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Abstract

Design of an Effective Ontology and Query Processor Enabling Portable Building
Applications

by

Gabriel Tomas Fierro

Master of Science, Plan II in Computer Science

University of California, Berkeley

Professor David E. Culler, Research Advisor

Buildings have long been the target of applications seeking to reduce energy consumption,
increase occupant productivity and comfort and improve building/grid operation. However,
these advances rarely see widespread adoption due to the prohibitive cost of implementing
these applications on each building. This cost arises from the fact that most buildings are
highly customized and have no machine-readable description of their structure or the systems
involved in their operation. We propose that a flexible, expressive schema describing the
structure and process of a building and its subsystems can enable the mass-customization of
energy efficiency applications.

This thesis presents the design of Brick, a graph-based metadata schema for buildings
that captures the entities (“things”) in a building and the relationships between them. We
demonstrate how Brick’s extensible class hierarchy is able to define the sets of entities re-
quired by energy efficiency applications by using Brick to model a suite of real-world build-
ings. Applications execute against Brick models by querying them for the information they
need to operate. Queries are expressed using Brick’s relationships, which capture associa-
tions between entities such as composition, influence, measurement and location. Together,
these features of Brick enable an expressive, standardized, digital representation of buildings.

We demonstrate how the Brick schema is implemented with the RDF data model and
how models of buildings are queried with the standard SPARQL query language. This
informs an investigation of the systems requirements for the infrastructure storing models
and processing queries against them, involving a description of the expected Brick workload
and an evaluation of existing RDF/SPARQL technologies. We then design and implement a
performant query processor – HodDB – that provides interactive-level query latencies (sub
100ms). We evaluate HodDB on a synthetic Brick workload and demonstrate how it is used
to implement novel integrations of Brick with data analysis and control systems.
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Chapter 1

Introduction

The U.S. Department of Energy reports that commercial buildings constituted 47% of all
energy consumed in the U.S. in 2017 [107]. On average, 30% of this energy is wasted [34].
The increasing availability of digital monitoring and control systems presents a tremendous
opportunity to reduce building energy consumption, increase occupant productivity and
comfort, and improve building/grid operation. There has been substantial interest in these
areas both from academia – including work on occupancy-driven control [2, 3, 56], automated
fault detection and diagnosis [90, 81, 53, 64, 114] and model-predictive control [44, 75, 93] –
and industry – from grid providers and building management and control vendors to energy
service companies (ESCOs) and ancillary services [29, 18, 35, 94, 55].

The most significant barrier to the adoption of energy efficiency applications is cost [30].
Buildings differ not only in their architecture and usage but also in the structure and com-
position of the internal systems and processes involved in their operation such as lighting,
power, conditioned air, security and fire protection. As a result, a major factor in these
costs is the time and effort required to customize the operation of an application suite to the
specific, and often idiosyncratic, configuration of spaces, equipment, sensors, controllers and
other components and software interfaces present in a particular building. Reducing these
costs means enabling the mass customization of building applications to the existing building
stock. This requires normalizing descriptions of buildings and their digital resources to a
standard scheme. The primary difficulty with such large scale conversion is the heterogene-
ity and availability of this information: digital representations of buildings rarely capture all
the relevant entities and relationships necessary for building portable applications, and what
information is exposed does not usually follow a sufficiently descriptive naming scheme.

As a result, the customization an application to multiple buildings is a largely manual
process due to the lack of sufficiently descriptive metadata that captures the relevant infor-
mation required to implement an application. This metadata consists of a description of the
“things” (entities) in a building – be they logical, virtual or physical – and the relationships
between those things – how they are connected, contained, used, located and behave. An
effective metadata schema for describing buildings will allow applications to be portable –
“write once, run anywhere” – and significantly reduce the costs of developing new applica-
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tions and adapting existing applications for buildings at scale. The metadata schema must
be usable in real-world settings; given the complexity and size of modern building manage-
ment systems, the corresponding digital representation of the building should enable tools
and interfaces that ultimately reduce the cost of implementing portable applications at scale.

This thesis presents the design and implementation of a metadata schema for buildings: a
machine-readable representation of the equipment, sensors, actuators, assets, systems and
spaces present in a building and the relationships between them. Chapter 2 presents the
context for this work: it reviews the state of the art in digital control systems for large
commercial buildings, and presents an overview of the metadata solutions that describe
those systems. Existing metadata solutions are insufficient for supporting the development
of portable building applications because they are incomplete, inexpressive and informal.
This motivates the need for a new, standardized metadata schema that is able to describe
the structure and composition of buildings and the processes involved in their operation.

Chapter 3 presents the design of Brick, a graph-based building metadata schema that
represents the entities and relationships necessary for implementing portable applications.
Brick defines an extensible class hierarchy that describes entities across a wide array of
building subsystems. Entities are associated with one another using a small number of
expressive relationships defined by Brick, capturing concepts like measurement, composition
and sequence. Brick advances the state-of-the-art by formalizing the semantics of its data
model, which enable expressive power with clean extensibility necessary for the construction
of portable applications. Chapter 4 presents the implementation and formalization of Brick
as an ontology using the RDF data model. The RDF data model defines a directed, labeled
graph that can be queried using the SPARQL query language. This abstraction sufficiently
describes the Brick model, and the use of formal ontologies enables the expressiveness and
extensibility of Brick.

Chapter 5 presents a methodology for the synthesis of Brick models from existing sources
of metadata and demonstrates the conversion for several common sources of metadata in-
cluding common semi-structured human-readable labels, computer-aided design models for
construction and other existing standards for the digital representation of buildings.

Chapter 6 evaluates the efficacy of Brick in enabling the implementation of applications
that generalize across multiple buildings. In a case study of six Brick models representing six
real-world buildings, Brick is able to describe upwards of 98% of the information available
in each building’s digital management system. The chapter discusses the implementations
of eight representative building applications drawn from the literature which are executed
against each of the six Brick models. This evaluation demonstrates that Brick is able to
describe all salient entities and relationships required by these applications, and that the
applications are able to generalize despite the diversity of the case study buildings.

Chapter 7 examines a sample Brick application workload to determine the latency and
expressivity requirements of a query processor for Brick. Brick applications require a low-
latency query processor and rely upon a specific subset of SPARQL language features. These
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workload properties present performance issues that are pathological to the design of existing
RDF/SPARQL query processors. Chapter 8 presents the design and implementation of a
performant Brick query processor – HodDB – that takes advantage of the properties of the
Brick workload. This enables interactive systems that facilitate the development of portable
applcations as well as novel tools for data exploration and analysis.

Chapter 9 covers future work, discusses current industrial collaborations around Brick
and concludes.
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Chapter 2

Background and Prior Work

Buildings are characterized by extreme heterogeneity. Each building has a unique structure
and composition of systems tailored to the particular environment and uses of the build-
ing. Deploying an energy efficiency application on a building means implementing a custom
application that accounts for the specific, and often idiosyncratic, configuration of spaces,
equipment, sensors, controllers and other components within a particular building. Descrip-
tions of building configurations — called metadata — provide incomplete pictures of the
information an application needs and are often inconsistent even within a single building.
Existing standards for building metadata are ill-suited for reducing the implementation cost
of energy efficiency applications because they are insufficiently expressive to capture the
complex relationships between building components.

This chapter provides an overview of common building subsystems, motivates the need
for “portable” applications that require minimal reconfiguration between buildings, and iden-
tifies the features of a schema for building metadata that enable portable applications. The
chapter evaluates several state-of-the-art building metadata standards against these features
and presents the case for a new metadata schema for buildings.

Building Systems Background
Most modern large commercial buildings contain a family of systems responsible for the
building’s operation, including the management of thermal conditioning, air quality, appro-
priate lighting, water, fire safety, security and use of space. As of 2012, roughly 14% of
commercial buildings in the United States have building management systems (BMS) [108],
which provide digital, programmatically accessible interfaces to subsystems that manage
these aspects of building operation. Building subsystems are collections of equipment and
infrastructure with monitoring and control capabilities. Buildings contain several subsys-
tems; of these, heating, ventilation and air condition (HVAC) subsystems receive the most
attention in this thesis due to their ubiquity and potential for savings (an average of 30%
reduction in energy consumption [34]).
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AHU Power Meter

Supply Fan

Luminaire Driver

HVAC Zone

VAV
Luminaire

Damper

Return Fan

Thermostat
Temperature
CO2 Sensor

Room 102Room 101

Supply AirReturn Air

Lighting Zone

Figure 2.1: A simple example building that highlights the components to be modeled in a
building schema.

An HVAC system is responsible for the transport and conditioning of air for the purposes
of thermal comfort. Most HVAC systems have an air handling unit (AHU), which receives a
mix of air from both the outside and inside of the building, conditions the air temperature
using heating and cooling coils according to a setpoint, adjusts the air flow with a variable
frequency drive (VFD) fan, and distributes the air along duct work to a series of terminal
units. Heating and cooling coils are connected to external hot water and cold water sys-
tems that have their own components: chillers, condensers, boilers, valves, pumps and the
associated set of sensors, setpoints, status and commands for monitoring and controlling
them.

Terminal units are pieces of equipment that discharge air from an AHU into a set of
usually adjacent physical spaces (e.g. rooms) called an HVAC Zone. Terminal units adjust
one or both of air temperature and flow for the requirements of each HVAC zone. A common
class of terminal unit is a variable air volume (VAV) box which can adjust air flow with the
use of a controllable damper. Zone air is circulated back to the AHU along a return duct.

Figure 2.1 illustrates one such system. Rooms 101 and 102 are in the same HVAC zone,
which is conditioned by a single VAV.

Although HVAC systems with AHUs and VAVs are common, the generic system described
here is far from the only configuration. Buildings may have terminal units with additional
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functionality such as heating coils, or not have any terminal units at all. Other buildings may
use radiant systems that use temperature-controlled surfaces instead of mechanically-driven
air flow to control temperature.

Other building subsystems include:

• Lighting Subsystems: Modern lighting systems handle scheduling and occupancy-
driven control in addition to automatically dimming or switching lights off for am-
bient lighting conditions or daylight harvesting. Controllers interact with LEDs and
dimmable ballasts and monitor luminance and occupancy sensors through lighting
control protocols such as DALI.

• Electrical Subsystems: large commercial buildings contain transformers and other
substation equipment for regulating and monitoring the power distribution system.
Electrical meters provide insight into the operation of circuits and subcircuits spanning
floors and rooms all the way down to individual wall receptacles.

• Spatial “Subsystems”: while it is rare for spatial elements of a building to have a
digital representation in a BMS outside of polygons on a rendered screen, they nonethe-
less intersect deeply with the operation of other building subsystems. Understanding
how the spatial elements of a building relate to other building subsystems is useful
for understanding their interactions; for example, the physics of a building’s geometry
affects the operation of HVAC systems and lighting.

The structure and function of building subsystems vary from building to building, as well
as the APIs for reading from and writing to that equipment, the unique configuration of those
subsystems and how they intersect with the design and construction of the building. Within
a building, subsystems are often developed by different vendors, resulting in “siloed” systems
that do not interoperate or share a naming convention for their components. As a result,
developing energy efficiency applications requires developing an individual understanding of
each building that is the target of the application. This is largely a manual, expert-driven
process.

2.1 Case for Portable Applications
Energy efficiency applications need to have wide adoption in order to have a significant
impact on societal energy usage. One limiting factor is the high degree of manual effort
currently required to “port“ an application to a building. Porting an application means
configuring an application to work on different buildings than those it was developed against;
a portable application is one that requires little or no re-configuration when deployed on
multiple buildings. Building applications vary in complexity from simple algorithms that
only require a few directly-related data streams to algorithms using complex white- or grey-
box models requiring detailed information about the construction and operation of a building.
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This information typically must be acquired from diverse sources such as from a building
automation system, architectural and mechanical drawings, operations and maintenance
documents, and human input from the building operator. This information influences the
logic of the application from building to building.

Because of the high degree of site-specific application logic and configuration needed to
port an application, energy efficient strategies from the literature have not experienced any
adoption, and the small number of applications actually implemented are done as “one-offs”
– bespoke and proprietary implementations performed by a controls vendor for a particular
building. This pattern produces implementations that suffer from bias and have little gener-
alizability [54]. A recent evaluation of U.S. building energy benchmarking and transparency
programs [69] found that “indications of [energy] savings should be considered preliminary...
because of the limited period of analyses and inconsistencies among analysis methods for the
various studies.”

Portable applications present an opportunity to increase the adoption and deployment
of energy efficiency strategies and analyses. To be portable, an application implementa-
tion needs to understand how to adapt its operation to the physical, logical and functional
structures in a building. For example, a simple thermal model may want to understand the
availability of data regarding temperature sensors, damper position, heating and cooling coil
positions and air flow sensors, the locations of these sensors (e.g. which room and/or floor of
the building) and the adjacency and exposure of those locations. The digital representation
of these “things” (e.g. sensors, equipment, locations) and “relationships“ (e.g. adjacency,
influence, composition, measurement, process flow) is termed metadata.

2.2 Metadata Design Goals
The first question that a metadata system needs to answer is what it is trying to describe.
This thesis was motivated by the failure of existing building metadata schemata to ade-
quately name the elements of building subsystems and capture the relationships between
those elements as required for a family of building analytics and control applications [17].
An effective metadata schema for buildings needs to succeed along three dimensions:

• Completeness: Can the schema name all of the entities and metadata information con-
tained in building’s BMS, as well as those expressed in canonical energy-, operations-
and management-related applications?

• Expressiveness: Can the schema capture all important relationships that are con-
tained in a building’s BMS, and those expressed in canonical energy-, operations- and
mangement-related applications?

• Usability: Can the schema unambiguously represent this information in a way that is
easy to use for both the domain expert and the application developer? Can the schema
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support automation with readable data formats and query tools? Can the schema be
gracefully extended with new concepts?

Brick, developed in [9], is an open-source ontology providing a unified semantic repre-
sentation of building assets, subsystems, and the relationships between them. The Brick
ontology is the set of terms and rules used for constructing a Brick model, which represents
the entities and relationships in a single building. A Brick model of a building is a labeled,
directed graph in which the nodes are Brick entities and the edges are Brick relationships.

The Brick ontology has two components: the first is an extensible class taxonomy repre-
senting the recognized types of physical and logical entities in building. Examples of physical
entities are pieces of equipment such as air handling units, variable air volume boxes, lumi-
naires and sensing equipment as well as spatial elements such as rooms, floors and atriums.
Logical entities do not necessarily have a specific physical representation. Examples include
HVAC zones – a set of rooms all conditioned by the same terminal equipment – and data
streams of sensors. The Brick class taxonomy is designed to gracefully extend to cover new
equipment, points and concepts.

The second component of Brick is a minimal set of relationships that define the ways
in which entities can be related to one another. Brick’s relationships describe structure –
how sets of things are assembled and located – and process – how sets of things compose
to produce some result. Examples of structures described by Brick are spatial relationships
(e.g. floors, rooms, staircases) and mechanical compositions (e.g. a VAV box has a damper).
Examples of processes described by Brick are sequences of HVAC equipment (e.g. AHU
feeding air to a VAV, feeding air to an HVAC zone) and control relationships (e.g. which
thermostat’s setpoint is used to condition the air in a given room).

Brick does not aim be a comprehensive schema for the universe of arbitrary internet-
of-things applications; instead, its design is guided by the sensors, equipment, entities,
attributes and relationships that have been shown to be useful to applications from the
published literature.

2.3 Existing Metadata Standards
Metadata for a building has several forms ranging from non-structured human-readable an-
notations to extensive and complex standards. A given building may not have any digital
metadata, or it may have any number of differing digital representations of varying com-
pleteness and validity.

Metadata from Building Management Systems
One source of metadata is the monitoring and actuation networks contained in large commer-
cial buildings, accessed through BMS (building management systems) or through SCADA
(Supervisory Control and Data Acquisition) systems. BMS systems manage operational
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Figure 2.2: Screenshot of a recently deployed building management system visualizing the
internal operaton of an air handling unit. Note the heavy use of abbreviations and site-
specific terms such as SDH.AH2A.SF VFD:INPUT REF 1.

aspects of buildings involving the monitoring and control of equipment across building sub-
systems such as lighting, power, water, fire safety, security and heating, ventilation and air
conditioning (HVAC).

These systems present a digital interface for reading from and writing to their under-
lying monitoring and actuation points – named values that represent the state of sensors,
setpoints and actuators [23]. BMS point names are called tags and typically take the form
of constrained alphanumeric strings. The role of tags in a BMS varies between BMS ven-
dors and between buildings. At the least, tags uniquely identify a point within the BMS
software for reference in visualizations and control logic, but provide no description of the
point’s function. More structured tags have components identifying the location, building
subsystem, equipment and type of a point, in addition to providing a unique name.

One example is the tag SDH.AH2A.SF VFD:INPUT REF 1 in Figure 2.2. This tag has
several components delineated by the . and : characters:

• SDH: indicates the name of the site (in this case, Sutardja Dai Hall on the UC Berkeley
campus)
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• AH2A: indicates the name of the air handling unit that contains this point

• SF VFD: indicates that the point is for a variable-frequency fan (VFD) that serves as
the supply fan for the air handling unit

• INPUT REF 1: indicates that the point represents the input speed of the fan

While tag naming and structuring conventions exist [28, 87], they do not lend themselves
to a robust, generalizable and semantic representation of the building that could be used by
a portable application. This is for two reasons. Firstly, BMS point labels are insufficiently
expressive: labels only represent aspects of the building’s control system that can be digitally
read from or written to, e.g. sensor values and equipment commands. This precludes formal
representations of structure and process beyond what is directly measured or controlled.
BMS point labels cannot directly express the relationships between equipment across building
subsystems, or the spatial relationships in a building (e.g., what rooms are in the same HVAC
zone).

Secondly, point labels are not consistent: labels do not adhere to a common or consistent
structure because they are designed to be consumed by humans; what structure exists is
typically a building- or vendor-specific scheme. Further, web-based visualizations of building
subsystems offered by BMS software are often the only representations of the functional and
mechanical compositions of building subsystems, leaving no programmatically accessible
representation that could be leveraged by an application (Figure 2.2).

Even with programmatic access to labels, data, and other descriptive information, scaling
analytics or intelligent control across commercial buildings remains challenging. This is likely
to be the case as long as the basic steps in interpreting the metadata involve labor intensive
efforts by trained professionals with deep knowledge of building operations and specifics of
each building. The difficulty and importance of normalizing BMS point labels has been
noted in the literature [22, 61, 23, 110, 11].

Project Haystack
Project Haystack [85] is a commonly-used open source tagging system for describing build-
ings, equipments and points. A Project Haystack model of a building describes the equipment
and points (generically referred to as “entities”) in the building as a set of tag-value doc-
uments (Figure 2.3). Project Haystack defines a vocabulary of over 200 tags that define
facts or attributes about entities. Project Haystack improves upon semi-structured point
labels typical of BMS in its ability to define equipment and buildings as well as points, and
to provide a machine-readable structure for representing distinct tagged attributes of those
entities.

An entity has two flavors of tags: marker tags and value tags. Sets of marker tags define
the type of an entity and have no associated value. All entities have at least one marker tag
that defines the base type of the entity: site for a single building, equip for physical or
logical equipment in a site, and point for sensor, actuator and setpoint values for equipment.
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Figure 2.3: A sample rooftop unit entity represented in Haystack. The entity is related to a
site and an electric meter. Its display name is “RTU-1”. Example pulled from [84].

For example, a zone temperature sensor has the marker tags zone, temp and sensor. Further
marker tags on an entity refine its type: all air handling units have the ahu tag, and the
addition of the rooftop tag affirms that the equipment is a rooftop unit, a smaller and
more compact kind of air handling unit. This is similar to the notion of “subclassing” from
object-oriented type systems, but lacks a formal structure. Figure 2.3 contains a Project
Haystack representation of a rooftop unit.

Value tags define attributes of entities – such as identifiers, timezone, engineering units
and geo-coordinates – and their relationships to other entities. Relationships between entities
are identified by a special kind of value tag called a ref tag; these can be identified by their
-Ref suffix. The entity possessing the ref tag is the subject of the relationship, the name of
the ref tag indicates the nature of the relationship, and the value of the ref tag is the identifier
of the entity who is the object of the relationship. There are a limited number of ref tags
supported by Project Haystack: equipRef associates a point with a piece of equipment,
ahuRef associates an air handling unit with a VAV or chiller, elecMeterRef associates an
electric meter with a piece of equipment, and siteRef associates an entity with a site.

The current set of tags lacks or does not fully describe key aspects of buildings such as
spatial elements, lighting equipment and electrical subsystems [17]. While deficiency of tags
can be addressed by future updates, a more fundamental challenge with a tag-based scheme
is it is difficult to capture sufficient context to disambiguate the meaning of certain sets of
tags. There is a tension between how generally a tag can be used and how well defined it is.
Consider an entity with the tags gas and heat: without additional context, it is unclear if
the entity uses gas as a fuel to heat another substance, or if the entity heats up gas (such as
for preparing LP-gas for consumption). It can also be ambiguous when to use certain tags to
describe an entity without some external set of rules: when tagging a room air temperature
sensor, should the zone tag be included in the absence of a room tag? There is no mechanism
to enforce the “correct” grouping of tags to annotate entities in a Project Haystack model; as
a result, many Project Haystack models use proprietary or site-specific tags to resolve local
ambiguities. The tagging system gives users this flexibility at the cost of such models lacking
a common, site-agnostic structure against which portable applications can be written.

Furthermore, Haystack relationships lack expressive the power to generalize across sub-
systems. The ref tags defined by Project Haystack that can relate equipment can only express
narrow, HVAC-specific associations:

• ahuRef: associates VAVs with their upstream air handling units

• chilledWaterPlantRef: associate an entity with a chilled water plant

• hotWaterPlantRef: associate an entity with a hot water plant
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• steamPlantRef: associate an entity with a steam plant

• device1Ref, device2Ref: associate entities with a network connection

• elecMeterRef: associate an entity with an electric meter

• equipRef: associate an entity (usually a point) with a piece of equipment

These relationships only capture that two entities are related, and do not capture the
nature of that relationship. For example, a VAV may have an ahuRef tag with a value of
its upstream AHU, and a supply air flow sensor may have a equipRef tag with the value of
that air handler unit. From these tags, the model cannot express how the VAV and supply
air flow sensor relate to one another in the flow of air through the system: does the supply
air flow sensor occur before or after the cooling coil inside the AHU?

Project Haystack models can be accessed through a REST API and a filtering query
language1. The query language provides basic mechanisms for identifying timeseries points
using the associated tags, but does not provide a way of traversing ref tags for the purpose
of exploring the structure of a Haystack model. This limits the expressiveness of queries
against the model.

