
e-mission: an open source, extensible platform for human
mobility systems

KALYANARAMAN SHANKARI

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-180
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-180.html

December 20, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Funding from these generous sponsors made this thesis possible - DHS
Award HSHQDC-16-3-00083, NSF CISE Expeditions Award CCF-1139158,
DOE Award SN10040 DE-SC0012463, DARPA XData Award FA8750-12-2-
0331, and gifts from Amazon Web Services, Google, IBM, SAP, The Thomas
and Stacey Siebel Foundation, Apple Inc., Arimo, Blue Goji, Bosch, Cisco,
Cray, Cloudera, Ericsson, Facebook, Fujitsu, HP, Huawei, Intel, Microsoft,
Mitre, Pivotal, Samsung, Schlumberger, Splunk, State Farm and VMware,
Alibaba, Ant Financial, CapitalOne, Futurewei, Nvidia and Scotiabank, the
National Science Foundation under grant CPS-1239552, NSF CISE
Expeditions Award CCF-1730628, the CONIX Research Center, one of six
centers in JUMP, an SRC program sponsored by DARPA, CITRIS Seed Grant
2016-0072.

e-mission: an open source, extensible platform for human mobility systems

by

Kalyanaraman Shankari

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Sciences

and the Designated Emphasis

in

Global Metropolitan Studies

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Culler, Co-chair
Professor Randy Katz, Co-chair

Professor Paul Waddell
Professor Eric Paulos

Fall 2019

e-mission: an open source, extensible platform for human mobility systems

Copyright c© 2019

by

Kalyanaraman Shankari

1

Abstract

e-mission: an open source, extensible platform for human mobility systems

by

Kalyanaraman Shankari
Doctor of Philosophy in Computer Sciences

and the Designated Emphasis in Global Metropolitan Studies

University of California, Berkeley
Professor David Culler and Professor Randy Katz, Co-chairs

Transportation is the single largest source of carbon emissions in the US. Decarboniz-
ing it is challenging because it depends on individual behaviors, which in turn, depend
on local land use planning. The interdisciplinary field of Computational Mobility,
focusing on collecting, analysing and influencing human travel behavior, can frame
solutions to this challenge.

Innovation flows in interdisciplinary fields are bi-directional. The flow to the
domain is focused on building a strong foundation for methodological improvements.
As the improvements are deployed, they result in use-inspired computational research.
This temporal dependency results in our initial focus on the modularity, accuracy
and reproducibility of e-mission, an extensible platform for instrumenting human
mobility. This open source platform has a modular architecture that supports power
efficient duty cycling using virtual sensors, a read-only data model and a pipeline
with novel algorithm adaptations for smartphone sensing.

We also perform the first empirical evaluations of smartphone-based platforms in
this domain. The architectural evaluation is based on three real world deployments: a
classic travel diary, a crowdsourcing initiative, and a behavioral study. The accuracy
evaluation is based on an novel procedure that uses artificial trips and multiple par-
allel phones to mitigate concerns over privacy, context sensitive power consumption
and inherent sensing error. Data collected from three artifical timelines was used
to evaluate the trajectory, segmentation and classification accuracies vs. power for
various configurations.

On computational side, challenges derived from the deployments can contribute
to ongoing CS research in privacy, trustworthiness, incentivization and decision mak-
ing. On the mobility side, this enables methodological innovations such as Agile
Urban Planning for prototyping infrastructure changes.

i

• To my parents, for the best start in life that any child could ask for, and for
continuing to support me even when I have children of my own.

• To Tom, for supporting my crazy choice to return to school in middle age,
for helping me frame my ideas, and for the ongoing commitment to our 50-50
agreement that made this PhD possible.

• To my kids, for the nights spent away from home, for the proof-reading, and
for accepting a lifestyle that was different from your friends without complaint.

• And finally, to our glorious planet. I hope we can stabilize your climate, perhaps
with some help from the work in this thesis, before it is too late.

ii

Contents

Contents ii

List of Figures vii

List of Tables xiii

1 Computational Mobility 1
1.1 Computational mobility definition . 2
1.2 The case for computational mobility 3

1.2.1 New data: Ride hailing and congestion in New York 4
1.2.2 New models: Parking in the Bay Area (SRI) 5

1.3 What data matters . 6
1.3.1 Continuous sensed data collection 6
1.3.2 Semantic labels for continuous data 6
1.3.3 Intermittently triggered experience sensing 7
1.3.4 Data sources and quality . 8

1.4 How is the data modeled . 9
1.4.1 Travel diary . 9
1.4.2 Personalized activity model 10
1.4.3 Infrastructure models . 10

1.5 What to expect in interdisciplinary work 11
1.5.1 Interdisciplinary computational field examples 11
1.5.2 Relation to purely applied work 12
1.5.3 Broader Impact: CS → domain transfer 12
1.5.4 Intellectual Merit: CS ← domain transfer 12

1.6 Computational Mobility is interdisciplinary 12
1.6.1 System rather than results . 13
1.6.2 Bi-directional . 13
1.6.3 Developing new methods . 14

1.7 The thesis problem . 14

iii

2 Background 18
2.1 Sources of transportation data . 19

2.1.1 Infrastructure: Traffic Sensing at fixed points 19
2.1.2 Vehicle: Unlinked in-vehicle travel trajectories 21
2.1.3 Human: Smartphone based, high quality, user consent 22

2.2 Prior HMSes from builders and deployers 23
2.2.1 Project and feature selection methodology 24
2.2.2 Characteristics of builder and deployer projects 27
2.2.3 Comparing open source, reusable systems or platforms 27

2.3 Context sensitive smartphone sensing 29
2.3.1 Academic Literature: Location 30
2.3.2 Academic Literature: Activity Detection 30
2.3.3 Industry . 31

2.4 Analysis pipeline and algorithms . 31
2.4.1 Trajectory smoothing algorithms 33
2.4.2 Trip segmentation algorithms 33
2.4.3 Section segmentation algorithms 33

2.5 Evaluation approaches for smartphone sensing 33
2.5.1 Context sensitive algorithms: power without accuracy 34
2.5.2 Travel diary systems: compare to manual surveys 34
2.5.3 Large scale testbeds: no ground truth, no power 34
2.5.4 Mode inference: accuracy without power 35
2.5.5 Inference on ad hoc datasets: no privacy 35
2.5.6 Recent high quality datasets: no trade-offs, no privacy 36
2.5.7 Power/accuracy trade-off with artificial trips: no reproducibility 36

2.6 Conclusion . 36

3 Computational mobility architecture 38
3.1 Introduction . 38
3.2 Architectures, platforms and systems 39
3.3 Architecture overview and highlights 41

3.3.1 User Interface (UI) channels 41
3.3.2 cross-platform event generation 42
3.3.3 Pipeline and data model . 42
3.3.4 Data ownership and aggregation 42

3.4 Client architecture . 43
3.4.1 Sensing . 44
3.4.2 Communication . 45
3.4.3 Interrupt handler . 46
3.4.4 User Interface (UI) . 46
3.4.5 User Interface (UI) channels 48

3.5 Server architecture . 48

iv

3.5.1 Storage . 49
3.5.2 Aggregation . 50
3.5.3 Data ownership . 52
3.5.4 Other components . 52

3.6 Analysis architecture . 53
3.6.1 Pipeline . 53
3.6.2 Data model . 55

3.7 Principle of proportional effort . 57
3.7.1 Usage without customization 57
3.7.2 Extending the smartphone app 57
3.7.3 Extending the server functionality 60

3.8 Conclusion . 61

4 Background sensing using virtual sensors 63
4.1 Restrictions on background processing 64

4.1.1 Android . 64
4.1.2 iOS . 65

4.2 Initial exploration of power accuracy trade-offs 67
4.2.1 Experimental setup . 67
4.2.2 Exploration results . 70

4.3 Cross-platform duty cycling implementation 75
4.3.1 Motivation . 76
4.3.2 Our design and some challenges 77

4.4 Modeling and generalization . 81
4.5 Custom implementations and virtual sensor updates 82

4.5.1 Virtual sensors are easier to use but less flexible 82
4.5.2 Virtual sensors have fewer restrictions, at least on iOS 83
4.5.3 Virtual sensor implementations change over time 83
4.5.4 Maintenance and upgrade cycle 83

4.6 Conclusion and Future Work . 84

5 Wrangling noisy data into a mobility diary 85
5.1 Reproducible data pipeline for diary creation 86

5.1.1 Intake pipeline algorithm steps 86
5.1.2 Other steps: data manipulation and use-case specific 88
5.1.3 Data model for reproducibility 89
5.1.4 Pipeline states . 90

5.2 Input virtual sensor data characteristics 90
5.2.1 Fused location . 91
5.2.2 Trip start/end . 92
5.2.3 Motion activity . 92

5.3 Adaptations to classic algorithms . 92

v

5.3.1 Trip segmentation . 93
5.3.2 Section segmentation . 94
5.3.3 Trajectory smoothing . 94
5.3.4 Cleaning and Resampling . 95
5.3.5 Mode inference . 95

5.4 Conclusion . 96

6 A technique for evaluating mobility sensing 98
6.1 Intuition for challenges and solution 99
6.2 Requirements for evaluating Human Mobility Systems (HMSes) . . . 100

6.2.1 Holistic evaluation: power vs. overall accuracy 100
6.2.2 Privacy preserving . 100
6.2.3 Ground truthed . 101

6.3 Controlled Evaluation of context-sensitivity 101
6.3.1 Artificial timeline . 101
6.3.2 Control phones . 102

6.4 Discussion of alternative procedures 103
6.4.1 No artificial trips . 103
6.4.2 No control . 106

6.5 Evaluation system design . 106
6.5.1 System overview . 107
6.5.2 System iterations and lessons learned 109

6.6 Conclusion . 110

7 Performance Evaluation 111
7.1 Evaluation of architecture and modularity 112

7.1.1 Metrics . 112
7.1.2 Use cases . 113
7.1.3 Extensibility + adoption . 116
7.1.4 Utility . 119
7.1.5 Application specific metrics 119

7.2 Evaluation of data collection and analysis 120
7.2.1 Experiment design . 121
7.2.2 Evaluation parameters . 121
7.2.3 Metrics . 123
7.2.4 Power: calibration and evaluation 129
7.2.5 Trip Segmentation: sensed vs. master 134
7.2.6 Section Segmentation: sensed vs. gis 135
7.2.7 Classification . 141
7.2.8 Trajectory: sensed vs. master 142

7.3 Conclusion . 148

vi

8 Conclusion and Future work 149
8.1 Future application of CS → domain 150
8.2 CS use-inspired research ← domain usage 151
8.3 Broader Impact: Agile Urban Planning 153
8.4 Potential risks of tracking location data 153

8.4.1 Open surveillance by repressive regimes 154
8.4.2 Covert misuse by data collectors 154
8.4.3 Illegal access by hackers . 155

8.5 A Beginning, Not an End . 155

vii

List of Figures

1.1 Overview of the basis for computational mobility. Left to right: sensed
data, surveyed annotations, combined into a trip diary. 2

1.2 Sources that are not suitable for computational mobility. Left to right:
traffic cameras (infrastructure), bicycle counters (infrastructure), OBD
scanners (automobile-only) . 3

1.3 L: Spatio-temporal and activity data, R: across all modes. 6
1.4 L: Complex tour involving a trip to the library and a stop at Best Buy;

R: user confirmation of trip labels. 7
1.5 L: Traveler experience of sidewalk quality; R: planner initiated survey

on proposed changes. 7
1.6 Granularity and accuracy L: CDR (from [dHVB13], A shows calls

made by users that are received by cell towers, B shows how this cell
tower data can be translated into coarse location polygons), R: smart-
phone app. 8

1.7 Driving patterns in the Global South [MM16]. 10
1.8 Computational Mobility in a broader context, and the associated topics. 11

3.1 High-level components of HMSes and their primary challenges. Such
systems receive inputs(black arrows) from sensors (e.g., travel trajec-
tories) and surveys (e.g., trip quality). They can also provides out-
puts(gray arrows) of personalized information to travelers and of ag-
gregate metrics to planners. The aggregate metrics can be used for
short-term (e.g., congestion pricing) or long-term (e.g., new transit
line) changes. 39

3.2 Architecure modules with alternate implementations, composed to cre-
ate specific systems. The dark blue boxes are the modules, the light
blue boxes are the alternate implementations, and the orange boxes
are the ones chosen to create a user-visible system 40

3.3 Detail of the client architecture, including modules for configurable
sensing, robust communication and customizable UI 43

3.4 Server architecture, including modules for storage, communication and
integration. 51

LIST OF FIGURES viii

3.5 Analysis architecture, including modules for processing the data in
idempotent stages, a data model that supports such an algorithm, and
aggregate queries. 54

3.6 Options for client extensibility proportional to effort. (l-r): customiz-
ing the UI, adding existing plugins, writing a new plugin. 58

3.7 Launching a custom UI through a configuration link. The new UI can
be tailored to the survey’s summary, consent and login choices. (l-r):
base app consent, customization link, custom consent. Upon clicking
the link from the phone or scanning the QR code, the app is launched
with the new UI, so users never have to consent to the base app. . . . 59

3.8 Options for server extensibility proportional to effort. (l-r): contribut-
ing plugins, modifying existing pipelines. 60

4.1 Comparison of three existing data collection regimes with no geofenc-
ing. Regimes are high accuracy fast sampling (hafs), medium accuracy
fast sampling (mafs) and medium accuracy slow sampling (mass). The
top graph shows the change in battery level over 24 hours. The middle
graph shows the rate of drain in %/hr in the three states. The bottom
map shows the data points collected by each regime and provides an
intuition of what the different accuracy levels correspond to. 68

4.2 Evaluation of geofencing while collecting data with high accuracy.
Regimes are no data collection (nd), high accuracy fast sampling (hafs)
and geofenced high accuracy fast sampling (geo-hafs). The top graph
shows the change in battery level over 24 hours. The middle graph
shows the rate of drain in %/hr in the active, moving and passive
states. The bottom map shows the extent of the error on each plat-
form at the beginning of the trip. 71

4.3 Evaluation of geofencing while collecting data with medium accuracy,
but a fast sampling rate. Regimes are no data collection (nd), medium
accuracy fast sampling (mafs) and geofenced medium accuracy fast
sampling (geo-mafs). The top graph shows the change in battery
level over 24 hours. The middle graph shows the rate of drain in %/hr
in the active, moving and passive states. The bottom map shows the
extent of the error on each platform at the beginning of the trip. . . 72

4.4 Evaluation of geofencing while collecting data with medium accuracy,
and a slow sampling rate. Regimes are no data collection (nd), medium
accuracy fast sampling (mass) and geofenced medium accuracy fast
sampling (geo-mass). The top graph shows the change in battery
level over 24 hours. The middle graph shows the rate of drain in %/hr
in the active, moving and passive states. The bottom map shows the
extent of the error on each platform at the beginning of the trip. . . 73

4.5 Finite State Machines for duty cycling on android (up) and iOS (down) 78

LIST OF FIGURES ix

4.6 Results for generalizing the results to a broader variety of activity pat-
terns. Top: a simple model for estimating the power drain as a factor
of the no data collection nd, tracking using high accuracy fast sam-
pling nohafs, tracking using medium accuracy fast sampling nomafs,
tracking using medium accuracy slow sampling nomass and geofenced
geofenced states. Bottom: Distributions of power drain (%/hr) on
android and iOS generated by applying the top model to the ATUS
dataset. L: with nohafs, R: without nohafs and an expanded scale . 80

5.1 Illustration of how the timeline evolves as it proceeds through the
pipeline. 87

5.2 Quality change . 91
5.3 Example of zigzag removal. l: before smoothing, r: after smoothing 95

6.1 Top: Power variation illustrated by duty cycling on android. All the
phones were configured identically, and placed in the same environ-
ment. The built-in duty cycling on android switches all phones to low
power mode at around 1 hr. However, phone 1, on run 1 alone, switches
back to high power mode at around 12.5 hours. Repeating experiments
allows us to distinguish the first consistent duty cycle and the second
outlier. Bottom: Accuracy variation illustrated by mismatched times-
tamps during trajectory data collection. Both trajectories are collected
from identical phones during a subway trip. Point 74 has an accuracy
radius of only 12, but its timestamp is in June instead of July! Spatial
ground truth allows us to sort out the varying accuracies here. . . . 104

6.2 Top left: iOS power control phone with the sensing app consuming
100% but of a power drain of only 2% over the entire day. Top right:
android phone showing Google Play services as a separate power con-
sumer. Bottom: Explicit duty cycling causes increased power drain
at high frequencies, possibly due to greater CPU power consumption.
Note that the battery drain flattens out on all curves during the mid-
dle, stationary part. The main difference is in the rate of power drain
while moving — the checks for android’s built-in duty cycling appear
to be optimized to be more efficient than our simple implementation. 105

6.3 Top: Spec components in em-eval-zephyr include configuration,
timeline and trip details. Bottom: Sample spec for a multi-modal
trip, including transfers and waits for public transit. 108

7.1 Screenshots of the three different use cases (L-R: cci-berkeley, opentoall,
tripaware) . 114

7.2 Basic community involvement statistics from github for the project.
Top to bottom: server repo, phone repo, docs repo, and closed issues 117

LIST OF FIGURES x

7.3 Examples of errors in segmentation captured by the segmen-
tation metrics. Top: large error in the trip start time for an iOS
HAHFDC run. The green line is the ground truth, red line is the sensed
data. We got a visit end (trip start) transition at 17:41, but we de-
tected a trip end within 30 ms so we did not sense any data. The next
trip start was at 17:48, when we did start reading values, but this was
almost the end of the trip.Bottom: error in segmentation trip count for
an android HAMFDC run. On one multi-modal trip, we get multiple trip
start and end transitions, largely corresponding to transit transfers.
Note also that there at 8:30, there are two consecutive geofence exits
(08:30 and 09:15) and an erroneous point in San Jose. 125

7.4 Examples of errors in trajectory captured by the trajectory
tracking metrics. Top: Spatial tracking errors from multiple iOS
MAHFDC runs. The green line is the ground truth, other colors are the
sensed data. For each sensed trajectory, the spatial error is the shortest
perpendicular distance to the spatial ground truth line (i.e., the thick
blue line from the brown point to the green line. Bottom: Temporal
errors caused by backtracking to previous spatially valid point, based on
an android HAMFDC run. The sensed points in red are largely along the
spatial ground truth trajectory in green, but they periodically return
to a previous point in the trajectory, generating zigzags. In this case,
the spatial error of the repeated points is small, but the temporal error,
encompassing cross-bay jumps, is large. 127

7.5 Calibration of stationary phones, configured identically with
the specified configuration, with app-based sensing turned al-
ways on. The boxes represent the IQR, the green line represents the
median. Top: variation across configurations: the x-axis represents
the interpolated battery drain after the median duration of the runs.
The y axis represents combinations of accuracy and frequency. Bot-
tom: variation across phones, pulled out across configurations that
show significant differences. 132

7.6 Power drain with different evaluation settings over multiple
timelines. Since we have only three runs each for MAHFDC and HAMFDC,
we show the range directly in the plot instead of boxes and outliers. x
axis is the battery drain, y axis has a partial order of sensing quality
from L → R; MAHFDC and HAMFDC are both medium quality and not
comparable. Timelines are from longest to shortest. 133

7.7 Trip count difference. Top has the sensed values, bottom has the
analysed values. The x axis represents the sensing quality, the y axis
represents the number of extra sensed trips matched to each ground
truth trip. The ideal value is zero, a positive value indicates too many
sensed trips and a negative value indicates too few sensed trips. . . . 136

LIST OF FIGURES xi

7.8 Start/end time difference for trips. Top has the sensed ranges,
bottom has the analysed ranges. x axis is the sensing quality; y axis
is the difference in start or end time, in mins. Values are capped at
30 mins and trips where we ran out of battery (e.g., android HAHFDC

for the longest timeline) are excluded since they don’t have a trip end
transition. 137

7.9 Section count difference The x axis represents the sensing quality,
the y axis represents the number of extra sensed sections matched to
each ground truth section. The ideal value is zero, a positive value
indicates too many sensed sections and a negative value indicates too
few sensed sections. 139

7.10 Example of bad data causing lingering missing sections The
ground truth was two trips, from 10:07:27 -> 10:23:08 and from
11:30:50 -> 11:52:38. The sensed data included an ephemeral trip
from 10:10:19 -> 10:10:20 with no points and from 10:25:04 ->

10:25:52 with some points. Then, we miss most of the return trip
before getting a trip start at 11:46:21. In the post-processing, these
are merged into one trip with one section 10:25:07 -> 11:54:17, so
neither of the ground truth sections or trips match. 140

7.11 Start/end time difference for sections. Top has the sensed ranges,
bottom has the analysed ranges from the GIS branch. x axis is the
sensing quality; y axis is the difference in start or end time, in mins.
Values are capped at 30 mins and trips where we ran out of battery
(e.g., android HAHFDC for the longest timeline) are excluded since they
don’t have a trip end transition. 141

7.12 Classification accuracy percentages. Top has the sensed ranges,
bottom has the analyzed ranges from the GIS branch. x axis is the
sensing quality; y axis is the percentage of time in the section that is
spent in the correct mode. 1 is the ideal value, values of > 1 or 0 typ-
ically indicate bad segmentation (Figure 7.3). Only TRAVEL sections
are considered, and sections where we ran out of battery (e.g., android
commuter rail with tunnels 0 and inner suburb downtown walk 0)
are excluded. 143

7.13 . 144
7.14 . 145

LIST OF FIGURES xii

7.15 Example of smoothing in the case of high spatial error. The
green line is the ground truth and the three colored lines are the
sensed values for three runs of the express bus section on iOS with
the MAHFDC configuration. The bus route is entirely above ground but
on a bridge. The popups indicate the point with the greatest error for
each run. The sensed data (top) shows significant outliers, including
one in Fremont. The smoothing (bottom) removes the outliers, but
creates a straight line that is still 1km away from the ground truth at
its furthest point. 146

7.16 Example of smoothing in the case of high spatial-temporal
error. The green line is the ground truth and the red line is the sensed
value for the first run of the subway underground section on android
with the HAMFDC configuration. The subway route goes underground
in the middle of San Francisco and comes aboveground after crossing
the bay. The popup indicates the point with the greatest error. The
sensed data (top) shows significant cross-bay (14km) zigzags to a point
along the spatial ground truth. The smoothing (bottom) removes the
zigzags, but creates a straight line that is still 3km away from the
ground truth. 147

8.1 Example challenge: Indirect, collective decision-making 152
8.2 Solutions tailored for large cities (San Francisco), auto-dependent sub-

urbs (San Ramon), and rural small towns (Yreka) can be assembled
from pre-tested incentives built on top of open, customizable compo-
nents for tracking and analysis . 153

xiii

List of Tables

1.1 Data sources used in the ride-hailing study [Sch17]. 5
1.2 Data characteristics represented as a tree. Roots are categories and

leaves are the actual properties. 8
1.3 Mapping between challenges, CS domains, and use cases. 14

2.1 Related applications, grouped along multiple axes. All the applications
are published as standalone systems. Explanations: (i) * in a column
implies that the answer is not clear, details are in the notes, (ii) column
descriptions, including the abbreviations, are at Section 2.2.1 25

2.2 12Related platforms, grouped along multiple axes. Explanations are at Section 2.2.1 26
2.3 Algorithms selected for evaluation by prior summary report (Tables

3-3, 3-4 and 3-5 in [Wol14], along with their limitations) 32

3.1 Brief description of the modules for the client tier, their primary chal-
lenge and the design chosen by the e-mission platform 47

3.2 Brief description of the modules for the server tier, their primary chal-
lenge and the design chosen by the e-mission platform 49

3.3 Brief description of the modules for the analysis tier, their primary
challenge and the design chosen by the e-mission platform 53

4.1 Comparison of Android sensing regimes when phone is stationary . . 76

7.1 Three projects and their usage of various components of the architec-
ture. Usage key - X: no modification, × not used, ↑ enhancement
contributed . 118

7.2 Brief description of timelines, covered modes, dwell times and overall
times . 122

LIST OF TABLES xiv

7.3 Example of how bad segmentation can lead to classification
accuracies � 1 using an example fom an iOS MAHFDC run. This
trip consisted of a walk start section from 18:59:17 -> 19:01:06, a
suburb bicycling section from 19:01:06 -> 19:20:31 and a walk end

section from 19:20:31 -> 19:20:57. However, the sensing API did
not detect any cycling (see transitions above), so the only sensed
section was 19:01:53 -> 19:27:21, WALKING. So the ≈ 30 sec long
walk end transition matched the entire ≈ 26 min long sensed section,
and the mode was correct. So the computed accuracy ratio was 5800%!!130

7.4 Example of ephemeral trip leading to large iOS trip start de-
lay. The trip was actually from 08:12:17 -> 10:37:45. We got a
trip start at 08:15:48 but it ended immediately at 08:15:48. We
then got another trip start at 08:30:33 when we actually started col-
lecting data. So even with interpolation to fill the gap at the start, the
matching analysed trip was 08:26:23 -> 10:38:02 131

7.5 Frequency distribution of sections that had at least one flipflop (countdiff >
1). We can see that in general, bicycling/e-scooter trips and transit in
mixed traffic have the most flip-flops. 138

xv

Acknowledgments

I would like to start by thanking my advisors, David Culler and Randy Katz. I
came into the program with the unbaked, high level vision that access to fine grained
travel data would help transportation sustainability. David and Randy helped me
refine my vision, introduced me to collaborators and steered me away from potential
pitfalls. They gave me the courage to go beyond my risk-averse immigrant choice of
remunerative topics to work on and tackle an area that has the potential to make
a broad impact in mitigating climate change. Without their ongoing support and
advice, this thesis would have looked very different.

They were also full partners in navigating the post-PhD landscape for interdis-
ciplinary research. Since interdisciplinary theses are still rare, there was no standard
template to follow. They went above and beyond the normal recommendation letters
to ensure that I found a home where I could continue to grow.

I would also like to thank the other members of my dissertation committee. Eric
Paulos helped me understand the research techniques for UX work, and Paul Waddell
introduced me to several mobility researchers, and his students were my co-authors
for multiple papers.

I would also like to thank Harrison Liew and gennui raffill for their assistance in
salvaging the data collection after the Lyft e-bike debacle. The data collection for the
evaluation includes a one-way ride from the UC Berkeley campus to the Transbay bus
stop on an e-bike. I used Lyft bikeshare e-bikes for the first round of data collection,
but then a couple of e-bikes caught on fire, and Lyft pulled all e-bikes from service.
I was now stuck since using a regular bike would preclude comparisons with the first
round.

Fortunately, Harrison and gennui stepped in and helped out by lending an e-bike
and riding the bike back to campus to complete the round trip. Neither rain nor heat
nor lost phones or unexpected band practice stayed us from the slow collection of
all four quadrants of the frequency/accuracy combinations. And Lyft had still not
put e-bikes into service at the time of submission, so this thesis would not have been
completed without their help.

I would like to thank my mentees. Since e-mission requires skills in so many
areas, they filled in all the parts that were outside my expertise. Shanthi and Gautham
built the first native UIs and helped me decide that we should use cordova instead.
Josh and Naomi built the tour model, and Weijian reworked the UI and displayed
it. Sunil and Juliana helped with the first real deployment — bic2cal. Yawen helped
validate battery-based power drain as a technique for power evaluations. Jennifer
and Felipe experimented with new features that will eventually make it into the
core platform. The TripAware group — Jesse, Jack, John, Vas, Andy and Kyle —
helped me figure out how to mentor student groups all the way through the research
process. The GreenTrip group — Vanessa, Sam, Emma, Bill and Trevor — took on
the challenging task of inferring trip destinations and built a base for a future study.

LIST OF TABLES xvi

I would also like to thank my labmates at the SDB and RISE labs for being my
guinea pigs, testing out e-mission and giving detailed feedback. Gabe, Micheal, Kaifei
and Sam, in particular, were involved in multiple rounds of evaluation as e-mission
evolved from a native-only app with an ugly UI to the current platform.

I would also like to thank the research staff in RISE and SDB for all their
help with project logistics. In particular, I would like to thank Kattt for her help
with getting the test phones, Shane for the automated testing, Jon for all the server
redirects, and Boban for all the creative tinkering with printouts. And of course,
Albert for printing posters at short notice, lending me servers for data collection, and
for letting me in when I got locked out late at night.

I would also like to acknowledge the funding from our generous sponsors that
made this thesis possible. The funding came from a variety of different sources over
time and included:

AMP supported in part by DHS Award HSHQDC-16-3-00083, NSF CISE Expedi-
tions Award CCF-1139158, DOE Award SN10040 DE-SC0012463, and DARPA
XData Award FA8750-12-2-0331, and gifts from Amazon Web Services, Google,
IBM, SAP, The Thomas and Stacey Siebel Foundation, Apple Inc., Arimo, Blue
Goji, Bosch, Cisco, Cray, Cloudera, Ericsson, Facebook, Fujitsu, HP, Huawei,
Intel, Microsoft, Mitre, Pivotal, Samsung, Schlumberger, Splunk, State Farm
and VMware.

SDB supported by the National Science Foundation under grant CPS-1239552.

RISE In addition to NSF CISE Expeditions Award CCF-1730628, supported by
gifts from Alibaba, Amazon Web Services, Ant Financial, CapitalOne, Ericsson,
Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk and
VMware.

CONIX supported in part by the CONIX Research Center, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) program sponsored by
DARPA.

CITRIS seed funding Grant 2016-0072: Putting the feedback cycle in high gear:
community-sourced, data-driven approaches for sustainable transportation in-
frastructure

1

Chapter 1

Computational Mobility

Transportation has become the single largest source of greenhouse gas (GHG)
emissions in the United States [UE]. Transportation decarbonization depends on
individual choices, which are affected by local land use infrastructure and planning.
Tackling this challenge requires an interdisciplinary approach. Truly interdisciplinary
work can balance intellectual merit and broader impact, and lead to transformative
research. However, it has a high startup cost, and needs researchers who are extremely
strong in their chosen discipline, but have the flexibility to adapt to the needs of the
other domain.

The interdisciplinary field of Computational Mobility (CM) can frame the
interdisciplinary approach required for transportation decarbonization.

CM focuses on techniques to: (i) collect human mobility data, (ii) analyze it to
generate models, and (iii) apply the models to study or influence behavior and plan
infrastructure.

CM can provide insights that existing data sources cannot. For example, while
considering the effect of ride hailing on congestion, separate ride hailing and traffic
counts can show correlation but not congestion, cannot rule out alternate explanations
or provide actionable information.

CM needs to include both ongoing, continuous sensed data, and intermittently
triggered survey or qualitative data. This qualitative data can be user-generated,
or provide stated preferences to planners. CM data is primarily used to generate
individual travel diaries. However, in the aggregate, it can also provide infrastructure
data and be used to generate geographically customized models.

This chapter explores the idea of CM in greater detail. It starts by outlining
the data requirements, the models that might be generated, and the rigor required to
fully understand them. It then introduces a set of research questions that are explored
in the remainder of this thesis, and links their atypical nature to the demands of
interdisciplinary work. Answers to the questions are embodied in e-mission, the
open source, extensible platform which is the focus of this thesis.

CHAPTER 1. COMPUTATIONAL MOBILITY 2

1.1 Computational mobility definition

Figure 1.1. Overview of the basis for computational mobility. Left to right: sensed
data, surveyed annotations, combined into a trip diary.

Computational Mobility is the sub-field of Computational Transportation Sci-
ence (CTS) that focuses on human travel. In particular, the sub-field focuses on
techniques to: (i) collect human mobility data, (ii) analyze it using data-driven,
mathematical or computer simulation techniques, and (iii) apply the models to study
or influence behavior and plan infrastructure.

Until autonomous vehicles are in widespread use, however, all transportation is
related to human travel. Therefore, we start by defining the scope of Computational
Mobility in terms of what it includes, what it excludes, and how it can integrate with
other aspects of CTS.

Computational Mobility is typically based on (Figure 1.1): (i) end-to-end trip
information linked to a single traveler, (ii) across all travel modes, (iii) annotated
with qualitative details, and (iv) collated into a trip diary.

Most CTS projects tend to focus on sensed data, following a long computing
tradition of sensor-based data gathering and analysis. However, because of its focus
on human behavior, computational mobility needs to mix sensed data with surveyed
data. Each of these methods have unique strengths: (i) sensed data can recall precise
information, such as departure and arrival times, better than humans, but (ii) only
humans can determine behavioral information such as trip purpose or perceptual in-
formation such as trip quality.

CHAPTER 1. COMPUTATIONAL MOBILITY 3

Figure 1.2. Sources that are not suitable for computational mobility. Left to right:
traffic cameras (infrastructure)4, bicycle counters (infrastructure)5, OBD scanners
(automobile-only)6.

Computational Mobility does not typically include information from more tra-
ditional transportation data sources, for example (Figure 1.2):

(i) data that is linked to transportation infrastructure such as roads, generated
using point sensors such as loop detectors or traffic cameras, or

(ii) data that is linked to vehicles, generated by private automobiles using sensors
such as On Board Diagnostic (OBD) scanners or public transit vehicles using
the on-board location trackers for real-time arrival times.

Although Computational Mobility does not directly use these traditional data
sources, integrating mobility information with traditional data sources can enhance
overall utility. Consider the classic problem of counts along a road. Infrastructure sen-
sors have comprehensive coverage, but of one mode of transportation (automobiles).
CM data covers all modes and include information on the origin (O) and destination
(D) of the travel, but only for the subset of the population that participates in the
tracking. Combining them could give a comprehensive picture of multi-modal, O-D
travel across all modes.

1.2 The case for computational mobility

Recent years have seen a structural shift in the transportation landscape away
from personal automobiles to active transportation (e.g., walking, biking), public
transit (e.g., bus rapid transit, subway) and shared mobility (e.g., car sharing, ride
hailing). This shift has already been shown [KAB+12, SS13] to be: (i) broad, cov-
ering six industrialized countries including US, Japan and Germany; (ii) deep, in-
cluding significantly lower rates of car licensure and ownership (e.g., from 75% to

4Image by PublicDomainPictures from Pixabay
5James Cridland[CC BY 2.0]
6Florian Schffer [CC BY-SA 3.0]

https://pixabay.com/users/PublicDomainPictures-14/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=19223
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=19223
https://www.flickr.com/people/jamescridland/
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by-sa/3.0

CHAPTER 1. COMPUTATIONAL MOBILITY 4

65% for the 21-29 age cohort in the UK); and (iii) persistent, spanning roughly two
decades [KAB+12, p. 775].

This shift is expected to be transformative since it is supported by both push and
pull factors. It is pushed by both economic considerations, and governmental policies
that seek to achieve societal goals such as (i) improving air quality; (ii) combating
climate change; and (iii) boosting health through active transportation. It is pulled
by the advent of widespread mobile communication through smartphones that have
enabled the introduction of new mobility services such as car sharing and ride hailing,
and improved the experience of existing ones such as real-time transit alerts. In fact,
recent plans for pilot deployments of autonomous vehicles in Boston 7 and Phoenix 8,
and last-mile solutions such as podcars 9 and electrified personal mobility 10 suggest
that the shift is likely to accelerate in the coming years, and result in a radically
altered transportation landscape.

This shift implies that the newly popular transportation modes need to be given
greater weight in transportation decisions by extending the associated models with
newly relevant factors. Two short vignettes, from the SF Bay Area and New York,
provide an intuition into how existing data collection methods and models need to
be extended to account for this shift.

1.2.1 New data: Ride hailing and congestion in New York

In March 2017, the New York Times ran an article [FH17] asserting that ride-
hailing services actually increased gridlock in New York City, with impacts that in-
clude lower societal efficiency, higher GHG emissions and lower safety. The article
was based on a report [Sch17] that used data sources based on existing mobility
monitoring methods to reach this conclusion.

A careful examination of the data sources used in the study (Table 1.1) indicates
that: (i) most of the sources are vehicle-oriented; and (ii) the only human-oriented
data source is close to 10 years old.

While the author of the report [Sch17] has done an admirable job given the data
sources available to him, the analysis could be even stronger if mobility data were
available. In particular, the report:

1. shows correlation between lower subway ridership, increased TNC mileage and
travel delays in congested areas, but cannot show causation (subway → TNC
shifts) because the only data available on individual travel patterns is from the
HTS, which predates the adoption of TNCs11;

7http://www.businessinsider.com/lyft-self-driving-car-pilot-nutonomy-boston-2017-6
8https://arstechnica.com/cars/2017/04/waymo-trials-free-self-driving-taxi-service-in-phoenix/
9https://mv-voice.com/news/2015/11/13/podcar-proponents-tout-futuristic-transit-vision

10http://www.topsecretev.com/electric-rideables-last-mile-solution-vs-first-mile-solution/
11A prior, City-led study from 2015 on TNC impact found that increased congestion was caused

by freight, construction, pedestrians and tourism

CHAPTER 1. COMPUTATIONAL MOBILITY 5

Source Type Date
NYC trip logs End-to-end trip information, but associ-

ated with a vehicle instead of the trav-
eler

2014-15

Daytime speeds in Manhattan Infrastructure sensors 2016
Subway and bus ridership Traveler linked trip information if

Metrocard is used, but no trip end in-
formation since no swipe out is required,
and no linkage to trips on other modes

2016

Bike ridership Infrastructure sensors and commute to
work data

2015

Ferry ridership Cannot be linked to a traveler because
private ferries are not linked to Metro-
Card, and the Staten Island ferry is free

2016

NYMTC HTS Multi-modal, end-to-end trips linked to
a particular traveler

2010-11

Table 1.1. Data sources used in the ride-hailing study [Sch17].

2. does not adequately rule out alternate explanations, since bicycle ridership also
increased in the same time frame, and a subway → bicycle shift is also plausi-
ble12; and

3. does not provide actionable information since more comprehensive perceptual
data on improvements (distance to stop, wait time, mechanical breakdowns...)
needed to restore subway ridership is lacking 13.

1.2.2 New models: Parking in the Bay Area (SRI)

In order to determine the number of parking spaces required for SRI Interna-
tional’s new campus14, city planners in 2013 needed to estimate the number of cars
that would visit it. This estimate is typically generated by a model from the Institute
of Transportation Engineers, which has historically been based on data from isolated,
suburban sites in the United States and Canada 15. The traditional model thus as-
sumes that the only relevant transportation mode is the personal automobile, so it

12http://hubway.virot.me/. This is vehicle-oriented because it represents counts at selected in-
tersections and does not include end-to-end or semantic data. Unfortunately, in contrast to the
comprehensive TNC data, bicycle ridership is projected from commute to work data reported by
the census, 4 automatic counters and 2 manual count locations

13The NYT article had several anecdotes for the transit → TNC shift, but anecdotal evidence is
insufficient for prioritizing and fixing problems

14www.sri.com
15http://www.ite.org/parkinggeneration/datacollection.asp

www.sri.com
http://www.ite.org/parkinggeneration/datacollection.asp

CHAPTER 1. COMPUTATIONAL MOBILITY 6

does not account for factors relevant to newly popular modes such as accessibility
to frequent transit service, proximity to a bicycle network and new Transportation
Demand Management programs that provide incentives for mode change. At SRI,
these factors led to observed trip rates from a traffic study being 54% lower than the
rates predicted by the model16.

1.3 What data matters

Since computational mobility is focused on understanding human travel, it must
work on data linked to travelers, as opposed to data linked to vehicles or infrastruc-
ture. This data can be broadly characterized into continuous and intermittently
triggered collection (Table 1.2).

1.3.1 Continuous sensed data collection

Figure 1.3. L: Spatio-temporal and activ-
ity data, R: across all modes.

Continuously sensed data forms the
basis of computational mobility. This
large volume of continuously sensed data
motivates the introduction of computa-
tional techniques into the understanding
of mobility. The foundational continu-
ously sensed data is spatiotemporal loca-
tion traces. This data can be augmented
with data from (i) other raw sensors,
such as accelerometers or gyroscopes, or
(ii) virtual sensors, such as the closed
source motion activity sensors available
on most mobile phone Operating Sys-
tems (OSes) used today. (Figure 1.3).
The data is linked to a single traveler,
and covers all travel, including active and
multi-modal mobility.

