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Abstract

Closing the Analog Design Loop with the Berkeley Analog Generator

by

Nicholas Werblun

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanović, Chair

Analog and mixed signal IC design is notoriously difficult and slow due in large part to the
layout. Modern integrated circuit fabrication with such small devices can have significant
interconnect parasitics that can drastically affect the behavior of a circuit’s design. The
implication is that simulations of circuit’s behavior are unreliable until after the interconnect
parasitics are extracted from the layout and included in the simulation.

The Berkeley Analog Generator (BAG) is a Python-based tool that interfaces with the
Cadence Virtuoso software [3] that aims to solve the above problem. BAG allows the user
to write parametrizable generator scripts that will automatically generate the entire layout
and schematic, as well as run the layout-versus-schematic (LVS) and post-layout extraction
(PEX) tools and export the results in a time that ranges from seconds to minutes based on
circuit complexity. Designers who have decided on a certain topology can write a layout and
schematic generator script in a high level programming language with class based hierarchy
once, and then any changes in the circuit simply require changing the corresponding param-
eters file containing the circuit specifications. Additionally, BAG allows the automation of
simulation and post-processing of simulation data as well as implementation of higher-level
design scripts that encapsulate designer insights and methodology, as well as opens the doors
for automated optimizer-driven circuit design.

This report shows examples of many common circuit blocks and their BAG implemen-
tation in an advanced process node, as well as an example of how BAG can be used to
speed up the design process. Although the generator scripting offers the implementation in
a higher-level language, certain implementation strategies and methodologies work better
than others, and this report aims at presenting a systematic generator writing methodology
and illustrates it on a set of typical analog-mixed signal blocks found in a high-speed link
front-end. In three months, a library of generators ranging from small basic circuits to entire
receiver chains were written; then in roughly two weeks, an LVS/PEX verified design for a
25Gbps optical communication link receiver in a 14nm FinFET process was created using
BAG cells and test benches. Further possibilities and uses of BAG are also discussed.
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Chapter 1

What Makes Analog Design Difficult?

If you know anyone who fits into the category of analog, RF or mixed signal designers, you
may already be familiar with the disheartened, defeated look they often display. Is it that IC
design attracts people of this nature? Or is it that IC design slowly gnaws at the existence
of engineers until they are but a shell of their former selves? For this report, we will assume
the latter. We will also assume this is due to standard practices more than any deep-rooted
truths about IC design or people in general.

1.1 Modern Mixed Signal IC Flow and Concerns

IC design is slow. The fabrication process for an IC is very complex, and for complex chips
the upfront cost can be immense [5]. Mistakes are costly both monetarily and time-wise,
ranging from hundreds of thousands of dollars and months to millions of dollars for simple
edits to a circuit. Furthermore, a company selling chips for use in other companies’ products
are liable for their chip’s performance. Should their component be the reason for a product’s
failure, that company may then be responsible for reimbursing the cost of the product. For
a $1000 cell phone with 100 million units shipped per year, a 1% chip failure rate can lead
to costs in the billions. For a company designing ICs then, it is crucial to get a high yield of
functioning chips on the first try to minimize costs.

Since a chip cannot be tested until after it is manufactured, IC designers tend to sim-
ulate the worst possible scenarios. Semiconductors behave quite differently under varying
temperatures and circuit conditions may not be stable. Supply voltages may vary, manu-
facturing can create component offset that negatively impacts the circuit, static discharge
events can occur and in modern processes, transistors age with time and exposure to bias
voltages .Due to this, most companies will only tape out a chip when they are fully confident
it will function properly under all use cases and over guareteed lifetime.

Ignoring the design procedure and assuming an architecture and component parameters
are already chosen, the testing procedure is generally as follows:

1. Simulate the chosen design across all specs to ensure proper behavior.



CHAPTER 1. WHAT MAKES ANALOG DESIGN DIFFICULT? 2

2. Simulate again, but at extreme temperatures and supply changes.

3. Simulate again, but including random process variation.

4. Draw the layout and extract the parasitics.

5. Perform 1. through 3. on the extracted layout.

If the circuit fails at any of these steps, the design must be modified and the steps
repeated. Only when all of tests are passed and verified through potentially hundreds of
different tests will the chip be sent for fabrication. Depending on the complexity of the chip
and the size of the team, this process can take anywhere from months to a year or more.

Why Does it Take So Long?

Layout.

Why Does Layout Take So Long?

Laying out a circuit is the term used to describe the process of how an abstract schematic
is translated into a physical picture that then turns into mask layers that the foundry uses
in the fabrication process to define where to dope the semiconductor, add connections and
place and route metals to generate an accurate depiction of the desired device parameters
and sizes. This means that the designer must manually draw active regions, metal wire sizes
and routing, vias, gate connections, etc. There are an infinite number of possibilities to
generate such a layout, but each comes with some trade off. Perhaps making a wire very
long and routing it around a structure is much easier, but introduces significant IR drop.
Perhaps a wire needs to carry more current through it, so the width is increased, but this
introduces extra parasitic capacitance. These trade offs are some of the main concerns of
both layout engineers and circuit designers.

Layout bottlenecks the design flow due to the slow turnaround time. With the reduction
in device sizes over the years, the design rules imposed by the fabricators have become more
strict and the parasitics in conjunction with high frequencies have started to have a more
significant effect on the circuit’s post-layout performance [1] [7]. In deeply-scaled processes,
layout patterns also induce systematic pattern-dependent variations and difference in strain
which affects transistor performance. Layout then, is a crucial part of the verification step.
Since the process is slow and precise, this means that any changes require significant work
to modify the layout and ensure nothing was incorrectly altered in the process.

The time frame of months to years is believable then if the turnaround for hand-drawn
layout is roughly a couple days to a week for fairly insignificant design modifications like
transistor resizing, or passive device resizing. Each and every time the designer receives the
extracted layout and modifies the components to correct for changes, they must wait days
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before they can start the cycle again. By Amdahl’s law then 1 [2], speeding up the layout
should allow one to close the design loop faster and reduce the pain of IC process.

1Amdahl’s law is generally referenced in computer program runtime, but the concept of speeding up
fractions of a process applies here as well.
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Chapter 2

The Berkeley Analog Generator

2.1 Overview and Top Level

Figure 2.1: BAG Overview

As discussed in [3], BAG is a framework that allows users to create, use and test
process-portable analog generators. Designers can create template schematics and write
a scripted layout generator that incorporates their design methodology in a technology ag-
nostic, parametrized way. At the highest level, the user inputs parameters, examples of
which will be shown later in this chapter and in Chapter 3, such as device dimensions and
passive component values into a specification file, and a script will generate a schematic, LVS
tested layout and a PEX netlist. The main advantage is that the delay of the design loop
discussed in Chapter 1 is significantly reduced as post-layout effects can be directly included
into the flow.
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As will be discussed in later sections, there are a few main components to a “complete”
generator. At the lowest levels are the layout generator and schematic generator. These are
responsible for the physical process of generating the circuit representation and layout. In
order to use these, there is also a top level script that reads a parameter file and runs the
schematic/layout generators with these specifications. The top level is also responsible for
deciding whether or not to run LVS/PEX on the generated instance.

At an even higher level is the notion of a design script and design managers. Design
manager is a class responsible for using the top level generator mentioned previously and
overseeing the process of running tests and post-processing on test results. Design manager
has associated test bench scripts which are responsible for connecting the generated device
into a previously made test harness. The test bench script maps the pins of the instance to
the pins of the test harness and runs predetermined SPICE simulations (i.e. AC, transient,
S-parameters) before exporting the results to Python. Design manager can then pass the
results to a measurement manager which can process, plot, etc. The entire process can be
visualized as in Figure 2.1.

