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Abstract

BagNet: Berkeley Analog Generator with Layout Optimizer Boosted with Deep Neural
Networks

by

Kourosh Hakhamaneshi

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Vladimir Stojanovic, Chair

In this project report we demonstrate a new Deep Learning approach for automating
layout-level design of analog circuits. Post-layout simulation is computationally expensive,
making traditional optimization-based design that relies directly on such simulation imprac-
tical for any but the very simplest designs. We show that deep neural nets can be trained to
(mostly) substitute for the expensive simulation in the inner optimization, making it practi-
cal to solve challenging layout design problems. At the core are an evolutionary optimization
approach and a neural net that predicts the performance of members of the new generation
compared to the old one. The optimizer periodically runs the (much more expensive) sim-
ulation to further refine the prediction of the neural net as the population evolves, which
ensures the neural net is su�ciently precise in the currently relevant part of the design space.
Compared to relying on simulation for every evaluation, our approach is several orders of
magnitude more e�cient, enabling significantly more complex designs. Indeed, we demon-
strate that our framework can e�ciently explore the design space of a variety of complex
circuits, including a two stage OpAmp with positive feedback and an optical links analog
front end, given high level specifications and propose satisfying solutions in the end.
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Chapter 1

Introduction1

1.1 Integrated Circuit Market Overview

The Microelectronic industry has been significantly evolved over the past years, driven
by an ever-increasing demand in machine learning (ML) and internet of things (IoT) appli-
cations, requiring many functionalities to be integrated on a single System-on-Chip (SoC)
solution. Today’s generation of SoCs integrate massive number of digital computational cores
(i.e. CPU, GPU, and neural processing units) with an increasing number of analog-mixed
signal (AMS) and radio frequency (RF) components (i.e. radio transceivers, sensors, power
regulators, high speed IOs etc.) on the same chip. This makes the design and verification
process exponentially more convoluted than before and also prone to more errors.

Although the core functionality is typically driven by the digital cores, the critical path
for errors and performance tends to be in the analog part. This is due in part to the
di↵erences in the maturity levels of CAD tools in digital and analog design. Well-established
practices supported by well-defined automated synthesis methodologies and tools exist for
digital design. However analog design, due to the higher sensitivity of design to parameters
and the fabrication process, requires extensive, skilled manual labor. It is not as modular as
digital design, and as a result, a standard cell library of sub-blocks cannot be used.

1.2 Analog IC Design Flow

As was mentioned in the previous section, AMS design requires more manual labor than
digital design. In the digital world, signals are more tolerant to noise and the information
is carried around in discrete levels of voltage or current with a large tolerance range. The
behavior of such circuits is defined by Boolean algebra, and the timing information is also
modular and defined for a library of standard cells. The optimization problems are well-
defined and therefore automation tools are much easier to be developed.

1Most part of this chapter, especially the information on the background on design automation history
is adapted from [3]
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In AMS circuits however, information is conveyed through a continuum of (typically
small) values, and therefore second and third order e↵ects which were ignored in digital
design becomes a problem in analog; issues like, non-linearity, devices going into their non-
linear region, matching between devices, e↵ects of noise, etc. have to be considered.

To cope with these issues designers have to adopt top-down design and bottom-up ver-
ification methodologies. This means that they start the design flow by top level behavioral
modeling and hierarchically move down and verify the performance and behavior at each
step all the way back up with di↵erent levels of abstraction. To do so, they start with sys-
tem level abstraction, verification, and architecture exploration until they settle on the AMS
sub-blocks and their interaction with each other. The agile IC development flow requires
designers to then use dummy or semi-realistic sub-blocks as the place holder for the circuits
that will be actually designed later and verify the entire system-level flow with the behav-
ioral models that they expect from each sub-block. This way they can catch system-level
problems early on as the sub-blocks evolve over the design procedure. This processes is then
repeated for lower level sub-blocks (which have their own sub-blocks) until they reach the
actual device and layout level design.

As designers move down the hierarchy, they have to re-verify their assumptions on the
higher levels and if something does not behave properly re-design the lower levels. The
number of iterations in verification and design tends to increase as designers get to layout.
This is largely in part due to the domination of layout parasitics in determination of circuit
performance. Therefore, Designing the entire system involves many iterations with human
experts exploring the complex multi-dimensional design space. Besides the large number of
iterations, simulation will also get slow as designer moves down from behavioral simulations
to device and layout level.
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1.3 History of Analog IC Design Automation

Over the ages of semiconductor industry, researches have tried an assortment of ap-
proaches to automate AMS design problem in di↵erent stages. However, CAD tools have
not been following the semiconductor technology at the same pace, resulting in increasing
price of developing state-of-the art SoCs. In this section, we will briefly discuss available
CAD tools and some automation procedures proposed over the years.