1.3.2 Semantic labels for continuous data

16https://www.sri.com/sites/default/files/brochures/sri_master_plan_complete_

part1.pdf, pages 39-40

https://www.sri.com/sites/default/files/brochures/sri_master_plan_complete_part1.pdf
https://www.sri.com/sites/default/files/brochures/sri_master_plan_complete_part1.pdf

CHAPTER 1. COMPUTATIONAL MOBILITY 7

Figure 1.4. L: Complex tour involving a
trip to the library and a stop at Best Buy;
R: user confirmation of trip labels.

Such semantic labels are typically
provided by humans and represent the
“behavioral explanatory variables” im-
portant for modeling [WBO+14]. For ex-
ample, considering the complex tour in
Figure 1.4, the sensor data alone does
not indicate why the car mode was cho-
sen. We could see the stop at Best Buy,
and speculate that it was due to the bulk-
iness of return items, but it might be that
the real reason was to transport a young
child to the library. Without the appro-
priate semantic labels, we would not be
able to appropriately model the user’s
behavior. While we cannot list every
source of semantic data here, some pop-
ular ones [WBO+14] are trip modes, trip
purpose and demographic information.

1.3.3 Intermittently triggered experience sensing

Figure 1.5. L: Traveler experience of side-
walk quality; R: planner initiated survey
on proposed changes.

Intermittently triggered data collec-
tion is focused around capturing user in-
formation at specific points of interest.

Traveler-initiated, perceptual data
allows us to capture incidents that affect
the end-to-end travel experience. This
data is of particular interest for under-
standing multi-modal travel, since it can
capture the friction associated with bad
sidewalks (Figure 1.5) or long waits for
transit.

Planner-initiated, targeted surveys
allow planners to obtain stated prefer-
ences for potential future scenarios, sim-
ilar to the light rail extension and pric-
ing policy options in Jerusalem studied
in [OVW+11]. These could also be trig-
gered for smaller-scale design decisions
— e.g., “Would you start biking if we
added a new bike lane to street X?”.

CHAPTER 1. COMPUTATIONAL MOBILITY 8

data collection types

continuous sensed
spatio-temporal
motion activity

continuous surveyed
trip modes
trip purpose
. . .

intermittently triggered
traveler perceptions
planner-triggered surveys

data collection trade-offs

sensor granularity
sensor accuracy
timeliness
cost

operation
user attention

interactivity

Table 1.2. Data characteristics represented as a tree. Roots are categories and leaves
are the actual properties.

Figure 1.6. Granularity and accuracy L: CDR (from [dHVB13], A shows calls made
by users that are received by cell towers, B shows how this cell tower data can be
translated into coarse location polygons), R: smartphone app.

1.3.4 Data sources and quality

Since we want to capture all mobility traces associated with a single traveler,
we need to use sensors that travelers carry around with them. Smartphones are
the obvious choice for such data, but there are also other options such as dedicated
wearables (e.g., smartwatches). And even if we focus only on smartphones, there are
different possible trade-offs around cost, quality and completeness (Figure 1.2).

An example that illustrates this trade-off is the comparison between smartphone
apps and cellphone call data records (CDRs) (Figure 1.6). Smartphone apps can
collect very fine-grained sensor data with high accuracy, and augment it with user
supplied information. But they also have a high burden on the user — not just the
operational cost on the battery life but also the cost of seeking the users’ attention to
get the augmented data. Cellphone CDRs are generated from both smartphones and
flip phones as part of regular operation, so they have no additional cost, but they are
spatiotemporally coarse, have low accuracy and cannot capture semantic data.

Similar trade-offs exist even if we only consider smartphone apps. Smartphone
apps can control their sensing parameters, so they can target various points along

CHAPTER 1. COMPUTATIONAL MOBILITY 9

the trade-off. For example, navigation apps have very high granularity and accuracy,
but are typically plugged in to the automobile when running. Check-in apps such
as Foursquare do not need to be plugged in, but that is because they have very low
granularity, and obtain their high accuracy through significant user interaction.

1.4 How is the data modeled

This raw data can be analyzed and used to generate data-driven models. The
models can be generated using mathematical or simulation techniques. They are
key to converting the raw incoming data into a form that can be used to study or
influence travel behavior. As with all models, these will not be perfectly accurate,
but will have inherent error characteristics that depend on both the raw data and the
analysis algorithms.

1.4.1 Travel diary

A travel diary is the canonical analysis result in Compu-
tational Mobility. It is also the building block for several of
the other models, so should be considered a core component
of computational mobility systems.

In its most complete form, a travel diary is a linked se-
quence of trips between places, each potentially split into sec-
tions. Each section is associated with a travel mode and each
trip is associated with a travel purpose or activity. (We suggest
using purpose to reduce ambiguity because activity can have
other meanings in a travel context, as in [ZWHI15, BI04]).
Travel routes are sequences of location points that can be as-
sociated with a particular section or trip, depending on the
time range.

Since sensed data is better at detecting precise infor-
mation such as trip start and end times, we expect that
computational algorithms will perform trip and section seg-
mentation. They can also perform automated mode and
purpose detection. Depending on the accuracy of the al-
gorithms and the granularity of the desired output classes
(e.g., binary: walk/non-walk, or multiclass: car/carpool/ride-
hail/motorcycle/. . .), the diary may be augmented with user
inputs.

Note that the data quality (Section 1.3.4) has a direct impact on trip diary
quality. A trip diary generated from CDR-granularity data is unlikely to detect short
trips, or determine sections. But it can still detect long trips (e.g., commute) between

CHAPTER 1. COMPUTATIONAL MOBILITY 10

places.

1.4.2 Personalized activity model

Once the travel diary has been constructed, it can also
be used to generate personalized versions of classic behavioral
models. For example, tours (chains of trips) are used as inputs
to activity based models (ABMs) for forecasting travel behav-
ior [Cas15]. A tour represents linked travel outside the home
to perform activities (purpose in the trip diary above). The
simplest tour model is home→ work→ home. More complex
tours could include home → work → market → home. If we
have longitudinal travel data for an individual traveler, we can
build a data-driven, personalized activity based model that
accounts for their complex travel patterns. The potentially
complex tours in this model (e.g., home → sunday morning
language classes → ethnic market → lunch with friends →
home) can be used to forecast the traveler’s individual travel
behavior. This kind of model would help us better understand
the ride-hailing example (Section 1.2.1) — we could see whether the trip mode for
their tours had changed from subway to ride-hailing. These complex tours could also
be used as input to regional-level ABMs for simulation-based travel forecasting.

1.4.3 Infrastructure models

Figure 1.7. Driving
patterns in the
Global South
[MM16].

The travel diaries can also be used to generate geograph-
ically customized, fine-grained infrastructure models. For ex-
ample, traffic flow models are typically based on data col-
lected from the Global North, and assume that the vehicles
are mostly automobiles that obey lane discipline. They may
not generalize well to conditions in the Global South, with
large numbers of two-wheelers, bicycles and only a loose no-
tion of lanes [MM16]. Fine-grained mobility data can be used
to better understand traffic flow in a wide variety of condi-
tions and build more sophisticated models. Similarly, in the
SRI parking example (Section 1.2.2), local mobility data could
have helped the city planners to understand how accessibility
to transit modifies parking demand for large commercial sites
in the SF Bay Area.

CHAPTER 1. COMPUTATIONAL MOBILITY 11

Figure 1.8. Computational Mobility in a broader context, and the associated topics.

1.5 What to expect in interdisciplinary work

Inter-disciplinary PhD theses are rare in Computer Science (CS), so this one
asks and answers atypical questions (Section 1.7). This section lays the groundwork
for the questions, and the rest of the thesis, through some perspectives on the nature
of interdisciplinary CS. These ideas are consistent with prior framing [Com12] but
observed rather than prescriptive.

Interdisciplinary CS is a difficult balancing act with a high startup cost. It must
involve researchers who are extremely strong in their chosen discipline, so that they
can advocate for the core of its ideas. At the same time, they must have the flexibility
to understand the needs of the other domain and adapt to them. They must have the
ability to see underlying patterns for generalization, but also translate the patterns
to solve specific problems. Researchers from both sides need to build credibility and
trust before they can collaborate.

If done right, it can also have great long-term impact. It can allow two distinct
viewpoints to influence each other as equals and generate ideas that are fundamentally
different from prior approaches. It can lead to transformative research that changes
the way researchers think about problems in the field.

1.5.1 Interdisciplinary computational field examples

Computational Biology and Computational Linguistics are the most mature in-
terdisciplinary fields, with dedicated departments at multiple universities and for-
mal degree-granting programs. Newer fields include Computational Sustainability
[GFF+19] and Computational Transportation Science (CTS) [WSWG](Figure. 1.8).

Ten years after its inception, the progress on CTS has been directly proportional
to its proximity to transportation engineering. Transportation involves humans and
vehicles using infrastructure for mobility. There has been significant progress on CTS
in the infrastructure (e.g., traffic cameras ↔ computer vision) and vehicular (e.g.,
autonomous cars ↔ real-time deep learning) sub-fields, but there has been little or
no work on Computational Mobility.

CHAPTER 1. COMPUTATIONAL MOBILITY 12

1.5.2 Relation to purely applied work

There are three main distinctions between Computational Sciences and pure
applied systems work. These distinctions can be seen in Intelligent Transportation
Systems (ITS), which is the applied counterpart to CTS [WSWG, p. 2-3].

bi-directional The flow of information is not just from CS → the domain, but also
from the domain→ CS. Domain-specific use cases influence the state-of-the-art
in Computer Science.

system rather than results The focus of the work is on the system rather than
the results that the system enables. The system is evaluated rigorously, and is
generalized so that it can be used to generate many different kinds of results.

developing new methods Instead of simply replicating existing techniques (e.g.,
“do X in software”), researchers develop new methods enabled by computation.

1.5.3 Broader Impact: CS → domain transfer

The research component of translation from CS to the domain typically involves
creating a scientific framework for computation in the field. Instead of building cus-
tom, one-off solutions, researchers build a general foundation that can solve a family
of problems. The innovations focus on generalization, extensibility, accuracy and re-
producibility and include a strong engineering component. To encourage scientific
rigor, researchers may need to evolve new metrics that can capture the extent of the
innovations.

1.5.4 Intellectual Merit: CS ← domain transfer

The research component of the translation from the domain to CS is typically
dependent on sufficient adoption in the domain. As domain researchers explore the
new techniques available to them, they may encounter limitations, or have new ideas
on how to extend the foundation. If these gaps are sufficiently generalizable to similar
domains, they can form the basis of CS research. This use-inspired fundamental
research is likely to be highly relevant since it is derived from complex, real-world
problems.

1.6 Computational Mobility is interdisciplinary

Interdisciplinary work has to meet a higher standard than the purely applied
work involved in building a one-off system (Section 1.5.2). In this section, I out-
line how Computational Mobility (CM) meets that bar. It benefits from applying

CHAPTER 1. COMPUTATIONAL MOBILITY 13

Computer Science (CS) concepts around modularity and benchmarking to create gen-
eralizable systems with rigourous evaluation. It raises questions related to privacy,
trustworthiness, incentivization and decision making that are relevant to Computer
Science. And finally, it opens up new methods such as agile urban planning that can
transform the way in which our cities are designed.

1.6.1 System rather than results

Computational Mobility introduces computational techniques to the mobility
domain. These techniques are:

Modularity Highly modular systems can be generalized into a platform where the
modules can be modified or configured independently. This relates to the core
CS principles of abstraction and uses techniques from software engineering and
software architecture.

Accuracy The overall accuracy for various points along the power/sensed accu-
racy/analysis tradeoff should be known. Since this involves assessing tradeoffs
inherent in the design of a class of systems, it is related to techniques, such as
synthetic benchmarks, for the empirical evaluation of computer systems.

Reproducibility In order to enable rapid iteration of analysis algorithms, the anal-
ysis pipeline should generate identical results when run multiple times on the
same input data. This relates to core machine learning techniques for repro-
ducible pipelines and read-only data.

1.6.2 Bi-directional

Computational Mobility introduces new CS challenges that span areas ranging
from privacy and security to Persuasive Tech (Figure 1.3). Briefly, the new challenges
are:

Privacy Travel diaries capture ongoing background travel data about an individual.
This raises privacy concerns similar highly sensitive data (e.g., health infor-
mation) and to background sensing, e.g., augmented reality or virtual reality
systems.

Trustworthiness Collecting and analysing large quantities of qualitative data com-
putationally raises questions about the truthfulness and consistency of user
input. Similar issues arise in almost all online platforms with user-generated
content such as social media posts or product reviews.

CHAPTER 1. COMPUTATIONAL MOBILITY 14

Challenge CS domain use case
Privacy for background
sensing

IoT, privacy, security Travel survey

Trustworthiness Social networks, reputa-
tion, crowdsourcing

Crowdsourcing

Incentivization Persuasive Tech
(food/nudging, etc)

Behavior modification

Table 1.3. Mapping between challenges, CS domains, and use cases.

Incentivization Travel diaries can be used to change user behavior, but it is unclear
which incentives work best. Similar issues rise in the field of persuasive tech-
nology, which a sub-field of Human Computer Interaction, and includes work
on healthy eating habits, and the use of behavioral techniques (e.g., nudges) for
social good.

1.6.3 Developing new methods

The traditional use of travel diaries is to enable Household Travel Surveys. How-
ever, high quality continuous travel data collection also enables agile urban planning,
which prototypes changes in urban environments to quickly determine which are the
most promising. Local governments that adopt agile urban planning practices can
introduce a control feedback loop that helps them meet their sustainability goals.
They can apply local travel patterns to existing models to develop some combination
of infrastructure and incentive changes, and use the resulting shifts in travel patterns
to propose new changes until their overall goals are reached. Once the system is in
equilibrium, it can also sense disruptive external changes (e.g., advent of TNCs) and
track ongoing compliance with goals (e.g., congestion levels).

1.7 The thesis problem

Innovations in interdisciplinary fields such as Computational Mobility (CM) can
occur bidirectionally — from CS → domain and vice versa. Since the domain → CS
changes depend on sufficient adoption, the CS → domain changes must be imple-
mented first.

This thesis thus focuses on the CS → domain transfer. It builds a general
foundation that can solve a family of problems. It includes a strong engineering
component and focuses on establishing the scientific rigor needed to build general
foundation for multiple CM projects.

Our questions evaluate the ability to apply computational concepts to the mo-
bility domain.

CHAPTER 1. COMPUTATIONAL MOBILITY 15

Modularity How do we design a modular, extensible architecture for a platform
that represents a family of systems for Computational Mobility? How do we
know that this architecture meets the domain needs?

Accuracy How should we design and evaluate the continuous sensing given its con-
text sensitivity? What are the power/accuracy/analysis trade-offs? What are
the relevant metrics and how should they be computed?

Reproducibility What is the pipeline architecture that allows reproducible anal-
ysis? Given identical inputs, can it generate the same outputs on multiple
runs?

The rest of this thesis explores these three questions in roughly the same order.
The answers are also embodied in e-mission, an open source extensible platform
for human travel data. e-mission has several real-world deployments and multiple
features from external contributors.

The rest of this thesis is structured as follows.
Chapter 2 places this work in the context of the prior literature. It explores

history of transportation data collection, starting from infrastructure data in the
1970s to vehicle data in the 1990s to CDR-based and smartphone app-based trav-
eler data in the 2000s and outlines their strengths and weaknesses. It illustrates the
builder–deployer gap in human mobility systems through a survey of one-off systems
from practitioners, uni-platform pilots from builders, and prior attempts at build-
ing reusable platforms. It then outlines prior work in selected platform components
including context sensitive sensing with virtual sensors and analysis algorithms for
generating travel diaries. It also outlines the limitations of prior attempts at evalu-
ating mobility data collection.

Chapter 3 answers the first research question by outlining a modular, extensible
architecture for a human mobility system (HMS) platform. This is a traditional
centralized, three-tier architecture comprised of client, server and analysis tiers. The
standard architectural structure lowers the barriers to accessibility by deployers. The
primary novelty lies in identifying the modules and data flows relevant for this domain.
The platform extensions and customizations follow the principle of proportional effort.
The client tier innovations include user interface channels and configurable cross-
platform local event generation in the client tier. The analysis tier innovations include
a pipeline and data model oriented towards reproducible analysis in the analysis
tier. Small, medium and large customization and extension examples illustrate the
principle of proportional effort.

Chapter 4 focuses on the design of the sensing infrastructure based on an initial
round of data collection. The initial data collection from 2015 identified context sensi-
tive sensing, virtual sensors, duty cycling and the challenges of restricted background
processing as key concepts that the sensing design needed to tackle. The resulting

CHAPTER 1. COMPUTATIONAL MOBILITY 16

sensing design uses virtual sensors for both location tracking and trip start/end de-
tection. There are clearly defined Finite State Machines specific to both android and
iOS, with both normal and error transitions between states. This also uses the semi-
ad-hoc data collection to determine battery drain rates for various sensing regimes.
These rates are extrapolated to a broad range of usage patterns using the American
Time Use Survey (ATUS) in order to estimate the range of sensing battery drain at
various settings.

Chapter 5 answers the third research question by focusing on the algorithms
to convert the sensed data into the travel diary that is the basis of Computational
Mobility. It starts with a quick summary of the reproducible pipeline architecture
from Chapter 3, and the data generated by the virtual sensors in Chapter 4. It then
outlines the various stages of the analysis pipeline, and the inputs and outputs for
each stage. It then outlines novel aspects of adapting existing algorithms for use with
smartphone-based virtual sensor data. This includes detecting untracked time, using
motion activity virtual sensors for determining mode transitions, and handling zigzags
generated by alternating underground and above ground segments. The outcome of
these efforts is a travel diary that can be used for as the basis for further work in
Computational Mobility.

Chapter 6 helps answer the second question by outlining a technique for re-
producible geospatial evaluation. The technique adds rigor and reproducibility to
the technique from Chapter 4. The modified technique adds predefined artificial
trips for fine-grained ground truth and repeated experiments to account for transient
variability. The chapter also lists the requirements for reproducible evaluation, and
motivates them with examples from real data. It then shows how this procedure is
both necessary and sufficient to meet the requirements.

Chapter 7 finishes answering the first and second questions. It first evaluates the
ability of the platform to meet domain needs by comparing the usage of the architec-
ture modules in the context of three use cases from different domains — (i) a classic
travel diary, (ii) a crowdsourcing initiative for accessibility metrics, and (iii) a behav-
ioral study on incentivizing sustainable transportation. The use cases contributed at
least one extension, primarily client-related, back to the platform. Each of them used
an average of 64% of the features of the platform, with ≈ 3-4 months of part-time CS
undergraduate time for each new case. It then uses data collected from three different
artificial timelines of different lengths to evaluate the power/accuracy/analysis trade-
off for a variety of configurations. The results, show that the determining factors on
android and iOS are frequency and accuracy, respectively. These results can assist
deployers in choosing the settings suitable for their application.

Chapter 8 concludes with a summary. It also expands on future work related to
both CS → domain improvements such as benchmarking, plugin-based architecture
and reinforcement learning, and CS← domain improvements to privacy, trustworthi-
ness, incentivization and decision-making. It then introduces Agile Urban Planning,
a methodological innovation in mobility enabled by these improvements. Finally, it

CHAPTER 1. COMPUTATIONAL MOBILITY 17

takes a philosophical turn, discussing the potential for data misuse and some related
technical solutions, before ending with speculation on extension to more general use.

18

Chapter 2

Background

Computational Mobility is the sub-field of Computational Transportation Sci-
ence (CTS) that focuses on human travel. In particular, the sub-field focuses on
techniques to: (i) collect human mobility data, (ii) analyse it using data-driven,
mathematical or computer simulation techniques, and (iii) apply the models to study
or influence behavior and plan infrastructure.

Human travel data has typically been collected using short-term household travel
surveys and used to build travel behavior models. Continuous, long-term travel data
has historically been generated from infrastructure and vehicle sensors. Replacing in-
frequent survey data with long-term continuous data collection allows transportation
planners to get fresh behavior models. Less obviously, it also allows researchers to
derive infrastructure and vehicle metrics that capture the complexity of the structural
shifts in the transportation landscape (Section 1.2).

The rest of this chapter is structured as follows. First, we outline three kinds of
transportation data — infrastructure-oriented, vehicle-oriented and human-oriented
and show how human-oriented data can be used to derive the other two. We then
compare three kinds of human-oriented data — navigation apps, cell tower data
and smartphone apps, and discuss the trade-offs of each approach. This discussion
indicates that, in spite of their limitations, smartphone apps are the most suitable
source for the kinds of data that form the foundation of CM (Section 1.1).

Having settled on smartphone app-based data collection, we survey a cross-
section of prior smartphone-based data collection systems and discover a builder–
deployer gap that can be bridged through modularity. We examine prior low
power, context sensitive sensing solutions, speculate that many of the proposed im-
provements have been incorporated into the phone OSes, and reiterate the importance
of considering both sensing and CPU consumption. We survey well-known analysis
algorithms and determine that they are mostly based on data collected from GPS
devices and have not yet been adapted for use with smartphones. Finally, we elabo-
rate on the lack of a suitable dataset for evaluating mode inference by identifying
privacy, battery trade-offs and ground truth challenges in existing datasets.

CHAPTER 2. BACKGROUND 19

2.1 Sources of transportation data

Transportation data collection can come from infrastructure, vehicles and hu-
mans. These roughly correspond to three waves of sensing technology and track
advances in miniaturization, ubiquity, mobility and cost. Infrastructure sensors from
the 70s could be mounted on vehicles in the 90s and be carried by travelers in the
2000s.

Infrastructure sensors focus on automatic sensing of traffic at fixed points. They
were originally developed in the United States of America (USA) in the 1950s, so they
have primarily focused on private automobile traffic. They can capture all vehicles
passing through that point; but they cannot detect what happens before and after
that point.

Vehicle sensors focus on the trajectories of vehicles while in motion. The most
common sources are On-board Diagnostic (OBD) dongles that are powered by the
vehicle’s electrical system. As smartphone app-based mobility becomes popular, ve-
hicle sensors provide additional sources of data and are expected to explode once
V2V communication and autonomous vehicles become popular. Vehicular data can
include end-to-end trajectories and support fine granularities, but they are not linked
to each other to provide a complete picture of the travel.

Human sensors have historically not been possible due to the lack of portable
battery powered sensors. The advent of smartphones has provided travelers the ability
to capture fine-grained end-to-end travel across time. Smartphone travel data can be
generated from cell towers, navigation apps and travel diaries. The data quality from
travel diaries sensors is unparalleled, but it is only available from travelers who choose
to capture it.

This thesis focuses on human-oriented data, captured using a configurable smart-
phone app-based app platform.

2.1.1 Infrastructure: Traffic Sensing at fixed points

Infrastructure-oriented mobility monitoring includes techniques to automatically
instrument automobile traffic flow using continuously active freeway sensors, aug-
mented by periodic roadway sensors (e.g., rubber strips) on city streets and arterials.

Since transportation data collection and modeling techniques [OW49] were pio-
neered in the United States in the 1950s, their focus was on understanding roadway
congestion. Consequently, the first infrastructure sensors [Rob70] were developed for
automobile detection. The collected data is traditionally used to optimize automo-
bile traffic flow along roadway segments using (i) metrics, such as automobile Level
of Service (LOS) to evaluate the performance of particular segments, combined with
(ii) models of vehicle behavior, such as “weaving speeds on freeways” or “capacity vs.
flow rate at roundabouts”, to determine the impact of potential improvements.

There are three limitations of this traditional approach: (i) collection is mostly

CHAPTER 2. BACKGROUND 20

periodic, only with continuous monitoring restricted to freeways 1.; (ii) what is mea-
sured is improved, so improvements tend to be automobile-oriented [Vic17]; and there
is (iii) no end-to-end route, so only segment-level optimizations are possible.

These limitations are only exacerbated by the shift away from personal automo-
biles towards a suite of mobility options, and the resulting increase in multi-modal,
multi-segment transportation. The shift in mobility patterns makes it critical that
we broaden our measurement to account for other modes and incorporate them fully
in modeling and cost/benefit calculations. Further, the changing nature of these mo-
bility patterns increases the importance of end-to-end data since the metrics are no
longer linear (e.g., route quality is no longer simply the sum of the segment qualities
because transfers can also play a large role)2

Recent work, fueled by the rapid adoption of information technology, has at-
tempted to address some of the issues above. In particular:

1. Measurements such as speed and travel time that are feasible even with small
numbers of probe vehicles can now be performed by GPS-enabled smartphones,
including on freeways as part of the Mobile Century project [HWH+10], on ar-
terials in Sweden [TMRR12], and using taxicabs in New York City [ZHUK13a].

2. Measurements such as counts and travel classes that need sufficient coverage to
be effective, have tended to focus on vision-based systems using cameras, which
provide 100% coverage within their field of vision [KB08], [Seg96] [SMP09],
[ZSC13]).

3. Transportation guidelines have extending the automotive LOS metric to a multi-
modal LOS by using route choice models [HSC11] to combine segment charac-
teristics (e.g., number of lanes, width of sidewalk) with vehicle-oriented data
(e.g., speeds, counts) [FDR+08].

However, even with these enhancements, the focus has remained on building
segment-level models from fixed-point automobile data — the multimodal LOS ex-
plicitly touts that it can be computed using existing data3, and there is no discussion
of route-level or trip-level metrics. Although vision methods have significantly greater

1“Minimum 3-year count cycle”, “Minimum 6-year count cycle”,“Where axle correction factors
are needed to adjust raw counts, they should be derived from facility-specific vehicle classification
data obtained on the same route or on a similar route with similar traffic in the same area.” [FF13,
p. 5-3]

2If the quality is assumed to be primarily influenced by speed/delay, as in automobile LOS, then
the cumulative delay of a trip is the sum of the delays in individual segments. This means that
“Segment performance can be aggregated to obtain an estimate of facility performance” [JMM08,
p. 15-1]. But for multi-modal, multi-segment travel — e.g., walk → bus → bikeshare, the wait time
for the bus will affect the overall delay, but will not be present in the aggregate of segment delays.

3“. . . combination of readily available data and data normally gathered by an agency to assess
auto and transit level of service”

CHAPTER 2. BACKGROUND 21

utility than pure fixed sensors, their coverage is also restricted because they can only
instrument the segments that they are able to view. This implies that they cannot
capture end-to-end trip-level metrics either. Therefore, the recent advances in the
literature are not able to fully address the monitoring needs that were introduced by
the shift in travel patterns.

2.1.2 Vehicle: Unlinked in-vehicle travel trajectories

Vehicle-oriented mobility monitoring includes techniques to automatically col-
lect vehicular travel data such as speed, RPM, and temperature, combined with
GPS-based location from personal automobiles or public transport vehicles.

As computer technology became smaller and more mobile, sensors could be
incorporated directly into vehicles. This allowed manufactures to computerize many
basic controls, and also allowed the sensor information used by the on-board computer
to be exported for long-term analysis through mechanisms such as the On-Board
Diagnostics (OBD) port [OnB]. While the evolutionary history of the OBD port
is fascinating [HYT+10], it is also beyond the scope of this thesis. The OBD port
not only provides engine diagnostics [HYT+10], but it can also power a GPS sensor
included in the OBD port reader [LCSC09] or by interfacing with a smartphone over
Bluetooth [ZCCM11].

Vehicular performance data has historically been used to optimize individual
driver behavior — e.g., to detect accidents [ZCCM11] or reduce fuel consumption
[MCCM15], either in consumer applications or as part of fleet management [MMN+17].

There are three limitations of this approach: (i) it captures data only from
personal automobiles, (ii) the trajectories are not linked, so it does not capture all
travel over time, (iii) it covers sensed, not surveyed data.

Many of the modern mobility options have their own vehicular based data.

1. Public transit AVL data is used to estimate real-time arrivals [LZ99], and in
the case of buses, potentially used for signal priority [HS]. Many modern AVL
systems are GPS-based, although they can also use other sensors [HS]. Bus op-
erators with limited resources such as small community bus operators [SMS13]
or those operating in the Global South [LLYK16] use smartphones instead of a
dedicated system.

2. Similar to low-resource transit operators, ride-hailing services such as TNCs and
regular taxis collect vehicle trajectory information using smartphones. However,
unlike the transit data, this data is not generally public [CK16, p. 177-178]. In
some cities such as New York, taxicab origin-destination data is publicly avail-
able [Com] and forms the basis of multiple travel analyses [FPV+13, ZHUK13b].

3. Vehicle to Vehicle (V2V) is likely to become standard in vehicles in the near fu-
ture, similar to the prior introduction of the ODB-II standard [GR16, p. 3858].

CHAPTER 2. BACKGROUND 22

V2V systems, and by extension, future autonomous vehicles would exponen-
tially increase the amount vehicular data available. However, V2V systems are
explicitly prohibited from transmitting data that could link the vehicle to an
individual [GR16, p. 3858] and it is reasonable to expect that autonomous
vehicles will face similar restrictions.

This data source is remarkably complete if the traveler travels everywhere using
only their personal automobile and does not wish to contribute non-sensed data. Some
initial travel surveys in auto-dependent regions were actually vehicle-based [WGB01].
However, it is complicated by the shift away from personal automobiles towards a
suite of mobility options. If the traveler switches between vehicles, the links between
the trips in each vehicle are lost, and we no longer have a comprehensive record of
their travel.

Thus, even with the rise of smartphone-based vehicular data, the focus of the
vehicular monitoring technology remains the vehicle, and the limitation on linking
trips to an individual traveler endures.

2.1.3 Human: Smartphone based, high quality, user consent

Smartphone-based mobility monitoring can generate the entire trip history for
a particular user. It also has a granularity/coverage trade-off. Network providers
collect large amounts of coarse data as part of providing their service. App-based
data collection can be much more fine-grained, but users have to be convinced to
install the app.

This thesis focuses on a platform for smartphone app-based travel diaries.

2.1.3.1 Cellular data

Cellular data from mobile phones is both broad and coarse. Cellular providers
can automatically determine location information when the phone contacts a cell
tower to place a call or send a text message. This implies that it has broad coverage,
since every customer passively generates data while using their phone. However, it is
also coarse, hard to validate and its lack of user consent raises ethical concerns.

Cellular data covers a significant percentage of the population. For example,
the dataset used in [WHB+12] covered ≈ 7− 20% of the population, and the dataset
used in [HYL+14] covered almost 50%. This broad reach and ubiquity have led to its
use in determining driver sources for a road segment [WHB+12], determining the life
beat of a city [BCH+11] and estimating public transit efficiency [HYL+14].

However, the data is both spatially and temporally coarse. For example, for
the dataset used in [dHVB13], the spatial accuracy ranged from 0.15km2 to 15km2

and the average inter-event time was 6 hours. For the dataset used in [HYL+14], the
spatial accuracy radius was 0.5km2 and the average inter-event time was 5 hours.

CHAPTER 2. BACKGROUND 23

Since cellular providers collect the data, they control access to it. Users cannot
opt-out of sharing their data. The data is also only available for limited use. For
example, the durations for the datasets above ranged from 3 weeks to 2 months.

Finally, since there is no way to control the collection or to communicate with
users, there is no direct validation. Prior work typically uses existing data sources
— e.g., census [BCH+11], household travel survey [HYL+14] or probe vehicle GPS
data [WHB+12].

2.1.3.2 Navigation apps

Real-time navigation systems continuously track the users’ trajectory with very
high accuracy and granularity in order to provide a valuable service to travelers.
If a traveler used navigation for every trip - e.g., drove everywhere, or turned on
navigation for active transportation as well, then the data collected by the navigation
system would be complete. However, if the traveler used unsupported modes such
as public transportation, or skipped navigation for routine trips such as the grocery
store, then the trip record would only contain partial data.

Further, most prior work on real-time navigation apps has been proprietary
(i.e., Google Maps/Waze/INRIX), so the data is not easily available to researchers or
planners [WBO+14, p. 28].

2.1.3.3 Smartphone-based travel diaries

Smartphone-based travel diaries are focused around capturing a rich set of travel
information about household travel. This includes end-to-end information such as
start and end times, a rich set of transportation modes4, and semantic information
such as trip purpose. The traveler explicitly consents to the data collection by in-
stalling the app on their phone, and providing answers to survey questions.

This collected data is used to: (i) generate trip specific models (e.g., home →
work, home → other, etc), and (ii) use those models to predict projected travel
patterns at a regional level, both under current and future scenarios [Plu05, McN,
MR].

This thesis focuses on this form of data collection, in line with prior work that
selected GPS-assisted travel surveys as the most suitable source for travel demand
modeling [WBO+14, p. 45].

2.2 Prior HMSes from builders and deployers

Human mobility systems (HMSes) form the foundation for multiple different ap-
plications. The systems implementing these applications are all theoretically relevant

4The 2009 NHTS included support for 25 modes, including intercity buses, paratransit and
neighborhood electric vehicles (NEVs)

CHAPTER 2. BACKGROUND 24

to human mobility. A full listing of these systems is outside the scope of this thesis.
Instead, we identify axes that define the HMS platform design space and select a
sample of the related work that spans it. The related work includes examples of ap-
plications corresponding to the individual use cases for our platform (Table 2.1) and
examples of ones that deal with survey data or sensed data or both (Table 2.2). In
the rest of this section, we extract some patterns from these examples, delve deeper
into differences from the most closely related platforms, and discuss the choice of
projects and features for comparison.

2.2.1 Project and feature selection methodology

The methodology used to select projects and comparison features for the related
work is designed to find a small, but representative spanning set.

Our use cases span popular application domains, so the related work is large.
We picked a set of curated papers providing a flavor of the space, using the criteria
of openness and novelty.

1. We chose systems from academia since they are more likely to be open, and
discuss their architecture. This necessarily excluded proprietary projects such
as rMove [FLHG17, GFHG16], Google Location History 5 or Strava 6.

2. We chose systems that were novel and varied from other systems in the same
group in at least one feature. This avoided overwhelming the analysis with
almost identical entries.

In order to quickly compare the projects in the related work to one other, we
extracted very simple features that are relevant to the construction of systems and
architectures for HMS. These features are:

sense: Indicates whether the project supports background sensing

survey: Indicates whether the project supports human-reported information using
surveys

creator: Indicates whether the project was created by Builders or Deployers,

architecture: Indicates the level of detail at which the architecture is described. At
the highest level, it only shows the relationship between Tiers, but it can also
show the details for the Client, Server, Analysis tiers,

OS: Indicates the phone OSes supported; android-only or iOS-only or Both

open source: Indicates whether the project is open source and the code is actually
accessible

5https://support.google.com/accounts/answer/3118687
6https://strava.com

https://support.google.com/accounts/answer/3118687
https://strava.com

CHAPTER 2. BACKGROUND 25

Project sense surveycreator
(B/D)

arch.
(T/C/
S/A)

OS
(a/i/B)

open
source

notes

Classic travel diaries
FMS
[CFF+13]

X X D T B × Data must be uploaded manually. Survey
on website

SFTQS
[CSW16]

X X D × a × Fairly complex app-based surveys for
travel satisfaction. Requires surveys on
5 days of 6 week study. Based on ODK

DataMobile
[PF16]

X × D T B X Only pre and post-study surveys are
listed. System is open source, but only
one application is described

Crowdsourcing applications
Biketastic
[RSD+10]

X * B T a × sensed data used to derive traffic, and
roughness. routes could be tagged with
media. System was deployed but only for
12 users, so will categorize as created by
builders

CycleTracks
[HSC11]

X * D × B X open source single mode travel. Manual
start/stop of trip. open source, extended
by other MTAs, e.g. Atlanta to record
infrastructure issues. Unclear if this is
done through surveys [Poz13]

Tiramisu
[ZTG+11]

X X B T i × single mode collection. manual
start/stop of trip. provides a service
(real-time bus and fullness information)
to users.

Behavior change
Matkahupi
[JNS+13]

X × B × a × allows users to set their own goals, and
presents challenges based on travel pat-
terns.

PEACOX
[BPS+14,
SPM+15]

X × B A a × clear choice architecture with multiple
theory-based approaches for persuasive
change. provides service (trip planner).

QT
[JAC+15]

X * D T B × reports travel along cost, CO2, time.
Correction of automatically sensed mode
by logging in to a website. No other on-
going survey information.

Table 2.1. Related applications, grouped along multiple axes. All the applications
are published as standalone systems. Explanations: (i) * in a column implies that
the answer is not clear, details are in the notes, (ii) column descriptions, including
the abbreviations, are at Section 2.2.1

CHAPTER 2. BACKGROUND 26

Project sense surveycreator
(B/D)

arch.
(T/C/
S/A)

OS
(a/i/B)

open
source

notes

Survey-only or sensing-only platforms
Sensr
[KMP13]

× X B T i × allows authoring of web-based survey
tools; each survey response can be tagged
with locations/photo/text, but no back-
ground sensing

ODK
[HLA+10,
BSD+13]

× X B +
D

T* a X survey responses can include sensed data;
both single locations and tracks, manu-
ally triggered; SFTQS app extended it for
background tracking. ODK 2.0 architec-
ture is much more complete

DIMMER
[KJP15]

X × B S * * platform proposes micro-services archi-
tecture for the server, unlike SOA of
prior work; no details on “mobile appli-
cations”; funded by EU SMARTCITIES
project, but no claim to open source

BOSS
[DKT+]

X × B C + S * X services for smart building applications.
only mobile component is web interface
that supports personalized climate con-
trol. analysis (model training) is assumed
to be part of the application

Survey + Sensing platforms
AndWellness
[HRK+10]

X X B C + S a * similar to ODK but incorporates con-
tinuous location and activity sensing;
shared server; architecture does not in-
clude analysis; extensibility is in future
work; oriented toward ESM; visualization
is standard, gamification would be hard;
deployment options unclear

ohmage
[TKK+15,
HSE+13]

X X B C + S
+ A

B X from the same group at UCLA as
AndWellness; follow-up project?; client
architecture is scattered; most projects
are survey-based; app was extended for
PREEMPT, but unsure how much effort
needed; analysis module was used for one
project and hasn’t been updated since
2014

ParticipACT
[CCCF14,
CCC+13]

X X B C + S a * Client is open source; server is not.
client architecture is extremely detailed
but android-specific; deployment only re-
ported on pre-installed phones; extension
by other groups unclear

Vita
[HLD+13,
HCCL13]

X X B C + S a * Extremely detailed SOA for client and
server in mobile crowdsourcing; Smart
City applications developed by research
team; unsure if ever deployed; “open
source mobile CPS”, code location un-
known

Table 2.2. Related platforms, grouped along multiple axes. Explanations are at Section 2.2.1

CHAPTER 2. BACKGROUND 27

2.2.2 Characteristics of builder and deployer projects

The chosen one-off systems (Table 2.1) are from the travel diary, crowdsourcing
and behavior change domains. The chosen platforms (Table 2.2) can be either sensing
only, or survey only, or support both forms of data. They are all evaluated according
to the metrics related to HMS system construction.

The prior work on one-off systems (Table 2.1) makes it clear that deployers have
constraints that builders are often able to ignore. One obvious example is the set of
mobile OSes supported — deployers almost always support both android and iOS
because they care about coverage and representativeness. The one deployer project
(SFTQS) that was android-only included an explicit argument that the bias in its
data was small. But this constraint also restricts deployer effort to a fairly small
set of use cases — most deployer effort is concentrated on the basic travel diary
creation. Builders have the luxury of experimenting with new and innovative use
cases, but typically stop with a proof of concept on either android or iOS. Further,
most systems, even by builders, are one-off projects and are not open source. The
CycleTracks app suggests that deployers do reuse open source projects if they meet
a significant need.

