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Abstract

The last decade witnessed a simultaneous withdrawal of Moore’s scaling and emer-
gence of learning-based workloads. While these trends have seriously challenged
traditional paradigms, novel computing methods based on randomness can be lever-
aged for continued performance. Hyper-dimensional (HD) computing, a bio-inspired
paradigm defined on random high-dimensional vectors, shows promise.

This work describes a 2048-dimensional HD processor. Its simple architecture
follows naturally from basic HD operations; and its massively parallel, shallow data-
path resembles in-memory computing. The architecture also supports scalability:
multiple such processors can be connected in parallel to increase effective HD dimen-
sion. The design was synthesized in 28nm HKMG process and benchmarked on 9
supervised classification tasks with varying complexity (such as language recognition
and human face detection). The simulated chip exhibits accuracy close to conven-
tional machine learning algorithms for most simple tasks with energy efficiency
better than 2 uJ/prediction at less than 2.5 ns. cycle time.

As a first complete design working with high dimensional stochastic signals,
the main architectural decisions for similar systems is established. An improved
system harnessing variability in emerging devices (eg. CNFET and RRAM) could be
deployed for ultra low-power ubiquitous computing in future.
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Chapter 1

Introduction

The impact of computers on our civilization has been historically unprecedented. It

has affected all aspects of our society: from health-care to marriage patterns. The

main driver behind this digital revolution is our ability to scale transistor dimensions

relentlessly, while maintaining power consumption per unit area to a constant.

Known informally as Moore’s law [1], it had a tremendous effect on the post-war

world economy. An estimated $3 trillion has been added to the global Gross Domestic

Product (GDP), with an additional $9 trillion of indirect value in the last 20 years, all

due to the pace of innovation facilitated by it [2]. The total value added is about 15%

of the 2018 world GDP; more than that of the four largest EU economies: Germany,

United Kingdom, France and Italy, combined!

The semiconductor revolution also assisted advances in scientific and computa-

tional theory. The Church-Turing thesis, positing that all mechanisms underlying

human creativity can be manifested mechanically or electrically [3], provided the

theoretical foundation for rapid increase in complexity of machines made feasible by

Large Scale Integration (LSI) in 1970s. This encouraged further efforts to conceive and

build the “thinking machine”, and over the next three decades led to the golden age

of Machine Learning (ML). New paradigms of computing, including the now-popular

multi-layered neural networks, were discovered and perfected in waves. These ad-

vances coupled with the sheer speed of modern computers led to breakthroughs in

automating tasks requiring considerable human intelligence and careful cultivation
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of skill. Indeed, the computer beat the world chess champion in 1997 [4], drove 131

miles through a desert in 2005 [5], defeated the champions of quiz show Jeopardy! in

2011 [6], and won against the best Go and Dota 2 players in 2016 [7] and 2017 [8].

Such spectacular progress has been achieved largely because of increased aware-

ness of the applicability of classical ML algorithms to a wide variety of fields [9],

abundance of data [10] and cheap computational power. The fundamental challenges

to ML theory, mainly from statistics and optimization, remain unresolved [11]. More-

over, the current workhorse optimization technique, back-propagation, is unlikely to

continue scaling as neural network size increases [12]. Today’s increasingly complex

problems based on high-dimensional data pose new challenges to conventional statis-

tical estimation and inference [13].

At the same time, non-ideal behavior in transistors of length close to that of silicon

lattice foretells the end of Moore’s law. As transistor dimensions shrank to the nano-

meter regime, variability and reliability effects began to dominate its deterministic

behavior [14]. To bridge the gap, architects switched to multi-core designs even at

the cost of higher power consumption [15]. Lower layers of the computing stack were

affected as well: new avenues of research into materials, semiconductor physics and

organic chemistry have emerged [16].

Nevertheless, some fundamental impediments remain. Adapting emerging devices

to the exact-computing paradigm is increasingly difficult [17]. As energy efficiency

no longer scales with integration capacity, voltage reduction and near-threshold op-

eration reduces power consumption at the expense of favourable signal-to-noise ratio

(SNR) [18]. Finally, fewer applications today (including emerging domains such as

pattern classification and data mining) have enough parallelism to completely utilize

available hardware [19].

Just as the past half-century saw a fortuitous coincidence of growth in semicon-

ductor technology and machine learning, the coming end of conventional progress in

both these spheres pose a serious challenge. The entire computing stack must adapt:
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hardware engineers must diversify the device inventory to find a viable replacement

for planar transistors, and software developers must adapt to new programming mod-

els. Hence, a concerted effort harnessing the best algorithms that are practical on

emerging devices is required.

While challenges of using unreliable components has long been known [20], biology

offers the most concrete inspiration. For example, our brain processes massive data

(3.6 × 1015 synaptic ops./s) with very slow and diverse neurons (typical firing rates

are 10 - 100 Hz) while exhibiting tremendous energy-efficiency (total power about 12

W) [21]! Consequently, novel brain-inspired computing approaches could provide the

required robustness and scalability for continued performance.

Hyper-Dimensional Computing (HDC) is one such nano-scalable paradigm [22].

It is a theoretical model of cognitive reasoning [23, 24], motivated by the fact that

brains compute by transforming activation patterns of a large population of neurons.

Hence, tolerance to variability is inherent: changes in activation of a few neurons does

not affect the overall functioning.

Robustness and energy efficiency of HD computing has been demonstrated for

language recognition [25, 26] and tested on fabricated systems based on emerging

devices: a hybrid of carbon nanotube field-effect transistors (CNFETs) and resistive

RAM (RRAM) memory in [27], and CMOS/vertically-integrated RRAM (VRRAM)

implementation in [28]. While data-paths specific to an application have been pro-

posed [29, 30, 31, 32, 22], a general HD system is yet to be developed ([22] presents

only a brief outline).