The notion of a design script is an even higher level concept which allows a designer to
encode their design procedure automatically into a close-looped script. The user can write
a script that computes passive and transistor sizings, allow design manager to generate and
test the post-PEX netlist, and iterate based on the results. The possibility of incorporating
a design script will be discussed later, although a design script is not presented in this work.
Design scripts are discussed in further detail in [3] and [6].

2.2 Layout Generators

Layout generators are arguably the most important portion of the process and are extensively
discussed in [3]. BAG offers a set of functions for drawing transistors, automatically routing
metals, drawing vias, etc. to allow the same capability that hand design would produce. The
goal of the designer is to use these functions in a generic way that automatically computes
where and how to draw connections that will be DRC and LVS clean regardless of the input
specifications.

The typical process of generating a large complex block is to start with small cells, like
an inverter or an active diff amp using AnalogBase. AnalogBase is a class in BAG used
for drawing layouts comprised entirely of transistors. Firstly, the user draws a schematic
template, like shown in Figure 2.2.
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Figure 2.2: Differential amplifier schematic template example
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This template holds only a human-readable description of the connections. The schematic
will be copied over with actual values filled in by BAG afterward. One thing to note is the
presence of seemingly useless transistors, like in the bottom right. These transistors are
used by BAG to properly create dummy transistors in the layout, and anything else can be
removed if not used in the schematic generator. Additionally, the transistor in the bottom
left used for adding stabilization capacitance can also be removed if desired. Example layouts
below will not have this transistor.

Using the schematic template, the user then decides how many rows of transistors will
be in the layout, and assigns a number of transistors to each row. There are a number of
helper functions to generate a data structure containing information about which row the
transistor is in, the drain/source metal directions, number of fingers, etc. which is called the
“initialization step”. An example of how one might set up the rows and initialization for the
amplifier in Figure 2.2 is shown in Listing 2.1 and Listing 2.2. Note that these code blocks
are only portions of the full layout generator and there are, in general, a small number of
extra lines required. This section highlights only the most important portions of a generator.
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1 # Rows are ordered from bottom to top
2 # To use TrackManager , an ordered l i s t o f w i r ing types and t h e i r l o c a t i o n s must be

provided .
3 # Def ine two l i s t s , one f o r the nch rows and one f o r the pch rows
4 # The l i s t s are composed o f d i c t i o n a r i e s , one per row .
5 # Each d i c t i ona ry has two l i s t e n t r i e s ( g and ds ) , which are ordered l i s t s o f what

wire types w i l l be pre sent
6 # in the g and ds s e c t i o n s o f that row . Ordering i s from bottom to top o f the

des ign .
7 wire names = d i c t (
8 nch=[
9 # t a i l row

10 d i c t (
11 g=[ ’ b i a s ’ ] ,
12 ds=[ ’ b i a s ’ ]
13 ) ,
14 # Input row
15 d i c t (
16 g=[ ’ s i g ’ ] ,
17 ds=[ ’ s i g ’ ]
18 )
19 ] ,
20 pch=[
21 # top row
22 d i c t (
23 ds=[ ’ s i g ’ ] ,
24 g=[ ’ b i a s ’ ]
25 )
26 ]
27 )
28 l ayou t h e l p e r . wire names = wire names
29 # Set up the row in fo rmat ion
30 # Row in fo rmat ion conta in s the row p r op e r t i e s l i k e width/number o f f i n s , o r i en t a t i on

, intent , e t c .
31 # Stor ing in a row d i c t i ona ry / ob j e c t a l l ows f o r convenient f e t c h i n g o f data in l a t e r

f unc t i on s
32 r ow t a i l = l ayou t h e l p e r . i n i t i a l i z e r o w s ( row name=’ t a i l ’ ,
33 o r i e n t=’R0 ’ ,
34 nch or pch=’ nch ’ ,
35 )
36 row input = l ayou t h e l p e r . i n i t i a l i z e r o w s ( row name=’ input ’ ,
37 o r i e n t=’R0 ’ ,
38 nch or pch=’ nch ’ ,
39 )
40 row mirror = l ayou t h e l p e r . i n i t i a l i z e r o w s ( row name=’ top ’ ,
41 o r i e n t=’R0 ’ ,
42 nch or pch=’ pch ’ ,
43 )
44
45 # Def ine the order o f the rows ( bottom to top ) f o r t h i s analogBase c e l l
46 l a you t h e l p e r . g l oba l r ows = [ row ta i l , row input , row mirror ]

Listing 2.1: Creating rows for transistors
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1 ################################################################################
2 # 2 :
3 # I n i t i a l i z e the t r a n s i s t o r s in the des ign
4 # Stor ing each t r a n s i s t o r ’ s in fo rmat ion (name , l o ca t i on , row , s i z e , e t c ) in a
5 # d i c t i ona ry ob j e c t a l l ows f o r convenient use l a t e r in the code , and a l s o
6 # g r e a t l y s i m p l i f i e s the schematic gene ra t i on
7 # The i n i t i a l i z a t i o n s e t s the t r a n s i s t o r ’ s row , width , and source / dra in net names
8 # f o r proper dummy c r e a t i on
9 ################################################################################

10 t a i l l = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ t a i l l ’ , row=row ta i l ,
11 f g s p e c=’ bo t tom ta i l ’ ,
12 d e f f n e t=’TAIL ’ )
13 t a i l r = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ t a i l r ’ , row=row ta i l ,
14 f g s p e c=’ bo t tom ta i l ’ ,
15 d e f f n e t=’TAIL ’ )
16 b i a s = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ b ia s ’ , row=row ta i l ,
17 f g s p e c=’ bottom bias ’ ,
18 d e f f n e t=’ IBIAS TAIL ’ )
19 i n l e f t = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ i n l e f t ’ , row=row input ,
20 f g s p e c=’ bottom in ’ ,
21 s e f f n e t=’TAIL ’ , d e f f n e t=’VOUTN’ )
22 i n r i g h t = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ i n r i g h t ’ , row=row input ,
23 f g s p e c=’ bottom in ’ ,
24 s e f f n e t=’TAIL ’ , d e f f n e t=’VOUT P ’ )
25 t o p l e f t = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ t o p l e f t ’ , row=row mirror ,
26 f g s p e c=’ top ’ ,
27 d e f f n e t=’VOUTN’ )
28 t op r i g h t = l ayou t h e l p e r . i n i t i a l i z e t x (name=’ t op r i g h t ’ , row=row mirror ,
29 f g s p e c=’ top ’ ,
30 d e f f n e t=’VOUT P ’ )

Listing 2.2: Assigning transistors to a row and initializing
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1 # Calcu la te p o s i t i o n s o f t r a n s i s t o r s
2 # This uses he lpe r f unc t i on s to p lace each t r a n s i s t o r with in a stack /column o f a
3 # s p e c i f i e d s t a r t i n g index and
4 # width , and with a c e r t a i n al ignment ( l e f t , r i ght , cente red ) with in that column
5 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=bias , o f f s e t=col mid , f g c o l=fg mid , a l i g n=0)
6 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=t a i l l , o f f s e t=c o l s t a c k l e f t ,
7 f g c o l=fg s t a ck , a l i g n=0)
8 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=i n l e f t , o f f s e t=c o l s t a c k l e f t ,
9 f g c o l=fg s t a ck , a l i g n=0)