Most prior platforms (Table 2.2) were developed by builders, as expected. How-
ever, few appear to address large-scale deployment concerns. In particular, except for
ohmage, they only support either android or iOS — mostly android — which severely
limits their use in deployer applications. Platforms tend to be open source much more
often than applications, which is expected, since writing extensible software without
making it open source requires sophisticated interface design. However, the details
are complicated — sometimes, part of the platform is not open source (ParticipAct),
or the code is not linked anywhere (Vita).

2.2.3 Comparing open source, reusable systems or platforms

The only other open source, deployer-created platform is the most recent ver-
sion of DataMobile [PFJM19]. Similar builder-created platforms are ohmage +
lifestreams [TKK+15, HSE+13], and to a lesser extent,
ParticipAct + MSF/MoST [CCCF14, CCC+13, CCC+14b]. We outline some limita-
tions of these platforms below. We have had discussions with the DataMobile team
about merging platforms in the future.

2.2.3.1 Deployer created

The deployer-created DataMobile [PFJM19] platform focuses on ease of use,
both for participants and developers. It supports both android and iOS and makes
the apps available in the stores for ease of installation. It supports deployer-created
surveys which are made available through a dashboard. However, it appears to be
more of a reusable system than a platform. Its feature set is limited, its architecture

CHAPTER 2. BACKGROUND 28

is unclear, and it does not appear to have been used for any functionality other than
a travel survey. To expand further:

Limited functionality The platform appears to support only unidirectional sensed
data from the phone to the server. The data pushed from the server to the
phone corresponds to survey prompts. There does not appear to be an analysis
pipeline which performs near real-time analysis so the question of reproducibility
does not arise.

Architecture The architecture outlined in the paper focuses on the server, and
primarily outlines creation and retrieval operations. There is a description of
the phone duty cycling algorithm, but no idea of the sensing architecture or its
extensibility.

Other uses The platform has been used as part of the Canada Food Study, but
as part of a travel subsample. The extensions and effort required are unclear.
There is no evidence that anybody outside the DataMobile team has used the
platform or contributed changes.

DataMobile appears to be at the edge between a configurable system and a platform.
It has already improved re-use, adding support for deployer configurable servers be-
tween 2016 [PF16], and 2019. Merging the platforms can benefit both parties by
improving DataMobile architecture and e-mission ease-of-use in parallel.

2.2.3.2 Builder created

Builder-created platforms were much better architected. ohmage includes a sim-
plified sensing architecture, lifestreams includes a clear analysis architecture, and
MSF includes a sensing architecture with clear pathways to extensibility. However,
this clarity is limited to one tier each, MSF only supports android, and the app
installation appears to be clunky.

No true multi-method Although it supports both sensing and surveys, ohmage
is primarily survey focused. Two of their studies (Mobilize, PREEMPT) are
purely survey-based. It also does not appear to support combined passive sens-
ing and self-reporting — the third study (moms) involved applicants using two
separate apps, for self-reporting (survey) and mobility (sensing). In contrast,
MSF, ParticipAct’s sensing architecture paper [CCC+13] is focused on passive
sensing, with a clear event architecture for combining various sensors, and for
sensor based survey triggers. Unfortunately, it works only on android and does
not address the limitations on background processing in iOS (Location State
Machine in Section 4.1).

CHAPTER 2. BACKGROUND 29

Android+iOS support? While self-reporting apps from ohmage are available for
both android and iOS, it is not clear that the passive sensing ones are. Passive
sensing frequencies are listed at 1 minute or 5 minutes ([TKK+15], Section
3.2.2); iOS does not allow time-based configuration of sensor frequencies. MSF
works only on android.

Unclear analysis architecture In ParticipAct, the server and analysis architecture
is unclear. How is the data analyzed? Is there a pipeline? How can others
reproduce the analysis? How can they extend it? This obscurity extends to the
actual source code. Although ParticipAct is open source, their server code is
only available “upon request,”.

The ohmage analysis architecture is remarkably similar to e-mission’s (Sec-
tion 3.6) which provides additional validation for our design choices. It is
more feature rich in terms of change detection and prediction, but it is unclear
whether the design supports reproducibility. In particular, it does not appear
that any of the ohmage studies collected data on their own server instances or
ran the analysis on their own data.

App installation For ohmage, in two of their three studies, participants were pro-
vided with phones with the app preinstalled. In the third (Mobilize, 2013),
all participants were also developers, so it is unclear how representative the
deployment process was. For ParticipAct, all participants were provided with
smartphones, presumably with the app preinstalled.

2.3 Context sensitive smartphone sensing

Context sensitive sensing is a well-known technique to reduce the power con-
sumption of continuous background sensing by (i) automatically lowering the accu-
racy, (ii) automatically lowering the frequency, or (iii) augmenting information from
low power sensors with additional analysis.

The academic literature outlines several context-sensitive sensing techniques for
smartphones. However, they are typically evaluated in isolation and work at the
kernel, rather than user level. Smartphone OSes have likely incorporated several of
these enhancements but access to them is restricted at the app level. Instead, they
are exposed to apps as virtual sensors with proprietary implementations and unclear
evaluations. The e-mission sensing implementation makes heavy use of virtual sensors.
In particular, it turns off all sensing when not in motion and uses trip start virtual
sensors such as geofences to restart tracking. In this section, we discuss context
sensitive sensing projects from the literature and relate them to virtual sensors and
other built-in optimizations.

CHAPTER 2. BACKGROUND 30

2.3.1 Academic Literature: Location

The most relevant theme deals with lowering the power of location tracking.
Paek [PKG10] and Entracked [KLGT09] assume that the tracking will be con-

tinuous, and provide strategies to turn off the GPS intermittently for short peri-
ods of time during a trip. Paek [PKG10] uses the requested accuracy and En-
tracked [KLGT09] uses the user’s activity.

Phone OSes already implement a variation of this approach by adaptively varying
the sensing frequency of the location virtual sensor. The app-visible impact is that
any frequency configuration is a hint which may not be honored perfectly by the
phone sensing module (Figure 5.2).

In order to cooperate with the restrictions on background operation in the OS,
we explore the ability to stop tracking for large periods of time, perhaps for the
majority of the day. In this context, we are closer to the manually launched tracking
solutions such as CycleTracks [HSC11] or Biketastic [RSD+10], except that in our
case, the launching is automated.

The functionality from Bareth [BK11], which determines location using sources
other than GPS, appears to have been incorporated into mobile OSes, and provides
the basis for the fused API. The data collected from Android using the batterystat

API indicates that even while using high accuracy tracking, the GPS is rarely turned
on. But as we can see from Figure 4.1, there is still a trade-off between accuracy and
power drain, and the power drain of the high accuracy mode is significantly higher
than the medium accuracy mode.

The TAMER project [MCF15] appears to be the academic precursor to doze
mode — it automatically interposes itself between the applications and the OS in
order to reduce the frequency of background tasks.

2.3.2 Academic Literature: Activity Detection

The activity detection literature has papers ([YSC+12] and [SP12]) on duty
cycling for energy efficient sensing, but for ongoing activity recognition instead of
location detection. They, particularly Srinivasan [SP12], also point out that a signifi-
cant proportion of the power drain in continuous sensing is not the power drain of the
sensor, but the power consumed by waking up the CPU to compute with the sensed
data. These insights provided the motivation for us to completely turn off location
sensing when not in motion, and use the built-in trip start virtual sensors to retrigger
it.

Chu [CLL+11] and ACE [Nat12] implement on-phone classifiers on Windows
Phones that use context-sensitivity to lower the power drain. Their applications
include activity detection virtual sensors which can be used for triggering rules, such
as physical activity reminders. [CCC+14b] implement a real-time activity recognition
API on the phone using their android-based sensing architecture MoST and expose

CHAPTER 2. BACKGROUND 31

it for app usage. Both android and iOS now include proprietary virtual sensors for
phone-based activity detection.

2.3.3 Industry

None of these provide any evaluation or implementation details, so they are
listed here for completeness.

Google location history 7 is included by default on all Android phones. In 2015,
data collection was opt-out, in 2019 it is opt-in. In 2015, it appeared to read the
location every minute using medium accuracy. It focused on place, rather than trip
detection, although in subsequent years, it was combined with activity recognition to
display trips.

Moves 8 was a fitness tracker app for both Android and iOS that was acquired
by Facebook in 2014 and shut down in 2018. In earlier work, we had integrated with
Moves for data collection instead of writing our own [SYCK15]. Our result was that
out of 44 users who installed moves, only 8 retained it for more than 3 months, and
they were all Android users. All iOS users uninstalled as soon as the semester was
complete. The top three reviews in the app store complain about battery life being
impacted. The inability to understand their techniques and to modify them was part
of the motivation around designing our own data collection system.

2.4 Analysis pipeline and algorithms

The raw sensor data needs to be processed into a meaningful trip diary through
post-processing algorithms. There is a well-established literature on post-processing
algorithms from the travel survey world. The work is mature enough to be included
in a survey and comparative analysis (Chapter 3., [Wol14]).

However, all these algorithms were developed for use with dedicated GPS, or
GPS + accelerometer devices. This implies that (i) power was not a very critical
concern, (ii) they had access to under-the-hood information such as the number of
satellites for a fix, and (iii) their data collection was always on at a fixed time fre-
quency.

The peer reviewed literature has not generated similar algorithms for smartphone
data. I suspect this is due to the unpredictability of fused location data [Zan09]. This
unpredictability persists when GPS-level accuracy is specified [BCN13]. There has
also been a trend towards proprietary system stovepipes which integrate the data
collection and processing, so the resulting algorithms are proprietary and are not
described in detail (e.g., [ZGP+15] from the FMS project).

7https://support.google.com/accounts/answer/3118687
8https://newsroom.fb.com/news/2018/07/hello-tbh-moving-on/

https://support.google.com/accounts/answer/3118687
https://newsroom.fb.com/news/2018/07/hello-tbh-moving-on/

CHAPTER 2. BACKGROUND 32

Pipeline
Step

Source Limitation

Trajectory [SJF05] Needs satellite and HDOP data
smoothing [CCH10] Needs satellite and HDOP data

[NK08] Does not have under-the-hood data, uses domain
knowledge of altitude ranges in Switzerland as a
filter

Trip seg-
mentation

[WGB01] Data collected from vehicle-based GPS data logger.
Does not fully invalidate the simple dwell-based al-
gorithm but does not capture the same complexity

[NK08] Uses changes in density; will not work with duty
cycling because there are gaps in data collection

[NK08] Does not have under-the-hood data, uses domain
knowledge of altitude ranges in Switzerland as a
filter

Section seg-
mentation

[TS72,
NK08]

Assumes that we can detect 60s walk segments at
the beginning and end of a trip. This works for high
frequency (1sec) data collection but is challenging
if lower frequencies (e.g., 30 sec) are used to lower
the power drain. It is also unclear if it supports
detecting transfers between transit modes9

[OVW+11] Based on [TS72] but uses a 44sec moving window.
Thus it has the same limitations wrt lower frequen-
cies

Table 2.3. Algorithms selected for evaluation by prior summary report (Tables 3-3,
3-4 and 3-5 in [Wol14], along with their limitations)

Modern smartphone OSes provide access to location, not GPS data. They also
augment raw location data with proprietary virtual sensors. Other variations include
(i) frequency “hints” rather than specifications, or distance filters, (ii) duty cycling for
lowering power drain, so no continuous collection, and (iii) opaque APIs that restrict
information about satellites or even GSM towers

Other sections of the thesis discuss the data characteristics in detail (Section 7.2)
and outline our modifications to address them. This section outlines the shortcomings
of a selection of current algorithms given the known limitations on modern smart-
phone data. I focus on the algorithms selected for the existing survey [Wol14](Table 2.3).
I also augment this survey with more recent work using smartphones.

CHAPTER 2. BACKGROUND 33

2.4.1 Trajectory smoothing algorithms

Smartphones report location, not GPS data. Unlike standalone GPS devices,
they use assisted GPS or (A-GPS) [ZB11] which uses cell towers to narrow the GPS
search space. They can also be combined with other location sources such as Wi-Fi
and cell towers [Zan09]. They can also be sparser than dedicated GPS devices, due to
built-in or intentional frequency lowering [BCN13]. However, trajectory smoothing
algorithms have not been adapted to these conditions.

2.4.2 Trip segmentation algorithms

The chosen algorithm in this thesis is a dwell-time algorithm, similar to the
selected algorithms (Table 2.3). An alternative density based algorithm assumes
always-on sensing with a fixed interval [HHE13]. A dwell-time based algorithm mod-
ified for smartphones [ZGP+15] addresses challenges introduced by fusing different
location sources (e.g., GPS, Wi-Fi, GSM), but location fusion is (i) already imple-
mented in the smartphone OS, (ii) no longer implementable at the app level, at least
in iOS10. [SAMF16a] combines trip and section segmentation and introduces a two-
stage approach which merges similar consecutive trips until the number of trips and
sections stabilizes.

2.4.3 Section segmentation algorithms

While GPS device based algorithms use only location information for section
segmentation, the built-in accelerometers in smartphones can provide valuable ad-
ditional information with low power. Recent papers have developed solutions for
accelerometer based distinction of active modes only [YYW+14], or a richer set of
modes [HNT13]11, [FLF+16]12. The smartphone OSes have incorporated some of
these techniques as virtual activity sensors, but their accuracy can stand to be im-
proved by post-processing [ZWHI15]. All this work is for android and does not address
iOS.

2.5 Evaluation approaches for smartphone sensing

Human Mobility Systems (HMSes) are complex to evaluate (Section 6.2). Other
researchers have identified similar challenges as part of survey papers (e.g., phone
context, privacy, learning, scaling [LML+10], ground truth [SSLA15], and varying

10https://stackoverflow.com/questions/31335481/how-can-i-get-lac-cellid-and-all-of-these-device-
information

11Stationary, Walk, Bus, Train, Metro, Tram
12Still, Walk, Run, Bike, HSR, Metro, Bus, Car, Train

CHAPTER 2. BACKGROUND 34

metrics and time scales across research areas [PGS17]). However, to the best of our
knowledge, no solution has been proposed.

Papers related to instrumenting travel behavior fall into six main categories; we
list some work from each as an example. A comprehensive classification of papers
into categories is beyond the scope of this thesis. We end with an extremely recent
work in a transportation thesis from 2019 that closely parallels our approach.

2.5.1 Context sensitive algorithms: power without accuracy

This research area focuses on context sensitive, adaptive power management
of sensors. Papers such as ACE [Nat12] and Jigsaw [LYL+10] compare their power
requirements to naive sensing techniques. However, their accuracy evaluations focus
on the localization error (Jigsaw), or comparison to naive inferred results13 (ACE).

2.5.2 Travel diary systems: compare to manual surveys

There is a vast variety of one-off travel diary systems that combine smart-
phone based sensing with cloud-based processing to generate travel diaries. Systems
such as Data Mobile [PF16], Future Mobility Study (FMS) [CFF+13, HLZ+16] and
rMove [GFHG16] aim to replace the paper and telephone based Household Travel
Surveys with smartphone and cloud based systems. So they evaluate the accuracy
of their systems against the traditional methods, not against ground truth. This
can show that smartphone based methods are significantly better than traditional
methods, but does not provide a quantitative estimate of the accuracy of their sys-
tem. Similarly, they do not include quantitative power evaluations — preferring
statements like “Among the three types of discrepancies, the second type, data gap
due to battery drainage, was most frequently observed.” [HLZ+16] or “The battery
consumption test was simply whether, under regular usage, the phone could make it
through the day without having to be charged.” [PF16]. So they do not rigorously
evaluate either the power or the accuracy side of the trade-off.

2.5.3 Large scale testbeds: no ground truth, no power

Large scale testbeds collect naturalistic data from a large population of end-users
for a significant time period. In order to get the maximum return on the recruitment
effort, testbeds such as MDC [LGA+12] (≈ 200 users, ≈ one year) and RealityMin-
ing [ESP06] (100 users, 9 months) typically collect data from a wide assortment of
sensors that can support an variety of future research. However, due to respondent
burden, and because they cannot predict the potential future uses for the data, they
typically do not collect ground truth. Due to the wide variety of sensors included, it

13e.g., based on speed

CHAPTER 2. BACKGROUND 35

is also impossible to isolate the power demands of the sensor subset that is relevant
to a particular analysis. So they cannot be used to evaluate either the power or the
accuracy side of the trade-off.

2.5.4 Mode inference: accuracy without power

Mode inference of travel mode based on sensor data is an extremely popular
subject in the literature14. Researchers have used decision trees [RMB+10, ZCL+10],
Hidden Markov Models [ZWHI15, SWLN14], and neural networks [FZP15, GWB+10]
to distinguish between various subsets of travel modes. However, although the infer-
ence algorithms are different, most such papers use similar methods for evaluating
their accuracy. They typically recruit a small sample of their friends (e.g., 16 users
over one day [RMB+10], 4 users over two weeks [ZWHI15]) to collect naturalistic
data along with annotations of the ground truth. The data collection focuses on the
sensors used for analysis and omits the battery. This kind of evaluation does not
meet the any of the requirements outlined above, except privacy, which is addressed
by not publishing the dataset.

2.5.5 Inference on ad hoc datasets: no privacy

There are some mode inference papers that overcome the limitations in repro-
ducibility, representativeness and robustness by relying on large-scale, ground-truthed
datasets. The most commonly used dataset is GeoLife [ZXM10] which provides
ground-truthed GPS trajectories from 182 users collected from April 2007 to August
2012. However, as conversations about data collection and privacy enter the main-
stream, it becomes increasingly less likely that such datasets will be collected in the
future. Recent large-scale testbeds [JBR+16] do not publish their data, and even some
previously published datasets (e.g., the MDC [LGA+12], HTC [YYW+14]15 datasets)
seem to be unavailable. The GeoLife dataset also highlights the challenge of evaluat-
ing static datasets generated from rapidly changing data collection methods. It was
collected using dedicated GPS devices recording data every two seconds [ZCL+10].
It cannot be extended to explore the effect of combining GPS and Wi-Fi/cell tower
data for lower power geolocation or combining GPS and accelerometer data for better
segmentation and mode inference.

14Probably because it is hard, and nobody has really solved it well yet for modes other than
walking

15used by [FLF+16], but now https://code.google.com/archive/p/transportation-mode-
detection/, which contained “transportation log and parser” is archived and all links are
inaccessible

CHAPTER 2. BACKGROUND 36

2.5.6 Recent high quality datasets: no trade-offs, no privacy

There have been a couple of recent attempts to collect and release high-quality
ground-truthed datasets for activity inference, notably the SHL dataset [GCM+17]
and the TMD datset [CLB+18]. Both of them work only on Android and collect data
from a variety of possible sensors without a power control, so they cannot evaluate
the power/accuracy trade-off. The TMD dataset contains 31 hours of data and does
not include location information. Although the SHL dataset contains 7 months of
data from 3 users [CMG+17], not all the data is actually public — only subsets of 229
hours and 391 hours have been released so far16 in conjunction with machine learning
challenges.

2.5.7 Power/accuracy trade-off with artificial trips: no re-
producibility

The closest related work is [HSHM, Har] which used artificial trips to evaluate
the power/accuracy trade-off of multiple smartphone apps in Toronto. Their approach
is intended to meet 2 of our 3 requirements - they do not address privacy since they
do not publish their data. Their rationale for using artifical trips was to ensure a
balanced sampling of modes and trip lengths. Other limitations of their work were:
(i) they did not use a standardized platform for data collection so their trade-off points
were represented by various app implementations, (ii) their spatial ground truth was
from a single android “logger” phone with manual corrections instead of predefined
trajectories, which required considerable manual post-processing, and (iii) they do
not appear to repeat timelines exactly and account for context-sensitive variations in
sensing between multiple runs of the same timeline. Nevertheless, there is considerable
overlap between their requirements and ours, which is an encouraging sign that our
method meets the needs of the mobility community.

2.6 Conclusion

Sensor-based infrastructure and vehicle data has long been available, but traveler
focused sensed and surveyed data had to wait for the widespread popularity of smart-
phones. Smartphone apps are the most suitable source for travel demand modeling.
Smartphone app-based systems exhibit a builder–deployer gap, are typically closed
source and tailored to one particular application. The few open source platforms
appear to have only been deployed by the platform creators.

Context sensitive sensing can reduce power consumption, and implementations
incorporated into phone OSes have been exposed as virtual sensors. Using virtual
sensors necessitates modifying analysis algorithms designed for GPS devices with

16http://www.shl-dataset.org/download/

http://www.shl-dataset.org/download/

CHAPTER 2. BACKGROUND 37

inflexible assumptions about data quality. There is no existing dataset for HMS
evaluation that uses virtual sensors, captures trade-offs, preserves privacy and ignores
transient effects.

We now examine the overall architecture of the e-mission platform before diving
more deeply into specific modules.

38

Chapter 3

Computational mobility
architecture

3.1 Introduction

Computational Mobility (CM) focuses on techniques to collect and analyze hu-
man mobility data (Chapter 1). Sensed data can automatically infer precise informa-
tion, such as the origins and destinations of travelers and the time it takes to travel.
However, only humans can determine behavioral information, such as cost trade-offs
and trip purpose, or perceptual information such as trip quality. This combination of
sensed and surveyed data is critical to gain a holistic understanding of travel. Smart-
phone app-based systems are the practice standard for mobility data (Section 2.1).
Other sources of transportation data, such as infrastructure and vehicle sensors, and
other sources of mobility data, such as cell tower data, are unable to adequately
combine sensed and surveyed data.

Historically, human mobility data, captured in phone-based household travel
surveys, has been used for travel behavior modeling. Expanded data collection by
smartphone apps also enables city planners, transport engineers, healthcare advo-
cates, and gaming gurus develop persuasive applications based on longitudinal travel
diaries. Building such applications currently requires undertaking a significant soft-
ware engineering effort. There exists neither a comprehensive platform to collect data
nor transparent access to the data once collected.

We believe that this oversight is attributable to the builder–deployer gap in this
domain. Deployers (e.g., mobility researchers) use these systems as tools in their
work, focusing on the application, while builders (e.g., computing experts) focus
on building the systems themselves. We propose an interdisciplinary approach that
combines system-building rigor with the concerns of deployers to generate a family
of human mobility systems (HMSes).

This chapter includes two main contributions.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 39

• It describes a platform generalized from three canonical, real-world use cases.
The platform includes novel design features to encourage extensibility and reuse.
To our knowledge, this is the first such HMS platform in which the applications
were developed by groups other than the primary platform builder, and installed
by end users on their personal devices. It is also the first such platform evaluated
using quantitative metrics.

• It outlines an architecture for this class of platforms. The platform architec-
ture is complete, detailed, and end-to-end. It identifies the tiers that typically
constitute such platforms, breaks them up into individual modules, determines
the design trade-offs for each module, and classifies the modules as core and
extensible.

Figure 3.1. High-level components of HMSes and
their primary challenges. Such systems receive in-
puts(black arrows) from sensors (e.g., travel tra-
jectories) and surveys (e.g., trip quality). They
can also provides outputs(gray arrows) of person-
alized information to travelers and of aggregate
metrics to planners. The aggregate metrics can
be used for short-term (e.g., congestion pricing)
or long-term (e.g., new transit line) changes.

The rest of this chapter is structured as follows. First, it draws analogies between
buildings and software to intuit the relationships between architectures, platforms and
systems (Section 3.2). It then outlines the platform tiers and their interaction, and
highlights three novel features that differ from the prior work (Section 3.3). Next,
it shows the modular decomposition of each tier, extracts the design challenges for
each module, and document the choices that the platform supports (Sections 3.4, 3.5,
3.6). It ends with examples on how to extend these modules to instantiate systems.
The examples show that the complexity of the changes required is proportional to
the effort (Section 3.7).

3.2 Architectures, platforms and systems

We can explore the concepts of software architectures, platforms and systems
by drawing analogies to their building counterparts. These analogies are not perfect,
but can provide an intuitive sense of the relationships to the deployer community.

• Software architectures and building architectural styles both outline the com-
mon design elements or modules. Architectural styles for buildings can

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 40

Figure 3.2. Architecure modules with alternate implementations, composed to create
specific systems. The dark blue boxes are the modules, the light blue boxes are
the alternate implementations, and the orange boxes are the ones chosen to create a
user-visible system

include entry atria for Eichlers, exterior arcades for Mission Revival and high-
pitched roofs for Gothic Revival. Standard modules for a three tier software
architecture include the front-end, the webserver and the appserver.

• Artifacts represent engineered instantiations of these abstract elements.
Building artifacts can be engineered with construction materials such as stone,
wood, or earth. Software modules can be implemented in different languages
(e.g., python, Java) or frameworks (e.g., Angular, React) and with different
design trade-offs.

• Individual instances, whether buildings or systems, represent a particular
choice of artifacts for the elements in an architecture. Individual buildings
incorporate a subset of the design elements, engineered as artifacts, and real-
ized in specific materials. Individual systems are composed of a subset of the
modules with specific software implementations.

An architecture shifts focus from software programs to the general concepts
that underlie a class of systems. A platform shifts the focus from the superiority of
specific implementations to range of implementation choices and the design trade-offs
associated with each (Figure 3.1). The artifact visible to the end-user is a system
that is assembled from the design elements of the architecture (Figure 3.2), with
implementations suited to the particular use case.

This generalization can be useful to both deployers and builders. Deployers
can now have a shared vocabulary to compare different systems in this class, and
determine the one that is most appropriate for their needs. Similarly, builders can

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 41

now have a set of small, well-defined modules that they can focus on developing or
improving, and a skeleton to put new modules that they develop in context.

The novelty of this architecture lies in its completeness, and provenance. Since
the architecture needs to engage both deployers and builders, the particular tiers and
modules that comprise the architecture are intentionally not novel. The goal is to
use concepts that are so conventional that deployers can use Internet resources aimed
at a lay audience to build familiarity. Future researchers can leverage this platform
architecture for implementing their own platforms.

We recognize that the architecture for HMS presented here may not be the final
word, as it is generalized from a small, but diverse, set of use cases. Our main goal is
to use our interdisciplinary background to start a discussion around generalizing and
evaluating human mobility systems.

3.3 Architecture overview and highlights

The platform architecture consists
of the client, server and analysis tiers,
each of which consists of multiple mod-
ules, which in turn are defined by some
key challenges. Information is collected
by the client app (Figure 3.3, Table 3.1)
and transmitted to the service on a server
(Figure 3.4) for storage. Reproducible
analysis algorithms (Figure 3.5) are run
on the raw data to generate inferences.
Here, we focus on the novel concepts
that help us achieve extensibility, repro-
ducibility, and privacy.

3.3.1 User Interface (UI) channels

Deployers who use the platform should be able to configure it according to the
requirements of their use case. Modifications may include removing or adding interac-
tion components or simply changing the colors to match the deployment institution.

e-mission separates the UI into a separate layer (or skin) that can be easily
modified using standard web technologies. It also supports separate UI channels or
themes that the end user can switch to. The UI channels also contain the configura-
tion options for the native layers. Separating the UI channels and publishing them
independently can also help with standardization and reproducibility.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 42

3.3.2 cross-platform event generation

Generating app-local event notifications as the sensing moves through the loca-
tion state machine (Section 3.4.1) allows context-sensitive modular operation. This
loosely coupled event architecture separates the notification code from the core FSM
while still allowing it to reuse its functionality. For example, in e-mission, the event
notifier module can listen to the FSM notifications and display a deployer configured
notification message to the traveler.

Trip end notifications are particularly challenging on iOS since it supports a lim-
ited set of background modes for sensing and disallows time-based periodic sampling
(Section 3.4.1). This limitation makes detecting start and end trip times on iOS tricky
since, without time-based sampling, dwell time detection is not guaranteed to work.
In e-mission, a silent push notification functions as a coarse timer (Section 3.4.3)
that permits periodic housekeeping, including acting as a backup for the built-in trip
end detection.

3.3.3 Pipeline and data model

The raw data from either sensors or surveys needs to be converted into inferred
data (e.g., trips, places, sections, modes) to make it meaningful to both users and
the community. This conversion is done through inference algorithms with stages for
cleaning and post-processing. These inference algorithms need to be transparent and
reproducible so that they can be understood and improved by the research community.
We meet these goals by defining a data model and algorithm structure for reproducible
analysis.

In e-mission, the pipeline consists of a sequence of linked transformation stages.
The input data is read-only and immutable and is transformed through a sequence
of intermediate outputs into the final output. The inputs are independent of any
outputs, so are saved using a time association rather than a particular output. The
pipeline uses pipeline states for efficiency so that it processes freshly arrived data
incrementally.

3.3.4 Data ownership and aggregation

The individual travel diaries can be aggregated for structural changes. In addi-
tion to basic timestamp-based queries, e-mission also supports geo-queries and local
time based filters (e.g., to support “commute time” queries similar to [FPV+13]).

One of the advantages of an end-to-end platform is that deployers have the
opportunity to run their own server, control all data collected, and ensure that it
matches local privacy standards. e-mission also primarily integrates with external
services that are open source, ensuring that deployers can run local copies to avoid
leaking data. (Section 3.3.4).

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 43

3.4 Client architecture

Figure 3.3. Detail of the client architecture, including modules for configurable sens-
ing, robust communication and customizable UI

Most prior HMS projects have focused on the smartphone app and its ability to
sense location and accelerometer data (Section 2.2). However, they focus purely on
the sensing and ignore the human interaction component. This chapter develops a
more complex architecture outlined in Figure 3.3 and Table 3.1) addressing this gap.

The core modules include configurable sensing, robust communication, and context-
sensitive prompts. The novel component primarily involves the user interface and
customization. The three canonical use cases that we consider modified the UI, con-
figured the local end of trip detection module notifier to display different prompts,
and configured the communication to send data to their own server instance.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 44

3.4.1 Sensing

The sensing module is conceptually simple — it reads and stores sensor values,
automatically, in the background. However, power and latency considerations are
important while choosing a particular point in the design space.

Local buffering The primary storage trade-off relates to the frequency at which the
data is uploaded to the server. While it may seem intuitive to use the server
directly as storage by uploading the data as it is read, the radio draws significant
power when turned on, so data should be buffered locally as much as possible.
In the case of primarily passive data collection, such as for HMS, it is sufficient
to upload data after a trip is complete.

Buffering also reduces data loss due to poor connectivity, and decreases the
latency of computations on locally sensed data. However, it increases the latency
of aggregate operations computed on the server, such as traffic speeds or counts
for particular segments.

e-mission buffers data until the end of a trip. It also periodically pushes
pending data to the server when triggered by the coarse timer.

Local processing The primary processing trade-off involves latency versus flexibil-
ity and complexity. Local processing on buffered data has the lowest latency
but the least flexibility, since it has to be implemented in native code for each
mobile OS (e.g., android, iOS, . . .) that the platform supports. Sensors that
generate large amounts of local data, such as the accelerometer, threaten to
overwhelm the local buffer. Local processing allows the creation of custom vir-
tual sensors whose compact results can be stored instead of the verbose raw
values.

e-mission uses local processing for low latency, basic filtering of location points
for use in the location state machine.

Location state machine iOS supports a limited set of background modes 1, restrict-
ing the sensors (i.e., sound, location and bluetooth) that can be accessed in the
background. The sensor must be relevant to the published app functionality
(e.g., the VoIP background mode can only be used by VoIP apps, not mapping
apps), the user must permit the app to access these sensors, and then explicitly
permit them to be accessed in the background. This means that all other sen-
sors (e.g., accelerometer) have to piggyback on one of the supported sensors for
their operation. Further, the sensor APIs disallow periodic sampling, probably
to prevent them from being used as periodic timers - e.g., the location sensor
has a distance filter instead of a time filter. Detecting the trip end is challenging

1https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html

https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/archive/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 45

with a distance filter since once the user has stopped moving, the app will not
receive any data until she starts moving again.

e-mission uses OS-specific finite state machines (Chapter 4) to turn tracking
on and off based on local processing. On iOS, it uses the visit detection virtual
sensor, backed up with a coarse timer based on hourly silent push notifications
from the server. When the timer is triggered, the iOS version of the app checks
the buffered data and generates the trip end event if appropriate. It piggybacks
on the location API to read both location and the motion activity sensor. On
iOS, the motion activity for the duration of the trip is read at the end, before
the data is synced to the server.

Consent Most mobile OSes already require explicit consent for access to privacy-
sensitive sensors such as location. However, additional regulations such as the
European General Data Protection Regulations (GDPR) or academic Institu-
tional Review Boards (IRB)s may require deployers to obtain more explicit
consent that covers not just which data is collected, but also how it is processed
and stored. All sensing should be stopped until explicit consent is received, and
the consent should be documented for future reference.

3.4.2 Communication

The communication module deals with automatic upload of collected data and
download of recently computed data for improved performance. This module needs
to handle all aspects of communication, including establishing connections, authenti-
cation, and dealing with errors.

Auth All API calls to the server that transmit or receive personal data should be
authenticated. The most basic form of authentication is to send a stored pass-
word, entered by the user, from the app to the server. While this is intuitive and
easy to use, it should be combined with verification to avoid email hijacking.

For short studies with significant researcher interaction, an alternative is to
pre-generate a list of random tokens and hand them out to participants. The
researcher then does not need to know the users’ email and can just use the
unique token for all indexing.

For longer studies, the OAuth standard specifies the generation of encrypted
tokens (JWT) with configurable expiry times. OAuth JWT tokens can be
generated using open source auth servers such as Keystone, or by integrating
with third party sign-in provides such as Google or Facebook.

bi-directional sync The main consideration for the bi-directional to/from data
transfer is the Durability component of ACID transactions. Since any data

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 46

transfer can be unreliable, the transfer should handle both poor connectivity
and potential server errors without losing data.

One technique to accomplish this is to delete buffered data only after a push call
fully succeeds. This may result in duplicate data from partial retransmissions
but will not lose data. iOS allows apps to run in the background for no more
than 30 seconds, so this code path should use parallel, async calls and rate
limiting to speed up execution.

protocol client The HTTP REST protocol is a popular choice for client-server com-
munication in prior HMS. However, pub/sub protocols such as MQTT, are pop-
ular for iOT systems. The resulting trade-offs are closely related to those for
local processing (Section 3.4.1). REST is better for batched intermittent connec-
tions, where connection setup and teardown do not cause significant overhead.
MQTT works better for data that is continuously streamed to the server since
the persistent connection reduces overhead. Again, for primarily passive data
collection, REST is sufficient.

3.4.3 Interrupt handler

The interrupt handler deals with external triggers. Two current examples are:

Coarse timer We need to have a timer interrupt fire periodically to perform regular
maintenance and recover gracefully from unexpected situations. For example,
we may want to: (i) push any pending data that was retained in the buffer from
previous partial retransmissions, or (ii) reset the location state machine if it is
an inconsistent state.

This may appear to be trivial, since most standard OSes include a timer inter-
rupt. However, in order to reduce power drain, many mobile OSes have limits
on background operation for non-system services. If the limits are too strict
(e.g., on iOS), we may need server intervention (e.g., silent push notifications)
for reliable operation.

Event notifier The module also needs to deal with context-specific user notifica-
tions. While various events can be detected by the location state machine, the
notification message and actions should be configurable. Since the event is de-
tected in the background, the message should be configurable by the UI but not
rely on the UI for display.

3.4.4 User Interface (UI)

The primary trade-off for the UI is performance versus effort. Native UIs have
better performance, but more effort. This increased effort is intrinsic — native UIs

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 47

Module core/
ext

key challenge design choice

Local buffering core data upload frequency at trip end
Local processing core flexibility v/s latency both, mostly server
Location state ma-
chine

core continuous v/s duty cy-
cled

configurable, duty cy-
cling recommended

Consent core none configurable
Auth ext none configurable
bi-directional sync core durability with intermit-

tency
delete only after success

protocol client core batching/streaming HTTP REST
Coarse timer core OS limits on background

operations
silent push notifications

Event notifier ext background detection user visible messages
and handling are config-
urable

Setup ext user attention UI configurable
UI update core user expectations can configure, shouldn’t

need to
notifications ext user attention UI configurable
UI channel core UI friction users can click on a link

to switch channels

Table 3.1. Brief description of the modules for the client tier, their primary challenge
and the design chosen by the e-mission platform

will require a different implementation for each mobile OS that needs to be sup-
ported. Using a hybrid app approach, (e.g., PhoneGap, Apache Cordova), allows
the core modules to be in native code while the UIs use standard web technologies
(HTML+CSS+Javascript). This approach allows a single, consistent UI to be reused
across multiple mobile OSes, while channel specific UIs can be dynamically down-
loaded on demand.

While the UI can be completely customized to meet the needs of the application,
all the three canonical use cases have used these three core components.

Setup An onboarding process introduces the app, acquires consent, and authenti-
cates the user. This process can also include other initial steps, such as choosing
a username or collecting demographic information.

UI update There needs to be a mechanism (triggered on app launch, or by the
coarse timer interrupt, Section 3.4.3) that periodically checks for updates to
the UI channel and applies them, potentially asking the user for confirmation.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 48

Notifications The app needs to register for event notifications — both for context-
specific user notifications and, due to OS restrictions (Section 3.4.3) for coarse
timer interrupts.

3.4.5 User Interface (UI) channels

Each deployer who uses the platform should be able to configure it accordingly.
Since the user interacts primarily with the UI, we expect that deployers might want
to change the information displayed, the qualitative input solicited and the controls
visible to the end user.

In order to provide maximum flexibility, platforms might want to support sep-
arate UI channels that the end-user can switch to. Each UI channel can have a
completely different look and feel and can specify completely different configurations
for the various modules.

Supporting dynamic UI channels also includes several other benefits:

Randomized trials It is easy to conduct randomized behavior trials by randomly
directing end-users to different channels as they install the app.

Custom server support Since modules can be configured by the UI, installs using
different channels can send their data to different servers. This allows deployers
to have complete control over the collected data.

Standardization Particular deployer communities (e.g., travel survey groups) can
develop canonical user interfaces for their particular use cases. This makes it
easier to launch new examples of that use case, and also shortens the methods
section of the resulting papers.

Reproducibility Such standardization would be difficult for behavioral studies, in
which the goal is to innovate new methods of interaction. However, once the
new interaction method has been embodied in a published channel, the study
can be generalized or reproduced by recruiting new users and asking them to
use the channel.

3.5 Server architecture

Although sensing (Section 3.4) is typically the focus of the related work, most
deployers will also want to upload the data to a server for long-term storage, shared
access, and complex analysis. The architecture of this server software is typically
elided from platform descriptions. For example, a review of Experience Sampling
Software ([PLMM15], Table 1) indicates that only ohmage includes a server compo-
nent. The key modules for this tier are storage, data communication, and analysis.
This section describes these modules in greater detail.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 49

Module core/
ext

key challenge design choice

storage core data representation,
scalability

time-series for sensed
and analysed data, K-V
store for modifiable
objects (e.g. config)

Incoming buffer core complexity v/s flexibility flexibility
Webapp both core endpoints fixed;

easy to add others
separate routes from re-
lated functions

Push notify both push provider idioscyn-
cracies

silent push is core, tar-
geted notifications are
configurable

Integrations both external API issues,
hosting

host open-source in-
stances for integration

Table 3.2. Brief description of the modules for the server tier, their primary challenge
and the design chosen by the e-mission platform

3.5.1 Storage

Storage is the key component of the server architecture. However, the actual
storage instance or database product chosen depends on multiple factors like the
number of users, the response time expected, and the resources available for the data
collection. So we instead focus on the types of data collected and the broad storage
category for each data type. These broad types are listed below.

Input timeseries The input data received from the smartphone app represents a
spatiotemporal datastream which maps logically to a timeseries database. Our
data model and analysis pipeline (Section 3.6) treat this data as read-only.

The data can be conceptually viewed as separate user databases, each with
multiple streams of data (e.g., location, transition). Most processing will
work on one user at a time, multi-user queries will be aggregated across user
databases. This formulation is compatible with future privacy preserving im-
plementations.

