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Abstract

Unlocking Design Reuse with Hardware Compiler Frameworks
by
Adam Izraelevitz
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley
Adjunct Professor Jonathan Richard Bachrach, Co-chair

Professor Krste Asanovi¢, Co-chair

Emerging applications from the edge to the cloud are constantly increasing demand for
energy efficient and performant computation. While specialized hardware can meet these
power and performance goals, the high non-reoccurring engineering (NRE) costs of designing,
testing, and verifying custom hardware severely hinders its supply. Hardware construction
languages such as Chisel enable hardware designers to write parameterized hardware libraries
which increase design reuse by turning NRE effort into reusable solutions for future special-
ized chips. This thesis introduces FIRRTL, Chisel’s hardware compiler framework, which
enables automatic and custom RTL-transformations including logic optimization and design
instrumentation. In addition, this thesis proposes an aspect-oriented-inspired paradigm,
Colla-Gen, as a mechanism to improve design collateral reuse (e.g. physical design floor-
planning or verification instrumentation), which forms another large portion of chip NRE
costs.
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Chapter 1

Introduction

The end of Dennard scaling and the slowing of technology advances are eliminating the associ-
ated “free" power, performance, and area improvements for digital circuits. Since specialized
hardware implementations have enormous energy and performance improvements over soft-
ware on a general-purpose processor, specialization is hardware design’s path forward for the
foreseeable future. This trend manifests in an increasing demand for diverse products con-
taining different specialized digital logic descriptions, also known as RTL (register-transfer-
level). Meeting this demand with existing methodologies is difficult.

In contrast, the software industry has faster design cycles than the hardware industry;
a small team can go from idea to profitable software in under two weeks. What can the
hardware industry learn from the software community?

A key contributor to software industry’s productivity is reusable libraries, which amortize
development and verification costs of new applications. These libraries are built upon ex-
pressive languages with retargetable compilers that perform platform-specific optimizations
on general-purpose code.

In comparison, hardware reuse is relatively rare; no widely-used reusable hardware library
exists. However, if hardware projects reused more code, engineers might spend less time
designing and, more importantly, less time verifying the new design. Since the benefits of
reusing code are clear, why don’t hardware engineers write reusable libraries?

This thesis attempts to answer this question, as well as describe the infrastructure nec-
essary to develop reusable hardware libraries.

1.1 The Trend of Hardware Specialization

Novel applications are discovered daily which demand faster computation and lower power
requirements. To meet this need, the hardware community proposes specializing hardware
to the demands of the application; instead of accelerating general-purpose computation,
companies design processors which quickly and efficiently execute a single, specific appli-
cation (specialization). For example in autonomous driving, a car must quickly recognize
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obstacles such as pedestrians in their path - this low latency, high complexity calculation re-
quires significant computation embedded within the car. Enhancing a car with a specialized
image-processing chip running image-processing code meets these requirements; the chip’s
lack of general-purpose usability is immaterial given the restricted application domain. How-
ever, the market’s relatively low volume demand of per-application chips restricts hardware
manufacturers because they cannot offset their custom chip designing and engineering costs
through selling high volumes of that chip.

From Idea to Product

Prior to specialization, a company addressed an application by selling customized products
containing commodity general-purpose chips. This previous era enabled large chip companies
such as Intel to design a single generic chip that was manufactured in bulk and sold to a wide
variety of per-application companies who integrated the chip within their product. Today
in the post-Moore’s Law age of computing, this business model breaks down because one
general-purpose chip is neither fast enough nor efficient enough to address the full spectrum
of modern application demands.

Without this market for general-purpose chips, application companies must accommodate
the custom chip design effort within their process of transitioning from idea to product. Now,
a company undergoes the following steps where the time, effort and cost of designing a new
specialized chip directly delays the time-to-market:

1. Identify new application

2. Design new algorithm

3. Write software for new algorithm

4. Design hardware that runs that software quickly?

5. Produce chip, deploy design, sell product

Using current methods to design, verify, and produce a chip, there are staggering amounts
of non-reusable-engineering (NRE) costs (e.g. the engineers’ salaries). While previously chip
companies amortized the large NRE cost bottleneck by selling millions of identical chips and
reducing the per-chip NRE cost, the current market lacks sufficient demand to sufficiently
amortize this cost. In the age of specialization, the per-chip NRE cost becomes the
dominating cost of producing a specialized chip.

deally hardware/software are designed in tandem
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1.2 Reducing Per-Chip NRE Costs

Writing reusable designs, rather than one-off designs, allows greater amortiza-
tion of NRE costs into recurring engineering costs. This approach requires a shift
in thinking from traditional hardware engineers; in addition to designing their product, en-
gineers consider how their design is reused in a future design. When a higher percentage of
their work is directly usable in future designs, NRE cost of the next chip is reduced. Over
time, the cost of developing and verifying a design is amortized over each future usage. In
summary, the goal of designing a chip is to finish a design as well as contribute to a reusable
chip-design ecosystem.

