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Abstract

Navigation is often required in order to perform complex grasping tasks such as cleaning un-
structured household rooms. Although there is extensive prior work in applying reinforcement
learning to grasping and navigation, these tasks have largely been separate from each other. Our
work’s primary contribution is to determine whether learning to navigate in a way that might
improve grasping would provide an increase of grasp success.

Exploring this objective and answering this question led to two stages of work, both grounded
in the complex task of cleaning up toys scattered in a room. In the first stage, assuming that we
could navigate to any pre-grasp orientation, we investigated whether certain orientations were
more amenable to successful grasps. We trained probability of success models as a grasping policy,
to potentially introduce a heuristic that we could judge graspability off of. We found that, though
that heuristic was good enough to produce reasonably effective grasping policies, it was not good
enough to be used in lieu of actual grasp success. We then ran those policies on the physical robot
with a single toy and observed the actual grasp success rates and images collected. We did find
that for each grasping policy, there existed toy orientations that proved to be more difficult to
grasp than others.

With this idea validated, we next implement a navigation policy to approach toys at more
graspable orientations, and compare its grasp success to the original navigation policy. We use a
simple nearest neighbor’s approach to determine which pre-grasp orientations of a certain toy
were good. In real time, before each potential grasp, we use a Structure-from-Motion model and
the robot camera’s current image to estimate the angle of the robot’s approach to this toy, and then
determine whether to grasp or to continue to circle the toy based on how successful past grasps at
that approach have been. From implementing and running this policy, we find that this navigation
policy indeed improves grasp success from 59% to 80%. This demonstrates the hypothesis that was
previously only validated: training a navigation policy based on former grasping experience can

and does improve grasp success in tasks that involve both.
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1 Introduction

At present, robots in industrial environments can handle challenging manipulation tasks such
as automotive assembly and warehouse automation, while household robotics are limited to
"intelligent" vacuum cleaners. The main reason for this gap is the unstructured nature of household
domains, which requires complex sensing, reasoning, and acting skills. Over the last decade, deep
learning has shown great promise in learning from unstructured data, and has revolutionized
computer vision and reinforcement learning. More recently, learning methods have been receiving
increased attention in robotics, and hold promise in dealing with unstructured domains.

Specifically, we focus on grasping tasks in unstructured environments. Navigation is often
required in order to perform complex grasping tasks such as cleaning unstructured household
rooms. Navigating and operating in unstructured environments is challenging as robots cannot
rely on having complete knowledge of their environment. Robots instead have to acquire and
process the necessary state information to support decision making. A robot in this setting also
has to continuously monitor their impact on the environment as it is assumed that their actions
won’t always be successful. This leads to our investigated objective, which is to determine whether
a mobile robot can utilize its mobility to improve its grasping.

Our robotic platform is a TurtleBot 3 mobile base equipped with a Widow-X 6-DoF manipulator
arm. This platform has suitable sensing and manipulation capabilities, though the inherent
challenge of low cost robots is that the grasping arm is not as accurate as it could be, therefore
making the data and performance more unreliable. However, this low cost makes the robots more
accessible and deployable, and our results more robust.

We investigate our objective in two parts. In the first half, we investigated whether certain
orientations were more amenable to successful grasps in order to determine the utility of learning
to navigate in a way that might improve grasping. After all, if navigation did not help, not
only would it not be worth the effort of implementation and maintenance, it could actually hurt
performance. For example, a robot’s task might be to pick up and put away all the toys in a room
as quickly as possible. The robot might take longer if it takes a circuitous route to approach a toy
at different angles with a learned navigation policy, instead of navigate directly to the toy using a

simpler or hardcoded policy and just try its best to grasp from there.



Exploring this objective and answering this question led to training models to predict the
probability of success value of a grasp given the current position of the robot arm pose and
image of the toy. We conducted experiments that trained multiple models and ran those models
on the physical robot to compare their grasp success rates on two sets of different orientations
of a single toy, a girl doll. Our first set of orientations is up/down/left/right and our second is
horizontal/slant/vertical. Our different models differ by training on different combinations of
data sets (e.g. training on data of grasping 9 toys equally vs. training on data that focuses more
on grasping the test-time toy). We observe how well our models determine successful grasping
regions with comparing heatmap visualizations and the current images of the toy, and running
the models at different orientations and observing the grasp success rate for each orientation.

We found that for each model, there existed girl doll orientations that proved to be more difficult
to grasp than others. In a vertical/horizontal/slant orientation scheme, model (1) grasps the toy
at a "vertical" orientation better, 64% of the time as opposed to 52% or 53% at the others. In a
up/down/left/right orientation scheme, model (2) grasps the toy worse at a "down" orientation,
with only 39% grasps successful as opposed to its overall grasp success rate of 48%. When observing
probability of success heatmap visualizations of our models, we found that the probability of
success value magnitudes of their models did not correspond well to whether they ultimately
successfully grasped or not. Therefore, we did not use our heatmaps in our analysis of advantageous
orientations. Still, the actual grasp success counts were sufficient to validate our hypothesis.