Note that we actually have intermittent timeseries data because the sensors on
the phone are not typically guaranteed to be periodic. And even if they were,
if we use the state machine for lower power drain, there will be no data for
long stretches of time. However, we still consider it to be a timeseries, since
the primary querying method will be for a time range, and the primary index
should be the timestamp associated with each data point.

Analysis timeseries Analysis results generated after processing the input data are

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 50

stored in a separate timeseries database. While the volume of this data is not
likely to be as high as the raw data, it is also time-indexed, and using the familiar
timeseries interface allows us to consistently stack analysis results (Section 3.6).

K-V store Modifiable objects (e.g., profile, config) are conceptually modifiable
objects associated with a particular user by a key. If the deployers would like
versioning, and don’t want to install two separate database packages, this data
can also be stored in the timeseries database — the entry with the most recent
timestamp is valid. However, these data will be looked up by key and not
by time range, unless somebody requests an audit. So it does not need to be
indexed on the timestamp, although such an index does not hurt.

Incoming buffer Since the background operation on iOS is time-bound (Section 3.4.2)
we want the data received from the phone to be stored as quickly as possible.
As server and database loads grow, directly storing incoming data into a poten-
tially distributed timeseries database could introduce high latency. Instead, we
can dump the incoming data into a separate, potentially local buffer, and move
it into the timeseries before processing. This additional step also allows us to
run preprocessing steps before insertion.

3.5.2 Aggregation

Aggregate queries (e.g., mode shares, or pedestrian counts) can provide useful
information without directly exposing individual participant trajectories. The basic
format of e-mission aggregate queries is simple — the analyst provides a query type
and a spatiotemporal range and then receives mode-specific aggregates. Some non-
obvious details to note are:

Geo queries Analysts may want to restrict data retrieval to a particular region.
This implies that all aggregate queries should support an (optional) georegion,
and the underlying timeseries storage should support geo-queries as well.

Time selections Most timeseries will support range queries where the range is spec-
ified in UTC. However, deployers may want to query by time slices instead —
e.g., studying commute time travel patterns might involve accessing data from
2pm – 5pm for the month of April [FPV+13]. Storing expanded times in the
local time can support such disjoint time ranges.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 51

Figure 3.4. Server architecture, including modules for storage, communication and
integration.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 52

3.5.3 Data ownership

Location tracks are extremely privacy sensitive. Even if the location data are not
explicitly linked to personally identifiable information, such as name, e-mail, or phone
number, long-term travel patterns can leak home and work information. Platforms
should enable privacy-enhancing features by default, and include documentation on
proper configuration for security.

e-mission includes the following privacy-enhancing features by default —

Consent The data collection is only enabled after the application has called
markConsented on the data collection module.

Third party leakage Since e-mission is an end-to-end platform and the server is
also open-source, deployers own the data that they collect without any third
party intermediaries. Further, the core analysis algorithms integrate primarily
with open-source projects such as Nominatim2 or Overpass3. This allows de-
ployers to run their own copies of the servers and avoid sending location traces
to services such as Google Roads4 or the Mapbox Map Matching API5

However, no open-source project can guarantee that it is deployed according
to the builder’s intent. Ultimately, deployers are also responsible for ensuring that
their data collection and data handling procedures are compatible with local stan-
dards such as the European Union’s General Data Protection Regulation (GDPR) or
India’s Constitutional Right to Privacy. For example, although the platform clearly
documents the use of an encrypted filesystem to protect both data and logs on produc-
tion systems6, the cci project, in accordance with their Institutional Review Board
(IRB) protocol, collected data on a windows desktop hosted on the UC Berkeley
campus and did not use encrypted filesystems.

3.5.4 Other components

The other components of the server architecture are fairly straightforward.

Webapp The webapp layer defines the API routes used by all clients, including
the smartphone app, and any browser-based UIs. The webapp layer also au-
thenticates all user-specific API calls, and needs to support the same set of
authentication methods as the smartphone app (Section 3.4.2).

2https://nominatim.openstreetmap.org/
3https://wiki.openstreetmap.org/wiki/Overpass_API
4https://developers.google.com/maps/documentation/roads/intro
5https://docs.mapbox.com/help/glossary/mapbox-map-matching-api/
6https://github.com/e-mission/e-mission-docs/blob/master/docs/e-mission-server/

deploying_your_own_server_to_production.md#cryptfs-suggested, https://github.com/

e-mission/e-mission-docs/blob/master/docs/e-mission-server/deploying_your_own_

server_to_production.md#configuring-logs

https://nominatim.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Overpass_API
https://developers.google.com/maps/documentation/roads/intro
https://docs.mapbox.com/help/glossary/mapbox-map-matching-api/
https://github.com/e-mission/e-mission-docs/blob/master/docs/e-mission-server/deploying_your_own_server_to_production.md#cryptfs-suggested
https://github.com/e-mission/e-mission-docs/blob/master/docs/e-mission-server/deploying_your_own_server_to_production.md#cryptfs-suggested
https://github.com/e-mission/e-mission-docs/blob/master/docs/e-mission-server/deploying_your_own_server_to_production.md#configuring-logs
https://github.com/e-mission/e-mission-docs/blob/master/docs/e-mission-server/deploying_your_own_server_to_production.md#configuring-logs
https://github.com/e-mission/e-mission-docs/blob/master/docs/e-mission-server/deploying_your_own_server_to_production.md#configuring-logs

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 53

Push Notifications This module integrates with push notification services to send
both targeted surveys, which send a link to a survey based on user mobility
patterns, and silent notifications, which are used as coarse timer interrupts on
the smartphone (Section 3.4.3).

Integrations This module handles external integrations. Current examples include
OpenStreetMap, for GIS lookups, and Habitica, for gamification.

3.6 Analysis architecture

HMSes convert raw data to various analyzed outputs, including the travel diaries
that form the basis of computational mobility 1.4.1. They perform this conversion by
cleaning and post-processing the raw sensor data using inference algorithms. These
inference algorithms need to be transparent and reproducible so that they can be
understood and improved by the research community. We meet these goals by defining
a data model and algorithm structure for reproducible analysis. This section focuses
on the high level structure and the data model for the algorithms, more details are
in Chapter 5.

Module core/
ext

key challenge design choice

Data model both reproducibility core principles: incom-
ing data is read-only;
output data is write-
once; can define new ob-
jects that fit the model

Pipeline both extensibility + repro-
ducibility

re-running the pipeline
multiple times generates
identical inferred results

Table 3.3. Brief description of the modules for the analysis tier, their primary chal-
lenge and the design chosen by the e-mission platform

3.6.1 Pipeline

In e-mission, the only permanent state of the analysis component is the input
data received from the smartphone app. The algorithm is structured as a pipeline
with a set of deterministic stages, and the input to each stage is the output from the
previous stage. Since each stage only modifies its output, the stages are idempotent.
This implies that, given the same inputs and the same algorithm stages, the results
will be the same.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 54

Figure 3.5. Analysis architecture, including modules for processing the data in idem-
potent stages, a data model that supports such an algorithm, and aggregate queries.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 55

The only exception to this rule occurs when some inputs are retrieved from
external integrations. For example, integrating with a GIS that includes transit routes
can help distinguish transit from bicycling. But if the transit routes are modified, re-
running the pipeline at a later date can change the results. If steps that integrate with
external services need to be reproducible, the services also need to support versioned
queries — e.g., the ability to answer the query based on the data version that was
current at the time.

For steps that do not have external integrations, or whose integrations support
versioning, this structure enables various important steps.

Reproducibility Analysts can reproduce results from any version of the algorithm
simply by running the code on a fresh set of inputs. If the code is versioned
properly in a source control system (e.g., github), then reproducing results at
a previous time t is as simple as: (i) downloading the raw data, (ii) checking
out the version of the source code at time, (iii) running that version on the raw
data. This allows analysts to reproduce prior results even as the codebase has
evolved beyond the time that the data were collected.

Extensibility If a researcher develops a new algorithm for a particular stage, she can
run both the current state of the art and the new algorithm against the same
input data and compare the results. If she chooses to publish the algorithm
implementation, other researchers can reproduce her results by running the
published algorithm against the raw data.

3.6.2 Data model

These design principles, and the notion of interchangeable steps in the pipeline
imply an unconventional model structure with the following characteristics:

• The pipeline can choose from various candidate algorithms for each of the steps.
For example, segmentation algorithms from one source can be combined with
inference algorithms from another source to improve the overall efficiency.

• There can be multiple outputs in existence in parallel at one time. Instead
of choosing from the multiple candidate algorithms, we can run them all in
parallel, and generate multiple outputs at the same time. Each output can be
tagged with the generating algorithm to eliminate confusion. This allows us to
experiment with ensemble methods instead of a single solution.

• Inputs can never depend upon outputs. If analysts can delete and regenerate
outputs at will, or use ensemble methods with multiple outputs at a time, then
inputs cannot refer to particular outputs. This is not a challenge for sensed
data since it is typically collected before the analysis is run. However, it can
be a challenge for surveyed data. Users confirming the mode for a particular

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 56

trip may lose their confirmations if that trip object is deleted. And if there are
many trip objects for that time range, it is unclear which one to modify.

These requirements can be accomplished in at least two ways.

Carry forward The data from the previous step is carried forward to the next step.
For example, every trip can store the location points associated with it. Unfor-
tunately, as the number of inferred objects increases, this can get increasingly
unwieldy. Some example questions are:

• Since each multi-modal trip can be split into multiple sections, should
every section also store the location points associated with it? This will
cause duplication of location points between trips and sections.

• How can we store ground truth for a trip as it ends, potentially before the
pipeline has run and generated a trip object?

Time association The newly created objects for each step are associated with start
and end time information. We can then associate raw or processed inputs
with any object by querying for entries within that time range. This approach
addresses many concerns with the Carry forward method. For example:

• Each section and each trip will have start and end timestamps. The set
of points associated with a particular section or trip is then just the set of
points between the start and end timestamps. The analyst can then use
the same kind of query on a trip to retrieve: (i) reconstructed locations,
which are resampled at a known frequency for consistency (ii) filtered loca-
tions, which are raw locations locally filtered for accuracy (Section 3.4.1)
(iii) locations, which are raw locations with no filtering. This general query
structure makes it easier for researchers to experiment with alternate algo-
rithm implementations — each algorithm segments the raw data differently
but does not duplicate it.

• Since ground truth is a user input, it should not contain a reference to
inferred data. Instead, the ground truth object also contains the time
range that the user has confirmed (e.g., with mode or purpose). The
confirmed value for an inferred trip is represented by the confirm object
that overlaps with the inferred time range. This approach can be used
for both trips and sections, depending on how much editing power the
deployer wishes to provide to the end-user.

The e-mission pipeline uses the Time association method since it meets our re-
quirements and is consistent with our design goals. This additional flexibility does

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 57

introduce additional complexity in the data access since there is no one stored ob-
ject that contains all the information about a trip — instead the complete trip ob-
ject has to be reconstructed by reading the location stream (raw, filtered, or re-
constructed) associated with the trip and finding manual annotations (if any) that
overlap with the trip. The e-mission server provides utility libraries (primarily under
emission.storage.decorations) to such lookups easier.

3.7 Principle of proportional effort

In addition to being full-featured, a successful software platform for smartphone
data collection must be easy to extend so that it can meet the needs of a vari-
ety of projects. Small configuration changes should be easy, and more significant
additions to functionality should be achievable using well-defined extension points.
Ideally, these changes should be made publicly available for reuse and reproducibil-
ity ([IHG12]).

3.7.1 Usage without customization

If the standard e-mission interface and functionality meet the needs for a study,
the practitioner can simply file a research protocol with her institution’s review board
(IRB) and specify that she will use the e-mission platform for background location
data collection. (This is similar to specifying the use of a platform like Qualtrics to
collect survey responses.)

The practitioner would then instruct participants to download the e-mission app
from the Android or iOS app stores, and obtain separate consent from the participants
according to the method specified in the protocol. This consent would need to include
the email address that the participant uses to register in e-mission, in order to confirm
which users are associated with the study. At the end of the study, the practitioner
would show the consent documents to the e-mission lead researcher and receive a
copy of the data from those users.7 Full in-app consent can be done with simple UI
customization; see below.

Thus, practitioners can collect automatically sensed location and motion activity
data without writing any code, simply by directing survey participants to use the app.

3.7.2 Extending the smartphone app

This section outlines a range of customizations, from changing the UI to incor-
porating existing implementations, to authoring new implementations, for the client
tier of the platform.

7The standard e-mission consent document is available here: https://e-
mission.eecs.berkeley.edu/consent

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 58

Figure 3.6. Options for client extensibility proportional to effort. (l-r): customizing
the UI, adding existing plugins, writing a new plugin.

3.7.2.1 Easy: Customizing the user interface (UI)

Many practitioners will want to customize the user interface of the app: to
add a study logo, to add custom consent, or remove unneeded features. This can
generally be done with HTML and CSS changes alone, although functionality related
to message prompts involves Javascript.

Because the UI is built using web components, it can be updated without de-
ploying a new app to the stores. The e-mission platform supports multiple UI chan-
nels, meaning that practitioners can ask survey participants to install the standard
e-mission app and then switch to the study-specific channel. A channel can be se-
lected in the UI or by following a special URL or QR code. As soon as a user joins
the channel, they are presented with study-specific information, consent, and login
choices.

Such extensions are shared with the community as new branches on the
e-mission-phone GitHub repository.8

3.7.2.2 Medium: Extending the phone app using existing plugins

e-mission is built using the Apache Cordova mobile app framework, which allows
easy re-use of existing plugins. Functionality like reading a user’s calendar or allowing

8https://github.com/e-mission/e-mission-phone

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 59

Figure 3.7. Launching a custom UI through a configuration link. The new UI can
be tailored to the survey’s summary, consent and login choices. (l-r): base app
consent, customization link, custom consent. Upon clicking the link from the phone
or scanning the QR code, the app is launched with the new UI, so users never have
to consent to the base app.

users to take photos can be added in this way. Cordova plugins are controlled using
Javascript.

A phone app that has been extended through the addition of new plugins cannot
be updated via the UI channels. Instead, a new app would need to be submitted to
the stores with a new name and signing key. For iOS, the app must pass the App
Store review process. The resulting app would have no obvious connection to the
e-mission platform — it could have its own logo, and would be marked as owned by
the organization that is submitting it.

Code for such enhancements can be made available to the community by forking
the e-mission-phone GitHub repository and pushing changes to the fork. Once the
project is complete, the enhancement could even be added to the standard e-mission
app (in a new UI pane, for example). This would be done by submitting a pull request
to the master branch of the e-mission-phone repository.

3.7.2.3 Hardest: Writing a new native plugin

Some projects may want to use sensing capability that is not currently supported
in the Cordova ecosystem, for example by integrating with a sensor that measures
stress from sweat, or using ambient noise to determine whether a car trip is shared

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 60

Figure 3.8. Options for server extensibility proportional to effort. (l-r): contributing
plugins, modifying existing pipelines.

or not.
This would require writing native code (in Java and Objective-C or Swift) that

reads the appropriate sensors, buffers them, and performs the inference either on
the phone or on the server. Such projects can reuse the authentication, buffering,
and communication components of the e-mission platform. They can also use the
notification component to obtain additional information from the user.

Integration with the e-mission platform would allow the new travel data to be
placed in a spatiotemporal context without having to re-write the location tracking
and post-processing components. On iOS, restrictions preclude most sensors from
being read in the background, but using the e-mission platform would allow plugins
to attach themselves to the location tracking callbacks in order to read other sensor
data.

Such an extension can be shared with the community by structuring the code
as a Cordova plugin and publishing it on GitHub. Projects can then add the plugin
like any other.

3.7.3 Extending the server functionality

This section outlines a range of customizations, from adding new offline analyses,
to improving the implementation of analysis algorithms, to running a custom server,
that are possible in the server and analysis tiers.

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 61

3.7.3.1 Easy: Adding queries or analyses

Aspects of the server software not related to the core outputs are structured as
plugins, where new functionality can be added by simply writing a standalone Python
script. Some examples are queries to find users who are targets for platform-initiated
surveys or notifications to inform users about things related to their travel patterns.
New analyses can be added to e-mission by generating a pull request from a fork of
the “e-mission-server” repository.9

3.7.3.2 Medium: Modifying data pipelines

The existing pipelines for creating travel diaries are open to improvement. Prac-
titioners may want to modify the segmentation, smoothing, or mode inference al-
gorithms used by the core platform. These improvements will be more complex to
integrate into the core platform, because we need to ensure that they are empirically
valid and enough of an improvement to make the default. So while these changes
can be contributed using a standard pull request, additional testing will be required
before the changes can be merged. The reproducibility enabled by the analysis layer
(Section 3.6) enables multiple rounds of testing and comparisons against the original
code.

3.7.3.3 Hardest: Running a custom server

Some projects may have data storage and privacy requirements that differ from
the core platform and are best achieved by running their own server. Projects that
need special external integrations — with an Open Street Maps editor, for example
— would also want to run their own server. Projects that modify the core data
pipelines could also run a custom server to avoid integrating their changes with the
core e-mission platform.

The e-mission server software can run on any Linux, macOS, or other Unix-
like system. However, to manage a production backend, you need to be comfortable
setting up SSL, obtaining the correct keys for authentication, and monitoring the
pipeline logs for errors. Changes to the server software can be shared with the com-
munity by publishing the forked code so that it can be used to inform other projects
that require similar integrations.

3.8 Conclusion

Human Mobility Systems (HMS) can form the basis for applications in domains
ranging from travel behavior studies to crowdsourcing initiatives to identify structural
barriers to transportation. We generalize an open-source platform, e-mission from

9https://github.com/e-mission/e-mission-server

CHAPTER 3. COMPUTATIONAL MOBILITY ARCHITECTURE 62

use cases in these domains. Deployers can use this platform to instantiate customized
systems for their own domains. In order to bridge the gap between deployers and
builders of such systems, we also outline a clear platform architecture that describes
the client, server and architecture tiers, and the components in each tier.

We now arrive at the technical core of the thesis, which delves more deeply into
the sensing (Chapter 4) and analysis (Chapter 5) modules of the architecture.

63

Chapter 4

Background sensing using virtual
sensors

Smart phones are ubiquitous, both in the developing and developed world. Ever
since the early smart phones were introduced, researchers have been interested in the
opportunities for gathering data by using smartphones as sensor platforms. But cell
phones are not just a collection of sensor in a convenient package. They are also
devices that provide real utility to users — that’s why the adoption rates are so high.
This means that users are sensitive to high rates of power drain, so energy efficient
sensing has been a research focus for almost as long.

Historically, the two main mobile phone OSes — iOS and Android — have
approached the power/utility trade-off differently. iOS has prioritized user interac-
tion while eschewing background operation and multi-tasking. Android has provided
a more traditional, multi-threaded, preemptive operating system. However, as the
platforms mature, they have realized that: (i) background operation is critical to
providing a good user experience; (ii) background operation done poorly is an energy
hog; and (iii) application developers are rushed and will rarely take the time to opti-
mize their background operations. Both platforms have converged towards a model
in which background operations are permitted, but with OS-imposed restrictions that
aim to manage the associated power drain.

At the same time, much of the prior research work in this space seems to have
made its way into the shipping OSes as virtual sensors. For example, the recom-
mended Location APIs on Android no longer require developers to choose a provider.
The OS dynamically chooses the provider based on the desired accuracy and the con-
text. Similarly, iOS automatically and continuously tracks motion activity, whether
requested or not, and manages the power drain by using a separate low power co-
processor to offload the collection and processing of sensor data.

This chapter explores the use of such virtual sensors for continuous background
sensing of mobility data on both Android and iOS. Using the virtual sensors instead
of re-implementing custom versions (e.g., [PFJM19, p.133]) reduces development and

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 64

testing time by leveraging the preexisting engineering effort. However, both virtual
sensor implementations and any associated background restrictions change with new
releases and require adaptations to the sensing code.

The sensing trade-offs in this chapter are from 2015, when the sensing modules
were first designed. The second round of evaluation in 2019 (Chapter 7), found that
the virtual sensor implementations had been improved in the interim. The changes,
and the work required to address them, are detailed in Section 4.5.

The rest of this chapter is structured as follows: Section 4.2 provides an overview
of the behavior of the platform APIs on a limited set of mobility patterns, Section 4.3
maps this behavior into the motivation for our approach, and Section 4.4 constructs
a simple 3-state model and generalizes the results to a wider range of patterns. Sec-
tion 4.5 compares virtual sensors to custom implementations wrt both accuracy and
maintenance, while Section 4.6 concludes.

4.1 Restrictions on background processing

The early days of fine-grained location tracking used dedicated devices with
GPS sensors (Section 2.4). These devices provided raw data, such as the number of
satellites for a fix, and used a simple sensing algorithm that collected data at the
specified frequency.

Although smartphones also include GPS sensors, their usage model is not as
simple. Instead, background operation is limited, either at the CPU level or at the
sensor level, in order to increase battery life.

This section briefly summarizes the support for continuous background sensing,
as of 2015, for both background scheduling and location detection on both the Android
and iOS platforms. Consistent with the theme of this chapter, this section focuses on
sensing API limitations. The analysis chapter (Chapter 5) focuses on the resulting
data quality.

4.1.1 Android

On Android, background operation is permitted, unless the system turns on
context-sensitive throttling. It also provides an accuracy-based location virtual sensor
with a time filter and an accelerometer-based activity API.

4.1.1.1 Background scheduler

The Android OS provides a fairly standard preemptive scheduler. In particular,
processes can be scheduled to run at time based intervals (every 30 secs) in the back-
ground. The OS provides specialized frameworks for cooperative scheduling — the
SyncAdapter/JobScheduler interface for batching network operations is an example.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 65

The 6.0 Marshmallow release moved from suggesting to forcing cooperative schedul-
ing using doze mode. This is a low power mode that is activated when the phone is
not plugged in, and has been inactive for a while (screen off, stationary). While in
this mode, the OS suspends the regular scheduler, including processes scheduled by
time, and performs all activities in regular maintenance windows.

4.1.1.2 Location APIs

The location interface consists of a “classic” LocationManager API which pro-
vides a time based access to a variety of location sensors such as GPS and the network,
and what appears to be a context sensitive, rate adaptive fused API supplied through
Google Play Services (GMS). For either API, a time filter can be specified to regulate
the sample rate. The time filter is a hint — updates can be received more or less fre-
quently based on interaction with other apps and the scheduler. GMS also supports a
geofence API that monitors dwelling within a particular location in very low power
mode.

4.1.1.3 Activity APIs

GMS supports a native, accelerometer-based [ZWHI15] API for activity recogni-
tion that can also be the basis for duty cycling. Applications can register for periodic
activity updates, but there are no guarantees that the updates will be delivered at
the requested rate.

4.1.2 iOS

On iOS, background operation is restricted by default. Apps that wish to operate
in the background must explicitly list their reason in their manifest, and the reason
should be compatible with their published description. iOS also provides an accuracy-
based location virtual sensor with a distance filter and an always-on accelerometer-
based activity API.

4.1.2.1 Background scheduler

The iOS background scheduler has the philosophy that power should be con-
served for interaction with the user. This results in very impressive battery life on
a stock phone, but places severe restrictions on background operation that require
creative workarounds.

In general, processes cannot run in the background. This means that in
general, application cannot schedule tasks at specified time intervals unless the app
is in the foreground and the user is actively interacting with it. A small set of
background operations can be enabled if permitted by the user, including two modes
that can be used to request periodic wake ups. Background fetch is scheduled

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 66

locally, but prior testing on iOS7 and iPhone 4 indicated that it is not reliable since
the OS would duty cycle it based on network signal strength and user interaction
patterns. Remote push wakes up the app to handle messages pushed from a server
through a messaging service. While it is not guaranteed to be reliable either, it is
fairly reliable in practice.

As an aside, the restrictions are severe enough that there is speculation that
developers have resorted to playing blank sounds (playing music is a supported back-
ground operation) to keep their apps active in the background 1.

4.1.2.2 Location APIs

Fortunately, location tracking is one of the supported background operation
modes. This means that the application can receive location updates even when it is
running in the background.

The standard Location APIs on iOS do not allow users to specify a provider —
instead, similar to the GMS fused API, users specify a desired accuracy (best, 10 m,
100 m, 1 km, 3 km), and the OS automatically picks a provider or set of providers.
The sampling rate is controlled by a distance filter — there is no time filter, maybe
because too many developers were using periodic location updates as a background
timer.

If an application has requested location updates using the standard API, they
will not be delivered if the application has been terminated due to memory pressure. A
second significant location changes API can restart the app to deliver updates,
but it is very coarse and does not support any configuration parameters. Updates
are received when the OS determines that there has been a significant change — a
term with no precise definition. This means that the error model for iOS tracking
could include large gaps in tracking for which there is no workaround. Fortunately,
this appears to be rare in practice.

iOS also supports a geofencing API similar to the one on Android. It also
supports a visit detection API that can detect both trip starts and trip ends.

4.1.2.3 Activity APIs

iOS also supports a native activity recognition API that can provide periodic
updates. However, the updates are NOT delivered when the application is suspended.
This means that this API cannot be the basis for duty cycling based on activity,
since we cannot reliably detect when the user is in motion again and turn on location
tracking.

1Background data and battery usage of Facebook

https://www.macstories.net/linked/the-background-data-and-battery-usage-of-facebooks-ios-app/

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 67

4.2 Initial exploration of power accuracy trade-offs

Phone OSes already include sophisticated, context sensitive power management
features and virtual sensors (Section 4.1). This raises the alluring prospect of assum-
ing that energy-efficient background sensing is a solved problem, and using a simple
sensing design that collects data continuously. This section explores the feasibility of
this näıve sensing design by answering three questions:

1. Do phones really do nothing well?

2. Is continuous sensing on mobile phones a solved problem?

3. Does the virtual sensors in the phone OS (e.g., geofencing) help?

The questions are answered through an empirical evaluation. This empirical
evaluation was a precursor to the improved evaluation procedure conducted later
(Chapter 6). It incorporates the concept of evaluation across multiple OS states, and
of direct comparison across multiple phones carried at the same time. However, it
does not include repeated trips, spatial ground truth or an accuracy control, so it is
much closer to the Toronto evaluation [HSHM] conducted by domain experts.

4.2.1 Experimental setup

The phone OS can dynamically adapt its behavior based on patterns of user
activity and interaction, therefore it is not possible to extrapolate from a short sam-
ple to a long one. Evaluating the behavior of the phone OS over a day, requires
both measuring the power drain over the course of a day and ensuring that it enters
various operating states during that time. Further, since it is not known whether
the operating states are deterministic, a direct comparison between data collected on
various days is not known to be accurate.

Therefore, our experiment setup consisted of three identical phones for each
platform — three iPhone6s and three Nexus 6 phones. We installed the data collection
regimes that we wanted to compare on the three phones simultaneously, and carried
each set of phones from the same platform in the same pocket.

In order to ensure that the phones had the chance to move through a variety
of states, we divided each data collection day into “day” and “night” cycles, each
of which was roughly 12 hours long. We also took several short trips throughout
the “day” cycle. The trajectories for the trips were not identical, although their
cumulative duration was roughly identical, and the “night” cycle occurred at different
offsets in the day. This means that the data collected across days is not comparable.

4.2.1.1 States

We exercised the following states as part of the data collection:

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 68

Figure 4.1. Comparison of three existing data collection regimes with no geofencing.
Regimes are high accuracy fast sampling (hafs), medium accuracy fast sampling
(mafs) and medium accuracy slow sampling (mass). The top graph shows the change
in battery level over 24 hours. The middle graph shows the rate of drain in %/hr in
the three states. The bottom map shows the data points collected by each regime
and provides an intuition of what the different accuracy levels correspond to.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 69

1. Passive The phone is not being actively used — it is stationary with the screen
off. We expect that the phone will be in this state while the user is sleeping,
for example. This corresponds fairly closely with the Android Doze mode. We
expected that the phone would be in the passive state for most of the “night”
cycle.

2. Active The phone is being actively used, but the user is not traveling. This
state is key to our evaluation, since we can turn off tracking in this state and
reduce background operation. Note that we detect that the phone is active even
if the user is walking, as long as she does so within a small radius, like that of a
building. We expect that the phone will be in this state for most of the “day”
cycle.

3. Moving The user is taking a trip while carrying the phone. We expect that
the phone will be in this state when we take trips during the day.

4.2.1.2 Data collection regimes

We primarily use the following data collection regimes to explore the range of
behavior in each of the states above. Note that the details of the regimes are slightly
different on iOS and on Android, since they use different filters. Each of the sampling
regimes above is evaluated both with and without geofencing, which gives us six
different data collection regimes overall.

1. High accuracy, fast sampling (2 s on Android, 5 m on iOS) (hafs)

2. Medium accuracy, fast sampling (2 s on Android, 5 m on iOS) (mafs)

3. Medium accuracy, slow sampling (30 s on Android, 100 m on iOS) (mass)

4.2.1.3 Metrics

Since our technique trades off power and startup accuracy, we use the following
metrics to evaluate the two aspects of the trade-off.

1. Power drain We measure the power drain across different regimes running in
parallel on the three phones. We look at both the final battery level at the end
of 24 hours, and the power drain in various states under the regime. The power
drain is represented using box plots — the center line is the median, the box
represents the 25th to 75th percentile, the whiskers represent the interquartile
range (IQR) and outliers are represented by individual points lying outside.

2. Accuracy We look at the distance between the actual start of the trip and the
geofence exit location. We also inspect the distances between the geofence exit
location and the first few points in order to estimate the loss in accuracy at the
start of the trip.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 70

Each of the power drain result figures represents data collected over one day to
compare regimes against one another. The top graph in each figure represents the
change in battery level over the course of the day, and the middle graph contains the
box plots for the power drain in the various states. These graphs correspond to the
power drain metrics above. The third row has a set of maps which provide a visual
representation of the accuracy of the data collected.

4.2.1.4 Recording measurements

One of our challenges was to develop a technique for measuring battery levels
that would not perturb the measurement. For example, it was not clear that we could
use a power meter to measure power drain, since the OS only puts the phone into
Doze mode when it is unplugged. Automatically polling for the battery life, in active
or passive states, for example, would introduce new background processing at a time
when our goal is to reduce or eliminate it. And automatic sampling means that states
may overlap with samples, which makes it harder to calculate drain.

Therefore, we used the following low-tech solution to record the power drain.

1. moving state: Every 30 minutes, view the battery level on the phone screen
and manually record it in a csv file. In addition, record entries at the start and
end of every trip so that each time interval has only one associated state.

2. active state: We use the same technique as the moving state. This has the
added advantage that it simulates the user interacting with her phone periodi-
cally, and ensures that the phone remains in the active state.

3. passive view and record the battery level at the beginning and end of the
passive period. This ensures that there is no additional interaction with the
phone, although it means that it is harder to isolate outlier points.

4.2.2 Exploration results

This section analyses the empirical results to answer the questions about the fea-
sibility of the näıve sensing design. It shows that the sophisticated, context sensitive
power management features work well in the absence of energy hungry background
sensing, but they fail when confronted with high power background sensing. Virtual
sensors such as geofences can be used duty cycle sensing at the app level.

4.2.2.1 Do phones really do nothing well?

Yes. Figures 4.2, 4.3 and 4.4 compare the power drain of continuous data
collection against geofenced data collection and no data collection. So the “nd” line
on the top-most graph in each figure represents the power drain with no data collection

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 71

Figure 4.2. Evaluation of geofencing while collecting data with high accuracy.
Regimes are no data collection (nd), high accuracy fast sampling (hafs) and ge-
ofenced high accuracy fast sampling (geo-hafs). The top graph shows the change in
battery level over 24 hours. The middle graph shows the rate of drain in %/hr in the
active, moving and passive states. The bottom map shows the extent of the error on
each platform at the beginning of the trip.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 72

Figure 4.3. Evaluation of geofencing while collecting data with medium accuracy,
but a fast sampling rate. Regimes are no data collection (nd), medium accuracy fast
sampling (mafs) and geofenced medium accuracy fast sampling (geo-mafs). The top
graph shows the change in battery level over 24 hours. The middle graph shows the
rate of drain in %/hr in the active, moving and passive states. The bottom map
shows the extent of the error on each platform at the beginning of the trip.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 73

Figure 4.4. Evaluation of geofencing while collecting data with medium accuracy,
and a slow sampling rate. Regimes are no data collection (nd), medium accuracy
fast sampling (mass) and geofenced medium accuracy fast sampling (geo-mass). The
top graph shows the change in battery level over 24 hours. The middle graph shows
the rate of drain in %/hr in the active, moving and passive states. The bottom map
shows the extent of the error on each platform at the beginning of the trip.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 74

(stock phone) over 24 hours. We can see that the values for iOS and Android are
7% and 11% respectively. The 2019 results are 2x worse with similar drain over half
the time (≈ 12 hours (Figure 6.2)). This may be due to: (i) additional 4 years of
battery deterioration, (ii) new system-level services, or (iii) coarse timer wakeups for
automated battery readings in the new evaluation procedure (Section 6.3). But even
10% drain over a workday corresponds to < 1% per hour, which seems to correspond
with working well.

4.2.2.2 Is continuous sensing on mobile phones a solved problem?

Not with high accuracy. Figure 4.1 compares the power drain of three differ-
ent continuous sampling regimes over the course of the same day. Note that moving
from high accuracy to medium accuracy makes a significant difference. The high
accuracy fast data collection resulted in out of battery on both platforms, but the
medium accuracy sampling did not. It is also interesting to note that the filter size
does not appear to make any difference on iOS — the lines for the fast and slow sam-
pling are almost indistinguishable. On Android, the sampling rate seems to matter
primarily during the moving state. During the passive state, the slopes of the lines
are very close, and the divergence in the active state is small.

We can also see this from the box plots of the power drain rate - in all the
Android regimes, the moving rate is noticeably higher than the active rate, which is
in turn significantly higher than the passive rate. On iOS, we see a similar pattern
for the high accuracy case, but for medium accuracy, there is not much difference
in the power drain across sampling rates, or across states within the same medium
accuracy regime.

Figure 4.1 also shows the trade-off in lower accuracy of the collected data points.
The three trajectories shown were recorded at the same time on three identical
iPhones. As expected, the high accuracy data collection is an accurate represen-
tation of ground truth — the duplicated points on Shattuck represent an actual back
and forth section of the trip.

While the high accuracy data collection is clearly superior to both medium
accuracy data collection regimes, the location accuracy required depends on both the
algorithms that are used to process it, and the final application for which it is used.
A determination of the optimal accuracy and sampling for different applications is
outside the scope of this chapter and is addressed in Chapter 7.2 instead. We content
ourselves with evaluating the effect of geofenced duty cycling on each of the three
sampling regimes here.

4.2.2.3 Does geofencing help?

Yes. Figure 4.2 shows the effect of geofencing on the power drain with high
accuracy sampling. With geofencing, we can obtain high location accuracy during the

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 75

trip with a power drain that is close to no data collection. In fact, high accuracy data
collection is not possible without duty cycling on either platform. Both platforms are
remarkably consistent — duty cycling makes high accuracy data collection possible.

The picture is less clear if we are willing to tolerate medium accuracy. Figures 4.3
and 4.4 illustrate the differing ways in which geofencing affects medium accuracy
sensing on the two platforms. Medium accuracy data collection is very efficient on
Android — it appears to be similar to the power drain of geofencing. In fact, at the
end of the day, the non-geofenced solution actually has a lower power drain than the
geofenced solution. From the box plot, we can see that power drain in the active state
is almost identical for both geofenced and non-geofenced operation. In the passive
state, the power drain is actually slightly higher with the geofence. While the passive
state has only one data point, the active state has several points and the result is
consistent across both sampling rates. It looks like Android has figured out how to
perform continuous, medium accuracy data collection very cheaply.

The story is very different on iOS, where geofencing is significantly cheaper
than continuous sensing. Even with medium accuracy, the difference in battery level
between geofenced and non-geofenced operation at the end of 24 hours is between
25% and 30%. The box plot shows that geofencing is essentially free in the passive
state. The drain appears to be high in the active state, but at least part of that is
because we are unable to detect the trip end immediately and have to wait until the
next hour to stop tracking. A set of short trips causes us to spend a lot of time in
active but tracking state, which increases the power drain. For example, note that
the big drop in battery level during the moving state in Fig. 4.4 continues beyond
the end of the trip, before flattening out as the tracking stops and the geofence is
re-established.

Finally, although geofencing enables high accuracy data collection during the
trip, it loses some accuracy at the start of the trip. Location tracking is started only
after the geofence boundary has been crossed, so the points traversed to reach the
boundary are lost. An interesting observation that we can see what looks like rate
adaptive GPS tracking on Android in the hafs regime — after the geofence is exited,
the points are generated at exponentially shorter distances, until they settle into the
configured frequency. We do not see similar behavior in iOS high accuracy mode,
and the low accuracy data on both platforms is so noisy that it is hard to determine
what the correct points are, let alone their frequency.

4.3 Cross-platform duty cycling implementation

Results from an empirical evaluation of context sensitive power management
features indicate that these features do not work well when confronted with high
power background sensing. Instead, smartphone apps that want to capture high
granularity, high accuracy location data need to perform their own duty cycling using

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 76

stat drain reporting service
% /hr launches/hr

High accuracy, no filter 8.42 2722
Medium accuracy, no filter 0.25 4

Table 4.1. Comparison of Android sensing regimes when phone is stationary

virtual sensors. A finite state machine (FSM) can capture the transitions required for
such duty cycling. This section uses the empirical results (Section 4.2) to outline the
design of Android and iOS-specific FSMs for automatically triggered duty cycling.

4.3.1 Motivation

As we can see from Section 4.2.2.2 and Figure 4.6, there is significant power drain
on iOS for ongoing tracking, even with a large distance filter to throttle updates. The
power drain ranges from 1%/hr for the medium accuracy 100 m filter to almost 4%/hr
for a high accuracy 100 m filter (measured separately) even when the phone was
stationary on a desk. This would imply a 24-hour power drain of 24% for medium
accuracy and 79% for high accuracy even when the location is not changing. The
additional power drain for geofencing over stock phone operation is essentially zero.

On Android, the situation is more complex, since the medium accuracy mode
uses Wi-Fi, and Wi-Fi scans are suspended in doze mode except for the maintenance
windows. Table 4.3.1 shows that ongoing sensing is effectively duty cycled by default
when the phone is in doze mode. So duty cycling would primarily help when high
accuracy sensing is needed.

We also considered two other duty cycling approaches from the literature.

1. Leave the accelerometer turned on and duty cycle other sensors if the user is
stationary for a certain period. Unfortunately, this will not work on iOS. Read-
ing the accelerometer and/or activity detection results are not supported back-
ground modes. By piggybacking on the location tracking, we can potentially
detect when the user has stopped moving, but we cannot detect when the user
has started moving again.

2. Change the location filter properties based on user speed. Again, this is not
likely to help in iOS because changing the distance filter does not appear to
appreciably reduce the power drain. Reducing the sampling rate also does not
appear to appreciably change the power drain on Android while in medium
accuracy, although the power drain is low to begin with. While this might be
an acceptable strategy for Android, we wanted to explore a consistent strategy
across both platforms in which we just turn everything off.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 77

4.3.2 Our design and some challenges

In our design, we use simple finite state machines to perform duty cycling (Fig-
ure 4.3.2). The core of the FSM are the waiting for trip start and ongoing trip

states.

1. We use location updates to detect when the user is loitering or dwelling at a
location. We will detect loitering even if the user is walking, as long as all
movement is within the location radius. So even if the user is walking around
the office, she is dwelling in the office.

2. Create a geofence at the current location and turn off all tracking.

3. When the geofence is exited, resume all tracking.

The other states deal with non-routine conditions such as the user manually
turning tracking on and off, either through the app controls, or directly in the phone
OS by turning off location services or location permissions.

Now, we discuss three additional design challenges and their solutions.

