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Policy Transfer Algorithms for Meta Inverse Reinforcement Learning

Benjamin Kha

Abstract

Inverse reinforcement learning (Ng & Russell,
2000) is the setting where an agent is trying to
infer a reward function based on expert demon-
strations. Meta-learning is the problem where an
agent is trained on some collection of different,
but related environments or tasks, and is trying to
learn a way to quickly adapt to new tasks. Thus,
meta inverse reinforcement learning is the setting
where an agent is trying to infer reward functions
that generalize to multiple tasks. It appears, how-
ever, that the rewards learned by current meta
IRL algorithms are highly susceptible to overfit-
ting on the training tasks, and during finetuning
are sometimes unable to quickly adapt to the test
environment.
In this paper, we contribute a general framework
of approaching the problem of meta IRL by jointly
meta-learning both policies and reward networks.
We first show that by applying this modification
using a gradient-based approach, we are able to
improve upon an existing meta IRL algorithm
called Meta-AIRL (Gleave & Habryka, 2018). We
also propose an alternative method based on the
idea of contextual RNN meta-learners. We evalu-
ate our algorithms against a single-task baseline
and the original Meta-AIRL algorithm on a collec-
tion of continuous control tasks, and we conclude
with suggestions for future research.

1. Introduction

Inverse reinforcement learning (IRL) attempts to model the
preferences of agents by observing their behavior. This
goal is typically realized via attempting to approximate an
agent’s reward function, rather than being provided them
explicitly. Inverse reinforcement learning is particularly
attractive because it allows leveraging machine learning to
model the preferences of humans in complex tasks, where
explicitly encoding reward functions has performed poorly
and has been subject to issues such as negative side effects
and reward hacking (Amodei et al., 2016).

Standard reinforcement learning traditionally models an
agent’s interaction with its environment as a Markov deci-

sion process (MDP), wherein the solution is a policy map-
ping states to actions, and an optimal policy is derived by
receiving rewards as feedback and modifying the policy
accordingly. Inverse reinforcement learning, on the other
hand, assumes an agent that acts according to an optimal
(or almost optimal) policy and uses data collected about the
optimal agent’s actions to infer the reward function.

Inverse reinforcement learning has incredible ramifications
for the future of artificial intelligence, and has generated
increasing interest for a couple of important reasons:

1. Demonstration vs. Manual Rewards - Currently, the
requirement in standard reinforcement learning of pre-
specifying a reward function severely limits its applica-
bility to problems where such a function can be spec-
ified. The types of problems that satisfy these con-
straints tend to be considerably simpler than ones the
research community hopes to solve, such as building
autonomous vehicles. As IRL improves, this paradigm
will shift towards learning from demonstration.

2. Increasing Generalizability - Reward functions as they
stand offer a very rigid way of establishing rewards in
specific environments; they typically fail to generalize.
However, learning from demonstration, as is done in
IRL, lends itself to transfer learning when an agent
is placed in new environments where the rewards are
correlated with, but not the same as those observed
during training.

Meta-learning is another exciting subfield of machine learn-
ing that has recently gained significant following, and tack-
les the problem of learning how to learn. Standard machine
learning algorithms use large datasets to generate outputs
based on seen training examples; unlike their human coun-
terparts, these algorithms are typically unable to leverage
information from previously learned tasks. Meta-learning
is useful largely because it allows for rapid generalization
to new tasks; we hope to apply meta-learning techniques to
achieve this rapid generalizability for approximating reward
functions in inverse reinforcement learning.

In this paper, we propose a general framework for meta-
learning reward functions (learning how to learn reward
functions) that should improve as the performance of single-
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task IRL algorithms improve. Specifically, our contributions
are as follows:

• We propose a framework for meta inverse reinforce-
ment learning based on jointly meta-learning a policy
along with a reward network, and develop two proto-
type algorithms that follow this framework.

• We provide an evaluation of our algorithms on a collec-
tion of continuous control environments, and evaluate
them against both single-task and multi-task baselines.

2. Related Work

Older work in IRL (Dimitrakakis & Rothkopf, 2011) (Babes
et al., 2011) is based on a Bayesian Inverse Reinforcement
Learning model. The drawback behind this approach is that
no methods based on Bayesian IRL have been able to scale
to more complex environments such as continuous control
robotics tasks.