1.3.1 CAD Tools for Analog-Mixed Signal Design

An improved but yet limited degree of automation is supplied by the use of a CAD
methodology which involves the integration of one or more mature CAD tools into a flow.
One of the most known CAD tools is the Cadence Virtuoso platform which is composed by
a set of integrated circuit tools that cover all the stages, from the schematic to the layout.
Apart from the Composer schematic editor, Cadence Virtuoso includes a high accuracy
circuit simulator, like Virtuoso Spectre that is usually used at the device level, a layout editor
and layout verification tools that implement the three di↵erent phases of layout process,
the design rule checking (DRC), layout versus schematic (LVS) and parasitic extraction
(RCX). Additionally, the system level analog behavioral descriptions may be simulated with
the System-Verilog simulator. These design management platforms are a valuable help in
analog integrated circuit design but they are still far behind the development stage of design
automation tools already available for digital design. [3]

1.3.2 Design Automation Methodologies

Automating analog IC design is not a novel idea by itself and has been around for over
twenty years. An excellent survey about these e↵orts has been done by [22]. We can divide
the previous approaches in the following category and sub categories:

1.3.2.1 Topology Selection Approaches

In these flavor of approaches the goal is to basically induce the topology based on some
criteria either from a library or by composing sub-components together and forming more
complex ones. To name a few of these e↵orts, in IDAC [6] the decision is taken directly by the
designer. Heuristic rules have been used in the first attempts by [10]-[13], to automate the
topology selection task. The tool [23] uses fuzzylogic based reasoning to select one topology
among a fixed set of alternatives. The decision rules are introduced by an expert designer
or automatically generated by means of a learning process. Another method comprises
computing the feasible performance space for each topology within the library and, then
compare with the desired performance specs [8]. A di↵erent method consists of combining
the topology selection with the device sizing task and employing an optimization based
approach by [15] using genetic algorithms.
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As was mentioned earlier, these approaches have several problems. New generation of
designs are far more complicated to be supported by a predefined set of libraries. Most of
these approaches demonstrated their usefulness in design of operational amplifiers which is
not as complicated as today’s practical circuits. On top of that, changing the technology
requires new rounds of library generation, which might be time consuming. Additionally, all
of these methods do not consider layout e↵ects which drastically change the performance of
the circuits.

1.3.2.2 Circuit Sizing/Optimization Approaches

These approaches typically cast the the sizing problem as an optimization counterpart
and seek to satisfy the objective. In many cases, the optimization formulations do not
consider all practical and non-ideal phenomena in circuits, leaving the burden on analog
designers to set the constraints properly, and guide the optimization procedure. Therefore,
it is easier for analog designers to just directly solve the optimization themselves rather than
codifying all overt design criteria (i.e. matching of layout, transistors not being in linear
region, etc.), as well as performance metrics (i.e. gain, bandwidth, etc.).

A lot of these readily assumed design metrics are often hard to codify, either because
they cannot be captured by plain simulations (i.e. matching) or they need a specialized
expensive simulation (i.e. Monte Carlo simulations for matching). Some of these ”hard-to-
codify” metrics come from layout methodologies that designers use because they are ”safe”
and proven to be functional (i.e. how to use common centroid layout procedure for current
mirrors to ensure matching). Beside these, designers tend to realize missing some constraints
till the optimization framework exploits those under-defined constraints which, typically,
takes a long time. [3],[22] divides the circuit sizing approaches into the following categories:

Equation-Based Methods

These approaches model the circuit behavior as analytical formulations and the objective
is to solve an equation-based optimization problem using numerical methods.

Some of the most relevant approaches are [13], [11], [18], [9], [12]. This approach presents
the advantage of allowing a performance evaluation speed-up (short evaluation time). The
main drawback is that analytical models have to be used to derive the design equations for
each new topology and, despite recent advances in symbolic circuit analysis [24], [24], not
all design characteristics can be easily captured by analytic equations. The approximations
introduced in the analytic equations yields low accuracy designs especially in complex circuits
designs. These methods are obsolete and cannot guarantee accuracy of the solution.

Simulation-Based Methods

Black box optimization methods like [17], [23], [19], [14] and [15] consist of using a
simulation core in the inner loop for circuit evaluation. This gives us a generic framework,
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independent of circuit topology (compared to equation-based methods), for high accuracy
evaluation of circuits.

Despite the benefits, these methods are computationally expensive and time-consuming
to run, especially for larger, more complex circuits. Nevertheless, a key di�culty is that
the analog design problem, with all the involved design knowledge and heuristics, has to be
formulated as an optimization problem, which often presents a high threshold for using a
circuit-sizing tool. Therefore, sample e�ciency, and short convergence time is a determining
factor in these approaches. On the other hand, all the previous work in this area has been
targeted for schematic-level simulations, and layout parasitic e↵ects have been considered
only outside of the optimization loop.

Machine Learning-Based Methods

To improve the convergence of these methods, many of the previous work such as [2], [1],
and [25] has tried to model the behavior of the circuit to be optimized, by a machine learn-
ing mechanism to quickly evaluate the performance for a specific set of design parameters,
essentially replacing the simulator’s long evaluation cycles.

In [1] a learning tool based on support vectors machines (SVM) is used to represent
the performance space of analog circuits. Based on the knowledge acquired from a training
set, the performance space is modeled as mathematical relations translating the analog
functionality. SVMs are trained with simulation data, and false positives are controlled
based on a randomized testing procedure.

[25] presents a performance macro-model for use in the synthesis of analog circuits based
in a neural network approach. On the basis of this mathematical model is a neural network
model approach that, once constructed, may be used as substitute for full SPICE simulation,
in order to obtain an e�cient computation of performance parameter estimates. The training
and validation data set is constructed with discrete points sampling over the design space.
The work explores several sampling methodologies to adaptively improve model quality and
applies a sizing rule methodology in order to reduce the design space and ensure the correct
operation of analog circuits.