A comprehensive architectural exploration of such a general HD processor is the

main aim of this work.
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Chapter 2

Hyper-Dimensional Computing

Hyper-Dimensional Computing (HDC) emerges from a theoretical model of memory

and cognition developed by Pentti Kanerva [24]. It is based on the fact that human

brains compute by transforming activation patterns of a large mass of neurons. The

set of activations are modeled as points in very high dimensional spaces (D > 1000),

and neural processing as transformations in this space.

It turns out that non-intuitive mathematical properties of High-Dimensional (HD)

spaces, which pose a challenge [33] to common ML routines such as nearest-neighbor

search [34], clustering [35] and regression [36], can be used to explain human cogni-

tive functions like association of concepts, learning and recalling by analogy. Simple

operations such as superposition, binding, permutation and their inverses form an

algebraic field, giving (in principle) the same universality as algebra with numbers

[37].

The HDC formalism is really a mathematical abstraction of memory functions

exhibited by the human brain, similar to McCullouch and Pitts’ artificial neurons

formulated in 1943 [38]. Examples of directly related paradigms include Holographic

Reduced Representation [37], Binary Spatter Code [39], Random Indexing [40], and

Semantic Pointer Architecture (SPAUN) [41]; collectively referred to as Vector Sym-

bolic Architectures [42].
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2.1 Orthogonality in High Dimensions

HD computing defines random high-dimensional vectors (D > 1000) as its funda-

mental datatype [23, 22]. It is a holographic computing framework: unlike arith-

metic over numbers, no vector component contains more information than any other.

Though vectors with elements from any algebraic field can be used (including from

the real line or the complex plane [22]), we will focus on binary vectors.

To compare vectors, a distance metric must be defined. Hamming distance (de-

noted by dH(a, b)) is the number of dissimilar elements between vectors a and b. Two

binary vectors x and y of dimension D are said to be orthogonal if dH(x, y) = D/2.

This definition is more familiar in bipolar code, with 0-valued elements replaced with

integer −1: orthogonal vectors x and y have zero inner-product, 〈x, y〉 = 0.

The underlying principle of HDC is almost certain orthogonality in high-

dimensional spaces. For a rigorous demonstration, begin by considering that if x and y

are chosen independently and uniformly from {0, 1}D (i.e. probability of any bit being

1 is p = 1/2), then dH(x, y) is binomially distributed (x, y ∼ Bin(D, p = 1/2)). Fig.

2-1 plots a histogram of dH(x, y) normalized by dimension D for 10, 000 randomly-

generated pairs (x, y). It also plots the Normal Approximation N(Dp, Dp(1 − p))

of the binomial distribution Bin(D, p) scaled to have an area equal to histogram

sample size of 10, 000. The Normal Approximation helps in plotting and is very ac-

curate: using Berry-Essen bound (Theorem 10.4 in [43]) for X ∼ Bin(D, p), Y ∼

N(Dp, Dp(1 − p)), p = 1/2 and dimension D ≥ 2500, the maximum error in cumula-

tive distribution (max0<t<1| Pr(X ≤ t) − Pr(Y ≤ t)|) is 0.016.

Then, it can be shown that (Theorem 1 of [44]):

Pr
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(2.1)

Since ǫ ≤ 1/2 and 2e−1/2 > 1, only high dimensions (D > 1000) result in a meaningful

right-hand side in Eq. 2.1 [45]. Then random vectors x and y have normalized distance

very close to 0.5. The exponential drop in probability beyond ǫ-deviation from the
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Figure 2-1: Orthogonality in High Dimensions: shown histogram (hist) and
scaled probability density function (pdf) of hamming distances for 10, 000 pairs of
random binary vectors with varying dimension D. For ease of plotting, the normal
approximation of the binomial probability distribution is used. All vectors are gen-
erated uniformly and distance is normalized by D. Note the sharper concentration
around 0.5 as D increases.
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mean is the crucial property exploited here.

This surprising phenomenon is a consequence of concentration of functions in high-

dimensional geometry. For the interested reader, [46] provides an excellent treatment

from a non-asymptotic viewpoint.

2.2 The Binary HDC Subset

All high-dimensional binary vectors used in a given computation will be called hyper-

vectors. When the context is obvious, hyper-vectors and vectors will be used inter-

changeably.

Though a large variety of HDC models exist (see [22]), the simple Multiply-Add-

Permute (MAP) framework is most suited for a first general processor. These

encoding operations allow representation of complex structures such as sequences,

lists and trees [37, 24], and are fundamental to the algorithm. The notation used

through the rest of this document is also introduced below.

• Multiplication or Binding is useful for forming associations among related

vectors. X and Y are bound together to form C = X ⊕ Y orthogonal to both

its constituents and is implemented by element-wise XOR.

• Addition or Superposition is the primary conjunctive operation. Based on

Hebbian learning [37], the goal is to find a hyper-vector z representing the set

of operand hyper-vectors {x1, x2, ...xn} such that x1≤i≤n are much closer to z

than a random hyper-vector ([47] provides a rigorous account). It is denoted

by z = [x1 + x2 + ... + xn] and implemented as component-wise majority of

operands.

• Permutation is a unary operation such that a permuted hyper-vector (denoted

by ρ(x)) is orthogonal to initial hyper-vector x. A derangement is a permuta-

tion where no element ends up in its starting position. For orthogonality, the

permutation operation must be a derangement in components of x, such as a

circular shift. x permuted n times is denoted as ρn(x).
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As Section 2.1 shows, it is very rare for random hyper-vectors to deviate much

from orthogonality. The MAP operations above (esp. Addition) can generate non-

orthogonal vectors from operand vectors. This allows us to encode meaning, as sig-

nificant deviation from orthogonality implies common membership or dependency.