A more promising direction is offered by the maximum
causal entropy model (MCE), which as originally stated is
still limited to finite state spaces. However, recent methods
such as Guided Cost Learning (Finn et al., 2016), and Ad-
versarial IRL (Fu et al., 2017) have been able to extend IRL
methods to continuous tasks.

In traditional meta-learning, there has been a broad range
of approaches in recent years. Some of these methods in-
clude algorithms like Model-Agnostic Meta-Learning (Finn
et al., 2017) which tries to learn a good initialization of a
model’s parameters that can quickly adapt to a new task
with a small number of gradient updates, while also attempt-
ing to prevent overfitting. Reptile (Nichol et al., 2018) is
a similar algorithm to MAML, except it does not unroll
a computation graph or calculate any second derivatives,
thereby saving computation and memory. Finally, RNN
meta-learners (Chen et al., 2016) (Duan et al., 2016) try to
adapt to new tasks by training on contexts, which are the
past experience of an agent during a particular trial, and can
encode some structure of the task.

There has been very recent work on applying meta-learning
algorithms to the IRL setting. Specifically, in a recent paper
by Xu et al. (2018) the authors explore applying MAML
on a discrete grid-based environment. Similarly, in a paper
by Gleave & Habryka (2018), the authors explore applying
the Reptile and Adversarial IRL (AIRL) algorithms on con-
tinuous control tasks. In this work, we explore the use of
both gradient-based and contextual RNN meta-learners in
continuous IRL settings.

3. Background and Preliminaries

In this section, we describe some mathematical background
on inverse reinforcement learning and meta-learning prob-
lems.

3.1. Inverse Reinforcement Learning

The standard Markov decision process (MDP) is defined
by a tuple (S,A, ps, r, �), where S and A denote the set of
possible states and actions, ps : S⇥S⇥A! [0, 1] denotes
the transition function to the next state st+1 given both the
current state st and action at, r : S ⇥ A ! R denotes
the reward function, and � 2 [0, 1] is the discount factor.
Traditionally, the goal of standard reinforcement learning
is to learn a policy that maximizes the expected discounted
return after experiencing an episode of T timesteps:

R(⌧) =
TX

t=1

�t�1r(st, at)

Inverse reinforcement learning assumes that we don’t
know r, but rather we have a sequence of expert trajec-
tories D = {⌧1, . . . , ⌧K} where each trajectory ⌧k =
{s1, a1, . . . sT , aT }, is a sequence of states and actions.

3.2. Meta-Learning

Meta-learning tries to learn how to learn by optimizing for
the ability to generalize well and learn new tasks quickly. In
meta-learning, the agent interacts with tasks from a meta-
training set {Ti ; i = 1, . . . ,M} and meta-test set {Tj ; j =
1, ..., N}, both of which are drawn from a task distribution
p(T ). During the meta-training process, the meta-learner
learns to better generalize across the tasks it trains on, such
that it is able to leverage this information to efficiently learn
new tasks in the meta-test set with fewer required training
examples to achieve comparative performance.

In reinforcement learning this amounts to acquiring a policy
for a new task with limited experience, for which there are
two main approaches:

1. Gradient-based Methods - Gradient-based meta-
learning methods maintain a meta-parameter ✓, which
is used as the initialization parameter to standard ma-
chine learning and reinforcement learning algorithms,
which then compute local losses for and update parame-
ters for sampled batches of individual tasks Ti ⇠ p(T ).
Localized training follows the gradient update rule be-
low:

✓0i  ✓ � ↵r✓LTi(f✓)

These updated parameters after gradient steps on sam-
pled individual tasks are then used to update the meta-
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parameter with the following update rule:

✓  ✓ � �r✓

X

⌧i⇠p(⌧)

LTi(f✓0
i
)

With sufficient iterations, a meta-learner is able to use
the learned meta-parameter ✓ to quickly adapt to new,
unseen tasks.

2. Recurrence-based Methods - Recurrence-based meth-
ods take an entirely different approach. Rather than
explicitly compute gradients and update parameters,
they use a recurrent neural network to condition on
past experience via a hidden state. By leveraging this
past experience or context, these policies can encode
the structure of the training environments, which can
enable them to quickly adapt to similar test tasks.