Haystack Tagging Ontology (HTO) [27] maps the Haystack tags to an ontology, with
each tag corresponding to an ontology class. Thus, HTO is able to combine the flexibility
of tags and the formal modeling of ontologies to define essential BMS metadata and the
relationships between entities. However, HTO confines the ontology to the defined tags, and
the building entities which are a collection of tags (e.g. zone temperature sensor) are not
modeled. HTO also does not provide a way to compose complex subsystems in a building
and relies on Haystack tagging for mapping raw metadata to the ontology.

Correct interpretation of a Haystack model requires an out-of-band understanding of
how a tag or set of tags is meant to be interpreted. The informality of the Haystack model
inhibits what the model can express consistently, which limits the portability of applications
implemented against a Haystack model.

Industrial Foundation Classes
IFC [12] is a standardized Building Information Model (BIM) that developed from the need
to have a common exchange model for 3D architectural drawings needed for a building’s
construction. IFC models capture structural information, including space-related informa-
tion such as floors, rooms and zones, and exhaustively describes the mechanical composition
of building subsystems. For an HVAC system, IFC describes not just AHUs and VAVs, but
also ducts, flanges and other mechanical components not directly measurable or controllable.

In contrast to BMS point labels and Project Haystack tags, the metadata structure
captured by IFC is not intended for the operation of a building, and thus lacks much of

1http://project-haystack.org/doc/Ops

http://project-haystack.org/doc/Ops
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the required vocabulary. Recent versions of the IFC standard include references to generic
sensor types (IfcSensorTypeEnum) which can be associated with the spaces the sensor covers.
However, the IFC standard does not include explicit mechanisms for describing the functional
role of sensors, such as whether a temperature sensor measures supply, return or exhaust
air. There is also no common way of adding new vocabularies compliant to existing ones.
The IFX 2x2 schema also contains descriptors for building controllers2, which describe at a
high level the existence of alarms, events and schedules.

Ultimately, the IFC standard is not intended for authoring portable applications. The
IFC standard does not define enough of the components involved in the operational aspects
of a building, nor the relationships between those components. Section 5 explores using the
information in an IFC model to create a partial Brick mdoel.

Semantic Web and Ontologies
Semantic Web is a framework promoting common data formats and exchange protocols
that facilitate the sharing and reusing of data across systems and domains. The Semantic
Web describes data using controlled vocabularies called ontologies: an ontology is the set of
formal names, concepts, definitions and relationships that constitute a domain of knowledge;
in other words “an explicit specification of a conceptualization [45]”. Originally intended
for annotating the Web documents [15], the semantic web has since expanded to include
ontologies pertaining to biology [8], IoT [46], and energy management [115] to control the
complexity of the domain information.

Ontologies are essentially a structure for defining structured data3. This gives ontologies
a degree of expressiveness not possible in other metadata schemata such as Project Haystack.
This thesis in part investigates the effectiveness of ontologies in capturing the complexity
and heterogeneity of building metadata.

A number of ontologies have been proposed for smart homes and buildings. Most of
these ontologies focus on realizing specific applications like controlling things [21], energy
management [57], or automated design and operation [79]. Daniele et al. [31] combined
these ontology modeling efforts in collaboration with industry to create a simple but unified
model called Smart Appliances REFerence (SAREF). They identify 20 recurring concepts in
homes and buildings across these ontologies, and lay out the steps to convert SAREF to a
custom ontology. These common concepts, however, do not effectively cover the diversity of
devices and equipment in buildings [17] because their goal was to capture generic sensor and
smart devices rather than building operations where domain-specific information is required.
Ontology representations of IFC [13] and Haystack [27] also exist, but only model the limited
semantic structure of their source metadata schemes.

The BOnSAI [97] smart building ontology describes the functionality of sensors, actuators
and appliances as well as how they interact and effect their physical environment. However,

2http://www.buildingsmart-tech.org/ifc/IFC2x4/rc2/html/schema/
ifcbuildingcontrolsdomain/content.htm

3meta-metadata

http://www.buildingsmart-tech.org/ifc/IFC2x4/rc2/html/schema/ifcbuildingcontrolsdomain/content.htm
http://www.buildingsmart-tech.org/ifc/IFC2x4/rc2/html/schema/ifcbuildingcontrolsdomain/content.htm
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Figure 2.4: Comparison of different schemata for buildings from [17]. The paper used 89
applications (apps) and three buildings to evaluate IFC, SAREF and Haystack. The results
for Brick are described in Chapter 6.

it fails to capture the interactions and relationships between the sensors and other building
assets. Hence, it lacks a system-level view of the building infrastructure necessary for many
applications [17]. Further, the vocabulary does not describe the mechanical or functional
compositions of critical building subsystems like HVAC and lighting.

Analysis of Existing Schemata
Bhattacharya et al. [17] performed a comparison of Haystack [85], IFC [12] and SAREF [31].
The paper uses 89 building applications from eight representative applications categories
published in the literature as a baseline to compare different schemata. The results show that
relationships between different pieces of information are essential to enable interoperability
and portability of building applications over three buildings.

They use three metrics to measure the effectiveness of each schema: (i) the ability to
completely map BMS metadata from three existing buildings to the schema, (ii) ability of
the schema to capture the relationships required by applications, and (iii) the flexibility of
the schema to deal with uncertainty as well as their extensibility to new concepts. Figure
2.4 presents the comparison across Haystack, IFC, SAREF and Brick for metrics (i) and (ii).

Among the three existing schemata, Haystack shows the best vocabulary coverage as it
is a tag-based model where tags can be arbitrarily combined. IFC is the most complete in
describing application relationships as its model captures the building subsystems and the
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dependencies between them. SAREF scored the lowest for both metrics because it models the
common concepts across different models and systems instead of comprehensively modeling
buildings. None of the three schemata succeed on all metrics.

2.4 Summary
This chapter has outlined the need for portable applications in increasing the penetration of
energy efficiency-oriented building applications. Portable applications operate over digital
representations – metadata models – of buildings that provide building applications a mech-
anism for querying models for the information they need to run. The digital representation
must be complete (can it name all of the entities required by applications), expressive (can it
capture all of the relationships required by applications) and usable (can it be used to build
real, portable building applications).

The following chapters discuss the design and implementation of Brick, a new ontology-
based metadata schema that captures the entities and relationships necessary for effective
representations of buildings and their subsystems. Brick describes buildings in a machine
readable format to enable programmatic exploration of different operational, structural and
functional facets of a building. Hence, the diverse set of BMS information can be represented
using Brick, and applications developed based on the Brick schema can be directly deployed
on those buildings in a portable manner. This thesis explores the design of a relationship-
focused, graph-based building metadata schema – Brick – that facilitates the implementation
of portable applications, thereby enabling the mass customization and implementation of
energy efficiency analytics and applications.
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Chapter 3

Design of the Brick Schema

Having motivated the need for a new, standard metadata schema that enables the develop-
ment and deployment of portable applications, we delve into the design of the Brick schema
which addresses these needs. We define Brick from the bottom up, starting with Tags and
TagSets which are the fundamental named and defined elements in Brick. We then discuss
how to assemble TagSets into a class hierarchy and define a family of relationships that can
express the appropriate context for portable applications. Together, these form the initial
release of Brick.

The contents of the Brick class taxonomy are informed by ground truth information from
six different buildings from the US and Europe. Together, the six buildings consist of 17,700
data points and five different BMS vendors. To evaluate the completeness and usability of
the Brick schema, we implement Brick models for each of the buildings and measure how
well Brick captures the ground truth metadata.

3.1 Core Brick Concepts
We define the key abstract concepts involved in the design of Brick and provide examples.

Definition 3.1: Entity

An Entity is an abstraction of any physical, logical or virtual item; the actual “things”
in a building.

Brick defines how entities can be classified and related to one another. There are several
flavors of entities:

• Physical Entities: anything that has a physical presence in the world. Examples are
mechanical equipment such as air handling units, variable air volume boxes, luminaires
and lighting systems, networked devices like electric meters, thermostats, electric ve-
hicle chargers and spatial elements like rooms and floors.
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• Virtual Entities: anything whose representation is based in software. Examples are
sensing and status points which allow software to read the current state of the world
(such as the value of a temperature sensor, the speed of a fan or the energy consumption
of a space heater), and actuation points which allow software to write values (such as
temperature setpoints or brightness of a lighting fixture).

• Logical Entities: entities or collections of entities defined by a set of rules. Examples
are HVAC zones and Lighting zones. Concepts such as class names, Tags, and Tagsets
which help define Brick also fall into this category.

Brick provides rules for how to define, classify and describe entities. These rules are built
upon Tags and TagSets, and take the form of an ontology.

Definition 3.2: Tag

A Tag is an atomic fact or attribute of an entity. Examples of tags are sensor, setpoint,
air, water, discharge, leaving and vav.

We borrow the concept of Tags from Project Haystack [85] to preserve the flexibility
and ease of use of annotating metadata, but do not rely on tags alone to determine the
type of an entity. Sets of tags insufficiently represent the type of an entity because there
is no mechanism to differentiate between different interpretations. To address this, Brick
combines sets of tags into identifiers termed TagSets

Definition 3.3: TagSet

A TagSet is a named collection of Tags with a clear, unambiguous definition. They
constitute the set of valid types used to classify entities in Brick; in this context, TagSets
are referred to as class names. Examples of TagSets are Variable Air Volume Box,
Air Flow Sensor and Hot Water Discharge Temperature Sensor.

In Brick, the type of an entity is determined by its class name; class names have formal
definitions in order to resolve any ambiguity about their meaning or intended use. This
leaves tags to be used for annotation and discovery rather than for definition. Brick defines
classes Boiler, Hot Water Coil and Hot Water Discharge Temperature Sensor that all
have the hot and water tags, but use hot water differently.

Brick implements Tags, TagSets and their definitions with an ontology.



CHAPTER 3. DESIGN OF THE BRICK SCHEMA 18

Definition 3.4: Ontology

An Ontology is the set of formal names, concepts, definitions and relationships that
constitute a domain of knowledge. Ontologies can express constraints on how concepts
and relationships can be used.

Brick uses an ontology to:

• define the set of Tags and TagSets, and rules to how tags can be used. As an example,
an ontology can prevent an entity from having both the sensor and setpoint tags by
defining them as being mutually exclusive.

• provide definitions of classes (e.g. an Air Handling Unit is a class describing a “device
used to regulate and circulate air as part of a heating, ventilating, and air-conditioning
(HVAC) system”)

• define the structure of class hierarchy and the nature of inheritance between classes (de-
scribed in Section 3.2), for example the Hot Water Discharge Temperature Sensor
class is a subclass of a more generic Water Temperature Sensor class which is a sub-
class of a more generic Temperature Sensor, and so on.

• define the set of relationships (described in Section 3.3)

Comparison with Tag-Based Metadata
Brick’s design decision to determine the type of an entity with a well-defined TagSet rather
than a set of Tags offers a distinct advantage over classical tag-based metadata systems such
as Haystack. In tag-based metadata systems, ambiguous definitions for a set of tags must
be resolved with additional tags. For example, Project Haystack defines the hotWaterHeat
tag that can be applied to an entity that uses hot water to perform a heating action. Per
Project Haystack’s documention, the hot and water tags are only for describing points that
“indicate control or measurement of hot water”1. The hotWaterHeat tag exists because the
existence of the hot and water tags on an entity is not enough to determine the function of
that entity. This impacts the discoverability of entities: intuitively, a user might look for all
entities related to a building’s hot water system by searching for entities with the hot and
water tags, but this will not find entities with the hotWaterHeat tag. In Brick, all entities
related to the hot water system can have the hot and water tags while having distinct and
well-defined types determined by class names.

1https://web.archive.org/web/20181211044618/https://project-haystack.org/tag/hot

https://web.archive.org/web/20181211044618/https://project-haystack.org/tag/hot
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Figure 3.1: A subset of the Brick class hierarchy. All Brick classes are subclasses of least
one of the base classes, which have no super classes: Location, Point and Equipment. The
fourth base class Resource is not pictured.

3.2 Class Hierarchy
Several high level concepts provide the scaffolding for Brick’s class hierarchy. There are four
root classes from which all Brick classes are derived:

• Point is the root class for the hierarchy representing points of telemetry (representing
a single timeseries) and actuation. It has five immediate subclasses that define the
further roles of points. These definitions are intended as broad guidelines

– Sensor: outputs of transducers that record the state of the physical world; typi-
cally read from; example Air Temperature Sensor

– Setpoint: control points used as a target value in a feedback-driven control
system; typically written to; example Air Temperature Heating Setpoint

– Command: control point that directly affects the state of equipment; typically
written to; example Cooling Valve Command

– Status: relating to the current logical status of equipment; sensors that are not
transducers; typically read from; example Damper Position

– Alarm: high-priority indicators; typically read from; example Water Loss Alarm

The Point class can refer to virtual sensors as well.

• Equipment is the root class for the hierarchy representing mechanical equipment across
all types of building subsystems: HVAC, elighting, electrical, fire, security, etc. Exam-
ples include air handling units, variable air volume boxes, luminaires, light switches,
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breaker boxes, meters, fire alarms and security cameras. Equipment are controlled by
their points.

• Resource is the root class for the hierarchy representing the resources and substances
that need to be referred to. Resources and Substances are the physical properties
or substances that are the subject of monitoring and control points. Examples of
resources are the position of a damper and the operating mode of a thermostat (e.g.
heat-only, cool-only, off). Examples of substances are water, air and electricty and their
subclasses. This hierarchy defines the Hot Water class that is the substance created
by a Boiler class from the Equipment hierarchy. This hierarchy also defines logical
substances such as Fan Speed.

• Location is the root class for the hierarchy representing the spatial domain of a build-
ing. This includes physical elements such as rooms, floors and buildings as well as
logical elements such as HVAC and lighting zones.

Each of these root classes has a multi-level hierarchy of subclasses attached to it. Sub-
classes extend the definitions of superclasses with additional properties and specifications.
For example, consider the Point class hierarchy in Figure 3.1: the Temperature Sensor class
extends the Sensor class with the additional property that the sensor measures temperature.
The specificity of a class increases further down the hierarchy: the Air Temperature Sensor
class defines Air as the substance whose temperature is being measured, and the Return
Air Temperature Sensor and Supply Air Temperature Sensor classes further refine the
definition with the position of the sensor within the HVAC process.

The design of the Brick class hierarchy allows it to be expanded in future releases to
include new classes of equipment, locations, or points. The set of root classes can also be
expanded to cover other domains in the built environment, such as networking or adminis-
tration.

The use of an ontology to define the hierarchy lets Brick define rules to resolve
some ambiguities. For example, it is common in a domain to use multiple terminolo-
gies for the same entity. For example, in HVAC systems, Supply Air Temperature and
Discharge Air Temperature are sometimes used interchangeably. We identify these syn-
onyms from our ground truth buildings, and mark the corresponding tagsets as being equiv-
alent classes in Brick using the ontology. Synonyms ease translation from raw building
metadata and allow for cultural differences in terminology without affecting application
functionality. Note that the class hierarchy is not restricted to a tree structure, and can use
multiple inheritance when appropriate. For example, a desk lamp class can be a subclass of
both the lighting system and office appliance classes.
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Equipment
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Location

hasPoint

isPartOf

controls

hasLocation
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feeds

hasLocation,
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Figure 3.2: Information concepts in Brick and their relationship to a data point.

3.3 Relationships
Relationships express how Tags, TagSets and entities interact and are associated with each
other. Brick defines a finite set of relationships that can express the relationships required
by applications, and do so in a portable manner (Table 3.1).

Definition 3.5: Relationship

A Relationship defines the nature of a link between two related entities. Examples of
relationships are encapsulation (one entity is contained within another), sequence (one
entity takes effect before another in some process) and instantiation (one entity’s type
is given by another entity).

Definition 3.6: portability

Portability is the quality of a relationship that makes it generalizable to different set-
tings.

Well-defined, portable relationships are key to reducing the risk of inconsistency across
buildings. To this end, Brick’s relationships express the following dimensions:

• Composition: Composition is relevant for equipment (relationships that define what
equipment an entity is a part of, or what equipment is a part of it) and locations
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(relationships that capture relative and absolute position of entities; for example, which
building, floor and room an entity is in, but also where in the room it is)

• Influence: relationships that define what points affect the behavior of other points
and equipment, and relationships that define what equipment an entity is connected
to, and how it they are connected; for example, how AHUs feed VAVs, how hot water
or cold water systems integrate with terminal units, which meters are connected to
which equipment

• Monitoring: relationships that define what measures the entity or what it measures

• Taxonomy: relationships that define the class hierarchy, tags, tagsets, and how to
create “instances” of Brick classes that relate to entities in a Brick model.

Table 3.1 lists the core relationships defined in the Brick ontology. Figure 3.2 shows some
of these relationships and how they relate to three Brick base classes – Equipment, Point and
Location. The ontology is responsible for enforcing the types of the subject and the object for
each relationship. The subject of a relationship is the entity that possess the relationship’s
indicated property, and the object of a relationship is the entity that the relationship is acting
upon. For usability, Brick uses the ontology to define a corresponding inverse relationship
for some relationship so that users can express relationships in any direction they prefer.

Brick provides these constraints as a set of guidelines for Brick model developers to
aid in keeping Brick usage consistent between building models. For example, the object
of hasPoint must be an instance of a class in the Point hierarchy, and the subject of
isLocationOf must be an instance of a class in the Location hierarchy Therefore, a VAV (a
subclass of Equipment) can have Points like Zone Temperature Sensor, Discharge Air
Flow Setpoint, Reheat Valve Command, and it can have other equipment as subcompo-
nents such as Damper and Reheat Valve.

The set of Brick relationships can generalize across building subsystems: An example of a
portable relationship is feeds. The feeds relationship captures the different flows between
entities such as equipment or locations in the building, such as the flow of air from AHU
to VAV, the flow of water from a tank to a tap, or the flow of electricity from a circuit
panel to an outlet. In contrast, Project Haystack’s ahuRef relationship explicitly connects
equipment and points to an air handler unit. This lacks portability because it is only valid
in the context of AHU-based HVAC systems.

Defining Application Context With Relationships
When an application executes on a building, it pulls the necessary context from the Brick
model describing that building. Context is the set of entities related to the application,
which have been identified both by their type and by their relationships.

Consider a fault detection application that operates on variable air volume boxes (VAVs)
running on the sample building in Figure 3.3. This application needs to know the equipment
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Dimension Relationship (Inverse) Interpretation Endpoints
Subject / Object

Composition hasPart (isPartOf) A has some component or
part B (typically mechani-
cal)

Equip. / Point
Equip. / Equip.
Location / Location

isLocationOf (hasLocation) A physically encapsulates B Location / Point
Location / Equip.

Influence

controls (isControlledBy) A determines or affects the
internal state of B

Point / Point

feeds (isFedBy) A “flows” or is connected to
B

Equip. / Location
Equip. / Equip.

hasInput (isInputOf) controller A has input B Controller / Point
hasOutput (isOutputOf) controller A has output B Controller / Point

Monitoring hasPoint (isPointOf) A is measured by or is oth-
erwise represented by point
B

Equip. / Point
Location / Point
Resource / Point

Taxonomy
type A has type B

Equip / Class
Point / Class
Location / Class

subClassOf (isSubClassOf) class A is a subclass of class
B

Class / Class

hasTag (isTagOf) class A has tag B Class / Tag

Table 3.1: List of the Brick relationships and their definitions. All definitions follow the form
A <relationship> B, where relationship is the first one listed, not the inverse. All Brick
relationships are asymmetric, and most are transitive. If a relationship→ is transitive, then
if A → B and B → C, then A → C is a valid relation. Asymmetric simply means that if
A→ B, then B → A is invalid.

in and around the VAV (such as variable frequency drive fans and dampers to control air
flow), and the points that describe the state of that equipment and sense the temperature
and flow of the air moving through the VAV. Further, the application needs information
about the air handling unit (AHU) that is upstream of the VAV, as well as the set of rooms
that are served by the VAV.

The context here includes how equipment is monitored and controlled, how the equipment
influences air, what spatial elements of the building are immediately affected and how equip-
ment is positioned in an HVAC process. Applications define context by using queries against
a Brick model; this mechanism is covered in depth in Chapter 4. The next chapter discusses
the requirements of a query language for a Brick model, and how this is implemented for
Brick.
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AHU Power Meter

Supply Fan

Luminaire Driver

HVAC Zone

VAV
Luminaire

Damper

Return Fan

Thermostat
Temperature
CO2 Sensor

Room 102Room 101

Supply AirReturn Air

Lighting Zone

Figure 3.3: A sample building with simple HVAC and lighting subsystems, shown with their
associations to physical spaces in the building.

Directed Labeled Graph Structure
Brick’s concepts of entities and relationships can be interpreted as nodes and edges in a
directed, labeled graph. A relationships’ subject and object are the source node and desti-
nation node for a directed edge; the label of that edge is the name of the relationship. Nodes
are also named.

This abstraction describes Brick models – the set of entities and relationships that make
up an instance of a building – as well as the Brick ontology itself. Figure 3.4 shows the Brick
model – entities and relationships – for the HVAC and lighting system processes for the
sample building in Figure 3.3. While this example only shows the building-related entities,
the graph abstraction extends to how Brick is defined: the definitions of Tags and TagSets,
the relationships of Tags to TagSets, the definition of relationships and of constraints on the
use of relationships can all be represented as a directed, labeled node-edge graph. How this
is achived is explored in Chapter 4.
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Figure 3.4: Brick classes and relationships (constituting a Brick model) for the HVAC and
lighting processes in the sample building in Figure 3.3.

3.4 Evaluation of Relationship Coverage
To evaluate how well the set of Brick relationships covered the context required by real
applications, we implemented a representative application from each of the eight canonical
application categories identified by Bhattacharya et al. [17]. Table 3.2 shows the set of
entities and relationships that each application needed to refer to. Brick’s relationships are
sufficiently expressive to capture all application requirements.

We present an overview of each of the eight canonical application categories and provide
a brief description of each of the applications implemented in Table 3.22

• Occupancy Modeling, typified by [52]: Occupancy modeling applications use occu-
pancy data to drive analytics or control processes. A challenge for occupancy-driven
applications is aggregating occupancy information from disparate building subsystems,
such as the triggers for occupancy-driven lights, the schedule defined on a thermostat,
or independent wireless sensing systems. The application described in [52] uses occu-
pancy sensors in conjunction with device-specific energy meters to develop a model for
predicting energy usage and building occupancy. The queries for this application are
in Figure A.4.