10 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=t op l e f t , o f f s e t=c o l s t a c k l e f t ,
11 f g c o l=fg s t a ck , a l i g n=0)
12 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=t a i l r , o f f s e t=c o l s t a c k r i g h t ,
13 f g c o l=fg s t a ck , a l i g n=0)
14 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=in r i g h t , o f f s e t=c o l s t a c k r i g h t ,
15 f g c o l=fg s t a ck , a l i g n=0)
16 l ayou t h e l p e r . a s s i gn tx co lumn ( tx=top r i gh t , o f f s e t=c o l s t a c k r i g h t ,
17 f g c o l=fg s t a ck , a l i g n=0)

Listing 2.3: Assigning transistors to columns

After initializing all transistors, the user then must specify their locations in the layout by
creating fictitious columns that stacks of transistors will be placed in. Based on the number
of fingers each transistor has, technology required spacing and any other spacing (to route
dummies, etc.) the user can compute columns based on a number of fingers, and assign the
transistors like in Listing 2.3.

The final transistor placement step is to set the drain and source orientations. A tran-
sistor’s source can be routed up or down which affects where the gate placements are made,
and the first diffusion region per transistor can be either source or drain to make alignment
simpler. There is also a helper function to automatically compute based on number of fingers
which region should be the source or drain based on another transistor the user wishes to
align to. This is shown in Listing 2.4.
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1 ################################################################################
2 # 4 : Assign the t r a n s i s t o r d i r e c t i o n s ( s /d up vs down)
3 #
4 # Spec i f y the d i r e c t i o n s that connect i ons to the source and connect i ons to the dra in
5 # w i l l go (up vs down) . Doing so w i l l a l s o determine how the gate i s a l i gned
6 # ( i e w i l l i t be a l i gned to the source or dra in )
7 # See the bootcamp f o r more d e t a i l s
8 # The he lpe r f unc t i on s used here he lp to ab s t r a c t away whether the intended
9 # source / dra in d i f f u s i o n r eg i on o f a t r a n s i s t o r occurs on the even or odd

10 # columns o f that dev i ce (BAG always c on s i d e r s the even columns o f a
11 # dev i ce to be the ’ s ’ ) . These he lpe r f unc t i on s a l low a user to s p e c i f y
12 # whether the even columns should be the t r a n s i s t o r s e f f e c t i v e source or
13 # e f f e c t i v e drain , so that the user does not need to worry about BAG’ s notat ion .
14 ################################################################################
15
16 # Set t a i l b i a s tx to have source on the l e f tmos t d i f f u s i o n ( a rb i t r a r y )
17 # and source going down
18 l ayou t h e l p e r . s e t t x d i r e c t i o n s ( tx=bias , s e f f= ’d ’ , s e f f d i r =0)
19 # Assign the input to be ant i−a l igned , so that the input source and t a i l
20 # dra in are v e r t i c a l l y a l i gned
21 l ayou t h e l p e r . s e t t x d i r e c t i o n s ( tx=i n l e f t , s e f f= ’ s ’ , s e f f d i r =0)
22 l ayou t h e l p e r . s e t t x d i r e c t i o n s ( tx=in r i g h t , s e f f= ’ s ’ , s e f f d i r =0)
23
24 l ayou t h e l p e r . a s s i gn tx mat ch ed d i r e c t i on ( t a r g e t t x=t a i l l , s ou r c e tx=i n l e f t ,
25 s e f f d i r =0, a l i gned=False )
26 l ayou t h e l p e r . a s s i gn tx mat ch ed d i r e c t i on ( t a r g e t t x=t a i l r , s ou r c e tx=in r i g h t ,
27 s e f f d i r =0, a l i gned=False )
28
29 l ayou t h e l p e r . a s s i gn tx mat ch ed d i r e c t i on ( t a r g e t t x=t op l e f t ,
30 s ou r c e tx=i n l e f t , s e f f d i r =2)
31 l ayou t h e l p e r . a s s i gn tx mat ch ed d i r e c t i on ( t a r g e t t x=top r i gh t ,
32 sou r c e tx=in r i g h t , s e f f d i r =2)

Listing 2.4: Determining transistor drain/source configurations
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Finally, the difficult setup is complete, and the user can call the function self.draw base()

with the information about rows, transistors, etc. set up in the previous steps. BAG will
then draw the all of the required polygons for the metal connections to the MOS devices and
everything else. An example base layout with no wiring done of the schematic in Figure 2.2
is shown in Figure 2.3.

(a) Base layout of transistors with ac-
tive regions, poly, etc.

(b) The same layout with only metal
connection layers shown. Annotated
with locations of transistors.

Figure 2.3: Base layout
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1 #Connect up b ia s gate s + dra in
2 wa r r b i a s i n = s e l f . c onne c t t o t r a ck s (
3 [ t a i l l [ ’ g ’ ] , t a i l r [ ’ g ’ ] , b i a s [ ’d ’ ] , b i a s [ ’ g ’ ] ] ,
4 t i d t a i l g a t e
5 )
6 #connect t a i l d ra in s to input sour c e s ( t a i l node )
7 wa r r t a i l = s e l f . c onne c t t o t r a ck s (
8 [ t a i l l [ ’ d ’ ] , t a i l r [ ’ d ’ ] , i n r i g h t [ ’ s ’ ] , i n l e f t [ ’ s ’ ] ] ,
9 t i d t a i l d s

10 )

Listing 2.5: Drawing wire connections.

After drawing the base layout, users can then specify how to connect wires and ports by
specifying a metal layer, a wire width and a track. Tracks are an invisible grid that spans the
design space used by BAG to place wires properly. Listing 2.5 shows an example command
of how to connect elements. Note that this code makes no reference to anything specific
nor does it “hardcode” any parameters. Everything is generic to the specified parameters.
Figure 2.4 shows the connections made by BAG.

Figure 2.4: Transistor wiring

Lastly, the user finalizes connections and adds pins to wires. In the final step, BAG will
draw dummy transistors and create straps for the power supplies, automatically routing the
dummies’ connections to the supply, like in Figure 2.5. With a finished layout generator,
the user can now arbitrarily change their transistor specifications which will be reflected
automatically in the wiring and sizing. Figure 2.6 shows the same generator with various
width and number of finger choices. An important note is that the user can do all this
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Figure 2.5: Finished layout (only metals shown)

without knowing any of the myriad of the layout design rules since BAG handles these
complexities internally and abstracts them away from the user.
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(a)

(b)

(c)

Figure 2.6: Differential amplifier layout with various widths and number of finger choices.



CHAPTER 2. THE BERKELEY ANALOG GENERATOR 16

1 # Def ine the in s t ance masters
2 . . .
3 master dtsa = s e l f . new template ( params=dtsa params ,
4 temp c l s=DoubleTai lSenseAmpl i f i e r )
5 . . .
6 . . .
7 . . .
8 x , y = l ayou t h e l p e r . g e t o n t r a c k o f f s e t (
9 master dtsa ,

10 x o f f s e t=l a r g e s t /2 + master dtsa . bound box . r i g h t u n i t /2 ,
11 y o f f s e t=wi r i ng space + inst combined . bound box . top uni t ,
12 unit mode=True
13 )
14
15 i n s t d t s a = s e l f . add ins tance (
16 master dtsa , ’XDTSA’ ,
17 l o c=(x , y ) ,
18 o r i e n t=’MY’ ,
19 unit mode=True
20 )

Listing 2.6: Adding and placing templates to a layout

BAG also offers hierarchy in layout using TemplateBase [3]. When a library of smaller
cells are created, the user can then “stamp” these cells into a larger unit and connect them
together to form more complex systems. Listing 2.6 demonstrates the code to insert a double
tail sense amplifier into a circuit. The user first creates a template, then computes a location
where the circuit should be placed using helper functions to guarentee everything is aligned
to the grid. Lastly, with the computed coordinates, the user can instantiate the circuit into
the layout. An example of a circuit containing a differential transimpedance amplifier (TIA)
and continuous-time linear equalizer (CTLE) is shown in Figure 2.7.