4. Policy Transfer for Meta Inverse

Reinforcement Learning

4.1. Formulation

We assume that we have a set of tasks T over which we
want our agent to meta-learn, and a task distribution p(T )
over these tasks from which we sample them. We define a
trial as a series of episodes of interaction with a given MDP.

Within each trial, a new MDP environment is drawn from
our task distribution, and for each episode within a trial a
new initial state s0 is drawn from the corresponding MDP’s
underlying state distribution.

At each timestep t, the policy takes an action at, which pro-
duces the a reward rt, a termination flag dt (which indicates
whether the episode has ended or not), and the next state
st+1.

Under this framework, our goal is to minimize the loss
across entire trials, rather than individual episodes. In the
recurrence-based setting, the hidden state ht is used as addi-
tional input to produce the next action, and stores contextual
information that is aggregated across the many episodes in
a trial. Because the environment stays the same within a
single trial, an agent can leverage information from past
episodes and the current one to output a policy that adapts to
the environment of the current trial. With sufficient training
this leads to a more efficiently adaptable meta-learner that
is able to quickly infer reward functions. A visualization of
this process can be seen in Figure 1.

4.2. Gradient-Based Policy Transfer

We first implement the idea of jointly meta-learning both
a policy and reward network by applying a gradient-based
approach to meta-learning the policy. As the basis for our
initial experiments, we selected Reptile (Nichol et al., 2018)

Algorithm 1 PolicyMetaAIRL
Randomly initialize policy ⇡✓ and reward network r�,
with global weights ✓G,�G

Obtain expert trajectories Di for each task Ti
for i = 1 to N do

Sample task Tj with expert demonstrations Dj

Set weights of r� to be �G

Set weights of ⇡✓ to be ✓G
for n = 1 to M do

Train r�,⇡✓ using AIRL on Tj ,Dj , saving weights
in �n, ✓n

end for

�G  �G + ↵(�M � �G)
✓G  ✓G + �(✓M � ✓G)

end for

return �G, ✓G

for its computational efficiency, and ability to extend to
more complex continuous tasks, where other gradient-based
methods such as MAML are not yet applicable.

In the original Meta-AIRL algorithm, the authors provide
two implementation choices for the policy

• Random: At the beginning of each task, the policy is
randomly initialized. The authors point out that this
can work in relatively simple environments, but can
fail in more complex tasks where the policy is unable
to cover most of the state space.

• Task-specific: Separate policy parameters are main-
tained for each task. The drawback to this approach is
if a task is rarely sampled, the policy is optimized for
stale reward network weights and is very suboptimal
for the current weights.

Our algorithm, which we call PolicyMetaAIRL, we propose
an alternative to these two choices. Instead, we recommend
that there be a global policy used for all tasks which is
meta-learned along with the reward. Thus, we seek an
initialization for the policy that can be quickly adapted to
new tasks, which we transfer along with the reward network
when finetuning on the test environment. The pseudocode
for this procedure can be seen in Algorithm 1.

4.3. Recurrence-based Policy Transfer

We aimed to show that our idea of meta-learning the policy
could be apply generally, and not to just gradient-based
meta-learning methods, so as an alternative, we imple-
mented this concept using a recurrence-based meta-learning
procedure. Our algorithm is based off of RL2 (Duan et al.,
2016). In the original RL2 procedure, at each timestep, the
tuple (s, a, r, d) containing the current state s, and the previ-
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Figure 1. Agent-environment interaction in the multi-task setting for contextual policies (figure from Duan et al. (2016)).

Algorithm 2 Meta-RNN
Randomly initialize RNN policy ⇡✓ and reward network
r�, with global weights �G

Obtain expert trajectories Di for each task Ti, along with
contexts
for i = 1 to N do

Sample task Tj with expert demonstrations Dj , along
with contexts
Set weights of r� to be �G

for n = 1 to M do

Train r�,⇡✓ using AIRL on Tj ,Dj , saving reward
weights in �n

end for

�G  �G + ↵(�M � �G)
end for

return �G, ✓

ous action, reward and termination flag a, r, d are provided
as input (along with the hidden state) to the agent to produce
the next action. In principle, this black-box learning method
should be able to learn a similar learning rule as the gradient-
based approach. Since we are in the IRL setting, we do not
have access to the true rewards r, so instead we propose
just conditioning on the tuple (s, a, d). The pseudocode for
this procedure, which we call Meta-RNN, can be seen in
Algorithm 2.