In the second half of this work, we actually change the navigation policy to reflect observations
from the baseline navigation and grasping policies, and compare the grasp success of the robot
using this policy to the grasp success during the original navigation policy. Once again, we use a
single toy, this time a baby doll. In the previous section, orientations were determined after the
fact, by hand. For the orientation scheme in this section, we built a Structure-from-Motion model
of this toy. In real time, before each potential grasp, we used that model and the robot camera’s
current image to estimate the angle of the robot’s approach to this toy, and then determined
whether to grasp or to continue to circle the toy based on how successful past grasps at that
approach have been. From implementing and running this policy, we find that this navigation
policy indeed improves grasp success from 59% to 80% on this toy. This proves the hypothesis that
was merely validated in the first half of this work; training a navigation policy based on former
grasping experience can and does improve grasp success in tasks that involve both.

Finally, throughout this process, we created a flexible, robust experimental setup for this robot

and task, and collected enough data to train several deep learning models that grasp well, as well



as much additional on-policy data (i.e., the data from running model (1) and model (2)) that we

have not leveraged yet. Such data will be necessary for future projects with our robot.



2 Related Work

The task of grasping unknown objects is very difficult with the variety of different objects and
environments. Robotic grasping has extensive prior work that is comprehensively reviewed by
recent surveys such as Bohg et al. [4]. Early work such as Bihi et al. [3] and Mason et al. [15]
found analytical solutions to grasping, but these approaches assumed a structured environment
where precise information about the environment and its dynamics such as external forces and
surface properties are known. Standard supervised learning can be utilized to train grasping tasks
on robots [19] but requires extensive initial input and monitoring from human supervisors. The
literature has recently favored more flexible, trial and error based approaches such as reinforcement
learning.

Similar to our work, many current grasping approaches try to predict a grasp pose by observing
the environment (commonly with a depth camera), choosing the best location at which to grasp,
and then executing an open-loop planner to reach that location [17]. While most of these studies
focus on optimizing the number, percentage, and efficiency of grasp successes [6] and [16], we
instead focus on exploring the difference of grasp success when grasping objects at different object
rotations.

Levine et al. [13] used images of the robot arm gripper and the object to predict probability of
grasp success using a large convolutional neural network of the current image. Our approach is
similar in that it uses the image of the gripper and the object with a convolutional neural network,
but we also include the robot’s arm pose (arm position in the environment) in our state. Another
similar work is self-supervised learning of grasp poses by Pinto and Gupta [18]. This approach
was trained with self-supervised data collected using a heuristic grasping system based on object
proposals to learn a network to predict the optimal grasp orientation for a given image patch. Our
method differs by not requiring proposals or crops of image patches and by using a small, low cost
robot (3K USD vs their > 22,000K USD), therefore ours would be more practical to deploy in real
households.

There has also been extensive related work focusing on applying reinforcement learning to
robot navigation [11], [22], [1]. Many previous navigation works attempt to create a map of the

environment [7], but having only the knowledge of the camera field of view has been preferred



as the robot does not have to store as much information and can react to obstacles and changes
in an unstructured environment [2]. This work uses mobility and image recognition to navigate
in its unstructured environment instead, to hypothesize about how this navigation data could
be leveraged to improve grasp success, as opposed to learning a more complicated navigation
policy (e.g. by reinforcement learning) as a virtue in itself. Reinforcement learning’s effectiveness
for learning to navigate to achieve certain goals, e.g. collision avoidance [11], does suggest that
it could be promising to train navigation for a heuristic that improves the probability of grasp
success.

This work explores the potential of training navigation to improve grasp performance rather
than only train grasping to improve grasp performance. Kalashnikov et. al’s expensive stationary
graspers learn to adjust the object - by knocking it over, for example - to make it easier for them
to grasp [12]. Our robot also seeks to optimize the way that the object’s position relates to the its
own, but using its mobility to do so. There are many tools and algorithms for scene reconstruction,
feature extraction, and object homography that this work uses or at least takes inspiration from in
the process of doing so, including SIFT feature extraction, RANSAC, and Structure-from-Motion
scene reconstruction as implemented by COLMARP [14], [8], [20].



3 General Task Setup

3.1 Task Steps

Our motivating task is to declutter an unstructured room filled with toys. For each toy, the robot

needs to

1. navigate towards the toy
2. attempt to grasp the toy
3. check whether it successfully grasped the toy

4. upon successful grasp, perform the goal action that represents putting the toy where it

belongs.

where the robot repeats steps 2-3 until the grasp is successful, and then returns to step 1 on a
different toy. The overall task, therefore, is to successfully grasp and perform the goal action on

all of the toys in its environment.

