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Abstract

Evaluation of Methods for Data-Driven Tools that Empower Mental Health Professionals

by

Orianna Amy Demasi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Benjamin Recht, Chair

It is estimated that nearly one in five adults in the United States live with mental illness,
and for individuals who struggle with mental health, the experience can be excruciating. The
rise of mobile devices presents a unique opportunity to improve mental health outcomes, in
part through empowering mental health professionals. Because many individuals always
have their smartphones with them, smartphones may be able to enable health professionals
to identify when an individual is in need and provide immediate care, rather than the current
model of delaying care until a scheduled appointment. To this end, I investigate the feasibility
of two new data-driven tools: one to identify when care is needed and the second to help
train counselors to intervene when care is needed. The first tool I consider seeks to use a
smartphone to sense an individual’s well-being. Such a tool could be used to inform health
professionals of patients’ states, evaluate the efficacy of therapies, and deliver just-in-time
interventions. To evaluate the potential accuracy of such a tool, I collect students’ passive
smartphone data and self-reported well-being measures, and then consider predicting well-
being on a daily basis and detecting significant changes over a period of time. As this
approach seems unreliable for most individuals, I further explore for which individuals such
an approach may be reliable and develop a framework for evaluating longitudinal sensing
quality. I find that while correlations between smartphone-sensed measures and reported
wellbeing scores exist, these relationships are often too weak to reliably predict wellbeing.
The second tool I explore seeks to help suicide prevention counselors practice intervening
over chat for individuals in crisis. For this, I collect and leverage synthetic conversation
transcripts and show how to evaluate a baseline system for counselors to practice crisis de-
escalation strategies in a no-risk environment. While text retrieval and generation methods
can return responses that make sense in limited context most of the time, i.e., in greater
that 50% of examples, generated responses are shorter than retrieving full messages, implying
that generation may potentially be a less engaging approach. Overall, I find that significant
consideration of context is needed to provide meaningful evaluation of methods for the tools
envisioned. While popular algorithms and methods may hold potential to develop the tools
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discussed, rigorous evaluation and further work is needed to ensure reliability within the
application context.
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Chapter 1

Introduction

Mental illness is of growing concern, as it is expected to become the leading cause of global
disease burden by 2030 [107]. As such, there are increased calls for urgent action to improve
treatments and expand access to care [35]. While many efforts are needed, tools that help
support, inform, and train care providers and tools that help individuals manage their own
mental health may be a component of meeting the growing need. Data-driven tools in
particular may be of use, as they can tailor to individuals and environments.

1.1 Motivation

Data and algorithms have shown profound impacts on our daily lives and many researchers
have begun exploring the role that they can play in mental health. For example, gaining
insights on mental health through novel data sources and machine learning methods is of
growing interest and potential. Studies have considered the ability to track mental health
signals on a population scale from Twitter [42], and on individual scales for many digital
traces [31, 38, 46, 64, 129]. Online behaviors have also yielded insights into language use
with mental health conditions [43, 60]. Many of these insights were previously not possible
to glean from sparse data that was only available from infrequent visits to mental health
professionals.

Insights on possible mental health conditions are valuable, but even more exciting are
the tools and interventions that they can inspire and inform. For example, researchers
have explored building tools that screen online forums for potential addiction recovery lapse
risk [78], medical record screening tools for suicide risk [47], therapeutic agents [100], or
making recommendations for positive behavior change, e.g., increasing activity [123, 124] or
decreasing insomnia [122]. Such tools have the potential to positively influence individual’s
lives and are starting to emerge.

Because these tools are designed explicitly to impact human lives, it is important that
they are developed responsibly so that they deliver their intended positive impact. There
is growing discussion of how to use algorithms responsibly and equitably [105], and fear
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about algorithms replacing human jobs [56]. These discussions are particularly important for
developing health technologies that are designed with the intent of interacting with humans.
One way of developing beneficial tools may be to focus on enhancing the work humans do
and critically evaluating how and when tools can augment human efforts.

In this dissertation, I look at developing two algorithm-based tools that can empower
mental health professionals. The first tool seeks to inform mental health care providers
by providing clinicians with information on patients’ wellbeing. This information could
enable detecting times of need and thus the delivery of treatments that were previously
not possible, e.g., just-in-time, personalized behavioral interventions [122, 123, 124, 137],
and improve therapy evaluation. The second tool I consider seeks to ease the training of
humans through engaging simulations to help humans intervene when an individual is in
need. Simulations could both improve the quality of training through increased practice and
free up experienced counselors to provide more care to those in need by decreasing the time
they need to spend training others.

An underlying theme within this dissertation is a quest for rigorous evaluation of complex
methods. In addition to designing new tools, it is imperative that they work, i.e., they
reliably achieve their intended goals. Towards this end, I consider tools that are inspired
by the potential of algorithms, but I take a cautious view of employing algorithms before
deploying them into individuals’ daily use.

Another theme within this dissertation is working with human participants to collect
realistic datasets. Such datasets enable studying complex human behavior that is difficult
to approximate with surrogate or simulated data. Here, in collaboration, I collected two
datasets to study and develop monitoring and training technologies. The first dataset in-
cluded subjective human input on wellbeing in addition to passively collected mobile phone
data. The second dataset modeled realistic counseling conversations by employing experi-
enced suicide prevention counselors.

1.2 Automatic Journaling of Wellbeing for

Monitoring Patients and Just-in-time

Interventions

The first problem I consider is developing a mobile phone application for automatically
monitoring mental wellbeing.

Mood journaling is an important tool for managing mood disorders, as it can often be a
first step towards understanding one’s wellbeing [74, 30] and then influencing it. Especially
for varying mood disorders, such as bipolar disorder, journaling can help individuals’ be more
aware of their emotions, better understand their conditions, and eventually identify patterns
or triggers, that them help them build actionable plans for navigating their experience [16].
Unfortunately, continual journaling of wellbeing for life-time conditions is not only difficult,
but unrealistic.
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Automatic tracking of some behavioral patterns has become possible with smart devices,
such as smartphones and smartwatches. These devices stream continual data on many
personal aspects of our lives and a growing corpus of research is showing relationships of these
data with highly personal information. Early work showed that complex social dynamics
could be reconstructed from mobile phone bluetooth logs [52]. Later work has expanded
this result by showing that smartphone data may be telling of even more nuanced behaviors,
such as sleep [32, 97] and physical activity patterns [11, 85, 91].

Some of the behaviors that smartphones can infer have also been shown to be related to
mental wellbeing. For example, sleep has been shown in multiple studies to have a relation-
ship with depression [143, 153] and other studies have found different relationships between
sleep quality and sleep quantity on mental wellbeing [117]. Research has also indicated that
physical activity is related to mental wellbeing [113, 144] and even suggested physical ac-
tivity may influence mood to the point of helping control depression [57]. Additional work
has suggested automatically tracking behaviors with a smartphone application as a way to
influence wellbeing [82].

As a result of these relationships between mobile data and behavioral signals, there is
growing interest into whether smart devices can track wellbeing [28, 71, 87, 99, 132, 133]. If
a smart device could track someone’s mental wellbeing, clinicians could better understand
their patients’ conditions and design novel treatment interventions. For example, just in time
behavioral interventions could be designed to intervene in specific ways, given an individual’s
state [109]. Another use for passive monitoring would be to better evaluate interventions,
such as pharmaceutical therapies, over long periods of time.

In this dissertation, I consider how the accuracy of such a technology can be evaluated
and whether or when prediction might be possible, i.e., for which individuals such an app
might be relevant. Better evaluation and understanding of when a technology will be reliable
is necessary to make it more reliable and thus safer. Prediction may be more difficult for
some individuals, than for others, as behavior can differ greatly between individuals.

1.3 A Crisis Simulation for Training Suicide

Prevention Text Line Counselors

The second problem I consider is developing a crisis simulation tool for training suicide pre-
vention text hotline counselors so that they can practice intervening before actually coun-
seling a human in need.

In acute times of need, individuals must be able to reach out to someone, but with insuf-
ficient access to quality healthcare – especially for mental health – there are often feelings
of nowhere to turn and no one to listen [36, 158]. To provide critical support to individ-
uals, helplines, such as the National Suicide Prevention Lifeline1, provide opportunities for
individuals in crisis to reach out, be heard, and get help. Several studies highlight the op-

1https://suicidepreventionlifeline.org
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portunity for helplines to support the high volume of individuals in need and to expand
services over text [61, 127]. While such a larger number of people using helplines indicates
that helplines are providing necessary care, it also presents a challenge to fulfill the need
with trained human counselors.

Helplines rely on counselors who are trained in empathy, active listening, assessing risk of
suicide, de-escalation, and connecting individuals to longer term solutions. Properly training
counselors is critical yet difficult, as, time and human resource costs aside, crisis counselors
need to practice and develop expertise in realistic environments. However, counselors in
training need environments that are low risk, i.e., they do not put distressed individuals in
danger. Novice counselors are unable to assume full responsibility for a crisis situation until
they have some experience.

Some organizations are considering the use of automated interactive agents (chatbots)
to replace human counselors. However, unable to mirror the empathy of a human and still
making conversation fumbles, bots like Woebot2, Wysa3, and X2AI4 have been utilized on a
limited basis to administer therapy for mild conditions or narrow tasks like walking a human
through Cognitive Behavioral Therapy exercises [55]. While therapy bots hold potential
for some situations, individuals in crisis are perhaps too vulnerable for helplines to rely on
artificial agents now.

Individual role-playing, such as between inexperienced and experienced counselors, could
help mitigate the need for practice in a safe or fail proof yet realistic environment and
have been shown to improve crisis intervention skills [40]. However, according to a helpline
counselor we consulted, a role-play can take an hour of both counselors’ time and a novice
needs multiple role-plays. Thus, for crisis lines that offer national service, such intense
supervision for volunteers who might not stay long is difficult and an automated system
could help lower this burden on experienced counselors.

In an effort to provide an environment for novice counselors to learn how to generate
and practice generating appropriate responses, I propose building an interactive automated
tutoring system that novice counselors can use to learn and, more importantly, practice
de-escalation strategies. Similar systems are being considered for training therapists, but
not for helpline counselors, who have a different protocol to follow [148]. I study the first
component of the system, which seeks to provide a chat interface for counselors in training
to practice conversing with simulated individuals in crisis. The system can be expanded by
adding a second component of automated feedback that helps trainees improve.

By developing such a system, crisis helplines could expand their services to help more
people in need, and new counselors could feel more confident starting out.

2https://woebot.io/
3https://www.wysa.io/
4https://www.x2.ai/
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1.4 Summary of Contributions

In this thesis I make contributions towards assessing methods for developing data-driven
tools that could empower mental health professionals to provide better care during times
of need. I do this by studying both the use of mobile sensing for wellbeing tracking and
exploring a chat system for training crisis counselors. I contribute a framework for assessing
longitudinal predictions, use this framework in a case study, question when monitoring might
be possible, and consider detecting changes over time. I also look towards the potential of
building a crisisbot for training crisis counselors and assess a baseline approach that can be
used to develop and evaluate comparing future systems.

Framework for evaluating predictions on longitudinal data

To evaluate algorithms for longitudinal predictions, i.e., tracking health over time, I show
in Chapter 2 how traditional methods of evaluation can lead to false positive conclusions
on freely available and widely used datasets. I also show how such methods are widely
used in related literature. Then I propose a framework that can be used to better evaluate
algorithms for health tracking applications. This new framework improves the evaluation of
mental health prediction algorithms, but can be broadly used to better assess the accuracy
of algorithms on longitudinal data.

Exploring the role of activity and sleep measures to monitor
mood from mobile phone sensors

In Chapter 3, I use the framework I propose to explore the extent to which smartphone-
sensed measures of physical activity and sleep can be used to monitor mental wellbeing. On
an undergraduate student cohort, I find that physical activity and surrogates for sleep can
be measured to a fine enough granularity with a smartphone to reveal correlations found in
previous studies, i.e., increased physical activity and sleep duration were positively correlated
with reported mood. However, modest gains in predictive capability above strong baselines
indicate that smartphone-measured activity and sleep are insufficient for accurate monitoring
and must either be considered in conjunction with other measures or collected with other
sensors which may better measure physical activity, sleep quality, and sleep duration.

Considering when monitoring with smartphone data may be
possible

There can be considerable behavioral variation between individuals. It is possible that this
variation may result in smartphone mood tracking being possible with some individuals, e.g.,
those who use their phone frequently, and not for others, e.g., those who often leave their
phone turned off. In Chapter 5, I look at whether there are patterns that are indicative of
whether an individual’s phone will be more or less successful at predicting their wellbeing. I
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find that there is considerable variation in the ability to predict individuals’ wellbeing, but
that location variability is related to whether a phone can predict an individual’s wellbeing
above a personal baseline. By evaluating when smartphone monitoring may be accurate for
an individual, it may be possible to provide increased reliability.

Detecting changes in wellbeing over periods of time

As I find that challenges remain with using smartphones to monitor wellbeing on a daily
basis, I also question whether smartphone-sensed measures could instead be used to predict
significant changes in wellbeing over time. In Chapter 4, I consider whether smartphone-
sensed features, alone or in conjunction with other features, are related to detecting changes
in depression measures over the course of multiple weeks. I consider a cohort of undergradu-
ate students and find that this approach also has limitations. For example, I find that Big 5
personality features [95] are more related to detecting changes than other smartphone-sensed
features.

Exploring retrieval methods as a baseline approach for evaluating
a counselor training system

In addition to identifying when an individual may be experiencing a time of distress, tech-
nology may be useful for training humans, such as suicide prevention counselors, to intervene
and aid individuals during their times of need. Towards developing a training system for
counselors to practice counseling before interacting with distressed individuals, I explore in
Chapter 6 the use of text retrieval as a baseline method for responding to counselor in-
put. Statistical language generation methods have seen remarkable improvements recently.
However, so have embedding methods for representing natural language. To provide better
comparisons for assessing whether responses generated for a crisis simulation are better than
methods retrieved from a limited corpus, I explore and re-evaluate retrieving responses based
on recent embedding methods. I find that novel embedding methods have improved the rel-
evancy or coherency of responses retrieved. While the coherency is competitive with the
coherency of generative models in this setting, I find that the retrieved responses are much
longer and thus presumably more engaging. By re-evaluating retrieval methods, I establish
stronger baseline methods to compare with generative methods, especially when considering
engagingness of conversations.
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Chapter 2

Meaningless Comparisons Lead to
False Optimism in Medical Machine
Learning

Originally published as Demasi, et al. “Meaningless comparisons lead to false optimism in
medical machine learning.” PloS one (2017).

A new trend in medicine is the use of algorithms to analyze big datasets, e.g. using
everything your phone measures about you for diagnostics or monitoring. However, these
algorithms are commonly compared against weak baselines, which may contribute to ex-
cessive optimism. To assess how well an algorithm works, scientists typically ask how well
its output correlates with medically assigned scores. Here we perform a meta-analysis to
quantify how the literature evaluates their algorithms for monitoring mental wellbeing. We
find that the bulk of the literature (∼77%) uses meaningless comparisons that ignore patient
baseline state. For example, having an algorithm that uses phone data to diagnose mood
disorders would be useful. However, it is possible to explain over 80% of the variance of
some mood measures in the population by simply guessing that each patient has their own
average mood - the patient-specific baseline. Thus, an algorithm that just predicts that our
mood is like it usually is can explain the majority of variance, but is, obviously, entirely
useless. Comparing to the wrong (population) baseline has a massive effect on the perceived
quality of algorithms and produces baseless optimism in the field. To solve this problem
we propose “user lift” that reduces these systematic errors in the evaluation of personalized
medical monitoring.

2.1 Introduction

Health care should be tailored to individuals to maximize their wellbeing and health [34].
There is considerable hope that data collected from emerging data sources, such as smart-
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phones and smartwatches, can be used to extract medical information and thus improve the
tailoring of monitoring, diagnostics, and treatments for personalizing health care [41]. In par-
ticular, mental health care could particularly benefit from automated monitoring, as many
mental health conditions need long-term monitoring and clinical monitoring is expensive,
but automatically tracking a user with ubiquitous sensors is cheap [27, 94, 104].

Machine learning algorithms are commonly being used in an attempt to extract medi-
cal information from easy to collect data sources [17, 28, 108, 132]. These algorithms are
attractive as, by automating information extraction, they promise to provide rich analyses
cheaply and objectively based on collected data. Machine learning works by taking data
that are easy to collect, building a model, and then using the model to make predictions for
data that are harder to collect [58]. As an example, social media posts may be used to pre-
dict individuals’ depressive symptoms or future suicidal ideation [44, 45]. However, without
sufficient evaluation, the outputs of algorithms may be meaningless and mislead clinicians.

Whenever algorithms are used to make predictions, they must carefully be evaluated to
ensure that their predictions meaningfully represent medically relevant information. Evalu-
ation must be specified for each problem [165]. For example, if an algorithm is being used to
predict one of two things, such as whether a patient is depressed, then it could be evaluated
by the percent of predictions that are correct [132]. Alternatively, it could be evaluated by
the percent of times that it correctly identified depression, i.e. sensitivity or true positive
rate, and ascribe less importance to false positives [22]. In contrast, if an algorithm is trying
to predict a value, such as someone’s level of depressive symptoms, one could consider the
degree to which predictions differ, i.e., the mean squared error. There are myriad additional
methods for evaluating algorithms because, without sufficiently evaluating algorithms, it is
easy to generate misplaced optimism about the utility of algorithms [54, 65, 120, 162].

Regardless of how the correctness of an algorithm is quantified, algorithms must be
compared to a baseline approach that simply makes guesses to prove that the algorithm
makes better predictions than guessing. For example, if an algorithm is trying to predict a
rare event, such as a mental breakdown or suicide, an approach that simply guesses that the
event never happens will usually be correct and thus will have high accuracy [76, 103, 152].
However, such an approach is entirely useless for medicine. If algorithms are not compared
with reasonable guesses, the accuracy of the algorithm’s predictions can appear to be good,
when in reality the algorithm is doing no better than guessing and is thus medically useless.

Here we review, for modeling of longitudinal individual state, what baselines algorithms
are commonly compared against and how much of the apparent success of algorithms can
be ascribed to poor comparisons. We focus on the example of mental wellbeing and demon-
strate in two popular datasets that individuals exhibit little variance over time. Typical
wellbeing prediction algorithms seem to work well, but we find that this is simply because
they are basically always guessing individuals’ personal average states. This example high-
lights how falsely optimistic results can easily be obtained by comparing machine learning
with population as opposed to personal baselines. We perform a systematic literature review
and find that most studies (∼77%) compare with the population baseline. By not compar-
ing with personal baselines, studies are prone to making falsely optimistic conclusions that
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can unintentionally mislead researchers’ perspectives and delay progress on important med-
ical applications. We argue for a new measure, “user lift,” that measures the benefit of an
algorithm relative to the single-person model.