5. Experiments and Evaluation

5.1. Environments

5.1.1. GOAL VELOCITY ENVIRONMENTS

We experimented with an environment called PointMass,
where an agent has to navigate in a continuous 2D environ-
ment. The observation space consists of the current x 2 R2

coordinates of the agent, and the action space consists of
actions a 2 R2, where the next state is deterministic based
on adding the action to the current state. The goal of the

Figure 2. (a) HalfCheetah (b) Ant

task is for the agent to reach a goal velocity, and the agent
receives rewards based on the difference between its current
velocity and the goal velocity (and some control cost).

We also experimented with the Mujoco environments
HalfCheetah and Ant (Figure 2), where similarly, the goal
is to reach some target velocity.

5.1.2. FRICTION ENVIRONMENT

The Meta-RNN algorithm aims to encode some structure
of the task by conditioning on past experience, but since
we are in the IRL setting, it does not have access to the re-
wards. Therefore, it doesn’t make sense to apply Meta-RNN
in environments where the structure of the task cannot be
inferred by the states and actions only. This is the case for
the previously mentioned environments since the reward is
determined by some varying goal velocity but the dynamics
remain the same. Thus, to evaluate the Meta-RNN algo-
rithm, we created an additional environment called Point-
MassFriction where the goal velocity is fixed, and what is
varied between tasks is a friction parameter  2 (0, 1]. In
this environment, each action at is multiplied by  before
being added to the current state st to generate the next state.
The reward is still based on the difference between the cur-
rent velocity and the goal velocity, but in this environment,
an agent theoretically should be able to learn some structure
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Figure 3. Average loss (lower is better) across 3 runs of: (top left) PointMass (top right) HalfCheetah (bottom left) Ant (bottom right)
PointMassFriction. The dashed line represents the average loss of an optimal PPO planner. The best performance of 5 random seeds is
shown here.

of the task just by conditioning on the past states and actions
because what is changing between tasks is the dynamics.

5.2. Experiment Details

We generated expert trajectories using PPO (Schulman et al.,
2017) policies trained on the ground truth reward. For the
training environments, we generated 10 expert trajectories
for the PointMass environment (since the task is pretty sim-
ple), and 100 expert trajectories for the Mujoco environ-
ments. For the test environments, we varied k, the number
of expert trajectories available for training.

In the test environments, we reported the best average re-
ward out of 5 random seeds. Additional details can be found
in the appendix (Section 8).

5.3. Comparison to Baselines

The baselines we compared to were a single-task AIRL
baseline, and also a Meta-AIRL baseline implemented in
Gleave & Habryka (2018). As you can see in Fig. 3, the
single-task AIRL policy is nearly optimal even after see-
ing only 1 expert demonstration for the PointMass and Ant
environments. The PolicyMetaAIRL agent is nearly op-
timal as well. However, the Meta-AIRL finetune policy
demonstrates suboptimal performance on the test task.

For the HalfCheetah task, single-task AIRL produces a sub-
optimal policy, while PolicyMetaAIRL produces nearly op-
timal results. Presumably, the inductive bias from training

on the training environments enabled the PolicyMetaAIRL
agent to learn an optimal policy on the test task even after
only seeing one expert demonstration.

For the PointMetaFriction environment, single-task AIRL
performs suboptimally, while all Meta-AIRL and Poli-
cyMetaAIRL produce nearly optimal results. Meta-RNN
seems to do the worst out of all the methods.

5.4. Analysis

When running the experiments, we tried different settings
for the Meta-AIRL baseline, but could not seem to achieve
similar levels of performance as the PolicyMetaAIRL and
single-task AIRL algorithms in some of the environments.
It appeared during training that the Meta-AIRL planner was
able to achieve good performance on the training sets, but
when it came to finetuning on the test set, it immediately
began to perform poorly and was unable to recover the per-
formance. The conclusion that we draw from this result is
that transferring both the policy and reward network helps in
preventing the reward network from overfitting on the train-
ing environments, and improves its ability to be finetuned
quickly on the testing environment.