3.2 Robot

Our robot is a WidowX MKII Arm mounted on a Turtlebot3 Waffle base. She has two cameras: an
Intel Realsense camera facing horizontally, and a Genius WideCam F1o0 facing downwards. This
setup is relatively inexpensive, so successful policies have to be more tolerant of equipment error

than if we used a higher-end robot.

3.3 Success Evaluation

We judge success or failure in a self-supervised fashion. After closing its gripper, the robot judges
the grasp a success if both of the following are true, and a failure otherwise: (a) the Realsense
image contains a toy when the arm holds its gripper near it, and (b) the Realsense image does not

contain a toy when the arm lifts its gripper high out of that camera’s view.
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Figure 3.1: Robot in room with all nine toys

(a) Lift the toy off the ground.  (b) Check that it is in view.  (c) Check that it is out of view.

Figure 3.2: Three steps to judge a success with the Realsense camera.

3.4 Baseline Navigation Policy

The baseline policy’s navigation script locates the nearest toy bounding box in the Realsense
and Genius camera images and moves forward, left, or right based on what might move that
toy’s box to the bottom center of the camera images. For toy detection, we used Tensorflow’s
Object Detection API with ResNet-101 feature extractors pretrained on the COCO dataset and
then finetuned with our set of toys through hand-labeled images from our cameras in which we
manually marked bounding boxes for all toys and non-toys [10].

This navigation policy gives us the ability to see toys from different angles over time, and to

run the setup with minimal supervision over all of its toys.
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3.5 Baseline Grasping Policy

When the robot has approached the toy based on the toy’s bounding box in first the Realsense
camera and then in the Genius camera, the robot uses the Genius camera image’s bounding box
coordinates to estimate a center of the bounding box (x, y) and height of the toy (z). Then, using
Movelt! inverse kinematics [5], the WidowX arm aims for that estimated (x, y, z), closes the gripper,
and then evaluates success. If that grasp fails, the robot lowers the z value and tries again with the
same (X, y). It continues to try successively lower z values until it either succeeds or reaches the
ground, at which point it gives up on this approach toward this toy and returns to navigation after

some kind of adjustment or random spin.
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4 Preliminarily Determining Whether Angle
of Approach Matters

4.1 Preview

In Fall 2018, our experiments used the baseline navigation policy, but trained new grasping
policies via reinforcement learning from experience that the robot collected from using the
baseline navigation policy with the baseline grasping policy. The grasping policies trained were
probability of success models, because that could potentially introduce a heuristic that we could
judge graspability off of. We found that, though that heuristic was good enough to produce
reasonably effective grasping policies, it was not good enough to be used in lieu of actual grasp
success. We then analyzed the affect of toy orientation using the robot’s actual grasp success rates
and Genius camera images from running the baseline navigation policy and those trained grasping
policies. In our analysis we found reasons to validate our hypothesis that angle of approach can

indeed help or hurt the robot’s chances of grasping successfully.

4.2 RL Setup for Training Grasp Policies

4.2.1 RL Model

As our robot explores and attempts to achieve its task, every o.25s, we record the image from its
genius camera, the pose of its arm, and the result of checking grasp successes. For our model, we
only look at the data during the arm’s descent towards a toy for each grasp. The observation is
(genius image, current arm pose), the action is moving the arm to the next pose in the rollout, and
the reward is 1 if the next pose is the end of a successful grasp, -1 if the next pose is the end of a
failed grasp, and o if the grasp is not yet completed. We made each rollout one step long, where
the state is any place (in image and pose) along the descent trajectory, and its action consists of
moving the arm towards the final place along that descent trajectory. This meant that data from

one H-step grasp trajectory (where roll; denotes a rollout at step t, im; denotes an image at step ¢,

13



pose; denotes the arm pose at step ¢, o denotes a non-terminal state, and success is +1 to indicate

grasp success (+1) or failure (-1)):

(im,, pose;, 0), (im,, pose,, 0), . . ., (imy, posegy, success)

would produce H — 1 rollouts with horizon 1 that look like this:
roll; = ((state,,action,,reward,)) = (((im,, pose, ), poseg, success))

roll, = ((state,,action,,reward,)) = (((im,, pose,), posey, success))

rollg_, = (((img—-,, posegy—_,), poseg, success))

Notice that each rollout’s action moves the arm directly to the final pose. Equipment limitations
made this approach more appealing than one in which the we trained smaller actions. The
intermediate rollouts allow us to get more out of our dataset, and improved performance when we
put policies into practice and the robot needed to make decisions from halfway down towards the

toy rather than its initial pose. The video stills in Figure 4.2 illustrate this process.

4.2.2 Baseline Policy

Collecting data from our low-cost robot doing its task in realtime is expensive, as opposed to a
simulated task, or a setup with a powerful robot plugged into the wall. Therefore, we wanted the

baseline policy to have certain qualities for collecting off-policy data:
+ Judging success or failure in a self-supervised fashion, as described before.