4.3.2.1 Detecting dwelling with a distance filter

Detecting the end of a trip with a time filter is pretty straightforward. If the user
has not moved more than distance d in the past t minutes, then end the trip. This
has been the approach taken by most prior work, based on data from GPS devices.
But on iOS, the only supported throttling option is a distance filter. So once a trip
has ended, we will simply stop getting updates. The next update will occur when
the user has traveled more than d. Depending on the value of d, this could well be at
the start of the next trip, which means that no duty cycling will occur. If there was
support for scheduling jobs at a future time, we could schedule a job to be run after
t minutes, which would end the trip if there were no recent updates, but as we have
seen, that is not a supported background mode. So we use remote pushes, to wake
the app up periodically and check to see if the last received location was t minutes
ago. Since remote pushes are scheduled on the server, and we do not want to require
a network call for each location update, the remote pushes are scheduled to run every
hour, with no app triggers or communication.

4.3.2.2 Detecting dwelling in the presence of noise

We originally assumed that the dwell-time algorithm would be robust to noise
because the noise would die down eventually and the geofence would be created.
This assumption about the noise model was incorrect, specially in medium accuracy
mode. On Android, the medium accuracy collection would sometimes repeat the last
known point if it had no new data. This would cause the algorithm to terminate trips

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 78

START

Waiting to
start trip

Ongoing
tripInitialize

Stopped
moving

create
geofence remove

geofence
start
location
tracking

start activity
recognition

stop
location
tracking

stop activity
recognition

create
geofence

Exit
geofence

remove
geofence

Stop Tracking

Stop
Tracking

stop
location
tracking

stop activity
recognition

Tracking
Stopped

Start
Tracking

Tracking
error

Tracking
error

Tracking
error

Tracking
error

START

Waiting to
start trip

Ongoing
trip

Silent push
notification

create
geofence

start
tracking

Exit
geofence

stop all collection

Stop Trackingcheck
geofence
status

Initialize

Inside ->
EndTripTr
acking

Outside
-> Exit
geofence

check if trip
ended

Silent push
notification

Trip end
detected

create
geofence

check
geofence
status

Outside ->
Trip
restarted

Trip
started

stop
tracking

Inside ->
Init
complete

Trip
ended

oneTimeInit
Tracking

Tracking
stopped

Start
Tracking

Tracking
stopped

Figure 4.5. Finite State Machines for duty cycling on android (up) and iOS (down)

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 79

whenever we were traveling underground, for example. On iOS with medium accuracy
tracking, spurious, low accuracy points would be generated outside the distance filter,
which would cause a continuous set of updates between the current location and the
spurious location. Also, we only check for trip end every hour, noise showing up at
the wrong time can lead to tracking for an additional hour and wasted power. We
address this by filtering both noisy points and duplicates on the phone before checking
for the trip end.

4.3.2.3 Geofence creation quirks

1. iOS creates a geofence but does not start monitoring it in the background. So
we need to wait for the geofence creation to complete before returning.

2. on iOS, creating a geofence while in motion is tricky because if the phone is
outside the geofence by the time creation is complete, no exit event is gener-
ated. So after creation, we need to check whether we are inside or outside and
transition states accordingly.

3. creating the geofence at the “current” location has some drawbacks — if the
current location has low accuracy, we might create the geofence some distance
away, and not trigger it while leaving.

4. android deletes all geofences when the location services are disabled. So if the
traveler turns location services off when she is not moving, then tracking will
stop and the FSM will be stuck in WAITING_FOR_TRIP_START forever. This does
not change even if the user turns location services on later. To avoid this, we
need to periodically recreate the geofence to ensure that it exists.

Additional details of the implementation are in the BSD-licensed library on github 2.

4.3.2.4 Summary

To summarize, designing a robust, efficient, cross-platform pervasive sensing
app is a significant challenge, full of philosophical differences (background processing),
subtle quirks (geofences) and undocumented error models (medium accuracy) that can
only be discovered by implementation and testing. We now generalize the behavior of
this solution to a wide variety of usage patterns and determine the population-wide
ranges for sensing overhead.

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 80

Figure 4.6. Results for generalizing the results to a broader variety of activity pat-
terns. Top: a simple model for estimating the power drain as a factor of the no
data collection nd, tracking using high accuracy fast sampling nohafs, tracking us-
ing medium accuracy fast sampling nomafs, tracking using medium accuracy slow
sampling nomass and geofenced geofenced states. Bottom: Distributions of power
drain (%/hr) on android and iOS generated by applying the top model to the ATUS
dataset. L: with nohafs, R: without nohafs and an expanded scale

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 81

4.4 Modeling and generalization

The experimental results above are for a small, restricted set of travel patterns.
Since our approach consists of lowering the power drain in the active and passive
states, its performance is heavily dependent on the time spent in each state — if a
user spends the whole day traveling, there will be no difference in power drain between
our solution and the continuous data collection solutions.

So in order to complete our evaluation, we need to extend the results from the
four data collection days above to typical days in the life of the general population.

We do this by building a model of the power drain in each state for different
regimes and applying it to a large set of user activity patterns collected as part of the
American Time Use Survey (ATUS).

The ATUS is a publicly available dataset collected by the Department on Labor
that consists of a set of activity diaries which include coded activities, their start
and end times and their duration for a randomly selected sample of the population.
The 2014 ATUS data contains data from 11592 individuals, whose activities are
coded into 17 major codes. The codes include both sleeping (code 1) and all forms
of transport (code 18) — there is no category for code 17. For simplicity, we assume
that people are interacting with their phones at any time that they are sleeping and
not traveling, so we can easily map the major codes to our states.

Next, we combine the data collected above to build a composite model that has
a power drain coefficient for each state. We do this by combining the entries from
all time periods when that regime was active and calculating the overall mean. In
particular, each of the continuous sensing regimes is modeled by considering data
from the accuracy versus sampling rate data, the ongoing regime and the “moving”
sections of the geofenced regime. Note that this results in 5 coefficients, since the
drain for the geofenced modes is a combination of geofencing for active and passive,
and a selected sensing mode for moving.

The resulting model is shown in Figure 4.6. The model appears to be consistent
with our observations in Section 4.2 — the biggest power drain is in the hafs regime,
geofencing is essentially free on iOS, and geofencing doesn’t show much improvement
over medium accuracy on Android.

We can then estimate the power drain over the day for every user for a particular
regime by: (i) mapping the activity codes to states, (ii) summing up the durations in
each state to obtain the percentage of the day spent in each state, and (iii) multiplying
by the coefficients and summing to obtain the power drain across the entire day.

Note that for the geofence regimes, we use the geofence coefficient for the passive
and active states, and the selected sensing regime for the moving state.

This gives us the distribution of power drains across the set of users for each
regime. A box plot of these distributions is shown in Figure 4.6. Unsurprisingly, the

2https://github.com/e-mission/e-mission-data-collection

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 82

nohafs regime runs out of battery for almost all users on both platforms. In order to
get more visibility into the details of the other regimes, we re-plotted the graph after
excluding nohafs. From that graph, we can observe that:

1. The graphs are actually fairly consistent across platforms — the median drain
for all geofenced regimes on both platforms is around 20%.

2. The major difference between the geofenced regimes is in the spread of the data
— the medium accuracy regimes with geofencing have tighter bounds than the
geo-hafs regime, and fewer outliers. Some outliers in the geo-hafs case are
greater than 100%, indicating that in a few cases, the phone will run out of
battery even with geofencing turned on.

3. The non-geofenced regimes are noticeably different — the median on iOS is
around 50%, while the median on Android is at the same (15 – 20%) as the
other data collection methods. This implies that by using medium accuracy
on Android, it might be possible to get away without duty cycling. But it is
clear that for iOS, any reasonable data collection solution must use some form
of duty cycling.

4.5 Custom implementations and virtual sensor up-

dates

Our sensing design (Section 4.3) uses virtual sensors such as geofences or the
visit detection APIs on iOS for duty cycling. This section justifies the decision to
use virtual sensors by comparing: (i) the flexibility vs. development cost trade-off,
(ii) the liberation from restrictions for system services, and (iii) the maintenance and
upgrade cycle.

4.5.1 Virtual sensors are easier to use but less flexible

Using the virtual sensors instead of re-implementing custom versions
(e.g., [PFJM19, p.133]) reduces development and testing time. It leverages preexist-
ing engineering efforts from the phone OS providers. Prior android-only comparisons
between custom implementations and the built-in API indicate that the built-in API
is comparable [CCC+14b] or slightly better (Figure 5, [CCC+14a]).

However, the built-in implementations can be less flexible than custom imple-
mentations. For example, turning off location access to the app can delete all asso-
ciated geofences (Section 4.3), so apps that use geofences need to poll and re-create
geofences when the coarse timer is triggered (Section 3.4). This could cause some
trips to be lost. The OS does not delete explicit location tracking requests so location

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 83

updates will be resumed without any gaps. Such challenges lead to a flexibility/power
trade-off for virtual sensor use.

4.5.2 Virtual sensors have fewer restrictions, at least on iOS

Since the virtual sensors are part of system services, they may also have access
to private APIs or be subject to fewer background restrictions than regular apps.
For example, the motion activity API on iOS uses the M-series co-processor for low
power operation3. User-level apps cannot schedule operations on the coprocessor,
only the OS can, therefore even if user-level apps were not subject to background
restrictions, they would likely have higher power drain than the built-in OS sensing.
Similarly, iOS does not expose Wi-Fi scans to apps4, so apps cannot create a custom
implementation of the fused location sensors.

4.5.3 Virtual sensor implementations change over time

Both the virtual sensor implementations and any associated background restric-
tions change with new releases. For example, the location virtual sensor on Android
in 2019 appears to have much more aggressive built-in location duty cycling (Fig-
ure 6.2) than 2015 (Figure 4.1). Similarly, the Android update to version 26 started
delivering location updates only a few times an hour unless the data was requested
by a foreground service5.

Any sensing app that uses virtual sensors will need to be modified periodically
to adapt to such changes. A modular architecture with a dedicated data collection
module (Section 3.4) that communicates with loosely coupled notification modules
(Section 3.3.2) allows e-mission to isolate other modules from these changes. A well-
defined finite state module (Section 3.4.1, Section 4.3) simplifies the process of making
such changes and reduces the chances of regressions.

4.5.4 Maintenance and upgrade cycle

For a concrete example, we outline the changes required to migrate from API 18
to API 26 on android. The OS changes6 related to virtual sensors were: (i) runtime
permissions, (ii) background service restrictions, and (iii) implicit broadcast restric-
tions.

The related changes were all in the client tier (Section 3.4), and in the sensing
module (Figure 3.3) only. The complete update, including non-sensing changes, took

3https://en.wikipedia.org/wiki/Apple_motion_coprocessors
4cell tower signal strength, Wi-Fi signal strength
5https://developer.android.com/about/versions/oreo/background-location-limits
6https://developer.android.com/about/versions/oreo/android-8.0-changes.html

https://en.wikipedia.org/wiki/Apple_motion_coprocessors
https://stackoverflow.com/questions/2959567/iphone-signal-strength#2959696
https://stackoverflow.com/questions/21715690/measuring-signal-strength-from-wifi-to-iphone-ipad
https://developer.android.com/about/versions/oreo/background-location-limits

CHAPTER 4. BACKGROUND SENSING USING VIRTUAL SENSORS 84

roughly a month of developer time and the related issue logged over 100 updates7. The
changes to the sensing module were fairly involved, but only ≈ 500 lines of code (LoC)
were affected8. They involved: (i) more error handling in the FSM, (ii) conversion of
background services to foreground, and (iii) switching to explicit broadcasts.

None of all these changes are specific to virtual sensors. The runtime permissions
change would have affected custom implementations, and they would have needed to
convert their sensing services to foreground as well. This implementation had more
such changes because of the number of sensors that it listened to. Similarly, a sensing
method with only one sensor may be tightly coupled and not use broadcasts so may
not need the explicit broadcast change. However, such tightly coupled implemen-
tations might have found it harder to reason about the additional error conditions
without a well-defined FSM.

Although invocation sites for virtual sensors need periodic maintenance, the
changes are reasonable (≈ 500 LoC and one month of work for an update after
≈ 10 releases) and do not appear to be significantly greater than similar custom
implementations.

4.6 Conclusion and Future Work

Background sensing on smartphones requires duty cycling to be practical. There
are multiple duty cycling methods that can work on Android but using geofencing as
the trigger is the only feasible option in iOS. Geofencing allows high accuracy, high
frequency data collection at an ≈ 15% penalty for the vast majority of travel patterns
although there are large outliers. Virtual sensors have less flexibility, but lower de-
velopment and maintenance cost. Since there are few guarantees, their behavior can
change unexpectedly as part of the upgrade cycle. A well-defined finite state machine
can clarify the duty cycling design and ensure that updates are robust.

This chapter has focused on the sensing implementation, the restrictions on
background processing and how to balance power and accuracy in background data
collection. The next chapter continues this technical focus by examining the modules
and algorithms required to convert this imperfect, noisy data into the mobility diary
at the root of Computational Mobility.

7https://github.com/e-mission/e-mission-docs/issues/325
8https://github.com/e-mission/e-mission-data-collection/pull/170

85

Chapter 5

Wrangling noisy data into a
mobility diary

The mobility, or travel, diary is the canonical data struc-
ture on which many Computational Mobility applications and
models are based. It is generated by analyzing input data,
both sensed and surveyed. The analysis consists of multi-
ple steps, each of which has an algorithm associated with it.
The steps are typically linked into an analysis pipeline. Some
intake algorithms, such as mode inference, have been much
better studied than others, such as segmentation. Like all
data processing algorithms, the intake algorithms will never
be perfect. However, reproducible analysis architectures can
allow us to to quantify the error, and to compare algorithms
against each other. In this section, we first outline the mobility
data inputs, pipeline steps, and outputs in detail, with a spe-
cial focus on data modeling for reproducibility (Section 5.1).
Next, we outline the input data characteristics in detail, with
a special focus on the unpredictable noise (Section 5.2). Next,
we outline our adaptations to algorithms (i) that have been
extensively studied in the literature, such as mode inference,
(ii) that have been studied briefly, such as segmentation, and
(iii) that do not appear to have been studied, such as dealing
with untracked time. Finally, we outline some use cases for
reproducible analytics as part of the conclusion (Section 5.4).

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 86

5.1 Reproducible data pipeline for diary creation

The mobility diary is the foundational data structure for computational mobil-
ity (Section 1.4.1), and represents longitudinal travel patterns for a single traveler.
The input to the mobility diary is a combination of sensed and surveyed data, and
the output is a linked sequence of trips and places, where each trip can potentially
have multiple sections separated by stops for multi-modal travel The trips can have
algorithm-generated or user-specified annotations. The diary is generated using an
intake pipeline consisting of multiple self-contained processing steps.

5.1.1 Intake pipeline algorithm steps

The state-of-the-practice for complex, multi-step processing algorithms is to cre-
ate small, self-contained processing steps and combine them into a pipeline, where the
output of every step is the input into the next step. e-mission defines such a pipeline
for converting raw data into a complete mobility diary.

The pipeline architecture and data model principles have already been outlined
in the architecture chapter (Section 3.6). This section focuses on the concrete analysis
steps included in e-mission, their inputs and outputs, and how they are composed to
convert raw inputs into inferred outputs (Fig. 5.1).

More steps can be added later if the data collection is enhanced to include
additional sensors. The algorithms for the steps, and the challenges associated with
them, are discussed in greater detail in subsequent sections (Sections 5.3).

segment current trips: Converts the raw inputs and splits them into a linked se-
quence of raw trips and raw places. If the underlying sensing algorithms au-
tomatically turn tracking on and off (Section 4.3, Section 4.2), then the first
few points in the trip will be missing. Also handles the detection of untracked
time, which could be due to the user using various software settings to turn off
tracking, or by turning the phone completely off.

segment current sections: Converts trips into a linked sequence of raw sections
and raw stops. Each section represents travel by one mode — multi-modal trips
will consist of multiple sections while unimodal trips will consist of only one
section.

filter current sections: Location data can frequently be very noisy, particularly
when the GPS sensor is turned on and is attempting a fix from satellites. When
fused virtual sensors are used, this may happen multiple times during a trip,
particularly during underground sections. This step identifies these erroneous
points so that they can be removed. It is run after the section segmentation
step because it uses speed outliers to determine invalid points, and speeds can
only be expected to be consistent within a particular section. Unlike prior

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 87

Figure 5.1. Illustration of how the timeline evolves as it proceeds through the pipeline.

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 88

work [YCP+13], we do not have domain knowledge of the moving object before
section segmentation.

clean and resample: Puts the results of the previous steps together to generate
spatiotemporally consistent mobility diary by filling in gaps if necessary. This
diary can be used for additional inference about the trips (e.g., mode) and places
(e.g., purpose). In addition to purely spatiotemporal data, since mobility mode
transitions were determined during section segmentation, the resulting sections
can be tagged with basic mobility modes.

predict mode: Use inference algorithms to determine the mode for each section in
the mobility diary. The accuracy of inference algorithms typically varies widely
across modes; walking is easy to detect since walking speeds are limited, and
significantly slower than the alternatives. Mobility modes with similar speed
characteristics (e.g., bicycling and buses on city streets) are much harder to
distinguish. And some modes, such as carpooling or ride-hailing are essentially
indistinguishable through location data alone.

5.1.2 Other steps: data manipulation and use-case specific

In addition to the high level pipeline steps above, the e-mission pipeline has
steps for data manipulation and specific use cases. While these are not necessarily
generalizable, we briefly outline them here for completeness. They are also likely to
change as we pare down the core and simplify the architecture.

5.1.2.1 Data manipulation steps

The data manipulation steps mainly deal with formatting the data during input
and output and moving it between the input and output caches.

moveToLongTerm: Formats incoming messages based on the message type and
moves them from the input cache into the timeseries database.

storeViewsToCache: Exports a geojson representation of the most recent days in
the timeline to an outgoing cache. This representation is periodically pulled by
the phone for faster local access.

5.1.2.2 Use case specific steps

The use case specific steps deal with particular use cases that we thought would
be relevant but did not turn out to be so in practice.

filterAccuracy: If the duty cycling is turned off on the phone, then we don’t need
to filter the locations on the phone and the phone app only uploads the

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 89

background/location stream. But the rest of the pipeline expects the filtered
stream. So in case the phone doesn’t filter, this step does the filtering. This is
surprisingly slow, and most clients don’t use it, so it is currently only enabled
via a config file option.

give points for all tasks: One of the use cases for e-mission involved integrating
with Habitica, an open source Role Playing Game (RPG). The RPG allows trav-
elers to create point-awarding tasks which can then be automatically checked
off by the integration with e-mission. This step does the check and awards RPG
points if necessary.

5.1.3 Data model for reproducibility

The pipeline data model consists of immutable input data which is transformed
through the pipeline steps to generate the final output. Each stage assumes that
its input is immutable. The output of each stage is the input to the next stage
(Figure 5.1). Types for each data object are represented in the metadata, by the
metadata.key field.

Input types: Sensed input types are typically represented by background/* keys,
e.g., background/location, background/battery,
background/motion activity. Manual input types are typically represented
by manual/* keys, e.g., manual/incident or manual/mode confirm.

Initial segmentation: Preliminary segmentation outputs are represented by
segmentation/* keys, e.g., segmentation/raw trip. These represent a first
pass at segmentation so that we can detect and remove outliers. Note that
the segmentation outputs include segmentation/* untracked which represents
time at which tracking was turned off. Tracking could be turned off because
the user disabled it, or because the device was turned off.

Outlier detection: The outlier detection step is a bit different since it stores the
erroneous points for a section. This implies that the final segmentation will
use inputs from multiple previous stages — initial segmentation and outlier
detection. The outlier detection results are stored in analysis/smoothing.

Final segmentation: Final segmentation outputs are represented by
analysis/cleaned * keys, e.g., analysis/cleaned trip. These are the entries
that most consumers will use. In addition to segmentation results, we also
generate filtered, resampled data points, represented by
analysis/recreated location

Mode inference: The results of the mode inference are stored as a separate ob-
ject analysis/inferred section. The correspondence between inferred and
cleaned sections is 1:1.

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 90

5.1.4 Pipeline states

While pipelines are common in traditional data models, the examples typically
work on static datasets. In our case, our focus on data collection implies that data
comes in periodically, and the pipeline needs to be run periodically to process this
fresh data. We enforce this through the notion of a pipeline state. Further, since
the data model regenerates analysis results from immutable input data, we need to
be careful about duplicate entries. Therefore, pipeline states are used for three main
purposes:

avoiding slowness: the state needs to include an indication of how much data has
already been processed. Without this state, the pipeline would need to run from
the beginning every time. This would quickly lead to unacceptable performance
in the face of continuously increasing data.

avoiding concurrent runs: the state needs to indicate whether this would be a
concurrent run — whether the pipeline is attempting to execute the same step
with the same algorithm for the same user. Without this state, the next stage
would see multiple trips from the same algorithm for the same time range, which
is likely to confuse it.

avoiding re-processing: maintaining the state of how much data has already been
processed is tricky. The naive solution would assume, on every run, that that
all data upto the current time. But that doesn’t account for delayed or asyn-
chronous data transfer. Consider the case in which a user completes a trip at
11am but does not have network connectivity at her destination. Her data is
only uploaded after she returns home at 5pm. But the pipeline has run at noon,
1pm, . . . 4pm. So the naive approach would assume that all data up to 4pm
had been processed, when in fact, the 11am data had not even arrived at the
server and could not have been processed. In order to avoid this, each pipeline
step needs to store the timestamp of the last data point that it successfully
processed. As a bonus, this also ensures that if there is an error or exception in
a pipeline step, processing will continue from the correct point once the error
is fixed.

5.2 Input virtual sensor data characteristics

Much of the prior work on travel diary creation has involved manually im-
plementing context-sensitive data collection [SAMF16b, ZGP+15] or activity detec-
tion [FT13, LV16, YYW+14].

Possibly based on the prior work, smartphone OSes have now incorporated closed
source implementations of several of these techniques and exposed them as virtual
sensors for apps to use. In some cases, the virtual sensors are the only interface

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 91

available; in others, they provide a convenient default implementation for common
functionality.

For the initial version of this platform, we have focused on using the virtual
sensors wherever possible. This allows us to leverage existing engineering effort and
potential freedom from system restrictions (Section 4.5) in the basic sensing imple-
mentations. A rigorous evaluation (Section 7.2) shows areas for improvement similar
to [ZWHI15] but may involve trade-offs in terms of additional edge computing. The
platform’s modular architecture (Chapter 3) allows us to evaluate and incorporate
incremental improvements as they are developed.

Figure 5.2. Quality change

The sensing deep-dive (Section 4.1) described
virtual sensors in terms of their exposed APIs and
documented restrictions on usage. This section de-
scribes the resulting data quality based on empirical
results and exposes the challenges that the analysis
algorithms need to overcome.

5.2.1 Fused location

The fused location APIs provide access to phone
location data based on a combination of localizable
sensor data. This typically involves A-GPS, Wi-Fi
and cell towers, although they may support Bluetooth
as well. API users can specify the desired accuracy
and frequency. Android uses a time filter to specify
the frequency (e.g., 1000 ms) but on iOS uses a dis-
tance filter (e.g., 10 meters). This makes trip end
detection harder on iOS (Section 4.3).

Both the configuration options are “hints”. The
location API performs sensor batching under the
hood and the points exposed depend on the other
apps requesting location at the same time. For ex-
ample, in Figure 5.2, the traveler launched a nav-
igation app while collecting data at medium accu-
racy/medium frequency, causing the data quality to
dramatically improve without changing the configura-
tion. The points have an accuracy radius, but it can
be incorrect, specially around underground sections
(Figure 6.1). The generated points do not explicitly indicate the source of location
data (e.g., GPS or Wi-Fi).

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 92

5.2.2 Trip start/end

Geofencing The geofencing APIs on both android and iOS can be used to determine
trip start. The sensing regime can creating a geofence at the end of a trip and
listen for the exit. Geofences are recommended for use 1 since they are very
power efficient (Figure 4.2). Geofences on android can be configured with radius
and responsiveness settings which control the sensitivity/power trade-off. In
keeping with the lack of time controls on iOS, geofences on iOS only support
a radius setting. Further testing shows that the radius setting is also only a
hint — e.g., Figure 7.3 does not report a geofence exit even after several km of
travel.

Visit detection iOS also has a separate API for detecting the start and end of a
visit to a place. This can also be used to detect trip start and end, since a visit
end is a trip start and vice versa. The visit detection API has no configuration
settings and appears to use a different implementation than the Geofencing API
since they don’t trigger synchronously (Figure 7.3).

5.2.3 Motion activity

Both Android and iOS also support activity detection APIs that can distinguish
between active transportation modes (walk, run, bike) and a single motorized mode.

On Android, motion activity updates are provided to the app when tracking
is on, and the app can specify the update frequency. On iOS, updates are only
provided to the app in real-time when it is already executing; activity updates are
not a supported background operation (Section 4.1). The OS also stores a history
of activity updates which can be queried by the app when it does get a chance to
run. It does not have a setting for the update frequency. Although android has an
update frequency and iOS does not, the update frequency on android is also a “hint”.
Empirical testing shows that, at least on recent versions of the API, updates are only
generated on activity transitions (Figure 7.10).

The raw accuracy of these sensors is poor. Prior work has established this for
android [ZWHI15], but the API for iOS has not been studied before. Empirical
evaluation (Figure 7.9) shows that iOS accuracy is also poor and is characterized by
multiple flip-flops, specially for bicycling and public transit trips (Table 7.5).

5.3 Adaptations to classic algorithms

Most of the known post-processing algorithms have been designed for designated
GPS devices(Section 2.4). Using smartphones instead requires adapting them to

1https://developer.android.com/training/location

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 93

match the changed data characteristics. These changes can be both beneficial (e.g.,
built-in activity detection) and challenging (e.g., poor quality location trajectories
with variable frequencies). To the best of my knowledge, while prior work has used
smartphone location entries, this thesis is the first to use the full range of virtual
sensors in travel diary processing.

This section summarizes the key algorithm changes for each of the pipeline steps.
The entire implementation is open source2 and can be consulted for further details.

5.3.1 Trip segmentation

At a high level, the trip segmentation mainly uses a standard dwell time algo-
rithm with a configurable dwell time. Some additional challenges encountered, and
the ad hoc heuristics to solve them are:

untracked time The user can turn off tracking at any time, either (i) through the
in-app option, (ii) by turning off phone level location services, or (iii) by turning
the phone completely off. Detecting in-app disabling is trivial, but the other two
are more complicated. Android receives an event when the phone is rebooted,
but iOS does not.

If there is a large gap between two consecutive points, it is challenging to deter-
mine whether it was due to invalid entries or because tracking was turned off.
Incorrectly assuming that it was due to invalid entries could lead to trips that
span multiple days, but incorrectly assuming that it was due to the tracking
being turned off could lead to aggressive segmentation and prove problematic
for GIS integrations. We use a reasonable travel time heuristic to determine
untracked time from such gaps and store it as a trip-like object.

Distance filter Using a dwell-time algorithm with a distance filter is as challenging
on the server as it is on the phone. Concretely, we are not guaranteed to receive
points after we have stopped moving until the next trip starts, which means
that the last trip of the day may not be processed until the next day. We use
visit notifications as a secondary source and terminate trips on visit starts, even
if they don’t match the dwell filter.

Switching phones The traveler may buy a new phone and end up switching from a
distance filter to a time filter or vice versa. We handle this by: (i) creating two
separate modules for time and distance filtering, (ii) storing the filter type for
each location point, and (iii) filtering the locations to be sent to each module
based on the type.

2https://github.com/e-mission

https://github.com/e-mission

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 94

5.3.2 Section segmentation

At a high level, section segmentation uses the transitions between modes in
the activity entries (Figure 7.10) as the section segmentation boundaries. We ignore
irrelevant modes such as TILTING and only consider entries above a certain confidence
threshold. Some additional challenges encountered, and the ad hoc heuristics to solve
them are:

Matching activities to locations The activity transitions are generated in a com-
pletely different stream than the location points, so the two sets of entries are
not synchronized.

1. We handle this by treating a stop as another segment with enter and exit
locations. The mode changed somewhere within that range, but we lack
the precision to determine where.

2. For short trips at low frequencies, the activity transitions and the location
points are sometimes completely disjoint. In this case, we need to extend
the activity to the extent of the trip.

Boundary selection Once we have detected the transitions, we need to determine
whether and how they should correspond to sections. For example:

1. If we detect a change at mi+1, do we end the section at mi or at mi+1?
We define some rules around this based on ad hoc data contributed by
users. For example, for transitions from motorized → non-motorized, we
transition at mi+1, for the reverse, we transition at mi.

2. How do we deal with flip-flops? Sometimes, we get multiple transitions
during what should be a single section. These are typically very short, in
the order of seconds or minutes. We need to smooth over them but not
miss real mode transitions. At a high level, our algorithm for this involves:
(i) identifying flip-flops (ii) combining them into streaks, and (iii) merging
the streaks to generate an unbroken section. We use heuristic rules such
as the length of the section and the speed differential for these steps.

5.3.3 Trajectory smoothing

At a high level, trajectory smoothing (i) uses the interquartile range of the speeds
in a particular section to determine outlier points and (ii) selectively removes them
using a heuristic that can resolving zigzags (Figure 5.3).

The first step is straightforward. The second is complex because the zigzags are
frequently between fairly short point subsets (e.g., 1–2 points) on each side and the
outlier detection only determines that some subsets have to be filtered out.

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 95

Figure 5.3. Example of zigzag removal. l: before smoothing, r: after smoothing

The zigzag smoothing algorithm leverages the structure characteristic of the
zigzag — we expect to find a set of i good points, followed by a jump to a set of j
bad points, followed by another jump to a set of k good points, So our algorithm
becomes: (i) find the jumps, (ii) find the segments between the jumps, (iii) categorize
the segments into good and bad, (iv) remove the bad segments. Its main limitation
is with jumps at the beginning of a section, where we do not have sufficient travel
history to determine a jump or categorize segments.

5.3.4 Cleaning and Resampling

The cleaning and resampling algorithms perform several finishing steps, such as:

Smoothing and resampling applies the results of the previous smoothing algo-
rithm to remove outliers and then resamples the trajectory at a fixed interval
for downstream consistency.

Extrapolating trip/section start extends the start of the trip, and by extension,
of the first section to account for the gap in detecting the trip start. This has
to be done after the smoothing so that we can determine a consistent speed to
use. The trip must start from the place where the prior trip ended, so we can
adjust the start time based on the additional distance and the section speed.

Detecting and squishing spurious trips Older versions of Android and Google
Play Services had a persistent issue with spurious geofence exits. These were
self-correcting, since we would quickly reach the dwell-time threshold, but such
spurious trips could be confusing to end users. The spurious trips typically
included a jump, which should be smoothed out by the outlier detection algo-
rithm. Therefore, this stage can detect such spurious trips and squish them. So
one cleaned place can represent multiple raw places.

5.3.5 Mode inference

We support two different mode inference algorithms — random forest and rule
+ GIS based.

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 96

1. The random forest is the more traditional option, with feature selection largely
based on [ZCL+10]. It can distinguish between the classic 5 modes — walk, bike,
bus, car and train. It requires a trained model, which is hard to obtain in the
absence of a large reference dataset. However, once it is provided with a model,
it can perform all computation locally and is very fast.

2. The rule+GIS based algorithm uses different techniques for motorized and
non-motorized sections.

(a) The non-motorized sections can easily be distinguished based on speed.

(b) The motorized sections are classified by querying OpenStreetMap (OSM)
using the Overpass API to determine whether the start and end points
correspond to transit stops. Additional checks on the routes serving those
transit stops reduce false positives and allow more fine-grained classifica-
tion. Using the OSM labels on the routes, this algorithm adds support for
tram, metro and subway modes as well.

This approach clearly generates higher quality inference, but it requires access to
an external service and is subject to all the reliability and robustness challenges
that remote communication entails.

5.4 Conclusion

Reproducible data analysis involves designing a well-defined analysis pipeline
such that the same analyzed results are generated for multiple runs with the same
inputs (Section 3.6). The benefits of such data analysis include:

comparative evaluation multiple potential analysis algorithms can directly com-
pared against each other by running them on the same inputs and comparing
the results against standard metrics (Section 7.2),

ensemble methods instead of choosing “the best” algorithm, the results can be
combined using ensemble methods such as bootstrapping. Alternatively, the
ensemble result can be used to decide when to prompt the user for clarification.

debugging if there were errors in processing, such as unexpected inputs, the related
data can be submitted to the algorithm expert, debugged carefully, and the fix
tested before checking in. This has been a popular use case of our pipeline in
the real world 3.

3e.g., https://github.com/e-mission/e-mission-docs/issues/461, https://github.com/

e-mission/e-mission-docs/issues/322

https://github.com/e-mission/e-mission-docs/issues/461
https://github.com/e-mission/e-mission-docs/issues/322
https://github.com/e-mission/e-mission-docs/issues/322

CHAPTER 5. WRANGLING NOISY DATA INTO A MOBILITY DIARY 97

We have built a reproducible analysis pipeline for spatiotemporal data. The
inputs to the pipeline are virtual sensor readings from both android and iOS. The
algorithms are modified versions of the classic travel diary processing algorithms,
modified for smartphone sensors. They include

trip segmentation using a dwell-time filter with heuristics for determining un-
tracked time,

section segmentation using the activity recognition phone APIs with flip-flop smooth-
ing,

trajectory smoothing using a novel algorithm to detect and remove zigzags, and

mode inference with random forest and GIS rule engine implementations.

The innovations enabled by reproducibility require standardized datasets to op-
erate on. While our initial sensing regime was also data-driven, the evaluation proce-
dure and metrics were ad hoc (Chapter 4). In the next two chapters, we use the lessons
learned from building a reproducible pipeline on ad hoc data to define a reproducible
evaluation procedure (Chapter 6) and clear metrics (Section 7.2).

98

Chapter 6

A technique for evaluating mobility
sensing

Inspired by the popularity of smartphone-based personal fitness tracking, the
transportation community aims to build Human Mobility Systems (HMSes) that can
automatically track and classify multi-modal travel patterns. Such systems can re-
place expensive and infrequent travel surveys with long-term, largely passive data
collection augmented with intermittent surveys focused on perceptual data.

While there has been much work on building HMSes, both in academia and in
industry, the procedure to evaluate them has largely been an afterthought. Careful
evaluations are critical as we move from the personal to the societal domain. Users
who make decisions based on self-tracking have an intuition of its accuracy based
on their experienced ground truth. The decisions are low-stakes lifestyle changes,
which may be personally meaningful, but are not societally contentious. However,
a Metropolitan Transportation Agency picking projects and allocating millions of
dollars in funding needs to know the accuracy of the data before making its deci-
sions [VS15].

Computational Mobility (CM) (Chapter 1) can frame approaches to evaluate
accuracy. Consistent with interdisciplinary research principles, we can apply compu-
tational concepts to shift the focus from ad hoc techniques to more rigorous concepts
for evaluating software systems and algorithms. These concepts include: (i) artificial
workloads, from Operating Systems, (ii) standard datasets, from Machine Learning,
and (iii) handling transient effects, from Networking.

The rest of this chapter is structured as follows. We start with an intuitive
description of the challenges and the solution in Section 6.1. Next, we outline the
evaluation requirements in Section 6.2 and outline an experiment procedure that
meets them in Section 6.3. We discuss some alternative approaches in Section 6.4 and
describe the reference implementation in Section 6.5, concluding with Section 6.6.

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 99

6.1 Intuition for challenges and solution

The typical HMS evaluation procedure (e.g., Quantified Traveler [JAC+15], prior
versions of our work [SYCK15, SBM+18], Chapter 4) is ad hoc and also functions
as a pilot — a small (≈ 3-12) set of the author’s friends and family are recruited
to install the app component of the HMS on their phones, and go about their daily
life for a few days or weeks while annotating the trips with “ground truth”. The
ground truth annotation can either directly happen on the app, or through a recap at
the end of the day. Conscientious researchers may ensure that the set of evaluators
are demographically diverse, in an attempt to evaluate against a richer set of travel
patterns.

While this procedure imposes little additional researcher burden, it conflates the
experimental procedure (understanding human travel behavior in the wild) with the
evaluation procedure (evaluating the instrument that will measure the human travel
behavior). The first is trying to understand behavior, so it needs human diversity.
The second is trying to understand sensing parameters, so it needs diversity of trip
types. The human functions as a phone transportation mechanism during evaluation
and could be profitably replaced with a self-navigating robot if one was available.

An analogy with classic physical measurements may be useful. Consider the
situation in which a researcher wants to collect data on the weight distribution of
the population in a particular region. Since there are currently no certifying bodies
for travel diaries, let us pretend that she cannot purchase a pre-certified scale. How
would she evaluate the available scales before starting her experiment?

The analog to ad hoc evaluation procedure would involve recruiting several of
her friends and family to weigh themselves on the scales and compare the reported
weight with their true weight. This analogy clearly reveals some limitations of the ad
hoc procedure: (i) How does she trust that the self-reported weights are “true”? (ii) If
all her friends are adults weighing 55 kg – 75 kg, how does she know how the scales
perform outside that range? She can overcome the range limitations by recruiting a
broader set of testers, e.g., through an intercept survey. However, that modification
makes the ground truth limitation worse, since it is less likely that strangers will
reveal their true weight. A further modification might pay contributors to improve
the self-reported accuracy, but at this point, she is essentially running the experiment.

A more robust evaluation procedure would involve choosing known weights
across a broad range (e.g., 0 kg to 300 kg in 10 kg increments) and comparing them
to the reported weights. Since no instrument is perfect, there is likely to be some
variation in the values reported. She would likely repeat the experiments multiple
times in order to establish error bounds.

HMS evaluation procedures need to be more sophisticated than simple physical
measurements since: (i) their operation is based on prior behavior (e.g., HMS duty
cycling, android doze mode) and the potential for feedback loops makes it important
to control the sequence of evaluation operations, (ii) unlike a physical scale, which has

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 100

a fixed one-time cost, they have an ongoing, variable cost in terms of battery drain,
so the evaluation must assess the power/accuracy trade-off, and (iii) unlike scalar
weight data, HMSes generate strongly correlated timeseries data, which is extremely
hard to anonymize.

Therefore, the main contributions in this chapter are:

1. We propose an evaluation procedure for HMSes based on predefined, ground
truthed, artificial trips and outline how it addresses the above challenges,

2. We describe the design of a cross-platform evaluation system that can be
used to perform such evaluations reproducibly and publish the results.

3. We highlight some lessons learned during this process that future groups might
want to take into account while designing their experiments.

6.2 Requirements for evaluating Human Mobility

Systems (HMSes)

Human Mobility Systems (HMSes) need a methodology for rigorous evaluation
that allows users of the data to understand their limitations and their accuracy in
various settings. Before establishing such a method, we need to understand the eval-
uation requirements, and the challenges associated with meeting each requirement.
Establishing a clear set of requirements also allows us to understand the limitations
of the proposed method and provides a roadmap for future improvements.

6.2.1 Holistic evaluation: power vs. overall accuracy

Using smartphones for collecting background sensed location data leads to higher
battery drain. Travelers are very sensitive to battery life [FDK11, RQZ07], and there
is a clear power/accuracy trade-off for smartphone sensing (Chapter 4). Näıve high
accuracy sensing drains the battery for almost all users (Section 4.4), but techniques
to lower battery drain also lower the accuracy (Section 4.2) So it is critical that the
evaluation consider both power and accuracy together. For example, if an HMS can
get 95% accuracy, but runs out of battery in 2 hours, the deployer needs to adjust
the incentives offered (e.g., money, utility, . . .) accordingly.

6.2.2 Privacy preserving

The data collected by HMSes includes location traces, which are inherently pri-
vacy sensitive. While a common privacy technique is to de-link datasets by replacing
Personally Identifiable Information (PII) with a code [MGS10], location traces allow
re-identification from the raw data alone [ZB, dHVB13]. Intuitively, from the location

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 101

traces, we can find the places where people spend most of their time, which allows us
to discover their home and work locations and uniquely identify them. This implies
that the evaluation methodology must address privacy concerns.