The issue with almost all of these methods is that they require a lot of sampling points
in their training data to build a model. Nevertheless, good design points tend to be a
small subset of the extremely large multi-dimensional space. Hence, despite the high overall
accuracy of the model, the precision in the regions of good designs can be low, resulting in
inaccurate models in regions that designers actually care about. Also, similar to previous
methods, these approaches have mainly modeled schematic behavior of circuits. Training
considering layout e↵ects, can become infeasible using these approaches because of the long
simulation time of each circuit instance.
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1.3.2.3 Generator-Based Approaches

In these approaches, instead of optimizing circuit sizing objectives, the designer codifies
the step by step sizing and design process they pursue in a parametrized format called
”generators”. In other words, the input to a ”layout generator” script is the parameters of
devices (i.e. number of unit widths, number of fingers, etc.) and the output is the associated
layout in a particular technology. Following this strategy we can capture all layout constraints
(i.e. matching, sharing drain/sources to reduce parasitics etc.) in a programmable, reusable
fashion and port a layout to new technologies with just a push button.

Berkeley Analog Generator (BAG) [5] is a framework for development of process-portable
AMS circuit generators. It has multiple layout engines that provides designers with the
necessary API to capture their layout procedure for analog as well as custom digital circuits.
It also provides a coherent environment for design verification in a Python-based language.
Designer can develop ”schematic generators” which essentially generates the schematic of
a design in a parametrized way. They can then run LVS and DRC directly from the same
Python environment and also run test benches associated with verification of the blocks.
They can also leverage objected oriented programming (OOP) features of Python to extend
and reuse other designers’ codes. In summary it provides a convenient interface for designers
to specify their layout, design, and verification methodologies.

1.4 Our Work

1.4.1 Implementation Constraints

In this work our objective is to build an optimization framework that directly optimizes
layout. According to the previous sections of this chapter, we find that the following items
should be the key features of such a framework:

1. This framework should be based on reliable simulation tools to be accepted by the
community of circuit designers. Because equations are not generalizable across circuits
and technologies, and have limited accuracy. Moreover, simulation tools are mature
and are the mainstream tool for verification among designers.

2. Post layout simulation is expensive in terms of simulation time. Therefore, the opti-
mization framework needs to be sample e�cient Otherwise the tool will be in contrast
to boosting the productivity of designers.

3. From designer’s perspective, it should be convenient to codify design criteria. It should
not create more hassle for designers trying to optimize AMS circuits.

4. It is not necessary to give the best design possible. In many cases having some design
that just satisfies the constraints can be extremely useful in architecture exploration.
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1.4.2 Thesis Outline

In this work, we will extend BAG’s API to incorporate this optimization framework for
design purposes. The vision is that once designers have codified their layout and verification
methodology, this tool will explore the design space in a time e�cient manner (probably
overnight when designers are asleep) and will candidate design solutions that follow the
layout and verification constraints they defined.

In chapter 2 we will discuss the theory of our algorithm and how leveraging a Deep
Neural Network (DNN) can help us boost the sample e�ciency of conventional stochastic
optimization algorithm (i.e. genetic algorithm, simulated annealing, etc.). In chapter 3
we will demonstrate the e↵ectiveness of this approach on several example AMS circuits,
including a vanilla version of an optical link optimized from high-level specifications, and
in chapter 4 we will conclude the work and propose future directions. Appendix A will
be discussing, in more details, the implementation of the algorithm using available Python
packages.
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Chapter 2

Algorithm Overview

2.1 Definition of the Problem

The objective in analog circuit design is usually to minimize one figure of merit (FOM)
subject to some hard constraints (strict inequalities). For instance, in op-amp design the
objective can be minimizing power subject to gain and bandwidth constraints. However, in
practice there is also a budget for metrics in the FOM (i.e power less than 1mW). Therefore,
the optimization can be rephrased as a constraint satisfaction problem (CSP) where the
variables are circuit’s geometric parameters, and outputs are specifications of the circuit
topology. Designers can always tighten the budgets to see if there is any other answer with
a better FOM that meets their needs.

However, in cases where there is no feasible solution to a CSP, designers still prefer to
know which solutions are nearly satisfactory to gain insight into which constraint can be
adjusted to satisfy their needs.

With this in mind we define the following non-negative cost function where finding the
zeros is equivalent to finding answers to the CSP problem. If no answer exists, the minimum
of this cost and the non-zero terms can give insight about which metrics are the limiting
factors:

cost(x) =
X

i

wipi(x) (2.1)

where x represents the geometric parameters in the circuit topology and pi(x) = |ci�c⇤i |
ci+c⇤i

(normalized spec error) for designs that do not satisfy constraint c⇤i , and zero if they do. ci
denotes the value of constraint i at input x, and is evaluated using a simulation framework. c⇤i
denotes the optimal value. Intuitively this cost function is only accounting for the normalized
error from the unsatisfied constraints, and wi is the tuning factor, determined by the designer,
which controls prioritizing one metric over another if the design is infeasible.
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2.2 Population-Based Methods: Benefits and
Drawbacks

Population based methods have been extensively studied in the past in the application
of analog circuit design automation. These methods usually start from an initial population
and iteratively derive a new population from the old one using some evolutionary operations
(i.e. combination, mutation). Some selection mechanism then picks the elites of the old and
new populations for the next generation, a process known as elitism. This process continues
until the average cost of current population reaches a minimum.

While this could work in principle, it is very sample ine�cient, and prone to instability in
convergence. Therefore, the process must be repeated numerous times due to its stochastic
nature. As a result, these methods are not suitable for layout based optimizations where
simulation takes a significant amount of time.