+ Occasionally achieving success and promoting exploration. Our reward setup, +1 for a
successfully completed grasp and -1 for a failed completed grasp, is too sparse to start with
a completely random approach. So, instead, we designed a fairly competent baseline, based
on navigating towards and grasping towards our aforementioned toy detector’s bounding
boxes. These calculated grasps were about 22% successful, so they generated data with both
positive and negative rewards. To still explore more of the state space than this deterministic

method, we also occasionally added noise to these grasps.

4.2.3 Probability of Success Model

The probability of success model we trained was a supervised learning model from (image, current

pose, action pose) to the probability of grasp success.
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Let us denote each rollout for step ¢ of grasp g as roll! (where all quantities with g superscripts
denote grasp g):
roll) = ((imf,posef),poselg_l,successg € {-1,1})

From each rollout rollY we created our model input x:

x = (xim’xpose7xa) = (im?,posef,posez)

and our model output y:

y = max(o, success?)

Using the parameters and architecture tuned in Kahn et. al. [11] for collision probability,
the model passes the genius camera image through a convolutional neural network (CNN), the
observation vector through a fully connected network (FC), the action vector through a FC, and
then those three inputs combined through an FC to get the final output probability of success.

The model with parameters 6 = (0,, 0;m, Opose, 0a) outputs a probability of successful grasp for

x = (Xim, Xpose>s Xa):

Pe(x) = FCHO(CNNGim(xim)a FCQPOSQ(xpose)’ FCGa (xa))

where 0 was trained to minimize the mean cross-entropy loss over each training rollout’s x

with success label y (1 for successful, o for unsuccessful):

Lo(x,y) = =(ylog(pe(x)) + (1 — y) log(1 — pa(x)))

4.2.4 Data Collection Configurations

We used data from three task and policy configurations to train the probability of success model:
1. The baseline policy, including grasp exploration, on 9 soft toys: 9202 grasps (24.2% successes)

2. A deep Q-learning grasping policy trained from (1), with the states, actions, and rewards as

described in the horizon-1 RL model, on 9 toys: 614 grasps (19.9% successes)
3. The baseline policy, including grasp exploration, on 1 toy: 336 grasps (33.6% successes)

where the baseline policies occasionally introduced noise into the grasp, to increase exploration.

15



Figure 4.1: Robot with girl toy, the toy used to collect dataset (3)

All three configurations used the baseline policy’s hardcoded navigation script. In addition to
the aforementioned Genius camera images, we also collected Realsense camera data and Turtlebot
command velocity data from this, which we could possibly use for future work with this setup if
this paper’s results suggest training navigation in a certain way might improve the grasping task’s
performance.

We chose to focus a portion of our dataset on only one toy to see if doing so would allow the
probability of success model to train more definition around the toy. We chose the girl toy for
being asymmetric, soft in all areas (some other toys had hard portions that posed a danger to our
gripper), and colorful (some other toys were grey and caused the the checking routine to return

false negatives).
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4.3 Experiments

Our experiments will help us determine whether a mobile robot can utilize its mobility to improve
its grasping by training multiple models and comparing their grasp success rates on different
orientations of a single toy. Our experiment will train probability of success models to compare
visualizations and grasp success rates for different orientations across different probability of

success models.

4.3.1 Probability of Success Models Trained

The different experiment models used will be all of the type probability of success (described in
the Task Setup section) and thus have the same network architecture. The only difference is the
data that we use to train the models. All data used to train is not orientation specific (i.e. contains
a random proportion of different toy orientations). The combined datasets are referenced from the

Data Collection Configurations section:

1. Combination of (1), and (2)
2. Combination of (1), (2), and (3)

3. Model (1) finetuned on dataset (3)

4.3.2 Predicted Grasp Success

We can observe how well our models determine successful grasping regions with comparing
heatmaps visualizations and the current image of the toy and running the models at different

orientations and observing the grasp success rate for each orientation.

Heatmap Visualizations

We create heatmap visualizations of a model’s probability of success values for each genius image
to observe which region of the image the model thinks is successful. Specifically, for a given robot
gripper height (z dimension is fixed), we evaluate the model’s probability of success at every spot
in its feasible rectangular region (all horizontal and vertical arm positions x’s and y’s).

These heatmaps use the probability of success model as a source of truth to draw conclusions
about this inexpensive setup’s ability to grasp toys at different angles. To see if the probability of

success model itself is realistic, we observed the robot’s performance using a policy that uses the
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cross-entropy method to choose actions with a high predicted probability of success by trying

different actions and observing which actions maximizes probability of success.

Grasp Success

For each policy, we calculate the grasp success rate for all four orientations (up, down, left, and
right). We record the number of successes and failures in addition to the grasp success ratio. The
null hypothesis of our experiment is that there is no or negligible difference between the success
rates of the different orientations.

We do this with the trained policies and not the baseline policy because we wanted to have a

sense of "on policy" grasp success.