The benefit of codifying the layout procedure is that configuration can be automatically
included. For example, should a designer want variable resistors in their circuit, they may
opt for a resistor DAC. Resistor DACs are often an arbitrary number of arrayed unit resistors
with digitally controlled switches. One method of implementing such a resistor DAC is a
set of series resistors each with a parallel switch that can short out or connect any of the
series resistors. Using TemplateBase, we can place any amount of template layouts which
allows for a single generator with a large degree of freedom to create such a circuit. The user
can choose how many bits, what type of switch to use (NMOS, PMOS, passgate), and even
whether or not to include local inversion for the passgate. An example of multiple resistor
DAC layouts of this style are shown in Figure 2.8 and a small portion of the configuration
file in Listing 2.7.
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Figure 2.7: Differential TIA and CTLE
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1 params :
2 o u t pu t b i t s d i r : ’ l e f t ’ #where to drag the con t r o l b i t s to
3 b i t s : 1
4 switch params :
5 sw i t ch type : ’ t r an smi s s i on ’
6 i n c l ud e i nv : True
7 switch params :
8 l ch : ! ! f l o a t 14e−9
9 gua rd r i ng n f : 0

10 ptap w : 6
11 ntap w : 6
12 w dict : # Width o f each row . Each row needs the width s p e c i f i e d
13 nmos : 6
14 pmos : 12
15
16 t h d i c t : # Threshold in fo rmat ion / th i ck ox / e tc f o r each row
17 nmos : ’ standard ’
18 pmos : ’ standard ’
19
20 s e g d i c t : # Number o f f i n g e r s o f each t r a n s i s t o r
21 nmos : 8
22 pmos : 16
23 . . .
24 . . .
25 . . .
26 res params :
27 show pins : True
28 l : 0 . 5 e−6
29 w: 1 .0 e−6
30 sub type : ’ ptap ’
31 th r e sho ld : ’ standard ’
32 nser : 1
33 npar : 1
34 ndum: 1
35 po r t l a y e r : 5
36 . . .
37 . . .
38 . . .

Listing 2.7: Resistor DAC params sample
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(a) 1 bit

(b) 3 bits

(c) 5 bits

Figure 2.8: Various resistor DAC generated layouts
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1 # Some pins are not needed depending on the type o f switch used .
2 i f sw i t ch type == ’nmos ’ :
3 s e l f . remove pin ( ’CTRL B ’ )
4 s e l f . remove pin ( ’VDD’ )
5 e l s e :
6 i f i n c l ud e i nv :
7 s e l f . remove pin ( ’CTRL B ’ )
8 e l s e :
9 i f sw i t ch type == ’pmos ’ :

10 s e l f . remove pin ( ’CTRL’ )
11 # When us ing a multi−b i t resDAC , rename the input pin to have the r equ i r ed bi twidth .
12 i f b i t s > 1 :
13 i f sw i t ch type == ’nmos ’ :
14 s e l f . rename pin ( ’CTRL’ , ’CTRL< ’ + s t r ( b i t s −1) + ”:0>” )
15 e l s e :
16 i f i n c l ud e i nv or sw i t ch type == ’ t ransmi s s i on ’ :
17 s e l f . rename pin ( ’CTRL’ , ’CTRL< ’ + s t r ( b i t s − 1) + ”:0>” )
18 i f not i n c l ud e i nv :
19 s e l f . rename pin ( ’CTRL B ’ , ’CTRL B< ’ + s t r ( b i t s −1) + ”:0>” )
20 . . .
21 . . .
22 . . .
23 # Copy the un i t c e l l many times with many names
24 s e l f . a r r ay i n s t an c e ( ’X SWITCH0 ’ , switch names , switch port names )
25 s e l f . a r r ay i n s t an c e ( ’X RES0 ’ , res names , r e s por t names )
26 . . .
27 . . .
28 . . .
29 #Loop through a l l i n s t an c e s and use the des ign method to input the params from the spec f i l e

i n to the schematic
30 f o r ind , i n s t in enumerate ( s e l f . i n s t an c e s [ ’X RES0 ’ ] ) :
31 i n s t . des ign (∗∗ r e s p a r am s l i s t [ ind ] )

Listing 2.8: Resistor DAC schematic generator

2.3 Schematic Generators

Schematic generators control the process of copying the template schematic mentioned pre-
viously and assigning values to the components based on the inputted spec file [3]. These
generators have the capability of arraying and deleting instances, removing, adding or re-
naming pins and other simple operations.

Generally the user simply inputs commands to pass the component values into the design;
but for circuits such as the resistor DAC in the previous section, the user can automatically
array and resize components based on the layout like shown in Figure 2.9. Portions of the
code that accomplishes this is shown in Listing 2.8.
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(a) 1 bit

(b) 5 bits

Figure 2.9: Various resistor DAC schematics
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2.4 Design Manager and Test Benches

As shown in Figure 2.1, design manager is a higher level entity to that of the layout and
schematic generators [3]. Design managers contain within them multiple test bench managers
that each have their own corresponding measurement manager. In the specifications file, the
user decides which tests to run and design manager will generate an instance and pass it
through the chosen simulations. This is the method used to test the circuits described in
Chapter 4.

Tests are made by the user in a similar method to schematic generators. The user specifies
a test bench setup with a generic DUT block and adds input sources and pins. Within a
specifications file, the user describes how to wrap the inputs of the DUT to the generic
block, as well as what outputs to save. These outputs are sent to the measurement manager
where the user can, for example, compute 3dB frequencies, DC gain, etc. and save the
results if desired. Multiple test benches can be run in one instance. A portion of an example
parameters file for testbench management is shown in Listing 2.9.