Therefore, an Associative Search to find the closest match of the MAP-encoded

hyper-vector to stored class hyper-vectors is a crucial operation.

2.3 Example: Language Recognition

Language recognition from text is an ideal example for illustrating HDC in super-

vised classification, as the state-of-the-art algorithm can be directly mapped to this

framework [26]. A corpus of 21 Indo-European languages transliterated to English

forms the training set, and new sentences are queried as tests.

Baseline (n-gram character model): A language is modeled as a probability

distribution on character sequences of length n (also called n-gram). More sophis-

ticated models such as dictionary of words, phrases, etc., increase complexity with

negligible gains [48, 49].

While training a language, raw n-gram frequency counts are generated from a

large corpus of text and iteratively smoothened [50] to remove outlier artifacts. The

resulting n-gram distribution is the trained language model. The steps are repeated

for a test query, and the trained model with the closest distribution is the language

prediction.

HDC Setup and Algorithm: To make use of HD computing, the first step is to

map random hyper-vectors to meaningful entities. In this case, characters from Latin

alphabet are assigned to uniformly generated hyper-vectors for dimension D = 10, 000.

The HD algorithm uses them to encode the training data and generate a single

hyper-vector for each language.

A direct equivalent of frequency counting is the superposition of hyper-vectors
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representing each occurring n-gram in the text. Permutation and binding is used to

generate n-gram vector from constituent letter hyper-vectors. For example, the text

hello world!

could be modeled as the set of all occurring 3-grams (here white space is denoted

by “_”)

{hel, ell, llo, lo_, o_w, _wo, wor, orl , rld, ld!}

Once the characters are assigned to random hyper-vectors, let Vz denote hyper-

vector representing character z. Then, the 3-gram “abc" is encoded as Vabc , Va ⊕

ρ(Vb) ⊕ ρ2(Vc), and similarly for all other 3-grams. Due to properties of HD oper-

ations (Section 2.2), all n-gram and character hyper-vectors are orthogonal to each

other. Hence, all possible 3-grams gets mapped to a set of approximately mutually-

orthogonal hyper-vectors, similar to a basis set in vector spaces. Finally, the text

is encoded as super-position of all n-gram hyper-vectors occurring in it. Hence,

Vhello , [Vhel + Vell + Vllo]. For each language in the dataset, a large corpus of text is

converted similarly to a single hyper-vector that represents that language. Therefore,

at the end of training, one is left with the random hyper-vectors mapped to each

character and a set of 21 hyper-vectors, one for each language.

The test hyper-vector is computed similarly from the query text transliterated

to Latin alphabet, and the language with closest class hyper-vector is returned as

the prediction. Since the superimposed language hyper-vector is in the linear space

spanned by basis n-gram vectors, the class with the closest n-gram distribution from

baseline equivalently has the smallest distance in HDC.

For D = 10, 000, HDC has an accuracy of 96.7 % against a baseline of 97.1 %

[26]. However, it is an online algorithm requiring only one pass. The deviations

from orthogonality (Fig. 2-1) during encoding operations automatically smoothen the

superimposed multi-set of raw n-grams. Finally, HDC model size (one hyper-vector

per language) is fixed with n-gram size, but grows exponentially in the baseline. For

n = 4, the HDC model is 20X smaller than baseline!
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Application Encoding HDC Known State-of-the-Art Algorithm

LANG 4-gram 90.6 % 97.1 %, n-gram-based Nearest Neighbors [26]
FlexEMG 2-stage 95.8 % 89.7 %, Support Vector Machine [51]
DNA 60-feature 96.2 % 93.7 %, knowledge-based Neural Networks [52]
CARDIO 21-feature 90.6 % 90.6 %, Support Vector Machine [53]
PAGE 10-feature 91.6 % 85.9 %, Hyperplane Separation [54]
UCIHAR 561-feature 76.7 % 89.3 %, Support Vector Machines [55]
ISOLET 617-feature 75.9 % 97.1 %, boosted k-Nearest neighbors [56]
FACE 608-feature 66.0 % 96.1 %, HOG-based boosted Decision Trees [57]
MNIST 784-feature 75.4 % 99.7 %, Deep Convolution Neural Network [58]

Table 2.1: The HDC Benchmark Suite
9 supervised classification tasks with varying complexity were chosen to evaluate the
generic HD processor. See Section 2.4 for descriptions. HDC Accuracy for a single
processor (D = 2048) is reported. Multi-processor configuration increases effective
dimension and improves accuracy significantly (see Fig. 5-4(a) and Section 4.4).

2.4 Benchmark Applications

HD computing has been applied to a large variety of problems [22, 37]. The following

9 applications were chosen to evaluate the processor designed in this work.

Language Recognition (LANG) is described in Section 2.3 [26]. EMG Hand-

Gesture Recognition (FlexEMG) classifies 64-channel electromyography signals recorded

from a subject’s hand into a set of hand-gestures [51]. DNA Sequencing (DNA) pre-

dicts the presence of Exon/Intron or Intron/Exon boundaries in a 60-character strand

of DNA [52]. Fetal State classification (CARDIO) uses measurements of heart-rate

and uterine pressure during pregnancy to classify fetal condition before delivery [53].