2.2 Methods

Algorithm Evaluation

There are many ways to evaluate how good an algorithm’s predictions are [65, 58, 162,
165]. The general approach is a two step process of measuring an algorithm’s error, or how
inaccurate its predictions are, and then comparing the algorithm’s error with the error of
simply guessing answers. These guesses form a baseline approach and could be specific to
each patient, or they could use other trivial factors, e.g. the time of the day. Regardless,
because it is totally useless for medicine to simply guess answers based on subject and other
trivial factors, algorithms must have lower error than such baselines to be of any use.

Algorithm Error

To evaluate how well an algorithm predicts a binary outcome, e.g., whether an individual
is having a happy vs. sad or stressed vs. relaxed day, we consider the classical measure
of prediction error. Prediction error is the percent of observations that were incorrectly
predicted (percent incorrect). To evaluate how well an algorithm predicts an individual’s
level of happiness or stress, we consider the root mean squared error (RMSE), which considers
how different the predicted levels are from the true reported levels [58]. With both prediction
error and RMSE, lower values indicate that an algorithm is doing better at predicting an
individual’s state. Higher values indicate more significant prediction error.

Baselines

We consider two baseline methods that simply guess how an individual is doing: personal
baselines and population baselines. Both baselines are simple approaches that always guess
individuals are at the same state. The personal baseline always guesses that each individual
is at a constant state, but that state can differ between individuals. The population baseline
predicts that all individuals are always at the same state.

When an algorithm is attempting to predict whether an individual is having a stressed
(or happy) day or not, we consider personal baseline error, which is the prediction error
of always guessing that each individual is always at their most frequently reported state
(mode). We also consider the population baseline error, which is the error of estimating that
all individuals are always at the most frequently reported state of the population (mode).

When an algorithm is attempting to predict an individual’s level of happiness or stress,
we consider the personal baseline RMSE, which is how far predicted levels were from always
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guessing each individual to be at their average level of stress or happiness. RMSE indicates a
model with higher error and thus worse predictions. We also consider the population baseline
RMSE, which is the RMSE of estimating that all individuals are always at the average state
of the population.

User lift

We propose the measure of user lift as a way to evaluate whether an algorithm is making
better predictions than simply guessing an individual’s state. The user lift is the improvement
of an algorithm’s predictions over the personal baseline, or the amount that error is decreased
by adding better features and a model. User lift is the difference between personal baseline
error and model error in RMSE or in prediction error (personal baseline error - model error).
The user lift can be thought of as the increase in accuracy of an algorithm over the null
accuracy of guessing an individual to be at their average state. The average user lift is the
mean user lift across the individuals in the dataset.

User lift framework

As a stricter measure of whether algorithms have any utility, we suggest the user lift frame-
work instead of comparison with a single weak baseline, such as the population baseline.
With this framework, researchers calculate user lift for each study participant. The user lift
quantifies whether an algorithm is better than the simple personal baseline on each user.
We propose then reporting descriptive statistics on the distribution of user lift and utilizing
statistical tests to determine whether the average user lift is greater than zero. Nonpara-
metric permutation tests are appropriate and powerful tests for considering whether a single
sample, such as of user lifts on study participants, has a mean greater than zero. A permu-
tation test is appropriate here so that no assumptions on distributions are needed. While
other nonparametric tests, such as the paired Wilcoxon signed-rank test, may be appropriate
for comparing two samples, permutation tests have been reported to be more reliable than
paired non-parametric tests [75, 141].

Machine Learning Example: Predicting Subjective State from
Location and Mobility

We present an example of how falsely optimistic conclusions can be reached about algorithms’
performance. For this example, we follow previous works that have used and suggested that
smartphone GPS location data can predict individuals’ mental wellbeing [28, 71, 132]. We
follow these studies’ methodologies only for constructing features, or describing individu-
als’ daily behavior from their GPS location logs. The dataset, testing methodology, and
prediction tasks that we explore differ from these prior works.
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Datasets

We consider two well established datasets that are freely available. Both datasets collected
individuals’ smartphone data, specifically GPS location, and their stress and happiness levels.
The StudentLife dataset [160] followed a cohort of students at an American university during
the course of a semester. Data that was collected included daily measures of stress on a five
point Likert scale. Of the initial 48 students with data accessible, we consider data for
the 15 students who had sufficient data available: stress level and at least 35 GPS location
observations for at least 30 days of the study period.

The second dataset we consider, the MIT Friends and Family dataset [2], resulted from a
project that collected various types of data on a cohort of university affiliates and their fam-
ilies at another American university. The data collected included daily wellbeing measures.
Here we consider the nine point Likert scale of happiness and seven point Likert scale of
stress that were collected. Of the 116 participants included in the available dataset we con-
sider data for the 31 individuals who had measurements of stress or happiness, respectively,
for at least 30 study days and at least 35 GPS location measurements on those days.

Data Processing: Location and Mobility Features

To derive meaningful features of location and mobility, we follow three previous studies [28,
71, 132]. All features from these studies that were reproducible (due to the data available)
were included. Before constructing features, we used two preprocessing methods.

The first preprocessing method fit a Gaussian Mixture Model (GMM) to all of the location
samples for each participant collected to identify locations frequented by participants [71].
The number of clusters was chosen to be the number, up to twenty maximum, that minimized
the Bayesian Information Criterion [138]. It was assumed that participants would frequent
at most twenty locations during the course of the study. The home location of a participant
was determined to be the location where the participant spent the majority of their time
during the evening hours (11pm - 6am) and the work location was similarly determined to be
where the participant spent the majority of their time during working hours (11am - 4pm).
In contrast to prior work, we did not interpolate the location observations to a regular time
sampling, as we did not find this beneficial to prediction accuracy [71]. We consider this first
set of clusters to be the full clustering.

The second preprocessing method used K-means clustering on stationary points only [6,
132]. The StudentLife dataset included a prediction of whether the participant was moving
or stationary at each observation, but the Friend and Family dataset did not. To determine
whether participants in the Friends and Family dataset were stationary at each observation,
we approximated movement speed with the time derivative at each observation and used a
threshold. We attempted to set the threshold to be about 1km/h [132]. We consider this
second set of clusters as the stationary clustering and the night cluster to be the cluster
where each individual spent the most time between midnight and 6am.



CHAPTER 2. MEANINGLESS COMPARISONS LEAD TO FALSE OPTIMISM IN
MEDICAL MACHINE LEARNING 12

To protect participants’ anonymity, the GPS location data in the Friends and Family
dataset was subjected to an affine transform before being released. Because this transform
purposefully changes the space, but collinearity should be preserved, we approximated fea-
tures in one dimension on the Friends and Family dataset.

Utilizing the two set of location clusters that resulted from the GMMs and Kmeans, the
features of mobility and location that we derived for each participant each day of the study
are as follows:

1. The fraction of a day that a participant spent not stationary.

2. The average displacement of a participant between two observations during the day,
i.e., average speed.

3. The standard deviation of displacements between points.

4. The location variance (on log scale), i.e., the sum of the variance of location coordinates
in each dimension.

5. The “circadian movement” of a participant [132], which we adapted to our daily mon-
itoring setting as the Euclidean distance of the vector of fraction of time a participant
spent in each of their stationary location clusters with the participant’s mean location
distribution. The mean location distribution of a participant was calculated as the
average fraction of a day that a participant would spend in each stationary location
cluster during the study.

6. The location entropy, which was calculated as the entropy of the vector where each
entry represented the fraction of the day that a participant spent in each stationary
location cluster.

7. The radius of minimum circle enclosing the participant’s location samples.

8. The fraction of time a participant spent at their GMM home cluster.

9. The fraction of time a participant spent at their GMM work cluster.

10. The fraction of time a participant spent at their stationary night cluster.

11. The log likelihood of a day from the GMM to estimate how routine the day was.

12. The AIC and BIC of the GMM evaluated with the day’s coordinates, to also determine
how typical the day was.

13. The number of GMM clusters visited in a day.

14. The number of stationary clusters visited in a day.
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Experimental Framework

We present two prediction tasks:

1. Predicting whether a participant was happy or stressed or not on a given day.

2. Predicting the average level of happiness or stress that a participant reported on a
given day.

To construct levels of stress or happiness on a given day, we average all the Likert scale
responses that a participant reported on that day. Whether the participant was happy (or
stressed) or not is defined by a threshold on the daily average on a value to distinguish when
students reported any stress versus no stress. For the StudentLife user inputs, we use “A
little stressed” as the threshold. For the Friends and Family dataset, we use the middle
value of the Likert scale as the threshold, as the Friends and Family scales were defined from
negative to positive values, where the middle value was supposed to indicate a neutral state.

For both problems, we attempt to predict the stress or happiness from the location
and mobility data with a variety of standard machine learning methods. For regression we
consider: linear regression with an Elastic Net penalty, and Lasso regression [151, 168]. For
the binary classification task, we consider: logistic regression with L2 penalty, support vector
machines with radial basis function kernels, and random forests [23, 58]. Hyperparameters
were chosen with 10-fold cross-validation on the training data. The methods that return the
lowest error are presented.

We consider both population models, which could also be referred to as global, general,
or all-user models and utilize all the individuals’ data to make predictions, and personal
models, which use only a single individual’s data to make predictions for that individual.
Prediction error is measured with leave-one-out cross-validation, which is commonly used for
estimating an algorithm’s prediction error [58]. To perform leave-one-out cross-validation on
population models, we combine data from all of the participants into a single set. Then one
observation is withheld, a model is trained on all of the other observations, and then that
model is used to make a prediction for the held out observation. The process is repeated
until every observation has been withheld exactly once. The model error reported from this
process is the average error across the predictions for each data point. Population models
assume that some of each participant’s data is seen during training, in addition to data from
other participants [133]. For personal models, we similarly hold out one observation, but we
only train on the remaining observations of that individual’s data and then repeat only for
the number of observations that we have on that individual. Personal models only attempt
to extrapolate predictions for an individual from their own data. Alternative cross validation
schemes, such as N-fold, offered no benefit to the results, so are omitted for brevity.

Literature Review

In addition to an example on two real datasets of how false machine learning results can be
arrived at by comparing to weak baseline models, we perform a systematic literature review
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to investigate how algorithms are commonly evaluated and whether baselines are sufficiently
reported. Our literature review took three steps:

1. Find relevant literature.

2. Establish whether a baseline (personal or population) was compared with.

3. Identify the error of the baselines and the best reported machine learning algorithms.

Finding Relevant Literature

While baselines are needed to evaluate all machine learning algorithms on personal data, we
make our literature review tractable by focusing on studies similar to the machine learning
example we present. We utilize GoogleScholar to find publications that attempted to auto-
matically infer an individual’s subjective states, similar to the example we presented. The
studies we include meet the following criteria:

• Relate to subjective personal data, as denoted by having one of the following words in
the title: depression, depressive, stress, mood, mental, happiness, or wellness.

• Attempt a machine learning prediction task and report prediction accuracy by having
the following word “accuracy” somewhere in the text of the publication.

• Attempt prediction on participants’ longitudinal data, where personal baselines are
defined, by containing the words “participant” or “user”.

• Collect data from sensors by requiring one of the following words to be included some-
where in the text: smartphones, sensor, sensors, or sensing.

• Were published since 2010.

Because of a particularly strong focus on stress in previous work, we break the query into
two queries: one that requires the word “stress” to be in the title and another search that
requires any of the other wellbeing words to be in the title. We perform this joint search
with the following GoogleScholar queries:

(participant OR user) accuracy (sensor OR sensors OR smartphones OR
sensing)intitle:stress (from 2010)

(participant OR user) accuracy (sensor OR sensors OR smartphones OR
sensing) (intitle:mental OR intitle:depression OR intitle:depressive OR inti-
tle:mood OR intitle:happiness) (from 2010)
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To be considered relevant, studies need to attempt to predict user input data of users’
subjective state from other collected data, i.e. sensors. Examples of studies that are returned
by our query, but are excluded from our analysis are:

• Correlational analyses that reveal certain data or behaviors are correlated with sub-
jective state.

• Studies of one-time user surveys (in contrast to repeated prompts) or where the goal
is to separate subjects, i.e., each subject was a data point.

• Literature summaries or reviews.

• Randomized control studies of intervention efficacy.

• Other evaluations of treatments on subjective state.

• Collection and presentation of a dataset collected without a prediction task.

• Measurements of behaviors without attempting prediction.

• Descriptions of tools and systems implemented with user reviews of the systems.

• Non-peer reviewed publications, such as reports and book chapters.

• Prediction of non-subjective states, e.g., prediction of labels coded by researchers who
intuit what state the user was in from observational data, or labels of stimulus exposure
when studies attempted to induce a given emotional state such as stress.

We only consider studies where labels are for multiple observations of a participant’s
subjective input state.

Establishing Comparison with a Baseline

Some studies do not report any baseline model for comparison, so we begin by noting which
studies reported a baseline model. For studies that provided sufficient detail, we did the
following:

• When baseline models are reported we recorded the baseline performance metrics di-
rectly from the text and the type of baseline used, e.g., a population baseline or a user
baseline.

• When baseline models are not provided, but confusion matrices are provided we man-
ually calculate the baseline performance.

• When individuals baselines are reported, we take the average user baseline performance.

• When only mean squared error are reported, we note whether the mean squared error
is also provided for a constant baseline.
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Comparing the accuracy of different models

There are a wide variety of performance metrics authors report when evaluating their models.
We extract model prediction error for multi-class classification problems according the to
following criteria:

• When results are broken down for personal models by individual, the average is used.

• When accuracy results are given for multiple objectives, e.g., different dimensions of
mood, the best results for each objective is recorded.

• When multiple feature sets and models were tried, only the best performing model is
considered. Models that utilize user input as features were excluded when possible.

• The number of folds in the cross validation scheme used is not incorporated into our
analysis. We considered 10-fold, leave-one-out, and leave-user-out cross validation
schemes to all be “population” models. Both 10-fold and leave-one-out cross validations
on personal data only are considered to be “personal” models.

• The uniform baseline was calculated by noting the number of classes that the study
reported using in their measurement scale.

2.3 Results

We want to consider to what extent the choice of baselines matter in medical machine learning
and how baselines are used in practice. To quantify the importance of baselines, we use two
publicly available datasets and compare the performance of machine learning algorithms to
two different baselines: a population baseline and a personal baseline. More specifically, we
use the StudentLife [160] and Friends and Family [2] datasets and analyze machine learning
predictions of stress and happiness, which we compare to both personal and population
baselines. To understand how the field generally uses baselines, we perform a systematic
literature review. These two complementary analyses will allow us to meaningfully inform
the debate about machine learning in medicine.

Initially, we find, that individual subjects have little variance over time, relative to the
variance across the population, i.e. low personal baseline error relative to higher popula-
tion baseline error (Figures 2.1 and 2.2). Thus, comparing learned models with population
baselines can obscure whether a model is better (lower error) on individuals than constant
personal baseline models. We find the same pattern when we ask about RMSE and bi-
nary predictions. This gives us an intuition that guessing each subject’s mean value should
produce relatively low errors.

Motivated by the intuition that there is little within-subject and more across-subject
variance, we now ask how machine learning algorithms compare to the two baselines. In
line with prior literature [28, 71], the algorithms predict whether an individual was having a
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particularly stressful or happy day from their GPS location and mobility data (Figures 2.1
and 2.2). Our binary results are comparable (max difference=6%) to past studies predicting
binary stress or emotion from similar datasets [19, 20, 29, 71, 70, 90, 102], as are the errors
of the personal models [28, 49, 67, 90, 135, 154, 155, 166]. Similarly, the difference between
RMSE of personal models and personal baselines is comparable to the differences reported in
prior publications [7, 87]. Our algorithms are much better than the population baseline and
population models. They are not, however, lower than the personal baselines. This shows
how good performance relative to the population baseline can be entirely meaningless.

To prevent comparing with the wrong baseline and to control against obscuring the range
of how well algorithms do on individuals with aggregate statistics, we propose using statistical
tests with the metric of user lift to prove that an algorithm is doing significantly better than
the personal baseline. User lift is the difference of the personal model with the personal
baseline, as described above. Positive user lift indicates that a model is better than the
personal baseline, that the algorithm’s predictions are more accurate than always assuming
an individual is at their average state. Indeed, user lift shows that our naive model is useless
while our moderately careful model at least adds something (Table 2.1). Using the wrong
baseline, may make bad machine learning with a performance that is by any meaningful
definition useless seem impressive underscoring the importance of meaningful baselines.

To understand how algorithms are typically evaluated, we perform a systematic literature
review of related studies that attempted to predict emotion and stress from sensed data,
such as from smartphones or smartwatches (Figure 2.3). Just like in our example datasets,
participants report surprisingly little variation (Figure 2.4). As a result, guessing that an
individual was at the same state incurred low personal baseline error and machine learning

Table 2.1: Statistical significance for user lift of personal models in Figures 2.1 and 2.2. The
user lifts are the differences of personal baselines with personal models, in terms of prediction
error or RMSE. The p-values are for permutation tests considering whether the user lifts
were larger than zero. In every case the user lifts are not significantly greater than zero -
the models are not doing better than constant personal baselines.

Dataset Problem Model

Avg.
Personal
Baseline

Error

Avg.
Personal
Model
Error

Avg.
User
Lift

(Error)

p-value

SL - Stress binary Log.Reg. 29.19% 29.09% 0.10 .481
FaF - Happiness binary SVM(rbf) 16.51% 18.67% -2.17 .967
FaF - Stress binary SVM(rbf) 25.17% 23.35% 1.82 .240
SL - Stress regression Elastic Net 0.75 0.78 -0.03 .988
FaF - Happiness regression Elastic Net 0.81 0.83 -0.02 .999
FaF - Stress regression Elastic Net 1.10 1.13 -0.03 1.000
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Figure 2.1: Results of machine learning regression models on StudentLife (SL) and Friends
and Family (FAF) datasets. Bars represent the 5th and 95th percentiles, black lines indi-
cate means, and boxes indicate the 1st and 3rd quartiles of error incurred on individuals.
Personal models yield lower error than population models and population baselines, which
often leads researchers to the conclusion that personal models are successful. Comparing
personal models with personal baselines reveals that their error is no lower, so algorithms
are doing no better than predicting individuals to be their most frequently reported state.
The models presented are those with lowest error.
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Figure 2.2: Results of machine learning classification models on StudentLife (SL) and Friends
and Family (FAF) datasets. Bars represent the 5th and 95th percentiles, black lines indicate
means, and boxes indicate the 1st and 3rd quartiles of error incurred on individuals. As
with the regression example in Figure 2.1, personal models yield lower error than population
models and population baselines. The models presented are those with lowest error.
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Figure 2.3: Diagram of literature review process.

algorithms typically had only slightly lower error than the personal baseline (Figure 2.5).
Studies that do report personal averages sometimes have negative user lift (Figure 2.6).When

personal baselines are reported, they are usually reported in aggregate, which can be mislead-
ing by obscuring negative user lift on some individuals. Aggregation also precludes statistical
tests on user lift and the only study that did report a statistical rank test on improvement
across individuals found that there algorithms were no better than a naive model (using
an historical averages of individuals’ states) [7]. However, the bulk of studies only report
population baselines making it impossible to know if they have any user lift (Figure 2.7). As
such, it seems that the bulk of papers have questionable results, at best.