CHAPTER 2. THE BERKELEY ANALOG GENERATOR 23

1 #Spec i f y i ng how the por t s o f the dev i c e map to the g ene r i c DUT template
2 dut wrappers :
3 − name : ’ ac forward ’
4 l i b : ’ bag te s tbenches kh ’
5 c e l l : ’ d i f f 2S ing l eEnded wrapper ac fo rward ’
6 params :
7 dut conns :
8 IBIAS TAIL : ’ IBIAS TAIL ’
9 VIN N : ’VIN ’

10 VIN P : ’VIP ’
11 VSS : ’VSS ’
12 VDD: ’VDD’
13 VOUTN: ’VON’
14 VOUT P: ’VOP’
15 #Choosing which measurement c l a s s e s to run
16 measurements :
17 #The − next to meas type i s not a mistake . I t s p e c i f i e s that the e n t i r e contents o f

measurements i s a l i s t .
18 − meas type : ’CTLE char ’
19 meas package : ’ v e r i f i c a t i o n k h . CTLEMeasurementUnit ’
20 meas c l a s s : ’CTLEMeasurementManager ’
21 out fname : ’CTLE char . yaml ’
22 sch params : {}
23 te s tbenche s :
24 ac forward :
25 tb package : ’ v e r i f i c a t i o n k h . GenericACTB ’
26 t b c l a s s : ’GenericACTB ’
27 t b l i b : ’ bag t e s tbenche s e c ’
28 t b c e l l : ’ amp tb ac ’
29 wrapper type : ’ ac forward ’
30
31 . . .
32 . . .
33 . . .
34
35 #Spec i f y s imu la t i on v a r i a b l e s
36 f s t a r t : ! ! f l o a t 1 e3
37 f s t op : ! ! f l o a t 10 e10
38 fndec : 10
39 s im vars :
40 i b i a s : ! ! f l o a t 900e−06
41 vdd : ! ! f l o a t 0 . 8
42 c load : ! ! f l o a t 20 .0 e−15
43 vicm : ! ! f l o a t 0 . 6
44 #Choose what outputs to save
45 s im outputs :
46 o u t d i f f : ”VF(\”/ vout \”) ”
47 outcm : ”VF(\”/ vout cm \”) ”
48 i n d i f f : ”VF(\”/ vin \”) ”
49 i b i a s : ”IDC(\”/VSUP/PLUS\”) ”

Listing 2.9: Test bench parameters
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An example test bench manager, generic AC TB,1 inputs an AC voltage or current and
runs an AC simulation and noise simulation. The corresponding measurement manager sifts
through the data and (regardless of the transfer function shape) computes the DC gain and
overall bandwidth. The noise data is integrated and reported, as well as CMRR.

Since BAG is written in Python, users can easily extend or add features to BAG. An
example is the extension of DesignManager to SweepDesignManager. This subclass inherits
all the basic properties and functions in design manager, but allows the user to specify a
set of variables in the parameter file to sweep. BAG will then automatically generate one
instance per parameter value in the range, and simulate them all in parallel. This allows
for the same type of sweeps one would do manually, but additionally includes parasitics and
LVS.

1This test bench, and all others used in this report come courtesy of Kourosh H. of team Vlada.
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Chapter 3

Example Generator Implementations

To illustrate a few possibilities of BAG generators, we show various circuits of increasing
complexity.

3.1 Starting Small: Passive Loaded Differential

Amplifier

A very commonly used block in many ICs is the differential amplifier. In this case the load is
passive. The topology is the same as that used in Chapter 4, and can be seen in Figure 4.7.
An example generated layout instance is shown in Figure 3.1. All generators demonstrated
have wire width parametrized so each type of wire (signal, bias, clock) can have a specific,
customizable width through use of TrackManager. This class lets the user specify a width
for each layer of interest and map them to a name. For example, if the user wants a specific
width for all nets carrying a clock signal, then the user can specify the width all clock wires
should be on each layer. Listing 3.1 shows a sample setup. When choosing a wire width to
make a connection, the generator will select the width based on the passed specs, meaning
wire widths can be parametrized as well. A section of code using this wire width is shown
in 3.2.

This generator additionally allows the user to specify resistor unit cell sizes, number of
parallel and series units and transistor dimensions (width, fingers) the same way as demon-
strated in Chapter 2.

Another option for this generator is nearly identical, but with 3-bit resistor DACs instead
of a single resistor as in Figure 3.2



CHAPTER 3. EXAMPLE GENERATOR IMPLEMENTATIONS 26

(a) Full layout

(b) Only the metals

Figure 3.1: Differential amplifier layout

3.2 Getting Fancier: A Double Tail Sense Amplifier

and Latch

Yet another crucial component in an analog receiver is the sampler. Before converting to
purely digital processing, the received bits must be processed as either a 1 or a 0 through
the use of a sampling circuit. While there are many ways to implement sampling, this report
makes use of a double tail sense amp (DTSA) [4]. The schematic and operation are shown
in Figures 4.7 and 4.8 respectively. An example layout is shown in Figure 3.3. The DTSA
block exemplifies even more of BAGs capability to include customization. In addition to
all previously mentioned parametrization (wire widths, transistor sizings, etc.) this block
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1 t r w id th s :
2 # How wide to make the ac tua l w i r e s
3 # format i s {metal l a y e r : t rack width , metal l a y e r : width in t ra ck s }
4 b ia s : {4 : 2 , 5 : 2}
5 c l k : {4 : 1 , 5 : 1}
6 s i g : {4 : 1 , 5 : 1}
7 t r s p a c e s :
8 # How wide to make the spaces between each wire o f a c e r t a i n type
9 # same formatt ing . {metal l a y e r : width in t ra ck s }

10 ! ! python/ tup l e [ ’ b i a s ’ , ’ ’ ] : {4 : 1 , 5 : 1}
11 ! ! python/ tup l e [ ’ c l k ’ , ’ ’ ] : {4 : 3 , 5 : 3}
12 ! ! python/ tup l e [ ’ c l k ’ , ’ c l k ’ ] : {4 : 2 , 5 : 2}
13 ! ! python/ tup l e [ ’ c l k ’ , ’ b i a s ’ ] : {4 : 3 , 5 : 3}
14 ! ! python/ tup l e [ ’ s i g ’ , ’ ’ ] : {4 : 2 , 5 : 2}

Listing 3.1: Track manager setup

1 # Create a t rack to put a wire on f o r connect ing the r e s i s t o r output
2 # termina l to the input te rmina l
3 t i d e x t e n d r e s p i n p = TrackID (
4 #A way o f s p e c i f y i n g I want the next ho r i z on t a l l a y e r above my lowest horz . l a y e r
5 ho r z conn l aye r + 2 ,
6 t r a ck i dx=s e l f . g r i d . c o o r d t o n e a r e s t t r a c k ( #Helper func t i on
7 l a y e r i d=horz conn l aye r + 2 ,
8 #This r ep r e s en t s the coord inate o f the r e s i s t o r port wire
9 coord=( r e s p i np . ge t bbox ar ray ( s e l f . g r i d ) . bottom unit + \

10 d i f f amp vout p . ge t bbox ar ray ( s e l f . g r i d ) . t op un i t ) /2 ,
11 unit mode=True
12 ) ,
13 #This i s where the paramet r i za t i on comes in . By changing the width corre spond ing
14 # to ‘ b i a s ’ in the spec f i l e , the width w i l l au tomat i ca l l y change here .
15 width=tr manager . get width ( ho r z conn l aye r +2, ’ b i a s ’ )
16 )

Listing 3.2: Track manager usage

Figure 3.2: Passive diff-amp with resistor DAC

also includes an option to generate input pair offset correction circuits. These circuits are
implemented as a current that subtracts from the input pair’s current during the integration
step of operation (discussed more in Chapter 4). The generator automatically accounts
for how the setup changes when offset correction is included and automatically adds more
pins/labels to the layout, as shown in Figure 3.4. Finally, the output of a comparator like
this is only valid for a short time. We need a latch to store the value in between evaluation
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(a) Full layout (b) Only the metals

Figure 3.3: DTSA layout

Figure 3.4: DTSA with offset correction

cycles. Thankfully, this is possible with BAG. Using TemplateBase we can attach a latch
made previously to the output of the DTSA, like in Figure 3.5.