Page-block classification (PAGE) finds all blocks of the page layout in a document

that has been detected by a segmentation process [54]. UCI Human-activity Recog-

nition (UCIHAR) classifies recordings of 30 subjects performing activities of daily

living while carrying a waist-mounted smartphone with embedded inertial sensors

[55]. Spoken Letter Classification (ISOLET) predicts the English letter spoken from

voice recordings of subjects. Face Detection (FACE) determines whether a human

face is present within a given picture frame [57]. MNIST Digit Recognition (MNIST)

predicts the digit from images of drawn digits [58].
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Table 2.1 compares the accuracy of HDC with state-of-the-art machine learning

models for each of these applications. Boldface numbers indicate equal or better

performance of HDC over the best known ML algorithm for the dataset in the litera-

ture. These applications were chosen to represent the current state of the art of HDC

as a paradigm. A special effort was made to have the set of ML models compared

against as diverse as possible. Although it is not exhaustive, Table 2.1 attempts to

give a balanced overview.

HDC is better or equal to the baseline for 4 applications in the benchmark (Table

2.1). Language Recognition can be further improved to the baseline accuracy by using

a multi-processor system described in Section 4.4).
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Chapter 3

Toward a General-Purpose

Architecture

A versatile HDC machine must be able to handle a variety of input data-types and

scale with an increasing number of channels without deteriorating fidelity. It must

be able to map application-specific data, after suitable pre-processing, to a general

architecture and perform required classification. The first step towards a general data-

path is to abstract essential elements of HD algorithms. For supervised classification,

a clear structure emerges.

3.1 Properties of HD Programs

3.1.1 Value Representation

To allow consumption by a discrete-time (clocked) digital system, the input data must

be quantized into discrete states and sampled with a finite frequency. The choice of

quantization scheme and sampling rates are important [59, 60] and is assumed to be

pre-determined by a domain expert. Therefore, a common symbol set representing

values in the feature space is created.

A multi-channel input stream can be serialized with a suitable policy. For example,

values x1, x2, x3, ... from Channel 1 could be merged with y1, y2, y3, ... from Channel
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2 to form Iserial = {x1, y1, x2, y2, x3, y3, ...}. Serialization order usually depends on

data acquisition order and buffering capacity; for streaming applications only minor

shuffling on raw data are feasible. Therefore, the input may be modeled as a single

time-series without losing generality.

Once the set of classes, representation space, sampling rate, quantization and chan-

nel ordering are established, a supervised classification task is ready to be processed

in HD.

To begin processing, symbols from the common symbol set are assigned to randomly-

generated hyper-vectors called items. During training, the input data from each

class is represented by the assigned items and transformed using HD multiply, per-

mute and superposition to generate a class hyper-vector. During testing, a test

hyper-vector is computed similarly from test data, and a nearest-neighbor search

through all class hyper-vectors is performed. As shown previously, only the correct

class hyper-vector will be close to test hyper-vector with others being nearly orthog-

onal.

3.1.2 Stages in HD Algorithms

The input stream is denoted by a finite sequence of hyper-vectors I , {Xt|t =

1, 2...., T}. Let [n] , {1, 2, ...n} for any number n. Any collection of input values

can be specified by a set of their positions in I. Since only supervised classification is

considered, a given I belongs to a single class to be trained or tested. For both cases,

the exact same algorithm is applied for processing.

To discern the basic properties of HD algorithms, it is important to consider

its inherently symbolic nature. In fact, its remarkable power for analogical and

hierarchical reasoning was among the first to be discovered [61, 37].

Testing set membership is a fundamental operation of any symbolic inference sys-

tem, and HD can perform this very robustly using superposition. For the set of

hyper-vectors S , {X, Y, Z}, the hyper-vector S , [X + Y + Z] is similar to each
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X, Y, Z and nearly orthogonal to all non-members of S. Along with permutation and

multiply, this principle can be used to build complex data structures such as sequences,

lists, and trees (see [37] for a detailed account). Since a complex structure (eg. a

class) is usually a set of multiple objects with some common properties, the final step

in HD processing is a superposition of their representations. Therefore, processing of

hyper-vectors in HD classification algorithms end with a superposition. The final

vector class hyper-vector I encoding the input sequence I can be written as superpo-

sition of K intermediate term vectors.

A single-stage algorithm is defined as any HD algorithm where superposition is

used only once. All term vectors are then products of inputs and their permutations

only. In other words, I = [
∑K

i=1 fi(I)], where ith term is

fi(I) = (Xp1
⊕ Xp2

... ⊕ Xpm
)

⊕ (ρu1(Xq1
) ⊕ ρu2(Xq2

)... ⊕ ρun(Xqn
))

(3.1)

Each term fi(I) depends on specific input values: some occurring as is (denoted by the

set of positions Pi , {p1, p2, ...pm} ⊆ [T ] in I), and some with permutations (denoted

by Qi , {q1, q2, ...qn} ⊆ [T ]) where permutation powers (u1, u2, ..un) are positive

integers. Note that few inputs may occur both with and without permutation in the

term (i.e. Pi ∩ Qi 6= φ).

A dual-stage algorithm has terms composed of products of inputs, outputs of

a single-stage algorithm and their permutations. Similarly, one can build any multi-

stage HD program by hierarchically combining outputs of smaller-stage algorithms.

For the benchmark (see Table 2.1), most algorithms are single-stage except FlexEMG

which is dual-stage.
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3.1.3 The “Generic” Model for single-Stage HD Algorithms

Clearly, the main complexity is generation of K term vectors fi(I). Each term requires

specific inputs Ai = Pi ∪Qi, usually a small part of of the entire stream I. In the most

general case, expressions for distinct term may have very different inputs and result

expressions, and separate hardware would be dedicated to each of them. However,

all known HD algorithms (including those in Table 2.1) have a much simpler form.

More precisely, following conditions are satisfied:

1. The number of dependent inputs |Ai| is constant for all terms i ∈ [K]. Let this

be L.

2. All K terms have the same HD expression. If fi(x1, x2, ..., xL) denotes the

ith term in L input variables x = (x1, x2, ...xL), then fi(x) = fj(x) ∀i, j ∈ [K].