4.4 Results

Two notable and non-trivial preliminary results that made testing this hypothesis possible were
collecting sufficient amounts of data from different policies and getting other reinforcement
learning methods such as deep Q-learning working with reasonable grasp success. Because our
robot is mobile, data collection was time consuming as it was dependent on us having to frequently
charge and change batteries. We have over 10,000 grasps that we can use for future projects. The
deep Q-learning policy trained, with a grasp success rate of 19.9% on all toys, worked around as
well as the baseline policy (24.3% with occasional noise on all toys, 22.2% definitely noiseless on
all toys). The probability of success policies, one achieving 56% grasp success on the girl toy and
another 48%, did better than the baseline’s 33.6%. The fact that we were able to train grasping
policies that worked that well shows that our baseline policy collects useful data and that we have
amassed a useful amount of it. This gives us confidence that we could try other RL models or
explore other related problems with at least this data, and if they are not successful, it would not

be for lack of data.

(a) initial pose (b) step 1 (c) step 2 (d) step 3 (e) success!

Figure 4.2: Model (1) in action: In steps 1 and 2, equipment limitations prevent our robot from
going all the way to her destination, so she goes partway each time, and the policy
plans from there. In step 3, she completes her journey to the toy, and then lifts the toy
to check for success.
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We ran model (1), model (2), and model (3) on the robot, since a reasonable probability of success
model should be able to perform reasonably well, reasonable meaning that it should succeed at
least some of the time, so that we can compare nonzero success rates across different angles of the
toy and trust the model’s confidence in itself when we generate heatmaps.

Model (1) had reasonable performance on the one girl toy: it made 133 successful grasps out of
238 total, for a grasp success rate of 56%. Models (2) and (3) were expected to do at least as well on
the one girl toy, as they had additional data on just that toy. (3) did not; the grasps that the robot
attempted under that policy were nowhere near the actual toy (success rate 0%). 336 grasps was
evidently not enough data to train on, and the new model finetuned on just those grasps overfit
that limited data. Therefore, we do not present heatmaps or grasp success rates in the following
sections for that policy. Model (2), trained on all the data at once, including the extra girl toy data,
did perform reasonably well on the girl toy: it made 185 successful grasps out of 383 grasps, for a
grasp success rate of 48%. Considering that the baseline policy’s grasp success rate was

A typical successful grasp can be seen in the video stills in Figure 4.2.

4-4.1 Grasp Success

We observed 238 grasps running model (1) on the robot, and 383 grasps running model (2) on the
robot. We sorted these grasps by orientation, by two schemes, illustrated in Figures 4.3 and 4.4.
All images were sorted by hand, even though some pictures were ambiguous to sort; e.g., (c) in
Figure 4.4 might fit into either down or right for orientation schema (1); (b) in Figure 4.3 might fit
into either vertical or slant for orientation schema (2). Despite these ambiguities, there were only
three grasps omitted from sorting, only because they for some reason did not produce a picture of

the toy before the toy was grasped.

(a) down (b) up (c) left (d) right

Figure 4.3: Orientations of girl toy in orientation schema (1)

Tables 4.1 - 4.2 show the grasp successes for each model for each orientation.
We can see from this simple sorting that we do see dramatic differences in grasp success by

angle for each model. Model (1) does much better for toys at "vertical” orientations (so, ones where
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(a) vertical (b) horizontal (c) slant

Figure 4.4: Orientations of girl toy in orientation schema (2)

the toy varies less in the robot arm’s y direction) than for toys at others. Model (2) actually does a

bit worse if the toy is at a "vertical" angle, and much worse for those at a "down" orientation.

Table 4.1: Horizontal/Slant/Vertical Grasping Successes

Model (1) Model (2)
Orientation | # grasps | % success | # grasps | % success
horizontal 79 52% 125 47%
slant 87 53% 175 51%
vertical 72 64% 80 41%

Table 4.2: Up/Down/Left/Right Grasping Successes

Model (1) Model (2)
Orientation | # grasps | % success | # grasps | % success
up 63 60% 77 47%
down 43 58% 76 39%
left 86 51% 116 54%
right 46 57% 111 50%

4.4.2 Heatmaps

Counting actual grasp successes and failures by orientation did provide a quantitative measurement
how graspable a toy is by angle. We also generated heatmaps in hopes of noticing another
measurement of graspability per image, perhaps through the magnitude of the model’s predicted
probability of success for its best grasp action.

We found that the probability of success value magnitudes of their models did not actually

correspond well to whether they ultimately successfully grasped or not. Considering that their
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policies did perform reasonably well, as discussed earlier, the relative magnitudes between poses
was enough to help the robot make good decisions. However, the models alone clearly did not
have a good idea whether doing its best would be good enough to result in a grasp based on our
produced heatmap visualizations.