3.3 Endless Possibilities: An Entire Receiver Analog

Front End Receiver or Two

Manually creating the layout for an entire analog front-end (AFE) of the reciever is a daunting
process. As a final demonstration of how a user can start with small blocks and eventually
create large, complex generators, two different front end architectures are shown. It is
important to note that the size and complexity of these circuits are non-trivial, and would
require significant manual work. These generators are capable of creating and extracting the
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Figure 3.5: DTSA with latch

entire layout in seconds, which truly allows faster design iteration by removing the bottleneck
almost entirely.

The first front end (Figure 3.6) is a chain of a TIA followed by a Cherry-Hooper amplifier
stage, then a CTLE with resistor DACs and a capacitor DAC and two parallel preamplifiers
also with resistor DAC loads. As will be discussed in Chapter 4, there are also current
DACs to establish a common mode output in the first stage. The important thing to note
about these generated layouts is how much control the user has over the dimensions of the
blocks. Extremely wide or tall, or balanced layouts are possible. The aspect ratio is fully
customizable, and can be changed at a whim with a simple rerun of the script.

There are also versions that include DACs for every passive element as well as current
DACs for every bias input. There are versions that remove the Cherry-Hooper stage and
include a comparator. These various variants are also used for different simulation stages of
design and verifiaction.

Another example of a front end is the one that will be used in Chapter 4. This AFE is a
quad data rate AFE similar to the previous AFE and is comprised of the chain: TIA, CTLE,
2x parallel passive diff amps, 4x samplers. The architecture and operation is explained
in Chapter 4. The layout is shown in Figure 3.7, and of course has the same degree of
customizability alluded to in this entire chapter. The main point of demonstrating these
layouts is that with a library of “leaf cells,” composing large circuits is a very feasible task



CHAPTER 3. EXAMPLE GENERATOR IMPLEMENTATIONS 30

that would take an experienced user only one to two days to implement. With BAG, layout
is no longer a painstaking process.
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(a) AFE full layout, annotated with positions of blocks

(b) The same AFE with different parameters

(c) The same AFE with different parameters

Figure 3.6: Various generated AFE layouts
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Figure 3.7: Second front end
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Chapter 4

Design Problem: An Optical Receiver

Silicon photonics is a relatively new field, but the increasing possibility of incorporating
photonics elements on chip with the electronics has led to optical circuits becoming a research
hotspot.

To demonstrate the capabilities of BAG, an optical receiver design from concept to veri-
fication is shown.

4.1 Problem Statement and Architecture

Photonic communication systems transmit and receive data using light, meaning that the
receiver element must be a photo diode. A reverse biased photo diode receiver element
can be modeled as a current source with some capacitance in parallel. This is the “input”,
analogous to an antenna in typical RF receivers. For this design, the following arbitrary
specs are required:

• 14nm FinFET technology

• A data rate of 25Gbps

• A photo diode capacitance of 50fF

• 40µA peak to peak photo diode current

• VDD = 0.8V

• Must use BAG for generation and the majority of testing

There are no power constraints or architecture constraints with the condition that any
chosen architecture will be implemented in BAG. We will assume the photonics are already
implemented, and we will also not simulate for temperature, voltage or process variations.
Each transistor will be of a unit size, and only the number of fingers will change. Noise in
general should be low, but there is no strict value requirement. We will see in the “Future
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Work” of Chapter 5 how this could be extended, and an example of how one could generalize
the design procedure automatically.

Architecture Choice and Concerns

The architecture is based off the receiver in [10] and is shown below:

Figure 4.1: System architecture

This receiver is a quad data rate (QDR) receiver with each comparator operating in 90◦

phase offsets at a quarter of the clock rate to reduce the comparator constraints. Techni-
cally, only a single comparator clocked at 25GHz is necessary, however the time required for
a comparator to decide between a 1 or 0 bit depends on the available voltage drive and hence
impacts the receiver current sensitivity. To meet the target speed and sensitivity specifica-
tions, we use four comparators that operate only a quarter of the time to allow enough time
for decision making and regeneration. This will be further discussed in following parts of
this chapter.

Another design choice made is to drive the 0◦ and 180◦ offset comparators with the same
preamp, and 90◦and 270◦ together. This was done to reduce the effect of back-injection of
the clock into the circuit elements before it.

The TIA is the main gain stage and is used to convert the incoming current waveform
into a voltage. Since the TIA is the first block in the chain, the formula for cascaded noise
figures

Ftotal = F1 +
F2 − 1

G1

+
F3 − 1

G1G2

+ ... (4.1)

(where F1 and Gi are the noise factor and gain of stage i respectively) tells us we want
the TIA to be high gain and low noise in order to reduce the overall noise factor of the
system.

The TIA is followed by a CTLE. A CTLE has a zero in its transfer function that can
be placed at a specific frequency, which theoretically allows the designer to extend the
bandwidth of previous stages as in Figure 4.2. One concern of the CTLE however, is that it
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Figure 4.2: CTLE effect on a generic one-pole system

can only, in general, shape the energy of the frequency spectrum. This means that usually
to increase the gain at high frequency, we must throw away DC gain, as shown below:

Since we are targeting 25Gbps, the empirical target bandwidth the front end receiver
needs for a relatively optimal trade off in power and introduced ISI is ≈ 0.7× the data
rate, or roughly 17GHz [11]. The bare minimum would be roughly half, or 12.5GHz. We
will target somewhere in between. A good rule of thumb for comparators is that they need
milivolts of signal swing to consistently measure correctly. The gain bandwidth product
of the TIA is unlikely to be large enough to get a 40µA signal to roughly 10mV across a
frequency range of 0Hz to 17GHz and be low noise, so we increase the TIA gain and lower
the bandwidth so that even with the CTLE DC gain reduction, we can still get decent gain
in conjunction with the CTLE bandwidth extension.

The final stage before the comparators is a set of passively loaded differential amplifiers.
Their purpose is threefold. The CTLE would have to simultaneously drive four comparators,
which is a fairly large capacitive load. This limits the maximum achievable peaking gain by
pushing in the second pole. Additionally, the comparators tend to inject their clock signal
backwards which can impact the CTLE’s operation periodically. The amplifiers serve as
buffers which will isolate the kickback, and act as an intermediate step to reduce the amount
of capacitance the CTLE has to drive. The DC gain is also expected to be too low due to
the CTLE’s reduction, so the amplifiers will provide a relatively small gain (≈ 2×) to get as
much swing as possible.

4.2 Transimpedance Amplifier

The TIA is implemented as a single-ended input with a dummy reference using two CMOS
inverters with resistive feedback.
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Rfb

Rfb

+

−
VoutIDC

VDD

Cpd

IDC

Figure 4.3: TIA Schematic

The purpose of implementing the TIA in such a fashion is partly due to the work in [10].
This project report began as a project to port the design in [10] into a more generic BAG style
to demonstrate the process-portability of BAG. Additionally, [8] shows that this architecture
can be used with a scheme that splits the photodiode differentially to take advantage of the
dummy block. At DC, if IDC = 0 then the input and output common mode voltages are
equal. The purpose of the DC current source is to force the output common mode to be
higher if desired. Since the output will sit about mid-rail, that may not be enough to bias
the input of the CTLE, so we will need DC current through Rfb to force this difference.

If we assume the inverters are an amplifier with gain −Av then the input impedance can
be found by using Miller’s theorem.