The sample ine�ciency arises from two factors. Firstly, the majority of the new pop-
ulation will only slightly improve on their ancestors, and as the population improves, the
di�culty of replacing old designs increases. Therefore, it would take many iterations until
the children evolve enough to surpass the average of the parents. Much of the previous work
seeks to improve this by focusing on modifying the evolutionary operations such that they
would increase the probability of producing better children, while preserving the diversity
[20]. Unfortunately, these methods have not been able to su�ciently improve the sample
e�ciency to accommodate the post-layout simulations. Secondly, many of these methods
only look at the total cost value and do not consider sensitivity of the cost to each design
constraint, meaning that they do not account for how each specification metric is a↵ecting
the overall cost. Expert analog designers usually do this naturally by prioritizing their de-
sign objectives depending on what constraint most limits their design. Considering only the
total cost value can be misleading and may obfuscate useful information about the priority
of optimizing the metrics.

To address the first issue, if we had access to an oracle which could hypothetically tell us
how two designs were compared in terms of each design constraint, we could use it to direct
the selection of new designs. Each time a new design is generated we can run the oracle to
see how the new design compares to some average design from the previous generation. In
this paper we devise a DNN model that can imitate the behaviour of such an oracle.

To address the second problem, we can look at the current population and come up with
a set of critical specifications (i.e specifications that are the most limiting and should be
prioritized first). Each step that we query the oracle, we only add designs that have better
performance than the reference design in all metrics in the critical specification set. The
important point to note is that once a metric enters the critical specification set it never
becomes uncritical, as we do not want to forget which specifications derived the selection of
population before the current time step. For finding the critical specification at each time
step we use a heuristic which is best described by the pseudo code in algorithm 1.

We can realize the oracle by a simulator and by using the aforementioned heuristics, we
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Algorithm 1 Pseudo-code of the heuristic used for updating critical specification list

Given population B, specification list S, critical specification list CS (empty at first), a
reference index k (i.e 10)
if CS.empty() then

eB  sort B by cost(x) =
P
i2S

wi ⇤ pi(x)

else
eB  sort B by cost(x) =

P
i2CS

wi ⇤ pi(x)

end if
critical spec  argmax

i2S
max

x2 eB[0:k�1]
pi(x)

CS.append(critical spec)

Figure 2.1: Illustration of improvement of Oracle against EA. Each iteration is equivalent to
adding some number of new designs to the population. The region between the two curves
represents room for improvement.



CHAPTER 2. ALGORITHM OVERVIEW 11

Figure 2.2: DNN’s model used in the system, ✓ = [✓f , ✓1, ..., ✓l] contains the parameters of
the DNN. M✓(DA, DB) is the output probabilities of the DNN parametrized by ✓ for inputs
DA and DB. M✓(DA, DB; i) denotes the predicted probability for the ith specification. Note
that ⌫ denotes preference, not greater than.

can decide whether to add a new design to the population or not. Figure 2.1 illustrates the
notional convergence performance of this oracle compared to the same evolutionary algorithm
without this modification . This illustration shows that the oracle can significantly reduce
the number of iterations for convergence if we knew what designs to add and what designs
to reject.

However, we cannot use this oracle if we want to scale our method to do layout-level
optimizations on more complex circuit topologies with larger design spaces and more ex-
pensive simulation runs. This is because the oracle has to run simulations for all generated
instances to determine which designs to add or reject and therefore, there is no real benefit
in the number of simulations that it runs. In the next section we propose a DNN structure
that can imitate the behavior of the oracle while reducing the required number of simulation
runs.

2.3 Model for Imitating the Oracle

For imitating the oracle there are multiple options. First, we can have a regression model
to predict the cost value and then use this predicted value to determine whether or not to
accept a design. The cost function that the network tries to approximate can be an extremely
non-convex and ill-conditioned. Thus, from a limited number of samples it is very unlikely
that it would generalize well to unseen data. Moreover, the cost function captures too much
information from a single scalar number, so it would be hard to train.

Another option is to predict the value of each metric (i.e. gain, bandwidth, etc.). While
the individual metric behaviour can be smoother than the cost function, predicting the actual
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metric value is unnecessary, since we are simply attempting to predict whether a new design
is superior to some other design. Therefore, instead of predicting metric values exactly, the
model can take two designs and predict only which design performs better in each individual
metric. Figure 2.2 illustrates the model architecture used for imitating the oracle.

The model consists of a feature extraction component comprised of only fully connected
layers which are the same for both Design A and Design B. For each specification there is a
sub-DNN that predicts the preference over specifications using fully connected layers. There
is a subtle constraint that the network should predict complementary probabilities for inputs
[DA, DB] vs. [DB, DA] (i.e. M✓(DA, DB) = 1�M✓(DB, DA)) meaning that there should be
no contradiction in the predicted probabilities depending on the order by which the inputs
were fed in. Therefore to ensure this property holds and to make the training easier, we
can impose this constraint on the weight and bias matrices in the decision networks. To do
so, each sub-DNN’s layer should have even number of hidden units, and the corresponding
weight and bias matrices should be symmetric according to the following equations.

ym⇥1 = Wm⇥2kx2k⇥1 + bm⇥1

2

6664

y1
y2
...
ym

3

7775
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Where we have,
fW(i, j) = W(

m

2
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for i = 0, ...,
m

2
� 1 and j = 0, ..., 2k � 1

eb(i) = b(
m

2
� 1� i) for i = 0, ...,

m

2
� 1

If the weight and bias parameters are set as above, when the input order is changed
from [DA, DB] to [DB, DA] the very first x vector is changed from [f1, ..., fk, efk, ..., ef1] to
[ ef1, ..., efk, fk, ..., f1]. Thus, for the last layer that has two outputs, the sigmoid function will
produce 1�M✓(DA, DB) instead of M✓(DA, DB).