2table located at end of chapter
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• Energy Apportionment, typified by [51]: Energy apportionment applications use
multi-modal sensor data to attribute energy consumption patterns with individuals.
A challenge for energy apportionment applications is understanding the relationship
between device and equipment state and the metering infrasturcture; for example, if a
VAV’s heating coil is 60% open, which meter should an application read to understand
the energy consumption? The application also needs to be able to connect device
and equipment activity with occupancy sensors. The application described in [51]
tracks user activity with an ubiquitous sensor-based system that can correlate user
interactions with heating and lighting systems with energy consumption. The queries
for this application are in Figure A.1.

• Web Displays, typified by [10]: Web displays are a class of application that presents
a user-facing dashboard that aggregates building data to provide insight; a classic
example are BMS web interfaces (Figure 2.2). These applications need to be able to
describe sequences of equipment and monitoring and controlling points for multiple
building subsystems, as well as how those subsystems interact and intersect (e.g. what
are the lighting resources and HVAC resources for a given room?). The [10] application
implements a virtual thermostat in software that provides users more visibility into
their energy consumption and more control over thermal comfort. The queries for this
application are in Figure A.6.

• Model Predictive Control (MPC), typified by [99]: MPC is an advanced process
control methodology that uses dynamic models of physical processes to predict future
states and to determine immediate control actions. A challenge for MPC applications
is identifying the points needed to create data-driven models and take action on the
output of the MPC process. The application described in [99] builds a simple linear
thermal model for each zone in a building, taking into account solar gains and heating
and cooling system actions. The queries for this application are in Figure A.2.

• Participatory Feedback, typified by [60]: Participatory feedback applications incor-
porate user preference into control decisions that affect the user’s environment. The
application described in [60] implements persionalized lighting controls. To do this, it
needs to be able to relate the control points of the lighting system to the spatial area
that is illuminated. The queries for this application are in Figure A.7.

• Fault Detection and Diagnosis (FDD), typified by [90]: Fault detection and diag-
nosis applications monitor equipment through their points, build a model of nominal
operation, and notify the user when the system exhibits abnormal behavior. Fault
diagnosis involves developing a causal explanation for the fault. A challenge for these
kinds of applications is discovering the points that describe equipment behavior as well
as “downstream” effects; this involves identifying the set of equipment, points and other
entities that could be affected by an equipment fault. The application described in [90]
defines a rule-based method for performing fault detection in air handler units. This
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application requires a description of the HVAC subsystem that includes the sequences
of equipment, which spaces are affected by which HVAC equipment, and the points
exposed by the BMS that can provide insight into the HVAC process. The queries for
this application are in Figure A.8.

• Non-Intrusive Load Monitoring (NILM), typified by [66]: NILM applications
use electrical meters (such as full building meters) and equipment and device state
indicators to deaggregate the energy consumption of equipment or identify collections of
equipment from an aggregate meter. This is a form of system identification. Challenges
facing NILM applications include describing electrical submetering infrastructure and
device and equipment state. The application described in [66] uses a device-level control
system and circuit-level power measurements to perform NILM in a residential setting.
The queries for this application are in Figure A.5.

• Demand Response (DR), typified by [109]: Demand Response applications adapt
the control regime of a building in response to changes in the price of electricity (for an
overview, see [4]). Simple DR applications react by load shedding through widening
setpoint deadbands and dimming lighting fixtures; advanced DR applications create
models of building subsystem behavior to understand how to balance other concerns,
such as the thermal comfort of occupants with the price of cooling the building on a
hot day. The application described in [109] coordinates control of diverse plug loads
during a demand response event when the price of energy has risen dramatically. A
challenge for this application is describing the types of of device and equipment plug
loads so that the demand response controller can reason about which loads to shed.
The queries for this application are in Figure A.3.

Table 3.2 illustrates that the entities and relationships required by each of the chosen
applications can be completely defined by the Brick class hierarchies (Point, Equipment and
Location) and Brick relationships. Chapter 6 evaluates Brick’s completeness and expres-
siveness by implementing these applications against a set of real buildings.

3.5 Control Sequences
A control sequence is the logic determining the behavior of equipment. Most representations
of buildings do not capture effective descriptions of control sequences; what is found are either
mathematical descriptions of implemented control algorithms, or select variables within the
logic implementation that are exposed as points in building systems. Some points’ values
are measurements of physical properties, some are results of calculations and others are
configuration parameters used to control physical devices. The flow of these control signals
is key for understanding buildings operations. Users rely on the flow of control to interpret
values (e.g. does the value of the Zone Temperature Sensor make sense given the value
of the Heating Temperature Setpoint, Cooling Temperature Setpoint and Air Flow
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Equipment PointLocation relationshipLegend

Temperature 
Sensor

Temperature 
Setpoint

Cooling 
Command

Supply Air 
Flow 

Setpoint

Supply Air 
Flow Sensor

Damper 
Command

VAVHVAC 
Zone Damper

controls 
relationship

hasPartfeeds

hasLocation hasPoint
hasPoint (all)

Figure 3.5: Control flow example of a simplified VAV. A VAV has points related to equipment
control to adjust its feeding zone’s temperature. A point’s value is often determined by other
points’ values. Such dependencies are modeled as controls.

Setpoint involved in the same control loop?) and to determine how controls affect the
building (e.g. which BMS points are responsible for affecting the temperature and airflow in
a given room?).

Representations of control logic vary wildly. In many older buildings, control logic is em-
bedded in physical controllers distributed throughout a building. Some vendors will provide
visualization tools to represent their proprietary control logic, and others use proprietary
programming languages. These are often accompanied with documents providing human-
readable specifications of the control logic’s behavior.

Some compelling representations of control logic include Simulink Simscape and Model-
ica. Simulink Simscape [92] provides multi-domain simulation of control logic defined with
mathematical models, but is designed for simulations rather than for integrating with real
physical systems. Modelica [40] is an object-oriented language and execution environment
for modular simulations and has current development efforts focusing on building control
and simulation [112]. These representations, however, are only used in simulation and not
designed for BMS operation. MLE+ [14] and BCVTB [111] have created co-simulation
environments where control simulation logic can be deployed in real buildings with BMS.
They are designed for experimental evaluation of control algorithms and are not meant for
production operation of buildings.

Brick does not currently model the control logic in building systems; rather, it describes
the dependencies between sensors, actuators, commands, setpoints and related equipment
and spaces. Instead, it is intended that control algorithms will be written over Brick, using
Brick to describe the set of involved resources and relationships.

Brick models the control dependencies using the controls relationship between points.
When a point’s value is used for another point’s value determination, we say that the for-
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mer one controls the later one. Figure 3.5 is an example with a simplified version of
VAV control. An AHU provides temperature-controlled air to VAVs, which control their
associated zones’ temperature by changing the amount of air flow. When the zone’s tem-
perature is lower than its corresponding setpoint, the VAV increases the supply air flow
controlled by its damper. To be more specific, Cooling Command increases proportion-
ally to the difference between Zone Temperature Sensor and Zone Temperature Setpoint.
Cooling Command determines Supply Air Flow Setpoint and the difference between
Supply Air Flow Setpoint and Supply Air Flow Sensor determines the value for
Damper Command. Damper Command affects its damper’s state that controls actual air flow. We
model these dependencies with controls such as “Zone Temperature Setpoint controls
Cooling Command” and “Zone Temperature Sensor controls Cooling Command”. We know
from the two triples that if we want to change Cooling Command, we have to change
Zone Temperature Setpoint. Zone Temperature Sensor is not considered as it is a sensor
that cannot be controlled arbitrarily.

While the exact mathematical relationships are not described, dependencies represented
in the controls relations give enough structure for causal analysis. For example, to analyze
if a Cooling Command point is working propertly, an application can find related points
using the controls relationships and analyze data for those points to search for anomalies. If
needed, the Brick model can be extended to incorporate more detailed control characteristics
such as exact math equations. For example, Ploennigs et al. model linear time invariant
dependencies for fault diagnosis [80].

Modeling of control processes is an example of how Brick chooses an appropriate level of
abstraction for the task of writing portable energy efficiency applications: Brick models the
structure and composition of systems and processes, but not the actual dynamics of those
processes.

3.6 Summary
This chapter has presented the design principles of the Brick metadata schema that enable
portable applications:

• Vocabulary Extensibility: The structure of tags and tagsets allow easy extensions
of tagsets for newly discovered domains and devices while allowing inferences of the
unknown tagsets with tags.

• Usability: Brick represents an entity as a whole instead of as the sum of its an-
notations. This promotes consistent usage across different actors. Furthermore, the
hierarchical class structure lets user queries be more generally applicable across differ-
ent systems.

• Expressiveness: Brick standardizes canonical and usable relationships, which gener-
alize to many different families of applications and can be easily extended with further



CHAPTER 3. DESIGN OF THE BRICK SCHEMA 30

specifications.

Brick advances the state-of-the-art by formalizing the semantics of its data model, which
enable expressive power with clean extensibility necessary for the construction of portable
applications. This is in constrast to the Haystack model and BMS point tags, which rely upon
idiom and convention for correct interpretation. Chapter 4 provides the formal construction
of the Brick schema using the semantic web model.
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Chapter 4

Representating and Manipulating
Brick Models

We have established the abstract design of Brick as a directed node-edge graph whose edges
are termed relationships and whose nodes are termed entities. This chapter presents how
Brick implements this design with an ontology, represented with the RDF data model: en-
tities have types that are specified in a class hierarchy, and relationships have constraints
on what classes they can apply to. This is followed by a discussion of the requirements of a
query language for Brick, and how the SPARQL query language fulfills these requirements.

4.1 Semantic Web Representation
We can reason about the necessary features for a query language and database for Brick
using the representation of Brick models as directed, labeled graphs. Any representation
of a Brick model therefore needs to capture the set of entities in a Brick graph and all the
relationships between them. Applications also need to be able to express queries against
the Brick model; these queries are executed by a query processor. To execute queries, the
query processor needs to be able to reason about the structure of the Brick model and its
properties given by the Brick ontology. The Brick ontology and Brick models are expressed
using existing the semantic web [15]. This allows Brick to leverage the set of preexisting
ontologies and tools for manipulating, storing and manipulating ontologies.

Definition 4.1: Triple

A triple is a 3-tuple 〈subject, predicate, object〉 expressing that some subject has
some relationship predicate to some other entity object. In a graph model, the subject
and object are both nodes (Brick entities) and the predicate is a directed edge (Brick
relationship).
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The semantic web represents knowledge as a directed, labeled graph expressed in terms
of length-3 tuples called triples. The Brick ontology (comprising the class hierarchy, relation-
ships and their definitions and restrictions) and all Brick models are expressed as a collection
of such triples.

Using Semantic Web Ontologies
A crucial feature of the semantic web is it allows ontologies to refer to each other and use
relationships, entities, and concepts defined by other ontologies. Brick makes use of sev-
eral existing ontologies. The base ontology is the Resource Description Framework (RDF)
ontology [63], which defines the subject-predicate-object data model and allows Brick mod-
els to declare their constituating entities as instances of Brick classes. RDF is extended
with the Resource Description Framework Schema (RDFS) [86] and Web Ontology Lan-
guage (OWL) [76] ontologies. RDFS helps Brick define class hierarchies via super-concepts
and sub-concepts, and OWL helps Brick define properties and restrictions on their usage.
The RDF data model enables the composition of different kinds of information in buildings
such as hierarchical location information (e.g., room-101 is a part of the first floor) and
interconnected equipment (e.g., a VAV is fed by an AHU).

An ontology can also imply relationships that are not explicitly expressed in the model,
and can influence a query processor’s interpretation of relationships. One example is how
Brick uses the OWL ontology to define the feeds relationship as transitive. To execute
queries involving transitive relationships, the query processor needs to be able to determine
the set of entities reachable from a specific entity where the entities and relationships involved
are subject to a set of query constraints. This involves determining sets of entities separated
by an arbitrary number of edges. For example, in Figure 4.1, a query processor needs to
be able to find all nodes that are one or more feeds relationships away from the AHU1A
air handling unit node: VAV2-4, VAV-2-3 and VAV2-3Zone. The specific set of functionality
required of the query processor is detailed in Section 4.2.

Serializing Brick Models
Brick models and Brick ontology must be serialized for storage and manipulation by ex-
isting RDF tooling. In the RDF data model and through most RDF tooling, entities and
relationships are identified by an IRI (Internationalized Resource Identifier)1.

An IRI has two components: a namespace and a value. A namespace is a common label
for a group of IRIs. Most ontologies are defined within a single namespace, but ontologies
may span multiple namespaces in order to make their components more modular. The
entities in a Brick model for a particular building also reside in their own namespace; the
relationships in these models can refer to other ontologies. A value is the name of an entity
within the namespace. Entity IRIs can be written fully elaborated in which the namespace

1An IRI is a generalization of a URI



CHAPTER 4. REPRESENTATING AND MANIPULATING BRICK MODELS 34

AHU1A

VAV2-4 VAV2-3

VAV2-4.DPR VAV2-4.ZN-T VAV2-4.SUPFLOW VAV2-4.SUPFLSP
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hasPoint

feeds

hasPart

Point class

Location class

Equipment class

Brick Entity

Brick Schema 
definition
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Figure 4.1: A sample Brick model representing a simple HVAC subsystem. Dashed lines
indicate the class of each Brick entity. The model captures the structure of the subsystem –
the set of equipment and their points of monitoring and actuation – and the process – how
the sequence of equipment conditions the air flowing into a set of rooms.

Figure 4.2: RDF triples instantiating a VAV and a Temperature Sensor and declar-
ing that the VAV measures temperature via that sensor. Here, building:myVAV,
building:myTempSensor and building:myVAV are all Brick entities in the
http://example.com/building> namespace.

Prefix Namespace
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.org/2000/01/rdf-schema
owl: http://www.w3.org/2002/07/owl
bf: https://brickschema.org/schema/1.0.3/BrickFrame
brick: https://brickschema.org/schema/1.0.3/Brick

Table 4.1: Common namespaces and prefixes

and value are separated with a # character (e.g. http://brickschema.org/schema/Brick#
Temperature_Sensor) or in a terser form using an abbreviation for the namespace (e.g.
brick:Temperature Sensor). Entities with the same name can be distinguished if they
are in different namespaces; this is how models can refer to entities defined in different
namespaces. A table of common namespaces used in this thesis can be found in Table 4.1.

There are many ways to serialize an RDF data model; one of the more common formats
is Turtle [106]. Figure 4.2 contains the Turtle-serialized triples representing the association
of an air temperature sensor to a VAV. The first 3 lines of this Turtle file define the mapping

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
https://brickschema.org/schema/1.0.3/BrickFrame
https://brickschema.org/schema/1.0.3/Brick
http://brickschema.org/schema/Brick#Temperature_Sensor
http://brickschema.org/schema/Brick#Temperature_Sensor
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from namespace abbreviations to their full IRIs. Turtle serializes subject-predicate-object
triples from left to right; on line 5 of Figure 4.2, building:myVAV is the subject entity,
rdf:type is the predicate relationships, and brick:VAV is the object entity.

Line 5 declares an entity identified by the label building:myVAV, this creates the myVAV
entity in the building namespace. brick:VAV is a TagSet defined by Brick representing
the variable air-volume box class; rdf:type declares building:myVAV to be an instance
of brick:VAV. Similarly, line 6 instantiates an Air Temperature Sensor with the label
building:myTempSensor. Line 7 uses the Brick relationship brick:hasPoint to declare
that building:myVAV is functionally associated with the given temperature sensor. This
example also demonstrates how entities from multiple namespaces can be used together in
the same document, or even the same triple.

4.2 Requirements of a BRICK Query Language

AHU1A VAV2-3 DMP2-3 Zone2-3 Room 
203

Room 
204

AHU 
Class

VAV 
Class

Damper 
Class

HVAC Zone 
Class Room

feeds feeds feeds hasPart

hasPart

type type type type type type

hasPart

(a) Brick model of an HVAC process showing air flowing from an AHU through a VAV, the VAV’s
damper, and finally into the HVAC zone.

AHU1A VAV2-3

DMP2-3

Zone2-3 Room 
203

Room 
204

AHU 
Class

VAV 
Class

Damper 
Class

HVAC Zone 
Class Room

feeds

hasPart

feeds hasPart

hasPart

type type type type type

type

(b) Brick model of an HVAC process showing air flowing
from an AHU through a VAV and into the HVAC zone.
The damper is not considered part of the flow.

AHU 
Class

HVAC Zone 
Class Room

feeds hasPart

hasPart

type type type type

(c) Brick model of an HVAC process
only showing the association from an
AHU to an HVAC zone.

Figure 4.3

Recall that Brick’s goal is to provide a common semantic representation of buildings that
enables building portable applications, which are applications that can execute against mul-
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tiple buildings without substantial reconfiguration. Applications achieve portability through
their ability to extract from any Brick model the set of entities and relationships that are
useful to the execution of that application, using one or more queries against that Brick
model. Queries are executed against a Brick model through the use of a query processor. In
order for queries to be portable, they need to account for differences in building as they are
represented in Brick models. Brick models differ in three primary ways:

• in how entities are classified (e.g., is this sensor a Temperature Sensor, Air Temperature
Sensor or a Supply Air Temperature Sensor?),

• in how entities are related (e.g., how complete is the Brick model’s representation of
all the equipment involved in a cold water or hot water loop?), and

• in the ground truth of the model (e.g., does the building even contain the features that
interest a specific application?).

To address these differences, an effective query language needs to be able to express what
is known abstractly. This is implemented through the following mechanisms:

Firstly, the query language needs to be able to query both the Brick ontology and Brick
model. This allows queries to perform introspection into the Brick ontology. One common
application of introspection removes the need to know a priori the classes used in a particular
Brick model; instead, an application author can express a query over the Brick ontology and
a Brick model to find which subclasses have been instantiated in the Brick model from any
point in the class hierarchy. For example, rather than asking which instances of the Brick
Room class are in a Brick model, an application query can ask which instances of any subclass
of the Brick Room class are in a Brick model. This is possible because the Brick ontology
and class hierarchy can be queried in the same manner as the Brick model.

Secondly, the query language needs to be able to find collections of entities connected by
arbitrary sequences of relationships. Brick queries often need to find collections of related
entities for which the functional nature of that relationship is known – entities that are part
of the same process flow, or measure one another, or are contained within one another –
but the specific structure of those entities and relationships in a particular Brick model is
unknown.

The last necessary feature of an effective Brick query language is the ability to include
optional components in the query.

It is important to note that these mechanisms for introducing flexibility into the Brick
query model do not undercut the value of idioms – informal patterns for expressing common
building substructures in Brick. Idioms make Brick easier to use, but are not necessary for
interpretation. For example, sometimes differences of opinion can arise in how to model a
particular scenario: consider Figure 4.3a and Figure 4.3b, which illustrate the two Brick
models for whether a damper is included in the sequence of equipment for conditioned air
flow. Idioms can help resolve these scenarios, but importantly, it is always possible to reason
about a Brick model because all entities in a Brick model (even non-idiomatic Brick models)
are tied to the Brick ontology. This means that a Brick model is always well-defined.
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Figure 4.4: A simple SPARQL query for retrieving all rooms connected to a given Air
Handling Unit (AHU). (Duplicate of Figure 4.7)

Example
To elucidate these requirements, consider an application that wants to know which rooms in
a building are served from a particular AHU unit. Figure 4.3 depicts three different Brick
models representing different interpretations of the same simple HVAC system in which an
AHU passes air to a VAV, which in turn passes the conditioned air on to a collection of two
rooms called an HVAC zone These different representations may arise from differences in
the availability of information (i.e., does the underlying BMS expose information about the
VAV’s damper). The edges labeled feeds indicate that there is air flowing from one entity
to another; this indicates the direction, or “flow,” of the HVAC process. The hasPart edge
indicates that one entity is composed of another entity: an HVAC zone consists of rooms,
and a VAV consists of its subcomponents such as the indicated damper.

Brick models 4.3a and 4.3c differ in completeness (4.3c elides the VAV equipment and its
damper) and Brick models 4.3a and 4.3b differ in their interpretation of the process. 4.3a
considers a VAV’s damper a first class citizen of the HVAC process that provides conditioned
air to the HVAC zone whereas 4.3b does not. Such differences in completeness and inter-
pretation should be expected, especially from site to site. The question therefore is how an
application can find the information it needs in such a situation.

The application expresses the types of the entities it wants in its queries. These types can
be determined by an application author; this particular application needs to find instances of
the AHU, HVAC Zone and Room classes. To write the portable query that relates these concepts,
the application author leverages Brick’s relationships: air handling units and HVAC zones
will be connected by the feeds relationship because the HVAC zone is the recipient of
conditioned air flowing from an air handling unit. In order for the application query to
be portable across many Brick models, it cannot make too many assumptions about the
structure of a Brick model. Concretely, it cannot account for how many pieces of equipment
will be expressed between an air handling unit and an HVAC zone across the array of Brick
models against which the application may run. By using the query language’s ability to
express entities connected by arbitrary sequences of relationships, the application author
can remain agnostic to the particular sequence expressed in a particular Brick model. In
this example, the query would account for this variation by expressing that the air handling
unit and HVAC zone are connected by one or more feeds relationships.

The portable query for this application is written in Figure 4.4; lines 7 and 8 demonstrate
an example of performing introspection across the Brick ontology to discover which relevant
classes have been instantiated in the Brick model this query is executing against. Line 9
demonstrates matching arbitrary sequences of the feeds relationship. Because this query
uses the portability features of the Brick query language, it will execute correctly over each of
the three representations in Figure 4.3. The syntax of the query language will be explained
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Query Forms Clauses and Operators Property Paths
Name Brick? Name Brick? Name Brick?

SELECT yes WHERE yes Inverse Path (ˆpred) no
CONSTRUCT no OPTIONAL yes Sequence (pred1 / pred2) yes

ASK no UNION yes Alternative (pred1 | pred2) yes
DESCRIBE no ORDER BY no Zero or more (pred1*) yes

BOUND no One or more (pred+) yes
FILTER no Zero or one (pred?) yes

Table 4.2: The set of features of the SPARQL 1.1 query language required by Brick.

in Section 4.3.

4.3 The SPARQL Query Language
The W3C recommends the use of SPARQL (SPARQL Protocol and RDF Query Lan-
guage) [96] for querying the RDF data model. SPARQL provides a set of analytic query
operations that can be expressed over graph patterns and graph traversals. [6] shows that
SPARQL has the same expressive power as relational algebra under bag semantics (in which
duplicates are not ommitted from the result set). This expressive power comes at the cost
of increased complexity of evaluation, which impacts query time. This cost is discussed in
Chapter 8).

The requirements for a query language for Brick can be fulfilled with a subset of SPARQL’s
features (see Table 4.2). The required SPARQL features will be explained and motivated
through the course of this section.