Zin = ZCpd
|| Rfb

(1 + Av)
(4.2)

which simplifies to
Rfb

1+Av

1 + jω
Rfb

1+Av
Cpd

(4.3)

Thus the input pole should be roughly at

ωp =
1 + Av

RfbCpd

(4.4)

assuming that Cpd is the photodiode capacitance plus any TIA input and wiring capacitance
lumped together. From the small signal model of one half of the circuit (shown in Figure
4.4, ignoring Cpd) we can derive the gain. KCL at the output node gives

vout
ron||rop

+ (gmn + gmp)(iinRfb + vout)− iin = 0 (4.5)
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iin

−

+

vgs

Rfb

gmnvgs gmpvgs ron||rop

vout

Figure 4.4: TIA low frequency small signal model

which simplifies to
vout
iin

=
Rfb(gmn + gmp)− 1

−(gmn + gmp)− 1
ron||rop

(4.6)

If we assumeRfb and ron||rop are both much larger than 1, then the transfer function simplifies
to

|vout
iin
| = Rfb (4.7)

The gain is then approximately just Rfb. For a given choice of Rfb, we then use BAGs rapid
iteration to sweep for transistor widths. As the size increases, device parasitics become
dominant over the external capacitances, so there is an optimal size for bandwidth. Once
the maximum bandwidth is found, this sets the device sizes. Since we know the CTLE can
only get a couple of GHz of bandwidth extension, we can calculate and then sweep the TIA
resistor to see what resistance gives a bandwidth of around 9GHz. If we assume the CTLE
will cut the DC gain by roughly a third, and we can get about 1.5x amplification from the
preamps, then the overall gain should still be high enough for the comparator.

To set the output common mode, we can assume the input will be around mid-rail, so
the output can be approximated as follows:

Vo − VDD

2

Rfb

= IDC (4.8)

In order to bias the CTLE input, we want this to potentially be a little higher than midrail
since the VGS needs to be large enough to give headroom to the tail transistors. Plugging into
equation 4.8 gives a starting point that can then be swept using BAG for better accuracy.
Post-PEX hand-simulation is then used to fine tune the current the get the desired result.
Note that by increasing the output common mode, the gain can reduce. This means that the
resistance might need to be higher than anticipated. This is also determined by simulating
BAG generated instances.

We were able to achieve a gain of 1500Ω with a bandwidth of 8.55GHz. In order to shift
the common mode, IDC was set to 55µA.
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4.3 Continuous Time Linear Equalizer

A CTLE is a simple amplifier, degenerated by a parallel resistor capacitor combination as
shown below:

Rd

VDD

Rd

Cs

Rs

Ibias

Vin Vip

+−Vout

Figure 4.5: CTLE Schematic

Since we know the pole location of the TIA after simulation, we can design the CTLE
to have its zero in close proximity. Firstly, we draw the approximate differential mode half
circuit:

Rd

VDD

Rs

2
2Cs

Vout

Vin

Figure 4.6: CTLE Half-Circuit
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which by inspection, we know

Gm =
gm

1 + gm(Rs

2
||ZCs

2
)

(4.9)

Gm =
2gm(1 + jωRsCs)

2 + gmRs + 2jωRsCs

(4.10)

We can also determine the output impedance by inspection

Ro ≈ Rd||
ZCl

2
=

Rd

1 + 2jωRdCl

(4.11)

So the overall gain is then

GmRo =
2gm(1 + jωRsCs)Rd

(2 + gmRs + 2jωRsCs)(1 + 2jωRdCl)
(4.12)

which puts the zero at

ωz =
1

RsCs

(4.13)

and the first pole at

ωp1 =
1 + gmRs

2

RsCs

(4.14)

with the second pole at

ωp2 =
1

2RdCl

(4.15)

and lastly, the ideal peaking gain should be

Apeak = gmRd (4.16)

From these equations, we can choose the values of the degeneration components and pullup
resistors to place the zero and set the peak gain. We want the second pole to be far away at
roughly 20GHz or more, which fixes Rd for a given Cl. If we want a peak gain of around 2,
that then fixes the required gm, which for an assumed Vov of 200mV, fixes the bias current
and transistor sizes. We will (quite conservatively) assume the input to each amplifier is
10fF, so the total load is 20fF. Through BAG, we can sweep component values near the
desired points to get more accurate results.

Using the above steps, we were able to achieve a bandwidth extension of about 4GHz
with a DC gain of roughly 0.6. When placed in succession to the TIA, the overall gain
reduces to about 850 with a bandwidth extension to about 13.5GHz.



CHAPTER 4. DESIGN PROBLEM: AN OPTICAL RECEIVER 40

4.4 Preamplifiers

The preamplifiers are implemented as passively-loaded differential amplifiers as shown below.
The main purpose is to serve as a buffer between the CTLE and the DTSAs. The DTSAs
will provide a fairly substantial capacitive load to the CTLE as well as back-inject their
clock, which is undesired. The preamplifiers ideally will have a gain of around 2, but we will
target a gain greater than 1.

Rd

VDD

Rd

Ibias

Vin Vip

+−Vout

Figure 4.7: Preamp Schematic

Assuming the ro of the transistors are fairly large, then the gain of this amplifier is known
to be

Av = gmRd (4.17)

with the unity gain frequency at

ωu =
gm
Cl

(4.18)

Once we know the bandwidth of the CTLE, we can determine the required unity gain
bandwidth for an overall gain of 2 at this frequency. Again assuming each DTSA provides
10fF of load, then we know Cl. This fixes the required gm and therefore the device sizes and
bias current.

Following these steps, the amplifiers were able to obtain a gain of 1.5 up to 13.5GHz.
This sets the entire front end chain to have an overall bandwidth of 13.5GHz and a gain
of 1200. Assuming a 40µA peak-to-peak input current swing, this should be plenty for the
comparator.

4.5 Comparator

The comparator is implemented as a double tail sense amplifier.
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CLK CLK

Vin Vip

CLK

Dip Din

VDD

Von Vop

VDD

CLK CLK

Figure 4.8: Double Tail Comparator Schematic
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The DTSA consists of a clocked differential pair that feeds into cross-coupled inverters.
Much like the classic StrongArm sense-amp [9], the DTSA first precharges the Din and Dip

nodes up to VDD. After CLK goes high, the input pairs activate and begin to drain charge
from the parasitic capacitance at nodes Din and Dip. Depending on which input is larger,
one side will discharge faster which will turn off one of the switches connected to those
nodes faster than the other. This sets the value in the cross-coupled inverters which is then
reinforced through positive feedback.

When CLK goes low, the circuit resets and precharges the Dip/Din nodes for the next
cycle.

A typical cycle of the DTSA with a differential input of 10mV is plotted in Figure 4.9.
The clock is generated by taking ideal clocks and passing them through a chain of inverters
to generate both the real CLK and CLK signals.

Figure 4.9: DTSA Typical Operation

The comparator usually is the first thing one would design, as its limitations generally
set the required gain and noise specs for the front end. In this project, the comparator was
designed last, since there is no power constraint. The rate at which voltage is reduced from
Dip/Din is based on the current through the input pairs. By increasing the size of the input
pairs, we can create a voltage difference much more quickly (assuming there is no process
offset in the input pairs) which allows even small inputs to be sensed before the cycle ends.
Thus, as long as our input is on the order of milivolts, we should be able to sense this.

As a test, we determine what the approximate noise tolerance of the DTSA is. We input
a small differential signal (about 1mV) and run a transient simulation with noise over many
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cycles. The fraction of incorrect evaluations to the total allows us to approximate σn, or
the standard deviation of the noise tolerance for the DTSA. The results of this simulation
are shown in Figure 4.10. With a differential input of 1mV, only one in 100 inputs failed.

