to pay for generating a single adversarial image,
compared to a baseline cost of $19.50 USD.

Attacking the similarity encoder Throughout the paper we have assumed the adver-
sary is not be able to perform an extraction attack in order to obtain a copy of the similarity
encoder. If an adversary could obtain access to the similarity encoder, or extract the de-
tection threshold, it would be possible to generate an almost-unbounded number of queries,
none of which would ever be detected as part of an adversarial sequence of queries.

We believe that this attack is extremely unlikely to happen. Economically, it would
be significantly more expensive than paying the cost for detections during a typical attack
construction. Below we justify why we believe this to be the case.

At minimum to accurately extract a network with W parameters, at least W samples
or datapoints are needed, and signficantly moreso when only the hard labels are outputted
from the network rather than logits or scores [37]. In the case of extracting the similarity
encoder, each sample/datapoint is not a query but a detection. Since a detection results
in an account ban, at least W accounts are then required to extract the similarity encoder.
Such a large W provides a significant upfront cost of accounts to the attacker, and although
the attacker would then have effective access to the encoder, the defender could respond by
simply training another or multiple autoencoders with a different architecture or different
training parameters (e.g. different margin m) and periodically rotating between them.

To only extract the detection threshold, an attacker could purposefully construct queries
close to each other in order to cause a detection, and then perform a line or binary search on
the `2 distance required for detection (the `2 distance would be the actual threshold for an
l2 based detector, or an l2 proxy of the threshold for a similarity detector). After extracting
the threshold, the attacker may then be able to craft or order their queries in such a way
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to explicitly pass the threshold. This attack approach could be explored in future work,
but a candidate modification to our scheme to respond to such an attack is to randomize
or delay when a user is banned after being detected. Instead of immediately banning the
user/attacker, the scheme could wait a number of queries before banning the flagged user.
For example, if the scheme were to wait until the attacker’s number of queries hits the next
power of 2 to ban their account, and no user makes more than 220 queries, then a cancellation
can reveal only up to lg(21) = 4.4 bits of information about the detector and its threshold.
This mechanism would also increase the cost of the extracting the encoder.
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Chapter 8

Zero Query Defense

Attack Success Rate Num. of Queries Similarity Detections

NES (Best) 17% 22,510±17,000 442
Boundary (Best) 95% 19,928±24,300 391
Query Surrogate (Untargeted) 5% 8,192+/-0 82

Table 8.1: Attack success and detection rate for EAT-defended model. Our defense
still detects query based attacks frequently, while the defended model is now robust to zero
query attacks. Each attack could make up to 200,000 queries, and was run on the same set
of randomly selected 100 images and target classes. Each metric is the average over the over
the most successful attacks.

We now explore complementing our query-based scheme with previous works in defenses
against zero query attacks. Currently, one of the most effective defenses against black box,
zero query attacks is ensemble adversarial training (EAT) [36], in which a defended model
is retrained on white-box adversarial examples, with maximum distortion ε generated on
an ensemble of static models with different architectures and weights. This training proce-
dure has been demonstrated to then make the defended model robust against adversarial
examples transferred from a holdout model, while resulting in only a reasonable decrease in
the defended model’s clean accuracy (on non-adversarial examples). Accordingly, we train a
ResNet50v1 classifier for CIFAR-10 using EAT, with ε = 0.05, to construct a model robust
to zero query attacks of ε = 0.05 (further training details can be found in the appendix.)

To evaluate the EAT-defended model, ResNet50v1-EAT, against zero query transfer
attacks, we generated adversarial examples (over the CIFAR-10 test set) on a holdout
ResNet74v2 model, and then saw if those examples transferred (i.e. were also adversar-
ial to the ResNet50v1-EAT). The ResNet74v2 model was trained on the same CIFAR-10
training set, with the same training parameters, which gives the attacker their best case of
information to train a surrogate. To generate the examples, we used FGSM[17] and the a
clipped modification of the `2 version of the Carlini-Wagner (CW) attack [9] (with ε = 0.05
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Model Clean FGSM CW CW (Targeted)

ResNet50v1 7.8 73.8 59.1 18.8
ResNet50v1 (EAT) 14.6 14.4 16.4 1.0

Table 8.2: Error rate and attack success rate on an unprotected ResNet compared to an
EAT defended ResNet [36].

and κ = 100 for the Carlini-Wagner attack). The error rate of the defended ResNet50v1-EAT
are shown below, and all attacks are untargeted unless specified otherwise.

Compared to the undefended model, the EAT-defended model is noticeably more robust
to all three methods of transfer attack. The EAT-defended model does incur a noticeable
decrease in clean (test set) accuracy, but this comes as the tradeoff for the robustness to a
fairly large value of ε = 0.05 (for reference, [36] used ε = 0.06 for defending models trained
for much higher dimensional, 256x256x3 Imagenet images). In practice, the defender may
tune ε according to their demands between accuracy and robustness.