To train the network, we construct all permutations from the bu↵er of previously sim-
ulated designs and evaluate their performance in each metric. We then update network
parameters with stochastic gradient descent.

2.4 Algorithm

To put everything together, Figure 2.3 illustrates the high level architecture of the op-
timizer system. We use the current population and perform some specific evolutionary
operations to get the next generation of the population; but we do not simply simulate them
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Figure 2.3: High level architecture of our optimizer

and consider them as the next generation. We use the DNN to predict if they will be better
compared to some reference design already within our current population, and if the answer
is positive we simulate the designs, call them the next generation, and proceed with the
evolutionary algorithm.

The children may have a distribution mismatch from the data that DNN was trained on.
To mitigate the distribution drift, each time we add new children we evaluate them with the
actual simulator and re-train the model with correct labels so that the bu↵er is updated with
correct labels for next steps of training. This idea is very similar to DAgger [21] except that
we do not relabel all of the children, rather we only relabel the accepted ones. Algorithm 2
shows the entire algorithm, step by step.
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Algorithm 2 Pseudo-code for the entire algorithm

Given Some evolutionary operations E . i.e. CEM [4]
Given Some Initial bu↵er of random simulated designs B
Given reference index k . i.e. 10
Given DNN M✓ parametrized by ✓
update ✓ . i.e. 10 epochs
while num iter ¡ max num iter do

Get critical specification list CS according to the heuristic
eB  sort B by cost(x) =

P
i2CS

wi ⇤ pi(x)

Dref = eB[k]
list of new children L = []
while L.length ¡ 5 do . i.e. until 5 children are approved

Dnew  E .generate(B) . generate a new design
P  M✓(Dnew,Dref )
if P [i] = 1, 8i 2 CS then

Run simulation on Dnew

L.append(Dnew)
else

Continue
end if

end while
B  E .select(B + L)
update ✓ . i.e. 10 epochs

end while
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Chapter 3

Experiments

In this section we study a variety of experiments which clarifies some aspects of the
algorithm and illustrates its capabilities on a variety of circuits.

3.1 Schematic Design of a Two Stage Amplifier

First, to clarify the convergence behavior and benefits of the algorithm, we use a simple
two stage op-amp evaluated only through schematic simulation using 45nm BSIM models
on NGSPICE.

The circuit’s schematic is shown in Figure 3.1. The objective is to find the size of
transistors and the value of the compensation capacitor such that the described circuit
satisfies the requirements set in table 3.1. We fixed the length and width of the unit sized
transistors to 45 nm and 0.5 µm, respectively, and for size of each transistor we limit the
number of fingers to any integer number between 1 to 100. For compensation we also let
the algorithm choose Cc from any number between 0.1pF to 10pF with steps of 0.1fF.
The grid size of the search space is 1014. A given instance is evaluated through DC, AC,
CMRR, PSRR, and transient simulations, which in total takes one second for each design.
Therefore, brute-force sweeping is not practical even in this simple example. However, This
short simulation time allows us to do comparisons against the vanilla genetic algorithm and
the oracle. Note that these methods are not feasible for layout-based simulations, however,
since each takes multiple minutes per design to evaluate.

Table 3.1 shows the performance of the minimum cost solution found by di↵erent ap-
proaches. In this example, all approaches found a solution satisfying all specifications, but
this is not guaranteed as it depends on the feasibility of the specifications and also the
stochastic behaviour of the evolutionary algorithms. We can always adjust exploration vs.
exploitation of the evolutionary algorithms by the mutation rate, but this will increase con-
vergence time of all of the approaches. However, if training parameters are set properly in
our approach we will not need as many simulations as the oracle or the vanilla evolutionary
algorithms.
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Figure 3.1: Schematic of a vanilla two stage op-amp

Table 3.1: Objective of design and performance of solutions found using di↵erent approaches
for the two stage op-amp example

Requirement Evolutionary Oracle Ours

Gain >300 323 314 335
funity [MHz] >10 10.83 10.66 10.2
Phase Margin [�] >60 60.7 60.83 62
tsettling [ns] <90 59.9 83.5 62
CMRR [dB] >50 53 54 54
PSRR [dB] >50 57 56 57
Systematic O↵set [mV] <1 0.823 0.94 0.32
Ibias [µA] <200 188 158 148
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Table 3.2: Summary of number of operations involved in the process of each approach

# of NN Queries # of Re-training # of Simulations

Simple Evolution - - 5424
Oracle - - 3474
Ours 55102 50 241

To avoid over-fitting and being certain about false positive and negatives, we can leverage
Bayesian DNNs within our model [16], which can estimate the uncertainty regarding the
decisions. In this specific example we use drop out layers which can be considered as Bayesian
DNNs with Bernouli distributions [7]. During inference we sample the model 5 times and
average the probabilities to reduce the uncertainty about the decisions.

Figure 3.2a shows the average cost of the top 20 designs (parameter k is 20 in algorithm
2) in the population for the oracle, vanilla evolutionary and our algorithm. Each time
only 5 designs are added and the evolutionary operations are the same for all experiments.
We ran our approach on multiple random initial seeds to ensure robustness in training
and performance. We note that in terms of number of iterations, the oracle is the fastest,
but in fact the oracle runs simulation on all generated designs to make selection decisions.
Therefore, it is impractical to run it on post-layout simulation on more complex circuits.
Figure 3.2b shows performance in terms of number of simulations. We see that our approach
is e�cient by at least a factor of 10 in this simple example.