2.4 Discussion

We have shown, with examples of stress and happiness on two popular datasets how easily
machine learning algorithms can appear promising when compared with meaningless base-
lines. Individuals report surprisingly little variation in state, so always guessing that an
individual is at their most frequently reported state is correct most of the time. As a result,
when an algorithm is compared with a population baseline that always predicts all users are
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Figure 2.4: Participant variability reported in related studies. Reported results reveal little
participant variability. Population and personal baselines reported by studies that had par-
ticipants report their state on two point and five point scales. The black bars indicate the
what the baseline would have been if participants were to report every state equally often,
e.g., happy and sad each half the time. Boxes denote 1st and 3rd quantiles, bars indicate
5th and 95th percentiles, and lines the average of the markers.
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Figure 2.5: Model performance reported in related studies. Reported results reveal that
models do not dramatically improve upon personal baselines. Population and personal base-
lines and model error reported in literature reviewed. Performance (prediction error) is
scaled by the minimum class imbalance to compare studies that asked participants to report
their states on scales with different numbers of points. Boxes denote 1st and 3rd quantiles,
bars indicate 5th and 95th percentiles, and lines the average of the markers.
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Figure 2.6: Calculated user lift and prevalence in studies reviewed. User lift calculated for
studies where error of baselines and algorithms were both reported. Algorithms sometimes
have no improvements over baseline guessing, and these figures are biased to studies that
reported sufficient information.
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Figure 2.7: Prevalence of baselines reported in studies reviewed. Population baselines are
reported in roughly half the publications reviewed while personal baselines are infrequently
reported (approximately 23% of publications).

always at the same state, the algorithm’s predictions can seem accurate even if they are no
better than predicting each individual to be at their most frequently reported state. Despite
the possibility for falsely optimistic results, we found in a systematic literature review that
population baselines are commonly compared with in roughly 77% of publications reviewed.
We also find that when personal baselines are reported that the algorithms often add little
or nothing over these baselines (and in fact they sometimes do worse).

A limitation of the datasets that we explored, and most of the literature we reviewed,
was that the study cohorts were not clinical populations, the sample size was small, and the
study duration was limited. However, the study characteristics of the datasets presented
are characteristic of many studies. While target populations for the monitoring we have
discussed are typically individuals with mood disorders, study cohorts are frequently small
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in size and from the general population. It is possible that individuals with mood disorders
would report more variability in state than the general public. More variability would reduce
the likelihood of falsely optimistic results, but our proposed evaluation method would still
be appropriate for showing that algorithms are an improvement over always predicting that
individuals are at their average state. Finally, the user lift evaluation framework that we
suggest would complement a larger dataset, despite being demonstrated on fewer subjects
here.

While we reviewed a representative portion of relevant literature, we had to focus the
scope and present a reproducible search that aligned with public datasets. We constructed
general search queries to include pertinent studies, but inconsistencies in terminology be-
tween communities made it impossible to included all relevant studies and some known
related works were not covered.

In addition to coverage, there were a variety of features that we could not control in
the literature review. Studies recruited from disparate populations and had different study
protocols. In addition to collecting different data and conducting different analyses, studies
reported results in an variety of ways. We did our best to standardize across studies and
present results favorably and comparably.

The proposed user lift evaluation framework is more generally applicable to predicting
longitudinal patient state than we have shown here. We have focused our review on a narrow,
important application of mental wellbeing, as this is a nascent and exciting application for
machine learning algorithms. However, user lift would apply to any application predicting
longitudinal data, such as monitoring blood sugar level, body weight, or daily sleep duration.
The importance of statistical tests on user lift becomes greater for applications where indi-
viduals are expected to exhibit less variation and descriptive statistics must also be reported
to quantify the size of any statistically significant user lift.

While we have calculated personal baselines here over the entire dataset, in principle this
is not necessary. Because personal baselines are calculated with respect to individuals’ most
common state, personal baselines are easy to quickly approximate, with minimal sampling.
Personal baselines could potentially vary over an extended period of study, but such scales
are outside the scope of most studies and require further investigation.

An ability to predict meaningful personal signals for medical monitoring, such as men-
tal wellbeing, could greatly improve personalized medicine by enabling novel approaches to
just in time and personalized interventions. However, we have highlighted some pitfalls of
evaluating algorithms for this application that can easily result in falsely optimistic results
and unintentionally provide baseless optimism. To reduce falsely optimistic results, we have
suggested an alternative evaluation framework using statistical tests on our proposed metric
of user lift, which takes an individual-centric approach. As was shown, there is a range of
model predictive capability across individuals, so we suggest statistically testing for signifi-
cant improvement on the population. This framework of evaluation can help researchers to
focus efforts and thus help advance progress on this application.
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Chapter 3

Well-Being Tracking via
Smartphone-Measured Activity and
Sleep: Cohort Study

Originally published as DeMasi, et al. “Well-being tracking via smartphone-measured activ-
ity and sleep: cohort study.” JMIR mHealth and uHealth (2017).

Automatically tracking mental wellbeing could facilitate personalization of treatments
for mood disorders, such as depression and bipolar disorder. Smartphones present a novel
and ubiquitous opportunity to track individuals’ behavior and may be useful for inferring
and automatically monitoring mental wellbeing. We assess the extent to which activity and
sleep tracking with a smartphone can be used for monitoring individuals’ mental wellbeing.
Methods: A cohort of 106 individuals was recruited to install an app on their smartphone
that would track their wellbeing with daily surveys and track their behavior with activity
inferences from their phone’s accelerometer data. Of the participants recruited, 53 had
sufficient data to infer activity and sleep measures. For this subset of individuals, we related
measures of activity and sleep to the individuals’ wellbeing and used these measures to predict
their wellbeing. We found that smartphone-measured approximations for daily physical
activity were positively correlated with both mood (P < .01) and perceived energy level (P
< .001). Sleep duration was positively correlated with mood (P < .05), but not energy.
Our measure for sleep disturbance was not found to be significantly related to either mood
or energy, which could imply too much noise in the measurement. Models predicting the
wellbeing measures from the activity and sleep measures were found to be significantly
better than naive baselines (P < .01), despite modest overall improvements. Measures of
activity and sleep inferred from smartphone activity were strongly related to and somewhat
predictive of participants’ wellbeing. While the improvement over naive models was modest,
it reaffirms the importance of considering physical activity and sleep for predicting mood
and for making automatic mood monitoring a reality.
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3.1 Introduction

A goal of personalized medicine is to tailor treatments to individuals. To aid the tailoring
of treatments, it is necessary to monitor how an individual is doing and to evaluate whether
they are responding to a treatment [30, 74]. However, monitoring can be a tedious, expensive
process and, as a result, yields low adherence [79]. To overcome low patient adherence, auto-
matic monitoring can help mental health disorders, such as depression and bipolar disorder,
that benefit from monitoring symptoms over time to identify symptom relapse and possibly
prevent symptoms due to higher self-awareness [73].

The proliferation of personal electronics has enabled continuous personal monitoring
[119]. For example, activity recognition has enabled tracking to monitor physical exertion
and sleep patterns [53]. Recent studies have started examining whether these smartphone-
measured behavioral patterns can be used to infer and then automatically track signals that
aren’t explicitly measured by the smartphone, such as mental wellbeing.

Many studies have looked at inferring measures of mental wellbeing from smartphone-
measured behavioral patterns [99]. In particular, researchers have considered using measures
of location and mobility from GPS logs to infer depression [28, 71, 132], bipolar state [63],
stress [17], and wellbeing measures related to schizophrenia [159]. These studies have shown
that daily self-reported levels of stress are related to geospatial activity and sleep [17] and that
mobility data can improve predictions of whether a participant is happier, or less depressed
than usual [28, 71] and their bipolar state or transition between states [63]. Researchers
have also found that regularity of an individual’s daily mobility is significant when predicting
depression symptom severity [132, 134].

Additional studies have explored the relationships of social signals, such as phone us-
age, call logs, and SMS logs, with wellbeing. Two recent studies found that phone usage
measures were correlated with depressive symptom severity [132, 134]. Another study found
that using social signals, such as emails, SMS and call logs, internet usage, app usage, and
location frequency was predictive of mood and energy when previous observations of mood
and energy were included [87]. However, a similar follow-up study was unable to reproduce
these results. This follow-up study did not find sophisticated models considering high ac-
celerometer activity, call and SMS logs, screen events, app usage, and number of images
taken to be better than guessing each individual’s wellbeing [7].

While this body of literature has established that relationships between measures of
mental wellbeing and smartphone-measured behaviors may exist, the above literature has not
focused extensively on physical activity in uncontrolled environments (i.e., outside of a lab
without constraints on participants, such as where the phone must be located). For example,
studies have explored predicting bipolar states and state transitions via accelerometers on
small populations [63] or mood in constrained environments where the phone had to be in a
fixed position [125, 66] or activities had to be performed in a lab [26]. One study has looked
at a measure of total daily physical activity and sleep (as measured with multiple sensors),
but within the context of stress and not wellbeing more broadly and did not attempt to
predict wellbeing [17].
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Despite these few studies’ limited focus on activity and sleep, there is a body of litera-
ture external to mobile health (mHealth) that has established a strong relationship of better
mood with increased activity [50, 57, 96, 113, 144] and sleep quality [117, 118]. There is also
mounting evidence that a smartphone accelerometer measures physical activity to a sufficient
extent to be useful for monitoring wellbeing. Several studies have demonstrated that indi-
viduals’ sleep and physical activity can be somewhat accurately tracked with smartphones
[32] and activity recognition [69, 83, 91], respectively. As a result, it seems probable that
an individual’s activity and sleep, as tracked by their smartphone’s accelerometer, could be
related to and potentially predictive of their mood and wellbeing more broadly.

If possible, tracking mental wellbeing with an accelerometer could have benefits over using
other sensors. For example, an accelerometer could provide more privacy than previously
considered sensors, such as GPS location [17, 28, 63, 71, 132] and call logs [7, 87]. Another
advantage to using an accelerometer is that the sensor is always available when the phone
is turned on, including when the individual is out of service or, e.g., in a tunnel. While
accelerometers embedded in a wearable device might have more potential to accurately track
activity, smartphones are more ubiquitous and thus more realistic for long-term tracking.

Here, we are interested in focusing on and better understanding the relationships of phys-
ical activity and sleep, as measured by a smartphone accelerometer, with emotion for improv-
ing automatic mood tracking. We are particularly interested in understanding whether the
relationships are predictive, especially from data collected with ordinary participant-owned
smartphones in unconstrained environments (i.e., not imposing constraints on participants
about where they need to keep the phone or if they need to have a special device with an
accelerometer attached to their body). To explore these research questions, we conducted a
field study, extracted measures of physical activity and sleep from smartphone accelerometer
logs, related these measures to participants’ self-reported wellbeing, and attempted to infer
participants’ wellbeing with classification and regression models. We expect that increased
physical activity and better sleep quality will be related to improved self-reported mood and
wellbeing.

3.2 Methods

Field Study

We recruited 106 participants from the university community through the Experimental
Social Science Laboratory (XLab) for an eight-week field study to pilot methods. Participants
were eligible if they owned an Android smartphone, were native English speakers, were
undergraduate students, and agreed to the consent form. The study was approved by the
University of California, Berkeley Internal Review Board. The participants were asked to
take an entry survey, respond to daily wellbeing prompts on their smartphone, allow passive
collection of sensor data from their smartphone, and take an exit survey.
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Data Collection

Data was collected from participants through a custom Android app that used the Funf
Open Sensing Framework [2]. This app was installed by participants before the study period
and collected both passive sensor data as well as daily participant input. The participants
were instructed and reminded to uninstall the app at study completion.

To quantify wellbeing, we followed prior studies and asked participants to repeatedly fill
out a two question survey on their phone. Participants could enter information about their
state on two nine point Likert scales, one for energy and one for mood. Scales were labeled
with opposite poles, such as unhappy to happy and unenergetic to energetic. Participants
could select the specific words from short lists of relative synonyms for each pole, such as
unhappy, negative, sad, bad versus happy, positive, good. Participants were queried for their
state four times a day. Each of the four daily surveys occurred at a random time within a
predefined period between 8am and 10pm. The purpose for randomizing within periods was
to ensure distribution of surveys throughout the day without having participants anticipate
them. All responses given in a day were averaged into a daily level of perceived mood and
energy.

To measure activity, we sampled the smartphone’s accelerometer for intervals of three
seconds every five minutes. This data was collected continuously from the time the app
was installed. There were compatibility issues with phone models and network connections,
so the amount of data collected on each subject varied. Quality of accelerometers also
varied between phone models, which contributed to variance in the amount and quality of
data collected on each individual. Some of the difficulties we encountered with sensor data
collection included entirely missing observations, non-uniform readings during an observation
interval and insufficient duration of sampling, i.e., less than three seconds. Participants were
excluded from the analyses if they did not have complete data (wellbeing responses and
activity readings) for at least 14 days of the study.

Data Processing

Preprocessing

The smartphones’ 3-axis accelerometers measured the acceleration of the device in three
directions. Following prior work, we considered the magnitude of the acceleration minus
gravity [98]. Gravity for each segment was estimated as the average of coordinates in each
of the directions. To account for irregular sampling and reduce noise in the sensor readings
during a sampling interval, we interpolated the available data points and took regular sam-
pling from the interpolation. Quadratic and cubic splines gave irregularities with missing
readings, so a linear spline was identified as performing the best. This regular sampling
allowed us to compute discrete Fourier transforms on the approximated signal and approxi-
mate the spectral density using Welch’s method, i.e., averaging between Fourier transforms
on multiple overlapping segments of the full observation window.
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Activity Inference

We inferred activity from features summarizing the orientation-invariant magnitude of accel-
eration deviation and the spectral density of the magnitude of deviation of acceleration. The
acceleration deviation was computed by subtracting the estimated gravity from all readings
in the interval. This approach was taken, to allow for finer grain analysis of movement than
is presented here. Much prior work with accelerometers, predicting both mental wellbeing
[26, 63, 125] and activity [69, 83, 91], utilized features on coordinate-wise acceleration. How-
ever, such approaches were not applicable here, as our participants’ phones were not in a
fixed position during the study. We followed prior work that considered features on the
magnitude and power spectrum of the magnitude of acceleration during the sample period
[91]. The features we used were the average and standard deviation of the magnitude of ac-
celeration and the dominant frequency, entropy of the normalized power spectrum, power in
the high frequencies, medium frequencies, and low frequencies of the power spectrum of the
magnitude of the acceleration. These eight features were used to fit two logistic regression
classifiers. One classifier was trained to identify when the phone is “still” or set down, the
second classifier identified “activity” such as walking, running, or pedaling a bicycle. We
did not use a classifier to explicitly identify the phone being in a vehicle, such as a car, bus,
or train. We did not find a classifier to be reliable enough given the many states a vehicle
can assume, e.g., idling, accelerating, and traversing a smooth or bumpy road. Such a task
was also of uncertain necessity because participants do not necessarily exert extra energy
while riding in transportation, and thus was less likely to correspond to elevated mood from
physical exertion. As a result, we focus the current study on measures of physical activity
and sleep. The goal of these two classifiers was to quantify how long the phone was set
down at night, and the subject presumably sleeping, and how long the participant was phys-
ically active during the day. These classifiers were trained on an auxiliary, activity labeled
dataset that was collected with the same smartphone app and data processing pipeline. The
classifiers achieved 80-95% accuracy on held out subjects from the training dataset.

Measure Extraction

Sleep Duration

Sleep duration was estimated as the length of the longest period during which the participant
was not physically active starting after 9pm the prior evening. This period was calculated
by looking at the longest contiguous series of observations when the accelerometer data
predicted that the participant was “not active” and taking at the duration of that period.
While this approach likely overestimates the duration of sleep, it should be representative
of a period of passivity or evening rest and is preferable to the highly noisy alternative of
considering the duration for which the phone was predicted to be still during the evening.
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Nighttime Stillness

Sleep disturbance, or nighttime stillness, sought to capture sleep disturbance during the time
when each participant’s phone was most likely to be set down and the participant presumably
asleep, based on their typical behavior. This measure was considered to be the fraction of
time that a participant was still during their median period of late evening, or when their
phone would typically be still based on their behavior during the study. The period of late
evening was defined for each participant by first considering the longest contiguous set of
observations during which the phone was predicted to be set down starting after 9pm for
each day of the study. The median time that this period started, or presumably the phone
was set down, for each day of the study defined the beginning of period and the median
time that the contiguous “still” observations ended on each day of the study, was considered
the end of the period of late evening. The nighttime stillness measure for each day of the
study was the fraction of observations on that day of the study that occurred during the late
evening period and were predicted to be “still”.

Daytime Activity

For a measure of daily physical activity, we consider the daytime activity, which was the
fraction of time that a participant was predicted to be physically active during their active
period or the period of the day that we would expect each participant to be active, given
their typical behavior during the study. The active period of the day was determined by first
looking at the longest contiguous set of observations when the phone’s predicted behavior
was “not-physically active” starting after 9pm. The median time across all the days of the
study when this physically not-active period began was considered as the end of the active
period and the median end time of the not-active period was considered the beginning of
the participant’s typical active period. The “daytime activity” measure for each day of the
study was then the fraction of time that the participant’s phone predicted (with the models
discussed previously) that the participant was “physically active” during the participant’s
active period.

Day of Study

Following prior work, we coded the day of the study as the number of days that had elapsed
since the first day of the study [17]. This measure is important to account for potential
participant fatigue, but also as it represents the progression of the academic semester, which
may have had an effect on participants.

Weekday

The day of the week, and thus the potential effect of weekends on participants, was accounted
for by coding weekdays in an ordinal variable from zero to six, Monday thru Sunday.



CHAPTER 3. WELL-BEING TRACKING VIA SMARTPHONE-MEASURED
ACTIVITY AND SLEEP: COHORT STUDY 32

Type of
measure

Measure
How it was measured and
calculated

Time
Day of study
(semester)

Coded as the number of days since
the first day of the study.

Day of week
Ordinal variable coded Monday (0)
thru Sunday (6).

Sleep Sleep duration
Longest contiguous time that the
participant was not physically
active starting after 9pm.

Activity
Daytime activity

Fraction of time participant was
physically active during the median
active period. The median active
period is the time between the
median hour the participant
became physically active during
each day of the study and the
median hour that the participant
stopped being active during the
study.

Nighttime stillness

Fraction of time the phone was
predicted to be still, i.e., set down,
during the median still period. The
median still period was calculated
over the course of the study to be
the median hour that the longest
contiguous still period started and
the median hour it stopped.

Table 3.1: Daily measures of activity and sleep and how they were calculated.