6.2.3 Ground truthed

In order to fully evaluate the data collected, we need ground truth for not just
the mode, but also the trip start and end times, section start and end times and the
travel trajectory. Labeling trips through prompted recall is a low effort technique to
collect mode ground truth, but it depends on accurate trip and section segmentation.
Segmentation ground truth requires recalling the start and end times at the end
of the day, which is likely to be unreliable [SSLA15, p. 206-207]. Similarly, for
evaluating trajectories, travelers can potentially draw out spatial ground truth but
spatiotemporal ground truth is almost impossible to obtain after the fact.

6.3 Controlled Evaluation of context-sensitivity

Instruments are typically evaluated by repeatedly exposing them to controlled
inputs to determine their error characteristics. In the case of complex systems such
as HMSes, the evaluation needs additional controls for feedback loops, cost/accuracy
trade-offs and privacy considerations. In this section, we outline em-eval — a pro-
cedure for HMS evaluation that addresses these concerns with two techniques that
are novel in this domain:

(i) predefined, artificial trips that support spatial ground truth, preserve privacy,
increase the breadth of trip types and support repetitions for establishing error
bounds, and

(ii) power and accuracy control phones carried at the same time as the exper-
imental phones, that can cancel out context-sensitive variations in power and
accuracy.

6.3.1 Artificial timeline

The core of the experimental procedure is the predefined specification of a se-
quence of artificial trips, potentially with multiple legs or sections per trip. The
trajectory and mode of travel is also predefined. The data collector completes the
timeline trips by strictly following the specified trajectory and mode while carrying
multiple phones that collect data simultaneously using different configurations.

The specified predefined trajectories provide spatial ground truth. We do not
predefine temporal ground truth since it is extremely hard to control for differences
in walking speeds, delays due to traffic conditions, etc. We use manual input from

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 102

the data collector to collect coarse temporal “ground truth” of the transitions along
the timeline. We do not use manual input for fine-grained temporal ground truth
along the trajectory because: (i) human response times are too slow for fine-grained
temporal ground truth during motorized transportation, and (ii) distracting the data
collector during active transportation can be risky.

Using an artificial timeline addresses several of the unique challenges associated
with HMS evaluation.

Privacy Since the trips are artificial, they preserve the data collector’s privacy. Even
if his adversaries would download the trips, they would not be able to learn
anything about his normal travel patterns.

Spatial ground truth Since even high accuracy (GPS-based) data collection has
errors, predefining spatial ground truth allows us to resolve discrepancies (Sec-
tion 6.4) and compute the true accuracy.

Breadth and variety of trips Artificial trips allow efficient exploration of the breadth
of the trip space. For example, the trips could include novel modes such as e-
scooters and e-bikes, or specify different contexts for conventional modes, such
as express bus versus city bus.

Repetitions Since the trips are predefined, they can be repeated exactly. This allows
us to use standard variance and outlier detection to estimate error bounds on
the measured values.

6.3.2 Control phones

The artificial trips give us spatial ground truth, but they do not give us cost
(power consumption) or temporal ground truth.

We control for the cost through the use of the use of multiple phones, carried
at the same time by the data collector. The phones carried by the data collector are
divided into control phones and experiment phones. The control phones represent the
baseline along each of the axes in our trade-off and the experiment phones implement
a custom sensing regime that is at some intermediate point. The evaluation procedure
allows us to determine those points.

Power The power control phone captures the baseline power consumption of a phone
that is not being used for tracking by a HMS. This does not mean that the
phone is idle — phone OSes (e.g., iOS or android) are complex, context-sensitive
systems that perform their own location tracking (e.g., “Find my iPhone”) and
their own duty cycling (Figure 6.1). Using a power control allows us to identify
the additional power consumed by the HMS, even if it is context sensitive.

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 103

Accuracy The accuracy control captures the upper bound on the accuracy of a
particular class of smartphones given sensor and OS limitations. While we
would like to compare the experimental accuracy to ground truth, (i) all sensors
have errors, so ground truth is not achievable in practice, (ii) artificial trips
give us spatial but not temporal ground truth, and (iii) GIS-based trajectory
specifications do not have an associated power trade-off. Using an accuracy
control allows us to compare the experimental data collection against the best
achievable data collection, in addition to the ground truth.

6.4 Discussion of alternative procedures

While em-eval (Section 6.3) addresses the complexities of HMS evaluation,
it also imposes a much higher researcher burden than the ad hoc method. This
raises the question of whether all these controls are necessary or merely sufficient.
In this section, we discuss some alternative approaches and highlight the unexpected
behavior that they would miss. This list is not comprehensive but provides a flavor
of the arguments without tedious repetition.

6.4.1 No artificial trips

Creating predetermined trips requires an upfront investment in effort, and re-
quires the data collector to take trips just for data collection. An alternative would
use multiple phones, but allow data collectors to go about their regular routines and
tag the modes only. We could use the accuracy control phones to determine the
ground truth trajectory.

No privacy Capturing the data collector’s regular routines compromises their pri-
vacy. Even if the data does not include their name or phone number, a list
of their commonly visited places and trips can form a unique fingerprint that
can uniquely identify them [dHVB13, ZB]. This sensitivity precludes evaluation
data from being published and used for reproducible research.

No repetition The behavior of the same phone with the same configuration can
vary over time, both for power and for accuracy (Figure 6.1). Repeating the
same trip multiple times allows us to detect and remove outliers. With ad
hoc trips, it is unclear whether any difference in behavior is real or caused by
context-sensitive variation. And without predetermined trips, it is challenging
to repeat the same trips and trajectories over time.

No spatial ground truth No sensor is perfect and even the accuracy control phones
can have sensing errors. If we see a divergence between an experiment phone
and the accuracy control, it is unclear which one has the error (Figure 6.1).

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 104

Figure 6.1. Top: Power variation illustrated by duty cycling on android. All the
phones were configured identically, and placed in the same environment. The built-
in duty cycling on android switches all phones to low power mode at around 1 hr.
However, phone 1, on run 1 alone, switches back to high power mode at around 12.5
hours. Repeating experiments allows us to distinguish the first consistent duty cycle
and the second outlier. Bottom: Accuracy variation illustrated by mismatched
timestamps during trajectory data collection. Both trajectories are collected from
identical phones during a subway trip. Point 74 has an accuracy radius of only 12,
but its timestamp is in June instead of July! Spatial ground truth allows us to sort
out the varying accuracies here.

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 105

Figure 6.2. Top left: iOS power control phone with the sensing app consuming
100% but of a power drain of only 2% over the entire day. Top right: android phone
showing Google Play services as a separate power consumer. Bottom: Explicit duty
cycling causes increased power drain at high frequencies, possibly due to greater CPU
power consumption. Note that the battery drain flattens out on all curves during the
middle, stationary part. The main difference is in the rate of power drain while
moving — the checks for android’s built-in duty cycling appear to be optimized to
be more efficient than our simple implementation.

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 106

6.4.2 No control

Using control phones requires the researcher to purchase multiple phones of the
same make, model and approximate age. While used smartphones are relatively cheap
(USD 50 – USD 100), 4 android phones and 4 iPhones combined will still cost USD
400 – USD 800. An alternative would be to use one phone each for each OS, perform
the timeline trips, and look at the app-specific power consumption reported by the
phone OS.

Sensor access attribution and the meaning of the % Sensor access in modern
phone OSes (android and iOS) is also context-sensitive, making it unclear how
it is counted for per-app consumption. For example, if multiple apps request
a sensor reading, the OS delays returning a result until it can batch related
requests and serve all of them with a single sensor access (e.g., Figure 5.2).
This is why the OSes treat the sensing frequency as a hint instead of a guar-
antee. Second, if sensor access is mediated by a service (e.g., fused location in
Google Play Services), it is unclear whether the sensor access is counted for the
service or the app (Figure 6.2). And finally, although android reports per app
consumption as a % of the battery capacity, iOS does so as a % of the battery
consumption. This indicates that on dedicated phones, the HMS under test
will always show close to 100%, whether it is the power control or the accuracy
control (Figure 6.2). Using a control phone for the power will cancel out these
context-sensitive effects and estimate the difference in power drain with and
without the HMS app component installed.

Custom duty cycling increases power drain Sensing is not the only source of
power consumption — CPU usage can also have a significant impact on power
usage. HMSes can use smart local processing to reduce local sensing, but the
increased power consumption from the CPU can cancel out the savings from
the sensing. Including an accuracy control showed that, unlike in 2015 (Sec-
tion 4.2), the basic duty cycling algorithm in our experiment paid for itself in
low frequency sensing but actually increased power usage for high frequency
sensing (Figure 6.2).

6.5 Evaluation system design

The em-eval procedure (Section 6.3) allows us to estimate the power/accuracy
trade-off of various sensing configurations used in Human Mobility Systems (HMSes).
One of the novel components of the procedure involves the specification of pre-defined,
artificial trips with ground-truthed trajectories and modes.

This section explores the nuances of implementing such a procedure. We first
describe a publicly available reference implementation of a system – em-eval-zephyr

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 107

– that can be used perform this procedure. We then discuss challenges encountered
while using the system to perform an experiment in the San Francisco Bay Area
(Section 7.2). Some of these challenges were addressed by system improvements,
while others are documented as best practices for future data collectors.

6.5.1 System overview

em-eval is a generic procedure for HMS evaluation – it does not actually collect
any data. To use it, we need a concrete system that configures data collection based
on the spec configurations, collects coarse temporal ground truth, periodically reads
battery levels and stores data for future analysis.

We built a system – em-eval-zephyr – that combines our prior work on power
evaluations [SFC+] with our existing HMS platform [SBM+18] and supports perform-
ing the em-eval procedure. The system consists of three main parts:

Evaluation Specification The spec describes an evaluation that has been per-
formed or will be performed in the future. In addition to mode and trajectory
ground truth, it includes the app configurations to be compared and the map-
ping from phones to evaluation roles. The spec automatically configures both
the data collection app and the standard analysis modules.

To reduce evaluator burden, we provide preprocessing functions to fill in trajec-
tory information based on route waypoints for road trips and OSM relations for
public transit. We also provide sample notebooks to verify timelines and their
components before finalizing and uploading the evaluation spec.

Auto-configured Smartphone App We have generated a custom UI skin for our
e-mission platform [SBM+18] that is focused on evaluation. It allows evalu-
ators to select the current spec from the public datastore, and automatically
downloads the potential comparisons to be evaluated, the role mappings and
the timeline.

Since the e-mission platform data collection settings are configurable through
the UI, the sensing configurations defined in the spec are automatically applied
based on the phone role when the data collector starts an experiment. For
example, when starting an experiment to compare high accuracy (HAHFDC)
versus medium accuracy (MAHFDC) data collection, the second experiment
phone will automatically be set to MAHFDC settings. Finally, when the data
collector performs the trips, he marks the transition ground truth in the UI,
and the app automatically displays the next step in the timeline (Figure 6.3).

Public Data + Sample Access Modules Since there are no privacy constraints,
em-eval-zephyr uploads all collected data to a public instance of the e-
mission server. The associated repository contains sample notebooks that can

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 108

Figure 6.3. Top: Spec components in em-eval-zephyr include configuration, time-
line and trip details. Bottom: Sample spec for a multi-modal trip, including transfers
and waits for public transit.

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 109

download, visualize and evaluate the data associated with a particular spec.
All the data used in this paper is publicly available, and the notebooks can be
manipulated interactively using binder1.

Note that although the em-eval procedure is general, the current implementa-
tion of the em-eval-zephyr system is integrated only with the e-mission platform.
Using the procedure with other HMSes will require re-implementing the em-eval pro-
cedure with the other HMS, or using a combination of systems for the evaluation.
For example, em-eval-zephyr can still read the battery level periodically, display
the trip sequence to the data collector, and be used to mark the transition ground
truths. However, the evaluator needs to configure the settings for the app being tested
manually, and to download, clean and analyze the resulting data.

6.5.2 System iterations and lessons learned

As we started collecting data, we had to resolve some ambiguities around exactly
when the transition ground truth should be collected. We also discovered best prac-
tices that increased the likelihood of successful data collection. This section outlines
these lessons learned.

System change: capture transition complexity One of the big promises of us-
ing HMSes for instrumenting human travel is that we don’t have to focus only
on the primary mode. Instead, with fine-grained data collection, we can under-
stand the full complexity of end to end travel.

In fact, the only true unimodal trips are walking trips. Everything else is multi-
modal. Thus, a significant change to the system was to restore the hidden
complexity that is elided from user descriptions of travel diaries. For example,
consider the trip description “Drive from Mountain View Library to Los Altos
Library”. Although that appears to be a unimodal trip, it is actually a multi-
modal trip which involves implicit walk access sections to and from the car at
the source and destination respectively.

It is not possible to predetermine the ground truth for these walk access sections
since we cannot control which parking spaces are available when we perform the
trip. We address such issues by adding shim sections, and expanding the start
and end from points to ≈ 100 m polygons. We can then relax the constraints
around ground truth within the polygon by only using the reference dataset,
but still check the accuracy of the mode inference (Figure 6.3).

Best practice: Pilots are critical In spite of reviewing the predetermined trajec-
tories ahead of time as part of the validation process, and also having them

1https://mybinder.org/

https://mybinder.org/

CHAPTER 6. A TECHNIQUE FOR EVALUATING MOBILITY SENSING 110

displayed on the em-eval-zephyr UI, we found that we frequently made small
mistakes, during the first round of data collection for a new timeline. Sometimes,
we found that the predefined routes, potentially suggested by Open Source
Routing Machine (OSRM), felt unsafe to bicycle on. We had to tweak the spec-
ification to pick safer routes. The second repetition generally resolved these
issues. In order to avoid a stressful data collection experience, we suggest run-
ning through a new timeline with a trial run before starting full-featured data
collection.

Best practice: Mindfulness Remembering to mark the transition ground truths
was one of the hardest parts of the ongoing data collection and really highlights
the challenges of ground truth collection. In spite of the fact that she was
performing artifical trips to collect data for her own project, one of the authors
forgot to mark wait → move transitions during the pilot for the long multi-
modal timeline because she had started checking her email while waiting. It is
important to be present in the moment and pay attention to the context while
collecting data.

6.6 Conclusion

Human Mobility Systems (HMSes) are complex software systems that run on
equally complex smartphone operating systems (OSes). This complexity implies that
there is rarely a simple linear relationship between their inputs and outputs, which
complicates their evaluation.

We outline a procedure, based on repeated travel over predefined artificial time-
lines carrying experiment and control phones, to control this complexity. We show
that it can control for outliers, and also reveal meaningful signals about the behavior
of smartphone virtual sensors that are relevant to instrumenting human travel data.

The procedure is privacy-preserving, so it does not need human subjects ap-
proval. It focuses on trip diversity, not demographic diversity, so it can be undertaken
by a small research group, or even a single researcher, as a pre-pilot before recruit-
ing study participants. It uses predetermined trips and modes, so it can efficiently
explore complex or newly emerging travel patterns and modes, such as e-scooters.
The procedure, and the associated reference implementation can simplify the testing
required before a study is launched.

The next stage is evaluation, which adopts this procedure to evaluate the sensing
accuracy for various settings. In addition to assessing the architecture usage, we also
gauge the ability of the analysis algorithms (Chapter 5) to boost the sensed accuracy.

111

Chapter 7

Performance Evaluation

In prior chapters, we have outlined the architecture of a platform for instru-
menting human travel data, described its functionality, and indicated how it can be
extended to meet various use cases. We have also developed an evaluation procedure
for analyzing the related power/accuracy trade-offs, and collected ground truth data
using the procedure. In this chapter, we perform a quantitative evaluation of the
platform in both these areas.

For the architecture and extensibility, we examine the usage of the architecture
modules in the context of three use cases from different domains — (i) a classic travel
diary, (ii) a crowdsourcing initiative for accessibility metrics, and (iii) a behavioral
study on incentivizing sustainable transportation. We show that our use cases used
an average of 64% of the features of the platform, with ≈ 3-4 months of part-time
CS undergraduate time for each new case. Every use case contributed at least one
extension, primarily client-related, back to the platform. This serves as an existence
proof that it is possible to build a nascent community around open source HMSes.

Since the data collection settings of the platform are configurable, instead of eval-
uating a single implementation, we examine the power/accuracy/analysis trade-off for
a variety of configurations. These results can assist deployers in choosing the settings
suitable for their application. We identify three timelines with varying travel times
and evaluate them under high/medium accuracy and frequency settings. We show
that the power consumption on android is primarily affected by frequency and on iOS,
by accuracy. The sensing configurations primarily affected the trajectories, but not
the segmentation or classification, which use other virtual sensors (Section 5.2). The
post-processing analysis improved trajectory and section segmentation significantly,
but did not affect the other metrics.

CHAPTER 7. PERFORMANCE EVALUATION 112

7.1 Evaluation of architecture and modularity

In this section, we evaluate our architecture under the context of bridging the
builder–deployer gap (Section 3.1). Our evaluation is based on its use in three separate
use cases (or “apps”) from deployer projects. We show that although the use cases
initially appear different, they re-use several common modules without modification,
and are able to extend other modules to meet their needs. We also show that the
development time for the projects is much shorter than building one-off apps from
scratch. Finally, these projects show the ability to overcome the social challenges
associated with interdisciplinary platform building. However, in the absence of a
rigorous user study, we have no knowledge of negative cases (e.g., deployers who
are unconvinced by platforms). Further, although the platform enhancements have
reduced as the platform matures, requests for documentation, particularly from non-
developer deployers, are increasing with adoption. Therefore, the long-term viability
of such platforms is still an open question.

7.1.1 Metrics

When presenting the idea of a platform to deployers, there was skepticism about
the benefits of a platform. Some questions that have been raised, and the metrics
that we used to answer them, are:

Q: Is there enough common functionality that it can be abstracted out?

extensibility: We examine the platform components identified by the architecture,
and see how they are used by the systems instantiated from it. For example,
does the architecture ensure that that common functionality is reused and all
customization is restricted to customizable modules?

Q: What is the difference between an app and a platform? What is wrong with a
one-off project? How much time will using a platform actually save?

utility: We compare the time required to create a one-off app from scratch with the
time required to customize a platform.

Q: Will non-developer communities embrace open source platforms? Why not con-
tinue to use consultants instead?

adoption: We measure external contributions to both core modules and customiza-
tions, especially if the customizations were re-used by other projects. Consul-
tants can use open source platforms too.

Q: What about application-specific metrics such as survey responses or app launches?

CHAPTER 7. PERFORMANCE EVALUATION 113

application specific metrics: We do not include these because the platform does
not control application-specific settings, and the metrics suitable for one appli-
cation may not be suitable for others.

7.1.2 Use cases

Abstracting a set of specific systems into a platform involves striking a delicate
balance between breadth and compactness. The platform should be broadly applicable
to a wide variety of applications, or otherwise deployers will continue to build one-off
systems. However, if the platform is too broad, it loses the clear structure that makes
it useful. Striking that balance is more an art than a science, and the balance can
shift over time. Most platform builders use a small (n ≈ 3) set of canonical use cases
to define the platform. The e-mission platform uses three such canonical use cases —
a classic travel diary, an infrastructure crowdsourcing project, and a behavior change
study (Figure 7.1).

All the projects provisioned their own server and collected their own data. All of
them used a UI channel on top of the e-mission base app. The use cases typically used
16 out of 25 features (64%), although the exact set varied according to the use case. In
all three cases, the actual customization was done by undergraduates with computer
science (CS) backgrounds; the undergraduates were from three different universities.
The undergraduate who worked on the cci-berkeley project had worked with e-
mission the prior summer; the others had no prior direct experience.

classic travel survey, cci-berkeley Classic travel surveys are used for instrument-
ing mobility patterns in a population. They are the most recent evolution of the
traditional Household Travel Survey (HTS) which have shifted from paper logs
to telephone surveys to GPS devices and finally, to smartphones. They are pri-
marily focused on unobtrusive data collection and currently provide monetary
incentives for participation. They have to be careful about providing services
to travelers in order to avoid the Hawthorne effect.

The Center for Community Innovation (CCI) is instrumenting mobility patterns
of low-income households in order to study the effects of gentrification on overall
Vehicle Miles Traveled (VMT).

They use a classic travel survey with a stripped down UI that only includes the
travel diary. They also removed several of the controls from the profile, notably,
the option for “Medium accuracy”, and the entire Developer Zone. Since they
had graduate students recruit participants in person, they chose to hand out
a unique, randomly generated token for authentication instead of having users
sign in with an email ID.

They added the ability for users to specify mode and purpose ground truth from
the diary screen, including a rich set of modes such as carpool, shared ride, etc.

CHAPTER 7. PERFORMANCE EVALUATION 114

Figure 7.1. Screenshots of the three different use cases (L-R: cci-berkeley,
opentoall, tripaware)

CHAPTER 7. PERFORMANCE EVALUATION 115

They initially used the event notifier to pop-up a survey at the end of every
trip, but turned it off after negative feedback during the pilot. They also added
a survey that would link the user token to the user UUID, but ended up not
using it when they switched to token-based authentication.

They did not run the analysis pipeline on the data collection server. Instead,
the data analysts pull subsections of the data onto their own laptops and run
the analysis on an ad hoc basis.

crowdsourced infrastructure, opentoall Infrastructure shortcomings such as
missing bicycle lanes, bumpy sidewalks and confusing intersections can be crowd-
sourced from concerned travelers. This data could either be continuously anno-
tated (e.g., label the quality of each segment along your route) or intermittently
triggered when the user actually encounters a barrier. Linking the collected
data to robust mechanisms for (i) notifying group members about newly re-
ported issues, and (ii) ensuring that responsible institutions address hotspots
can motivate participation by users.

The Taskar Center for Accessible Technology (TCAT) is documenting barriers
to accessibility — bumpy or non-existent sidewalks, blocked routes, etc.

While they include the classic trip diary, they prompt the user at the end of every
trip for their experience of the trip, including any barriers that they encountered
that are not already in the opentoall dataset. They use OpenID connect,
linked to their own keystone server for authentication. This allows them to
associate trips taken by any user with trips recommended by the opentoall

trip planner.

They are interested in gamification to prompt crowdsourcing of barriers, as well
as adding local processing for bumpy sidewalk detection using the accelerometer.

behavior change, tripaware While the classic travel survey is sufficient to detect
changes in travel behavior, mobility data can also be used to suggest behavior
changes. Apps could provide services, propose more sustainable alternatives,
or influence user emotions to nudge them towards more sustainable behavior.
There are many potential design choices for modifying behavior change. We
expect the most effective designs for a particular area to be heavily influenced
by local cultural preferences.

A group of undergraduates participating in a research apprentice program stud-
ied the difference between emotion (moody polar bear) and information (sug-
gestions for alternate modes) in motivating sustainable behavior.

They conducted a Randomized Controlled Trial (RCT); participants were ran-
domly assigned to the emotion, information or control channels, and automati-
cally downloaded the appropriate UI for their group.

CHAPTER 7. PERFORMANCE EVALUATION 116

They retained the classic trip diary for the control group. For other groups,
they added a leaderboard, and modified the summary dashboard based on in-
tervention. For the information group, they provided summary statistics and
a set of suggestions for alternatives. For the emotion group, they showed a
polar bear that grew or shrank, and was compared to the others in the same
leaderboard tier.

7.1.3 Extensibility + adoption

The community involvement metrics (Figure 7.2) indicate strong interest and
a significant contributor base. Digging deeper, the usage matrix (Table 7.1) indi-
cates that most of the components were used without modification in a majority of
the projects. Most changes were to customizable modules. The only external en-
hancement to the core modules was the addition of a new auth by the opentoall

project. Further, many of the contributions to customizable modules can re-used by
other projects. For example, the enhancement that allowed users to specify mode
and purpose, introduced as part of the cci-berkeley project was adapted for use in
the opentoall project.

Notable exceptions to these general results include:

Auth Every project used a different authentication mechanism. Having a config-
urable authentication mechanism allows deployers to easily switch between
mechanisms, as well as allowing projects to contribute auth plugins that they
needed for later re-use.

Coarse timer/Push notify 2 out of 3 projects did not turn on the silent push
notification based coarse timer on iOS. Since the data can also be uploaded
at trip end, the data collection still worked since both projects were based in
the United States, which has reasonable connectivity. They also did not use
targeted push notifications.

Algorithm extensions No group has yet contributed algorithm extensions. The
CCI group is actively analyzing their collected data and might contribute im-
provements if they develop any. Since the architecture and data model are now
clearly documented, we hope that researchers who work on inference algorithms
in the future will contribute them to the platform.

Aggregate metrics Since all the projects so far have been focused on small-scale
data collection, they have not explored the aggregate analyses possible. The
opentoall crowdsourced dataset could be an instance of such analysis once the
study is complete.

CHAPTER 7. PERFORMANCE EVALUATION 117

Figure 7.2. Basic community involvement statistics from github for the project. Top
to bottom: server repo, phone repo, docs repo, and closed issues

CHAPTER 7. PERFORMANCE EVALUATION 118

Feature cci-berkeley opentoall tripaware
C

li
en

t

Local buffering X X X
Local processing X X X
Location state machine X X X
Consent X X X
Auth Pre-created to-

ken ↑
OpenID con-
nect ↑

Google auth

bi-directional sync X X X
protocol client X X X
Coarse timer × × X
Event notifier Removed after

pilot
X ×

Setup X X X
UI update X ?? X
Push notify × × X
UI channel X X X

S
er

ve
r

Input timeseries X X X
Analysis timeseries Offline, on lap-

top
X X

K-V store X X Added leader-
board tier
position ↑

Incoming buffer X X X
Webapp X X New API end-

point for sug-
gestions ↑

Push notify × × X
Integrations GIS for mode GIS for mode,

opentoall trip
planner

GIS for mode

A
n

a
ly

si
s

Pipeline usage Analyst runs of-
fline X

X New stage for
tiers, happiness

Reproducibility Multiple ana-
lysts work with
subsets of data
X

× Investigate er-
rors in mode in-
ference X

Algorithm Extensions × × ×
New data model objects mode_confirm

↑
survey result ↑ ×

Aggregate metrics × × ×

Table 7.1. Three projects and their usage of various components of the architecture.
Usage key - X: no modification, × not used, ↑ enhancement contributed

CHAPTER 7. PERFORMANCE EVALUATION 119

7.1.4 Utility

The utility metric is difficult to assess because one-off deployer projects that did
not publish source code do not publish their development time either. The commercial
rMove app [GFHG16] took five months to develop, but the development team size is
unknown. The one-off Quantified Traveler project [JAC+15] involved a development
team of five in addition to the authors, but the details of contribution and time taken
are unclear. DataMobile [PF16] is open source, but it only recently (June 2018)
created github repositories through code bulk upload, so we are unable to see the
commit history.

As shown below, all the e-mission changes so far have taken < 3 months with
CS undergraduates working part-time. Less ambitious changes are possible with one
undergraduate, RCTs with multiple UIs need a larger team.

cci-berkeley ≈ 6 weeks of full-time work by one CS undergraduate with prior e-
mission experience + ≈ 2 weeks of part-time work by another CS undergrad-
uate to change text and colors.

opentoall ≈ 1 month of full-time work by one CS undergraduate for extending auth
+ ≈ 3 months of extremely part-time effort for UI changes + integration.

tripaware ≈ 3 months of 6-10 hrs/wk by 6 CS undergraduates to design 3 custom
UIs for RCT + server changes for leaderboard and polar bear

An advanced UI is planned to be developed for Sydney area to be completed in
one month time by a professional programmer and a research student, to collect the
travel diary of Sydney residents for two weeks. Further, the platform is being used for
collecting information about the route choice behavior of pedestrians in dense urban
area of Sydney CBD.

Note that this estimate only accounts for deployer, not builder effort. While the
pace of platform enhancements has slowed as it has matured, requests for clarification
and documentation are increasing. These requests are particularly numerous when
non-CS deployers are involved — for example, although cci-berkeley UI changes
took only ≈ 2 months, it took another month and a half for the CCI group to perform
routine non-platform-specific system administrative tasks.

Integrating with ongoing software carpentry1 efforts may result in documentation
that meets the needs of non-CS audiences without overwhelming platform builders,
especially in resource-constrained research environments.

7.1.5 Application specific metrics

The evaluation does not include application specific metrics. This is mainly
because (i) the platform is designed to be extensible, so it does not control the ap-

1https://software-carpentry.org/

https://software-carpentry.org/

CHAPTER 7. PERFORMANCE EVALUATION 120

plication configuration, and (ii) the metrics, such as the number of questions in the
survey, may not be broadly applicable.

no control: The metrics are influenced by a mix of factors, few of which the platform
controls. For example, app retention is likely to be influenced by monetary
incentives, app functionality and power drain. The platform does not control
either of the first two options, and the third is configurable by the app. So it is
possible for applications with similar functionality, built on the same platform,
to have drastically different retention rates. Thus, retention rate is not an
appropriate metric for evaluating the platform.

application dependent concerns: Other metrics might be heavily application de-
pendent. For example, metrics for travel surveys could include the number of
questions for each trip and the response rate. These metrics are not mean-
ingful for gamification, where users are typically not surveyed about trips, and
might even be prevented from providing additional information in order to avoid
cheating. Likely gamification metrics are number of app opens and the length
of time on each screen.

7.2 Evaluation of data collection and analysis

Since e-mission is a platform, systems that use it can configure it to meet their
needs. Therefore, this evaluation focuses on evaluating the performance at various
settings and presenting the trade-offs for deployers to use. The key findings are:

power The power consumption on android is primarily affected by frequency and on
iOS, by accuracy. At the lowest power levels tested, the power drain of sensing
was only significant for daily travel time > 3 hours, and it was ≈ 15% even for
6 hours of daily travel.

accuracy The sensing configurations only affected the trajectories and the end trip
detection on android. The other metrics were largely consistent across con-
figurations. This indicates that unless fine-grained trajectory information is
necessary, the lower power levels are sufficient.

analysis The post-processing analysis improves all metrics, some more than others.
The maximum spatiotemporal error dropped from 40 km to 15 km on android
and from 20 km to 5 km on iOS. The maximum number of additional sections
dropped from 10 to 4 on android and from 10 to 2 on iOS. The post-analysis
median trip count difference was consistently non-zero only for the most com-
plex timeline. However, the start/end trip and section times did not improve
significantly.

CHAPTER 7. PERFORMANCE EVALUATION 121

7.2.1 Experiment design

em-eval is a generic evaluation procedure and can be used with any kind of
HMS. em-eval-zephyr is a reference implementation of em-eval that used to eval-
uate many experimental settings relevant to HMSes over any set of trajectories. The
evaluator can pick her settings based on her research goals (Chapter 6). In this sec-
tion, we outline our goals for this evaluation, and use them to define three timelines
that cover 15 separate modes, including recently popular modes such as e-scooter and
e-bike.

Dwell time Instead of focusing only on trips, we wanted to evaluate a timeline that
included significant dwell time. We could see from our calibration runs that
android appears to have built-in duty cycling (Figure 6.2). Including signifi-
cant dwell time would allow us to capture the impact of this context sensitive
behavior. Therefore, we structured our timeline trips as round trips to libraries
with an intermediate dwell time ≈ 3× the mean travel time to the location.

Broad range of modes HMS evaluations should cover a broad spectrum of trip
types. Since we are creating artificial trips, we can structure them to maximize
mode variety. In order to efficiently cover this space, we tried to ensure that
no mode was repeated. We only had to include commuter rail twice since there
were few other transit options to reach the starting point chosen.

Multi-modal transfers Detecting multi-modal transfers in a HMS is tricky because
there isn’t a clear signal similar to a trip end. We ensure that there are many
transition examples by emphasizing multi-modal transfers.

With those goals in mind, we decided on three artificial timelines of varying
lengths that cover a total of 15 separate modes. We chose each timeline to be round
trips to libraries to not include identifiable location data (e.g., home location) in our
experiments. A description of each timeline with the associated modes and dwell
times is given in Table 7.2.

7.2.2 Evaluation parameters

The experiment evaluates the power, accuracy and analysis trade-offs along 3
timelines of varying lengths. It first establishes the relationship between power and
the sensed accuracy of the raw data received from the phone. The raw data consists
of location, trip transitions and motion activity detection (Section 5.2). Android does
not expose a trip end sensor, so the evaluation uses includes a custom dwell based
implementation. Finally, it explores the improvements to overall accuracy by analysis
algorithms.

CHAPTER 7. PERFORMANCE EVALUATION 122

id Description Outgoing
trip modes

Incoming
trip modes

Dwell time Overall
time

unimodal

trip car

bike mtv la

Suburban
round trip

car bike 1 3
(city
streets)

hrs hrs

car scooter

brex san

jose

Downtown
library

car escooter 3 5.5
(freeway) Bus Rapid

Transit
hrs hrs

train bus

ebike mtv

ucb

Multi-modal
trip across
the bay

commuter
train

ebike
(shared)

6 12.5

subway express bus hrs hrs
city bus downtown

walk
light rail
commuter
rail

Table 7.2. Brief description of timelines, covered modes, dwell times and overall times

7.2.2.1 Built-in, black-box sensing parameters

Modern smartphones include closed source APIs for

1. fused location sensing, which determines location with the specified accuracy
based on a combination of GPS, Wi-Fi and other sensors,

2. trip start/end detection, which uses low power sensing to detect when a trip
starts or ends, and

3. motion activity detection, which uses low-power sensors to determine whether
the traveler is walking, bicycling or in a car.

Since the APIs are black-boxes to HMS builders, we evaluate the accuracy at
various sensing settings. Configurations are a combination of these settings, so HAMFDC

stands for High Accuracy, Medium Frequency, Duty Cycled collection.

High accuracy vs. Medium (HA vs. MA) High accuracy will tend to favor GPS
and result in high power consumption.

High frequency vs. Medium (HF vs. MF) High frequency will sense and pro-
cess more often so is likely to have higher spatiotemporal accuracy (e.g., will
hug corners) but with higher power consumption.

CHAPTER 7. PERFORMANCE EVALUATION 123

Duty cycling vs. Always on (DC vs. AO) Duty cycling allows for high accu-
racy, high frequency sensing with low power drain, but with sensing gaps at
trip start due to delay in detecting the trip start.

7.2.2.2 Trip end detection during sensing

Note that there is currently no built-in, app-invokable trip end detection API for
android. We implement a näıve trip end detection algorithm to fill this gap for the
sensing evaluation. For each sensed point, the algorithm reads the data from the last
5 minutes, computes the distances from the current point, and checks to see if the
max distance is below the trip end detection threshold. This allows us to control for
noise in the data and avoid spurious trip end detection. The computation cost for this
algorithm depends on the density of the collected points since we run the algorithm
more frequently and check more points on each run. More efficient algorithms that
run less frequently or check fewer points will have lower computational needs but
less sensitivity. Our results show that Google appears to have implemented a duty
cycling algorithm for android that is more efficient than our näıve algorithm. This
is consistent with our reasons for using virtual sensors where possible (Section 4.5).
If this algorithm were exposed for third party apps to listen to, we could use virtual
sensors for all our sensing needs.

7.2.2.3 Processing algorithms for improving accuracy

We can attempt to improve this sensed or input accuracy by running process-
ing algorithms for smoothing, outlier detection and interpolation. We consider two
possible analysis algorithms:

master: uses dwell time + visit detection for trip segmentation, unfiltered motion ac-
tivity values for section segmentation, zigzag detection for trajectory smoothing
and random forest for mode inference.

gis-based: Enhances segmentation to smooth out flip-flops in motion activity, GIS
integration for enhanced mode inference.

7.2.3 Metrics

The post-processing steps can be classified into three broad themes, each of
which can be evaluated using multiple metrics (Section 5.3).

Segmentation Splits a stream of sensed values into meaningful segments — e.g.,
trips and sections.

Trajectory tracking Detects outliers in spatiotemporal trajectories caused by er-
roneous sensing and removes them.

CHAPTER 7. PERFORMANCE EVALUATION 124

Classification Assigns labels to the segments. The most common classification task,
and the only one we will evaluate here, is the determination of the travel mode
for every section.

We now outline the common error conditions for each algorithm type, and define
the metrics that can be used to characterize the error. Additional concrete examples
of error characteristics can be found in the interactive notebooks of the evaluation
repository2

7.2.3.1 Segmentation

The main error conditions for segmentation algorithms are:

1. the algorithm detects the correct number of segments, but the start and end
transitions don’t match the ground truth (Figure 7.3, top)

2. the algorithm detects more segments than the ground truth, flip-flopping during
a single real segment (Figure 7.3, bottom)

3. the algorithm detects fewer segments than the ground truth

More formally, let the set of ground truth segments be GTS and the set of sensed
segments be SS. Each gts ∈ GTS can match a set SSgts = {ssgts1 , ssgts2 , . . . , ssgtsn}
of ss ∈ SS. We can then measure these error characteristics using the following
metrics:

∆start ts ∀gts min(|ssgts1 .start ts − gts.start ts|, Tt). Lower is better. Metric is
capped at a static threshold of Tt. This captures the first kind of error.

∆end ts ∀gts min(|ssgtsn .end ts− gts.end ts|, Tt). Lower is better. Metric is capped
at a static threshold of Tt. This too captures the first kind of error.

∆count ∀gts min(|n−1|, Tc). Lower is better. Metric is capped at a static threshold
of Tc. This captures the second and third kinds of errors.

Matching algorithm for evaluation In order to evaluate these metrics, we
need to come up with an algorithm that can generate the ssgts given a gts. This is an
evaluation algorithm that will be used to evaluate the performance of more complex
post-processing algorithms. In order to avoid infinite recursion, it should be simple
and deterministic and not involve exhaustive evaluation of its own.

Our proposed matching algorithm has two steps.

2https://github.com/e-mission/e-mission-eval-public-data

CHAPTER 7. PERFORMANCE EVALUATION 125

Figure 7.3. Examples of errors in segmentation captured by the segmenta-
tion metrics. Top: large error in the trip start time for an iOS HAHFDC run. The
green line is the ground truth, red line is the sensed data. We got a visit end (trip
start) transition at 17:41, but we detected a trip end within 30 ms so we did not
sense any data. The next trip start was at 17:48, when we did start reading values,
but this was almost the end of the trip.Bottom: error in segmentation trip count for
an android HAMFDC run. On one multi-modal trip, we get multiple trip start and end
transitions, largely corresponding to transit transfers. Note also that there at 8:30,
there are two consecutive geofence exits (08:30 and 09:15) and an erroneous point in
San Jose.

CHAPTER 7. PERFORMANCE EVALUATION 126

1. The first step, which is only applicable while evaluating raw sensor data, con-
verts a sequence of transitions (e.g., VISIT ENDED, VISIT STARTED) into candi-
date ranges by matching start and end transitions. This is not applicable while
evaluating post-processed data, since the output of the post-processing step will
already generate segments.

Input Set of transitions (S—E)* with some potentially missing or duplicated

Output Pairs of (S, E) transitions that define the sensed ranges

Implementation For each S, find the first corresponding E. Any intermedi-
ate unexpected transitions are ignored — e.g., {S0, S1, E0, E1, E2, E3} →
{S0, E0}

2. The second step, which is always applicable, matches the ground truth trip or
section segment with an arbitrary number of sensed ranges from the previous
step.

Input GTS = {gt1, gt2, . . .}, SS = {ss1, ss2, . . .},∀ss, ss = (S,E)

Output SSg ⊆ SS∀g ∈ GTS

Implementation For each g find the sss with the closest start timestamp and
the sse with the closest end timestamp. Both matches have threshold of
Tc beyond which we will not match any entry. Then, SSg = {sss, . . . sse}.
Note that we match each ground truth segment in isolation, so it is possible
for a particular ss to match two separate g. However, because of the
threshold on the match, we expect this to be unlikely.