Table 3.2 shows a summary of number of operations in our simple example. We note that
our approach can cut down a lot of impractical simulations at the cost of more time spent
on training and inference of a DNN. With recent advancements in hardware for machine
learning and use of GPUs the time spent on training and inference can significantly be
reduced. When we want to scale up to more intricate circuits there are two factors that
makes our approach advantageous. Firstly, when we do layout optimization, simulation
drastically increases proportionally to the circuit size. Also, more complicated circuits have
larger design space and it will become even more critical to prune out impractical regions
of design space as we scale up. Therefore, in terms of scaling to layout optimization our
approach seems to be promising.
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(a)

(b)

Figure 3.2: a) Average cost of top 20 individuals across number of iterations. Each iteration
corresponds to adding 5 designs to the population. b) Average cost of top 20 individuals
across number of simulations.
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3.2 Layout Design of a Two Stage Amplifier and
Comparison against an Expert Design

This example is presented to compare an expert-designed circuit with our algorithm’s
design. The op-amp’s topology, and the cardinality of search space is shown in Figure 3.3,
with each array denoting how many parameters were considered for design. For example
for Mref, 20 values of n fingers were considered. In total, this design example has an 11
dimensional exploration space with size of 3⇥ 1013.

The topology is a standard Miller compensated op-amp, in which the first stage contains
diode-connected and negative-gm loads. The design procedure is more cumbersome than
the previous two stage example, mainly because of the positive feed back. A scripted design
procedure for this topology is included as part of BAG to exemplify codifying expert driven
design methodologies. The design script is able to find the proper transistor sizing while
considering layout parasitic e↵ects using a closed loop design methodology. The inputs to
the design script are specifications of phase margin and bandwidth, and the objective is to
maximize gain. In this circuit the resistor and capacitor are schematic parameters, while all
transistors and all connecting wires use the GF14 nm PDK extraction model.

Table 3.3 shows a performance summary of our approach compared to that of the design
generated by the design script. The script is unable to meet the gain requirement due to
a designer-imposed constraint that the negative gm should not cancel more than 70% of
the total positive resistance at first stage’s output. This constraint arises from a practi-
cal assumption that that there will be mismatch between the negative gm’s resistance and
the overall positive resistance, due to PVT variations. Thus, the circuit can become un-
intentionally unstable, and therefore during design we leave some margin to accommodate
these prospective random variations. We have the option of imposing a similar constraint to
equate the design spaces, or we can run simulations over process and temperature variations
to ensure that our practical constraints are not too pessimistic.

For our approach, the initial random population size is 100 with a best cost of 0.3. We
ran every simulation on di↵erent PVT variations, and recorded the worst metric as the
overall performance value. Figure 3.4 illustrates how the average cost in top 20 designs
changes over time. Reaching a solution with our approach took 3 hours including initial
population characterization, whereas developing the design script takes 4-7 days according
to the expert. The DNN was queried 3117 times in total (equivalent to 6 minutes of run
time on our compute servers) and we only ran 120 new simulations in addition to the initial
population of size 100 (each of which takes on average 48 seconds to run). Moreover, the
complexity of developing a design script forces the designer to limit the search space in an
e↵ort to make the process feasible and a generic design algorithm that properly imposes
high-level specifications onto a large system is immensely di�cult to generate. We will see
an example of such systems and our approach’s solution in the next section.
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Figure 3.3: Two stage op-amp with negative gm load

Figure 3.4: Convergence curve of the two stage op-amp done in BAG. Orange shows the
minimum cost across iteration step and blue shows the average of cost in top 20 individuals

Table 3.3: Performance of expert design methodology and our approach

Requirement Expert Ours

funity >100 MHz 382 MHz 159 MHz
pm > 60� 64� 75�

gain >100 (for ours) 42 105
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3.3 End-to-End Layout Optimization of an Optical
Receiver Link

The following experiment highlights the capabilities of our approach in handling com-
plex analog/mixed signal design problems using post-layout simulations. We demonstrate a
di↵erential optical link receiver front-end with a one tap double tail sense amplifier (DTSA)
in the end. The circuit is shown in figure 3.5 with design space parameters at the bottom.
The goal is to design this circuit from very high level specifications, namely, data rate, power
consumption, and minimum sensitivity for a given bit error rate (BER).

Automating characterization of instances of this circuit is the key in setting up the envi-
ronment prior to running the algorithm. The following steps are cruicial to get performance
metrics on each design. First we instantiate the DTSA’s layout, schematic, and extracted
netlist. We then run overdrive test recovery to characterize the transient behaviour of DTSA.
Figure 3.6a shows a typical overdrive test recovery curve for a given comparator. We specifi-
cally measure vcharge, vreset, and vout in the time instances relative to the edge of the clock
as shown in the figure. By specifying these three numbers as well as a minimum vin (i.e 1
mV), we can describe the performance of the comparator at a given data rate. To get the
noise behaviour of the comparator, we run numerous transient noise simulations for several
cycles while sweeping input voltage from a small negative voltage to a small positive voltage.
We can then fit a normal Gaussian distribution to the estimated probability of ones in each
transient run and get an estimation of the input referred voltage noise of the DTSA. Figure
3.6b illustrates this simulation procedure. We then take the entire system’s extracted netlist
and characterize the behaviour of the analog front end (AFE) while the DTSA is acting as
a load for the continuous time linear equalizer (CTLE).