Analyses

Relating Measures to Well-being

The first set of analyses sought to study the relationship of activity, sleep, and time on
daily wellbeing. To account for the repeated measures design and missing data, we used
mixed-effects linear models to relate reported average daily wellbeing measures to daily
behavior measures [128]. We started with a maximal random-effects structure for each
wellbeing measure to allow for individual variation and increase generalizability. Due to lack
of initial convergence of the model, we followed suggestions in prior work by looking at the
covariance of the partially converged model and removing the variable in minimum variance
from the random-effects structure [12]. Using this procedure, we removed the measure of
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sleep disturbance, “nighttime stillness” from the random-effects structure when modeling
mood and removed the scaled ordinal variable coding the day of the week when modeling
energy. After this step both models converged. Activity and sleep measures were centered
and normalized within individuals and time measures were scaled between zero and one
before fitting the models to compare the relative sizes of effects.

To ensure the value of the model with maximally justified random-effects structure, we
fit two additional models: a model with only random intercepts and no additional random-
effects or fixed-effects and a model with fixed-effects and a random intercept only. Model
fit was assessed with chi-square tests on the log likelihood values of different models. Model
assumptions were visually checked. The linear mixed-effects models and analyses were carried
out in the R programming language and environment [149] using the lme4 [14] and lmerTest
[81] software packages.

Predicting Well-Being

The second set of analyses assessed if the relationships between daily mood and the activity,
behavior, and time features were strong enough to be predictive. To do this we attempted
two tasks. The first task was to predict if a participant was having a bad day, i.e., whether
their wellbeing was lower than their median reported wellbeing. Only participants with
sufficient observations of each class (at least 5 fine days and 5 bad days) were included in
the analysis. The second task was to predict a participant’s level of wellbeing.

Prediction Models

For the first task, predicting whether a participant was having a worse than usual day,
we used logistic regressions with an L1 and an L2 norm penalty as well as support vector
machines (SVM’s) and random forests [39, 23]. For predicting the daily level of wellbeing,
we used a linear regression model with the elastic net penalty [168] in addition to an Epsilon-
Support Vector Regression and random forests. These models were used on individuals’ data
to build “personal models”, rather than pooling all individuals’ data into a “global model”.
Personal models were used because they have been shown to be the most successful approach
to predicting individuals’ responses [159]. Mixed-effect models help to model behavior within
the population as a whole, while taking into account individuals have different behavior, but
personal linear models are a best case scenario for predicting individuals’ behavior from their
own data.

Prediction Framework

For both prediction tasks, we evaluated prediction accuracy with leave-one-out cross-validation
on personalized models, i.e., we trained a model on all but one of a participant’s data points,
evaluated the model accuracy on the held out observation, and then averaged accuracy
across observations. The penalty weights hyper-parameters were set with leave-one-out cross-
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validation on the training data and scanning a variety of penalty weights. The predictive
analysis was performed in Python with the scikit-learn library [112].

Model Evaluation: User Lift

The accuracy of predicting whether an individual was having a good day, was quantified
by prediction error, or the percent of observations that were incorrectly predicted. The
accuracy of predicting the level of wellbeing on a given day was quantified by root mean
squared error, which is the square root of the average squared distance of a prediction
from the true value. We report the accuracy of predictions compared with the accuracy of
predicting each participant to be at their most common state. This measure is called “user
lift”; it is the increase in accuracy, or decrease in error, that the model has relative to always
predicting an individual to be at their most common state. By comparing a model with
each participant’s baseline, user lift reveals how much better a model is doing than guessing
a participant to always be at their usual state. We then used permutation tests to assess
whether user lift was significantly positive across the participants, i.e., that the models were
significantly better than always guessing a participant to be at their most common state,
as permutation tests are reported to be more reliable than paired non-parametric tests [75,
141].

3.3 Results

Participation

Of the 106 participants recruited, 87 installed our app and 57 completed the study, i.e.,
completed the exit survey at the end of the eight-week study period. However, there was
only sufficient data on 53 participants to include in the analyses. Baseline characteristics of
individuals included and excluded from the analyses are in Table 3.2 and indicate similar
populations were included and excluded from the analyses. While some attrition was due to
participation waning over the eight-week study period, there was also attrition as a result of
technical difficulties and app compatibility issues on older phones.

Relationship of Sensor Data with Well-Being

From linear mixed-effects models, we found significant positive relationships of daytime
activity and sleep duration with daily mood; when participants get more sleep and more
daily activity they tend to report better moods (Table 3.3). Daytime activity has a stronger
relative effect than sleep duration. Of note is that nighttime stillness (sleep disturbance) is
not significant. This lack of significance could imply that the measurement is too noisy and
that more work is needed to reliably measure sleep disturbance with a smartphone. The
model with the maximal random-effects structure better accounted for the variance across
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Included
participants

with exit
survey

(n = 47)

Included
participants
with no exit

survey
(n = 6)

Excluded
participants

due to
insufficient

data
(n = 53)

Age* 19.83 (1.99) 20.33 (1.60) 20.80 (4.13)
Female (number)* 26 3 28
BDI-20 score (entry)* 11.14 (9.27) 7.33 (3.54) 12.61 (7.20)
BDI-20 score (exit)* 11.98 (12.00) - -
Median mood rating 5.17 (1.63) 5.83 (0.90) 5.44 (1.44)
Median energy rating 5.60 (1.27) 6.67 (0.94) 5.98 (0.80)
Number of emotion
surveys completed

160.51 (44.42) 139.33 (55.01) 30.25 (50.97)

Number of days with
emotion ratings

49.45 (8.27 44.00 (11.06) 10.49 (15.99)

Reported typical sleep
duration in hours (from
exit survey)*

6.88 (1.35) - -

Average duration of
inactive period in hours
(sensed “sleep
duration”)

8.79 (1.22) 8.56 (0.48) -

Number of times per
month participant
exercised (from exit
survey)*

4.24 (5.04) - -

Average minutes active
per day (sensed
“daytime activity”)

118.78 (32.67) 151.25 (59.68) -

Number days with
sensed activity and
mood input

38.60 (9.15) 40.00 (9.64) 3.36 (5.15)

Table 3.2: Participant baseline characteristics. Averages across individuals are reported with
standard deviations in parenthesis, except where indicated. Where appropriate, numbers
represent the average across individuals of averages within individuals. “BDI-20” indicates
optional self-reports to 20 questions of the Beck’s Depression Inventory (the question related
to suicidal ideation was omitted). Entry and exit survey questions were optional, so *
indicates measures averaged only over submitted responses.
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Linear mixed-effects model of mood

Fixed-effect Estimate Std. error t value P value
Mean mood (intercept) 5.056 0.174 28.973 < .001
Day of study (semester) -0.059 0.261 -0.226 .822
Day of week
(coded 0-6, Mon-Sun)

0.040 0.076 0.528 .598

Sleep duration 0.072 0.030 2.451 .018
Daytime activity 0.097 0.032 3.062 .004
Nighttime stillness 0.040 0.026 1.528 .127

Table 3.3: Results of fixed-effects for linear mixed-effects model of mood level from smart-
phone measured and time variables. The measure for nighttime stillness was excluded from
the otherwise maximal random-effects structure.

individual participants than the random intercept only model (Table 3.4). The main effects
also remained significant, even when accounting for individual differences.

We also found a significant positive relationship of daytime activity with daily perceived
energy level (Table 3.5). The relation for sleep, though negative, is not significant, reveal-
ing a potentially different relationship between the two emotions (mood and energy) with
sleep. Day of the week has a significant positive fixed-effect, but had to be removed from
the random-effects structure following prior suggestions about how to handle lack of model
convergence [128]. This effect for day of the week indicated that participants collectively
felt more energy at the end of the week and there is not sufficient evidence to support the
idea that weekday affected participants differently. When we changed the variable encoding
weekday to a binary variable indicating a fixed weekend of Saturday and Sunday versus the
rest of the week, as has been suggested in related work [133], this relationship did not remain
significant. An interaction term between a weekend indicator and daily activity was similarly
not found to be significant. This lack of significance as a binary variable could be a result of
weekends being less defined in our undergraduate population, some of whom may or may not
have classes on Friday and thus have had extended “weekends. The lack of significance could
alternatively result from insufficient observations of weekends for each participant. Again,
sleep disturbance is not significant, further indicating that there might be too much noise in
the variable measuring sleep quality. The model with the maximally justified random-effects
structure accounted for significantly more variation across participants than having only a
random intercept (Table 3.6).
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Linear mixed-effects model fit for mood

Model name AIC BIC
Log

likelihood

Chi-squared
value (df)

P value

Random intercept only 6522.0 6538.8 -3258.0
Fixed-effects with
random intercept only

6508.8 6553.7 -3246.4 23.177 (5) < .001

Maximal random-effects
structure

6322.0 6445.4 -3139.0 214.757 (14) < .001

Table 3.4: Checking model fits for linear mixed-effects model of mood.

Linear mixed-effects model of energy

Fixed-effect Estimate Std. error t value P value
Mean energy (intercept) 5.686 0.184 30.857 < .001
Day of study (semester) -0.304 0.233 -1.303 .199
Day of week
(coded 0-6, Mon-Sun)

0.196 0.067 2.912 .004

Sleep duration -0.027 0.031 -0.858 .394
Daytime activity 0.182 0.039 4.673 < .001
Nighttime stillness 0.024 0.030 0.810 .422

Table 3.5: Fixed-effects for a mixed-effects linear model relating daily energy level from
smartphone measured and time variables. The ordinal variable for weekday was excluded
from the near-maximal random-effects structure.

Linear mixed-effects model fit for energy

Model name AIC BIC
Log

likelihood

Chi-squared
value (df)

P value

Random intercept only 6284.2 6301.0 -3139.1
Fixed-effects with
random intercept only

6196.1 6240.9 -3090.0 98.117 (5) < .001

Maximal random-effects
structure

5972.5 6095.9 -2964.2 251.562 (14) < .001

Table 3.6: Checking model fits for linear mixed-effects model of energy.



CHAPTER 3. WELL-BEING TRACKING VIA SMARTPHONE-MEASURED
ACTIVITY AND SLEEP: COHORT STUDY 38

Problem
(model)

Wellbeing
measure

Average
user lift

Minimum
user lift

Maximum
user lift

P value

Good or bad day
(penalized logis-
tic regression)

Mood
(Pred. error)

5.44% -21.74% 35.00% .001

Energy
(Pred. error)

4.92% -22.73% 39.39% .008

Daily average
(linear
regression
with elastic net)

Mood
(RMSE)

0.026 -0.232 0.48 .085

Energy
(RMSE)

0.048 -0.169 0.575 .011

Table 3.7: Statistics on linear models predicting daily wellbeing from activity measures.
While the models provide an improvement overall, there is a range in the ability to model
individuals. The P-values are for permutation tests checking whether user lift is greater than
zero, i.e., if models are significantly more accurate than always predicting each individual to
be at their most frequent state.

Predicting Well-Being From Sensor Data

3.4 Discussion

Principal Findings

We found that increased daily activity, as tracked with a smartphone’s accelerometer, pos-
itively correlated with participant-reported mental wellbeing over time. While a positive
correlation of activity and wellbeing has been substantiated in literature external to mHealth
[50, 57, 96, 113, 144], we have shown that smartphones measure individuals’ daily activity
to a sufficient level of accuracy to measure this relationship in everyday life. While the po-
tential for this result has been shown in environments where constraints were placed on the
participants [63, 125, 66, 26], we have found this relationship present when no constraints
are placed on participants. Previous work did not find a significant correlation of the total
activity in a 24-hour day with stress [17], which could indicate the need for distinguishing
daytime activity from nighttime activity, as we have done, or indicate that physical behavior
has unique effects on different emotions, which we have observed by considering mood and
energy separately.

We also found that a simple measure of sleep duration derived solely from accelerometer
data was significantly positively correlated with mood. However, it was not significantly cor-
related with perceived energy, which supports the idea that there are different relationships
between different emotions and physical behaviors. We did not find a significant correlation
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of either mood or energy with our measure of smartphone measured sleep disturbance. This
may imply that the measure did not sufficiently describe sleep quality and more work is
needed to monitor sleep quality in a sustainable way. It is possible that a more sophisticated
method for predicting sleep, such as found in prior works, would allow for a finer measure of
sleep disturbance [32].

When we used the activity, sleep, and time measures to predict individuals’ wellbeing,
we found modest, but significant improvement over naive baseline models. It is important
to emphasize that there was a range in our ability to predict individuals’ wellbeing from
their activity and sleep behavior. This range highlights the need for tracking approaches
that tailor to the user. However, it is unclear if this effect is the result of a range in how
thoughtfully individuals responded with their state, phone usage, data quality and quantity,
or the strength of wellbeing and activity relationship between individuals.

Limitations

A limitation of this study is that participants’, self-reported wellbeing is subjective and the
population was not clinically assessed. However, the measures of wellbeing that we used have
been widely used and prior research has found simple single scale measures to be related to
longer clinical assessments [1]. While a better measure of wellbeing could be a longer survey,
such a measure would incur significant participant fatigue and likely decrease the duration
of participation.

Whether all of the participants’ relevant activity was tracked with smartphones during
the study is another concern. There are limitations to activity recognition, especially when
the smartphone is not in a fixed position, a participant is doing a non-standard activity, or
the phone is set down, e.g., left in a gym locker. However, the study cohort retrospectively
reported little vigorous exercise during the study period (Table 3.2), so the underestimation
of vigorous exercise is likely minor. Such limitations could possibly partially be mitigated
with location tracking, but time at a location is not necessarily representative of activity and
poor GPS sensitivity would remain a challenge. Wearables may provide a better facsimile of
an individual’s behavior when they are worn, but they have notorious compliance limitations
that smartphones don’t suffer.

Another limitation was the sample size and lack of clinical population. Some of the
individuals in our study cohort did report elevated levels of depressive symptoms in the
entry and exit survey. However, the cohort is not necessarily representative of a population
with clinically diagnosed mood disorders. Depressed individuals often are less active than
the general population, but even small increases in physical activity can improve symptoms
[150].

Conclusions

This study examined the extent to which smartphones’ accelerometers can contribute to
passively tracking individuals’ mental wellbeing in everyday life. We have found that smart-
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phones measure activity and sleep with sufficient accuracy to reproduce prior findings of
significant relationships between activity and sleep with mood. While models have a mod-
est, though significant, improvement over naive baseline models in general, the range in
predictive capability implies that more work is needed to tailor mood and depression track-
ing apps to individuals.

Our results support the promise for smartphones to be used in sophisticated and long-
term monitoring of patients’ wellbeing. Because smartphone use is high and their presence
ubiquitous, the ability to use a smartphone for tracking mental wellbeing could have a
huge impact on mental health care. Smartphone monitoring may improve self-management
via smartphone apps making care more affordable and thus accessible to individuals who
currently do not have access to care. Passive monitoring could also be used as an adjunct
to clinician led treatment, thus increasing the quality of care and personalizing treatments.
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Chapter 4

Detecting Change in Depressive
Symptoms from Daily Wellbeing
Questions, Personality, and Activity

Originally published as Demasi, et al. “Detecting change in depressive symptoms from daily
wellbeing questions, personality, and activity.” IEEE Wireless Health (2016).

Depression is the most common mental disorder and is negatively impactful to individu-
als and their social networks. Passive sensing of behavior via smartphones may help detect
changes in depressive symptoms, which could be useful for tracking and understanding dis-
orders. Here we look at a passive way to detect changes in depressive symptoms from data
collected by users’ smartphones. In particular, we take two modeling approaches to under-
stand what features of physical activity, sleep, and user emotional wellbeing best predict
changes in depressive symptoms. We find overlap in the features selected by our two mod-
eling approaches, which implies the importance of certain features. Characteristics around
sleep, such as change and irregularity of sleep duration, appear as meaningful predictors,
as does personality. Our work corroborates prior results that sleep is strongly related to
changes in depressive symptoms, but we show that even a very coarse measure has some
predictive capability.

4.1 Introduction

With the advancement in the sophistication and ubiquity of computing, the notion of real-
time monitoring of behavior and emotional states has become plausible [84, 125]. Monitoring
behavioral and emotional states via user input has already become relatively convenient
with a proliferation of smartphone applications that can automatically remind users to log
information about their state throughout the day. Logging and sharing data, particularly
with health providers, can be beneficial because it can detect mood states that can benefit
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from intervention, either via mobile interventions or interventions from health providers.
To mitigate dropout, researchers have considered the possibility of smart apps that sense

a user’s behavior and automatically log their inferred state from data that is collected by
a smart device without any user input [84]. The goal of automatic journaling has been
attempted, in particular, for monitoring mood disorders, such as bipolar and depression [17,
18, 25, 28, 63, 71, 87, 132]. Such prediction capability would enable automatic long-term
monitoring of emotional states, which is particularly applicable to mood disorders.

Research in automatic mood or emotion prediction has used simple single or double
scales of wellbeing, such as “happiness” or the Circumplex model of affect and valence
(wellbeing and energy) [131] as ground truth. These scales are implemented in basic user
interfaces that automatically and randomly query the user throughout the day as ecological
momentary assessments (EMA) of their wellbeing. Because the scales are simple, users
comply more frequently, e.g., multiple times a day, for longer studies. While these scales are
easy to measure, a disconnect arises with their relation to longer-term more thorough scales
of mood and depressive symptoms.

In this study, we explore the ability to predict long-term changes in depressive symptoms,
as measured by Beck’s Depression Inventory (BDI) [15], from simple daily user input scales
of affect and valence (the Circumplex model) and passively sensed data on user activity. We
also compare the utility of daily Circumplex surveys with the utility of passively sensed user
activity behavior. In particular we consider overall increase of Beck’s Depression Inventory
(BDI) [15] in an undergraduate cohort over the course of an academic semester. We ask two
questions: whether daily self-reports of affect and valence during the semester can be in-
dicative of overall changes in self-reported BDI scores from baseline to followup and whether
passively sensed behavioral patterns are correlated with long-term mood changes, as quan-
tified by changes in BDI scores. In addition to daily self-reports and activity behavior, we
consider Big 5 [95] personality features: openness, extraversion, neuroticism, agreeableness,
conscientiousness.

This approach of predicting long-term changes in wellbeing is useful for developing tar-
geted interventions. Detecting long-term changes would also be beneficial for monitoring
wellbeing, especially of a population, such as in a randomized control trial of a treatment.
Predicting absolute levels of depression from smartphones has proven difficult [17, 132], so
we narrow to an equally useful goal of predicting changes.

We find that the relationship between daily reported affect and valence measures with
changes in long-term measures of mood is complex. Other features, such as passively sensed
user activity level and sleep duration are far more predictive of increases in depressive symp-
toms than features on daily surveys. We also find that the openness of a user’s personality is
very strongly correlated with whether they experience an increase in depressive symptoms.
The strength of correlations between features and changes in BDI is established by consider-
ing small p-values on coefficients in linear regression models and being selected with a large
coefficient in a Lasso penalized linear model.