We now show that our defense is still successful for an EAT-defended model. We reran
the best query based attack variants on this EAT-defended model, and results of these
attacks are shown in Table 8.1. Our scheme is still able to detect the query based attacks
frequently, and it appears that the EAT model may even mitigate the success rate of query
based attacks.
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Related Work

To our knowledge, our scheme is the first to use query distances in order to detect query
based black box attacks. [23] explores using a distance based detection scheme to detect
model extraction attacks (attempts to construct a surrogate version of a target model by
actively querying the target model). Their scheme flags detection based on the adherence of
the distribution of distances between queries to a normal distribution; however, their scheme
is not robust to natural circumventions such as inserting dummy queries, or even applying
our query blinding attack.

Previous work has focused on stateless detection of a given query as adversarial, usually
by various means of determining if the query is out of the distribution of normal/benign data
[29, 14, 19]. However, consistent and effective detection under this stateless threat model
has proven difficult [8].

Other work has been done to defend against white-box attacks, such as adversarial train-
ing [28]. Such defenses are complementary to our defense: we can apply our detection
strategy on top of any model. In our paper we study the defense on top of a non-robust
model for simplicity and to accurately measure the value of this type of defense.

There are other query based black box attacks, but they often follow either a similar gra-
dient estimation approach to NES, or a similar boundary following approach to the Boundary
Attack. For example, SPSA [38] is another common gradient estimation attack, that esti-
mates the gradient over random instead of Gaussian directions. Boundary attack variants,
like Boundary++ [22], RED [24], and qFool [27], are more query efficient but still follow the
same core approach of querying along the boundary.

Transfer attacks are a common approach in the zero query setting [31]. We explore the
application of ensemble adversarial training [36], currently one of the most effective defenses
against zero-query transfer attacks, to our scheme, but recent key-based defense may also be
effective [33].

The approach for query blinding takes inspiration from previous work in signature blind-
ing [10] and mimicry attacks [40].
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Limitations and Future Work

We see vast possibilities for future work in this research direction.
Our defense by design explicitly assumes that the model weights are able to be held secret.

If the model weights are revealed to the attacker (e.g., through a model extraction attack
[37]) then our proposed defense again is not effective. There has been related work [23] which
explicitly defends against this type of attack. These types of defenses are complementary to
ours and both could be applied simultaneously.

Our proposed defense only prevents attacks which attempt to generate a specific adver-
sarial example. If the adversary were content on finding any error, then an adversary could
simply generate random candidate inputs and wait until a test error randomly occurred
[15]. For example, because our CIFAR-10 classifier reaches 92% accuracy an adversary who
wanted to identify any error would be expected to succeed after showing just 13 images.
This attack is not specific to our defense, and would work equally well on any other defense
to adversarial examples.

The specific auto-encoder attack transformation we develop is explicitly designed to target
the defense we have constructed, and likely future defenses could detect this specific attack
strategy. However, we believe the general query-blinding strategy is an interesting research
direction to pursue to develop stronger attacks.

Our proposed defense was only evaluated in the “hard-label” setting where the adver-
sary receives only the classification label, without confidence scores. Designing a defense
in the “soft-label” black-box setting, where the model does return confidence scores, is an
interesting direction for future work. In Appendix E we give a proposed attack which which
demonstrates the potential difficulties in solving this case.

It may be possible to train a stronger defense, which achieves higher robustness against
our autoencoder-based query-blinding attack, by performing adversarial training. Similar to
Generative Adversarial Networks [16], we have a similarity encoder neural network which
is designed to detect similar images, and a autoencoder that is designed to produce images
that fool the similarity detector. It is possible that performing adversarial training may lead
to a robust similarity encoder.
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Conclusion

Black-box defenses to adversarial examples are most widely studied because of their real-
istic threat model with practical real-world implications. In such situations, the academic
community has thus far artificially restricted research in this space to stateless defenses;
we argue that expanding the study to stateful defenses gives the defender a new potential
advantage. Towards this end, we propose a simple query-detector which detects the process
of adversarial example generation. By combining our proposed approach with existing de-
fenses which prevent transferability attacks, we can construct the first unified defense that
can argue robustness in the full black-box threat model.
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Appendix

12.1 Similarity Encoder

Layer Filters Size Details

Conv 32 3× 3 ReLU
Conv 32 3× 3 ReLU
Max Pool 2× 2 stride = 2
Dropout p = 0.25
Conv 64 3× 3 ReLU
Conv 64 3× 3 ReLU
Max Pool 2× 2 stride = 2
Dropout p = 0.25
Dense 512 ReLU
Dropout p = 0.5
Dense 256

Table 12.1: Encoder Architecture

12.2 Transformations

Parameters

For the low distortion transformations (expected `2 = 2.32), their parameters (r) are the
following:

For the selected high distortion transformations (expected `2 = 5.33) their parameters
(r) are the following:
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Transform r

Uniform Noise 0.064
Translate 0.45
Rotate 0.018
Pixel-wise Scale 0.17
Crop and Resize 0.04
Brightness 0.09
Contrast 0.55
Gaussian Noise 0.095

Table 12.2: Transformation parameters (low distortion)

Transform r

Pixel-wise Scale 0.36
Brightness 0.204
Contrast 0.79

Table 12.3: Transformation parameters (high distortion)

Further Experiments

We also explored reducing s, the number of samples per confidence score estimation, to
s = 2 versus the original value s = 50, as a lower s should result in less groups of k = 50
neighboring points being significantly near each other and accordingly less detections. This
comes at a cost of potentially less accurate estimations of the confidence scores, so the
adjustment of s is experimented with in combination with modifying the confidence score
estimation procedure. Additionally, a higher value of s increases the chance that the attack
will succeed, at the cost of increasing the number of detections due to the corresponding
higher number of queries. The comparison of s = 2 versus s = 50 over different image
transformations is shown in Figure 12.1.

12.3 Hybrid Query Based Surrogate

For this attack, we selected D as D = 0.09, by experimentally finding the necessary value
such that samples would on average have a higher similarity encoding distance than the
threshold, and d = 0.01. We used the same three layer CNN described in Table 12.1 as our
architecture for the surrogate model, and trained it for 50 epochs per attack.
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s = 2: Success Rate Num. of Queries `2 Detections Sim. Detections

Uniform Noise 1% 15,695 308 308
Translate 4% 6,714 131 131
Rotate 7% 10,175 199 198
Scale 27% 12,567 246 246
Crop and Resize 7% 6,132 119 119
Brightness 55% 13,503 263 264
Contrast 23% 11,197 219 219
Gaussian Noise 0% n/a n/a n/a

s = 50: Success Rate Num. of Queries `2 Detections Sim. Detections

Uniform Noise 15% 453,651 8,895 8,895
Translate 28% 293,586 5,755 5,756
Rotate 50% 295,022 5,782 5,784
Scale 83% 337,346 6,607 6,614
Crop and Resize 43% 249,717 4,895 4,895
Brightness 45% 277,864 5,437 5,447
Contrast 23% 253,325 4,966 4,966
Gaussian Noise 0% n/a n/a n/a

Figure 12.1: Attack success and detection rate of an `2 and similarity encoding
based distance metric. For each image transformation, the NES attack was run 100 times
using that transformation to generate samples for estimating confidence scores, with s = 2
or s = 50 samples drawn per estimate and allowing up to 200, 000 or 5, 000, 000 queries
respectively. Each attack was run on the same set of randomly selected 100 images and
target classes, and each metric is the average over the successful attacks.

12.4 Ensemble Adversarial Training

For training a CIFAR-10 classifier with EAT, we start with a ResNet50v1 (pretrained to
a CIFAR-10 accuracy of 92.2%) and then train it on adversarial examples generated on
an ensemble of trained ResNets with different architectures: ResNet44v1, ResNet56v2, and
ResNet74v1. Adversarial examples were generated using the Fast Gradient Sign Method
(FGSM) [17], with ε = 0.05 (same as the query based attacks). The network was trained for
100 epochs, where the adversarial examples for each epoch were generated from a randomly
selected model from the ensemble and the defended model, and one adversarial example was
generated per image in the CIFAR-10 training set.
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12.5 A Difficult Soft-Label Case

Our paper focuses on the “hard-label” threat model where the adversary only is only given
the arg mac prediction. In contrast, the “soft label” threat model gives the adversary full
access to the output probabilities of the model.

Similar to hard-label black-box attacks, soft-label black-box attacks rely on querying
the value f(x) for various x in order to generate their attack. Applying the above types
of transformations would be possible (however, this time optimizing to make the difference
between the neural network outputs small, f(x)− f(α(x))).

However, below we present one possible attack that demonstrates the increased capabil-
ities for an attacker when given access to the probability distribution. In particular, this
attack shows that our hard-label defense scheme does not scale to the soft-label setting.

To obtain the classification of a sample x we define the functions f(·) and r(·) as follows:

• Select a random unit-vector direction r; for a distance hyperparameter d, let

f(x) = {x+ r · d, x+ r · (d+]ε)}

• Recover the output by letting

r(y0, y1) = y0 + (y0 − y1) ·
d

ε

This attack works due to the fact that neural networks, despite being non-linear functions
globally, often locally behave as if they were linear functions.

To increase the accuracy of the estimate of f(x) the above procedure can be generalized
by selecting multiple random directions ri and averaging the results. We experimentally
verified that this type of attack approach is effective and allows the confidence-variant of
NES [21] to succeed against our query-based detector.
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