Once we used noise simulations to get the input referred voltage noise of the comparator,
we can then aggregate the comparator’s noise from previous simulations with the AFE’s
noise to compute the total rms noise comparator’s input. We also use the transient response
of the circuit to assure high fidelity for the eye diagram at the input of comparator. The
input/output curves, and formulas used to measure eye’s fidelity are shown in figure 3.7a
and 3.7b.

We estimate eye height and eye thickness ratio, and specify a constraint on them to
describe the quality of eye diagram for a given input sensitivity. Using BER of 10�12 we
can compute the required eye height at the input of the comparator using equation 3.1
and compare it against the actual eye height. For the optimization objective we can put a
constraint on the relative di↵erence of the actual eye height and the required eye height (i.e.
actual eye height should be 10% larger than the minimum required eye height. We call this
percentage eye margin).

eye hmin = 9�noise + Residual O↵set + DTSA sensitivity (3.1)

For sensitivity we use the Vin from the overdrive test recovery in previous tests. There will
also be a component mismatch o↵set which can significantly reduced with a systematic o↵set
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Figure 3.5: Optical receiver schematic



CHAPTER 3. EXPERIMENTS 23

(a)

(b)

Figure 3.6: a) Overdrive test recovery simulation curves for DTSA b) Probability of out-
putting a one vs. Vin. We can use the cumulative density function of a Gaussian to estimate
the standard deviation of the noise
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(a)

(b)

Figure 3.7: a) Input and output signals for measuring the eye height and thickness, the input
is a small signal pulse with an amplitude of target input sensitivity, and with a width of
Tbit for the target data rate. The output curve is sampled at time instances shown relative
to the main cursor (maximum of output) b) Equations used for estimating eye height and
thickness to express the fidelity of eye diagram
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Figure 3.8: Sample layouts of the optical link receiver circuit with di↵erent cost values of 0,
0.1, and 0.2 for A, B, and C, respectively.

cancellation scheme. The o↵set cannot, however, be fully eliminated, so the residual o↵set
will also be considered (i.e. 1mV). We also run a common mode ac simulation to ensure
that the tail transistors providing bias currents are operating in saturation by specifying
a reasonable minimum common mode rejection ratio requirement. For one instance, this
whole process takes about 200 seconds on our compute servers. We can then compute the
cost of each design as specified by equation 2.1. Therefore, being sample e�cient in terms
of learning and optimizing is vital, as discussed in section 3.1.

In terms of layout generator search space, each resistance drawn in Figure 3.5 has unit
length, unit width, number of series units, and number of parallel units. The CTLE’s
capacitor has width and length, and each transistor has number of fins and number of
fingers that need to be determined. We fixed number of fins to simplify the search space.
The cardinality of each design parameter is written in Figure 3.5. In total, the design example
has a 26 dimensional exploration space with size of 2.8⇥ 1030.

Figure 3.8 and Table 3.4 show the layout and performance of the solution for designs
found with cost of 0 (satisfying all specs), 0.1, and 0.2, respectively. The first design solution
was found using 435 simulations equivalent to 27 hours of run time. This number includes
generating the initial population which consisted of 150 designs with the best cost function
of 2.5. During the process the DNN was queried 77487 times in total and only 285 of those
were simulated, representing around 300x sample compression e�ciency. From the total run
time 1.6 hours were spent on training and almost 2.1 hours were spent on querying the DNN.
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Table 3.4: Design Performance for optical receiver design for CPD = 20fF , Imin =
3µA,Data Rate = 10Gbit/s

Requirement
A

(cost = 0)
B

(cost = 0.1)
C

(cost = 0.2)
Thickness ratio <10% 6% 3.3% 8.5%
Eye margin
@ Imin

>10% 10.2% 15.1% 10.4%

CMRR >3 4.77 5.51 4.5
vcharge >0.95VDD VDD VDD VDD
vreset <1 mV 20 µV 52 µV 21 µV
vout <-0.9VDD -0.91VDD -0.88VDD -0.87VDD
Total Noise <5 mV 2.9 mV 3.2 mV 3.05 mV
Total Ibias <10 mA 6.2 mA 4.04 mA 6.3 mA
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Chapter 4

Conclusion and Future Work

In this report we have proposed a new sample-e�cient evolutionary-based optimization
algorithm for designing analog circuits using layout generators. We showed that the algo-
rithm can be used in designing a variety of real, practical analog/mixed signal circuits with
di↵erent applications regardless of size and complexity, as long as the verification procedure
is properly defined. In author’s mind the following items are the natural directions for this
project’s future:

1. We have to setup a quantitative benchmark for measuring performance of our agent
against human experts and the Oracle. It is not clear how well the training process is
taking place and we would like to see an unbiased performance metric for comparing
di↵erent DNN models deployed in this BagNet.

2. With BAG’s evaluation engine, debugging based on post-extracted simulation is very
time consuming, and cumbersome. For instance we have to make sure that the verifica-
tion methodology does not have any bugs. In this work, we check them using random
generation and evaluation of a large number of designs and then, go through them
manually to see if every thing makes sense. By making sense, we mean that, sorting
designs by cost produces a consistent profile of good to bad designs from designer’s
stand point. This is really inconvenient, since if there is any issues somewhere in the
code we have to run evaluation for a large number of designs again. For simulation
BAG’s API is limited. We need to speed up the simulation process in BAG, so that it
gets more convenient to debug.