Our work supports prior studies that used more precise predictions of sleep duration (via
collecting data on more sensors than we consider). We show that the correlation of sleep
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Figure 4.1: Example behavior of an individual. Note apparent decrease in average daily
wellbeing and energy. This decrease corresponds with a reported increase (in two points)
to depressive symptoms (BDI score). The sensed activity and sleep behavior is relatively
consistent during the study. Sleep is scaled by the maximum duration sample to make units
comparable to daily percents.
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duration is so powerful that perhaps more coarse measures, i.e., loose predictions from a
single sensor rather than an ensemble, are sufficient. We also find a significant impact from
one outlying user, which highlights the need for larger populations with more variance to
protect from overfitting artisanal datasets.

We will begin by placing the contribution of this study in the context of previous related
work. We continue by briefly describing the dataset that we collected during our user study
and then discuss the data processing, features extracted, and how the features could be
related to the objective. We then explicitly state the two modeling approaches that we take
and their merits. Our observed results on these two modeling approaches are described then
followed by a discussion of the results and final conclusions.

4.2 Contributions

We make two significant contributions. First, we build on prior work that looked at utility of
simple daily measures of wellbeing [1]. Rather than attempting to reproduce daily measures
of wellbeing as ground truth, we look for relations of the daily measures with long-term
changes in depressive symptoms. We would like to understand if features derived from daily
measures of wellbeing are correlated with long-term changes in more thorough scales.

Our second contribution is an exploration of whether passively sensed behavioral fea-
tures, particularly physical activity and sleep, are more predictive of long-term changes than
the simple daily surveys of affect and valence (wellbeing and energy). We identify which
behavioral features are most strongly correlated with long-term changes and could be used
eventually as potential indicators of increase in depressive symptom expression. These data
could improve the identification of depressive symptoms that could lead to targeted mobile
or live intervention.

4.3 Related Work

There is a growing body of research that looks at using smartphones as sensors, particularly
for mood. Various authors have shown correlations of daily emotion with call and SMS logs
[18, 71, 87, 93], phone processes [87], Bluetooth [18], GPS location traces [17, 28, 63, 71, 87,
132, 93], sound data [18], physiology sensors (from wristbands) [71, 66], and macro-activity
data [93, 66]. The majority of these authors have looked at predicting simple daily measures
of mood over long periods. However, some authors have looked at more clinical measures
of mood such as the PHQ-9 [17, 28, 63, 132]. Few authors have tried to predict values of
long-term mood measures [132] or changes in outcome measures [17] from passively sensed
data.

Here we focus on the long-term outcome measure (change in depressive symptoms, as
measured by the BDI,) as the most important signal to predict. These longer term measures
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Figure 4.2: A user’s behavior. Note apparent increase in daily wellbeing and energy mea-
surements, but a reported increase in long-term depressive symptoms (BDI score), which
contrasts with the previous user in Figure 4.1. This user also has considerable fluctuation
in their daily activity level and sensed sleep duration.

are more widely accepted as impactful from a medical community and the utility of simplistic
daily emotional measures has yet to be confirmed.

In this work, we utilize physical activity as the behavioral input due to the large body
of research that supports that there is a strong relation of mental wellbeing with activity
levels and sleep [50, 57, 92, 96, 101, 113, 117, 118, 144]. Further there has been a large
body of work that has shown that smartphone accelerometer data can be used to sense both
physical activity through activity recognition [69, 83, 91], as well as sleep [32, 136]. Other
pilot projects implied that mental states can be recovered from accelerometer data on small
populations in artificial settings [26, 125].
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4.4 Motivational Example

In a variety of studies, simple scales of user emotional wellbeing have been used as ground
truth and, more importantly, as a surrogate for more meaningful measures of mood [18, 71,
87]. However, it’s not clear whether, and if so how, these daily emotion measures are related
to long-term mood. For example, two users’ behavior and input is displayed in Figures 4.1
and 4.2. In Figure 4.1 the user’s average daily wellbeing inputs appear to generally decrease
during the course of the eight week study. (Mean daily reports are smoothed across the
preceding week based on previous results which found this weekly average to be correlated
with weekly PHQ-9 scores [1].) The user in Figure 4.1 reported a two point increase in BDI
score (depressive symptoms) between the entry and exit surveys. The behavior of another
user is displayed in Figure 4.2. This user’s average emotional wellbeing displays significant
fluctuation during the study period, but does not clearly decrease. However, the entry and
exit surveys indicated that the user’s depressives symptoms (BDI score) increased four points
during the study, which was a greater increase than the user in Figure 4.1 reported.

These two figures give an example of how relations of daily emotion input has a complex
relation to overall changes in mood. These two users’ behavior imply that mappings from
daily input to long-term change may be difficult to construct.

4.5 Field Study

To answer our research question of how daily self-reports of emotion and daily measurements
of activity and sleep are related to overall changes in mood, we conducted a field study. We
recruited 107 students at the University of California, Berkeley. These students were required
to be native english speakers, have their own Android smartphone, and install our custom
built app. The application would prompt the users to enter their wellbeing and energy
level (Circumplex affect and valence) four times a day during the eight week study period
from mid March through the beginning of May. We elected to use the Circumplex model of
emotion [131] to align with previous work that has adopted this model [84, 87, 66, 126]. The
application also collected a variety of data from sensors on the participants’ smartphones,
including from the accelerometer motion sensor. Data was collected from the accelerometers
for three seconds every 5 minutes. The study period was chosen to conclude shortly before
finals so that students would be more likely to participate through the full study. Students
received compensation and the study was approved by the Internal Review Board.

4.6 Dataset

Due to high attrition and missing data from the entry and exit surveys, we consider a
dataset comprised of 44 participants, 27 of whom were female. The distributions of BDI
scores reported by the participants for the entry (March) and exit (May) surveys are shown in
Figure 4.3. While most participants reported a score less than 10, a few participants reported
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Figure 4.3: Distribution of BDI scores that participants reported in the entry survey in
March and in the exit survey in May. Note the slight drift of the distribution to higher BDI
scores (more expressed depressive symptoms) over the course of the semester. The study
ended the week before finals.

higher scores and the average score increased from 11.5 reported in March to 12.4 reported
in May. A larger BDI score corresponds to increased depressive symptoms reported, so the
majority of our study population reported minimal depressive symptoms. The distribution
of changes in BDI scores between the entry and exit survey is shown in Figure 4.4. This
figure shows that there was a broad experience among participants during the semester and
some experienced a significant change in their response during the academic semester.

Three entry surveys and one exit survey were missing the response to one BDI question
due to user error or a user electing not to answer. In these four cases, the difference in
BDI score was calculated between answered questions. The entry and exit BDI scores were
computed by scaling the weight of all other questions to be slightly more significant, so that
the total possible sum of the 20 answered BDI questions was the same as the full 21 question
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Figure 4.4: The distribution of individuals’ change in BDI score from the entry to the exit
survey. A positive increase indicates an increase in BDI score (expression of depressive
symptoms). During the course of the semester more students experienced an increase in
depressive feelings than a decrease.

survey.
Our study composed of three phases of user input: an entry survey, daily prompts, and an

exit survey. During the entry and exit survey users were asked to self-report their responses to
20 questions from the Beck Depression Inventory. The question regarding suicidal thoughts
was omitted due to concerns from the Internal Review Board. The entry and exit survey
also collected Big 5 personality scores [95] and demographic information. All questions were
optional.

In addition to the user input data, we collected data from sensors on the participants’
smartphones, including from the accelerometer sensor. We collected accelerometer data
using funf [2] at intervals of three seconds every five minutes. The accelerometer data was



CHAPTER 4. DETECTING CHANGE IN DEPRESSIVE SYMPTOMS FROM DAILY
WELLBEING QUESTIONS, PERSONALITY, AND ACTIVITY 49

collected continuously from install time. Quality and volume of data varied greatly between
participants and phone models. Some of the difficulties encountered included entirely missing
observations, nonuniform readings during an observation interval, and insufficient duration
of sampling, i.e., too few readings during an observation interval.

4.7 Data Processing - Activity Extraction

A smartphone’s accelerometer collects acceleration of the phone along three axes at every
reading. These readings constructed time series that we featurized similar to the approaches
found in previous work [91]. These time series features were passed to classifiers which
made predictions of whether the phone was “still” or set down during an observation or
whether the user was was physically active, such as walking, running, or cycling. These
momentary observations of activity and stillness were collected for each day of the study and
the percent of the day and previous night (1am - 7am) during which a user was physically
active or the phone was still were calculated. Additionally we approximate sleep time as
the longest duration that the phone was set down during the evening hours. We will refer
to this duration of stillness as “sleep”. This measure of sleep seems noisy, but a similar
approach was found to approximate sleep to within roughly 45 minutes of true sleep time
[32]. Through this process we end up with measures of the percent of time during a day and
night a user spends active or still and the duration during the evening that the phone is set
down and the user presumably sleeping. These measures were then averaged over seven day
periods to give smoothed average activity and sleep measures. This averaging adds some
robustness.

4.8 Features

The features that we use to describe participants and their behavior during the study are
summarized in Table 4.1. The behavior and self-report features were calculated on user
input daily wellbeing and energy. They were also calculated on the signals we gleaned
from the sensor data: percent of time the participant was active during the day and night,
percent of time the phone was still during the day and night, and the “sleep” duration. The
observation entropy feature was calculated on the distribution of each signal. Similar to
standard deviation, it quantifies the irregularity of the signal. The difference features try to
quantify changes from baseline to end of study, irrespective of intermediate fluctuations. We
consider timescales of a week to stabilize daily fluctuations and to follow prior work which
showed that a weekly mood average was related to weekly PHQ-9 scores [1].
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Feature type Name Description

Personality

Neurotic Big 5 personality test
Extroversion Big 5 personality test
Openness Big 5 personality test
Agreeable Big 5 personality test
Conscientious Big 5 personality test

Behavior
and
self-
reports

Avg. Obs. Mean of observations
Obs. Stdev. Standard deviation of ob-

servations
Obs. Slope Regression coefficient of ob-

servations on time
Obs. Entropy Entropy of observation dis-

tribution
Diff. last week Difference of average mea-

surement during last week
with baseline

Diff. last 2 weeks Difference of average mea-
surements during last two
weeks with baseline

Table 4.1: Features collected and computed on each participant. The baseline of a measure-
ment was calculated as the average over the first four weeks of the study.

4.9 Methodology

In this work our goal is to understand behavioral factors that are correlated with long-term
changes in participants’ depressive symptoms (BDI scores) during the course of the academic
semester from March to May. Our secondary goal is to use that information to successfully
predict a change in depressive symptom expression. For these tasks we are interested in
which features are strongly correlated and predictive of the outcome change in BDI score.
To identify correlated and predictive features, we choose to use linear models because they
have clear interpretations and are thus ideal for feature selection and model insight.

Feature Selection

To explore the relevancy of features, we use linear regression models, as these models are
highly interpretable. However, we choose two methods of feature selection with these models:
forward selection with the Bayesian Information Criterion (BIC [138]) to choose which of
the features should be added at each subsequent step and when forward selection should
terminate, and linear regression with the L1 (Lasso) penalty [151]. Both of these methods
yield models with a limited number of terms and a coefficient on each terms that indicates
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Forward Selection Lasso
All Obs. No Outlier All Obs. No Outlier

Feature Name Coefficient Value

Openness 3.6640 (*) 3.1895 (*) 1.99 2.361

Sleep duration – standard
deviation

7.2069 (*) x 5.599 x

Sleep duration – slope -6.9844 (0.001) x -2.204 x

Sleep duration – Difference
with last 2 weeks

4.7048 (0.017) x x x

Daytime activity – Average
of observations

x x 0.342 x

Daytime activity – Differ-
ence with last 2 weeks

x x -0.067 x

Daytime stillness – stan-
dard deviation

-3.3079 (0.001) x -1.019 x

Daytime stillness – Differ-
ence with last week

1.5866 (0.053) x x x

Daily energy – Entropy x x 0.150 x

Daily energy – Difference
with last 2 weeks

x x -0.101 -0.209

Model R2 0.785 0.404 0.704 0.392

Model MSE 61.996 [23.859] 15.849 96.149 [29.156] 16.939

Table 4.2: Comparison between various modeling approaches of features selected, model fit
(R2), and mean squared error (MSE) of prediction. Approaches attempted to model the
change in participants’ BDI scores from the beginning of the study to the end. P-values for
linear regression coefficients are in parenthesis, where appropriate, and * denotes values less
than 0.001. The baseline MSE with the outlier was 83.212 and with the outlier removed was
25.184. The numbers in square brackets are the MSE calculated on the set of not outliers.

how much that term contributes to the model.

Feature Comparison

To make the weights of features comparable (despite different scales), we scale all features
to unit variance. While this is artificial, it yields models where features are on comparable
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scales and thus comparisons between feature coefficients are more insightful.

Outliers

There is a single outlier in our dataset of one participant who experienced a particularly dif-
ficult semester. This outlier had a dramatic effect on the models due to our small population
size. Rather than controlling for the observation, we present models with and without the
outlier.

4.10 Results

The feature selection, model fit, and prediction accuracy using both of the regression ap-
proaches outlined above are presented in Table 4.2. There are four models presented in
Table 4.2. Two of the models presented used forward selection with the BIC and two of the
models used L1-penalized linear regression. The difference between the models using the
same modeling approach is that one of the models has a single outlier removed. The models
were fit with intercept terms, but those terms are omitted for brevity.

Linear Regression with Forward Selection and BIC

The first (left most) column of coefficients in Table 4.2 presents a linear model that was fit to
the entire dataset. The features were selected by using forward selection and choosing mod-
els that minimized the BIC. This modeling procedure resulted in six features being selected,
five of which were statistically significant (p-values < 0.05). The features selected were the
participant’s openness (as measured by the Big 5 personality survey,) and features quantify-
ing variability and change in both the duration of “sleep” (stillness during the evening) and
fraction of time still during the day. Aside from the feature quantifying one dimension of the
participants’ personality, all the other features result from accelerometer measurements, and
particularly measurements of when the phone is not in motion, but presumably set down.
The model has reasonably high R2 of 0.785 indicating that a large fraction of the variability
of the data is explained by these five features.

L1 (Lasso) Penalized Linear Model

The third column of coefficients (second from the right) in Table 4.2 presents the model
that is selected for an L1-penalized linear regression model. With this modeling approach,
features are selected by adding a penalty to the model accuracy term everytime a coefficient
is included. This process drives the coefficients of unnecessary terms to zero and thus removes
them from the model.

The Lasso approach selects the largest model that we observe with eight features. Again,
the openness of a participant’s personality is selected as highly predictive of the increase



CHAPTER 4. DETECTING CHANGE IN DEPRESSIVE SYMPTOMS FROM DAILY
WELLBEING QUESTIONS, PERSONALITY, AND ACTIVITY 53

in BDI score during the semester. Features describing the change in and variability of
the participant’s daytime stillness and “sleep” are also selected. In contrast to the model
chosen with forward selection, the Lasso penalized linear model selects two features describing
the variability and change in the participants’ self-reported energy levels. Two features
describing the average activity level and change in average activity level during the day
are also selected. It is interesting that two features on the participants’ energy levels are
selected, but no features on the participants’ self-reported wellbeing are selected. It is also
interesting that out of the eight features selected, five of them are describing the activity of
the participant, as measured by the users’ smartphones.

Removing the Outlier

In the collected dataset, there was a single outlier. The outlier resulted from a single partic-
ipant experiencing a particularly difficult semester and unfortunately reporting a increase in
BDI score of 50. The second largest change in score was 14, so one participant was an outlier
and had significant impact on the model selection. To explore the robustness of the previous
models, we used the same methodology to fit two models, one with forward selection and the
second with a Lasso penalty, to the dataset with the single outlying participant removed.
These two models are presented in the second and fourth (right most) columns of coefficients
in Table 4.2.

The resulting models are considerably different from the models selected with the outlier
included. This result reveals that the models were very sensitive to the one participant’s
experience. However, the openness of participants is still selected as a feature with both
forward selection and Lasso penalized regression, which implies that this personality feature
is resolutely correlated with the change in the BDI score. Of note is also the selection of
the change in self-reported energy from the beginning to the end of the study with Lasso
penalized regression. We are trying to model the change in depressive symptoms (change
in BDI), but the self-reported energy and not self-reported wellbeing is being selected as an
important feature.

Leave-One-Out Prediction Accuracy

As a final test of our models, we tried using them for prediction and measuring the accuracy
of trained models’ predictions on a holdout set. Due to the constrained size of the dataset
(44 participants,) we used leave-one-out cross-validation. In this approach, one user is held
out, a model is trained on all the other users, and the error of the trained models is then
measured by the error in prediction on the held out user. This process is repeated for
all users. The error measured is mean squared error (MSE) and it is averaged across all
participants to yield the MSE reported in the bottom row of Table 4.2. A lower MSE is
better with zero indicating a perfect model. When considering these numbers, one should
consider the baseline. We consider the baseline MSE to be the MSE returned when the
null “model” is used. We consider the null model to be when the mean of the dataset is
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Figure 4.5: The distribution of predictions from leave-one-out cross-validation. Features
were preselected with forward selection and models were fit on population with the outlier
included. Most predictions are within the dotted lines indicated predictions within five points
of the true increase.

always returned as the prediction, i.e., when no features are considered, only the population
baseline. This null model results in a baseline MSE of 83.212 when the outlier is included
and 25.184 when the outlier is excluded from the dataset.

We see that the models constructed with forward selection and the BIC yield MSE’s
lower than the baselines, which implies those models have better prediction accuracy that
predicting the mean of the dataset uniformly. The model fit with the Lasso penalty does
not yield a MSE (96.149) lower than the baseline (83.212). However, when the outlier is
excluded, the Lasso penalized model does yield a better model (MSE = 16.939) than the
baseline (MSE = 25.184) with just two features. This result highlights the strength of the
correlation of the openness of a participant with the increase in BDI score they experienced
during the semester.

Figure 4.5 displays the distribution of predicted BDI increases relative to the true in-
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Figure 4.6: The distribution of predictions with leave-one-out cross-validation. Models were
fit on a population with the outlier removed and features were pre-selected by forward
selection with the BIC.

creases in BDI scores observed when the outlying participant is included in the dataset. Fig-
ure 4.6 is similar, but displays the distribution of predictions on a dataset with the outlier
excluded. Predictions in both figures were generated by fitting linear models on the fea-
tures that were selected with forward selection and the BIC in leave-one-out cross-validation
schemes. Both figures show little structure in the error of predictions, i.e., BDI increase is
not consistently under or over predicted. Further, these figures show that the majority of
predictions are within five points (the dotted lines) of the true reported increase in BDI.