This common expression will be called f(x).

3. The set of dependent inputs for ith term are translations of a fixed subse-

quence of input stream. That is, for some increasing sequence ti ∈ [T ] with

t1 = 0; the ith input dependency set is Ai = A1 + ti. Here, A1 + t denotes the

set obtained by adding t to each element of A1. Note that the first term inputs

A1 captures the essential pattern of input dependencies for all terms.

These conditions limit the possibilities of single-stage HD expressions. An archi-

tecture designed to handle all such expressions shall be called generic as opposed

to “general-purpose" or “general". Since input stream is a time-series, the entire pro-

gramming complexity of such a machine is only for computing f(x). Property 3 above

ensures a sequential generation of all K term vectors: assuming a pipelined hardware

for f(x) with fixed latency and throughput equal to input rate, the ith term is pro-

duced ti steps after the first term. The final superposition I = [
∑K

i=1 fi(I)] can be

computed by accumulating these terms fi(I) at the required time-steps (t1, t2, ...). A

T -bit register could mark these time-steps when the accumulator is to be enabled.
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Figure 3-1: The Generic HD Processor: A body-sensing application is illustrated
with two-channel input streams, and major components of the processor alongwith
the dataflow during testing are shown. All application-specific peripherals are to the
left of HD Mapper. Encoder is the only programmable component, and systolic array
is the most suitable architecture.

3.2 Common Algorithmic Kernels

Only a few basic expressions are used repeatedly in most HD algorithms. In particular,

all applications in the benchmark in Table 2.1 requires the following 2 kernels.

• n-gram Sequence Encoding: As mentioned in Section 2.3, n-grams or the

multi-set of n-subsequences can be a very useful for modelling sequences. Ap-

plied widely for DNA sequencing and text analysis, this multi-set is enough to

reconstruct long chunks of original data [62, 63], which is especially useful for

classification.

Characters in an symbol set A , {a1, a2, ..., aN} are mapped to random hyper-

vectors Ya1
, Ya2

, ..., YaN
and the n-subsequence x1, x2, ...xn (where xi ∈ A) is

encoded as Yx1
⊕ ρ(Yx2

) ⊕ ρ2(Yx3
)... ⊕ ρn−1(Yxn

). Finally, all occurring n-

subsequences in the input are encoded and superimposed to form the final

hyper-vector.

• Feature Superposition: This is used to map input feature vectors into a

hyper-vector. Let the feature vector of d dimensions be V = (v1, v2, ..., vd).

For each vector position i ∈ [d], a random hyper-vector Ci is generated and as

discussed in Section 3.1.1, all possible input values v are assigned hyper-vectors
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Yv. Then V is encoded as [
∑d

i=1(Ci⊕Yvi
)]; and a collection of n samples (a matrix

U with sample vectors as rows) is encoded as the superposition [
∑n

i=1

∑d
j=1(Cj ⊕

YUij
)].

These kernels may be combined to perform dual-stage encoding as well. EMG

Hand-Gesture Recognition in Table 2.1 is the only dual-stage algorithm in the bench-

mark, computing 4-grams of 64-feature samples.

3.3 Organization of the HD Processor

A generic HDC processor for supervised classification requires three major compo-

nents corresponding to the major steps of processing illustrated in Section 2.3

• Item Memory stores a repertoire of random hyper-vectors (items). A suf-

ficiently large collection of such vectors can be re-used for many applications.

This storage requirement cannot be avoided as the map of symbols to items must

be the same during training and testing.

• Encoder combines the input hyper-vector sequence according to a pre-specified

algorithm to form single hyper-vector for each class.

• Associative Memory stores the trained class hyper-vectors. During testing,

the class hyper-vector closest to the encoded test hyper-vector is returned as

final prediction.

Fig. 3-1 shows a diagram for the complete system. All application specific pre-

processing, sampling and quantization is done before serializing the input streams.

The peripheral HD Mapper assigns incoming symbols to an item in Item Memory

and class labels to Associative Memory addresses. This mapping is retained for all

sessions of training and testing. Therefore, the actual input to the generic processor

is a time-series of Item Memory addresses. Fig. 3-1 also shows the operation during

test. The Item Memory fetches input hyper-vectors and Encoder generates the test

hyper-vector. The Associative Memory returns the address of the closest class vector.
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The actual label is substituted back by HD Mapper for further consumption.

When the processor is abstracted in this manner, two crucial properties emerge:

1. Uni-directional Data-flow: For all applications during training and testing,

input hyper-vectors always flow from Item Memory to Encoder and end in

Associative Memory. No class vector from Associative Memory needs to be

loaded into the Encoder. There are no iterations over the input sequence as

well.

2. Single programmable component: Only the Encoder needs to be pro-

grammed for an application. The operation of both memories always remain

the same.

Therefore, all major architectural decisions principally concern the Encoder. Since

it only performs HD operations, it is important to note the parallelism in each of

them. For superposition and multiply, an element of the result vector depends only

on corresponding elements of its operands. Permutation is the only operation with

dependency across vector elements, where a result element depends on a neighbouring

operand element. Clearly, data-parallel architectures are the most suitable candidates.

To begin with, any fixed-width architecture with width less than HD dimension

D is inefficient. An internal memory for storing intermediate hyper-vectors is very

expensive due to high dimensionality. Therefore, such an encoder needs to iterate

over entire input for each sub-word and consequently must store the full sequence I.

For some applications, input data (esp. for training) are very long (T ≈ 1 million

for Language Recognition) and required storage (≈ 1 MB) can exceed size of memory

components (a 1000-item 2048-dim. Memory needs 256 KB). Furthermore, permuta-

tion creates intra-word dependencies which leads to redundant computations, and

multiple sub-words may be required for intermediate values (see Fig. 3-2).