3. Continuing on previous item’s argument, it would be interesting to see if we train
something based on schematic can we transfer this knowledge to layout with the same
parameters and speed up convergence of the algorithm? This way we can start by
optimizing a schematic and then fine-tuning the layout.

The author believes that recent advancement in artificial intelligence and computational
hardware has opened many new doors in automation tasks. There are many creative ideas
that could be explored that could disrupt the CAD industry for analog as well as digital.
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Appendix A

Framework Implementation 1

In this chapter we will discuss some of the details of the framework we developed.

A.1 Overview of Framework Structure

Figure A.1 illustrates how di↵erent modules interact with each other in this framework.
There is a central agent module which handles the flow of algorithm 2. It construct other
modules and call their appropriate method as necessary. The following sections will discuss
the details of each module.

Figure A.1: The overview of framework modules

1The code is available on github

https://github.com/kouroshHakha/bag_deep_ckt
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A.2 Evaluation Engine

This module is responsible for running and querying the evaluation core. It also handles
parallel evaluation. The module itself is initialized by a specification file that has all the
information about the parameters to optimize, their range, the circuit specification, and
how to evaluate the cost function. The interface functions are the following:

def generate_data_set(n, evaluate)
"""
Generates a data set of size n and if evaluate is True runs the
evaluation for each of them. Returns a list of Design objects with
specification populated for each design.

,!

,!

"""
def evaluate(design_list)

"""
Evaluates a list of designs. Returns a list of specification
dictionaries according to the order of the designs that were passed
in.

,!

,!

"""
def compute_penalty(spec_num, spec_kwrd)

"""
Computes the penalty of specification 'spec_kwrd' that has a value of
'spec_num' according to threshold which it should be above or below.,!

"""

There are two di↵erent evaluation cores implemented in this framework: First one is an
NGSPICE evaluation engine. NGSPICE is an open source SPICE-like simulator that can
be used on any machine without license requirements. It is fast since it does only schematic
simulation and reading the data is easy. Second one is BAG integrated evaluation engine
which can generate layout, schematic, run LVS and RC extraction, and finally run simulations
with post extracted results. This evaluation engine is expensive in run-time.

A.3 Model

This module represents the neural network model that has been implemented in the back
end. It needs three interface functions implemented:

def get_train_valid_ds(*args, **kwargs)
"""
Returns training and validation datasets with their proper output
labels for the model in numpy arrays formats,!
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"""
def train(*args, **kwargs)

"""
Trains the model the way it should be trained, this should be
implemented compatible with get_train_valid_ds and model parameters,!

"""
def query(**kwargs)

"""
Inference part of the model. Input should be input parameters of the
DNN and output is the predicted labels,!

"""

We have tried two flavors of models. One is simple classification model with fully con-
nected layers only (three layers of size 20 for feature extraction layer and three layers of size
20 for each specification classifier). Another one is the same model with drop out layers in
between FC layers to decrease over-fitting and to get better estimates in low data regime.
Drop out layers were tried with dropping probability of 20 percent (keep prob=0.8). The
drop out model tends to work better qualitatively, but as was discussed in chapter 4, in
future venues more work needs to be done for quantifying the performance.

A.4 Black-box Optimization

This module handles all the evolutionary operations needed for the optimization frame-
work. It has the following interface:

def get_next_generation_candidates(parents1, parents2)
"""
Generates candidates by doing some evolutionary operations on one
individual drawn from each of 'parents1' and 'parents2'.,!

"""
def prepare_for_generation(db, n)

"""
Prepares the evolutionary algorithm for generating samples. An
example is fitting distribution parameters on the data in cross
entropy optimization.

,!

,!

"""

We implemented two flavors of evolutionary operations. One is a custom evolutionary
strategy that is outlined below:
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def get_next_generation_candidates(parents1, parents2):
if len(parents1) == 0:

parents1 = parents2
assert (self.cxpb + self.mutpb) <= 1.0, (

"The sum of the crossover and mutation probabilities must be
smaller ",!

"or equal to 1.0.")
op_choice = random.random()
offsprings = []
if op_choice <= self.cxpb: # Apply crossover

# randomly select one individual from parents1 and another from
parents2,!

parent1, parent2 = self._select_parents_from_two_pops(parents1,
parents2),!

ind1 = parent1.copy()
ind2 = parent2.copy()
# mates the individuals to create new offspring, the mating is a

mixture of blend and 2 point crossover},!

ind1, ind2 = self._mate(ind1, ind2, low=self.lows, up=self.ups)
offsprings += [ind1, ind2]

elif op_choice < self.cxpb + self.mutpb: # Apply mutation
# randomly select one individual from parents1
parent1 = self._select_for_mut_based_on_order(parents1)
# randomly perturb it an clip it to lower and upper bounds
new_ind, = self._mutate(new_ind, low=self.lows, up=self.ups)
offsprings.append(new_ind)

return offsprings

The other one is the cross entropy method (CEM) [4]. In this stochastic optimization,
at each get next generation candidates call, we produce each candidate by sampling the
parameters from a normal distribution: ✓i ⇠ N(µk,⌃k). For prepare for generation, we
re-fit a new mean an variance to the top designs in the population.

A.5 Decision Box

This module handles all the heuristic-based decisions in the algorithm, such as determin-
ing which designs to accept based on DNN’s output, whether the convergence condition is
met, and getting parents and the reference design from population.
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