4.11 Discussion

In the above sections, we have explored which features, from a set of 47, were most predictive
of participants’ increase (or decrease) in BDI scores between the beginning and end of our
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eight week study. To gain insight from modeling the data, we have chosen to use linear models
for their interpretability. Due to our small population, we have pursued two feature selection
approaches: forward selection with the BIC and Lasso regression. By comparing these two
different approaches, we hope to reduce over-extrapolation from our small population.

When modeling the full population, sleep features were not only selected, but found to
be most impactful for prediction, i.e., large coefficients in both approaches and small p-
values with forward selection. This result is in line with prior results which looked at more
sophisticated predictions of sleep duration from multiple sensors [17]. Our result highlights
how important these features are: even our coarse approximation to sleep with one sensor is
significantly predictive. To a lesser extent, activity levels and irregularity of stillness during
the day (7am - 1am the next day) are predictive and selected in both models.

Of notable absence is any feature derived from daily reported emotional wellbeing or
affect. Only two features derived from each set of reports were loosely related (small coeffi-
cient values) to increase in BDI score when the Lasso penalized model was used. As these
measurements are meant to be a brief estimate for more thorough measures, one would
think they could be correlated with the increase in BDI. However, none of the features we
constructed around daily wellbeing, or the change in it, were ever found to be correlated,
regardless of modeling approach. The irregularity and change from baseline of daily energy
was chosen to be predictive in the Lasso regression, but not daily wellbeing. This result
implies that daily mood scores may be an insufficient measure, or that at least it is not
straight forward to correlate such a noisy measure of emotion with longer term changes in
depressive symptoms. Daily self-reports are tedious to comply with for an ongoing basis, so
if their application is unclear, it is possible that alternative metrics should be considered for
measurement. Another factor that could account for the lack of affect and valence features
is missing data.

A major hindrance to our approach is missing data. As the study progressed, partici-
pation waned. This waning resulted in a poorly sampled or observed period before the exit
survey was offered, and thus final May BDI was recorded. It is possible that with better
observation immediately before recording the May BDI score, more features constructed
on the daily self-reports would have been selected or found to be statistically significantly
correlated.

Similar to missing data, data quality was a problem. Our population had a variety of
phone models that yielded a range in the quality and regularity of data recorded on each
participant. It was not possible with our limited population size to explore to what extent
the quality of data recorded by individual devices affected our results.

Unfortunately very few features are left significant when the outlier was removed from the
population. The only feature that is found to be significant in every model regardless of if the
outlier is removed, is the Big 5 openness dimension. This result speaks to the importance of
personality, or the strength of the correlation between a person’s predisposition to having an
increase in depressive symptoms and the observation of a change in BDI score. This strong
correlation could also have impact for academic administrators who are concerned with how
students fare during semesters and the stresses imposed by undergraduate life.
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The result of lost significance when the outlier is removed speaks to the importance of
every participant and observation in these small population, artisanal datasets. Overfitting
must be carefully avoided and explored and outliers must be addressed to avoid presenting
misleading results. The impact of our results is hindered by the small sample size. While
our study population size is commensurate with previous studies, the population size is still
small, which results in a strong tendency to overfit the dataset. We have tried to minimize
overfitting by use of the BIC and forward selection and Lasso-penalized regression. Further,
we have tried to limit our conclusions to insights about which features appear to have some
correlation with the desired metrics (or rather which sets of features have little predictive
capability). We do not focus on the overall predictiveness of the model, but which features
are capable of explaining some of the variance in the observed dataset. The relatively large
observed R2 values of our two models are encouraging, but a larger sample population is
needed for more definitive results. A population skewed to more clinical depression, rather
than the general population that we observed, may also present different conclusions.

The loss of significance could also not speak to the lack of importance of the other features
or the need for a larger population, but to the need for a population specifically with larger
variation in baseline BDI scores and variability in mood, or change in BDI scores. Our
student participants were selected from a general, non-targeted population. It is possible
that a population more inclined to experience significant changes in mood, e.g., a clinically
depressed population, would benefit from modeling with more features. However, the fact
that our population did not experience a very large distribution in increase in BDI scores,
means that there may have been little to predict. A single point increase or decrease in score
could be little more than noise and thus very difficult to predict.

For future work, we would like to use these methods on a larger population with more
depressive symptoms and where fluctuations are more demonstrative. Another approach we
would like to consider is separating populations by gender, but for that a larger population
is needed.

4.12 Conclusions

We have explored the utility of different features for predicting increases in reported de-
pressive symptoms (Beck’s Depression Inventory). In particular, we sought to understand
the utility of daily affect and valence self-reports for predicting increases in the BDI, as
compared with passively collected activity and sleep features. We found relatively large R2

values for both modeling approaches used, indicating the ability to model the data, and a
variety of interesting insights into predictive features. We found that passively sensed data
was actually more predictive of increases in BDI than the active user input.

While this work provides encouraging results corroborating that behavioral patterns can
be measured by smartphones and used to predict meaningful metrics, more work is needed,
specifically with a larger population. Comparing results on a clinically depressed population
that has a different distribution of BDI scores is also an area deserving further investigation.
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Chapter 5

A Step Towards Quantifying When an
Algorithm Can and Cannot Predict
an Individual”s Wellbeing

Originally published as DeMasi, et al. “A step towards quantifying when an algorithm can
and cannot predict an individual’s wellbeing.” Proceedings of the 2017 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM
International Symposium on Wearable Computers (2017).

Researchers are exploring the ability to infer complex signals, such a mental wellbeing,
from easily collected smartphone behavioral data. Rather than focusing on improving overall
accuracy of such an approach, we seek to understand when we are and are not capable of
predicting an individual’s wellbeing. In particular, we consider the ability to predict daily
wellbeing from smartphone GPS location data as a case study. We hypothesize that user
characteristics, such as behavioral variability, level of depression symptoms, and amount of
labeled data, are related to improvements in prediction accuracy. Our preliminary results
indicate that there may be a relationship between an algorithm’s ability to successfully
predict an individual’s wellbeing reports and the individual’s location behavior variability.
While further work is needed to improve model accuracy and confirm this relationship in a
larger study, our work is a step in the necessary direction of understanding which individuals
can be monitored with smartphone data.

5.1 Introduction

Mental health disorders can be devastating to those who suffer from them and are widespread.
Collectively, it is thought that mental health disorders, such as depression, are so widespread
that they are a major contributor to the global disease burden [106]. Improving mental health
is particularly challenging as disorders can last for a lifetime and it is difficult to collect data
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on and monitor individuals over such long timescales.
The recent development and adoption of personal electronics provides an exciting op-

portunity for mental health, as personal electronics are a frequent source of highly personal
data. It has been shown that data from personal electronics, such as smartphones, can be
used to infer behavioral signals, such as sleep [32] and activity [83] without any user in-
put. In addition to physical and social behaviors, researchers have begun exploring whether
personal electronics can also sense mental wellbeing from passively collected data, such as
smartphone GPS location and mobility [17, 28, 71, 132]. By not needing any user input,
these devices may be a sustainable way to collect data on and track individuals’ behavior
over longer periods than are sustainable with paper journaling.

The possibility of automatic wellbeing tracking over long periods of time offers exciting
opportunities for mental health research and treatment. However, the hope of tracking every
individual with a smartphone may be näıve due to the large variance in individuals’ behavior.
Some individuals, say those who use their phone often, have active lifestyles, or have irregular
schedules may be easier to track than individuals who, for example, often leave their phone
at home or turn it off.

In this work, we explore the potential for understanding, and eventually predicting,
whether an individual’s wellbeing can be tracked by a smartphone application through a
user study. As an example, we use features of location and mobility from GPS coordinates
to predict individuals’ daily wellbeing. The features of location and mobility that we use are
inspired by previous research that sought to diagnose depression from similar features [132].
These features were chosen due to their apparent relevance to detecting depression and their
reproducibility with the collected data.

We begin by calculating location and mobility features for each participant. Using these
features, we utilize machine learning algorithms to predict each individual’s wellbeing and
then quantify the model improvement with GPS data over a simple baseline approach. We
then look at the relationship of prediction improvement with user characteristics to see if
user behavior is broadly related to an algorithm’s ability to model their wellbeing. The user
characteristics that we consider are data quality (as measured by median GPS accuracy)
and quantity, behavioral variability, depressive symptoms, and emotional variability.

We find some significant positive correlations of user characteristics with prediction im-
provement. In particular, we find a positive correlation of the number of data points with
prediction improvement, a negative correlation of baseline accuracy (i.e., how constant a
user reports their state to be) with prediction improvement, and a positive correlation of
location or behavioral variance with prediction improvement. By considering location vari-
ability as a course measure for behavioral variability, this result indicates what one would
expect from a statistical perspective – more varying features are better able to model signals
than features that rarely vary. From a psychological perspective, this result indicates that
users with unfluctutating behavior are more difficult to model, perhaps because changes
are outliers. Notably, we do not find significant relationships of depressive symptoms with
prediction improvement. However, these relationships are not present across models, which
could be the result of the task being difficult for models. While our preliminary results
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indicate some promise in being able to understand which individuals’ wellbeing are easier to
predict, further work and a larger study are needed to confirm the relationships of prediction
improvement with user characteristics.

5.2 User Study and Data Collection

To explore whether there is a relation between user characteristics and success in predicting
their wellbeing, we ran a user study. For this study, we recruited undergraduates with
Android phones who spoke English as a native language on the University of California,
Berkeley campus. While we recruited 107 participants, only 87 installed our custom Android
application and 60 took the exit survey at the end of the study period.

The study ran for eight weeks, consisted of three phases, and collected two types of data:
active user input and passive smartphone sensor data. The first phase of the study was an
entry survey which asked user profile information, such as personality, demographics, and
the Beck’s Depression Inventory (BDI) [15]. The second phase was the daily collection of
user input data, ecological momentary assessments (EMA’s) of user wellbeing, and passive
collection of smartphone sensor data. The final phase of the study was an exit survey which
collected personality, the BDI, reflection on personal behavior during the study, and study
feedback.

Users were queried four times a data for their wellbeing along two axes of the Circumplex
model: mood and energy level [131]. These axes were labeled with words such as ”good”
and ”bad” or ”high energy” and ”low energy”, respectively, and implemented as two 9-
point Likert scales. The words labeling the scales were selected by users from short lists of
antonyms.

In addition to data from other sensors, data were collected of users’ GPS location using
the Funf Open Sensing Framework [2]. A user’s location was recorded every five minutes.
While a multi-modal approach is ultimately desired, we focus in this study only on the
location data as an exploratory study of this approach. We chose GPS location for passively
collected data as prior studies have indicated positive results with such an approach [17, 28,
71, 132]

5.3 Data Processing

The first stage of data processing aggregated multiple wellbeing observations that were made
each day into a daily measure of wellbeing. Then the passively collected smartphone sensor
data was processed into features describing individuals’ daily mobility and location. Fi-
nally, features or ”user characteristics” were calculated on each user that sought to quantify
behaviors that may account for variability in prediction accuracy between users.
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Collect	data:
1. Wellbeing	EMA’s
2. GPS	location
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Figure 5.1: Overview of data flow from collection and processing through the final analysis
of whether user characteristics are related to the improvement in prediction accuracy.
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User Wellbeing

Users’ wellbeing scores, which were solicited with four EMA’s per day, were averaged to give
daily levels. The two wellbeing dimensions measured, energy and mood, were considered
separately. The means of the daily mood an energy levels during the course of the study
were taken as study-means. These study-mean levels were used to determine when a user was
having a particularly good day in terms of mood or energy. A particularly good mood day was
when the mood level was above the study-mean mood score and similarly for energy. Using
this approach, we accumulated two wellbeing measures for each day that a user responded
to any wellbeing prompts: whether the user was reporting an above-mean mood level for
that day and whether the user was reporting an above-mean energy level.

Daily Location and Mobility

Here we focus on using GPS location and mobility features as predictors of daily user well-
being. Location was intended to be collected every five minutes. However, some individuals’
locations were collected at a higher frequency. For these users, we downsampled data to
roughly five minute intervals. The features we used to describe daily location and mobility
are adapted from a previous study that used similar features to quantify user behavior dur-
ing an entire study period [132]. We selected these features due to our ability to reproduce
them, given our regular sampling approach, and their success on a related task.

Before constructing daily features, we used a preprocessing stage to determine frequented
locations. The preprocessing used K-Means clustering [6] to cluster all of a user’s stationary
location coordinates that were recorded during the entire study period. Points were deter-
mined to be stationary if the calculated gradient was less than 1km/hr. We chose the number
of clusters for each user be such that the largest distance from any coordinate to the center
of its assigned cluster was about 3km. We labeled the “home” location to be that which the
user spent the most time at during the study period between the hours of midnight to 6am.

For each day of the study period when a user had sufficient GPS readings we used the
cluster centers from the preprocessing stage and calculated the following measures:

• The sum of the variance of the latitude and the variance of the longitude coordinates,
on a log scale.

• The number of locations (clusters) visited.

• The location entropy, i.e., −
∑

i pi log pi where pi is the probability of the user being
in location i at any point during that data.

• The fraction of time that the user spent at what we presume is their home location.

• The fraction of time the user was moving.

• The average distance that a user traversed between location readings (normalized by
the time between readings).
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R2 = 0.241

Adj. R2 = 0.101

F-stat = 1.717

p =.165

Feature coef p-val

Intercept -25.49 .574
GPS radius 4.05 .324

No. days 0.34 .206
Avg. BDI 0.06 .819
Loc. var. 0.92 .208
Base acc. -0.03 .967

Table 5.1: Linear model relating user lift (from L1-penalized logistic regressions) to user
characteristics. On average, daily predictions were 3.77% less accurate than a constant
baseline model.

• The “circadian rhythm”, which we calculated as the euclidian distance between the
vector where entry j is the fraction of time that a user spent at location j on an
average day, and the day’s vector where each entry i is the fraction of time that day
that the user spent at location i.

• The radius of the minimum size circle that surrounded all of the user’s locations for
the day.

• The fraction of observations during which the user was moving (as determined by the
calculated location gradient).

• The fraction of observations that were “GPS” rather than “Network”, which could
indicate the fraction of time that the user spent outside.

User Characteristics

We hypothesized that it is plausible that how well a user’s location and mobility behavior
reflects – and thus is predictive of – their wellbeing could be related to the following five
dimensions:

1. How reliable a phone is at measuring location.

2. How much data a model has to learn from.

3. How depressed a user is.
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4. How much a user’s daily location pattern fluctuates.

5. How much a user’s emotional wellbeing fluctuates.

We quantified these potential sources of variability with the following measures:

• The median radius of confidence reported by the GPS sensor (on a log scale).

• The number of labeled data points we have for a user (i.e., days with GPS location
and user wellbeing).

• The expression of depressive symptoms (as measured by the BDI and averaged between
the entry and exit responses).

• The sum of the variance of longitude coordinates and variance of the latitude coordi-
nates during the course of the study (on a log scale).

• The user’s baseline accuracy: the percent of wellbeing observations that would be
correctly predicted if the user were always predicted to be at their most commonly
reported state.

The radius of confidence or “inaccuracy” of the GPS location data, is the radius of the circle
that the sensor estimates the true location falls into with high confidence. The second to last
measure, location or behavioral variance, is related to the daily location variance described
previously. Instead of being calculated on the coordinates for a single day, it was calculated
on all coordinates from the entire study period. This feature characterized a user’s behavior
during the study period instead of during a single day.

5.4 Data Analysis

We performed two stages of analysis to explore whether user characteristics relate to how
successfully an algorithm can predict an individual’s wellbeing. First we used standard
machine learning procedures to predict daily user wellbeing from the location and mobility
features. Second we related the success of these models to the user characteristics described
above. An individual’s emotion and location had to be observed for at least 14 days of the
study for them to be included in the analyses. To quantify success, we needed to account
for variability in how regularly individuals reported a single wellbeing measure.

Individual Wellbeing Baseline Models

Individuals reported different levels of emotional variance, e.g., some individuals always
reported the same mood while others report different mood levels. As a result, certain indi-
viduals are “easy” to predict with high accuracy, as predicting that they are always at the
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R2 = 0.647

Adj. R2 = 0.582

F-stat = 9.906

p ¡ .001

Feature coef p-val

Intercept 51.27 .032
GPS radius 2.59 .214

No. days 0.34 .015
Avg. BDI -0.2 .130
Loc. var. 0.8 .035
Base acc. -1.25 .002

Table 5.2: Linear model relating user lift (from L2-penalized logistic regressions) to user
characteristics. On average, daily predictions were 1.97% less accurate than a constant
baseline model.

same state will usually be correct. However, from an algorithm’s perspective, these individu-
als are challenging. It is difficult for an algorithm to predict the individual’s wellbeing better
than a baseline model that always guesses that the individual is always at the same state. To
account for individuals’ base level of difficulty, we considered the ”baseline accuracy”, which
is the percent of observations that would be correctly predicted if an individual were always
predicted to be at their most frequently reported state. The ”baseline error” is the percent
of observations that would be incorrectly predicted by always assuming that an individual
is at their most commonly reported state.

Wellbeing Prediction

In the first stage of analysis, we attempted to predict whether a user was having a particularly
good day (in terms of mood or energy level) from their location and mobility measures. For
these predictions, we used a variety of standard machine learning models: logistic regression
(with L1 and L2 penalties), random forest classifiers, and support vector machines (SVM’s)
[13, 58]. Models were trained on each individual’s data (personal models) with leave-one-out
cross-validation. Model hyperparameters were trained with 10-fold cross-validation on the
training set.

Characterizing Prediction Improvement with User Lift

To characterize prediction improvement over a näıve approach that uses no features, we
considered user lift to be the difference of model accuracy with the baseline accuracy
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R2 = 0.402

Adj. R2 = 0.291

F-stat = 3.633

p =.012

Feature coef p-val

Intercept -4.67 .884
GPS radius 2.63 .366

No. days 0.22 .249
Avg. BDI -0.02 .931
Loc. var. 1.38 .011
Base acc. -0.25 .630

Table 5.3: Linear model relating user lift (from random forests) to user characteristics. On
average, daily predictions were 5.16% less accurate than a constant baseline model.

described above [48]. User lift quantifies for each user how much better a machine learning
model is than guessing.

Relating User Characteristics to Prediction Success

To better understand when users’ daily wellbeing may be predicted by an algorithm, we
related different algorithms’ user lift for each individual to the user’s above mentioned user
characteristics. We related prediction improvement, i.e., user lift, to user characteristics with
a multivariate linear regression. This model was chosen for interpretability.