Most Brick queries are SPARQL SELECT queries. SELECT queries return a subset of
the contents (entities and relationships) of an RDF graph, such as a Brick model, in the
form of a table. The “columns” of this table are the names of the variables contained in the
SELECT clause. The contents of the table are the result of evaluating a SPARQL WHERE
clause over the contents of the underlying RDF graph. A SPARQL WHERE clause consists
of variables, triple patterns and subqueries.

WHERE clauses contain one or more triple patterns, which are linked together with
shared variables: one triple pattern might specify that the ?thermostat variable is an in-
stance of Brick’s Thermostat class, and another might specify that the ?thermostat variable
is an entity that has a temperature sensor. A row in the results table corresponds to an as-
signment of variables in the SELECT to entities in the RDF graph for which the triples
constituting the WHERE clause exists in the RDF graph.
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Definition 4.2: SPARQL variable

Variables are labels for entities that a query wants to resolve. Variables are denoted
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with a ? prefix, e.g. ?thermostat. The name of the variable has nothing to do with
its meaning; a variable called ?thermostat does not need to resolve to an instance of
Brick’s Thermostat class.

Definition 4.3: triple pattern

A triple pattern is an RDF triple (subject-predicate-object) where at least one of its
terms is a variable. Triple patterns describe graph traversals. An example of a triple
pattern is

A triple pattern’s predicate can relate its subject and object using arbitrary sequences of
predicates. There are a few common methods that Brick queries use:

• Exact sequences: a triple pattern can describe entities connected by an exact
sequence of edges by delimiting a list of predicates with the / character, e.g.
rdf:type/rdfs:subClassOf is an edge with label rdf:type followed by an edge with
label rdfs:subClassOf. The / operator can be thought of eliding an intermediate
variable, such as in Figure 4.6.

• Arbitrary sequences: a triple pattern can describe entities connected by sequences
edges of one or more types, using the + (one or more) or * (zero or more) or ? (zero or
one) suffixes, e.g. bf:feeds+ is one or more edges that all have the bf:feeds label.

SPARQL WHERE clauses can also contain UNION and OPTIONAL elements, which define
additional triple patterns that may be used to filter the graph. These are important features
for SPARQL as applied to Brick models because they allow an additional degree of flexibility
that cannot be captured by the class hierarchy. The class hierarchy can only describe entities
more generally (by moving up the hierarchy) or more specifically (by moving down the
hierarchy); sometimes, queries need to be able to describe one or more possible groups of
entities that may not have a common ancestor in the class hierarchy, or may be related in
more than one way.

The UNION and OPTIONAL operators allow SPARQL to express these “branches” of query
logic. Triple patterns in a WHERE clause have an “and” relationship: each triple pattern
places further constraints on the results of the query. The UNION operator specifies one or
more alternative patterns (called subqueries) to be evaluated as part of the query. The results
of UNION subqueries have an “or” relationship. The OPTIONAL operator specifies a subquery
which can extend the results returned by a query if information matching the subquery
exists. An illustrative scenario is a query against the Brick model in Figure 4.3a: a user may
want to ask if a damper is related to a VAV through either the feeds relationship or the
hasPart relationship. In SPARQL, this would use the UNION operator (Figure 4.5).
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Figure 4.5: An example of the SPARQL UNION operator, which can express multiple sub-
queries.

Figure 4.6: Simple SPARQL query demonstrating the rdf:type/rdfs:subClassOf*
idiom for finding instances of arbitrary subclasses of a Brick parent class
(brick:Temperature Sensor).

SPARQL Idioms for Brick
A few idioms have emerged for Brick models expressed in RDF and queried with SPARQL.

A natural way of interacting with the Brick class hierarchy and instances of those classes is
through the paradigm of subtype polymorphism (also called subtyping), which is a major class
of polymorphism used by languages like C++. The Brick class hierarchy relates subclasses to
their superclasses through the rdfs:subClassOf predicate. rdfs:subClassOf is a transitive
property, so sequences of rdfs:subClassOf convey further subclassing.

This mechanism is used by queries such as those that want to relate entities to classes in
the Brick class hierarchy; for example, all instances of subclasses of the Brick Temperature
Sensor class. Queries can leverage SPARQL’s matching of arbitrary edge sequences to ex-
press this idea in a composite predicate: rdf:type/rdfs:subClassOf*. Observe Figure 4.6
as an example: the rdf:type predicate captures that the entities resolved for ?sensor
should be an instance of some class. The rdfs:subClassOf* predicate captures that that
class is either brick:Temperature Sensor (for which the * pattern matches zero edges) or
some subclass of brick:Temperature Sensor (for which the * pattern matches one or more
edges).

Another common idiom in Brick models is querying sequences of equipment in process
flows, such as a hot or cold water system. This uses the compound predicate bf:feeds+,
which matches one or more sequences of the bf:feeds relationship.

Idioms provide users with a set of abstractions for common query tasks. The query mech-
anisms used to implement these idioms can also guide optimizations in the query processor.
Chapter 7 explores the impact of Brick idioms and SPARQL features on the performance of
SPARQL query processors.

SPARQL Versions
Several crucial features of SPARQL that fulfill the Brick query language requirements are
part of the SPARQL 1.1 specification [47], rather than the base SPARQL 1.0 specification.
The primary feature is property paths2, which can specify arbitrary path lengths between
two entities in a graph. The reliance upon SPARQL 1.1 has significant impact on the
requirements of the query processor (Chapter 7).

2https://www.w3.org/TR/sparql11-query/#propertypaths

https://www.w3.org/TR/sparql11-query/#propertypaths
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Example: Querying a Brick model With SPARQL
Figure 4.7 is a query for retrieving all rooms which are connected to a given AHU. Lines
1-3 declare the prefixes for the various namespaces to shorten the references to entities; for
brevity, we omit these from all later queries in this paper. Line 4 contains the SELECT clause,
which states that the variables ?ahu and ?room should be returned (the ? prefix indicates a
variable). The WHERE clause determines the types and constraints on these variables.

Figure 4.7: A simple SPARQL query for retrieving all rooms connected to a given Air
Handling Unit (AHU).

A building represented in Brick can specify the specific subclasses, or if that information
is not available, instantiate a generic class. Line 6 is a common construct in Brick queries
which accounts for the uncertainty in which class of AHU has been instantiated in the queried
Brick model. This triple pattern returns all entities ?ahu that are either an instance of a
subclass of brick:AHU or an instance of brick:AHU itself. An application that does not
require specific features of such subclasses may want to query for the generic class rather
than exhaustively specify every possible subclass. Lines 7 and 8 serve a similar purpose for
the brick:HVAC Zone and brick:Room classes.

After declaring the types of the entities involved, the query restricts the set of rela-
tionships between the entities on lines 9 and 10 to determine which pairs of entities are
connected. Line 9 finds all HVAC zones downstream of a particular AHU by following a
chain of brick:feeds relationships (the + indicates that 1 or more edges can be traversed as
long as the edges are of type brick:feeds). Line 10 links the identified HVAC zones with
the rooms they contain. The correct relationships to use can be determined from the Brick
relationship list (Table 3.1).

This example query illustrates an important quality of Brick queries: establishing a link
between two entities (even across different subsystems such as HVAC and spatial) does not
require explicit knowledge of all intermediary entities. Rather, the query denotes the relevant
entities and relationships: the query in Figure 4.7 is indifferent to whatever building-specific
equipment and details lie between an Air Handler Unit and the end zones. This is possible
because the relationships between those entities all use Brick’s brick:feeds relationship.

4.4 Summary
This chapter has presented an implementation of the Brick schema’s formal semantics as
an ontology using the RDF data model. The Brick ontology is built on several existing
ontologies – RDF, RDFS and OWL – which provide the formal mechanisms for defining the
Brick class hierarchy and relationships. This formalism is what enables Brick to accurately
and completely describe the structures and processes within many different buildings, which
makes Brick suitable for implementing portable applications.
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This chapter also establishes the requirements of a Brick query language that enables
portable applications. Brick queries retrieve the information required for an application’s
configuration and operation. These requirements can be fulfilled by a subset of the features
offered by the SPARQL 1.1 query language.
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Chapter 5

Creating Brick Models

It is possible to extract Brick entities and relationships for a partial Brick model from existing
metadata representations of buildings which use conventions and idioms of the trade to
overcome a lack of formal semantics. We describe a general approach for converting building
metadata to Brick, present initial conversion techniques for the popular Haystack and IFC
building schemata, and demonstrate these techniques on three real buildings. Finally, we
describe methods to convert vendor specific BMS metadata to Brick.

The general approach is to parse the given building metadata into sets of entities that
have obvious relationships between them and then add these entities and relationships to a
Brick model; from there, the Brick model can be refined. The success of a conversion depends
on what information is captured in a schema and how that information is structured. For
unstructured metadata, the conversion implementation is often site-specific. For structured
metadata, the conversion implementation is more portable.

5.1 Converting BMS Points to Brick
Converting BMS metadata to Brick requires extracting the semantic information, i.e. entities
and relationships, from these point names. Because point names are inconsistently named
across (and within) buildings, domain experts – individuals familiar with the BMS and the
building subsystems – need to provide the deconstruction of point names into the set of
underlying types (Brick classes) and labels (Brick entities).

Figure 5.1 shows an example of a BMS point and the equivalent Brick representation.
This single BMS point contains several idiomatic abbreviations for entities that Brick makes
explicit and distinct: the ZNT component indicates that the point is a Zone Temperature
Sensor. The RM-101 component means that this temperature sensor measures the air in
room number 101; there is not enough information to tell if the sensor is physically located
inside the room, or if it is in a duct supplying conditioned air to the room. The VAV-101
component of the point name indicates that the conditioned air flowing into the room is from
a variable air volume box, and BLDG-A names which building contains this whole structure.
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Figure 5.1: An example of mapping raw metadata of a BMS point to Brick. The abbrevia-
tions inside the raw metadata represent some entities in the BMS and the mapping can be
given by a domain expert or inferred by an automated inference algorithm. The relationships
between entities in the raw metadata are implicit.

The result of decoding substrings into Brick entities and Brick classes yields the set of RDF
triples in Figure 5.1 labeled as “Entity Types from Domain Expertise.”

Extracting entities from point labels requires an understanding of the naming conventions
of the particular building or BMS. Once the entities are extracted, it is possible infer the
relationships between them using the structure of Brick’s ontology. The ontology informs the
set of possible relationships between entities with a certain type: for example, a zone temper-
ature sensor (a Brick Point) and a VAV (a Brick Equipment) most likely have a isPointOf
relationship between them. This process yields the set of RDF triples in Figure 5.1 labeled
“Implicit Relationships.”

However, BMS point names do not always contain all the information necessary to fully
populate a Brick model, such as which VAVs are downstream of a particular AHU. This in-
formation could be obtained through interviews with building managers or control engineers,
or also through data-driven techniques that perturb BMS control points to find links between
equipment [82]. For the six case study buildings described in Chapter 6, we generate Brick
instances using a semi-automated script per building which parses point names to generate
Brick entities and infer the relationships between them1. The results of this conversion are
summarized in Table 6.1 in Chapter 6.

1https://github.com/BuildSysUniformMetadata/Brick

https://github.com/BuildSysUniformMetadata/Brick
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BMS Point Normalization Frameworks
There are several available frameworks that reduce the effort of converting BMS metadata
to standardized vocabularies (such as Brick) through automation. Most of the frameworks
focus on identifying point types, but all produce structured representations that are simple to
convert to Brick. Methodologies include clustering BMS metadata on syntactic similarity of
point names to reduce the number of classes that must be identified by a building domain ex-
pert [11][50]. Gao et al. extract features from time series data to learn models for point types
[42]. Pritoni et al. propose learning the relationships between AHUs and VAVs by observing
reactions of devices to artificial perturbations [82]; this corresponds directly to Brick’s feeds
relationship. Bhattacharya et al. propose a framework to construct synthesis rules from ex-
amples presented to building managers and domain experts [16]. The synthesis rules extract
all possible relationships in BMS metadata which usually covers Equipment, Point, Location
and relationships among them like hasLocation and isPartOf. Scrabble [59] expands on
the methodology established in [16], using active learning and transfer learning to reduce
the number of classification samples that need to be given to a domain expert. Plaster [58]
is a complementary benchmarking framework that allows different metadata normalization
methods to be more directly compared.

5.2 Converting Haystack to Brick
While Project Haystack’s data model does not capture all of the entities and relationships
that Brick can express, it does provide a more structured view into the equipment and points
for a building than idiosyncratic BMS labels. A Project Haystack building model can be
used to bootstrap a more detailed Brick model. To this end, we have developed a simple
Haystack to Brick converter. The converter has two components: a translator module that
maps Haystack entities to Brick TagSets, and a relationship module that infers a possible
set of Brick relationships between those entities using contextual information and a set of
basic assumptions.

Methodology
Recall that Haystack entities refer to equipment, sensors, setpoints and other physical objects
and are described using a combination of marker tags, value tags and references to other
entities. The task of the translator module is to determine a mapping from sets of Haystack
tags to a single Brick TagSet. For each Haystack entity, the translator finds the Brick TagSet
whose tags have the largest intersection with the entity’s Haystack tags. The translator
then adds an instance of that Brick TagSet to the output Brick model corresponding to
the Haystack entity. Because Brick’s tags are based off of Haystack’s tag dictionary, this
technique is able to correctly translate the majority of Haystack entities in the Haystack
models we have observed.
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Haystack’s tags do not explicitly label all of the information contained in a Haystack
model. As a result, sometimes additional entities and relationships can be extracted from
parsing the values of Haystack value tags. The most common case of this involves Haystack’s
lack of spatial tags. Haystack does not formally represent HVAC zones – a logical grouping
of physical space conditioned by a single terminal unit – or rooms or other spaces as entities
in a Haystack model. Instead, zones are implicit in the definition of a VAV entity with a
zone tag. What is lost is not just the name of the zone (although this is usually one-to-one
with a VAV entity), but also the collection of physical spaces associated with that zone.
As a result, users of Haystack typically encode the name of rooms or zones in the name
of the VAV entity, just like in a BMS (Figure 5.2). In these cases, the translator module
must be programmed with how to extract room- or zone-level information from the names
of Haystack entities. This is analagous to extracting Brick metadata from BMS labels.

The relationship module uses value tags associated with Haystack entities to populate
the set of relationships around the translated Brick entity. Some of these tag-value pairs
describe aspects of the entity such as engineering units or square footage, which could be
captured in future Brick extensions. Other tag-value pairs use “-Ref” tags to relate entities
(e.g. equipRef, siteRef, elecMeterRef). These references do not capture the full set
of relationships required by Brick, but can be unambiguously mapped to a specific Brick
relationship: The elecMeterRef value tag implies a Brick hasPoint relationship between an
equipment entity and an electric meter entity. The siteRef value tag asserts which building
(or site) an entity is associated with. The ahuRef value tag indicates which air handling unit
is upstream of a terminal unit, which corresponds to the Brick isFedBy relationship. Many
Haystack entities also use the equipRef tag, which has the following definition:

Association with an equip entity. When used on a point this indicates a sen-
sor/cmd/setpoint associated with the equipment. When used on an equip it
indicates nesting/containment. ([83])

This definition translates to Brick as follows: if the owner (the entity that has the tag)
and the target (the value of the equipRef tag) are both equipment, then we infer a Brick
feeds relationship between the entities; if the owner is a sensor and the target is equipment,
then we infer a Brick isPointOf relationship. With these simple contextual assumptions,
the Haystack identifiers of the owner and target of a “-Ref” tag are enough to generate the
requisite Brick triples.

Haystack-to-Brick Example

Figure 5.2: Haystack VAV entity, with spatial information encoded in the entity identifier
string. Note that only underlined tags are standardized in Project Haystack. The original
author of this metadata needed to add the other tags.
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Figure 5.3: The Brick triples (entities and relationships) generated from the Haystack entity
in Figure 5.2.

Figure 5.2 contains the Haystack representation of a VAV in Ghausi Hall on the UC Davis
campus. This example illustrates the use of several idiosyncratic tags used by the authors
of the Haystack model to encode information beyond what Haystack formally defines:

• The nonstandard associatedRooms tag defines the set of rooms served by the VAV;
note that because Haystack has no list data type, the authors of the Haystack model
encoded the set of rooms as a comma-delimited string.

• The room number in the entity identifier string (“VAV 4 16 Rm 3167”) indicates a
third room associated with this VAV, but it is unclear from the representation what
the relationship of this room is to the rooms captured by the associatedRooms tag.

After the translator has been informed about these local conventions, it can derive instances
of three rooms, an AHU, a VAV and an HVAC zone from this Haystack entity. The relation-
ship module can then identify the Brick relationships between them, resulting in the triples
contained in Figure 5.3.

We have implemented our Haystack-to-Brick converter script in Python, totaling 350
lines of code2. We apply the converter to two Haystack models from the UC Davis campus
and were able to successfully translate air handling units, VAVs, dampers, HVAC zones,
rooms, setpoints and electric meters as well as temperature, humidity and occupancy sensors.
Ghausi Hall is a 66,000 sq ft engineering building with 2,183 Haystack entities; the translated
Brick model contains 4,135 triples. PES is a 90,000 sq ft office and lab building with 6,475
Haystack entities; the translated Brick model contains 15,561 triples.

5.3 Converting IFC to Brick
The IFC building information model captures more detailed construction-oriented structural
information for buildings than Brick, but it is possible to generate partial Brick models
from IFC representations of buildings. IFC models mostly consist of spatial information
useful for construction such as the size and position of walls, dampers and ducts, but also
include semantic groupings of these entities into floors, rooms and HVAC zones. The IFC
schema encodes information as “objects”, which correspond to equipment, spaces, other
infrastructure and groups of objects.

We have implemented a simple converter that exports spatial information in IFC models
to Brick. The converter first scans an IFC model for all instances of IFCZONE objects,
which can correspond to an HVAC Zone, and IFCSPACE objects, which correspond to rooms.
IFCRELASSIGNSTOGROUP objects associate zones (using a “RelatingGroup” attribute) with

2https://github.com/gtfierro/BrickConvert/tree/master/haystack

https://github.com/gtfierro/BrickConvert/tree/master/haystack
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a list of rooms (using a “RelatedObjects” attribute). IFCRELAGGREGATES objects associate
rooms with floors (instances of IFCBUILDINGSTOREY).

Our IFC-to-Brick converter, implemented in 100 lines3 of Python (not including an open-
source IFC file parser4), converts IFC representations of floor, room and zones to their Brick
equivalents. The converter currently makes the assumption that all zones are HVAC zones
because there is not enough contextual information in the IFC model to determine the
“kind” of zone without programatically traversing the components of the HVAC system as
represented in the IFC model. We have successfully tested the converter on an IFC model
of a 7,000 sq ft office building in downtown Berkeley. The textual IFC model totals some
150,000 lines and the exported Brick model contains 159 triples. This informally illustrates
the expressive differences between IFC and Brick; the IFC model contains a very detailed
description of the construction physical space, but the translated Brick model only represents
the high-level spatial information required by building applications.

Refer to Lange, et al [62] for a more comprehensive study of the Brick entities and
relationships that can be derived from an IFC model, a survey of real-world IFC models,
and a performant framework for extracting Brick-relevant information from IFC models.

5.4 BrickMason Framework
The above sources of metadata are not always available. Residential and small/medium
commercial buildings for instance lack the pre-assembled (albeit unstructured and nonstan-
dard) metadata necessary for the management of large commercial buildings with established
building management systems, but are also much simpler to describe. These classes of build-
ings are increasingly controlled and monitored by networked, consumer-facing “Internet of
Things” (IoT) devices such as the Nest thermostat5, Pelican thermostat6, Enlighted lighting
system7 and Rainforest Eagle8, whose digital interfaces present an opportunity to extract
contextual information about the building in which they are deployed.

We have built BrickMason9, an extensible framework for collecting and coordinating
the metadata exposed by heteroeneous and multi-vendor systems that manage buildings
into a unified Brick model. To create a Brick model for a site, a user configures a set
of BrickMason plugins and then executes BrickMason. A BrickMason plugin is a Python
module that extracts metadata from an external source and inserts it into a Brick model.

3https://github.com/gtfierro/BrickConvert/tree/master/ifc
4https://github.com/mvaerle/python-ifc
5https://web.archive.org/web/20181202012548/https://nest.com/thermostats/
6https://web.archive.org/web/20181202012641/https://www.pelicanwireless.com/
7https://web.archive.org/web/20180420135521/https://www.enlightedinc.com/system-and-

solutions/iot-applications/light/
8https://web.archive.org/web/20181202013043/https://rainforestautomation.com/rfa-z114-

eagle-200/
9https://web.archive.org/web/20181202013504/https://github.com/gtfierro/BrickMason

https://github.com/gtfierro/BrickConvert/tree/master/ifc
https://github.com/mvaerle/python-ifc
https://web.archive.org/web/20181202012548/https://nest.com/thermostats/
https://web.archive.org/web/20181202012641/https://www.pelicanwireless.com/
https://web.archive.org/web/20180420135521/https://www.enlightedinc.com/system-and-solutions/iot-applications/light/
https://web.archive.org/web/20180420135521/https://www.enlightedinc.com/system-and-solutions/iot-applications/light/
https://web.archive.org/web/20181202013043/https://rainforestautomation.com/rfa-z114-eagle-200/
https://web.archive.org/web/20181202013043/https://rainforestautomation.com/rfa-z114-eagle-200/
https://web.archive.org/web/20181202013504/https://github.com/gtfierro/BrickMason
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BrickMason plugins execute sequentially on a shared Brick model, each adding new entities
and relationships or refining existing ones.

Disambiguating labels is the primary challenge for the integration of independent meta-
data sources: different sources might refer to the same Brick entities, but under different
names. Additionally, different sources may present incorrect or incomplete information.
For example, BrickMason may extract the names of HVAC zones from a smart thermostat
scheduling system and the names of rooms from a meeting room scheduling system, but may
not have a source that ties HVAC zones to rooms. A third source, such as a survey with a
building manager or an examination of a building’s floor plan, could provide the association
of HVAC zones to rooms, but might refer to HVAC zones by the model number of their cor-
responding rooftop unit, rather than the human-assigned name from the smart thermostat
scheduling system.

BrickMason allows plugins to implement their own disambiguation techniques. As each
plugin executes, it can query the partially-generated Brick model for similarly named or
prexisting entities, and choose whether or not to align its own derived metadata with what is
already expressed in the Brick model. BrickMason currently employs very simple methods for
disambiguation – string similarity measures and regular expressions – but could be integrated
with a framework like Scrabble [59] for more robust matching. Table 5.1 contains a list of
some of the implemented BrickMason plugins.