Vector and SIMD architectures with data-width D are expensive as well. HD

algorithms are too small to extract significant run-time parallelism to justify the over-
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are shown. Sub-words are 4 bits wide (within dashed lines), computed one at a time.
The module ⊕ performs binding. Values from external sub-words (bits 5 and 6) and
dependent outputs are grey-coded.

head. Finally, such architectures require wide register-files and complex control logic,

contradicting the advantages of performing only simple bit-wise operations permute,

multiply and superposition.

Considering all factors described above, data-flow based Array architecture

is the most suitable choice (see Fig. 3-1). Here, the encoder is comprised of a regular

network of simple Data Processing Units (DPU), and inter-DPU communication

for program dependencies is restricted to neighbors no more than fixed distance away

[64]. Though several attempts have been made to map common workloads to DPUs

[65, 66, 67, 68, 69], only few of them where dependency patterns can be expressed as

a regular graph have been successful [64, 70, 71] . HD algorithms fit perfectly to these

conditions. All HD operations can be implemented with a few gates. The sequential

input model and the generic abstraction developed in Section 3.1.3 enables us to map

algorithms to DPUs explicitly. Section 4.2 describes the Encoder implementation and

programming in detail.
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Chapter 4

Implementation and

Programmability

This chapter describes the hardware implementations of each major component in

detail. Multi-processor scalability is also described.

4.1 Item Memory

Choice of Item Hyper-vectors: The first step is to chose the set of item hyper-

vectors used by the processor. There is a non-zero (though vanishingly small) prob-

ability of random hyper-vectors being very close. In fact, the small variations from

orthogonality (Fig. 2-1) results in slight deviations (<0.1 %) in application accuracy

with different choice of items. Therefore it is a good practise to generate multiple

sets of items and test them on some token applications first. For this work, 20 sets of

item vectors were generated and the one with best average accuracy for benchmark

applications was selected.

Continuous Item Generation: Representing integers or values from any or-

dered set by assigning orthogonal vectors may not be appropriate. Ideally, two close

numbers should have a corresponding small distance in their hyper-vectors. A possi-

ble solution [72]is to assign points on a line connecting two exactly orthogonal vectors.
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Figure 4-1: Item Memory implementation: The main block of orthogonal vec-
tors are stored in a ROM. The Continuous Item Memory (CIM) module generates
correlated hyper-vectors for representing integers.

Property Value

Type High-density,
Via-programmed

Area 3020 sq. µm
Minimum tCLK 0.71 ns
Clock to Valid Q (tcd) 0.51 ns
Dynamic Power (Read) 4 µA/MHz
Dynamic Power (Sleep) 59 nA/MHz
Leakage Current 6.55 µA

Table 4.1: Characterization of ROM1024×8 at (0.9V, 25◦C, TT) corner.
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Then any collection of 3 hyper-vectors A, B, C (representing integers a ≤ b ≤ c) will

satisfy the triangle law dH(A, B)+dH(B, C) = dH(A, C). Equivalently, one can begin

with a randomly generated origin vector HD0 and a direction vector Y with (D/2)-bits

being 1. The smallest integer, usually 0, is mapped to HD0 and the largest integer,

say M , is mapped to HD0 ⊕ Y. For all other integers n, flip D/2/M additional bits

along direction Y from the hyper-vector assigned to n − 1. The only restriction is M

divides D/2.

A Read-Only Memory (ROM) was chosen to store the constant item hyper-

vectors generated offline (Fig. 4-1). This is the simplest possible implementation

suited for this preliminary design. An alternative is to use pseudo-random generators

to generate them online, but their storage cannot be avoided because the same items

must be used for training and testing. For the applications in the benchmark (Table

2.1), 1024 orthogonal items suffice. Item hyper-vectors are divided into 8-bit sub-

words and stored separately in 256 instances of ROM1024 × 8. Table 4.1 presents its

characteristics.

Fig. 4-1 shows a 2048-dim Item Memory with 11-bit address (addr). Items in

lower address-space (addr[10] = 0) are stored in ROM and are mutually orthogonal.

The upper address space (addr[10] = 1) is used by Continuous Item Memory (CIM)

to translate integer inputs. HD0 is loaded from ROM during setup. For simplicity, Y

was chosen so that only odd bits are 1. Since M = 1024 each integer vector requires

D/2048 = 1 extra flips along Y (i.e. the next odd bit of HD0) from the previous integer

vector.

4.2 Encoder

The Encoder is crucial for overall programmability of the processor, and has the

largest activity and wiring complexity. As outlined earlier, this component must be

organized into multiple redundant computing elements. (Sec. 3.3, Fig. 3-1).
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4.2.1 Organization of the Encoder

Generic algorithms can be decoupled into generation of terms and super-position.

Clearly, the Data Processing Unit (DPU) network need only generate all necessary

terms, hence it suffices to only implement multiply amd permute in them.

Fig. 4-2(a) shows the Hyper-dimensional Logic Unit (HLU), the simplest

such DPU possible. HLU takes two single-bit operands A and B and can multiply

(C = A ⊕ B), permute (C = ρ(A)), delay (C = A) and permute-and-multiply

(C = A ⊕ ρ(B)).

Since permute has intra-word dependencies, D HLUs can be connected together

to form a module operating on entire hyper-vector (Fig. 4-2(b)). This coherent unit

will be called HLU Layer. Each constituent HLU performs the same operation on

the input hyper-vector. Permute is a single-cycle derangement, hence any Hamilto-

nian path connection through p_in and p_out visiting all HLUs is valid. Fig. 4-2(b)

illustrates a scheme where alternate HLUs (except first and last) are connected to

minimize length of longest wire.