Suppose an existing design almost solves a new need; rather than starting afresh or copy-
paste-modifying (both of which create new designs and restart the NRE-amortization), an
engineer "grows" the existing design to address their new use case and preserve existing
use cases; all existing designs are then updated to the new version. This approach reduces
the growth of code whose maintenance, design, and verification costs contribute to the total
NRE cost, while constant design sharing continuously amortizes the original NRE effort.
Ideally, bringing up a new chip uses existing designs, existing verification infrastructure, and
existing physical designs. Any new code an engineer writes is refactored and contributed
back to the ecosystem to be used by others.

Recently, the hardware industry has increased its reuse of large complex custom IP
blocks at the system-on-chip (SoC) level, which has had many benefits including faster
time to market and reduced verification effort. However, custom IP blocks are usually very
specialized, as opposed to being basic building blocks of hardware like queues, arithmetic
units, multipliers, caches, and so on, and pose more integration challenges than a typical
reusable library.

Take an analogy to software - if an open source library almost addresses a new use case,
upstreaming a new API (application programming interface) or feature increases the power
of the library, while rewriting the library or modifying it without contributing back increases
the total amount of code to design and verify. Analogous to hardware IP (intellectual
property) blocks, hand-optimized assembly routines are reusable but limited in scope, which
distinguishes them from these wide-ranging and fully featured libraries. In short, reduce
NRE costs by designing hardware and software for reuse and growing their codebases with
new features.

A large majority of the NRE costs of designing a chip are in the verification
and physical design of the chip, not just the digital logic of the hardware. Here
is where the previous analogy to software breaks down. First, most software requires signif-
icantly less verification than hardware, as software bugfixes are relatively cheap to deploy.
Secondly, compilers successfully increase code reusability by isolating code from compu-
tational platforms. Thirdly, slow but correct code can be iteratively improved upon via
updates, making software’s initial performance a lesser concern.

Hardware is different. Bugs are extremely costly to fix, if downright impossible. Most
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hardware is very coupled to the underlying technology, exacerbating the lack of reusability.
Finally, the production of chips is so expensive that slow chips are effectively useless and
companies must invest significantly into early optimization of their design.

Verification infrastructure and physical design tools require additional design
collateral which must also be reused. A hardware design is not simply the digital logic
description of a chip; rather the design includes the digital logic + verification tests/in-
frastructure + simulation mapping collateral + physical design scripts + input/output cell
placements + SRAM macro compiler calls + etc.

As demonstrated in Chapter 2, the existing flaws of verification technologies, design lan-
guages, and physical design tools limit the degree of design reusability; an engineer cannot
write reusable designs given these tools. For example, the parameters supported by a design
language directly influence a design’s reusability; if a desired parameterization is not sup-
ported, then the code must be duplicated and modified. Another example is how the mixing
of concerns within a codebase reduces its reuse potential. If a verification flow implicitly
depends on a transistor technology, then every future design that uses a different transistor
technology cannot use this flow, regardless of other design similarities.

Take another analogy to software - if a library is written only using x86 assembly, it
cannot run on an ARM machine. Similarly, a design that directly instantiates 14nm SRAMs
can never be reused in a 7nm process.

The existing software paradigm of aspect-oriented programming is well-suited
as inspiration to solve the problem of reusing hardware design collateral.

Software aspect-oriented programming (AOP) is not widely adopted because the benefits
of reusing software code collateral do not offset the downsides of aspect-oriented program-
ming. In contrast, the degree of necessary hardware design collateral significantly improves
the overall outcome of applying an AOP-inspired approach; the benefits from reusing design
collateral outweigh the added downsides. In fact, the hardware design collateral problem is
so severe that many predominant physical design and verification flows are aspect-oriented in
spirit; if rewritten with a consideration of aspect-oriented programming, these flows would en-
able clearer semantics, more reuse, and more powerful features. In all, introducing an aspect-
oriented approach brings reusability to hardware design collateral and enables a healthy chip
design ecosystem.

1.3 Summary of Research Contributions

This thesis contributes the following:

e Chapter 1: An introduction to hardware specialization, non-reusable engineering costs
and its impact on hardware design reusability

e Chapter 2: Four hypotheses accounting for the stagnation of hardware library develop-
ment, as well as an overview of the Hammer framework which enables the abstraction
of physical design concerns
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e Chapter 3: An introduction and evaluation of Chisel, a hardware construction language
which enables the ability to express reusable hardware designs. This chapter includes
the following: (1) an analysis of existing hardware description languages and their
flaws, (2) an analysis of Chisel as a primary tool for hardware libraries, and (3) an
evaluation of Chisel’s support for hardware libraries

e Chapter 4: A complete description of FIRRTL, a new hardware compiler framework
and intermediate platform-agnostic representation, and how it isolates the digital logic
design from the underlying physical design/verification concerns through an ecosystem
of automatic digital logic transformations. This chapter includes the following: (1)
analysis of LLVM, an existing software compiler framework; (2) introduction of FIR-
RTL’s intermediate representation (IR); (3) description of value inference (e.g. widths)
and its implementation; (4) support for arbitrary metadata throughout the compila-
tion process; (5) the mechanisms for transforms to inspect and modify a design; (6) a
description of interesting transformations; (7) an evaluation of the FIRRTL compiler
framework