Plugin Name Data Source Metadata Added
haystack Haystack Models HVAC equipment and zones, metering,

sensors and relationships
ifc IFC Models HVAC zones, rooms, floors
nws National Weather Service API weather stations
revit Revit Models thermostats, rooms, floors, HVAC

zones, sensors, lights, metering and re-
lationships

enlighted Enlighted lighting system API lights, lighting zones, rooms, occu-
pancy sensors

pelican Pelican thermostat system API thermostats, HVAC zones

Table 5.1: A subset of available BrickMason plugins that coordinate to produce a single
Brick model for a site.

5.5 Summary
The ease of creating a useful Brick model is crucial to the utility and adoption of Brick.
Though the first Brick models were constructed by experts in a semi-automated fashion,
this chapter has demonstrated how Brick models can be created by normalizing semantic
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information from pre-existing sources of digital metadata. These sources explicitly and
implicitly refer to the entities and relationships represented by Brick. Multiple sources can
be fused together into a single Brick model; this requires reconciling differences in naming
and representation.

The synthesis and verification of Brick models is an active area of research. Approaches
range from applying timeseries classification [50] to supervised machine learning [16, 59]
to automated transformation of semi-structured metadata [62]. These development efforts,
together with growing commercial interest in Brick, may produce more robust and easy-to-
use tools for automated conversion of Brick models, and may even lead to the use of Brick
during the design and construction process.
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Chapter 6

Evaluation of Brick Expressiveness

The contents of the Brick ontology and class hierarchy are driven by an empirical study
of the concepts already captured by existing BMS as well as the concepts that building
applications wanted to use. In this chapter, we evaluate the expressiveness, effectiveness and
completeness of Brick.

6.1 Empirical Method
Recall that Brick seeks to create a robust, queryable representation of a building’s equipment,
subsystems, points and relationships that is complete (it can express and name necessary
entities), expressive (it can express and name necessary relationships) and usable (it can
represent entities and relationships in a way that supports the development of portable
building applications). This chapter evaluates Brick along these dimensions on a set of six
buildings.

The set of real-world buildings was created as part of the collaborative effort from sixteen
researchers spanning seven institutions across the U.S. and Europe to develop the original
release of Brick [9]. Together, this team compiled BMS ground-truth metadata from six
buildings to bootstrap the Brick schema development. The ground-truth metadata consists
of equipment and point labels extracted from the BMS for each building and human-curated
documentation of the type of each label (Figure 6.1). We then developed a consistent naming
scheme for each of the identified types using a standardized set of tags inspired by Haystack,
and then organized these types into a class hierarchy consistent with their root types (Fig-
ure 3.2). We filled in missing classes from the hierarchy. For example, a Discharge Air
Pressure Sensor implies the existance of a more generic Pressure Sensor; even though it
is unlikely that any BMS would label a point solely as a “pressure sensor”, it is still a useful
classification that aids in discovering available types of sensors.

This methodology attempts to avoid the danger of overfitting, in which the emerging class
hierarchy becomse too tightly tailored to the entities of particular building used to develop
it and loses the ability to generalize its classes to other buildings. To reduce overfitting,
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Figure 6.1: Snippet of ground truth for Soda Hall on the UC Berkeley campus. The de-
composition of the BMS labels on the left into the components on the right was performed
automatically by the tool from [16].

we first created a draft class hierarchy using the points found in four of the six buildings
and evaluated the coverage (% of points that can be appropriately classified using Brick) on
the last two buildings: Soda Hall and Rice Hall. We then incorporated points from Soda
and Rice Hall into the draft class hierarchy. The point coverage of all six buildings for the
resulting Brick class hierarchy (corresponding to the completeness of Brick) is in Table 6.1.
This established class hierarchy, together with the ontology-defined relationships, constitutes
the first release of the Brick schema.

To evalute the expressiveness and usability of Brick, we execute a family of eight rep-
resentative applications against a Brick model corresponding to each of the six case study
buildings. We observe how well SPARQL queries express the entities and relationships con-
stituting the desired context for an application and whether or not the SPARQL queries
can recover the necessary information when evaluated against each Brick model. The list of
applications and the result of the applications is in Table 6.2.

6.2 Case Study Buildings
Here, we review the construction and control system for each of the six buildings, and
discuss the challenges faced in producing the Brick model for each site. Table 6.1 contains
an overview of the six buildings.

Building Name Location Year Size (ft2) # Points % TagSets # Relationships
Points Mapped Mapped

Gates Hillman Center
(GHC)

Carnegie Mellon Univ.,
Pittsburgh, PA

2009 217,000 8,292 99% 35,693

Rice Hall Univ. of Virginia, Char-
lottesville, VA

2011 100,000 1,300 98.5% 2,158

Engineering Building
Unit 3B (EBU3B)

UC San Diego, San
Diego, CA

2004 150,000 4,594 96% 8,383

Green Tech House
(GTH)

Vejle, Denmark 2014 38,000 956 98.8% 19,086

IBM Research Living
Lab

Dublin, Ireland 2011 15,000 2,154 99% 14,074

Soda Hall UC Berkeley, Berkeley,
CA

1994 110,565 1,586 98.7% 1,939

Table 6.1: Case Study Buildings Information.
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Gates Hillman Center at CMU
The Gates and Hillman Center (GHC) at Carnegie Mellon University is a relatively new
building, completed in 2009, with 217,000 square feet of floor space, 9 floors, and 350+
rooms of various types (offices, conference rooms, labs). It contains over 8,000 BMS data
points for HVAC sensors, setpoints, alarms, and commands. CMU contracts with Automated
Logic1 for building management.

The GHC includes 11 AHUs of different sizes serving multiple zones: three small AHUs
serve a giant auditorium, a big laboratory and three individual rooms respectively. Eight
large AHUs supply air to more than 300 VAVs. GHC’s HVAC system also contains computer
room air conditioning (CRAC) systems which are equipped with additional cooling capacity
to maintain the low temperature in a computer room and fan coil units systems to provide
cooling and ventilation functions. Brick matched 99% of GHC’s BMS points, with the
remaining points being too uncommon to be required by most applications (such as a Return
Air Grains Sensor which measures the mass of water in air). The direct translation of BMS
tags into Brick was relatively simple, only requiring a mapping between the human-readable
BMS data points and Brick for each unique data point type. This process was helped by
the fact that the BMS points provided by Automated Logic were mostly human readable,
allowing the mapping process to proceed more quickly. That said, there were a number of
BMS tags which we found to be unintelligible, and in these cases we spent considerable time
determining the meaning of these points by examining Automated Logic documentation.

The major challenge in converting the GHC to Brick was determining the relationships
between pieces of equipment not encoded in the BMS labels. While the information is avail-
able through an Automated Logic GUI representation of the building, there was no machine
readable encoding of which VAVs connected to which AHUs. This required examining the
building plans directly to incorporate more than 400 relationships. The Brick representation,
on the other hand, is both machine- and human-readable.

Rice Hall at UVA
Rice Hall hosts the Computer Science Department at the University of Virginia. The building
consists of more than 120 rooms including faculty offices, teaching and research labs, study
areas and conference rooms distributed over 6 floors with more than 100,000 square feet of
floor space. The building contracts with Trane2 for building management.

Rice Hall contains four AHUs associated with more than 30 Fan Coil Units (FCU) and
120 VAVs serving the entire building. Besides the conventional HVAC components, the
building features several different new air cooling units, including low temperature chilled
beams and ice tank-based chilling towers, an enthalpy wheel heat recovery system, and a
thermal storage system. The building also contains a smart lighting system including mo-
torized shades, abundant daylight sensors and motion sensors. Rice Hall’s BMS points are

1Automated Logic, http://www.automatedlogic.com/
2Trane, https://www.trane.com/

http://www.automatedlogic.com/
https://www.trane.com/
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easily interpretable for conversion to Brick despite it containing some uncommon equipment
such as a heat recovery and thermal storage systems as part of the building design as an
energy-efficient “living laboratory”. Brick’s class structure was extended to incorporate BMS
points unique to Rice Hall among the other case study buildings such as Ice Tank Entering
Water Temperature Sensor. Additionally, Brick’s relationships were able to properly cap-
ture how these uncommon pieces of equipment were connected to other parts of the building
subsystems.

Engineering Building Unit 3B at UCSD
The Engineering Building Unit 3B (EBU3B) at University of California, San Diego hosts
the Department of Computer Science & Engineering and contains offices, conference rooms,
research laboratories, an auditorium and a computer room. The building was constructed in
2004 and has 150,000 square feet of floor space with over 450 rooms. The BMS of EBU3B
is provided by Johnson Controls3, and contains more than 4500 data points, most of which
related to the HVAC system and power metering infrastructure.

The HVAC system consists of a single AHU that supplies conditioned air to 200+ VAV
units and some FCUs. There are exhaust fans for all kitchens and restrooms and a CRAC
system serving the computer room. The HVAC system also has Variable Frequency Drives
(VFD), valves, heat exchangers and cooling coils to facilitate operation of the AHU and
CRAC. The Brick schema provides the necessary TagSets and relationships for all of these
components and their monitoring and control points. The university central power plant
provides the hot and cold water for domestic medium temperature water system and con-
trolling air temperature in the HVAC. The corresponding sensors that measure the hot and
cold water use such as flow rate and temperature were modeled in Brick, but the central
plant was left out as it was not part of the building. The building contains meters measur-
ing power consumption of various subsystems: lighting, computer room, HVAC system and
elevators.

An issue in mapping EBU3B to Brick is that the AHU discharge air is divided into two
parts for two wings of the building. Brick currently does not model how the discharge air in
the AHU is divided into two wings but describes the connections to other equipment such
as VAVs. Additionally, EBU3B’s BMS contains data points related to Demand Response
(DR) events such as load shedding for hot water, which exposes an interesting conflation
of the representation and operation of the building. Because BMSes have been typically
written as monolithic applications over vendor-specific interfaces, they must incorporate
external signals such as DR into the set of BMS points directly. On the other hand, Brick
decouples the resources and infrastructure of a building from the building operation so that
any application can operate on top of Brick representation.

3Johnson Controls, http://www.johnsoncontrols.com/

http://www.johnsoncontrols.com/
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Soda Hall at UC Berkeley
Soda Hall, constructed in 1994, houses the Computer Science Department at UC Berkeley.
It mostly consists of closed small to medium sized offices, where either faculty or groups of
graduate students sit. The BMS system, provided by the now-defunct Barrington Systems,
exposes only the data points in the HVAC system.

The HVAC system of the building runs on pneumatic controls, and comprises 232 thermal
zones. The zones on the periphery of the building have VAVs with reheat, while the other
zones do not. Each zone has a VAV; VAVs for the zones on the periphery of the building
have reheat mechanism. For a VAV with reheat, the same control setpoint indicates both
the amount of reheat and the amount of air flowing into a zone.While such combination is
building-specific, Brick can express the fact that the same sensor controls both the reheat
and air flow by duplicating the point and labeling the copies with the Reheat Command and
Air Flow Setpoint TagSets. The logic of the setpoint also can be described with control
relationships in Brick for dependencies to other setpoints related to actual reheat and air
flow rate. The logic for communicating with the point correctly would be handled by some
other system; Brick simply identifies the available points.

Unique to the other buildings presented here, the operational set of Soda Hall’s HVAC
components is not static. Soda Hall contains a redundant configuration of chillers, condensers
and cooling towers. At any point of time, one of these systems is operational while the others
are kept as standby. An isolation valve setpoint indicates which of the redundant subsystems
is currently operating. Brick completely expressed the redundant subsystem arrangement,
but the equipment contained several unique points such as On Timer for the chiller subsystem
that had to be added to Brick’s TagSets.

Green Tech House
The Green Tech House (GTH) was constructed in 2014 as a 38,000 square feet office building
in Vejle, Denmark. It contains 50 rooms spanning three stories and functions as office spaces,
a cafeteria, meeting rooms and bathrooms. GTH is controlled by the Niagara BMS4, but to
protect basic building functionality only a subset of the BMS points are exposed via oBIX.
As the oBIX points do not include AHU nor VAV points, the Brick representation was
constructed from a combination of BMS points, BMS screenshots and technical documents.

Compared to the rest of the case study buildings, the thermal conditioning of GTH is
reversed: Air is heated centrally in a single AHU and distributed to VAVs with cooling
capabilities. The AHU uses a rotary heat exchanger to recovers heat from the return air.
The pressure of the AHU return and supply air for the north and south side of the building
is measured separately. Additionally, most rooms have radial heating on either walls or in
the floor. These are supplied by two independent hot water loops – one for wall-mounted
heaters and one for floor heaters – heated by district heating.

4Tridium, https://www.tridium.com/

https://www.tridium.com/
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IBM Research Living Lab
The IBM Research building in Dublin was retrofitted as modern 15,000 m2 office in 2011
from an old factory. The building serves as living laboratory for IBM’s Cognitive Building
research and is heavily equipped with modern building automation technology to provide a
rich data source for research.

The building has been renovated multiple times and new systems were installed by differ-
ent companies. The heterogeneity of systems became very high in the building. The building
contains 2,154 points collected from 11 different systems. The building is served by 4 AHUs
with 115 points but also has old disconnected legacy systems in the point list. Unlike the
other buildings, it contains 250 smart meters and 150 desk temperature sensors. It has 1,000
points for 161 fan coil units (FCUs) as well as 350 points on the lighting system including
150 PIR sensors and door with people counters.

The configuration of the FCUs connected to different AHU, boilers and chillers are unique
for this building while terminal units such as VAVs and FCUs are connected to a single central
unit such as an AHU in the other buildings. It shows importance of the relationship modeling
and the capability of Brick.

6.3 Model Coverage of Buildings
We evaluate the completeness of Brick by measuring how many entities Brick can describe
for a set of real-world buildings (point coverage). The draft class hierarchy (before the last
two buildings were incorporated) was able to match 93.5% of Rice Hall’s BMS points and
93.1% of Soda Hall’s BMS points, demonstrating that the draft class hierarchy sufficiently
captured the diversity of data points available. After incorporating the BMS points from
Rice Hall and Soda Hall into the class hierarchy, the point coverage improved to 98.5% of
Rice Hall’s BMS points and 93.7% of Soda Hall’s BMS points.

The point coverage of each building on the completed Brick class hierarchy (as of the
first Brick release) is contained in Table 6.1 under the “% TagSets” column. Brick is able to
match at least 96% of points exposed by each building’s BMS. The unclassified points are
part of the “long tail” characteristic of the types of points in buildings [17], and consists of
a few rare and unlabeled points as well as undocumented, propreitary BMS points that are
not used in applications.

6.4 Query Coverage of Buildings
We evaluate the expressiveness and usability of Brick by implementing application queries
for eight representative building applications – one from each of the application categories
compiled by Bhattacharya et al. [17] – and observing how those queries are expressed and
to what extent they extract the application-relavant information from each of the real-world
buildings. The applications themselves are described in Chapter 3.
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Building
Application EBU3B GTH GHC IBM Rice Soda
Occupancy [52] 261 245 366 821 265 232
Energy Apportionment [51] - 302 - 397 4 -
Web Displays [10] 699 81 65 835 106 605
MPC [99] 482 69 428 324 110 482
Participatory Feedback [60] - 253 - 386 - -
FDD [90] 229 29 229 728 - 136
NILM [66] 6 82 - 1348 - -
Demand Response [109] 2300 24 2490 608 4 152

Table 6.2: Number of matching rows in each building for the SPARQL queries consisting
the eight applications. A non-zero number indicates that the application successfully ran on
the building. Buildings with ‘-’ did not have any relevant points exposed in the BMS.

Application Coverage
We implemented each of the applications in Table 3.2 in a building-agnostic manner as a set
of SPARQL queries. These SPARQL queries are listed in Appendix A. The evaluation of the
SPARQL queries yields the set of entities and relationships corresponding to the features of
the application. Table 6.2 shows shows how many rows were returned when running each
application’s queries against each of the case study buildings. If a table cell contains a -,
then the application queries did not return any results, meaning the application could not
run.

The results demonstrate that the Brick ontology is sufficiently expressive to model the
application requirements as portable SPARQL queries. The viability of executing applica-
tions across the case study buildings was instead limited by the information presented by
the respective BMS and by the lack of digital control systems for building subsystems (such
as lighting).

Here we review the performance of each application as implemented through a family of
SPARQL queries.

• Occupancy Modeling Application: this application requires occupancy informa-
tion in order to operate. The application was able to run across all 6 case study
buildings because many HVAC systems expose an occupancy indicator for each VAV
(and thus each HVAC Zone). Room-level occupancy information is much rarer, but
the application queries are written to take advantage of it if it exists.

• Energy Apportionment Application: the implemented application relies upon
lighting subsystem state being reported in the BMS. Because this is more sparsely
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available than HVAC system information, the application was only able to run on 3 of
the 6 case study buildings.

• Web Displays Application: the software thermostat implemented by this applica-
tion uses VAV reheat and cooling valve status and control, which is commonly available
in BMS. The application optionally leverages power meter data to provide users with
a gauge of how their thermal comfort requests impact energy consumption. The case
study buildings do not have floor or room-level submetering, so the application had to
use full-building or HVAC system metering. The application query is able to express
this flexibility.

• Model-Predictive Control Application: this application utilizes spatial informa-
tion as well as AHU and VAV status and command information that is commonly
available in BMS. As a result, it is able to execute across all of the case study build-
ings.

• Participatory Feedback Application: the implemented application relies upon
lighting information, which is only available for 2 of the case study buildlings

• Fault Detection and Diagnosis Application: the implemented application con-
tains a suite of similar FDD techniques that can be implemented from available HVAC
system information. The application queries encode this flexibility with generous use
of the SPARQL UNION operator.

• Non-Intrusive Load Monitoring Application: the implemented application only
needs power meter data in order to run and as a result the SPARQL queries find results
for all buildings that expose meter data in the BMS. What is not captured by Brick
in the application queries are requirements involving the sample rate of the building
meter – NILM techniques work best when the sample rate is higher.

• Demand Response Application: because the application only implements simple
load shedding, any degree of HVAC control is relevant to its operation. Because this
information is commonly exposed in BMS, the application is able to execute across all
of the case study buildings.

The primary challenge in developing portable queries was accounting for the variance
in relationships across buildings. For example, a zone temperature sensor may have an
isPointOf relationship with an HVAC zone or a VAV. These inconsistencies arise from
differences in building construction and the representation of the points in the BMS. However,
it is possible to account for these differences in SPARQL to construct truly portable queries.

Example Application: Genie
We show an example application from the perspective of Brick. The Genie [10] application
incorporates monitoring and modeling of HVAC zone behavior and power usage with occu-
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Figure 6.2: Genie query for airflow sensors and rooms for VAVs. The query returns all
relevant triples for Genie to bootstrap itself to a new building.

pant feedback to provide a platform for occupants to directly contribute to the efficacy and
efficiency of a building’s HVAC system. Genie requires the following relationships:

• the mapping of VAVs to HVAC zones and rooms

• the heating and cooling state of all VAVs in the building

• the mapping of VAV airflow sensors to rooms

• all available power meters for heating or cooling equipment

Immediately, the requirements of this application outstrip the features provided by other
metadata solutions. Genie needs to relate entities across subsystems typically isolated or ig-
nored in modern BMS: the spatial construction of the building, the functional construction
of the HVAC system, and the positioning of power meters in that infrastructure. Brick sim-
plifies this cross-domain integration and makes it possible to retrieve all relevant information
in a few simple queries.

To identify the airflow sensors and rooms served for each VAV, the application uses the
query in Figure 6.2. Lines 3-4, 5, 6, 7 find all the Supply Air Flow Sensors, VAVs, Rooms and
HVAC Zones in the building respectively. Line 8 identifies the VAVs that feed the respective
HVAC Zones and line 9 identifies the Rooms that are part of the corresponding HVAC Zones.
Line 10 finds the Supply Air Flow Sensors that are part of the corresponding VAVs. The
application uses Brick’s synonyms to capture both Discharge Air Flow Sensors as well as
Supply Air Flow Sensors. The “Web Displays” row of Table 6.2 contains the results of
running Genie over the six buildings.

6.5 Reflections
In order to evaluate the expressiveness and completeness of Brick, we implemented a family
of representative applications to be executed against each of the case study buildings. These
properties are measured by the proportion of entities and relationships the applications want
to refer to that can also be expressed in Brick. The implementation of these applications
as queries and the execution of these queries against the case study buildings indicates
that Brick is able to capture all of the application requirements. The viability of executing
the applications against each of the case study buildings is limited by the availability of
information in each buildings BMS, rather than the expressive power of Brick.
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Chapter 7

Basis for Workload-driven Design of a
Brick Query Engine

Initial evaluation (Chapter 6) determined that RDF/SPARQL fulfill Brick’s requirements
of description and representation. This chapter examines the question of how well suited
these technologies are to fulfilling the “systems” requirements of Brick queries integrated
into building applications. We address three questions regarding this integration:

1. What are the characteristics of the Brick workload, and what requirements does the
workload place on a Brick query processor?

2. How well do existing RDF/SPARQL databases meet these requirements?

3. If they do not, how can we leverage the characteristics of the Brick workload to design
a query processor that does meet these requirements?

We focus on evaluating whether existing RDF/SPARQL technology supports latency-
sensitive applications including user interfaces, building modeling, demand response, alarms
and model-predictive control. We target a query response time of <100ms, a conventional
interactive latency threshold [73]. This chapter presents a performance evaluation of several
popular RDF databases against the Brick workload, represented by seven Brick queries of
varying complexity on three real Brick building models. We then characterize the Brick
workload by the graph properties of Brick models and the required query language features.
Finally, we use these findings to develop HodDB, a RDF/SPARQL query processor for Brick
that consistently meets the latency demands of Brick applications (Chapter 8).

7.1 RDF Database Overview
RDF databases – sometimes called “triplestores” – are specialized graph databases that store
and manipulate triples. These systems provide the storage of collections of RDF triples,
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each constituting a graph, and the retrieval of stored data through a query language such
as SPARQL. Due to the requirements of a Brick query language, our evaluation focuses on
available RDF databases that implement the SPARQL query language. This disqualifies
several other RDF and graph databases (such as Cayley [24], Dgraph [33], Badwolf [43] and
Neo4j [71]), which implement alternative graph query languages such as Gremlin [88] and
Cypher. An evaluation of other query languages and databases is a subject for future work.

We evaluate Brick workload performance on six SPARQL query processors: three open-
source RDF databases, an open-source Python library, and two closed-source RDF databases:

Apache Jena [102] is an open-source Java framework for managing and querying RDF
data. It contains a web frontend (Fuseki) and a SPARQL backend (TDB) that supports all
SPARQL 1.1 features. TDB maps URIs to short, numerical ids and stores these in YARS-
style B-tree indices [48] (explained below), which is a common implementation approach.