HLU Layers can be interconnected among themselves, generating an overall output

hlu_final_out by transforming the stream of inputs (item) from the Item Memory

(Fig. 4-2(c)).

Finally, a simple array of Accumulators perform the super-position (Fig. 4-2(d)).

A two’s-complement counter at a hyper-vector position increments or decrements

according to corresponding bits of hlu_final_out being 1 or 0. When encoding

completes, the vector formed by MSB of counters is the required superposition. Note

that accumulator takes in hyper-vectors (hlu_final_out) calculated by the last HLU

Layer. In Fig. 4-2(d) the shift-register ENABLEREG is programmed to mark the cycles

of arrival of required terms and enable the counters for accumulation (see Section

3.1.3). Its contents are shifted as the design encodes, accumulating only the required

terms. For the benchmark applications, a 256-bit register is sufficient.
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4.2.2 Programmability

A crucial factor for array architectures is the choice of interconnection network. More

general networks allow efficient mapping of algorithms at the cost of increased hard-

ware complexity and power consumption.

For the Encoder, HLU Layers are the only independent processing elements. They

compute coherently and have two hyper-vector operands. Therefore, the major de-

cision here is the set of allowed operands to each HLU Layer. The most general

network would allow output of any HLU Layer or Item Memory to be either operand

for all HLU Layers.

Fig. 4-2(c) provides an example Encoder with 3 layers. Signals op1, op2, op3

program the operation carried out by HLU Layer 1, 2, 3. For generic programs

term expression is a constant, hence these operation signals stay the same throughout

the encoding. Operand-select signals A1, B1, A2, B2, A3, B3 decide the actual

interconnections of HLU Layers. Note that in this setting feedback is allowed: an

HLU Layer’s output may even be its own input in the next cycle.

Feedback offers greater variety for most term expressions. Fig. 4-3(a) and 4-3(b)

are two HLU networks with feed-back and feed-forward configurations respectively.

Both of them transform the input sequence Xt to the same final output hlu_final_out

= Xt−3. Finding equivalent networks with feedback usually requires exhaustive search

through all possible interconnections.

However, wiring complexity grows quadratically with number of HLU Layers, mak-

ing general interconnections infeasible for large designs. It also complicate overall

pipeline control as flushing or filling a pipeline with arbitrary feed-back connections

is non-trivial. Fortunately, the benchmark applications do not need such large de-

signs. Feed-forward implementations for term expressions are easy to find and the

generic abstraction from Section 3.1.3 helps. Eq. 3.1 separates a term fi(I) into

two products, one delay partial term with inputs and their delayed versions only

(Xp1
⊕Xp2

...⊕Xpm
) and another permute partial term with their permuted versions
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(ρu1(Xq1
) ⊕ ρu2(Xq2

)... ⊕ ρun(Xqn
)). They can be implemented by separate intercon-

nections of HLU Delay Circuit and Permute Circuit respectively, and combined

to give the final output (Fig. 4-3(d)).

4.3 Associative Memory

Associative Memory stores the learned vectors for a later comparison and retrieval

(see Fig. 4-4). During training, the write_en signal enables only the address loca-

tion pointed by label_in for writing. The output from Encoder (encoder_out) is

saved into the corresponding address. During testing, the encoder_out contains the

test hyper-vector whose hamming distance is computed to each class vector in par-

allel. The number of mis-matches is computed by an element-wise XOR followed by

counting the number of 1s using popcount logic.

A simple module was designed that can store 32 classes and each class vector

has a separate popcount logic attached. The number of 1s in 256-bit sub-words is

counted in a single cycle by popcount; 8 cycles overall for 2048-dim hyper-vectors.

Since the amount of storage required is small (32× 2048-dim hyper-vectors is about

8 KB), flip-flops were used instead of SRAMs.

4.4 Multi-processor Configuration

A simple configuration of multiple processors results in increased effective dimension.

To demonstrate this, consider Language Recognition using 27 input characters (lower-

case alphabets and white-space). Suppose two instances of the 2048-dim processor

(with same items in Item Memory) are used for Language Recognition. The 27 input

symbols are randomly mapped to 27 of 1024 available items in the first processor’s HD

Mapper 1. The second processor’s HD Mapper 2 chooses a new map of 27 symbols to

1024 items. On average, the two maps have about 272/1024 = 0.71 common symbol-

item pairs. Hence, they almost certainly compute with completely different items

which is equivalent to computation on 4096-dim data-path with freshly generated
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items.

Fig. 4-5 shows a system of three 2048-dim processors interconnected to simulate

Deff = 6144. Class hyper-vectors are trained and stored locally in each processor.

Note that label-address map for Associative Memory must be the same for all three

HD Mappers. During testing, the test-vector and distances to stored class hyper-

vectors are computed locally by each processor. For each class, these local distances

are added to generate a total distance. The class with smallest total distance is

returned as prediction.

A Serial Peripheral Interface (SPI) module is used for transmitting local distances

to adjacent processors (see Fig. 4-5). The associative memory adds local distances

to those from its SPI slave (SPI-IN) before transmitting to its SPI master (SPI-OUT)

(see Fig. 4-4). As the processors are connected linearly, the last processor computes

total distances and gives the final prediction.
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Chapter 5

Experimental Results

5.1 Data-path Overview

Fig. 5-1 provides a simplified block-diagram of the entire 2048-dim processor. The

Item Memory has 11-bit address with 1024 randomly generated items stored in ROM.

The Associative memory can store up to 32 classes.

The designed Encoder has only as much resources as required by the benchmark

applications. A total of 7 HLU layers are split into two groups G1 and G2. HLU

Layers 1 and 2 form group G1, where Accumulator 1 performs superposition of Layer

2 outputs. HLU Layers 3 to 7 form group G2 where Accumulator 2 performs superpo-

sition of Layer 7 outputs. ENABLEREG-1 and ENABLEREG-2 are 256-bit shift registers

implementing the control signals for enabling Accumulator 1 and Accumulator 2 re-

spectively.