An example of the probability of success heatmaps changing drastically between images in the
same rollout can been seen in Figure 4.5. Within one grasp, the model’s prediction of its best
chance change from 0.00000125% to 0.00030% to 100%. This is the same toy, and the robot has
basically the same options about where to put its arm next between (a) and (b) regardless of its
current pose (the only input to the model other than the image). Thus, the probability of success
magnitudes cannot verify whether a grasp will ultimately be successful.

On the other hand, the map does not lead the robot too astray where it matters for the policy;
in Figure 4.5(a), one can see the definition of the doll’s legs. Figure 4.6 illustrates more examples of

the accurate shapes shown in the heatmaps from model (2).

(a) 1.25e-8 (b) 0.0000030 (c) 1.0

Figure 4.5: Model (2) in action, with the images it sees and the model visualized as heatmaps. Each
heatmap scales from o to a different number.

The heatmaps from model (1) were similarly flawed, and their heatmaps did not have as high
of a definition. So, although the heatmaps did explain the robot’s decisions as it ran through the
policy, they do not give any hints as to how toy orientation affects graspability; only the actual

results of running the policy do that.
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(a) (b) (©

Figure 4.6: More heatmaps from model (2) in action, where the shapes roughly correspond to the
doll’s position. Note that the perspective of the camera is angled forward, while the
axis of the heatmap is for a constant height (z-dimension) near the ground; therefore,
the heatmaps are more top-down than the corresponding images.

4.5 Conclusion

We found that for each model, there existed girl doll orientations that proved to be more difficult
to grasp than others.

The question we pose is not a controllability problem; we are not asking what the robot is
capable of. If that were the question, then the arm’s six degrees of freedom are plenty to pick up a
toy whatever way it is flopped over. The question is not what the robot can do but what it would do
given a reasonably good policy. The baseline policy, the deep Q-learning policy, model (1)’s policy,
and model (2)’s policy are all reasonably good, achieving at least the baseline policy’s performance;
and, in the case of our probability of success models model (1) and model (2), achieving twice as
much grasp success.

For both of these reasonable policies, we found that there were angles that that policy might
want to avoid or pursue. Model (1) might want to approach a toy so that it fits a "vertical"
orientation; model (2) might want to approach a toy so that it does not fit a "down" orientation or
even a particularly "vertical" one. These are just a few handpicked and handsorted orientations. In
practice, to learn what orientations - or, more broadly, kinds of images of a toy - to prefer or avoid,

one would want to use some kind of unsupervised learning technique to make these distinctions.
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As this exploration so far shows promising results, future work should be to implement some-
thing that uses the ideas validated here to improve our overall task completion time. First in doing
that, a less manual pipeline to categorize images into good and bad angles is necessary, both to
make this scalable considering that different models have different preferences, and so that there’s
a task-time way for the robot to categorize its current situation. We deliver on that goal in the
next chapter. Then, there are many roads to exploit this. The robot could rotate and transform
a current image of a toy so that it looks more like angles that we in general successfully grasp,
predict a grasp from that, and transform it back: this leverages mobility in that it uses data that
the robot only got through its navigation policy. Another approach might involve directly training
navigation: When close to a toy, the robot can adjust the way it approaches it to make it fit one of
its better angles, e.g. rotate a bit to the left or right so that the toy is more "vertical" in our view.
This could involve a video prediction model. Again, one avenue for implementing these ideas, and
testing them more concretely, is indeed explored in the next section.

Finally, in completing this preliminary work, we created a flexible, robust experimental setup
for this robot and task, and collected enough data to train several deep learning models that grasp
well, as well as much additional on policy data (i.e., the data from running model (1) and model
(2)) that we have not leveraged yet. This data is bound to be useful whatever direction anything

involving this robot and setup takes.
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5 Implementing a Navigation Policy with

Grasping in Mind

5.1 Basic Structure

The basic structure for a navigation policy that considers the graspability of toy, as implemented

in this chapter, is such:

1. Explore the space and navigate until spotting a toy in either camera.
2. Navigate towards the toy as is sufficient to evaluate the toy’s position.
3. Evaluate the toy’s position from the image: Should we grasp now, or explore more and grasp
later?
a) If the former, attempt grasp. After grasp attempt, return to (1).

b) If the latter, abandon this approach to this toy. Adjust our position relative to the toy

and return to (3).

The difference between this and the baseline navigation policy is that, where this policy some-
times makes the decision to not attempt a grasp in (3), the baseline navigation policy always tries

to grasp.

5.2 Methods

5.2.1 Grasp Policy

In this work, we focus on developing the navigation policy to optimize a grasp routine while
otherwise keeping that routine constant. We use the Baseline Policy as that routine. In this work,
we define a grasp attempt as the series of grasps (subgrasps) that ultimately end in the lowest

z. That way, a grasp attempt (and therefore, this approach) is a failure only if all of that series
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of subgrasps fail; if the final subgrasp succeeds, then this grasp attempt is a success. This is
different from the previous section, where each of those subgrasps was considered individually. If
considered individually, then this approach does not work - the robot’s baseline policy, in being
cautious as to not squash the toy more than necessary or safe, usually initially reaches slightly
too high, and only achieves success after trying one or two slightly higher grasps. For a project
where we are not training a grasp policy, the subgrasps cannot be considered independently, for
any subgrasp that succeeds usually only succeeds because of the subgrasp(s) preceding it.