Blazegraph [100, 101] is a commercial, open-source graph database capable of storing
up to 50 billion RDF triples on a single machine, but also supports distributed storage. It
provides a full SPARQL 1.1 implementation, with support for transactions based on MVCC
for write-heavy workloads. Blazegraph also uses YARS-style indices with internal numer-
ical identifiers inserted into B+-trees, which is similar to Jena. Blazegraph also supports
geospatial data.

RDF-3X [72] is an unmaintained open-source RDF database that uses compressed
YARS-style indices. RDF-3X was developed before SPARQL 1.1, and does not support
any of the property path operators from Table 7.6.

RDFLib [104] is an open-source Python module for storing and querying RDF graphs. It
provides a full SPARQL 1.1 implementation on top of B-tree indices, and does not explicitly
optimize for large-scale datasets, choosing to focus on feature-completeness. We use the
Sleepycat persistence engine shipped with RDFLib, which is backed by BerkeleyDB.

Allegrograph [1, 38] is an ACID-compliant, commercial, closed-source graph database
for storing billions of RDF triples. It provides a full SPARQL 1.1 implementation in addition
to support for geospatial and temporal data.

Virtuoso [36, 95] is a commercial database that provides support for RDF and SPARQL
over a relational database, rather than the B-tree indices typical of the other RDF databases.
Virtuoso supports full SPARQL 1.1.

This is not an exhaustive set of RDF databases, but all are prevalent in the literature
and available for download. Noted omissions are TopBraid Live [105], for which we could
not obtain an evaluation copy, and the performant RDF extension [65] to the FastBit [113]
storage system, which has no available implementation.

7.2 RDF Database Benchmark Methodology
We evaluate the performance of several popular SPARQL databases on three Brick graphs
using a set of seven queries used by real Brick applications requiring low and predictable
latency. These queries are different than the set of queries used to evaluate the expressiveness
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Figure 7.1: The first set of SPARQL queries used in real-world Brick apps, used here for
benchmarking RDF databases in §7.2.

Figure 7.2: The second set of SPARQL queries used in real-world Brick apps, used here for
benchmarking RDF databases in §7.2.

and completness of Brick in Chapters 3 and 6. The queries presented here instead exercise
the range of query language features required by Brick.

Experimental Setup: Brick Queries and Applications
Figures 7.1 and 7.2 show the set of representative queries used for benchmarking. All queries
are drawn from the Brick apps described above.

VAVEnum is a simple enumeration of all VAVs in a building. This is a trivial query intended
to measure the base performance of a SPARQL query processor. This flavor of query (list
all instances of this type) is a very common interaction with Brick graphs; nearly all Brick
queries involve a clause of this form.

TempSensors finds all sensors that are instances of zone temperature sensors or any
subclass thereof. This is a more advanced, but still common, form of the VAVEnum query
that uses both the / and * property path operators. The challenge when evaluating a query
such as TempSensors is the need to traverse an arbitrarily large number of edges (here, edges
of the type rdfs:subClassOf).

AHUChildren lists all equipment and sensors downstream of an air handler unit. This
query is similar in structure to TempSensors, but uses the + property path operator instead.

SpatialMapping associates floors, the rooms on that floor, and the HVAC zones that
cover those rooms. This query makes use of the + property path operator in order to avoid
any assumptions about the exact associations between floors, rooms and HVAC zones (i.e.
a room could have a bf:isPartOf relationship with a logical grouping such as a department
or company, which in turn has a bf:isPartOf relationship with a brick:Floor instance).

SensorsInRooms associates a family of sensors with a room, using the room’s HVAC zone
and VAV information. The query makes heavy use of UNION to select the appropriate sensor
classes.

VAVRelships finds the set of “things” related to a VAV: whats upstream and downstream
of it, what measurement points it has, and what equipment it contains. This query is
expensive to evaluate because it resolves to a large number of values, resulting in a number
of expensive joins.

GreyBox identifies, for each room in a building, a minimal set of sensor streams (identified
by a UUID) that can be used to train a simple grey box thermal model.

Our evaluation of the Brick workload uses the following latency-sensitive applications:
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Building Dashboard queries a Brick model to render a dashboard for different building
subsystems. 100ms is a common target for users to feel an interaction is “instantaneous” [73].
The dashboard application requires queries similar in structure to those generated by the
interactive query explorer described in §8.4.

Automatic Grey Box Modeler uses a Brick model to formulate a series of simple
thermal models trained on HVAC timeseries data. Used in a model-predictive control loop,
the response time of the metadata model should be minimal to leave more time for the rest
of the computation.

Room Diagnostics monitors the sets of sensors in each room to check for uncomfortable
or unsafe conditions (such as high temperatures or CO2 levels). The app queries the Brick
model often to make sure it is using the most up-to-date description of the building, and
needs to quickly react to dangerous settings by querying the model for the correct alarms to
trigger.

Figure 7.1 and Figure 7.2 show the queries constituting these applications. Other cat-
egories of applications that can benefit from fast metadata queries are fast demand re-
sponse [78], model-predictive control, and online fault detection and diagnosis. [9] and [17]
present more comprehensive lists of metadata-driven applications.

Experimental Setup: Brick Models
We evaluate the Brick workload of 7 queries over three buildings: CIEE is a small ( 7.5k sq
ft) office building with a single floor and five rooftop units. It has been retrofitted with an
array of wireless sensors as well as networked lighting and thermostats. Soda Hall ( 110k
sq ft, abbreviated as “Soda”) and Sutardja Dai Hall ( 100k sq ft, abbreviated as “SDH”)
are large buildings with combined office and laboratory space. Both expose sensing and
actuation points through a building management system. The graph properties of the Brick
models for these buildings are shown in Table 7.5 (discussed later).

Our evaluation consists of running the set of Brick queries against these Brick models
using each database, and measuring the distribution of response times. We compare the
99th percentile of this distribution to our target latency bound of 100ms.

We develop a simple test harness1 to dispatch each benchmark query against each database
and measure the time in milliseconds from the time the query was dispatched to the time
the response is received. The test harness ensures that queries do not run concurrently and
that only one Brick graph is loaded into a database at a time. After a simple preprocessing
step (described below), the test harness loads a graph into a database and executes a query
200 times. We apply a timeout of 5 minutes to each query; due to pathological cases exposed
by the Brick queries, query execution can sometimes take several hours on existing query
processors. Before each run of queries, the test harness restarts each database, removes its
persistent storage and forces it to reload the dataset to ensure a “cold-start” state for each
set of 200 requests.

1https://github.com/gtfierro/brick_database_eval

https://github.com/gtfierro/brick_database_eval
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Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th

VAVEnum 11 7 16 19 13 25 5 1 7 9 1 12 8 7 19 4 0 6 4 1 6
TempSensor 24 10 43 53 16 61 - - - 16 1 18 38 9 47 6 1 8 4 0 6
AHUChildren 13 8 21 20 13 24 - - - 10 1 13 8 7 19 5 1 7 4 1 6

SpatialMapping 20 15 39 66 17 81 - - - 182 5 198 66 11 99 8 1 12 4 1 6
SensorsInRooms 59 12 93 25 16 49 - - - 330 8 356 156 13 174 5 5 7 5 1 8

VAVRelships 9 2 14 22 13 32 - - - 15 1 18 9 8 20 5 1 7 4 1 6
GreyBox 12 7 21 24 16 37 - - - 53 5 65 11 10 20 5 2 6 6 1 8

Table 7.1: Query latency distribution for the small building (CIEE ). All times are in mil-
liseconds. A - denotes the query did not return any results. Bold indicates that the 99th
percentile latency is outside the 100ms bound.

The test harness has been designed to make our benchmark results reproducible. Each
evaluated database has a corresponding Dockerfile [67] for consistent and replicable execution
of each database. We will continue to improve and expand the test harness and benchmark
suite for evaluating the performance of RDF databases and SPARQL query processors on
Brick workloads.

The preprocessing step ensures that all queries run correctly on each database by pop-
ulating a Brick graph with all inverse edges. Many of the relationships defined in Brick
have inverses and either edge can be used in a query even if only one is explicitly defined in
the RDF source triples. For example, an AHU having a bf:feeds relationship with a VAV
could also be expressed as a VAV having a bf:isFedBy relationship with an AHU. These
inverse relationships are defined in the Brick ontology using standard techniques defined by
the OWL ontology [7]. Most of the RDF databases we tested do not implement the neces-
sary inference, so each Brick graph had to be pre-populated with the set of all inverse edges
because the queries were not written with knowledge of which of the inverse edges were used
in the original definition of the building.

All data was gathered on an server with a 3.5 GHz Intel Xeon E5-1650 CPU; all databases
were backed by a dedicated SSD.

7.3 Evaluation of Existing RDF Databases on Brick
Workload

Tables 7.1, 7.2 and 7.3 show the mean, standard deviation and 99th percentile latencies for
each of the benchmark queries (Figure 7.1 and Figure 7.2) over the three Brick buildings
from Table 7.5. We report the distribution for completeness, but 99th percentile latency is
the key metric. We defer discussion of the last column (HodDB) until Chapter 8. We begin
by drawing some broader conclusions about the data, and then examine specific results to
understand how the structure of these databases interacts with the structure of Brick queries
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Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th

VAVEnum 14 9 27 26 17 51 9 2 14 51 13 83 27 12 55 21 6 38 6 2 10
TempSensor 63 29 104 58 20 79 - - - 56 14 88 158 23 214 23 8 40 6 1 9
AHUChildren 19 15 58 60 22 91 - - - 134 17 182 84 20 133 37 10 63 8 2 19

SpatialMapping 5547 108 5752 84 19 114 - - - 224981 633 226782 1788 67 2192 44 13 76 15 3 23
SensorsInRooms > 5min 290 47 401 - - - > 5min 2206 80 2460 69 19 112 31 6 52

VAVRelships 83 29 152 367 31 432 - - - 1243 33 1344 4974 151 5107 312 27 397 42 10 78
GreyBox 174 38 239 305 36 380 - - - > 5min 264 24 341 77 59 116 38 8 59

Table 7.2: Query latency distribution for a large building (Soda ).

Query Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB
µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th

VAVEnum 8 3 12 23 16 40 6 1 9 26 2 36 15 8 24 11 2 14 5 1 8
TempSensor 53 6 73 56 18 79 - - - 32 3 45 91 11 115 12 2 16 5 1 9
AHUChildren 12 2 16 47 19 68 - - - 75 5 93 46 11 59 18 3 14 6 1 8

SpatialMapping 6257 78 6509 60 19 88 - - - 58686 413 59896 786 46 967 21 3 30 9 2 15
SensorsInRooms > 5min 933 52 1005 - - - > 5min 1213 55 1256 30 8 39 10 3 16

VAVRelships 19 2 26 266 35 357 - - - 731 18 807 2748 107 3001 193 25 263 26 9 61
GreyBox 189 73 248 189 47 297 - - - > 5min 158 19 210 130 75 161 26 6 42

Table 7.3: Query latency distribution for a large building (SDH ).

and graphs. Figure 7.3 visualizes the benchmark 99th percentile results to draw attention to
how well each database meets the performance target (the bold heptagon).

Most databases exhibit good query performance (within the 100ms bound) on the small
building (Table 7.1), but substantially degraded performance on the two larger buildings
(Tables 7.2 and 7.3). Only Allegrograph, Blazegraph and Virtuoso are able to complete each
query on the two large Brick buildings in less than 5 minutes2. Virtuoso performs closest to
the 100ms latency target: its 99th percentile latency fails only on VAVRelships and GreyBox.

To understand the demands the Brick workload places on a query processor, we examine
which query features exhibit poor performance across buildings and databases. Over the
suite of queries in Table 7.6, the two primary factors are the number of patterns in a query
and use of the * and + property path operators. The evaluation of each pair of patterns in a
SPARQL query that share at least one variable requires a join, as does the traversal of each
additional edge during the evaluation of patterns involving /, + or * query operators.

Increased pressure on the “join” mechanism in the executing database tends to be one
of the dominating factors in query performance [19, 70]. All databases except for Virtuoso
corroborate this effect; the SensorsInRooms and GreyBox queries consist of over twice as
many patterns as the other Brick queries and demonstrate the worst performance of the
workload. Virtuoso likely sidesteps this issue because it is built over a relational database
with highly optimized joins.

The * and + property path operators make the query execution time dependent on the
2In fact, we have observed Jena taking around 7 hours completing the SpatialMapping query on a

spinning metal drive.
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Path Jena Blazegraph RDF-3X RDFLib Allegrograph Virtuoso HodDB

µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th µ σ2 99th

bf:feeds 16 9 41 29 19 58 10 3 17 62 17 98 29 13 45 24 7 40 8 3 14
bf:feeds+ 19 14 39 61 20 93 - - - 140 20 201 89 21 137 40 12 64 11 4 23
bf:feeds* 20 11 51 63 21 105 - - - 141 21 200 92 21 140 40 11 66 11 4 22

Table 7.4: Effect of property path operators on query execution time. All times are in
milliseconds. This microbenchmark was run against the Soda Brick model.

depth and size of the matching chains in the graph. Use of these operators effectively
increases the number of patterns in the query by the length of the longest predicate chain
in the graph, which results in more terms to be joined. To quantify this effect, we run
the AHUChildren query applying different property path operators to the bf:feeds term.
Table 7.4 shows the mean, standard deviation and 99th percentile of the resulting query
latencies. Allegrograph, Blazegraph, RDFLib and Virtuoso all exhibit a dramatic 200-300%
increase in execution time when the query pattern contains the * or + operators.

This “pattern amplification” happens because * and + can force a database to resort to
slower graph traversal rather than relying on optimized joins between its B-tree indices. The
classic YARS-style index [48] used by most SPARQL processors only stores the “next hop”
edges and nodes from a given node in the graph. This is a consequence of the YARS index
storing each triple individually.

Now that we have established that state-of-the-art RDF databases do not meet the
performance target, we need to (1) understand the cause of this deficiency and use this
understanding to (2) design a query processor to overcome such performance pitfalls.

7.4 Characterization of Brick Workload

Brick Graph Structure
We first compare several Brick graphs to other RDF datasets commonly used for benchmark-
ing RDF database performance. RDF datasets are commonly characterized by the number
of elements (triples, nodes, edges).

Table 7.5 compares the size and density of several real-world datasets (DBPedia In-
fobox [20], LinkedSensor [77] and Wordnet [68]), synthetic datasets (BSBM [19] and
SP2B [91]) and Brick models. We draw several conclusions: firstly, Brick graphs are a
few orders of magnitude smaller (in number of triples and nodes) and tend not to use as
many edge types as other RDF datasets. Secondly, for each edge type, Brick graphs have
a higher average fanout. This increases the size of range queries over YARS-style B-tree
indices, which can cause a drop in performance.
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RDF Dataset Triples Nodes Edge
Types

Avg Out Degree per Edge
Type

R
ea

l Infobox [20] 30,024,092 9,741,482 2063 .0015
Wordnet [68] 8,574,806 2,487,208 64 .0539
Sensor [77] 185,950 86,580 12 .179

Sy
n. SP2B [91] 7,442 4,800 57 .0272

BSBM [19] 7,752 3,298 40 .0588

Br
ick

Soda 8,295 3,429 15 .1613
SDH 7,458 2,893 13 .1983
CIEE 359 96 14 .2671

Table 7.5: Graph properties of some published RDF datasets and three representative Brick
models.

Query Name Patterns Vars + * ? | / UNION
VAV Enum 1 1

Temp Sensors 1 1 X X
AHU Children 2 2 X

Spatial Mapping 5 3 X
Room Sensors 11 4 X X X X
VAV Relships 5 5 X

Grey Box 12 8 X X

Table 7.6: Properties of the benchmark SPARQL queries

Impact of SPARQL 1.1 Features on Query Processor
Recall from Chapter 4 that a subset of SPARQL 1.1 features meets the requirements for a
Brick query processor (Table 4.2). Table 7.6 enumerates which SPARQL 1.1 features are
used by the benchmark SPARQL queries from Figures 7.1 and 7.2 along with the number of
triple patterns in each query.

The property path operators +, *, ? and / allow flexible matching of arbitrary-length
chains of relationships. In Soda , the longest chain of bf:feeds is of length 2 — from a
brick:AHU to a brick:VAV to a brick:HVAC Zone — so the AHUChildren query could be
rewritten to explicitly search for bf:feeds paths of length 1 and of length 2. However, this
would limit the portability of the query and require prior knowledge of the graph structure.
The Brick class hierarchy, which has many rdfs:subClassOf chains which extend up to a
length of 9, exacerbates pattern amplification, especially in queries that use the common
rdf:type/rdfs:subClassOf* construction.

The implementation of several SPARQL features not required by Brick can affect the
performance of a query processor. Most significantly, because the update rate of Brick graphs
is low, we can consider a Brick graph to be immutable within a “generation” bookended by
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batched updates. This removes the need to implement SPARQL UPDATE, which adds triples
to a graph at any time. Brick also only stores strings — either URIs representing nodes and
edges, or literals — and thus does not require implementing numerical constraints or filters.

A Brick query processor should focus on making property path operators performant be-
cause these are a primary time consumer, even on small graphs. As we explore in Chapter 8,
adopting a batched/generational approach to updating graphs gives a query processor the
opportunity to aggressively cache the results of property path operators because apps are
likely to query chains of predicates more often than those chains are updated.

Caching the results of a Brick query in an application is discouraged because the appli-
cation would now operate on stale metadata if the underlying model changes; it is easier to
maintain consistency and performance if apps query the model each time and defer this logic
to the query processor .

RDF Index Structures
Unsurprisingly, the performance analysis of existing RDF databases suggests that “join”
performance is a primary component of SPARQL query execution time. The factors that
affect join performance are the time to find the values to join and the time to perform the
join itself. Both of these factors depend on the RDF index structure.

Now that we understand the structure of Brick graphs and queries, we delve into how
common design decisions made for large-scale RDF graph indices often lack good performance
on small graphs with long predicate chains.

The main reason for this poor performance is the choice of a triple-oriented index struc-
ture. A triple-oriented index, initially proposed by the YARS query processor [48], uses a
collection of B-tree indices to index the dataset by all triples, pairs and single values that
could be involved in a query. Each node and edge (subject, predicate and object) is assigned
a short, unique identifier. Each triple is rewritten using these IDs before being arranged and
inserted into six covering indices: SPO, SOP, OSP, OPS, PSO, POS. The indices make use
of fast B-tree range traversal to enumerate matching triples; for example, the SPARQL term
?ahu rdf:type brick:AHU could find all matching subjects by traversing the POS index
and looking for all entries with a PO prefix matching the concatenation of rdf:type and
brick:AHU. YARS [48], RDFLib [104], RDF3X [72], Blazegraph [100] and the TDB engine
behind Jena [103] all use some form of this index structure.

B-trees are often used as index structures because they have logarithmic scaling properties
and provide good spatial locality. However, on small datasets the cost of B-tree range queries
can begin to outstrip the rest of the joining computation, and in the case of RDF databases,
having multiple separate B-trees is not ideal for maintaining spatial locality. Consider the
AHUChildren query from Figure 7.1: the query processor will first find all matching subjects
for the term ?ahu rdf:type brick:AHU using the POS index, but cannot reuse that index in
order to match the next term ?ahu bf:feeds+ ?x, which might use the PSO or SPO indices.
B-tree spatial locality depends on the order of keys, and because SPARQL queries do not
follow lexicographic or numerical orderings, it is difficult to make use of that property. This
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is especially true the more connected a graph is because there are multiple ways of reaching
the same node, which will likely be stored uncontiguously. This effect is exacerbated by
the property path operators /, +, * because the sequence of edges to be traversed is only
discovered sequentially as the query is evaluated.

Our findings suggest the typical design decisions made for large sparse RDF datasets do
not “scale down” to the small dense graphs typical of Brick. Brick graphs are smaller and
tend to have longer predicate chains and a higher out-degree per edge type than other RDF
graphs. Further, in contrast to many RDF workloads Brick queries are written to traverse
a family of graphs, rather than a specific instance. As a result, Brick queries use many
SPARQL 1.1 operators — UNION or the +, * and / property path matching operators — that
involve traversing many edges. This use-case presents a challenge for many modern RDF
databases which use YARS-style B-tree index structures [48].

7.5 Reflection
This chapter characterizes the graphs and queries that constitute the latency-sensitive Brick
workload and evaluates the performance of existing RDF databases and SPARQL query
engines against that workload. The Brick workload consists of Brick graphs that are smaller
than other RDF datasets, use fewer edge types (predicates), and possess longer predicate
chains. Additionally, Brick queries make heavy use of query operators that match arbitrary-
length chains of predicates. Traversing these long chains is intrinsic to the Brick workload
because they allow query authors to express uncertainty in the structure of the graph, which
increases the portability of queries. These workload properties present performance issues
that are pathological to the design of current SPARQL query engines. This motivates the
design of a query processor designed specifically for Brick graphs.
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(a) Allegrograph result for Soda and SDH (b) Blazegraph result for Soda and SDH

(c) Apache Jena result for Soda and SDH (d) RDFLib result for Soda and SDH

(e) Virtuoso result for Soda and SDH (f) HodDB result for Soda and SDH

Figure 7.3: Radar plots showing the 99th percentile latency for each of the benchmark queries
over the two larger buildings. All times are in milliseconds. The bold line represents the
100ms target. Note the log scale.
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Chapter 8

Design and Implementation of
Performant Brick Query Engine

Having established that modern RDF databases do not meet the performance requirements
for real-world Brick applications, we now present the design of HodDB, a RDF/SPARQL
database specialized for the Brick workload. The key insight is to use the structure of
Brick graphs to drive the design of a new RDF index structure that indexes nodes/entities
rather than full triples. The structure enables a fast graph traversal approach to evaluating
SPARQL queries. In addition, the Brick workload enables several simplifying assumptions
that can increase performance: (1) take advantage of a read-heavy workload with rare,
batched writes to implement aggressive caching, (2) cache inferences by saving chains of
predicates as they are traversed, and (3) implement the subset of SPARQL 1.1 features that
fulfill the requirements of a Brick query language (Chapter 4).

We first present an architectural overview of the HodDB storage engine and index, and
then discuss how the HodDB query engine uses the index to evaluate SPARQL queries,
followed by an evaluation of HodDB on the established Brick workload. The discussion
below refers to the architectural overview in Figure 8.1.

We built HodDB mostly as an exploration of why other RDF databases were so slow
on the Brick workload. As a result, HodDB follows standard design paradigms and has not
been subjected to a concentrated optimization effort, but nonetheless presents an interesting
alternative design point in the RDF database space.

8.1 Design of Multi-Index RDF Storage Engine
HodDB stores the RDF triples constituting a Brick graph in a family of index structures,
each implemented over LevelDB 1, a popular embedded key-value database with support for
range queries and transactions. All HodDB indices are built over a key-value abstraction.