7.2.3.2 Trajectory tracking

The main error conditions for tracking algorithms are:

1. the sensed points are spatially offset from the real trajectory (Figure 7.4, top).
The metric for this error condition is fairly straightforward, since we know the
spatial ground truth for each evaluation timeline. We can simply compute the
error for each sensed point as the shortest distance from the point to the ground
truth trajectory. Note that since we compute the error for each sensed point,
this metric does not capture large gaps in the sensed data - e.g., the delay in
sensing at the start of every trip. Those errors are captured by the segmentation
metrics.

2. the sensed points have temporal inconsistencies (Figure 7.4, bottom). It is much
harder to determine a metric for this error condition since we do not have spa-
tiotemporal ground truth for trajectories. Computing the spatial distance alone
will not capture the error, since the error was caused by repeatedly returning

CHAPTER 7. PERFORMANCE EVALUATION 127

Figure 7.4. Examples of errors in trajectory captured by the trajectory
tracking metrics. Top: Spatial tracking errors from multiple iOS MAHFDC runs. The
green line is the ground truth, other colors are the sensed data. For each sensed tra-
jectory, the spatial error is the shortest perpendicular distance to the spatial ground
truth line (i.e., the thick blue line from the brown point to the green line. Bottom:
Temporal errors caused by backtracking to previous spatially valid point, based on an
android HAMFDC run. The sensed points in red are largely along the spatial ground
truth trajectory in green, but they periodically return to a previous point in the tra-
jectory, generating zigzags. In this case, the spatial error of the repeated points is
small, but the temporal error, encompassing cross-bay jumps, is large.

CHAPTER 7. PERFORMANCE EVALUATION 128

to an earlier point. For this metric, we generate a spatiotemporal reference
trajectory for each run based on the accuracy control phones and use it for the
comparison. Note that we must construct a reference trajectory for each run,
since temporal factors (e.g., congestion, transit delays) are likely to be different
even for different runs of the same timeline.

Formally, let the set of sensed points for an evaluation run r be Pr. Let the set of
corresponding spatial ground truth points be G. Note that the spatial ground truth
is not dependent on the run. Let the accuracy control points for android and iOS
respectively be ACPar and ACPir . Let the temporal start and end ground truth for
the segment being evaluated be TGT = {tgts, tgte}. We can then define the metrics
as follows:

∆sd Perpendicular distances from the sensed points to the ground truth trajectory.
Lower is better. √

1

|P |
∑
p∈Pr

d(p,G)2

∆std 1. Use the accuracy control and ground truth trajectories to determine a
combined spatiotemporal reference trajectory Gr. Reference trajectory
calculation is complicated because the accuracy controls have significant
error in practice. Note that, unlike spatial ground truth, spatiotemporal
ground truth is run-specific, due to variations in travel time.

2. Perpendicular distance from the sensed points to the reference trajectory.√
1

|P |
∑
p∈Pr

d(p,Gr)2

7.2.3.3 Classification

Classification metrics are the easiest to work with, since they fit well into classical
machine learning paradigms. Since each section has a mode, and we know the ground
truth modes, we can simply count the number of correct values to represent the
accuracy. However, there are some challenges that are unique to this domain.

1. The list of modes supported by the classifier may be limited. In particular,
it may not be easy to distinguish between city and express buses, or between
regular bicycles and e-bikes. Therefore, classification algorithms may choose to
restrict the set of classes that they support, mapping all bus trips to BUS and
all bicycling trips to BICYCLING.

2. Since we classify sections, the classification accuracy depends on the segmenta-
tion accuracy. For example, if a classification algorithm uses the average speed

CHAPTER 7. PERFORMANCE EVALUATION 129

as a determining factor, but the segmentation combines the walk to the station
with the subsequent short train section, the section may be misclassified. We
address this by reporting the ratio of the sensed segment that has the correct
mode.

Formally, let GTS be the set of ground truth segments for a particular timeline.
As with the segmentation metrics, each gts ∈ GTS can match a sequence SSgts =
{ssgts1 , ssgts2 , . . . , ssgtsn} of ss ∈ SS. Note that since we only label modes, we only
consider sections and not generic segments here. Similar metrics can be applied to
trip labels (e.g., purpose) if we support them in the future. We can then define the
overall, segmentation-dependent accuracy by checking the fraction of time spent in
matching modes. Note that this can sometimes be greater than 1, as a spillover from
segmentation mismatches (Table 7.3). As close to 1 as possible is better.

as =
∑

ssgts∈SSgts,ssgts.label=gts.label

|ssgts.end ts− ssgts.start ts|
|gts.end ts− gts.start ts|

∀gts ∈ GTS

Once we have computed these metrics, we can combine them in various ways for
comparisons. For example: (i) we can combine the data for a timeline (e.g., unimodal
trip car bike mtv la) (ii) we can combine the data for a mode (e.g., CAR) (iii) we
can combine the data for a trip or section (e.g., freeway driving weekday)

7.2.4 Power: calibration and evaluation

We start with an understanding of the power considerations for automatic sens-
ing. Our evaluation procedure assumes that the phones are effectively identical and
can be directly compared. However, even phones from the same model may have
differences in behavior based on minor manufacturing differences or prior usage. We
first calibrate the phones to determine whether their behavior is consistent for con-
sistent configurations and identical inputs. We then move to an evaluation phase in
which we use the calibrated phones to understand power behavior for a particular OS
version under different settings. This section highlights interesting results from both
the calibration and evaluation phases.

7.2.4.1 Calibration results

We calibrated the phones by configuring them identically and placing them next
to each other on a stationary surface. We then tracked the power drain across time.
Since the configurations were identical and the environment was identical, we expected
to see that the final power drain for a particular configuration was consistent. We
also expected consistent power drain across phones for the same configuration.

Accuracy vs. Frequency: Although there are outliers, repeated experiments allow
us to see clear behavior differences. High accuracy, high frequency (HAHF) is

CHAPTER 7. PERFORMANCE EVALUATION 130

automotive confidence cycling running stationary walking fmt time
154 False medium False False False True 19:01:53-07:00
155 False high False False False False 19:02:46-07:00
156 False medium False False False True 19:02:51-07:00
157 False high False False False True 19:03:46-07:00

. . .
172 False medium False False False True 19:17:59-07:00
173 False high False False False True 19:18:15-07:00
174 False high False False False False 19:19:06-07:00
175 False medium False False False True 19:19:34-07:00
176 False high False False False False 19:19:41-07:00
177 False medium False False False True 19:19:49-07:00
178 False high False False False True 19:20:04-07:00
179 False high False False False False 19:21:16-07:00
180 False high False False False True 19:21:36-07:00
181 False high False False False False 19:22:36-07:00
182 False high False False True False 19:27:21-07:00
183 False high False False False False 19:28:01-07:00

Table 7.3. Example of how bad segmentation can lead to classification ac-
curacies � 1 using an example fom an iOS MAHFDC run. This trip consisted of a
walk start section from 18:59:17 -> 19:01:06, a suburb bicycling section from
19:01:06 -> 19:20:31 and a walk end section from 19:20:31 -> 19:20:57. How-
ever, the sensing API did not detect any cycling (see transitions above), so the only
sensed section was 19:01:53 -> 19:27:21, WALKING. So the ≈ 30 sec long walk end

transition matched the entire≈ 26 min long sensed section, and the mode was correct.
So the computed accuracy ratio was 5800%!!

CHAPTER 7. PERFORMANCE EVALUATION 131

Transition Time
0 T START TRACKING 2019-09-11T08:10:23-07:00
1 T INITIALIZE 2019-09-11T08:10:23-07:00
2 T INIT COMPLETE 2019-09-11T08:10:24-07:00
3 T VISIT ENDED 2019-09-11T08:15:48-07:00
4 T TRIP STARTED 2019-09-11T08:15:48-07:00
5 T TRIP STARTED 2019-09-11T08:15:48-07:00
6 T VISIT STARTED 2019-09-11T08:15:48-07:00
7 T TRIP END DETECTED 2019-09-11T08:15:48-07:00
8 T VISIT ENDED 2019-09-11T08:30:33-07:00
9 T VISIT STARTED 2019-09-11T10:39:18-07:00
10 T TRIP END DETECTED 2019-09-11T10:39:18-07:00

Table 7.4. Example of ephemeral trip leading to large iOS trip start delay.
The trip was actually from 08:12:17 -> 10:37:45. We got a trip start at 08:15:48
but it ended immediately at 08:15:48. We then got another trip start at 08:30:33

when we actually started collecting data. So even with interpolation to fill the gap
at the start, the matching analysed trip was 08:26:23 -> 10:38:02

the only high power configuration on android, lowering either the accuracy or
the frequency leads to essentially the same power drain. On iOS, the frequency
is not significant, the only way to reduce the power drain is to lower the accuracy
(Figure 7.5, top) to the 100 m level. This is the level we use for medium accuracy
in the rest of this evaluation.

Consistency across phones: While the android phones are largely consistent, there
is a small, but persistent difference of ≈ 5% between iphone-2 and iphone-3

on iOS. Since these are the intervention phones, we may need to account for
this in the power evaluation (Figure 7.5, bottom).

7.2.4.2 Evaluation results

The calibration results imply the following expected behavior for the evaluation:

1. the accuracy control, which has high accuracy, high frequency, always on sensing
should result in the greatest power drain

2. lowering the quality (either by lowering the frequency or the accuracy) should
result in moderate power drain

3. the power control should have the least power drain.

We do see this behavior on the longest timeline for iOS and the shortest timeline
for android (Figure 7.6. However, we also see some unexpected behavior, primarily

CHAPTER 7. PERFORMANCE EVALUATION 132

Figure 7.5. Calibration of stationary phones, configured identically with
the specified configuration, with app-based sensing turned always on. The
boxes represent the IQR, the green line represents the median. Top: variation across
configurations: the x-axis represents the interpolated battery drain after the median
duration of the runs. The y axis represents combinations of accuracy and frequency.
Bottom: variation across phones, pulled out across configurations that show signifi-
cant differences.

CHAPTER 7. PERFORMANCE EVALUATION 133

Figure 7.6. Power drain with different evaluation settings over multiple
timelines. Since we have only three runs each for MAHFDC and HAMFDC, we show the
range directly in the plot instead of boxes and outliers. x axis is the battery drain, y
axis has a partial order of sensing quality from L → R; MAHFDC and HAMFDC are both
medium quality and not comparable. Timelines are from longest to shortest.

CHAPTER 7. PERFORMANCE EVALUATION 134

for android high frequency duty cycling. Also, the 5% difference between phones that
we found in the calibration phase does not seem to matter significantly. Either it
falls within the margin of error (iOS short timelines) or is dwarfed by the differences
between configurations (iOS long timeline).

On the shortest timeline for iOS, the differences are small and the error bounds
overlap so duty cycled sensing is effectively free. On the medium timeline for iOS, the
duty cycled sensing leads to an increased drain of≈ 10%. One of the medium accuracy
runs did not duty cycle due to an error in the trip end sensing API, so the MAHFDC

range is large. Even with that failure, the overall MAHFDC is close to HA*FDC. Ignoring
that failure, medium accuracy sensing is effectively free. On the longest timeline for
iOS, medium accuracy sensing (≈ 15%) has roughly half the drain of high accuracy
sensing (≈ 35%), which in turn, is half the drain of the accuracy control (≈ 75%).

The android timelines show counterintutive results in which duty cycling at
high frequencies performs worse than leaving the sensing on all the time. Our näıve
duty cycling (Section 7.2.2.2) is less efficient than the built-in android duty cycling
(Figure 6.2) during travel. This result holds for both high and medium accuracies;
only lowering the frequency significantly affects the power drain. For the longest
timeline, this increased drain cancels out the effect of lowering the quality (MAHFDC
≈ accuracy). Note that this result is different from the stationary calibration result
where both lowered accuracy and frequency were roughly equivalent. This is due to
the built-in duty cycling on android which automatically throttles sensing when the
phone is not moving. The effect of lowering the frequency is significant — for the
longest timelines, the additional power drain drops by close to an order of magnitude
from ≈ 70% for the accuracy control to ≈ 10% for HAMFDC.

7.2.5 Trip Segmentation: sensed vs. master

This section compares the improvement in the trip segmentation due to the
analysis pipeline, based on the segmentation metrics (Section 7.2.3.1). The sensed
values represent the raw data from the phone virtual sensors (Section 5.2), and the
master values represent the analyzed results. We only consider the master branch
here since the trip segmentation algorithm is identical on both analysis branches.

7.2.5.1 ∆count

Sensed values The sensing regime does not appear to affect the trip count detection,
since the ranges for a particular timeline largely overlap, except for MAHFDC on
android. Timeline length and complexity does affect trip counts, with the
longer, more complex timelines having the greatest variation.

master + gis The analysis algorithms significantly improve the trip-level segmenta-
tion. For the shorter, simpler timelines, the segmentation is essentially perfect.

CHAPTER 7. PERFORMANCE EVALUATION 135

For the long and complicated timeline, we detect more segments than reality,
but this is due to the dwell time at multi-modal transfers, and the counts are
largely consistent across regimes. A more sophisticated algorithm that linked
trips starting or ending at transit locations could improve the trip segmentation.
However, since train stations frequently incorporate retail establishments, this
would also open up the potential for false positives.

7.2.5.2 ∆start ts,∆end ts

Sensed values In general, the phone APIs detect trip starts and ends within 5
mins of the ground truth. There are also numerous outliers corresponding to
missed trips caused by poor trip segmentation. The sensing quality makes no
difference to the trip start/end detection, except for the MAHFDC on android.
This setting performs significantly worse, with the median consistently close to
the 30 min max. Further investigation shows that this is because we routinely
detect the trip end at the start of the next trip. It turns out that with MAHFDC, we
continuously receive the exact same point at the trip end. Our näıve algorithm
strips out duplicate points since they are likely to be poor quality3, so we don’t
detect a trip end until the next start.

master + gis The trip segmentation algorithm for both the master and gis branches
is identical, and is a significant improvement over the sensed algorithm. We
handle the MAHFDC issue correctly, so that the IQR ranges for both trip start
and end are < 10 mins. We also note that start trip detection on iOS appears
to be worse than android — the IQR range and the median are larger and
there are many more outliers. On closer investigation, this is due to ephemeral
trips, where the trip started and almost immediately stopped and then restarted
again. Since the ephemeral trip was so short, we did not capture any data during
that time and cannot reconstruct the trip properly (Table 7.4).

7.2.6 Section Segmentation: sensed vs. gis

This section compares the improvement in the section segmentation due to the
analysis pipeline, based on the segmentation metrics (Section 7.2.3.1). The sensed
values represent the raw data from the phone virtual sensors (Section 5.2), and the
gis values represent the analyzed results. We only consider the gis branch here since
the section segmentation algorithm on the gis branch was created by modifying the
master algorithm and is expected to perform better.

3issue 45, fixed by commit 4286d60

https://github.com/e-mission/e-mission-data-collection/issues/45
https://github.com/e-mission/e-mission-data-collection/commit/4286d60a82219f8da4e13e30e3111d324508d017

CHAPTER 7. PERFORMANCE EVALUATION 136

Figure 7.7. Trip count difference. Top has the sensed values, bottom has the
analysed values. The x axis represents the sensing quality, the y axis represents the
number of extra sensed trips matched to each ground truth trip. The ideal value is
zero, a positive value indicates too many sensed trips and a negative value indicates
too few sensed trips.

CHAPTER 7. PERFORMANCE EVALUATION 137

Figure 7.8. Start/end time difference for trips. Top has the sensed ranges,
bottom has the analysed ranges. x axis is the sensing quality; y axis is the difference
in start or end time, in mins. Values are capped at 30 mins and trips where we ran
out of battery (e.g., android HAHFDC for the longest timeline) are excluded since they
don’t have a trip end transition.

CHAPTER 7. PERFORMANCE EVALUATION 138

Section number with at least one flipflop
suburb bicycling 4

light rail below above ground 4
ebike bikeshare urban long 4

city escooter 3
commuter rail with tunnels 2

subway underground 2
walk to the bikeshare location 2

city bus short 1
freeway driving weekday 1

city bus rapid transit 1
walk to bus 1

suburb city driving weekend 1
express bus 1

commuter rail aboveground 1

Table 7.5. Frequency distribution of sections that had at least one flipflop (countdiff >
1). We can see that in general, bicycling/e-scooter trips and transit in mixed traffic
have the most flip-flops.

7.2.6.1 ∆count

Sensed values The sensed sections are extremely noisy, with large numbers of out-
liers. The number of outliers is independent of both the sensing quality and
the timeline. This implies that the motion segmentation APIs on the phone
do not use location sensing. Summaries of daily activities (e.g., proportion of
time spent in each activity) are not affected by small flip-flops, but other ag-
gregate characteristics such as duration of active transportation trips will be
strongly affected. Almost every section has only one match. The exceptions are
the HAHFDC android sections where we ran out of battery and two iOS runs of
walk_urban_university_0.

gis The GIS branch improves the section segmentation algorithms to reduce flip-
flopping. There is a dramatic reduction in the number of flip-flops, but there
is a modest increase in the number of sections with no match. This is due to
extremely poor sensed data (e.g., Figure 7.10) that is interpreted incorrectly by
the algorithms. There is still some flip-flopping, notably for bicycling/e-scooter
and transit in dense traffic (Table 7.5), but it is limited to a few flip-flops.

7.2.6.2 ∆start ts,∆end ts

Sensed values Since we have a lot of flip-flopping, we are likely to match only a
fragment of the real trip and end up with significant differences in both the

CHAPTER 7. PERFORMANCE EVALUATION 139

Figure 7.9. Section count difference The x axis represents the sensing quality, the
y axis represents the number of extra sensed sections matched to each ground truth
section. The ideal value is zero, a positive value indicates too many sensed sections
and a negative value indicates too few sensed sections.

CHAPTER 7. PERFORMANCE EVALUATION 140

Figure 7.10. Example of bad data causing lingering missing sections The
ground truth was two trips, from 10:07:27 -> 10:23:08 and from 11:30:50 ->

11:52:38. The sensed data included an ephemeral trip from 10:10:19 -> 10:10:20

with no points and from 10:25:04 -> 10:25:52 with some points. Then, we miss
most of the return trip before getting a trip start at 11:46:21. In the post-processing,
these are merged into one trip with one section 10:25:07 -> 11:54:17, so neither
of the ground truth sections or trips match.

CHAPTER 7. PERFORMANCE EVALUATION 141

Figure 7.11. Start/end time difference for sections. Top has the sensed ranges,
bottom has the analysed ranges from the GIS branch. x axis is the sensing quality;
y axis is the difference in start or end time, in mins. Values are capped at 30 mins
and trips where we ran out of battery (e.g., android HAHFDC for the longest timeline)
are excluded since they don’t have a trip end transition.

start and end times. So while the median delay is low (≈ 1-2 mins), there are
significant outliers.

gis The flip-flop smoothing that helped with the section counts seems to have made
the outliers worse. The median delay is still consistently low but the outliers are
worse. It appears that the consolidation of sections sometimes leads to bigger
gaps in the start/end detection.

7.2.7 Classification

This section compares the improvement in mode classification of sections due
to the analysis pipeline, based on the classification metrics (Section 7.2.3.3). The
sensed values represent the raw data from the phone virtual sensors (Section 5.2),
and the gis values represent the analyzed results. We only consider the gis branch
here since the classification algorithm on the gis branch was created to improve the
classification accuracy of the master algorithm.

CHAPTER 7. PERFORMANCE EVALUATION 142

Sensed values Even though there is a lot of flip-flopping, the classification results
for sensed data are reasonable. The median for two of the three timelines
is around 1, although there are many outliers. Surprisingly, the accuracy of
shortest, simplest trajectory is the worst, and needs to be investigated further.

gis The flip-flop smoothing that helped with the section counts really helps with the
classification as well. There are now almost no outliers in any of the timelines.
The best overall timeline is the intermediate one. The most complex one has a
fairly low median on android and many outliers on iOS. Note that, the GIS sec-
tions support more modes than the sensed ones; in particular, they distinguish
between vehicular modes such as BUS, CAR, TRAIN, SUBWAY etc.

7.2.8 Trajectory: sensed vs. master

The spatial and spatiotemporal accuracy results (Figure 7.13, 7.14) are re-
markably similar in the absence of outliers, although the spatiotemporal error is ≈
2x the corresponding spatial error. At high quality, duty cycling doesn’t affect the
error significantly. However, the lower quality results are surprising. On android,
HAMFDC, which should use high accuracy, GPS-based sensing is worse overall than
MAHFDC, which should use medium accuracy, Wi-Fi/cell tower sensing. These results
are flipped for iOS. Since these are the regimes with the lowest power drain (Sec-
tion 7.2.4.2), we have a clear power/accuracy trade-off for trajectory sensing.

The spatial results with outliers are similar, with HAMFDC on android and MAHFDC

on iOS having more outliers than the other regimes. For the spatiotemporal metrics,
the results on iOS change, with MAHFDC having the most outliers. This seems to
indicate that the medium accuracy data is (i) more susceptible to temporal errors,
like returning prior points along the spatial ground truth (Figure 7.4), and (ii) more
sparse, returning no entries if the sensors are unavailable. Recall that for spatiotem-
poral data, we resample the entries at 1 sec frequency and calculate the distance at
matching temporal points.

The smoothing algorithm works well, but is not perfect. The smoothing algo-
rithm does not affect values within the IQR, it is largely an outlier detection and
removal algorithm. If there are several outliers in a row, then the smoothed trajec-
tory joins the end points with a straight line, leading to smaller outliers (intuition in
Figure 7.15,7.16). Using a map matching algorithm that supports multi-modal travel,
although complex, would potentially remove these outliers.

Concretely, after the algorithm is run the max outlier for spatial errors on android
goes down from 20 km to 15 km, and there are a lot fewer outliers. On iOS, the max
outlier goes from 15 km to 5 km. For spatiotemporal errors, the max outlier goes
from 40 km to 15 km on android and from 20 km to 5 km on iOS.

CHAPTER 7. PERFORMANCE EVALUATION 143

Figure 7.12. Classification accuracy percentages. Top has the sensed ranges,
bottom has the analyzed ranges from the GIS branch. x axis is the sensing quality; y
axis is the percentage of time in the section that is spent in the correct mode. 1 is the
ideal value, values of > 1 or 0 typically indicate bad segmentation (Figure 7.3). Only
TRAVEL sections are considered, and sections where we ran out of battery (e.g., android
commuter rail with tunnels 0 and inner suburb downtown walk 0) are excluded.

CHAPTER 7. PERFORMANCE EVALUATION 144

Figure 7.13.

CHAPTER 7. PERFORMANCE EVALUATION 145

Figure 7.14.

CHAPTER 7. PERFORMANCE EVALUATION 146

Figure 7.15. Example of smoothing in the case of high spatial error. The
green line is the ground truth and the three colored lines are the sensed values for
three runs of the express bus section on iOS with the MAHFDC configuration. The
bus route is entirely above ground but on a bridge. The popups indicate the point
with the greatest error for each run. The sensed data (top) shows significant outliers,
including one in Fremont. The smoothing (bottom) removes the outliers, but creates
a straight line that is still 1km away from the ground truth at its furthest point.
.

CHAPTER 7. PERFORMANCE EVALUATION 147

Figure 7.16. Example of smoothing in the case of high spatial-temporal er-
ror. The green line is the ground truth and the red line is the sensed value for the
first run of the subway underground section on android with the HAMFDC configura-
tion. The subway route goes underground in the middle of San Francisco and comes
aboveground after crossing the bay. The popup indicates the point with the greatest
error. The sensed data (top) shows significant cross-bay (14km) zigzags to a point
along the spatial ground truth. The smoothing (bottom) removes the zigzags, but
creates a straight line that is still 3km away from the ground truth.

CHAPTER 7. PERFORMANCE EVALUATION 148

7.3 Conclusion

Through a rigorous, quantitative evaluation of the platform architecture, we
show that the e-mission platform is: (i) extensible, since all customization was to
non-core modules; all module extensions could be performed without rewriting other
modules, and (ii) useful, since the time taken to create a custom “app” for a new
project was < 3 months of part-time undergraduate time.

Through a rigorous, quantitative evaluation of the inferred accuracy, we show
that: (i) the biggest determinant of power drain on android is frequency and on
iOS is accuracy. (ii) the analysis algorithms can work with multiple sensing settings,
(iii) trips are typically detected within 5 minutes, sections within 2 minutes, and
(iv) the typical trajectory accuracy is within 50 m even for the lower power sensing
options for travel with significant underground sections.

After having shown that the platform works well and can be customized to meet
the needs of variety of human mobility systems, we conclude with some thoughts on
future bi-directional improvements, propose a methodological innovation, and outline
some tips for others tackling extensible platforms building in the future.

149

Chapter 8

Conclusion and Future work

This thesis outlines an extensible platform that can serve as the foundation for
multiple Computational Mobility (CM) projects. The platform is an active open
source project, with deployment interest from every inhabited continent other than
Africa, and multiple contributions from external groups.

The platform has a well-defined modular architecture that has been validated
by 3 different real-world use cases. The implemented systems used an average of
64% of the features of the platform, with approximately 3-4 months of part-time
CS undergraduate time for each new case. Every use case contributed at least one
extension, primarily client-related, back to the platform.

The platform uses virtual sensors that allow systems to choose to operate at
varying levels of accuracy. The accuracy is evaluated through a novel procedure
that then captures the power vs. accuracy vs. analysis trade-offs for various settings.
The settings include duty cycling to enable medium grained sensing at low power, and
phone based motion activities for low power mode classification. The thesis defines
a set of three timelines of varying lengths in the San Francisco Bay Area and uses
the procedure to collect a public dataset for them. Using this dataset, the evaluation
shows that power drain on iOS is sensitive to accuracy and on android is sensitive to
frequency. It also shows that collection settings primarily affect the trajectory, and
analysis improves the trajectory and segmentation count metrics the most.

The platform has a well-defined analysis pipeline operating with a data model
that enables reproducibility. The input data is read-only and generates transformed
copies as it passes through the pipeline. This ensures that all steps without external
integrations generate the same results when re-run on the same inputs. It implements
modified versions of the standard trip diary algorithms that work with virtual sensor
data.

The rest of this chapter is structured as follows. It starts with discussing CS
↔ domain improvements in both directions: (i) CS → domain enhancements related
to benchmarking, plugin-based architecture and reinforcement learning (Section 8.1)
and (ii) CS ← domain transfer in areas such as privacy, trustworthiness, incentiviza-

CHAPTER 8. CONCLUSION AND FUTURE WORK 150

tion and decision-making (Section 8.2). It then introduces Agile Urban Planning, a
methodological innovation in mobility enabled by these improvements (Section 8.3).
Finally, it then takes a philosophical turn, discussing the potential for data misuse
and some related technical solutions (Section 8.4), before ending with speculation on
extension to more general use (Section 8.5).

8.1 Future application of CS → domain

The current e-mission platform is a bottom-up instantiation which focuses on
satisfying the requirements for CM while adhering to CS philosophies. It meets the
basic requirements well enough to have wide adoption and an active community with
multiple external contributions. Examples of recent contributions include native app
integration by UW (USA) 1, internationalization support from FabMob (France)2,
country-specific carbon footprint calculations from the Open Source Lab (Germany)3,
ODK XForms support using EnketoCore in collaboration with UNSW (Australia)4.

There are other, more complex enhancements derived from CS concepts that can
improve the functionality of the platform and enhance its novelty over related closed
source products.

Benchmarking Current e-mission analysis accuracy can be poor for complex trips
with underground components. Better accuracies typically require better sens-
ing, either at higher quality or with more sensors, which can consume more bat-
tery. A standard specification-based benchmark similar to TPC could evaluate
the system and capture various points in the power/accuracy trade-off. A high
quality, privacy preserving, cross-platform, ground-truthed dataset similar to
ImageNet could be generated through the benchmark and evaluate algorithms.
In both cases, CS approaches to evaluation can help accelerate the development
of the field.

Pluginize architecture As various modules of the platform compete on perfor-
mance, they form a family of implementations. Although the platform archi-
tecture has well-defined modules, alternate implementations are implemented
within the same repository and code changes are required to switch between
them. Supporting plugins will allow greater independence between modules,
and potential security improvements, similar to the shift from a monolithic
kernel to a microkernel in classic Operating Systems.

1https://github.com/e-mission/e-mission-docs/issues/410
2https://github.com/e-mission/e-mission-phone/pull/584
3https://github.com/e-mission/e-mission-phone/pull/597
4https://github.com/e-mission/e-mission-phone/pull/581

https://github.com/e-mission/e-mission-docs/issues/410
https://github.com/e-mission/e-mission-phone/pull/584
https://github.com/e-mission/e-mission-phone/pull/597
https://github.com/e-mission/e-mission-phone/pull/581

CHAPTER 8. CONCLUSION AND FUTURE WORK 151

Reinforcement learning Better analysis algorithms may be able to improve the
accuracy of sensor-separable inference, but CM would like to be able to dis-
tinguish between a rich set of modes. Some of these modes, such as single
occupant vehicle vs. carpool vs. ride-hailing, are indistinguishable based on
location data alone. Introducing a standard reinforcement learning framework
can help in expanding the inferences supported without excessively increasing
user burden.

8.2 CS use-inspired research ← domain usage

For CM to be truly interdisciplinary, there must be a bi-directional exchange of
ideas between CS and the domain. Since the CS← research areas are inspired by the
usage in the domain, the CS → domain changes had to be implemented first.

This thesis outlines the application of Computer Science philosophy to the do-
main, by building a reusable, extensible, rigorously evaluated platform with repro-
ducible analysis. CM can now build on this foundation and the challenges encoun-
tered in real world deployments to areas where we can broaden our understanding of
CS problems. We have already started this work, with the creation of a differential
private framework that supports fine-grained aggregate queries([Sul19]).

It is ironic, but perhaps inevitable with interdisciplinary research, that the con-
ventional CS research topics will be tackled in work performed after this thesis.

privacy Infrastructure sensors typically focus on data gathering at a particular point.
The closest pre-sensor analog is a human with a clipboard standing next to the
street and counting cars, bikes or humans. Trip diaries focus on data gathering
about an individual. The closest per-sensor analog is a human tail who follows
you around and sees everything that you do. The second is clearly creepier
than the first, and raises significant privacy concerns. Similar issues arise in
almost all background sensing, e.g., always-on, voice controlled smart phone
controllers or always-on surveillance cameras for monitoring household workers
(nannycams).

trustworthiness While no sensor is error-free, sensors can be calibrated and their
errors accounted for in future analysis. However, collecting and analyzing large
quantities of qualitative data computationally raises new challenges. How do we
know that respondents are truthful? And even if they are, how do we know that
perceptual data from one traveler is comparable to data from another traveler?
Similar issues arise in almost all online platforms with user-generated content
such as social media posts or product reviews.

incentivization Installing infrastructure sensors only requires convincing the local
authorities, who can see clear benefits to using the resulting data. Collecting

CHAPTER 8. CONCLUSION AND FUTURE WORK 152

Figure 8.1. Example challenge: Indirect, collective decision-making

data from individual travelers requires convincing multiple travelers to con-
tribute data, each of whom may see little direct benefit from the result. How
can we convince travelers to install our mobility sensors and contribute their
data? Can we use this personalized data to modify behavior instead of just in-
strumenting it? Similar issues rise in the field of persuasive technology, which a
sub-field of Human Computer Interaction, and includes work on healthy eating
habits, and the use of behavioral techniques (e.g., nudges) for social good.

decision-making Current software-supported decision-making typically happens at
the individual level. There is some research interest in coordinated decision-
making, but decision-making about infrastructure is inherently more challenging
since it needs to balance competing interests (Figure 8.1). CS researchers have
called for an Intelligent Infrastructure (II) revolution, similar to the current AI
revolution [Jor18].

CHAPTER 8. CONCLUSION AND FUTURE WORK 153

Figure 8.2. Solutions tailored for large cities (San Francisco), auto-dependent sub-
urbs (San Ramon), and rural small towns (Yreka) can be assembled from pre-tested
incentives built on top of open, customizable components for tracking and analysis

8.3 Broader Impact: Agile Urban Planning

Agile urban planning is the idea that we can prototype changes in urban envi-
ronments in order to quickly determine which are most promising. Local governments
that adopt agile urban planning practices can introduce a control feedback loop that
helps them meet their sustainability goals. They can apply local travel patterns to
existing models to develop some combination of infrastructure and incentive changes,
and use the resulting shifts in travel patterns to propose new changes until their over-
all goals are reached. Once the system is in equilibrium, it can also sense disruptive
external changes (e.g., advent of TNCs) and track ongoing compliance with goals
(e.g., congestion levels).

This idea also indicates the need for the translational work in this thesis, and
its focus on standardization, reuse and replicability. While industry partnerships
are key to large-scale adoption, policy-making based solely on proprietary solutions
is problematic. There are well-known biases in commercial AI systems [YGW13],
examples of suppression and falsification of pollution data5, and ethical concerns
with requiring citizens to provide data to third parties that monetize their data in
order to participate fully in civic life6. A better approach is for scientists to focus
on building an extensible, robust, open foundation. Industry partners can build
innovative solutions tailored to local conditions on top of this foundation (Figure 8.2).

8.4 Potential risks of tracking location data

Traditional Computer Science theses have typically not explored the ethical im-
plications of their research. However, this interdisciplinary thesis needs to speak to

5https://www.nytimes.com/2015/09/23/business/international/volkswagen-diesel-car-
scandal.html

6https://www.nytimes.com/2019/09/24/opinion/public-broadcasting-facebook.html

CHAPTER 8. CONCLUSION AND FUTURE WORK 154

both domains, and that entails a high-level discussion of the potentially negative
impacts as well.

The primary ethical concern with this work is the ability of the stored location
information to be misused. It could be misused (i) openly, by repressive regimes for
mass surveillance of their citizens, and (ii) covertly, by data collectors for discrimina-
tion or monteization, or (iii) illegally, by hackers who gain access to the stored data
without consent.

This section discusses the safeguards against each scenario built in to the system,
and the expectations that it places on builders, deployers and end-users.

8.4.1 Open surveillance by repressive regimes

Technologically advanced repressive regimes can force their population to install
tracking software on their phones and use it for mass surveillance. However, any
regime with such goals would not need this platform. There are multiple commercial
one-off systems with similar functionality that they can choose from. Given the ease
of use of the location virtual sensors (Section 5.2), any regime with the technical
capability to store and analyze the large-scale data generated could also easily write
a custom app to collect the data, just like the many one-off systems generated by
transportation researchers ([PSCM18, JMA+13, SAM+15]). Most of the work in
this thesis deals with lowering barriers to adoption by addressing issues like power
drain, reuse, extensibility, inference accuracy and reproducibility. None of these are
particularly relevant to a repressive regime that can force citizens to participate in
data collection, manually delete outlier points and label the purpose of all their trips.

8.4.2 Covert misuse by data collectors

With a classic centralized architecture like this one (Section 3.3), the system
maintainer has absolute control of the data from a technical perspective. The only
restrictions on usage and sharing of the data are legal.

Commercial entities that collect data as part of providing services have to abide
by the terms and conditions that their users agree to. Commercial entities that
contract with institutions typically share the data with them and are expected to
abide by contractual limits on its usage. However, the lack of technical barriers,
and the abstruse language in boilerplate contracts makes enforcement difficult or
impossible.

With an open platform, the institution can collect the data directly on servers
that it controls. This can make unauthorized data sharing (e.g., for monetization), less
likely. However, the potential for discrimination persists. For example, if an employer
tracks employee commutes as part of a Transportation Demand Management(TDM)
program, they might use their arrival and departure times as a virtual time card.
Such concerns could be partially alleviated by having the local government in the

CHAPTER 8. CONCLUSION AND FUTURE WORK 155

city run the server and share TDM-specific data with employers. But that would
give rise to new concerns about potential infringements of civil liberties. In the best
traditions of interdisciplinary work, this technological change allows urban planners
to explore locally specific questions around institutional trust.

The long-term solution, however, should be a decentralized architecture that
allows users own their own data. The restrictions on usage and sharing of the data
should be technical, which will make enforcement dramatically easier. This is an
open research problem in privacy, although we have started addressing it [Sul19].
Note that platform deployers don’t have to support the decentralized architecture,
but users don’t need to patronize such deployers.

8.4.3 Illegal access by hackers

Democratizing data collection by allowing institutions to participate directly
requires them to be familiar with basic sysadmin operating procedure. This may be
more challenging than it originally seems.

Experiences with deploying e-mission in conjunction with our partners indicate
that even domain experts familiar with computers routinely underestimate the com-
plexity of ops work. Straightforward tasks such as configuring SSL can take months
to complete. UI-based access directly to the database is common, proper tunneling
over ssh is less so. And nobody other than the reference implementation appears to
encrypt their logs.

This is not likely to be fixed by user control of data. Even if the platform suc-
cessfully supports a decentralized architecture with user control, the OS and hardware
that the data is stored on are subject to hacker attacks. It is almost impossible for
end-users to maintain cloud data storage systems. End-to-end encryption could allow
maintenance to be performed by experts without compromising privacy, but hackers
could still deploy phishing attacks.

However, although there is no perfect technical solution, there are many avenues
to reduce risk that can be incorporated into the platform. Better engineering and
deployment support that incorporates best practices by default, similar to SSL certifi-
cates from Let’s Encrypt, can make it more likely that deployments will be configured
properly. Enclaves and end-to-end encryption can protect data stored in the cloud.
And better user education can reduce the chance of phishing attacks.

8.5 A Beginning, Not an End

This thesis has focused squarely on the interplay between computation and mo-
bility. Even the future work has dwelt on how to influence mobility using compu-
tational concepts and how to use problems from mobility to inspire computational

CHAPTER 8. CONCLUSION AND FUTURE WORK 156

research. We end this journey by highlighting the new beginnings — in other fields,
other domains, and for other such platform builders that this work enables.

Applying other fields to mobility An extensible platform provides a base for re-
searchers from other fields to test theories without significant tooling effort.
While mobility researchers are the most likely to use this platform, researchers
from other domains can also use it to apply their expertise to the mobility
domain. For example: (i) economists can experiment with incentives for par-
ticipation, (ii) communication researchers can experiment with techniques to
explain the societal goals, and (iii) political scientists can study the reactions of
various stakeholders to the provided data while making infrastructure decisions.

Using the platform in other domains At its most general, the platform collects
a combination of sensed location and surveyed data, linked to one individual.
This is most useful for assessing transportation patterns, but it can also be
used in health to understand the fitness profiles of individuals. It is particularly
useful for capturing physical activity that may not be perceived as exercise,
such as walking to run errands.

Lessons for other platform builders The sensed data at the heart of this plat-
form is location. Future platform builders may need to focus on other privacy-
sensitive sensors such as video or audio. Some lessons from e-mission that they
may want to incorporate are:

(i) provide user functionality : even if initial deployers focus only on data
collection, supporting the ability to provide user functionality diversifies
the deployer community significantly,

(ii) lower barriers for end-users : don’t require the use of two apps, don’t
require reading installation instructions, don’t require in-personal installs,

(iii) support mass customization: every deployer will have their own opinion
about features, notably the UI, and the best way to short-circuit endless
arguments is to allow them to customize according to their ideas, and

(iv) make the analysis reproducible: this will allow graceful recovery from anal-
ysis algorithm mistakes when (not if) they occur.

We hope that this work inspires other researchers to tackle interdisciplinary
work, collaborate in solving real-world problems, and save the world together while
we still can.

157

Bibliography

[BCH+11] Richard A. Becker, Ramón Cáceres, Karrie Hanson, Ji Meng Loh, Simon
Urbanek, Alexander Varshavsky, and Chris Volinsky. A tale of one city:
Using cellular network data for urban planning. Pervasive Computing,
IEEE, 10(4):18–26, 2011.

[BCN13] Michel Bierlaire, Jingmin Chen, and Jeffrey Newman. A probabilistic
map matching method for smartphone GPS data. Transportation Re-
search Part C: Emerging Technologies, 26:78–98, January 2013.