Figure 4.10: DTSA Noise

This implies that ±0.5mV input is approximately 3σn. Although this includes both static
overdrive and noise contribution, a previously run automated overdrive test determined that
the static overdrive needed is much smaller than this input. This means that we can assume
the majority of the input is the effect of noise. Thus, we should budget about 2 × 9σn,
or ±3mV of the eye opening to noise tolerance for the DTSA for a BER of 10−12. This,
of course, ignores process variation. Process variation introduces an offset that affects the
current in each branch. From a Monte Carlo simulation, one can find the average offset which
can then additionally be added to the eye opening budget. There are also topologies that
can correct for offset, which would not completely eliminate the issue, but would certainly
reduce it.
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4.6 Design Verification

There were four simulations done to verify the behavior of the entire receiver. Firstly, a
simple AC simulation of the front-end chain up to the samplers in order to see if the circuit
provides enough gain. This is shown in Figure 4.11

Figure 4.11: AFE AC Performance
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To determine how much noise the amplifier chain introduces, an AC noise simulation was
also run. The output power spectral density is plotted in Figure 4.12.

Figure 4.12: Front End Noise PSD

Using Python to integrate this function up to 25GHz gives an rms noise of 4.6µV 2, so
the mean expected noise is then 2mV.
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From the previous sections, we know that the minimum input is approximately 1mV with
a noise tolerance of 3mV for a BER of 10−12. For an input of 40µA peak-to-peak, we achieve
a gain of 1200 which puts the input amplitude at roughly 50mV peak-to-peak. This should
be plenty. Unfortunately, the desired bandwidth was not met, although the bandwidth does
surpass the theoretical minimum. This will mostly affect ISI performance, which will be seen
in the next simulation.

To determine over many cycles how the AFE performs, we measure the eye diagram at
the sampler inputs. This is shown in Figure 4.13. As can be seen, there is a fairly large eye

Figure 4.13: Sampler Input Eye Diagram

opening which surpasses the minimum required swing for proper evaluation.
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Lastly, a PRBS32 pattern is fed into the receiver, and the sampler outputs are monitored
in a transient simulation. Note that this architecture would not operate sufficiently due to
the fact that the waveforms need to be adjusted in time to center the eye opening with the
clock edges. This adjustment was done manually for this test. Also, since each sampler is
only sampling once every 4 bits, the outputs are sliced and manually stitched together. A
portion of the test input and output are shown in Figure 4.14. The patterns are clearly
identical with only a time offset through the front end chain.

Figure 4.14: PRBS Pattern Response

As a final summary of the design, Table 4.1 shows the tabulated performance of the
design. Measurements for energy and power are for the entire circuit, including biasing, clock
buffers and the front-end up to the samplers. The measures were collected by simulating the
transient current waveform and using Python to find the time average. The time average
multiplied with VDD gives the average power consumption, which is then multiplied by the
bits/time of the PRBS32 pattern input to get energy/bit.
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Spec Goal Achieved
Area - 3106µm2

Energy/bit - 0.3pJ/Bit
Peak Power - 10.8mW
Avg. Power - 7.52mW
Eye Opening ± 5mV ± 20mV
Bandwidth 17.5GHz 13.5GHz
Gain 1000Ω 1200Ω

Table 4.1: Performance Summary
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Chapter 5

Conclusions, Future Work and Other
Possibilities

And here we are at the finale. For those who made it this far, congrats! To those who read
only the abstract before this, welcome. I hope it’s interesting!

5.1 How BAG Saved the Day

A good question to ask is how BAG improved the process, if at all? The classic strategy
would be to design with only some regard to layout parasitics, and simply hope the effect is
not too great. Should the effects prove to be too substantial, modify the design and iterate
until a solution is found. Does BAG fix this problem? The generators had to be written
first which is clearly a non-trivial task. What time is even saved? What is the benefit over
the old way?

Writing a generator is indeed a non-trivial task, however it only needs to be done once. A
well-written generator will take any inputs (within reason) and generate a verified circuit with
layout in seconds. An experienced BAG user can plausibly create a complicated generator
in one to two days, which essentially permanently removes layout from the design iteration.
Rather than spend two days on layout each time a change is made, a large time investment
is made upfront for massive time savings in the future. BAG truly allows a designer to close
the analog loop faster by removing the bottleneck from layout. If a user was provided a
library of generators, the time savings are even greater. With a set of verified generators,
the guesswork is completely taken out of the design process. Previously, parasitics either
had to be estimated or ignored, and then accounted for afterwards. Now, parasitics can be
directly included since the layout is essentially “free.”

With BAG, the author was able to design, generate and (partially) test a fully LVS/PEX
verified receiver front end working part-time in roughly two weeks. With an architecture
chosen, only the sizing remained. Since layout generation was not an issue, seeing the effects
of parasitics simplified the design process since they could be included automatically. Using
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SweepDesignManager mentioned in Chapter 3, it becomes very easy to fine-tune parameters
through sweeping automatically, since BAG will run PEX/LVS and simulate many designs
in parallel. This way, the trade offs between component value choices are very clear and
quick to see. Furthermore, no one had to painstakingly draw the layout by hand, massively
improving life quality.

5.2 Future Work

Unfortunately, this design example is not finished. The design is only tested in the typical
case at room temperature. A “tapeout ready” design would additionally require tests across
temperature, and at process corners with power supply variation, etc. Furthermore, while
layout effects are included, component offset is also substantial (such as in the sampler
input pair) but is ignored. To include component offset, the topology of the sampler would
certainly have to change, but this would require a potential redesign. Package parasitics are
also ignored. As this was purely an example to demonstrate what is possible and how BAG
can shorten the design process, many of these were ignored, but should be tested.

One massive reason to use BAG is the process portability. Theoretically, all generators
presented should work in any process, but there will always be edge cases. These generators
were only tested mainly in a 14nm process, and partially in a 45SOI process. Using design
manager, hundreds of instances of various parameter choices were tested, but there are likely
still issues that can arise with the right parameters. The generators can always be improved,
and would be an excellent place to focus more work.

Lastly, a demonstration of how characterization can also be simplified would be a major
focus. Testing is often the slowest part of a design, as the designer needs to set up and run
numerous different tests and verify that the testing procedure is correct. Some test benches
were mentioned in Chapter 3, but only some tests are implemented. For this project, all
comparator testing was done by hand. A script that takes a design and runs it through
many tests, post processes the data and returns a human-readable set of specs and plots for
comparators would be highly desirable.

5.3 Related Work and Other Possibilities

Unsurprisingly, a platform like BAG can do even more that described in this report. One
example is to fully remove the designer from the equation with a design script. The basis of
these are discussed in [3]. Once the generators and test benches are made, the user can code
the math and design procedure into a script that automatically computes device parameters
and can automatically iterate and change values based on results. Within team Vlada at
UC Berkeley, there is a substantial effort towards this methodology. At the time of writing,
a script to design a front end very similar to that presented in Chapter 4 is being worked on
and tested.
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As is to be expected, BAG’s rapid iteration opens the door for machine learning. Bag-
Net in [6] demonstrates that BAG generators can be used as a tool to solve a constrained
optimization problem with evolutionary algorithms coupled to deep-neural network discrimi-
nators using some of the generators demonstrated in this very work. BagNet shows the feasi-
bility of designing complex analog/mixed signal circuits with sample-efficient, unsupervised
learning by taking advantage of BAG’s rapid iteration abilities. The author also compares
the performance of BagNet solutions to a design script written by an expert designer.
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