1We use a Go port: https://github.com/syndtr/goleveldb

https://github.com/syndtr/goleveldb
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<sub pred obj>
<sub pred obj>

SELECT ?floor ?room ?zone WHERE {
    ?floor rdf:type brick:Floor .
    ?room rdf:type brick:Room .
    ?zone rdf:type brick:HVAC_Zone .
    ?room bf:isPartOf+ ?floor .
    ?room bf:isPartOf+ ?zone .
}

operator ...

operator ...

operator ... C
t
x

Figure 8.1: Architecture of HodDB

Entity and Hash Index: RDF triples consist of URIs and literal values, which tend
to be large. On the SDH dataset, the average triple uses 174 bytes with the full URIs, and
50 bytes without. As a result, most RDF databases do not work directly with the raw URIs
and literals. Instead, many databases use a dictionary to translate between long strings and
short unique numerical identifiers; for example, Blazegraph assigns each URI a unique 8-byte
integer value and Jena uses a 16-byte MD5 hash.

HodDB uses a 4-byte hash of the string value, calculated using the Murmur3 hash function
which has been shown to have good performance and minimal hash collisions. While nothing
architecturally prevents HodDB from using larger hashes and supporting more than 232

entities in a graph, we do not believe Brick graphs will ever reach this size, and using 4-
byte values instead of 8 or 16-byte values decreases the index size and thus reduces byte
movement.

HodDB saves a 2-way mapping between a string and its 4-byte hash. The Entity Index
(Figure 8.1) stores the mapping from string to 4-byte hash, and the Hash Index stores
the inverse. The rest of the storage and query engines operate entirely on these hashes,
which are translated back into the original string values only when the query results are
returned. Hash conflicts can arise when new entities inserted; HodDB handles hash conflicts
by appending nonces to the input to the Murmur3 hash function and storing the first nonce
that successfully yields a new hash. This cost is only incurred the first time HodDB sees an
entity; subsequent inserts of the same entity are idempotent.

Node Index: The node index stores a fully elaborated adjacency list representation of
the RDF graph. The index keys are the 4-byte hashes of all subject and object entities in
the graph; no distinction is made between whether an entity was used as a subject or object
in the key. Each index value contains 2 MsgPack [41]-encoded dictionaries: In and Out. In
associates the 4-byte hash of a predicate with an array of subject 4-byte hashes for which
the keying entity was the object. Out does the same but for RDF triples in which the keying
entity was the subject.
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brick:Room

bldg:Room_1

bldg:TS_1

brick:ZATS

...

bf:adjacentTo bldg:Room_2

In Edges

Node Index

Node List

rdf:type brick:Room

Out Edges Node List

bf:isPartOf bldg:Zone_1

bf:isLocOf bldg:TS_1

rdf:type bldg:Room_1

In Edges Node List

bldg:Room_2

bf:hasLocation bldg:TS_1

bf:adjacentTo bldg:Room_2

bf:hasPart bldg:Zone_1

Figure 8.2: HodDB Node Index structure for a small graph.

Figure 8.2 shows this structure for the brick:Room and bldg:Room 1 entities in Fig-
ure 8.3. Because Brick defines inverses for the bf:adjacentTo, bf:feeds, bf:isLocationOf
and bf:isPartOf edges in the original graph, the node index populates the inverse edges in
the index even though the triples were not explicitly defined in the source. This obviates the
need for the elaborate preprocessing step we applied to other RDF databases that inserts
inverse relationships into the graph (Chapter 7).

There are several benefits to this structure. The first is because the index is keyed by
individual entities: the query engine only needs one get() operation against the backing
key-value store to get all triples involving that entity as either a subject or an object. This
gives good spatial locality; many Brick queries tend to access several edges for the same
entity, so having the set of in- and out-edges already in memory while continuing to evaluate
a query avoids unnecessary trips to the backing key-value store..

Secondly, this structure accelerates the process of finding candidate values to join dur-
ing query evaluation. We can decompose the performance of a join into two components:
assembling the two sets to be joined, and performing the join itself. The join mechanism is
described in §8.2. In denser graphs that have a higher average fanout per node, like Brick
models (Figure 7.5), iterating through a B-tree index can result in worse performance than
HodDB’s approach of simply serializing the list of edges. This is one possible explanation
for why HodDB has better performance on the VAVEnum query, whose performance depends
most directly on this property (Tables 7.1, 7.2 and 7.3). The predicate index is similar in
structure to the node index, but uses predicate/edge hashes as keys.

Path Index: The path index accelerates evaluation of queries involving chains of
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Figure 8.3: Brick classes and relationships (constituting a Brick model) for the HVAC and
lighting processes in the sample building in Figure 3.3.

predicates by caching the set of connected entities the first time the query is run. When
HodDB sees a query pattern involving + or *, it checks the path index using the 4-byte
hash of the chained predicate, e.g. rdfs:subClassOf*. If the entry does not exist, HodDB
evaluates the query using graph traversal (as explained below), and keeps track of all entities
matched when evaluating the chained predicate. It saves the result in the path index, which
has the same structure as the node index, but stores full set of “1 hop or more” entities in
the In and Out dictionaries. For all subsequent queries involving that chain, HodDB can use
the cached results.

Like most other caches in HodDB, the path index is discarded when new data is loaded
in. Data ingestion is rare enough in current Brick workloads that the cost of rebuilding the
path index is not prohibitive, thanks to HodDB’s fast graph traversal. Future releases of
HodDB will use background processing to preemptively rebuild the path index when this
happens.

8.2 Design of SPARQL Query Engine
We now describe HodDB’s query evaluation engine, depicted in Figure 8.1. HodDB adopts
a graph-traversal approach to evaluating SPARQL queries: starting from an initial set of
entities, HodDB uses the patterns in a SPARQL query to direct a traversal of the graph
using the node and path indices. We now follow the sequence of steps involved in evaluating
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SPARQL Pattern Operation
?s p o Resolves all nodes ?s that have edge p to node o.
s ?p o Resolves all nodes ?p that connect nodes s and o.
s p ?o Resolves all nodes ?o to which node s has edge p.

?s ?p o Resolves all pairs of nodes ?s and edges ?p that connect to o.
s ?p ?o Resolves all pairs of edges ?p and nodes ?o that originate at s.

?s p ?o Resolves all pairs of nodes ?s, ?o connected by edge p
?s ?p ?o Resolves all triples.

Table 8.1: List of all HodDB query operators. Each operator executes against resolved values
in the query context when possible to avoid having to query the node index.

a query in HodDB.
Dependency Graph: HodDB parses SPARQL queries into a set of patterns qualified

by the number and name of the variables they contain. Most patterns look like RDF triples
but with one or more of the subject, predicate and object term replaced with a variable
(e.g. ?vav rdf:type brick:VAV). HodDB arranges the patterns into a DAG representing
the dependencies between them: a pattern A is dependent on a pattern B if B is more
restrictive (contains fewer variable terms) than A and B contains at least one variable from
A.

Query evaluation starts at the sink nodes of the dependency DAG, which are the most
restrictive patterns. More restrictive patterns allow the query evaluator to “resolve” a vari-
able to a set of candidate entities, which can then be carried through the set of patterns
and joined with other sets to build up the result set. An important property of the depen-
dency graph is that it decouples the expression of a query from its execution; in many RDF
databases, the order of triple patterns can severely impact execution time [98]. HodDB’s
dependency graph serves as a basic form of selectivity estimation for reducing the number
of entities that need to be joined because more restrictive patterns tend to resolve to fewer
candidate entities.

Query Planner: The query planner serializes the dependency graph into a flat list of
triple patterns and associates an operator with each pattern according to the positioning of
variables in that pattern (Table 8.1). An operator is a small piece of code that takes a triple
pattern and a query context as arguments and, using the node and path indices, performs
the requisite graph traversals and joins to further filter or expand the set of candidate result
entities.

Query Executor: The query executor runs the list of operators output from the query
planner, using a query context object to store all intermediate state. Once all operators have
been executed, HodDB iterates through the rows in the query context relation and extracts
the values corresponding to the variables in the SELECT clause. Up until this point, HodDB
operates entirely on the 4-byte hashes of the entities; when generating the result set, HodDB
uses the hash index to translate the hashes into the actual string values.
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Query Operators: Each query operator contains a relation keyed by the variables in
its corresponding query pattern. For each query, HodDB creates a query context containing
a relation keyed by all variables in the query. When each operator executes, if a variable
contained in the operator has values in the context relation, then the operator uses those
values instead of referring to the node index. This aids performance because the values in
the context relations are in memory and typically smaller than the full graph. An operator
with two or more variables may consult both the query context relation and the node index
to find the necessary values.

During query execution, HodDB constructs a bitmap for each binding of a variable to
a value encoding which rows of the context relation contain that value. HodDB joins the
output of each operator with the context relation to form the results of the query using a
modified bitmap join [26]. HodDB uses the Go port of the Roaring Bitmap library [25].

HodDB’s relation objects contain an index mapping each value of each variable to a
bitmap of the rows where that variable has been resolved to that value. Joining two rela-
tion objects (always between an operator’s relation and the query context relation) involves
performing a logical AND between the two relation objects for each value of each variable
used as the target of the join. The output of the AND yields a set of rows whose values are
copied into the query context relation. These relations are created anew for each query: the
number of possible indexes for a triple pattern is too large for HodDB to create them all at
insert time.

Result Cache: One benefit of the batched update model is HodDB knows it only needs
to evict its caches when a new update arrives. Between updates, HodDB can optionally cache
query results to avoid reevaluating a query when the underlying Brick model has not changed.
The HodDB result cache is keyed by an pattern-order-agnostic representation of SPARQL
queries, so queries do not have to be byte-equivalent in order to hit the result cache. 2 We
disabled the result cache for all measurements of HodDB, but it generally returns results in
<1ms on a cache hit.

8.3 Performance Evaluation of SPARQL Query
Engine

Microbenchmarks: Referring back to Table 7.4, HodDB’s path index means that property
path operators only induce a 38% overhead on query execution time. Table 8.2 compares
disk usage for each graph for each database. HodDB does not apply specialized compression
techniques; nonetheless, these results indicate that HodDB’s optimized index structure does
not raise any disk utilization concerns.

HodDB’s design decisions target small, dense graphs that typify Brick models. Buildings,
and therefore Brick models, will only get so large, but an obvious question is how well HodDB

2Which is how MySQL’s optional result cache works
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Building Jena Allegrograph Blazegraph RDFLib Virtuoso RDF-3X Hod
CIEE 1.5MB 522MB 4.9MB 7.2MB 47MB 800KB 668KB
Soda 5.5MB 522MB 8.8MB 16MB 47MB 2.1MB 2.0MB
SDH 2.5MB 522MB 6.0MB 9.6MB 47MB 1.2MB 1.6MB

Table 8.2: Disk space usage for each graph. HodDB’s indices are small — about the same
size as RDF-3X’s compressed B-trees.

Number of VAVs 1 10 100 1000 10,000, 50,000 100,000
Execution time of VAVEnum .58 .60 1.12 5.28 52.89∗/20.02 354.63∗/121.82 861.62∗/309.52

Table 8.3: Microbenchmark to estimate the impact of Brick model size on HodDB perfor-
mance. VAVEnum query against 6 progressively larger Brick models consisting entirely of VAV
instances, constituting a “worst-case” scenario. We observe that HodDB can maintain sub-
100ms query latencies for graph sizes <50k triples. The starred values are the full execution
time, dominated by the time for the benchmarking client to handle the amount of data being
returned. The unstarred values are the raw query execution time of the database, ignoring
any time spent on the client.

scales to larger graphs, and at what point do the design trade-offs swing in favor of the
common YARS-style triple-oriented indices used by most RDF databases.

To estimate the scaling properties of HodDB, we construct a “worst-case” Brick model
consisting of N instances of Variable Air Volume (VAV) boxes and measure the query latency
of the VAVEnum query from our earlier evaluation (Figure 7.1). This scenario constitutes
one of the worst-case scenarios for HodDB’s node index. Because the node index is fully
elaborated and all nodes in the graph are 1-hop away from each other (all connected through
the brick:VAV class node), each of the N nodes needs to store the other N − 1 nodes in
its entry. This increases both the read time from the underlying LevelDB store, but also
the deserialization time for the index entry on the first load. As such, we would expect the
execution time for the VAVEnum query to be exponential in the number of VAV instances.

Table 8.3 contains the result of this experiment for exponentially large numbers of nodes.
Ignoring client latency, we find that HodDB starts to miss the sub-100ms target query latency
around the size of a graph of 50,000 VAV instances. For context, the two large buildings (each
with less than 10,000 nodes) used in the §7.2 evaluation are representative of Brick model
size and complexity. The benchmark results suggest that the current design of HodDB will
be sufficient for existing use cases of Brick, but significant slowdown is possible in extreme
cases. Future evaluation should adopt methods from [19] or [91] for autogenerating RDF
graphs that follow an approximate structure; this would yield a more realistic graph to use
for scalability measurements.

Brick Workload: We now refer back to Tables 7.1, 7.2 and 7.3; the last column shows
the query latency distribution for HodDB. The mean latencies are all below 50ms, and the
99th percentile latencies (influenced mostly by garbage collection pauses) are all below the
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performance target of 100ms. To more closely emulate a real deployment these query results
all include the overhead of the benchmarking Python client, which contributes a small <4ms
latency to all requests.

8.4 Metadata-driven Applications Enabled by HodDB
HodDB enables new modes of interaction with a Brick model. We explore three applications
here: The first application is an interactive query interface that progressively visualizes the
class structure of a Brick graph in response to user input. The second application uses Brick
queries to define the structure of data matrices such as for training models or performing
an analysis. The third application is a scheduler service that uses Brick queries to define
control relationships.

Interactive Query Visualizer
Visualization is a common technique for making sense of RDF graphs [89, 39, 49, 32]. Most
approaches either have users start from a node in the graph and explore outwards, or start
from the full graph and apply filters to restrict what is shown. The problem with these
approaches is they either limit the generalizability of the visualization (starting from a single
node and exploring outward does not inform the user about the larger structure of the graph),
or requires the user to be familiar with the structure of the graph (such as to write effective
filters to restrict the graph).

Another approach used by tools such as Protege [74] is to visualize the ontologies used in
an RDF graph. The corresponding visualizations are often much smaller and more manage-
able than the full graph. However, they only inform the user about the general structure of
graphs using that ontology, rather than the structure of a specific graph. The Brick ontology
contains hundreds of classes of equipment and points that do not exist in every building. A
naive visualization of the Brick ontology would not inform a user which classes are used in
a particular Brick model, and how those classes are related.

HodDB proposes a distinct method for Brick models that allows a user to progressively
explore a Brick model’s class structure. The key idea for class structure visualization is
that the cardinality and complexity of a graph visualization can be mitigated by showing
how types of nodes are connected, rather than how the nodes themselves are connected. All
nodes in a Brick model are instances of one or more classes, so HodDB can extract the class
structure of a graph by clustering nodes by their class. Each node’s class can be found by
following its rdf:type edge; every node in a Brick model has an rdf:type edge. HodDB
can perform this for a full Brick model as well as the results of a SPARQL query against
that model, which enables progressive visualization of the class structure.

HodDB v0.5.5 3 and onward ship with a web frontend implementation of this
method. Figure 8.4 is a screenshot of a sample interaction. The user begins with the

3https://github.com/gtfierro/hod/releases/tag/v0.5.5

https://github.com/gtfierro/hod/releases/tag/v0.5.5
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Figure 8.4: Demonstration of class structure visualization in HodDB. Highlighted nodes are
those selected for expansion by the user.

brick:Thermostat class node. Clicking that node reveals the relationships (edges) and
classes of the “1-hop” neighbors of every instance of brick:Thermostat in the model. Of
these newly revealed classes, the user selected the brick:RTU (Rooftop Unit) class, then the
brick:Building Electric Meter and brick:HVAC Zone classes. Users can also deselect
nodes to collapse their edges.

HodDB tracks each node the user clicks and generates a valid SPARQL query corre-
sponding to the revealed class structure that resolves to the actual instances of those classes.
Figure 8.5 contains an example of a generated query. HodDB resolves these generated queries
and then applies the class structure visualization method described above. Each node the
user clicks adds three more patterns to the generated SPARQL query, requiring a large num-
ber of joins during query execution. HodDB’s procedure for generating these three patterns
is as follows:

• Generate a new SPARQL variable ?X

• Output a pattern linking this variable ?X to the existing query; this involves retrieving
the label of any edge connecting the clicked class node to the rest of the graph

• Output the triple pattern identifying all nodes ?X that are instances of the class clicked
by the user: ?X rdf:type <clicked class> .

• Generate 2 new SPARQL variables ?P and ?O
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Figure 8.5: Autogenerated query from the interaction in Figure 8.4. Variable names are
autogenerated. The SELECT clause contains the variables representing nodes selected by the
user. HodDB drops the autogenerated terms containing 3 variables when returning the query
to the user

• Output the triple pattern identifying all outgoing edges and nodes for the instances
?X: ?X ?P ?O .. This is dropped when exposing the query to the user (Figure 8.5).

Optimization of the generated queries is an area of future work. Currently, generated
queries do not make use of the ?, +, / or * operators. Fortunately, the design of HodDB’s
query processor means that the increasing complexity of the query does not hinder the
responsiveness of the interface.

These generated queries can also be returned to the user, which means that a user can
simultaneously and instantaneously view both the textual representation of a query and
a digestable graphical representation of that query’s results. We have found this to be a
powerful tool in introducing new users to the Brick schema.

Integrating Brick with HodDB
HodDB enables building applications to take advantage of the contents and structure of a
Brick model. Applications can embed application-specific metadata in a Brick model by
adding RDF literals (strings) as nodes in the graph and relating these to existing nodes in
the model. We will explore two services that use HodDB to tightly integrate with a Brick
model.

Brick-driven Datasets

Figure 8.6: Example of augmenting a Brick model representation of a temperature sensor
with a 36-byte UUID used for historical data access.

The Metadata-driven Data Access Layer (MDAL) service binds points of sensing and
actuation as represented in a Brick model to streams of historical data stored in a timeseries
database. Users use Brick queries to describe the building data they want to download from
MDAL, meaning that the retrieval of datasets can be as portable as a Brick query. The
specific datasets retrieved through MDAL will be different from building to building, but
their structure will be consistent which aids in the construction of portable analytics and
model training.

MDAL makes use of existing monitoring infrastructure 4 that periodically polls the state
of all points in a building (such as temperature sensors and damper position setpoints) and

4Provided by the XBOS Project: https://docs.xbos.io/

https://docs.xbos.io/
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persists this data in BTrDB [5], a fast and scalable timeseries database. BTrDB uniquely
identifies each point (sensor, actuator, setpoint) using a 36-byte UUID, which can be used
to retrieve the historical values of that point. MDAL adds these 36-byte UUIDs to a Brick
model as RDF literals, and relates them to the correct point using the edge label bf:uuid
(Figure 8.6).

MDAL queries describe the composition of the desired dataset; Figure 8.7 contains a
representative query. The Variables and Composition parameters define which points
constitute the desired dataset. The Variables parameter defines the collections of points
in the Brick model desired by the user. If a Brick model includes the engineering units of a
point, then MDAL can also provide unit conversion. In Figure 8.7, the user is interested in
both inside and outside temperature. When MDAL executes a query, it evaluates the Brick
queries in each variable definition to the corresponding set of UUIDs. These are substituted
into the Composition parameter, which defines the columns of the returned dataset. The
Selectors and Time parameters are passed through to BTrDB to specify the resampling
policy and temporal range of the desired dataset.

Figure 8.7: Sample MDAL query retrieving internal and external temperature data for a
deployment resampled to 1-hour means.

Brick-driven Scheduler

Figure 8.8: Python pseudocode for a simple thermostat controller that enacts the same
schedule over all HVAC zones

Figure 8.9: Python pseudocode for a thermostat controller that learns its schedule from a
model trained on occupancy data from the rooms conditioned by the thermostat

A scheduler is a simple example of how HodDB can store configuration for a control
process in a building. As with MDAL, the scheduler uses RDF literals to embed external
configuration inside a Brick model. Our simple scheduler augments a Brick model with
REST API endpoints of the thermostats in a building: the endpoint URLs are encoded as
RDF literals and associated with thermostat nodes using a new bf:uri relationship.

The simplest scheduler we can write using this augmentation of the Brick model can dis-
cover all controllable thermostats in a building and modulate them on some shared schedule.
Figure 8.8 contains Python pseudocode for such a schedule. Every minute, the scheduler
executes a Brick query that retrieves all of the controllable thermostats in the building along
with their API endpoints and which HVAC zone they control. The advantage of evaluating
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this query every time the scheduler executes is the scheduler will automatically discover and
actuate new or altered thermostats without any administrative intervention. In this way, the
Brick model acts as the “single point of truth” for the current configuration of a building.
Writing controllers to consult the Brick model means they will always have a consistent view.

We can combine MDAL with a scheduler service to implement a portable thermostat
controller that learns occupancy schedules. First, the controller executes a simple Brick query
to retrieve all of the HVAC zones in the building (?zone rdf:type brick:HVAC Zone). For
each zone, the controller then constructs a query that retrieves the API endpoint for that
zone’s thermostat and UUIDs of all occupancy sensors for all rooms in that HVAC zone.
The controller uses this query in an MDAL request to fetch recent occupancy data for that
zone and trains a model to predict an occupancy schedule for that zone. The query also
yields the API endpoint needed to enact the schedule according to the occupancy predictions.
Figure 8.9 contains the Python pseudocode for part of this controller. For simplicity, we elide
the bookkeeping code required to decouple the training of these occupancy models from their
execution as schedules.

These services illustrate how HodDB can serve as a point of integration between a Brick
model – a logical representation of the resources in a building and how they are related – and
the infrastructure that performs the monitoring and control of those resources. Construct-
ing services, controllers and analytics to retrieve their configuration information through a
portable Brick query means these processes can be deployed on multiple buildings without
an intensive manual effort.

8.5 Reflection
We use the characterization of the Brick workload to develop HodDB, a new RDF/SPARQL
query processor built around an alternative RDF index structure providing fast query eval-
uation. HodDB consistently meets the 99th percentile latency target of 100ms, and enables
a new class of portable, metadata-driven, Brick-based applications for advanced control and
monitoring of heterogeneous buildings. Finally, we demonstrate several new applications
enabled by HoddB’s quick execution of Brick queries. The developed applications push the
state of the art in how RDF models are visualized and integrated with analytics and control
services in the built environment.
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Chapter 9

Conclusion and Future Work

9.1 Industrial Collaboration
The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
is a professional society and body for standards development. The BACnet committee within
ASHRAE is developing standard 223P – “Designation and Classification of Semantic Tags
for Building Data” – which aims to enable semantic interoperability in buildings. The teams
behind Brick and Project Haystack are collaborating with the BACnet committee on the
development of the standard1. Effort is ongoing, but a public release of the standard is
expected in 2019.