[BI04] Ling Bao and Stephen S. Intille. Activity recognition from user-annotated
acceleration data. In Pervasive Computing, pages 1–17. Springer, 2004.

[BK11] Ulrich Bareth and Axel Kupper. Energy-Efficient Position Tracking in
Proactive Location-Based Services for Smartphone Environments. pages
516–521. IEEE, July 2011.

[BPS+14] Efthimios Bothos, Sebastian Prost, Johann Schrammel, Kathrin Röderer,
and Gregoris Mentzas. Watch your Emissions: Persuasive Strategies
and Choice Architecture for Sustainable Decisions in Urban Mobility.
PsychNology Journal, 12(3):107–126, 2014.

[BSD+13] Waylon Brunette, Mitchell Sundt, Nicola Dell, Rohit Chaudhri, Nathan
Breit, and Gaetano Borriello. Open data kit 2.0: Expanding and re-
fining information services for developing regions. In Proceedings of the
14th Workshop on Mobile Computing Systems and Applications, page 10.
ACM, 2013.

[Cas15] Joe Castiglione. Activity-Based Travel Demand Models: A Primer.
Transportation Research Board, Washington, DC, 2015.

[CCC+13] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, Luca Foschini, and
Dario Maio. MSF: An Efficient Mobile Phone Sensing Framework. In-
ternational Journal of Distributed Sensor Networks, 9(3):538937, March
2013.

BIBLIOGRAPHY 158

[CCC+14a] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, Luca Foschini, Raf-
faele Ianniello, and Rebecca Montanari. Crowdsensing in Urban Areas
for City-Scale Mass Gathering Management: Geofencing and Activity
Recognition. IEEE Sensors Journal, 14(12):4185–4195, December 2014.

[CCC+14b] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, Luca Foschini, and
Rebecca Montanari. Activity recognition for Smart City scenarios:
Google Play Services vs. MoST facilities. In 2014 IEEE Symposium on
Computers and Communications (ISCC), pages 1–6, June 2014.

[CCCF14] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, and Luca Foschini.
The participact mobile crowd sensing living lab: The testbed for smart
cities. IEEE Communications Magazine, 52(10):78–85, October 2014.

[CCH10] Catherine T. Lawson, Cynthia Chen, and Hongmian Gong. Advanced
Applications of Person-based GPS in an Urban Environment. Technical
Report 49111-14-21, University at Albany, Albany, New York, February
2010.

[CFF+13] Caitlin D. Cottrill, Francisco Camara Pereira, Fang Zhao, Ines Ferreira
Dias, Hock Beng Lim, Moshe Ben-Akiva, and P. Christopher Zegras. The
Future Mobility Survey: Experiences in developing a smartphone-based
travel survey in Singapore. Transportation Research Record: Journal of
the Transportation Research Board, (2354):59–67, 2013.

[CK16] Judd Cramer and Alan B. Krueger. Disruptive Change in the Taxi Busi-
ness: The Case of Uber. American Economic Review, 106(5):177–182,
May 2016.

[CLB+18] Claudia Carpineti, Vincenzo Lomonaco, Luca Bedogni, Marco Di Felice,
and Luciano Bononi. Custom Dual Transportation Mode Detection by
Smartphone Devices Exploiting Sensor Diversity. arXiv:1810.05596 [cs,
stat], October 2018.

[CLL+11] David Chu, Nicholas D. Lane, Ted Tsung-Te Lai, Cong Pang, Xiangying
Meng, Qing Guo, Fan Li, and Feng Zhao. Balancing energy, latency and
accuracy for mobile sensor data classification. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, pages 54–67.
ACM, 2011.

[CMG+17] Mathias Ciliberto, Francisco Javier Ordoñez Morales, Hristijan Gjoreski,
Daniel Roggen, Sami Mekki, and Stefan Valentin. High reliability An-
droid application for multidevice multimodal mobile data acquisition and
annotation. In Proceedings of the 15th ACM Conference on Embedded

BIBLIOGRAPHY 159

Network Sensor Systems - SenSys ’17, pages 1–2, Delft, Netherlands,
2017. ACM Press.

[Com] Taxi & Limousine Commission. Trip Record Data New York City.

[Com12] Computing Research for Sustainability. The National Academies Press,
Washington, DC, 2012.

[CSW16] Andre Carrel, Raja Sengupta, and Joan L. Walker. The San Francisco
Travel Quality Study: Tracking trials and tribulations of a transit taker.
Transportation, pages 1–37, 2016.

[dHVB13] Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, and
Vincent D. Blondel. Unique in the Crowd: The privacy bounds of human
mobility. Scientific Reports, 3, March 2013.

[DKT+] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar
Karandikar, Gabe Fierro, Nikita Kitaev, and David Culler. BOSS: Build-
ing Operating System Services. page 15.

[ESP06] Nathan Eagle and Alex (Sandy) Pentland. Reality mining: Sensing com-
plex social systems. Personal and Ubiquitous Computing, 10(4):255–268,
May 2006.

[FDK11] Denzil Ferreira, Anind K. Dey, and Vassilis Kostakos. Understanding
human-smartphone concerns: A study of battery life. In Pervasive Com-
puting, pages 19–33. Springer, 2011.

[FDR+08] Aimee Flannery, Richard G. Dowling, Nagui M. Rouphail, Theodore An-
ton Petritsch, Bruce W. Landis, James A. Bonneson, Paul Ryus, David B.
Reinke, Mark Vandehey, Transportation Research Board, National Co-
operative Highway Research Program, and Transportation Research
Board. Multimodal Level of Service Analysis for Urban Streets. National
Academies Press, Washington, D.C., September 2008.

[FF13] FHWA and Federal Highway Administration. Highway Performance
Monitoring System, March 2013.

[FH17] Emma G. Fitzsimmons and Winnie Hu. The Downside of Ride-Hailing:
More New York City Gridlock. The New York Times, March 2017.

[FLF+16] Shih-Hau Fang, Hao-Hsiang Liao, Yu-Xiang Fei, Kai-Hsiang Chen, Jen-
Wei Huang, Yu-Ding Lu, and Yu Tsao. Transportation Modes Classifica-
tion Using Sensors on Smartphones. Sensors, 16(8):1324, August 2016.

BIBLIOGRAPHY 160

[FLHG17] Leah Flake, Michelle Lee, Kevin Hathaway, and Elizabeth Greene. Use
of Smartphone Panels for Viable and Cost-Effective GPS Data Collec-
tion for Small and Medium Planning Agencies. Transportation Research
Record: Journal of the Transportation Research Board, 2643:160–165,
January 2017.

[FPV+13] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual Explo-
ration of Big Spatio-Temporal Urban Data: A Study of New York City
Taxi Trips. IEEE Transactions on Visualization and Computer Graphics,
19(12):2149–2158, December 2013.

[FT13] Tao Feng and Harry J.P. Timmermans. Transportation mode recognition
using GPS and accelerometer data. Transportation Research Part C:
Emerging Technologies, 37:118–130, December 2013.

[FZP15] Fei Yang, Zhenxing Yao, and Peter Jin. Multi-mode Trip Information
Recognition Based on Wavelet Transform Modulus Algorithm by Using
GPS and Acceleration Data. In TRB 94th Annual Meeting Compendium
of Papers, Washington, DC, January 2015.

[GCM+17] Hristijan Gjoreski, Mathias Ciliberto, Francisco Javier Ordoñez Morales,
Daniel Roggen, Sami Mekki, and Stefan Valentin. A Versatile Annotated
Dataset for Multimodal Locomotion Analytics with Mobile Devices. In
Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems - SenSys ’17, pages 1–2, Delft, Netherlands, 2017. ACM Press.

[GFF+19] Carla Gomes, Xiaoli Fern, Daniel Fink, Douglas Fisher, Alexander
Flecker, Daniel Freund, Angela Fuller, John Gregoire, John Hopcroft,
Steve Kelling, Zico Kolter, Thomas Dietterich, Warren Powell, Nicole
Sintov, John Selker, Bart Selman, Daniel Sheldon, David Shmoys, Milind
Tambe, Weng-Keen Wong, Christopher Wood, Xiaojian Wu, Christopher
Barrett, Yexiang Xue, Amulya Yadav, Abdul-Aziz Yakubu, Mary Lou
Zeeman, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew
Farnsworth, and Alan Fern. Computational sustainability: Computing
for a better world and a sustainable future. Communications of the ACM,
62(9):56–65, August 2019.

[GFHG16] Elizabeth Greene, Leah Flake, Kevin Hathaway, and Michael Geilich. A
Seven-day smartphone-based GPS household travel survey in Indiana. In
9th Annual Meeting of the Transportation Research Board, Washington,
D.C, January 2016. Transportation Research Board.

[GR16] Gregory Powell and Rebecca Yoon. 2016-31059.pdf. Notice of Proposed
Rulemaking (NPRM) NHTSA–2016–0126, National Highway Traffic

BIBLIOGRAPHY 161

Safety Administration (NHTSA), Department of Transportation (DOT),
2016.

[GWB+10] P.A. Gonzalez, J.S. Weinstein, S.J. Barbeau, M.A. Labrador, P.L. Win-
ters, N.L. Georggi, and R. Perez. Automating mode detection for travel
behaviour analysis by using global positioning systems-enabled mobile
phones and neural networks. IET Intelligent Transport Systems, 4(1):37,
2010.

[Har] Chris Harding. From Smartphone Apps to In-Person Data Collec-
tion: Modern and Cost-Effective Multimodal Travel Data Collection for
Evidence-Based Planning. page 554.

[HCCL13] Xiping Hu, Terry H. S. Chu, Henry C. B. Chan, and Victor C. M. Le-
ung. Vita: A Crowdsensing-Oriented Mobile Cyber-Physical System.
IEEE Transactions on Emerging Topics in Computing, 1(1):148–165,
June 2013.

[HHE13] Sungsoon Hwang, Timothy Hanke, and Christian Evans. Automated
Extraction of Community Mobility Measures from GPS Stream Data
Using Temporal DBSCAN. In Computational Science and Its Applica-
tions–ICCSA 2013, pages 86–98. Springer, 2013.

[HLA+10] Carl Hartung, Adam Lerer, Yaw Anokwa, Clint Tseng, Waylon Brunette,
and Gaetano Borriello. Open data kit: Tools to build information services
for developing regions. In Proceedings of the 4th ACM/IEEE Interna-
tional Conference on Information and Communication Technologies and
Development - ICTD ’10, pages 1–12, London, United Kingdom, 2010.
ACM Press.

[HLD+13] Xiping Hu, Victor C.M. Leung, Weichang Du, Boon-Chong Seet, and
Panos Nasiopoulos. A Service-Oriented Mobile Social Networking Plat-
form for Disaster Situations. In 2013 46th Hawaii International Con-
ference on System Sciences, pages 136–145, Wailea, HI, USA, January
2013. IEEE.

[HLZ+16] Hongik University, Jae Seung Lee, P. Christopher Zegras, Fang Zhao,
Daehee Kim, and Junhee Kang. Testing the Reliability of a Smartphone-
Based Travel Survey: An Experiment in Seoul. The Journal of The Korea
Institute of Intelligent Transport Systems, 15(2):50–62, April 2016.

[HNT13] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. Accelerometer-
based transportation mode detection on smartphones. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems,
pages 1–14. ACM Press, 2013.

BIBLIOGRAPHY 162

[HRK+10] John Hicks, Nithya Ramanathan, Donnie Kim, Mohamad Monibi, Joshua
Selsky, Mark Hansen, and Deborah Estrin. AndWellness: An open mobile
system for activity and experience sampling. In Wireless Health 2010 on
- WH ’10, page 34, San Diego, California, 2010. ACM Press.

[HS] N B Hounsell and B P Shrestha. AVL based Bus Priority at Traffic
Signals: A Review and Case Study of Architectures. European Journal
of Transport and Infrastructure Research, page 17.

[HSC11] Jeffrey Hood, Elizabeth Sall, and Billy Charlton. A GPS-based bicycle
route choice model for San Francisco, California. Transportation Let-
ters: The International Journal of Transportation Research, 3(1):63–75,
January 2011.

[HSE+13] Cheng-Kang Hsieh, Dallas Swendeman, Deborah Estrin, Nithya Ra-
manathan, Hongsuda Tangmunarunkit, Faisal Alquaddoomi, John Jenk-
ins, Jinha Kang, Cameron Ketcham, Brent Longstaff, Joshua Selsky, and
Betta Dawson. Lifestreams: A modular sense-making toolset for identi-
fying important patterns from everyday life. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems - SenSys ’13,
pages 1–13, Roma, Italy, 2013. ACM Press.

[HSHM] Chris Harding, Siva Srikukenthiran, Khandker Nurul Habib, and Eric J
Miller. On the User Experience and Performance of Smartphone Apps
as Personalized Travel Survey Instruments: Results from an Experiment
in Toronto. page 2.

[HWH+10] Juan C. Herrera, Daniel B. Work, Ryan Herring, Xuegang (Jeff) Ban,
Quinn Jacobson, and Alexandre M. Bayen. Evaluation of traffic data
obtained via GPS-enabled mobile phones: The Mobile Century field
experiment. Transportation Research Part C: Emerging Technologies,
18(4):568–583, August 2010.

[HYL+14] Thomas Holleczek, Liang Yu, Joseph Kang Lee, Oliver Senn, Carlo Ratti,
and Patrick Jaillet. Detecting weak public transport connections from
cellphone and public transport data. pages 1–8. ACM Press, 2014.

[HYT+10] J. Hu, F. Yan, J. Tian, P. Wang, and K. Cao. Developing PC-Based
Automobile Diagnostic System Based on OBD System. In 2010 Asia-
Pacific Power and Energy Engineering Conference, pages 1–5, March
2010.

[IHG12] Darrel C. Ince, Leslie Hatton, and John Graham-Cumming. The case for
open computer programs. Nature, 482(7386):485–488, February 2012.

BIBLIOGRAPHY 163

[JAC+15] Jerald Jariyasunant, Maya Abou-Zeid, Andre Carrel, Venkatesan Ekam-
baram, David Gaker, Raja Sengupta, and Joan L. Walker. Quantified
Traveler: Travel Feedback Meets the Cloud to Change Behavior. Journal
of Intelligent Transportation Systems, 19(2):109–124, April 2015.

[JBR+16] Kasthuri Jayarajah, Rajesh Krishna Balan, Meera Radhakrishnan,
Archan Misra, and Youngki Lee. LiveLabs: Building In-Situ Mobile Sens-
ing & Behavioural Experimentation TestBeds. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services - MobiSys ’16, pages 1–15, Singapore, Singapore, 2016. ACM
Press.

[JMA+13] Jerald Jariyasunant, Maya Abou-Zeid, Andre Carrel, Venkatesan Ekam-
baram, David Gaker, and Raja Sengupta. Quantified Traveler: Travel
Feedback Meets the Cloud to Change Behavior. Technical Report UCTC-
FR-2013-06, University of California Transportation Center, September
2013.

[JMM08] James A. Bonneson, Michael P. Pratt, and Mark A. Vandehey. Predicting
the performance of automobile traffic on urban streets. Technical Report
3-79, Transportation Research Board, Januarly 2008.

[JNS+13] Antti Jylhä, Petteri Nurmi, Miika Sirén, Samuli Hemminki, and Giulio
Jacucci. MatkaHupi: A persuasive mobile application for sustainable
mobility. pages 227–230. ACM Press, 2013.

[Jor18] Michael Jordan. Artificial Intelligence — The Revolution Hasn’t Hap-
pened Yet, April 2018.

[KAB+12] Tobias Kuhnimhof, Jimmy Armoogum, Ralph Buehler, Joyce Dargay,
Jon Martin Denstadli, and Toshiyuki Yamamoto. Men Shape a Down-
ward Trend in Car Use among Young Adults—Evidence from Six Indus-
trialized Countries. Transport Reviews, 32(6):761–779, November 2012.

[KB08] N.K. Kanhere and S.T. Birchfield. Real-Time Incremental Segmentation
and Tracking of Vehicles at Low Camera Angles Using Stable Features.
IEEE Transactions on Intelligent Transportation Systems, 9(1):148–160,
March 2008.

[KJP15] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. Designing a Smart
City Internet of Things Platform with Microservice Architecture. In 2015
3rd International Conference on Future Internet of Things and Cloud,
pages 25–30, Rome, Italy, August 2015. IEEE.

BIBLIOGRAPHY 164

[KLGT09] Mikkel Baun Kjaergaard, Jakob Langdal, Torben Godsk, and Thomas
Toftkjaer. Entracked: Energy-efficient robust position tracking for mobile
devices. In Proceedings of the 7th International Conference on Mobile
Systems, Applications, and Services, pages 221–234. ACM, 2009.

[KMP13] Sunyoung Kim, Jennifer Mankoff, and Eric Paulos. Sensr: Evaluating a
flexible framework for authoring mobile data-collection tools for citizen
science. In Proceedings of the 2013 Conference on Computer Supported
Cooperative Work, pages 1453–1462. ACM, 2013.

[LCSC09] Jyong Lin, Shih-Chang Chen, Yu-Tsen Shih, and Shi-Huang Chen. A
Study on Remote On-Line Diagnostic System for Vehicles by Integrating
the Technology of OBD, GPS, and 3G. 3(8):7, 2009.

[LGA+12] Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, Olivier Bornet, Trinh-
Minh-Tri Do, Olivier Dousse, Julien Eberle, Markus Miettinen, et al.
The mobile data challenge: Big data for mobile computing research. In
Pervasive Computing, 2012.

[LLYK16] W. L. H. Lim, J. T. W. Lum, I. J. W. Yeo, and S. L. Keoh. A crowd-
assisted real-time public transport information service: No more endless
wait. In 2016 IEEE International Conference on Pervasive Computing
and Communication Workshops (PerCom Workshops), pages 1–6, March
2016.

[LML+10] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem
Choudhury, and Andrew T. Campbell. A survey of mobile phone sensing.
Communications Magazine, IEEE, 48(9):140–150, 2010.

[LV16] Oana Lorintiu and Andrea Vassilev. Transportation mode recognition
based on smartphone embedded sensors for carbon footprint estimation.
pages 1976–1981. IEEE, November 2016.

[LYL+10] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, Tanzeem Choudhury,
and Andrew T. Campbell. The jigsaw continuous sensing engine for
mobile phone applications. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems, pages 71–84, 2010.

[LZ99] Wei-Hua Lin and Jian Zeng. Experimental study of real-time bus arrival
time prediction with GPS data. Transportation Research Record: Journal
of the Transportation Research Board, (1666):101–109, 1999.

[MCCM15] J. E. Meseguer, C. T. Calafate, J. C. Cano, and P. Manzoni. Assess-
ing the impact of driving behavior on instantaneous fuel consumption.

BIBLIOGRAPHY 165

In 2015 12th Annual IEEE Consumer Communications and Networking
Conference (CCNC), pages 443–448, January 2015.

[MCF15] Marcelo Martins, Justin Cappos, and Rodrigo Fonseca. Selectively tam-
ing background android apps to improve battery lifetime. In Proceedings
of the 2015 USENIX Conference on Usenix Annual Technical Conference,
pages 563–575. USENIX Association, 2015.

[McN] Michael G. McNally. The Four-Step Model. In Handbook of Transport
Modelling, pages 35–53.

[MGS10] E McCallister, T Grance, and K A Scarfone. Guide to protecting the
confidentiality of Personally Identifiable Information (PII). Technical Re-
port NIST SP 800-122, National Institute of Standards and Technology,
Gaithersburg, MD, 2010.

[MM16] Caleb Ronald Munigety and Tom V. Mathew. Towards Behavioral Mod-
eling of Drivers in Mixed Traffic Conditions. Transportation in Develop-
ing Economies, 2(1), April 2016.

[MMN+17] R. Malekian, N. R. Moloisane, L. Nair, B. T. Maharaj, and U. A. K.
Chude-Okonkwo. Design and Implementation of a Wireless OBD II Fleet
Management System. IEEE Sensors Journal, 17(4):1154–1164, February
2017.

[MR] Michael G. McNally and Craig R. Rindt. The Activity-Based Approach.
In Handbook of Transport Modelling, pages 55–73.

[Nat12] Suman Nath. ACE: Exploiting correlation for energy-efficient and contin-
uous context sensing. In Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, pages 29–42. ACM, 2012.

[NK08] Nadine Schüssler and Kay Axhausen. Processing GPS raw data without
additional information. Transportation Research Record: Journal of the
Transportation Research Board, 2008.

[OnB] On-Board Diagnostic II (OBD II) Systems Fact Sheet — California Air
Resources Board.

[OVW+11] Marcelo Oliveira, Peter Vovsha, Jean Wolf, Yehoshua Birotker, Danny
Givon, and Julie Paasche. Global Positioning System-Assisted Prompted
Recall Household Travel Survey to Support Development of Advanced
Travel Model in Jerusalem, Israel. Transportation Research Record: Jour-
nal of the Transportation Research Board, 2246:16–23, December 2011.

BIBLIOGRAPHY 166

[OW49] O.K. Normann and W.P. Walker. Highway capacity manual: Practical
applications of research. Technical report, U.S. Department of Com-
merce, Bureau of Public Roads, Washington, 1949. Open Library ID:
OL6085220M.

[PF16] Zachary Patterson and Kyle Fitzsimmon. DATAMOBILE: A SMART-
PHONE TRAVEL SURVEY EXPERIMENT. Transportation Research
Record: Journal of the Transportation Research Board, 2594(1):35–43,
January 2016.

[PFJM19] Zachary Patterson, Kyle Fitzsimmons, Stewart Jackson, and Takeshi
Mukai. Itinerum: The open smartphone travel survey platform. Soft-
wareX, 10:100230, July 2019.

[PGS17] Adrian C. Prelipcean, Gyözö Gidófalvi, and Yusak O. Susilo. Transporta-
tion mode detection – an in-depth review of applicability and reliability.
Transport Reviews, 37(4):442–464, July 2017.

[PKG10] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. Energy-
efficient rate-adaptive GPS-based positioning for smartphones. In Pro-
ceedings of the 8th International Conference on Mobile Systems, Appli-
cations, and Services, pages 299–314. ACM, 2010.

[PLMM15] Veljko Pejovic, Neal Lathia, Cecilia Mascolo, and Mirco Musolesi.
Mobile-Based Experience Sampling for Behaviour Research. arXiv
preprint arXiv:1508.03725, 2015.

[Plu05] A. Plummer. The Chicago Area Transportation Study. Creating the first
plan (1955–1962). A narrative. Rapport pour le Chicago Area Transporta-
tion Study, Chicago, 35, 2005.

[Poz13] Alex Poznanski. Analysing Demographic and Geographic Characteristics
of ”Cycle Atlanta” Smartphone Application Users. Master’s, Georgia
Institute of Technology, May 2013.

[PSCM18] Francesco Piras, Eleonora Sottile, Daniele Calli, and Italo Meloni. Auto-
matic data collection for detecting travel behavior: The IPET platform.
Procedia Computer Science, 134:421–426, 2018.

[RMB+10] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen,
and Mani Srivastava. Using mobile phones to determine transportation
modes. ACM Transactions on Sensor Networks, 6(2):1–27, February
2010.

[Rob70] Robert L. Anderson. Electromagnetic loop vehicle detectors. IEEE
Transactions on Vehicular Technology, 19(1):23–30, 1970.

BIBLIOGRAPHY 167

[RQZ07] Ahmad Rahmati, Angela Qian, and Lin Zhong. Understanding human-
battery interaction on mobile phones. In Proceedings of the 9th Interna-
tional Conference on Human Computer Interaction with Mobile Devices
and Services, pages 265–272. ACM, 2007.

[RSD+10] Sasank Reddy, Katie Shilton, Gleb Denisov, Christian Cenizal, Deborah
Estrin, and Mani Srivastava. Biketastic: Sensing and mapping for better
biking. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1817–1820. ACM, 2010.

[SAM+15] Hamid Safi, Behrang Assemi, Mahmoud Mesbah, Luis Ferreira, and Mark
Hickman. Design and Implementation of a Smartphone-Based Travel
Survey. Transportation Research Record: Journal of the Transportation
Research Board, 2526:99–107, January 2015.

[SAMF16a] Hamid Safi, Behrang Assemi, Mahmoud Mesbah, and Luis Ferreira. A
trip-detection method for smartphone-assisted travel data collection. In
Transportation Research Board (TRB) 95th Annual Meeting, 2016.

[SAMF16b] Hamid Safi, Behrang Assemi, Mahmoud Mesbah, and Luis Ferreira. A
trip-detection method for smartphone-assisted travel data collection. In
Transportation Research Board (TRB) 95th Annual Meeting, 2016.

[SBM+18] K. Shankari, Mohamed Amine Bouzaghrane, Samuel M. Maurer, Paul
Waddell, David E. Culler, and Randy H. Katz. E-mission: An Open-
Source, Smartphone Platform for Collecting Human Travel Data. Trans-
portation Research Record: Journal of the Transportation Research
Board, 2672(42):1–12, December 2018.

[Sch17] Bruce Schaller. Unsustainable? The Growth of App-Based Ride Services
and Traffic, Travel and the Future of New York City. Technical report,
New York, NY, February 2017.

[Seg96] Jakub Segen. A camera-based system for tracking people in real time. In
Pattern Recognition, 1996., Proceedings of the 13th International Con-
ference On, volume 3, pages 63–67. IEEE, 1996.

[SFC+] K Shankari, Jonathan Furst, David E Culler, Yawen Wang, Philippe
Bonnet, and Randy H Katz. Zephyr: Simple, Ready-to-use Software-
based Power Evaluation for Background Sensing Smartphone Applica-
tions. page 21.

[SJF05] Peter R. Stopher, Qingjian Jiang, and Camden FitzGerald. Processing
GPS data from travel surveys. 2nd international colloqium on the be-
havioural foundations of integrated land-use and transportation models:
frameworks, models and applications, Toronto, 2005.

BIBLIOGRAPHY 168

[SMP09] Guruprasad Somasundaram, Vassilios Morellas, and Nikolaos Pa-
panikolopoulos. Counting pedestrians and bicycles in traffic scenes. In
Intelligent Transportation Systems, 2009. ITSC’09. 12th International
IEEE Conference On, pages 1–6. IEEE, 2009.

[SMS13] Akihiko Sakata, Yukimasa Matsumoto, and Hidekazu Suzuki. Develop-
ment of Bus Location System with Smartphone and Effect of Providing
Regional Information added on Bus Information. page 12, 2013.

[SP12] Vijay Srinivasan and Thomas Phan. An accurate two-tier classifier for
efficient duty-cycling of smartphone activity recognition systems. In Pro-
ceedings of the Third International Workshop on Sensing Applications on
Mobile Phones, page 11, 2012.

[SPM+15] Johann Schrammel, Sebastian Prost, Elke Mattheiss, Efthimios Bothos,
and Manfred Tscheligi. Using Individual and Collaborative Challenges
in Behavior Change Support Systems: Findings from a Two-Month Field
Trial of a Trip Planner Application. In Thomas MacTavish and Santosh
Basapur, editors, Persuasive Technology, volume 9072, pages 160–171.
Springer International Publishing, Cham, 2015.

[SS13] Brandon Schoettle and Michael Sivak. The reasons for the recent decline
in young driver licensing in the US. 2013.

[SSLA15] Peter R. Stopher, Li Shen, Wen Liu, and Asif Ahmed. The Challenge of
Obtaining Ground Truth for GPS Processing. Transportation Research
Procedia, 11:206–217, 2015.

[Sul19] John Sullivan. An Approach to Privacy Preserving for Spatio-Temporal
Data. Master’s, EECS Department, University of California, Berkeley,
May 2019.

[SWLN14] Rahul C. Shah, Chieh-yih Wan, Hong Lu, and Lama Nachman. Classify-
ing the mode of transportation on mobile phones using GIS information.
pages 225–229. ACM Press, 2014.

[SYCK15] Kalyanaraman Shankari, Mogeng Yin, David Culler, and Randy H Katz.
E-Mission: Automated transportation emission calculation using smart-
phones. In Pervasive Computing and Communication Workshops (Per-
Com Workshops), pages 268–271, March 2015.

[TKK+15] H. Tangmunarunkit, J. Kang, Z. Khalapyan, J. Ooms, N. Ramanathan,
D. Estrin, C. K. Hsieh, B. Longstaff, S. Nolen, J. Jenkins, C. Ketcham,
J. Selsky, F. Alquaddoomi, and D. George. Ohmage: A General and Ex-
tensible End-to-End Participatory Sensing Platform. ACM Transactions
on Intelligent Systems and Technology, 6(3):1–21, April 2015.

BIBLIOGRAPHY 169

[TMRR12] Sha Tao, Vasileios Manolopoulos, Saul Rodriguez, and Ana Rusu. Real-
Time Urban Traffic State Estimation with A-GPS Mobile Phones as
Probes. Journal of Transportation Technologies, 02(01):22–31, 2012.

[TS72] Sheung Yuen Amy Tsui and Amer S Shalaby. Enhanced System for Link
and Mode Identification for Personal Travel Surveys Based on Global
Positioning Systems. Transportation Research Record, page 8, 1972.

[UE] Climate Change Division US EPA. U.S. Greenhouse Gas Inventory Re-
port. The national greenhouse gas inventory is developed each year to
track trends in U.S. emissions and removals. Find emissions by source,
economic sector and greenhouse gas.

[Vic17] Victoria Transport Policy Institute. Online TDM Encyclopedia - Multi-
Modal Level-Of-Service. TDM Encyclopedia, April 2017.

[VS15] Akshay Vij and K. Shankari. When is big data big enough? Implications
of using GPS-based surveys for travel demand analysis. Transportation
Research Part C: Emerging Technologies, 56:446–462, July 2015.

[WBO+14] Jean Wolf, William Bachman, Marcelo Simas Oliveira, Joshua Auld,
Abolfazl (Kouros) Mohammadian, Peter Vovsha, National Cooperative
Highway Research Program, Transportation Research Board, and Na-
tional Academies of Sciences, Engineering, and Medicine. Applying GPS
Data to Understand Travel Behavior, Volume I: Background, Methods,
and Tests, volume 1. Transportation Research Board, Washington, D.C.,
June 2014.

[WGB01] Jean Wolf, Randall Guensler, and William Bachman. Elimination of the
Travel Diary: Experiment to Derive Trip Purpose from Global Position-
ing System Travel Data. Transportation Research Record: Journal of the
Transportation Research Board, 1768(1):125–134, January 2001.

[WHB+12] Pu Wang, Timothy Hunter, Alexandre M. Bayen, Katja Schechtner, and
Marta C. González. Understanding Road Usage Patterns in Urban Areas.
Scientific Reports, 2, December 2012.

[Wol14] Jean Wolf. Applying GPS Data to Understand Travel Behavior. Number
775 in Nchrp National Cooperative Highway Research Program Report.
Transportation Research Board of the National Academies, Washington,
DC, 2014.

[WSWG] Stephan Winter, Monika Sester, Ouri Wolfson, and Glenn Geers. Towards
a Computational Transportation Science. page 10.

BIBLIOGRAPHY 170

[YCP+13] Zhixian Yan, Dipanjan Chakraborty, Christine Parent, Stefano Spaccapi-
etra, and Karl Aberer. Semantic trajectories: Mobility data computation
and annotation. ACM Transactions on Intelligent Systems and Technol-
ogy, 4(3):1, June 2013.

[YGW13] David J. Yates, Girish J. Jeff Gulati, and Joseph W. Weiss. Understand-
ing the Impact of Policy, Regulation and Governance on Mobile Broad-
band Diffusion. In 2013 46th Hawaii International Conference on System
Sciences, pages 2852–2861, Wailea, HI, USA, January 2013. IEEE.

[YSC+12] Zhixian Yan, Vigneshwaran Subbaraju, Dipanjan Chakraborty, Archan
Misra, and Karl Aberer. Energy-efficient continuous activity recognition
on mobile phones: An activity-adaptive approach. In Wearable Com-
puters (ISWC), 2012 16th International Symposium On, pages 17–24,
2012.

[YYW+14] Meng-Chieh Yu, Tong Yu, Shao-Chen Wang, Chih-Jen Lin, and Ed-
ward Y. Chang. Big data small footprint: The design of a low-power
classifier for detecting transportation modes. Proceedings of the VLDB
Endowment, 7(13):1429–1440, August 2014.

[Zan09] Paul A Zandbergen. Accuracy of iPhone Locations: A Comparison of
Assisted GPS, WiFi and Cellular Positioning. Transactions in GIS, 13:5–
25, June 2009.

[ZB] Hui Zang and Jean Bolot. Anonymization of Location Data Does Not
Work: A Large-Scale Measurement Study. page 12.

[ZB11] Paul A. Zandbergen and Sean J. Barbeau. Positional Accuracy of As-
sisted GPS Data from High-Sensitivity GPS-enabled Mobile Phones.
Journal of Navigation, 64(3):381–399, July 2011.

[ZCCM11] J. Zaldivar, C. T. Calafate, J. C. Cano, and P. Manzoni. Providing
accident detection in vehicular networks through OBD-II devices and
Android-based smartphones. In 2011 IEEE 36th Conference on Local
Computer Networks, pages 813–819, October 2011.

[ZCL+10] Yu Zheng, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma. Un-
derstanding transportation modes based on GPS data for web applica-
tions. ACM Transactions on the Web, 4(1):1–36, January 2010.

[ZGP+15] Fang Zhao, Ajinkya Ghorpade, Francisco Câmara Pereira, Christopher
Zegras, and Moshe Ben-Akiva. Stop Detection in Smartphone-based
Travel Surveys. Transportation Research Procedia, 11:218–226, 2015.

BIBLIOGRAPHY 171

[ZHUK13a] Xianyuan Zhan, Samiul Hasan, Satish V. Ukkusuri, and Camille Kamga.
Urban link travel time estimation using large-scale taxi data with partial
information. Transportation Research Part C: Emerging Technologies,
33:37–49, August 2013.

[ZHUK13b] Xianyuan Zhan, Samiul Hasan, Satish V. Ukkusuri, and Camille Kamga.
Urban link travel time estimation using large-scale taxi data with partial
information. Transportation Research Part C: Emerging Technologies,
33:37–49, August 2013.

[ZSC13] Mohamed Zaki, Tarek Sayed, and Andrew Cheung. Computer Vision
Techniques for the Automated Collection of Cyclist Data. Transportation
Research Record: Journal of the Transportation Research Board, 2387:10–
19, December 2013.

[ZTG+11] John Zimmerman, Anthony Tomasic, Charles Garrod, Daisy Yoo, Chaya
Hiruncharoenvate, Rafae Aziz, Nikhil Ravi Thiruvengadam, Yun Huang,
and Aaron Steinfeld. Field trial of Tiramisu: Crowd-sourcing bus arrival
times to spur co-design. In Proceedings of the 2011 Annual Conference on
Human Factors in Computing Systems - CHI ’11, page 1677, Vancouver,
BC, Canada, 2011. ACM Press.

[ZWHI15] Mingyang Zhong, Jiahui Wen, Peizhao Hu, and Jadwiga Indulska. Ad-
vancing Android activity recognition service with Markov smoother. In
Pervasive Computing and Communication Workshops (PerCom Work-
shops), 2015 IEEE International Conference On, pages 38–43. IEEE,
2015.

[ZXM10] Yu Zheng, Xing Xie, and Wei-Ying Ma. GeoLife: A Collaborative Social
Networking Service among User, Location and Trajectory. IEEE Data
Eng. Bull., 33(2):32–39, 2010.

	Contents
	List of Figures
	List of Tables
	Computational Mobility
	Computational mobility definition
	The case for computational mobility
	New data: Ride hailing and congestion in New York
	New models: Parking in the Bay Area (SRI)

	What data matters
	Continuous sensed data collection
	Semantic labels for continuous data
	Intermittently triggered experience sensing
	Data sources and quality

	How is the data modeled
	Travel diary
	Personalized activity model
	Infrastructure models

	What to expect in interdisciplinary work
	Interdisciplinary computational field examples
	Relation to purely applied work
	Broader Impact: CS domain transfer
	Intellectual Merit: CS domain transfer

	Computational Mobility is interdisciplinary
	System rather than results
	Bi-directional
	Developing new methods

	The thesis problem

	Background
	Sources of transportation data
	Infrastructure: Traffic Sensing at fixed points
	Vehicle: Unlinked in-vehicle travel trajectories
	Human: Smartphone based, high quality, user consent

	Prior HMSes from builders and deployers
	Project and feature selection methodology
	Characteristics of builder and deployer projects
	Comparing open source, reusable systems or platforms

	Context sensitive smartphone sensing
	Academic Literature: Location
	Academic Literature: Activity Detection
	Industry

	Analysis pipeline and algorithms
	Trajectory smoothing algorithms
	Trip segmentation algorithms
	Section segmentation algorithms

	Evaluation approaches for smartphone sensing
	Context sensitive algorithms: power without accuracy
	Travel diary systems: compare to manual surveys
	Large scale testbeds: no ground truth, no power
	Mode inference: accuracy without power
	Inference on ad hoc datasets: no privacy
	Recent high quality datasets: no trade-offs, no privacy
	Power/accuracy trade-off with artificial trips: no reproducibility

	Conclusion

	Computational mobility architecture
	Introduction
	Architectures, platforms and systems
	Architecture overview and highlights
	User Interface (UI) channels
	cross-platform event generation
	Pipeline and data model
	Data ownership and aggregation

	Client architecture
	Sensing
	Communication
	Interrupt handler
	User Interface (UI)
	User Interface (UI) channels

	Server architecture
	Storage
	Aggregation
	Data ownership
	Other components

	Analysis architecture
	Pipeline
	Data model

	Principle of proportional effort
	Usage without customization
	Extending the smartphone app
	Extending the server functionality

	Conclusion

	Background sensing using virtual sensors
	Restrictions on background processing
	Android
	iOS

	Initial exploration of power accuracy trade-offs
	Experimental setup
	Exploration results

	Cross-platform duty cycling implementation
	Motivation
	Our design and some challenges

	Modeling and generalization
	Custom implementations and virtual sensor updates
	Virtual sensors are easier to use but less flexible
	Virtual sensors have fewer restrictions, at least on iOS
	Virtual sensor implementations change over time
	Maintenance and upgrade cycle

	Conclusion and Future Work

	Wrangling noisy data into a mobility diary
	Reproducible data pipeline for diary creation
	Intake pipeline algorithm steps
	Other steps: data manipulation and use-case specific
	Data model for reproducibility
	Pipeline states

	Input virtual sensor data characteristics
	Fused location
	Trip start/end
	Motion activity

	Adaptations to classic algorithms
	Trip segmentation
	Section segmentation
	Trajectory smoothing
	Cleaning and Resampling
	Mode inference

	Conclusion

	A technique for evaluating mobility sensing
	Intuition for challenges and solution
	Requirements for evaluating Human Mobility Systems (HMSes)
	Holistic evaluation: power vs. overall accuracy
	Privacy preserving
	Ground truthed

	Controlled Evaluation of context-sensitivity
	Artificial timeline
	Control phones

	Discussion of alternative procedures
	No artificial trips
	No control

	Evaluation system design
	System overview
	System iterations and lessons learned

	Conclusion

	Performance Evaluation
	Evaluation of architecture and modularity
	Metrics
	Use cases
	Extensibility + adoption
	Utility
	Application specific metrics

	Evaluation of data collection and analysis
	Experiment design
	Evaluation parameters
	Metrics
	Power: calibration and evaluation
	Trip Segmentation: sensed vs. master
	Section Segmentation: sensed vs. gis
	Classification
	Trajectory: sensed vs. master

	Conclusion

	Conclusion and Future work
	Future application of CS domain
	CS use-inspired research domain usage
	Broader Impact: Agile Urban Planning
	Potential risks of tracking location data
	Open surveillance by repressive regimes
	Covert misuse by data collectors
	Illegal access by hackers

	A Beginning, Not an End