5.5 Results

Of the individuals who participated in our field study, 33 had enough data to be included
in our analyses. This limited number was in part due to compatibility issues that we en-
countered with the smartphone application and in part due to limited user participation.
The level of depressive symptoms for each participant was quantified as their average report
(between entry and exit surveys) to 20 questions of the BDI. The mean level reported across
included participants was 12.68 (standard deviation: 10.66). Of the participants included in
the analyses, 29.63% reported levels above 15, which could indicate mild levels of depressive
symptoms.
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Predicting Daily Wellbeing

In general, we found that models did not have appreciably higher prediction accuracy than
the baseline approach, i.e., predicting users to be at their most common state all the time.
This result is reflected in negative average user lift for predicting daily energy. It is also
reflected by low correlation of model accuracy across individuals, as can be seen in Figure 5.2.
The model with maximum average user lift for predicting daily energy was the support vector
machine, which still had negative user lift (i.e., improvement over the baseline approach)
of -1.50%. We also noted models were worse at predicting whether an individual’s mood
was particularly good than predicting whether an individual’s energy was particularly high.
However, on individual users some of the models performed considerably better than the
constant baseline approach. This variance of performance between individuals motivates the
second stage of analysis.

Explaining Prediction Improvement

Correlation between user characteristics was fairly low, as seen in Figure 5.3. The user
characteristics that were most correlated were the variance in location coordinates and the
total number of observations. The multivariate regression models relating user lift of daily
energy predictions to user characteristics are summarized in Models 5.1 - 5.4. These models
explore the improvement of predicting energy and not mood. While user lift for mood
prediction did vary between individuals, the overall average user lift was better for energy
prediction. As a result, we proceed with understanding the error of predicting energy and
will investigate mood further after better models have been developed.

Despite accounting for little of the overall variability between individuals, user charac-
teristics had significant relationships with the user lift from L2-penalized logistic regressions
and random forest models (p ¡ .01) as well as from SVM’s (p ¡ .05). When random forests
or an L2-penalized logistic regression are used as the prediction model, we see a positive
correlation of location variance with prediction improvement. This indicates that individu-
als who displayed more physical behavioral variance were easier to successfully predict than
those with little variation. For the L2-penalized logistic regression, we also note a significant
positive correlation of the number of data points with user lift and a negative correlation
with the baseline accuracy. These relationships indicate that individuals who have more
data are easier to learn, and those who report little fluctuation in state are harder to predict
more accurately than a baseline model, which is already quite accurate.

An interesting consistency between models is a lack of significant relationship between
the reported expression of depressive symptoms, as measured by the BDI, with model im-
provement. Higher BDI scores indicates increased depressive symptoms. No significant
relationships indicate that individuals with higher depressive symptoms are either easier or
more difficult to predict.
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Figure 5.2: Correlation of how well different models and a constant baseline model predict
individuals’ daily energy. Correlation is calculated between average prediction accuracy on
individuals from different models.

5.6 Discussion

In this work, we explored the potential to explain when individuals’ wellbeing can and
cannot be predicted by location data from their smartphone. We have focused preliminarily
on the example of predicting perceived energy level from GPS location and mobility data
and relating prediction improvement to user characteristics, such as emotional variability,
location variance, level of depressive symptoms, and amount of data collected.

In general, it was difficult to learn models that made better predictions than predicting
each individual to always be at their most common state. Daily mood was particularly diffi-
cult and insufficiently accurately predicted. There were improvements in prediction accuracy
when using location data to predict energy, but this did not seem to remain consistent across
models, as indicated by low correlation between average model accuracy (Figure 5.2). The
variability in model improvement between individuals motivated us to compare prediction
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R2 = 0.330

Adj. R2 = 0.206

F-stat = 2.656

p =.045

Feature coef p-val

Intercept 45.04 .252
GPS radius -5.0 .160

No. days 0.43 .063
Avg. BDI -0.04 .859
Loc. var. 0.47 .455
Base acc. -0.91 .147

Table 5.4: Linear model relating user lift (from support vector machines) to user charac-
teristics. On average, daily predictions were 1.50% less accurate than a constant baseline
model.

improvement with user characteristics.
When we related model improvement to user characteristics, we found a significant posi-

tive correlation between location variance, which we used as a coarse measure of behavioral
variance, and model improvement (user lift). From a statistical perspective, this indicates
that users’ wellbeing can be better learned from more varying and potentially descriptive
features. From an applied perspective it indicates that more active individuals might be
easier to monitor with this approach. Additional characteristics were also found to be signif-
icant, but were dependent upon which model was used. Depressive symptoms where notably
not found to have a significant relationship with model improvement regardless of model.

There are limitations to this work, including a small sample size. A study with a larger co-
hort size is needed to validate the above mentioned relationships (and lack of relationships).
We have also restricted our first step to explore GPS data, but other sensors should be
included, as some sensors may be more predictive for different individuals. The limited pre-
dictive capability of location and mobility features that we found could have also constrained
our ability to explain model improvement by having little model improvement in general. It
is possible that with more descriptive features (or a multi-modal approach) daily wellbeing
prediction would be more accurate and thus the resulting model improvement would have
stronger or different relationships with user characteristics. Finally, additional user charac-
teristics should be considered, which may improve the quantification of user variability and
reveal stronger relationships between model improvement and user characteristics. In par-
ticular, different measures of depressive symptoms, other than the BDI, may better capture
depressive symptoms that may influence predictive capability.

In future work we would like to explore a larger study population and incorporate more
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Figure 5.3: Correlation between user characteristics. ”Med.” denotes the median and the
Beck’s Depression Inventory (BDI) is a measure of depressive symptoms. In general, there
isn’t high correlation between user characteristics.

descriptive features for daily wellbeing prediction. Such features could include those from
other sensors, such as accelerometer activity. As a result of including more daily features, we
would also like to explore different user characteristics that describe the behaviors measured
by other sensors. For example, when exploring the benefit of using accelerometer activity
measures to predict daily wellbeing, we would like to address if the model improvement is
related to the user’s general activeness and variability. With sufficiently descriptive daily
features that generate better models, we could also explore the relationship of user charac-
teristics with predicting daily mood in addition to daily energy.

This preliminary work is a case study in trying to understand model discrepancies for
wellbeing prediction, a problem that has been generating optimism for medical applications.
Larger studies with multi-modal prediction approaches are still needed to improve moni-
toring accuracy. However, these studies may consider including an analysis, such as we
have presented, to understand for which individuals such a monitoring approach (i.e., with
a smartphone) is plausible and for whom it is unrealistic. Smartphone monitoring may be
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attractive for its ease of use, but it is imperative to have accurate monitoring for individu-
als suffering from mental health disorders. Understanding when smartphones are unable to
monitor individuals, as we have attempted to do, may eventually help achieve such necessary
reliability.
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Chapter 6

Towards Augmenting Crisis Counselor
Training by Improving Message
Retrieval

Originally published as Demasi, et al. “Towards augmenting crisis counselor training by im-
proving message retrieval.” Proceedings of the Sixth Workshop on Computational Linguistics
and Clinical Psychology (2019).

A fundamental challenge when training counselors is presenting novices with the oppor-
tunity to practice counseling distressed individuals without exacerbating a situation. Rather
than replacing human empathy with an automated counselor, we propose simulating an in-
dividual in crisis so that human counselors in training can practice crisis counseling in a
low-risk environment. Towards this end, we collect a dataset of suicide prevention counselor
role-play transcripts and make initial steps towards constructing a CRISISbot for humans
to counsel while in training. In this data-constrained setting, we evaluate the potential for
message retrieval to construct a coherent chat agent in light of recent advances with text
embedding methods. Our results show that embeddings can considerably improve retrieval
approaches to make them competitive with generative models. By coherently retrieving
messages, we can help counselors practice chatting in a low-risk environment.

6.1 Introduction

Suicide prevention hotlines can provide immediate care in critical times of need [62, 61,
127]. These hotlines are expanding services to text to meet growing demands and adapt to
shifts in communication trends [140]. Crisis helplines rely on counselors who are trained in
a variety of skills, such as empathy, active listening, assessing risk of suicide, de-escalation,
and connecting individuals to longer term solutions [61, 111].

Properly training counselors is critical yet difficult as, resource costs aside, counselors
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need to practice and develop expertise in realistic environments that are low-risk, i.e., they
do not put distressed individuals in danger. Because novice counselors are unable to assume
full responsibility for a crisis situation until they have some experience, training often in-
cludes human-to-human role-playing [4, 146]. Role-playing has been shown to improve crisis
intervention training [40]. However, such training takes a lot of human time, which centers
struggle to provide.

Instead of attempting to scale services by replacing human counselors and trying to
automate the generation of empathetic responses, we seek to build a training tool that can
augment hotline training and empower more counselors. As a first component, we develop
a chat interface where novices can practice formulating responses by interacting with a
simulated distressed individual.

To build such a system, we collect synthetic role-play transcripts that provide example
scenarios and example messages, while protecting the identity of any individual contacting
a crisis hotline. Here, we consider the one-sided case of simulating the individual in distress
with the intention of eventually providing a training environment for novice counselors to
practice counseling without putting anyone in danger.

In the application we consider, and in many similarly data-constrained applications,
language generation methods may be challenged by the limited data that can initially be
collected. To surmount this issue, we explore the extent to which retrieval methods can be
improved to provide an engaging chat experience. More specifically, we consider whether
improved embedding methods, which enable better representation of text, improve retrieval
models through better comparisons of text similarity. Briefly stated, we ask two research
questions:

RQ1 Do improved embedding methods retrieve coherent responses to a single turn of context
more often than commonly-used TF-IDF or generative models?

RQ2 Can we extend retrieval baseline models to consider more than one turn of context
when selecting a response?

Our results show that recent developments in embedding methods have considerably
improved dialogue retrieval, which is promising for the use of these methods in data-limited
applications. We also find that extending retrieval to consider additional messages of context
does improve baselines. This indicates the potential for retrieval methods to benefit data-
limited dialogue systems and the need to re-evaluate baselines for generative models. Within
the setting that we study, our results provide promise for building a chat module that can
enable crisis counselors to practice before interacting with individuals in need.

6.2 Related Work

Considerable potential for automating a counselor was shown with the initial rule-based Eliza
system [163] and recent developments have sought to target systems for delivering cognitive



CHAPTER 6. TOWARDS AUGMENTING CRISIS COUNSELOR TRAINING BY
IMPROVING MESSAGE RETRIEVAL 74

behavioral therapy [55]. Other studies have looked at the effect of suicide prevention coun-
selor training [61], identifying patterns of successful crisis hotline counselors [3], automating
counselor evaluation [115], and building a dashboard for crisis counselors [51]. There is addi-
tional work to identify supportive and distressed behaviors and language in online forums [9,
42, 161] and support forum moderators [68]. Most similar to our study, was one study that
showed the potential for an avatar system to help train medical doctors to deliver news to
patients [5]. However, this study did not target counselors or train conversation strategies.
To our knowledge, there has been no work on automating the individual seeking help to
improve counselor training.

Text Retrieval for Dialogue Systems

Previous systems have explored the use of retrieving messages from related contexts for
continuing dialogue. Some studies have looked at defining or learning scoring functions
over IDF weights to construct retrieval scores [80, 130]. Most similar to our work is a
system that considered similarities of full histories of dialogues in addition to a previous
turn of context [10] and another study that hand-tuned weights in a scoring function on
IDF weights to include additional messages of context [142]. However, these works used
similarities calculated over TF-IDF [8] and bag-of-words of representations, instead of more
recent embedding methods [21, 37, 114, 116, 145], which we explore.

6.3 Dataset

We collected a dataset of synthetic chat transcripts between suicide prevention counselors
and hotline visitors. An example of such a conversation is shown in Figure 6.1 and addi-
tional examples are discussed in the Results section. Artificial or role-play transcripts were
generated by trained counselors in order to protect the identity of any individuals who may
contact crisis hotlines. We chose this approach because retrieval should not be used on
datasets consisting of real conversations. Such datasets have been explored in prior work to
understand effective hotline conversations [3].

Role-playing between experienced and novice counselors is a common tool for crisis coun-
selor training, and is a task counselors are often exposed to before being approved to work
on a hotline [4, 72]. In addition to expecting role-playing to be a natural task for hot-
line counselors, prior work on short, unstructured social dialogues between peers found that
self-dialogues, i.e., where an individual would produce both sides of a two-person dialogue,
generated high quality and creative example conversations [80]. We followed this work and
asked experienced counselors to self-role-play scenarios of a counselor working with a hotline
visitor. We collected transcripts in three phases: full role-plays, visitor-only role-plays, and
counselor-paraphrase role-plays.
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I did not know who 
to talk to

This is a safe place to talk. 
Tell me more about what is 
going on to make you 
feel sad and stressed

Well, my parents have been 
fighting a lot for the past few 
months and I got a C 
on a test today

Visitor

Counselor

mi

ci

ri

Figure 6.1: A conversation snippet showing a visitor’s response ri to a counselor’s message
mi with preceding context, i.e., a visitor’s message ci.
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Phase Count
Unique conversations 1 254
Visitor-only role-plays 2 182
Counselor-only role-plays 3 118
Visitor messages 1-2 9062
Counselor messages 2 5320
Counselor paraphrases 3 2999

Table 6.1: Statistics on role-play transcripts. Phase indicates the study phase during which
each set of data was collected. Each counselor paraphrase reworded a single counselor mes-
sage.

Collection

After consenting to participate in the study, counselors were invited to the first of three
phases. In the first phase, counselors were asked to role-play both sides of a potential crisis
text conversation. To be representative of common demographic of individuals who contact
a helpline over text, counselors were prompted to role-play a youth experiencing trouble in
school and with their parents. This persona was chosen to represent a common scenario that
a counselor may encounter in a text-based conversation. The counselors were able to decide
if the fictional youth was experiencing suicidal thoughts, specific issues they were having, and
if they felt better by the end of the conversation. Transcripts were required to be 20 turns
for each counselor and visitor (40 turns total). However, participants were able to extend
the conversation to at most 60 turns total, if they chose. Messages were unconstrained in
length, but it was suggested that they resemble SMS messages.

Counselors who participated in a second phase of the study were given the counselor’s
side of a transcript generated in the first phase of the study and asked to role-play only the
youth experiencing trouble in a way that fit with the counselor’s messages. Participants in
the third phase of the study were given a full transcript generated in the first phase and
asked to generate counselor paraphrases that reworded and possibly improved the original
counselor messages. The second and third phases were designed to increase the variety of
responses that might be made.

Additional data were collected for evaluating models, as will be discussed below. All
study methods were approved by the university’s Internal Review Board.

Dataset Statistics

In total, 32 crisis counselors participated in the study and wrote example messages. In
general, the transcripts represent a broad range of scenarios. Statistics on the resulting
dataset are in Table 6.1. In the following results, we do not include messages generated in
the second phase of the study.
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6.4 Methods

After preprocessing, we consider two tasks: how to return a visitor response to a single input
counselor message and how to return a visitor response when considering a counselor input
message and preceding conversation context. For responding to a single counselor input mes-
sage, we consider two approaches: one based on cosine similarity of vector representations
and the based other on likelihood. For responding to a counselor message when consider-
ing additional conversation context, we extend retrieval to consider additional messages of
context, i.e., an additional message preceding the counselor’s last message. For generating
responses, we consider a popular Seq2Seq model [147, 156] and a hierarchical neural model
[110].

Data Preprocessing

Names were standardized to be popular American male or female baby names from the last
5 decades. Entire messages were tokenized with appropriate tokenizers for each embedding
method and converted to lowercase, as appropriate.

Response Retrieval Considering a Single Message

For the first retrieval approach we consider, let a message input to the system be mi. Let MN

and RN be all the N messages and responses, respectively, in the training set and mj and rj
indicate individual messages and responses in the training set. The first method considers
all the messages in the training set and returns the response rj′ to the message mj′ that
shares the highest cosine similarity with the input message, i.e., j′ = arg maxj sim(mi,mj)
where j indexes over the messages in the training set.

Similarity is commonly calculated as cosine similarity between TF-IDF vector representa-
tions of the input (i.e., counselor) message mi and messages in the training set. We compare
the TF-IDF representation with additional vector representations of the counselor input. Ex-
haustive comparison of embedding methods is not feasible, so we chose popular, successful,
and diverse embeddings: GloVe [114], FastText [21], Attract-Repel [157], and ELMo [116,
59]. We also consider two sentence embeddings: InferSent [37] and GenSen [145]. Messages
are embedded by summing the embeddings of their elements, e.g., across words or sentences
for appropriate embeddings.

For the second retrieval approach, we select the response from the training data that
is most probable, i.e, j′ = arg maxj P (rj|mi) where mi is again the input message and j
indexes over training examples. With this approach, which we will refer to as S2S-retrieve,
the probability of a response is calculated by a Seq2Seq model trained on counselor-visitor
message-response pairs. All Seq2Seq models were trained in the OpenNMT framework [77].
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Response Retrieval Considering More than One Message of Context

When multiple messages of context are present, we propose including the additional context
in the retrieval methods in three ways. For this work, we consider only one message in
the conversation that precedes the counselor’s input message to be additional context, as
indicated in Figure 6.1.

First, we consider the response from the training data rj′ that has the highest similarity
calculated over the sum of the previous messages embeddings, i.e., considering contexts ci
and cj that precede a test message mi and a training message mj respectively, we choose rj′
such that j′ = arg maxj sim(mi + ci,mj + cj).

As a second approach, we measure context similarity as the weighted sum of context and
message similarities: j′ = arg maxj sim(mi,mj) + λsim(ci, cj). The weight parameter λ is
found via cross-validation to optimize the similarity of embedded responses returned with
true responses on a development set.

Third, for the likelihood based model, we again consider the response from the training
set that returns the highest likelihood, as calculated by a Seq2Seq model. To include an ad-
ditional context message, we concatenate preceding messages before encoding and decoding.

Response Generation

For generating a response to a single counselor message, we consider a Seq2Seq model [147].
When considering an additional message of context, we first use the Seq2Seq model

with the preceding messages concatenated into a single input. Second, we use a Variational
Hierarchical Conversation RNN (VHCR) that explicitly models prior conversation state with
a hierarchical structure of latent variables [110]. This model has been shown to improve on
other models that adjust for context when there is more than one preceding utterance [110].
Seq2Seq and VHCR model embeddings are initialized with GloVe vectors [114].

6.5 Experiments

For the two response selection tasks, we randomly separated transcripts into training, de-
velopment, and test sets, with the training set accounting for 80% of the conversations and
the rest evenly distributed between development and test sets. Counselor paraphrases were
assigned to the set that their original message was assigned to. Messages were not randomly
shuffled, but separated by conversation, to avoid training on data related to the test data.
For both research questions, a response was either generated from a model trained on the
training set or retrieved from the bank of training examples for every counselor message or
paraphrased counselor message in the test set.
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Method Unit of
embed-
ding

Selection
metric

Percent
that
made
sense

Avg.
tokens
in re-
sponse

Avg.
tokens
in MS

Random – – 25.30 15.1 12.6

re
tr

ie
va

l

TF-IDF word cos-sim 60.34 13.1 12.4
Attract-Repel word cos-sim 58.50 18.3 16.2
ELMo word cos-sim 65.88 14.5 14.0
FastText word cos-sim 62.71 16.2 15.5
GloVe word cos-sim 58.63 15.9 15.1
GenSen sentence cos-sim 64.16 14.5 14.2
InferSent sentence cos-sim 61.79 14.9 14.0
S2S-retrieve – likelihood 67.46 8.8 8.2

ge
n
.