Project Haystack has formed a new working group (WG551)2 to create a type system for
tags applied to entities. The goals are to reduce ambiguity in combinations of tags (discussed
in this thesis) and to automatically generate documentation for valid combinations of tags.
The type system will be formalized using an ontology expressed in the RDF data model,
which will enable it to be linked directly with the Brick schema.

Johnson Controls, a large international BMS vendor, has invested in the creation of
Brick Consortium, Inc, a nonprofit organization focused on developing the Brick schema and
specifications for Brick-compliant products.

9.2 Brick Developments
Brick is central to several developing projects.

Mortar[37] is an open testbed for the development and evaluation of building analytics
software. It contains timeseries data for over 100 buildings, spanning 10 billion data points

1https://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/
ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-
unified-data-semantic-modeling-solution

2https://web.archive.org/web/20181120082921/https://project-haystack.org/forum/topic/
551

https://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://web.archive.org/web/20181120082921/https://project-haystack.org/forum/topic/551
https://web.archive.org/web/20181120082921/https://project-haystack.org/forum/topic/551
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and 26,000 data streams. Each of the buildings has an associated Brick model that provides
the association between points in the building subsystem and their corresponding archival
data streams. Mortar aims to create an open library of data analytics applications that
leverage Brick to make their implementations portable across buildings.

XBOS is an open-source distributed operating system for buildings that can interface
with a wide array of building technologies from building management systems to off the
shelf commercial devices such as smart thermostats. XBOS enables real-time monitoring
and control of building systems, the collection, modeling and analytics of building data, and
advanced management and coordination of building systems. XBOS uses Brick to describe
the building systems it interfaces with as well as the generic interfaces provided by XBOS.
Software that interacts with XBOS can thus remain agnostic to the particular APIs for the
underlying BMS and other hardware contained in a building. This enables portable building
management software.

9.3 Conclusion
The heterogeneity of building representation presents a major bottleneck to the fast and
low cost deployment of energy efficiency applications. This thesis presents the design and
implementation of Brick, a new standard metadata schema for buildings that fulfills the need
for an expressive, complete and usable description of buildings for enabling portable appli-
cations. Portable applications offer a means for the broad deployment of energy efficiency
applications.

Brick is motivated by the failure of existing metadata standards to capture the entities
and relationships required by the suite of existing and future energy efficiency applications.
Existing standards provide brittle, application- or vendor-specific descriptions of existing
building subsystems, but are unable to capture the structure or processes of those systems
in a general way. Brick is defined with an ontology expressed in the RDF data model.
The ontology defines Brick’s extensible class hierarchy, which organizes the valid types of
building entities and assets, and Brick’s relationships, which express the context necessary
for portable applications. The design of Brick is shown to describe more than 98% of points
and equipment defined in existing BMS – demonstrated on six real-world buildings – and
generalizes gracefully to diverse building subsystems.

The standard SPARQL query language is shown to fulfill the requirements of a Brick
query language, and is able to express the application requirements demonstrated by 15 real-
world applications. However, most existing implementations of SPARQL are not sufficiently
performant to meet the latency requirements of Brick queries used in real applications.

The thesis characterizes the graphs and queries that constitute the Brick workload, find-
ing that Brick graphs are smaller than other RDF datasets, use fewer edge types (predicates),
and possess longer predicate chains. Brick queries make heavy use of query operators that
match arbitrary-length chains of predicates. Traversing these long chains is intrinsic to the
Brick workload because they allow query authors to express uncertainty in the structure of
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the graph, which increases the portability of queries. The thesis then presents a performance
evaluation of current, popular RDF databases against the Brick workload, and demonstrates
that none of them meet the latency target of 100ms.

This characterization of the Brick workload is used to to develop HodDB, a new
RDF/SPARQL query processor built around an alternative RDF index structure provid-
ing fast query evaluation. HodDB consistently meets the 99th percentile latency target of
100ms, and enables a new class of portable, metadata-driven, Brick-based applications for
advanced control and monitoring of heterogeneous buildings. This enables several new ap-
plications enabled by HoddB’s quick execution of Brick queries. The developed applications
push the state of the art in how RDF models are visualized and integrated with analytics
and control services in the built environment.
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Appendix A

Brick Evaluation Queries

Figure A.1: Queries for the Energy Apportionment application

Figure A.2: Queries for the Model-Predictive Control application

Figure A.3: Queries for the Demand Response application

Figure A.4: Queries for the Occupancy Modeling application
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Figure A.5: Queries for the Non-Intrusive Load Monitoring application

Figure A.6: Queries for the Web Displays application

Figure A.7: Queries for the Participatory Feedback application

Figure A.8: Queries for the Fault Detection and Diagnosis application



89

Bibliography

[1] Jans Aasman. “Allegro graph: RDF triple database”. In: Cidade: Oakland Franz In-
corporated (2006).

[2] Yuvraj Agarwal et al. “Duty-cycling buildings aggressively: The next frontier in HVAC
control”. In: 10th Information Processing in Sensor Networks (IPSN). IEEE. 2011,
pp. 246–257.

[3] Yuvraj Agarwal et al. “Occupancy-driven energy management for smart building
automation”. In: Proceedings of the 2nd ACM workshop on embedded sensing systems
for energy-efficiency in building. ACM. 2010, pp. 1–6.

[4] Mohamed H Albadi and Ehab F El-Saadany. “A summary of demand response in
electricity markets”. In: Electric power systems research 78.11 (2008), pp. 1989–1996.

[5] Michael P Andersen and David E Culler. “BTrDB: optimizing storage system design
for timeseries processing”. In: Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST 16). 2016.

[6] Renzo Angles and Claudio Gutierrez. “The expressive power of SPARQL”. In: Inter-
national Semantic Web Conference. Springer. 2008, pp. 114–129.

[7] Grigoris Antoniou and Frank Van Harmelen. “Web ontology language: Owl”. In:
Handbook on ontologies. Springer, 2004, pp. 67–92.

[8] Michael Ashburner et al. “Gene Ontology: tool for the unification of biology”. In:
Nature genetics 25.1 (2000), pp. 25–29.

[9] Bharathan Balaji et al. “Brick: Towards a unified metadata schema for buildings”. In:
Proceedings of the ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments (BuildSys). ACM. 2016.

[10] Bharathan Balaji et al. “Genie: a longitudinal study comparing physical and software
thermostats in office buildings”. In: Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM. 2016, pp. 1200–1211.

[11] Bharathan Balaji et al. “Zodiac: Organizing Large Deployment of Sensors to Create
Reusable Applications for Buildings”. In: Proceedings of the 2nd ACM International
Conference on Embedded Systems for Energy-Efficient Built Environments. ACM.
2015, pp. 13–22.



BIBLIOGRAPHY 90

[12] Vladimir Bazjanac and DB Crawley. “Industry foundation classes and interoperable
commercial software in support of design of energy-efficient buildings”. In: Building
Simulation’99. Vol. 2. 1999, pp. 661–667.

[13] J. Beetz, J. Van Leeuwen, and B. De Vries. “IfcOWL: A case of transforming EX-
PRESS schemas into ontologies”. In: Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 23.01 (2009), pp. 89–101.

[14] Willy Bernal et al. “MLE+: a tool for integrated design and deployment of energy
efficient building controls”. In: Proceedings of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings. ACM. 2012, pp. 123–130.

[15] Tim Berners-Lee, James Hendler, Ora Lassila, et al. “The semantic web”. In: Scientific
american 284.5 (2001), pp. 28–37.

[16] Arka A Bhattacharya et al. “Automated metadata construction to support portable
building applications”. In: Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments. ACM. 2015, pp. 3–12.

[17] Arka Bhattacharya, Joern Ploennigs, and David Culler. “Short Paper: Analyzing
Metadata Schemas for Buildings: The Good, the Bad, and the Ugly”. In: Proceedings
of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments. ACM. 2015, pp. 33–34.

[18] Bidgely.
[19] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. http://wifo5-

03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/. 2009.
[20] Christian Bizer et al. “DBpedia-A crystallization point for the Web of Data”. In: Web

Semantics: science, services and agents on the world wide web 7.3 (2009), pp. 154–
165.

[21] Dario Bonino and Fulvio Corno. “DogOnt – Ontology Modeling for Intelligent Do-
motic Environments”. In: ISWC - Int. Semantic Web Conf. Vol. 5318. 2008, pp. 790–
803.

[22] Ken Bruton et al. “Development of an Automated Fault Detection and Diagnosis tool
for AHU’s”. In: (2012).

[23] James F Butler and Robert Veelenturf. “Point naming standards”. In: ASHRAE Jour-
nal 52.11 (2010), B16–B16.

[24] Cayleygraph. Cayley. https://cayley.io. 2017.
[25] Samy Chambi et al. “Better bitmap performance with Roaring bitmaps”. In: Software:

practice and experience 46.5 (2016), pp. 709–719.
[26] Chee-Yong Chan and Yannis E Ioannidis. “Bitmap index design and evaluation”. In:

ACM SIGMOD Record. Vol. 27. 2. ACM. 1998, pp. 355–366.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
https://cayley.io


BIBLIOGRAPHY 91

[27] Victor Charpenay et al. “An ontology design pattern for IoT device tagging systems”.
In: 5th Int. Conf. on the Internet of Things (IOT). IEEE. 2015, pp. 138–145.

[28] Gary E. Choquette. Tag Naming Conventions and Data Structures for Industrial
PLCs. http://www.optimizedtechnicalsolutions.com/ReferenceDocuments/
Naming % 20Conventions % 20and % 20Data % 20Structures % 20for % 20Industrial %
20PLCs.pdf. 2015.

[29] Comfy.
[30] Council on Finance, Insurance and Real Estate. Financing Small Commercial Build-

ing Energy Performance Upgrades: Challenges and Opportunities. 2016.
[31] LM Daniele, FTH den Hartog, and JBM Roes. Study on Semantic Assets for Smart

Appliances Interoperability: D-S4: FINAL REPORT. Tech. rep. European Union,
2015.

[32] Leonidas Deligiannidis, Krys J Kochut, and Amit P Sheth. “RDF data exploration
and visualization”. In: Proceedings of the ACM first workshop on CyberInfrastructure:
information management in eScience. ACM. 2007, pp. 39–46.

[33] Inc Dgraph Labs. Dgraph. https://dgraph.io/index.html. 2017.
[34] Energy Star. Save energy. https://www.energystar.gov/buildings/facility-

owners-and-managers/existing-buildings/save-energy.
[35] EnerNOC.
[36] Orri Erling and Ivan Mikhailov. “RDF Support in the Virtuoso DBMS”. In: Networked

Knowledge-Networked Media. Springer, 2009, pp. 7–24.
[37] Gabe Fierro et al. “Mortar: an open testbed for portable building analytics”. In:

Proceedings of the 5th Conference on Systems for Built Environments. ACM. 2018,
pp. 172–181.

[38] Inc Franz. AllegroGraph: Semantic Graph Database. https://allegrograph.com/
allegrograph/. 2017.

[39] Flavius Frasincar, Alexandru Telea, and Geert-Jan Houben. “Adapting graph visu-
alization techniques for the visualization of RDF data”. In: Visualizing the semantic
web 2006 (2006), pp. 154–171.

[40] Peter Fritzson and Vadim Engelson. “Modelica–A unified object-oriented language
for system modeling and simulation”. In: European Conference on Object-Oriented
Programming. Springer. 1998, pp. 67–90.

[41] Sadayuki Furuhashi. “MessagePack: It’s like JSON. but fast and small, 2014”. In:
URL http://msgpack. org (2017).

[42] Jingkun Gao, Joern Ploennigs, and Mario Berges. “A data-driven meta-data inference
framework for building automation systems”. In: Proceedings of the 2nd ACM Inter-
national Conference on Embedded Systems for Energy-Efficient Built Environments.
ACM. 2015, pp. 23–32.

http://www.optimizedtechnicalsolutions.com/ReferenceDocuments/Naming%20Conventions%20and%20Data%20Structures%20for%20Industrial%20PLCs.pdf
http://www.optimizedtechnicalsolutions.com/ReferenceDocuments/Naming%20Conventions%20and%20Data%20Structures%20for%20Industrial%20PLCs.pdf
http://www.optimizedtechnicalsolutions.com/ReferenceDocuments/Naming%20Conventions%20and%20Data%20Structures%20for%20Industrial%20PLCs.pdf
https://dgraph.io/index.html
https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy
https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy
https://allegrograph.com/allegrograph/
https://allegrograph.com/allegrograph/


BIBLIOGRAPHY 92

[43] Inc Google. Badwolf. https://google.github.io/badwolf/. 2017.
[44] Siddharth Goyal, Herbert A Ingley, and Prabir Barooah. “Occupancy-based zone-

climate control for energy-efficient buildings: Complexity vs. performance”. In: Ap-
plied Energy 106 (2013), pp. 209–221.

[45] Thomas R Gruber. “Toward principles for the design of ontologies used for knowledge
sharing?” In: International journal of human-computer studies 43.5-6 (1995), pp. 907–
928.

[46] Sara Hachem, Thiago Teixeira, and Valérie Issarny. “Ontologies for the internet of
things”. In: Proceedings of the 8th Middleware Doctoral Symposium. ACM. 2011, p. 3.

[47] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. “SPARQL 1.1 query lan-
guage”. In: W3C recommendation 21.10 (2013).

[48] Andreas Harth and Stefan Decker. “Optimized index structures for querying rdf from
the web”. In: Web Congress, 2005. LA-WEB 2005. Third Latin American. IEEE.
2005, 10–pp.

[49] Philipp Heim et al. “RelFinder: Revealing Relationships in RDF Knowledge Bases.”
In: SAMT 5887 (2009), pp. 182–187.

[50] Dezhi Hong, Hongning Wang, and Kamin Whitehouse. “Clustering-based active learn-
ing on sensor type classification in buildings”. In: Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowledge Management. ACM. 2015,
pp. 363–372.

[51] Marco Jahn et al. “EnergyPULSE: tracking sustainable behavior in office environ-
ments”. In: Int. Conf. on Energy-Efficient Computing and Networking. ACM. 2011,
pp. 87–96.

[52] Deokwoo Jung et al. “Energytrack: Sensor-driven energy use analysis system”. In:
Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient
Buildings. ACM. 2013, pp. 1–8.

[53] Srinivas Katipamula and Michael R Brambley. “Methods for fault detection, diagnos-
tics, and prognostics for building systemsa review, part I”. In: Hvac&R Research 11.1
(2005), pp. 3–25.

[54] Eamonn Keogh and Shruti Kasetty. “On the need for time series data mining bench-
marks”. In: Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’02 (2002), p. 102. issn: 13845810.
doi: 10.1145/775047.775062. url: http://portal.acm.org/citation.cfm?
doid=775047.775062.

[55] KGS Buildings.
[56] Laura Klein et al. “Coordinating occupant behavior for building energy and comfort

management using multi-agent systems”. In: Automation in construction 22 (2012),
pp. 525–536.

https://google.github.io/badwolf/
https://doi.org/10.1145/775047.775062
http://portal.acm.org/citation.cfm?doid=775047.775062
http://portal.acm.org/citation.cfm?doid=775047.775062


BIBLIOGRAPHY 93

[57] Mario J. Kofler, Christian Reinisch, and Wolfgang Kastner. “A semantic representa-
tion of energy-related information in future smart homes”. In: Energy and Buildings
47 (2012), pp. 169–179.

[58] Jason Koh et al. “Plaster: an integration, benchmark, and development framework for
metadata normalization methods”. In: Proceedings of the 5th Conference on Systems
for Built Environments. ACM. 2018, pp. 1–10.

[59] Jason Koh et al. “Scrabble: transferrable semi-automated semantic metadata normal-
ization using intermediate representation”. In: Proceedings of the 5th Conference on
Systems for Built Environments. ACM. 2018, pp. 11–20.

[60] Andrew Krioukov et al. “A living laboratory study in personalized automated lighting
controls”. In: ACM. 2011, pp. 1–6.

[61] Andrew Krioukov et al. “Building application stack (BAS)”. In: Proceedings of the
Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Build-
ings. ACM. 2012, pp. 72–79.

[62] Henrik Lange, Aslak Johansen, and Mikkel Baun Kjærgaard. “Evaluation of the op-
portunities and limitations of using IFC models as source of building metadata”. In:
Proceedings of the 5th Conference on Systems for Built Environments. ACM. 2018,
pp. 21–24.

[63] Ora Lassila and Ralph R Swick. “Resource description framework (RDF) model and
syntax specification”. In: (1999).

[64] Jian Liang and Ruxu Du. “Model-based fault detection and diagnosis of HVAC sys-
tems using support vector machine method”. In: International Journal of refrigeration
30.6 (2007), pp. 1104–1114.

[65] Kamesh Madduri and Kesheng Wu. “Massive-scale RDF processing using compressed
bitmap indexes”. In: International Conference on Scientific and Statistical Database
Management. Springer. 2011, pp. 470–479.

[66] Alan Marchiori and Qi Han. “Using circuit-level power measurements in household
energy management systems”. In: Proceedings of the First ACM Workshop on Em-
bedded Sensing Systems for Energy-Efficiency in Buildings. ACM. 2009, pp. 7–12.

[67] Dirk Merkel. “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[68] George A Miller. “WordNet: a lexical database for English”. In: Communications of
the ACM 38.11 (1995), pp. 39–41.

[69] Natalie Mims et al. “Evaluation of U.S. Building Energy Benchmarking and Trans-
parency Programs: Attributes, Impacts, and Best Practices”. In: (2017). doi: 10.
2172/1393621. url: https://emp.lbl.gov/sites/default/files/lbnl%7B%5C_
%7Dbenchmarking%7B%5C_%7Dfinal%7B%5C_%7D050417.pdf.

https://doi.org/10.2172/1393621
https://doi.org/10.2172/1393621
https://emp.lbl.gov/sites/default/files/lbnl%7B%5C_%7Dbenchmarking%7B%5C_%7Dfinal%7B%5C_%7D050417.pdf
https://emp.lbl.gov/sites/default/files/lbnl%7B%5C_%7Dbenchmarking%7B%5C_%7Dfinal%7B%5C_%7D050417.pdf


BIBLIOGRAPHY 94

[70] Mohamed Morsey et al. “DBpedia SPARQL benchmark–performance assessment with
real queries on real data”. In: The Semantic Web–ISWC 2011 (2011), pp. 454–469.

[71] Inc Neo Technology. Neo4j. https://neo4j.com/. 2017.
[72] Thomas Neumann and Gerhard Weikum. “RDF-3X: a RISC-style engine for RDF”.

In: Proceedings of the VLDB Endowment 1.1 (2008), pp. 647–659.
[73] Jakob Nielsen. Usability engineering. Elsevier, 1994.
[74] Natalya F Noy et al. “Creating semantic web contents with protege-2000”. In: IEEE

intelligent systems 16.2 (2001), pp. 60–71.
[75] Frauke Oldewurtel et al. “Use of model predictive control and weather forecasts for

energy efficient building climate control”. In: Energy and Buildings 45 (2012), pp. 15–
27.

[76] OWL Namespace. http://www.w3.org/2002/07/owl#. 2018.
[77] Harshal Patni, Cory Henson, and Amit Sheth. “Linked sensor data”. In: Collaborative

Technologies and Systems (CTS), 2010 International Symposium on. IEEE. 2010,
pp. 362–370.

[78] Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar. “Field experience with and
potential for multi-time scale grid transactions from responsive commercial buildings”.
In: (2014).

[79] Joern Ploennigs et al. “BASont-A modular, adaptive building automation system
ontology”. In: IECON - 38th An. Conf. of IEEE Industrial Electronics Society. IEEE.
2012, pp. 4827–4833.

[80] Joern Ploennigs et al. “Semantic models for physical processes in CPS at the example
of occupant thermal comfort”. In: Industrial Electronics (ISIE), 2016 IEEE 25th
International Symposium on. IEEE. 2016, pp. 1061–1066.

[81] M. M. Polycarpou and A. J. Helmicki. “Automated fault detection and accommo-
dation: a learning systems approach”. In: IEEE Transactions on Systems, Man, and
Cybernetics 25.11 (Nov. 1995), pp. 1447–1458. issn: 0018-9472. doi: 10.1109/21.
467710.

[82] Marco Pritoni et al. “Short paper: A method for discovering functional relationships
between air handling units and variable-air-volume boxes from sensor data”. In: Pro-
ceedings of the 2nd ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments. ACM. 2015, pp. 133–136.

[83] Project Haystack. equipRef definition. https://web.archive.org/web/20181213015204/
https://project-haystack.org/tag/equipRef.

[84] Project Haystack. Implementing Project Haystack: Applying Haystack Tagging for a
sample building. https://project-haystack.org/file/28/Reference-Implementation--
Applying-Haystack-Tagging-for-a-Sample-Building.pdf. 2018.

https://neo4j.com/
http://www.w3.org/2002/07/owl#
https://doi.org/10.1109/21.467710
https://doi.org/10.1109/21.467710
https://web.archive.org/web/20181213015204/https://project-haystack.org/tag/equipRef
https://web.archive.org/web/20181213015204/https://project-haystack.org/tag/equipRef
https://project-haystack.org/file/28/Reference-Implementation--Applying-Haystack-Tagging-for-a-Sample-Building.pdf
https://project-haystack.org/file/28/Reference-Implementation--Applying-Haystack-Tagging-for-a-Sample-Building.pdf


BIBLIOGRAPHY 95

[85] Project Haystack. http://project-haystack.org/. 2018.
[86] RDF Schema Namespace. https://www.w3.org/2000/01/rdf-schema#. 2018.
[87] University of Rochester Utilities and Energy Operations Group Energy Management.

Building Automation System Design and Construction Standards. https://www.
facilities.rochester.edu/central_utilities/documents/MasterStandards_
11.2013.pdf. 2013.

[88] Marko A Rodriguez. “The gremlin graph traversal machine and language (invited
talk)”. In: Proceedings of the 15th Symposium on Database Programming Languages.
ACM. 2015, pp. 1–10.

[89] Craig Sayers. “Node-centric rdf graph visualization”. In: Mobile and Media Systems
Laboratory, HP Labs (2004).

[90] Jeffrey Schein et al. “A rule-based fault detection method for air handling units”. In:
Energy and Buildings 38.12 (2006), pp. 1485–1492.

[91] Michael Schmidt et al. “SP2Bench: a SPARQL performance benchmark”. In: Data
Engineering, 2009. ICDE’09. IEEE 25th International Conference on. IEEE. 2009,
pp. 222–233.

[92] Simulink Simscape. https://www.mathworks.com/products/simscape/features.
html#multidomain-schematics/. 2018.
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