To allow dual-stage encoding, ENABLEREG-1 from group G1 can provide a global

enable signal for all logic in G2 as well. Finally, note that the HLU Layer intercon-

nections are not fully general. The item hyper-vector can go only to Layer 1; Layers

1 and 2 are fully-connected; and Layers 3 to 7 are fully-connected with Layer 2 and

Accumulator 1.
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Figure 5-1: Summary of resources in the implemented 2048-dim processor. Can
handle all applications requiring up to 2, 048 items and 32 classes. The Encoder has
7 HLU Layers with 2 accumulators allowing dual-stage computation.

5.2 Hardware Complexity

A System-Verilog RTL for the processor was trained and tested for all applications

in the benchmark. The data-path was synthesized with 28nm High-K/Metal-gate

(HKMG) cells provided by TSMC under a clock-cycle constraint of tCLK ≤ 2.4 ns.

The power consumption was estimated at (0.8 V, 25◦C, TT) corner. Table 5.1 lists

the main results of the designed hardware. The primary goal is to quantify the effects

of the general architecture alone on the processor performance and efficiency. Hence

no specialized library cells or circuits were utilized to optimize for area or power

consumption.

Fig. 5-3 shows the component-wise breakdown of area and power consumption.

Item Memory is the largest component as it stores over a thousand hyper-vectors.

The principal contributor to the Encoder’s size are the integer counters in its two
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Figure 5-2: Single-chip Energy Efficiency: shown energy consumed [µJ] and
number of cycles (in thousands) spent in Encoder for testing one sample on single
processor.

Accumulators. Each component of the Accumulator hyper-vector needs a 22-bit regis-

ter compared to single-bit registers elsewhere. The major contribution in Associative

Memory is the dedicated popcount logic for each class, adding to overall area and

power consumption. Most importantly, the two memory components are the main

contributors to overall power and area. More efficient implementation, such as ana-

log content-addressable memory [25], would reduce the overall cost significantly.

5.3 Energy Efficiency

To estimate the energy cost of a prediction, the configuration providing highest ac-

curacy for the application must be considered. Fig. 5-4(a) shows improvements in

HDC accuracy as number of processors connected in multi-chip mode increases. Re-

sults for EMG Hand-Gesture Recognition (FlexEMG), DNA Sequencing (DNA) and

Page-Block Classification (PAGE) are already better than baseline on a single proces-

39



sor (Table 2.1). They improve negligibly with multi-processor scaling.

Fetal state Classification (CARDIO) has constant accuracy equalling the baseline

for almost all configurations. Language Recognition (LANG) accuracy improves the

most when 5 chips are interconnected, but is slightly lower than baseline. Finally,

results for UCI Human-activity Recognition (UCIHAR), Spoken Letter Classification

(ISOLET), Face detection (FACE) and MNIST Digit Recognition are lower than base-

line for all configurations. Connecting more than 5 chips together (Deff > 10240)

increases energy consumption with negligible accuracy gains.

Fig. 5-2 shows the energy per prediction on a single-processor system. This suf-

fices for applications FlexEMG, DNA, CARDIO and PAGE, with energy efficiency

better than 1.6 µJ/pred. LANG consumes about 6µJ/pred. on the 5-chip system.

For comparison, [73] implements a 10, 000-dim HD algorithm for EMG on the 4-core

PULPv3 processor [74], operated at 0.7 V, to give 25.6µJ/pred. A 5-chip implemen-

tation of EMG on this processor (Deff = 10240) consumes only 7.55µJ/pred (3.3×

improvement).
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Property Value

Technology TSMC 28 HPM
Total Cell Area 2.07 sq. mm.
tCLK 2.4 ns
Total estimated power 418 mW

Table 5.1: QoR report for the synthesized 2048-dim Generic HD Processor. The
power is estimated for (0.8 V, 25◦ C, TT) corner.

(a) Area [mm
2]

(b) Power [mW]

Figure 5-3: (a) Area Breakdown: the mapped area of major components is shown.
(b) Power Breakdown: the power consumption of major components is shown.
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(a) Benchmark Accuracy with multi-processor configuration

(b) 5-processor Energy [µJ] per Prediction

Figure 5-4: (a) Accuracy in Multi-processor configuration: up to five 2048-dim
processors are connected together to increase effective dimension, thereby improving
accuracy. (b) Multi-processor Energy Efficiency: shown energy consumed [µJ]
for testing one sample using five processors configured in multi-processor mode.
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Chapter 6

Conclusion

The basic components of a generic Hyper-dimensional processor were developed and

the major choices required for implementation were elaborated. The data path

was synthesized in 28nm HKMG, exhibiting an energy efficiency better than 13.9

µJ/pred. for all benchmark applications. The 4 classification tasks with highest

1-processor HDC accuracy exhibit energy efficiency better than 1.6 µJ/pred.

The generic abstraction (Section 3.1.3) allows efficient mapping of HD expressions

to the developed architecture. For the benchmark applications chosen, an Encoder

with only 7 HLU Layers suffices. However, the architecture allows design of Encoders

with more HLU Layers and Accumulators as well. A future direction would be to

extend this architecture to perform hierarchical HD computing [30].

The choice of distance metric is another crucial factor determining overall perfor-

mance. An advanced data-path using cosine similarity instead of hamming distance

would improve accuracy significantly [56, 52].

As a preliminary design of the generic processor, the energy efficiency for some

applications are encouraging. An optimized system could be deployed for ultra low-

power computing in the future.
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