Video stills from one successful grasp attempt, comprised of two subgrasps, are shown in Figure

5.1.

(a) First subgrasp (b) Close gripper (c) Lift - ah, it failed.

(d) Subgrasp 2: lower z (e) Squeeze the toy (f) Success!

Figure 5.1: The robot only tries the successful lower z after trying an unsuccessful higher z.

5.2.2 Toy Classifier

The toy classifier is a simple classifier finetuned for our nine toys on top of a partially frozen Keras
MobileNet architecture pretrained on Imagenet [9]. This classifier’s input data is the first image of
a toy taken at the beginning of the grasp routine during months of running the robot. While the
hardware, location, and set of toys in the images are the same in all the images, the images had a
variety of lighting conditions and often multiple toys in frame (even though the robot was aiming
to grasp just the closest one). Despite these conditions, the classifier trained for one epoch on 679
labeled training images achieved 82% accuracy on an 8o-image test set.

This classifier was then used on the following data: images from running the baseline navigation

policy and the baseline grasping policy that are unambiguously noiseless. (Recall that for training
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in the previous experiments, we added exploration noise to the baseline policy’s grasp decisions,
which was okay then because that data was off-policy. For this experiment, we require on-policy
data for the grasping policy.) This is necessary for the pose evaluator.

A classifier such as this could also be used at task-time for experiments where multiple toys are
in the robot’s view. In such experiments, the robot will need to decide which toy it is seeing in
order to decide which pose evaluator to use. For that, the images don’t need to only come from
that limited dataset described. So far in this work, we only use one toy, the baby doll toy, so we do

not use any classifier for that purpose.

5.2.3 Pose Evaluator

Developing our pose evaluator had three steps:

1. We took a clear video of the toy and trained a Structure-from-Motion (SfM) model on it
using COLMAP [20], [21].

2. We ran COLMAP on the images that our toy classifier labeled as that toy. This meant

attempting to incorporate each image from that training set into the SfM model.

For an incorporated image, COLMAP gives the projection from world to camera coordinate
system using a quaternion defined using the Hamilton convention and a translation vector

Tyec- The (x, y, z) coordinates are given by

(x> y, Z) = _RT * Tyec

where R is the inverse/transpose of the 3x3 rotation matrix composed from the quaternion.

Then we calculates the angle 0 as simply

0= tan_l(f)
y
and label that image with that angle.
Thus, this step sorts the images by angle and by ultimate grasp attempt success.

3. We sorted the images into eight angle bins and calculated the grasp success rate at each bin.
We labeled the "good" bins as ones that perform better than the average grasp success of the

baseline policy, as determined over the incorporated training set images.
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At test time, the pose evaluator estimates the angle bin of the toy from the image. This is done
through the same process that binned the training data. If the image can be incorporated and angle
determined, and that angle is in one of the "good" bins, it tells the robot to grasp now. Otherwise,

it tells the robot to move on.

5.2.4 Navigation Policy

The navigation script was designed to "circle" the toy until succeeding. Upon seeing the toy, the

robot would:
1. Approach the toy until able to call the pose evaluator (e.g. close enough).

2. If the pose evaluator returns not to grasp, then back up, turn to the right, go forward, turn

back to the left, and return to step (1) to approach to toy again.
3. If the pose evaluator returns to grasp, then perform the grasp routine.

This pattern is illustrated in Figure 5.2.

(a) approach toy (b) turn away (c) move forward (d) turn back to toy

Figure 5.2: Video stills from the circling navigation policy in action. Each time the robot faces the
toy, she evaluates her image to decide whether to attempt to grasp or continue to circle
without grasping.

5.3 Results

5.3.1 SfM-Assigned Angle Bin Performance

199 video stills were used to create the SfM model in COLMAP software shown in Figure 5.3.
Originally, 398 images were used, but this made incorporating one additional image take much
longer. With 398 images, the vocabulary tree matching stage took 30 seconds, which is unacceptably
slow considering that this is part of the task-time policy. Ultimately our goal is to improve

performance on the task and clean the room faster. A higher rate of grasping success that comes at
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Figure 5.3: COLMAP GUI screenshots, including the full model and an image with SIFT features
[14]

that cost of latency does not further that aim. This smaller model worked just as well to incorporate
training data images and was three times as fast.

The classifier classified 136 of the 1202 on-policy Genius camera images as baby doll toy images,
so those were the images (along with their grasp success/failure marks) that were passed through
the SfM binning script. That script was able to incorporate and bin 44 of those images were

incorporated, as in Figure 5.4.