As currently implemented, it is clear that Meta-RNN is
probably inferior to PolicyMetaAIRL. Our hypothesis is
that this difference in performance stems from previously
reported disadvantages of RL2 relative to gradient-based
methods like MAML. RNN meta-learners seem to be harder
to tune, probably because they are black-box learning al-
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gorithms, whereas gradient-based methods explicitly try to
find initializations that can quickly adapt to new test tasks
via gradient descent. This is probably exacerbated by the
fact that Meta-RNN only has access to the previous states
and actions, and not the rewards, which means the signal
provided as input is even noisier. There are many ways in
which the Meta-RNN algorithm could be improved upon
however, and we mention some of these in the next section.

In addition to evaluating the performance of the policies
learned with the IRL algorithms, we also were interested
in whether a new policy could be learnt from scratch by
training on the learned rewards. We found, however, that
PPO planners reoptimized even on the single-task AIRL
baseline tended to perform much worse than those trained
on the ground-truth reward (see the Appendix in Section
8 for some results). This points to a limitation of current
IRL algorithms: the learned rewards are often overfit to
the policy generator. We found this to be the case even in
the case of PolicyMetaAIRL which also meta-learns the
policy along with the reward. Therefore, we agree with the
conclusion in Gleave & Habryka (2018) that major improve-
ments need to be made to current IRL algorithms in order
for the performance of meta IRL algorithms to significantly
increase.

6. Conclusion and Future Work

Current inverse reinforcement algorithms typically struggle
to generalize beyond the specific environments they were
trained on. In this paper, we introduce a meta IRL frame-
work for jointly learning policies and rewards, and apply
this framework to the two major meta-learning approaches
in existence today: gradient-based and recurrence-based
methods. By combining both meta-learning and inverse
reinforcement learning methods, this framework should im-
prove as both meta RL and IRL algorithms improve.

Meta inverse reinforcement learning is quite a promising
area of active research, and we believe it holds great poten-
tial for the future. We hope to extend the results of this paper
and improve them in the future, with two specific ideas in
mind:

1. Utilizing Past Rewards - In the algorithms we proposed,
neither the policies nor the reward networks took past
rewards as input, even though this has shown to be
helpful in meta RL. Although in the IRL setting we do
not have access to the true rewards, it is still possible
to condition on approximate rewards, such as those
learned using single-task IRL, and this would be an
interesting direction to explore.

2. Meta IRL with Attention - We hope to incorporate
soft attention into our meta IRL models, similar to

the SNAIL algorithm (Mishra et al., 2017). We believe
that this will enable our meta-learners to pinpoint and
extract the most relevant information from each trial
for aggregation, leading to additional gains in terms of
performance and training efficiency.

The environments we tested our meta IRL agent on were
simple, but showed promising results. Hopefully these re-
sults will influence future research on more complex tasks,
in spaces such as robotics, autonomous driving, and natural
language processing.
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8. Appendix

8.1. Experiment Hyperparameters

To generate expert demonstrations and reoptimize a policy
based on the learned rewards, we used a PPO planner with
an entropy coefficient of 0.01 and a clip range of 0.1.

For the IRL agents, we used TRPO to optimize the policies
using conjugate gradient descent. All feed-forward policies
had 2 hidden layers with dimension 32. For the Meta-RNN
planner, we first embedded the tuple using a 2-layer MLP
with sizes 32 and 16, and used a GRU cell with hidden
dimension 16. For the test task, we limited the interaction
to 1⇥ 106 timesteps, which was enough in most cases for
single-task AIRL to converge to a roughly optimal policy.
The reward networks also had 2 layers of size 32. We used
a batch size of 10,000 timesteps for all the environments.

Due to the complexity of our environments, we used the
task-specific policy for the Meta-AIRL baseline.

8.2. Environment Details

For the PointMass and PointMassFriction environments, we
used an episode length of 100. For the HalfCheetah and
Ant environments, we used episode lengths of 150 and 200
respectively.

We used the custom Ant environment from the AIRL paper
(Fu et al., 2017) that has modified joints for easier training.

8.3. Reoptimized Policies

We found that a PPO policy reoptimized on AIRL (single
and multi-task) rewards tended to perform suboptimally
when compared to an agent trained on the ground-truth
rewards. Note however that the experiments for reoptimized
policies in Fu et al. (2017) use a modified Ant that has some
legs disabled, which is different than the environment we
experimented on.

Table 1. Loss (lower is better) for reoptimized PPO policy on Ant
(100-shot)

Reward Loss
Ground-truth 326.87

Single-task AIRL 952.40
Meta-AIRL 615.07

PolicyMetaAIRL 614.07
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