S2S-generate – – 64.16 11.7 10.8

Ground truth – – 89.33 14.6 14.6

Table 6.2: Performance of methods used to return a response to a single input message. MS
indicates the set of responses that crowdworkers judged as making sense in context, rather
than all the responses that the method returned. Both the best performing method and
ground truth results are in bold.

Evaluation

To evaluate the overall quality of responses that methods returned, we follow prior work
that indicated there is currently no automatic equivalent and used human judges [88]. These
judges were crowdworkers on Amazon Mechanical Turk1 who had been granted Masters
status and were located in the United States. Crowdworkers were presented with instructions,
labeled examples, and batches of 10 cases where they were asked to judge responses to
messages.

To evaluate methods for the first research question, crowdworkers were given a single
message and a response and asked to judge the response. For the second research question,
crowdworkers were given two messages of context and a highlighted response and asked to
judge the response.

1https://www.mturk.com/
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Decision Subcategory Count

Makes sense

Answers the counselor’s question(s) 17
Logical response, fits the conversation 15
Not perfect, but conceivable someone could respond this way 7
Agrees/disagrees with counselor’s statement 2

Mismatched

Doesn’t answer or respond to the question 11
Messages are unrelated 9
Doesn’t fit, seem right, or make sense 4
Responses answers a different question 3
Response is a bad, incoherent message 3
Message is from a different part of the conversation 2

Unclear

Response is vague or confusing 4
Worker just didn’t know 3
Can’t tell without more context 2
Explanation of why worker is unsure 1

Other
Researchers were unsure what rationale meant 13
Description of message content 4

Table 6.3: Themes in crowdworker rationales for why a response made sense or not. The
count is the number of rationales out of a subset of 100 pairs that shared the theme.

In contrast to studies that rank on scales [89], we directly asked the workers to decide
if a response made sense or not. In addition to indicating that a response did or did not
make sense, we allowed a third class for workers to indicate if they were unsure without
additional context. We found these classes to be sufficiently descriptive to consistently label
messages between researchers. In preliminary trials with crowdworkers, there was insufficient
agreement on labels. This instability of labels could stem from a variety of causes, including
uncertainty about whether a change of topic should be considered a coherent response. To
surmount this ambiguity, we asked two crowdworkers to label each response and a third
crowdworker to break any ties. All cases where crowdworkers indicated that they were
unsure were considered to be labeled as not coherent. With this voting approach, on a
trial set of message and response pairs, crowdworker labels corresponded with researcher
determined labels with a Cohen’s Kappa of 0.69 [33], indicating considerable agreement.
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Performance Metrics

To assess the quality of a method at returning responses, we take messages from a held-out
test set and return a response to it by either selecting a message from the training set or
generating a response with a model trained on the message and response pairs in the training
set. The split into training, development, and test sets is held constant across methods. We
ask crowdworkers to judge whether each response makes sense as a possible response to
the given message and aggregate multiple crowdworker decisions into a single label for each
returned response. We then use the percent of responses returned by a method that were
labeled as making sense as an indicator of method performance. The higher percent of
messages that made sense as responses, the better the method is at responding coherently.
We also consider the number of tokens in each response returned by a method and average
the number across all the responses returned as a surrogate for how interesting the responses
are. Presumably, longer messages are more interesting than short responses.

Random and Ground Truth Baselines

For the first research question, we included a method that randomly selected responses from
the training set to messages in the test set. This method is intended as a baseline for how
easy the task was for a method to guess responses.

For both the first and second research questions, we included a method that returned
ground truth visitor responses from the test set as an indicator of how hard the task was for
humans to determine response quality without additional context.

Assessing Why Responses Are Coherent

To understand how crowdworkers decided if a response was coherent, we asked crowdworkers
to evaluate responses on a set of 100 message-response pairs and additionally provide a
rationale for their decision. For each of 50 test messages, we made two pairs: one with a
response randomly selected from the training messages and the other with the ground truth
response from the test set. These two methods where chosen to generate pairs that were
not likely and likely to be coherent. We directly asked whether the response was coherent
and “Why did you choose that option?” with an open text box for crowdworkers to enter a
rationale. We read and grouped the rationales into themes of why responses did or did not
make sense.

6.6 Results

We present results on two tasks corresponding to our two research questions: retrieving a
response to a counselor’s message and extending retrieval to consider an additional message
of context. We also consider rationales for why responses do or do not make sense.
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Comparing Retrieval Methods for a Single Message of Context

Retrieval methods showed a clear benefit over randomly selecting responses, i.e., retrieval
methods returned a higher percent of coherent messages, as judged by crowdworkers (Table
6.2). ELMo embeddings and three other embeddings (FastText, InferSent, and GenSen)
improved on the commonly used TF-IDF retrieval baseline. This suggests that retrieval
methods with recent embeddings provide stronger baselines for generative methods and may
continue to improve alongside better embedding methods. However, only the ELMo em-
beddings surpassed the Seq2Seq generative model in percent of coherent messages returned,
indicating the potential of generative models even in this data-limited setting.

Retrieving responses with a Seq2Seq likelihood score returned the highest percent of
coherent responses, but the shortest messages on average. Short messages may indicate
that, while coherent, the messages may be less engaging or interesting for an interactive
environment.

When assessing crowdworker rationales for deciding if a response was coherent, we found
16 themes or reasons why crowdworkers would decide whether a response made sense (Table
6.3). Crowdworkers cited more ways that responses did not make sense than ways a response
would be coherent. Examples of messages in the test set and the corresponding responses
that each method returned for them are shown in Tables 6.4 and 6.5.

Extending Retrieval to Include Additional Messages of Context

Providing crowdworkers with an additional message of context appeared to impact their
impression of whether responses made sense in context. When presented with an additional
message of context, i.e, one visitor message and one counselor message, crowdworkers found
a larger percent of the ground truth responses from the test set to make sense (Table 6.6).
In contrast, when provided with an additional message of context to evaluate a response,
crowdworkers judged a lower percent of responses returned by the ELMo-based retrieval
method to be coherent (61.40%, Table 6.6) than when they were only presented with a
single message of context (65.88%, Table 6.2). Incorporating a previous message of context
into a similarity score increased the percent of coherent messages returned, but by less than
1%. We only considered the ELMo embeddings, as they were found to perform best in the
first research question. Three out of four retrieval methods returned a higher percent of
coherent messages than both generative models, indicating that including more context for
generative models is challenging. Again using the Seq2Seq likelihood to retrieve responses
returned the highest percent of messages that made sense. However, these responses also
had the fewest tokens, implying generic, short messages that might score low on a qualitative
scale of how engaging an interactive system is.
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6.7 Discussion

In contrast to many popular dialogue datasets [139], the transcripts we collected have a
relatively high number of turns (minimum 40 total turns per conversation), implying rich
conversations. These conversations are also interesting for their unique position of having
distinct roles for participants, a counselor and a distressed youth, and related themes. We
find retrieval to be a competitive approach with generative models and return responses that
make sense for more than 60% of input messages. We also find themes for how responses
can seem to be coherent.

Giving crowdworkers an additional message of context to judge whether a response was
coherent or not affected their decisions. It appeared that ground truth responses were
easier to distinguish as coherent and fewer retrieved messages were judged as coherent if
an additional message of context was presented. This indicates the importance of context,
especially during evaluation.

The results we present are on a specific, data-limited setting, but the implications of
our results may be broader both for other important applications, which commonly have
data limitations, and for retrieval baselines that are used to assess generative models. As
embeddings have improved, so too have retrieval baselines, which need to be updated for
appropriate evaluation of generative models in any language generation setting.

Our results are not without limitations. The data-limited setting presented a challenge
to training generative models, and perhaps extensive hyper-parameter tuning could influence
results. However, limited data and non-exhaustive parameter tuning are common limitations.
Further, as datasets increase in size, so does the potential for relevant, related contexts to
be present and thus the potential for successful retrieval increases as well. Thus, even on
larger datasets, competitive retrieval models, such as those we have presented, should be
considered for baseline comparisons.

Another limitation of our approach is the extent to which we have considered context
so far. Because the conversations we collected are long relative to some other datasets it
is likely more context will be necessary to produce a coherent simulation. We have begun
to methodically look at the effects of incrementally including more context and extending
retrieval models beyond a single message. These initial steps indicate the impact context
has and provide important baselines for comparing future, more general models.

6.8 Conclusion

Our work shows promise that data-limited applications may build initial systems with re-
trieval methods powered by recently developed embeddings. By collecting role-play tran-
scripts and showing results in a data-limited context, we have demonstrated the potential to
develop a successful simulation of a hotline visitor that novice counselors can practice with
during training. We found that retrieval methods became more competitive with improved
embedding methods and surpassed generative methods when more context was considered.
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We also found that context had impact on how difficult it was for crowdworkers to evaluate
responses.

As a next step, we plan to explore better leveraging rich structure in the conversations,
with a focus on the protocol that the counselors are trained to follow. There has been
increased interest in blending retrieval and generation approaches by modifying prototypes
retrieved from training data [86, 164]. It is possible that such an approach would enable
modifying and thus tailoring responses to similar contexts.
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Method Example 1 Example 2 Example 3

M
e
ss
a
g
e Wow, not even

18 but already
paying the bills.
How old are you?

Sounds like a
great plan, take
care Jessica...
we’re here 24/7
in case you need
to talk to us
again

Hi, I’m Michael!
What is your
name? Location?

R
e
sp

o
n
se
s

Random I took a small
amount. (N)

Sometimes I have
to. They don’t re-
ally like hanging out
with him. (N)

Yes, please. (N)

Tf-idf I’m 17. (Y) Thanks, it’s good to
talk about this stuff.
I have to go eat din-
ner now (Y)

Hi Michael, this is
Christopher. I’m in
Daly City and I need
help. (Y)

Attract-Repel I feel lonely (N) Maybe. Maybe next
time. (N)

I’m Jennifer (Y)

ELMo 14 (Y) ok thx (Y) i’d rather not say
my name. is this
space confidential
(Y)

FastText 14 (Y) ok thx (Y) i’d rather not say
my name. is this
space confidential
(Y)

GloVe Im 15, i have a
twin but hes a boy.
Im a girl. They
let him get away
with evvvverything
at home and school
(Y)

Maybe. Maybe next
time. (N)

i’d rather not say
my name. is this
space confidential
(Y)

Table 6.4: Examples of three counselor messages and the corresponding visitor response
output from various methods explored. Remaining methods in Table 6.5. These examples are
from the first research question, where only one preceding counselor message is considered.
Whether crowdworkers thought a response made sense or not is indicated parentheses as
”Y” and ”N”, respectively.
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Method Example 1 Example 2 Example 3

M
e
ss
a
g
e Wow, not even

18 but already
paying the bills.
How old are you?

Sounds like a
great plan, take
care Jessica...
we’re here 24/7
in case you need
to talk to us
again

Hi, I’m Michael!
What is your
name? Location?

R
e
sp

o
n
se
s

GenSen 14 (Y) Okay. I got it.
Thank you. You
were really helpful.
I was feeling really
awful but I’m feeling
better now. (Y)

i’d rather not say
my name. is this
space confidential
(Y)

InferSent 14 (Y) Yes please. I’ll be
right back. (N)

i’d rather not say
my name. is this
space confidential
(Y)

S2S-retrieve I’m 15 and I’m
pretty sure. Life
is lame and I can’t
go on like this
anymore. (Y)

Maybe (Y) i’d rather not say
my name. is this
space confidential
(Y)

S2S-generate I’m 15 and I’m
pretty sure . Life is
lame and I can’t go
on like this anymore
. (Y)

Okay, I will mes-
sage you tomorrow.
Thank you (Y)

i’d rather not say
my name. is this
space confidential
(Y)

Ground truth Yea it’s awkward.
Im 17, be 18 in 4mo
(Y)

You too (Y) My name is Christo-
pher and I’m in
Golden Gate Park.
(Y)

Table 6.5: Examples of three counselor messages and the corresponding visitor response
output from methods not included in Table 6.4. These examples are from the first research
question, where only one preceding counselor message is considered. Whether crowdworkers
thought a response made sense or not is indicated parentheses as ”Y” and ”N”, respectively.
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Method
Incorporation of
additional context

Percent
that
made
sense

Avg.
tokens in
response

Avg.
tokens in

MS

re
tr

ie
va

l

ELMo – 61.40 14.6 13.6

ELMo-sum
Measure similarity of
sum of embedded
messages

51.78 15.6 15.2

ELMo-weight
Weight similarities of
previous messages

61.66 14.9 13.9

S2S-retrieve Concatenate context 65.48 5.5 4.6

ge
n
. S2S-generate Concatenate context 58.89 8.3 7.3

VHCR-generate Models conversation 55.07 10.8 8.4

Ground truth – 91.30 14.6 14.7

Table 6.6: Performance of methods used to retrieve or generate responses when an additional
message of context is considered, i.e., two total messages. MS denotes only responses that
were considered to make sense in context. Both the best performing method and ground
truth results are in bold.



88

Chapter 7

Conclusions

In this dissertation, I explored two approaches that could use data-driven methods to em-
power mental health professionals to provide better care during times of need. First, I looked
at using smartphone-sensed features to monitor wellbeing or detect changes in wellbeing over
time. Such approaches, if successful, would enable professionals to identify and intervene
during times of need. Second, I considered text retrieval approaches for developing a base-
line chat system that counselors could practice intervening before they interact with humans
in need. Throughout this work, I strove for rigorous evaluation to assess whether or when
data-driven tools were promising.

7.1 Contributions

Towards using mobile sensing for monitoring wellbeing, I developed a framework for evaluat-
ing longitudinal predictions. I then, in collaboration, collected a dataset on a cohort of stu-
dents, used our framework to evaluate the potential for a set of features to predict wellbeing,
and questioned when mobile sensing might be possible. I found that some smartphone-sensed
features have correlations with wellbeing, but the relationships were not strong enough to
generate reliable predictions across a cohort. I also found that personality was more strongly
correlated with whether students would experience changes in depression measures over the
course of a semester than the smartphone-sensed features we explored. These results are in
line with results in related work, which also questions the extent to which mobile phones can
be used to sense wellbeing [7, 121].

Towards a training system for crisis counselors to practice counseling, I collected a dataset
of synthetic chat transcripts and explored the use of recent text embedding methods to im-
prove text retrieval and build a baseline system. I compared these retrieval approaches with
popular text generation methods. I found that, in general, messages could be retrieved or
generated to make sense in context with similar reliability. However, retrieving messages pro-
vided much longer messages, which were more similar in length, on average, to the expected
average length of a message found in the transcripts. This indicates that, while currently
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retrieval isn’t sufficiently reliable at returning coherent responses, retrieval may play a role
in an eventual system. In particular, retrieval and generation may be combined to tailor
responses to context and thus make a more reliable and engaging system. I also found that
adding another message of context when evaluating retrieved or generated responses affected
the ability for crowdworkers to distinguish whether a response made sense in context. This
result is important in the implications it has for how prototype systems can be effectively
evaluated. While evaluating system responses with shorter contexts may be more convenient,
due to lower reading requirements, evaluating responses within longer contexts or through
interactively chatting with a prototype system may be necessary.

7.2 Future Work

While this dissertation explored the use of data-driven methods for developing two tools,
significant work remains towards evaluating and possibly developing such tools.

First, this work explored wellbeing prediction from smartphone data on a relatively small
and non-clinical cohort. It is possible that, with a larger cohort of individuals, clusters of
people with similar behaviors could be found and then data on multiple individuals within
a cluster could be leveraged to improve predictions of individuals’ wellbeing. In the cohort I
studied here, there were insufficiently many individuals to separate behavior clusters. How-
ever, a challenge for considering clusters of behavior would be developing algorithms which
incorporated information on cluster affiliation into their consideration of training examples,
e.g., down-weighting examples from individuals in the data collection cohort who didn’t have
similar behavior when predicting another individual’s wellbeing.

Further, the individuals who participated in this study, were not clinically-diagnosed with
mental health disorders, to our knowledge. It is possible that individuals with disorders may
have more varied behavior that could be predicted from easily-collected data sources, such
as smartphone sensor data. If such a population of individuals were recruited for a study,
more significant changes in wellbeing could be explored, as some studies have attempted, also
on limited size populations [24, 63, 121]. However, a challenge with trying to detect more
significant variations in behavior is that such variations may only be present sporadically in
a dataset or over considerable periods of time. For example, if trying to detect psychotic
episodes or relapses in wellness, occurrences of such events may be few in a feasibly collected
dataset.

To develop an engaging chat agent for training crisis counselors, more work is needed to
leverage the structure of counseling protocol. For example, counselors must progress through
stages and have a variety of techniques that they can draw on when counseling. More work
to model these stages and techniques, and work to model dialogue acts more generally, could
be used to better retrieve, modify, or generate responses.

Such work to classify or model components of the conversation could also lead towards
building suggestion and feedback modules that would guide novice counselors towards im-
provement while they chat with a simulation. Collaboration with current counselor trainers,
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combined with automatic measures of conversation state, could be used to develop possible
feedback mechanisms that could then be tested through user studies.

An additional remaining challenge is to construct coherent stories around a crisis that the
simulation would present. A coherent story that spans multiple messages in a conversation
could draw on recent work looking at maintaining personas over the course of a chat session
[167]. One approach for this challenge may be to identify when messages relate to an indi-
vidual crisis situation, e.g., introduce information to the conversation, and when messages
are more general responses or necessary conversation acts. If identified, crisis-specific mes-
sages could be leveraged from the collected corpus of transcripts to produce vignettes that
a retrieval method could select from and then a generative method could modify retrieved
messages to ensure coherence within context.

In addition to the feedback modules mentioned above, more work is also needed to
holistically approach a training system for counselors. While a chat simulation could be
engaging for counselors with some training and some notion of desired counseling structure,
it may be too challenging of an educational task for counselors in preliminary stages of
training. As such, there is considerable opportunity to explore preliminary tasks that expose
counselors early in training to conversation techniques and protocol without yet asking them
to hold a full counseling conversation. For example, a system with tasks that ask counselors
to identify a technique that is present in a prototype message could be useful early in training
and later to also assess the educational value of a more sophisticated chat simulation system.

7.3 Final Remarks

In this dissertation, I have explored methods for data-driven tools to empower mental health
professionals. While data-driven methods can provide enormous advantages in some appli-
cations, on the problems I have explored, they have faced some challenges. This result is not
surprising given that humans exhibit remarkable variability in behavior and experience, and
thus methods that look for statistically likely results may not always be successful. How-
ever, many opportunities to improve mental health care remain and data-driven methods
can provide creative solutions worth exploring. Evaluation is critical for methods in these
applications that seek to impact humans. As such, evaluation of methods should be criti-
cally approached and evaluation approaches may need to be tailored to the setting to ensure
accuracy and reliability of novel tools.
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