(a) o° (b) 90° (c) 180° (d) 270°

(e) 135° () 45° (g) 225° (h) 315°

Figure 5.4: Baseline navigation policy images classified as the baby doll in SfM-assigned bins
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Each of those images is the first image in a grasp attempt, which each ultimately succeeded
or failed to grasp the toy. Thus, we can calculate the baseline policy’s grasp success, from these

images, as 59%, and we can consider the bins that performed better than 59% as our "good" bins.

Bin Number of Grasps Success Rate

(0] 1 1.0

270° 8 0.875
315° 9 1.0
Total® 44 0.59
(a) (b) white rows are the "good" bins; dark are not

Figure 5.5: Bin Angle Performance in Baseline Navigation Policy

5.3.2 Test-Time Performance

A navigation policy that only grasps at angles from {0°, 180°, 270°,315°} is, in a sense, drawing
from a population of 22 grasps, with a 91% chance of success, as opposed to the baseline navigation
policy represented by these 44 grasps that have a 59% chance of success. This difference is
significant with p < 0.05, so we have reason to hope that the robot’s circling navigation policy will
significantly outperform its baseline navigation policy in grasp success.

To test this hope, we actually implemented and ran the circle navigation policy. Our actual
numbers from running that policy one baby doll toy are indeed much better than the baseline

policy, with 80% success in 20 grasps so far, shown in Figure 5.6.

Bin  Number of Grasps Success Rate
o° 3 1.0

180° 2 1.0

270° 6 0.66

315° 9 0.77

Total 20 0.8

Figure 5.6: Bin Angle Performance in Circle Navigation Policy
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5.4 Conclusions and Future Work

We validated the hypothesis of Fall 2018 by actually doing it: we implemented a navigation policy
based on its grasping task experience, and running that policy indeed improved its grasp success.

There are several directions to naturally extend this work. First and foremost, this method
should be generalized to other toys. To do this, pose evaluators for other toys must be developed,
and then tested in single-toy environments as we did for this baby doll toy. Then we will also
have the opportunity to try out similar navigation schemes with multiple toys in the scene, where
the robot would use a classifer at test-time as well. We began to explore this option with other
toys, and have found already that, encouragingly, the object detector responds well to toys it
was not specifically trained on. This means that the baseline policy is more generalizable than
expected, and will make testing this method on additional suitable toys easier. Once more toys are
incorporated into this idea, we can evaluate not only by grasp success, but by a truer measure of
success for this kind of task - task completion time for the task of decluttering the entire room of
toys.

Another area to develop is developing pose evaluation that can handle different distortions of the
baby toy, to help with higher image incorporation rates. Incorporating more images is important
because that allows the navigation policy to learn from more of its training data, and it improves
performance at task time, since potentially good angles are automatically dismissed when the angle
cannot be determined since the image could not be incorporated into the SfM model. Currently,
if the baby toy is turned on its other side, the current SfM model cannot incorporate it into its
model. One way to solve this could be having a classifier that distinguishes not just between the
nine different toys, but also between their different distortions. Such a classifier would distinguish
between the face-up and face-down toy, choosing between the SfM model that was created in this
work and a hypothetical model created based on a video of the baby in a different pose. Another
option would be a more flexible pose evaluation method; for instance, one that does not use floor
features at all. We explored creating SfM models from images with the backgrounds segmented
out, but StM was unable to converge using only the features on the toy with the number of images
that we had, so we would need more images, or a different featurizer than SIFT, to make that work.

Third, this work simply used the baseline grasping policy, but this method should work for other
grasping policies — for instance, one of the RL grasping policies trained in the previous chapter -
as well. Theoretically, this method should work for any grasping policy as long as the data used to
teach the pose evaluator uses the same policy as the pose evaluator is returning results for.

Our experiments so far fit into the following reasonably generalizable story:
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1. Train a bounding box object detector on the toys in your environment that you want your
robot to handle.

2. Explore your environment with a naive navigation policy and grasping policy that uses that

bounding box, collecting image and success data.

3. Take pictures of the toys in your environment and train a toy classifier that your robot can

use to train and choose the desired pose evaluator.

4. Create a pose evaluator, using a little more knowledge of each toy, as well as results of the
exploration in (2). For this baby doll toy, this involved taking a video of the toy, creating
a SfM model for this toy from this video, and then using it to analyze the training data
collected in (2), classified by (3), on the grasping policy that used and plan to use with the
modified navigation policy. Ultimately, this evaluator must be able to, at test time, take the

toy image and return a boolean of whether to attempt this grasp.

5. Use that evaluator in a navigation policy: Navigate to the toy, classify the toy, use the

evaluator assigned to that toy, and either grasp or return to navigation based on that result.

Our positive results point to our larger overall theme that keeping our skills less disparate and

better leveraging our flexibility allows us to achieve more success.
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