e Chapter 5: An introduction of Colla-Gen, an AOP-inspired approach as a user-facing
language to express reusable design collateral, thus enabling an ecosystem of design
collateral libraries. This chapter includes the following: (1) a detailed description of
aspect-oriented programming (AOP), an analysis of its flaws, and an argument for its
consideration within a hardware context; (2) an introduction to Colla-Gen illustrated
with a physical design floorplanning example; (3) Colla-Gen’s implementation and
additional reusable libraries for generating design collateral are presented and discussed

e Chapter 6: A conclusion on the results of this thesis and a discussion of future directions
of this research

e Appendix: A full specification of the FIRRTL intermediate representation

1.4 Previous Publication, Collaboration, and Funding

Some of the content and figures in this thesis are adapted from previous paper submissions
that are the result of multiple collaborations. While the majority of the research content, de-
sign, and implementation was done by myself, other collaborators made direct contributions
to content discussed in this thesis. The following details their contributions.

The first submission is "Reusability is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations" [23]. Jack Koenig improved FIRRTL’s
optimization passes and provided its evaluation in Chapter 4. Patrick Li contributed the idea
of simplification transformations and a preliminary design of the FIRRTL language, the final
form of which is included in the Appendix. Richard Lin, Chick Markley, and Jim Lawson
contributed heavily to improvements to Chisel, the hardware construction language analyzed
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in this project. Angie Wang contributed a version of the memory-replacement transforma-
tion and its evaluation in Chapter 4. Albert Magyar contributed the double-pumped FPGA
memory transformation and its evaluation in Chapter 4. Donggyu Kim contributed the
decoupling and snapshotting transformations and their evaluation in Chapter 4, as well as
collecting the data about RocketChip and OpenPiton source code used in Chapter 3. Colin
Schmidt contributed the details of the case study and coverage results in Chapter 4. Krste
Asanovié¢ and Jonathan Bachrach provided guidance and feedback in all stages of the paper.

The second submission is "ACED: A hardware library for generating DSP systems" [15].
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Chapter 2

An Analysis and Proposal for Hardware
Design Methodologies

Existing solutions cannot reduce the per-chip NRE costs because they fail to sufficiently
support a hardware design ecosystem. This chapter provides an analysis of current method-
ologies including hardware languages, compilers, and CAD tools, as well as outlines their
flaws which inhibit effective reuse of hardware designs and increase non-recurring engineer-
ing costs. In addition, a cursory description is included of Hammer, a sister project which
provides useful and reusable tool abstractions; however, keeping design collateral in-sync
with a generated design remains a problem.

This chapter is organized through a discussion of the following three hypotheses that ac-
count for the stagnation of hardware library development (which are preceded by addressing
alternative but incorrect hypotheses):

1. Existing hardware description languages lack the expressivity to support hardware li-
braries

2. Diverse underlying implementations require RTL customization, limiting a design’s
reusability

3. Effective physical design, verification, emulation and instrumentation require additional
design collateral which is too tool/platform /technology dependent and too brittle in face
of design modifications

2.1 Incorrect Hypotheses

Software libraries are pervasive in software development because, through code reuse, they
reduce development and verification costs of new applications. Modern software relies on
thousands of libraries—Ubuntu 14.04 has approximately 35,000 packages installed natively.

In direct comparison, hardware designers do not commonly reuse modules from project
to project, let alone develop extensive and reusable libraries. As mentioned earlier, the
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hardware industry has increased its reuse of large complex custom IP blocks at the SoC-
level, but these custom IP blocks are specialized and pose more integration challenges than
a typical reusable library. The amount of reusable hardware IP is a far cry from the ubiquity
and usability of software libraries.

One could claim the lack of hardware libraries is from a lack of effort; yet in this author’s
experience, many companies try, but fail, to establish internal reusable libraries of hardware
components.

One could also claim the lack of hardware libraries is from a lack of an open-source
community; yet, popular open-source software is often written by one or two contributors.
D3[7], the popular JavaScript visualization library, was primarily written by a single engineer,
but has still seen widespread use.

2.2 Hypothesis 1—Existing HDLs lack expressivity

Programming languages have seen significant improvements since the 1980s when the ma-
jority of popular hardware description languages (HDLs) were designed (Verilog, VHDL).
Modern advancements in mainstream programming languages have made languages like
Java, C++, Python, Perl, and Ruby very powerful. Object-orientation, polymorphism, and
higher-order functions enable the use of good software engineering principles like abstraction,
separation of concerns, and modularity; these ultimately encourage and enable code reuse.
HDLs have been very slow to adopt these paradigms.

An adder reduction tree illustrates this problem: Verilog and VHDL cannot express
recursive generate statements, so a designer must manually unroll the loop and calculate
indices for every instance. The lack of parameterization precludes re-use when a tree of
different width is required.

Another example is a module that filters packets. With current HDLs, either the filter
module or an external module must encode the filter condition. The first approach violates
the principle of separation of concerns, while the second violates encapsulation. However,
higher-order functions provide an elegant software engineering solution to the problem.

SystemVerilog, created in 2002, attempts to improve on existing HDLs by mixing in
modern ideas like object-oriented programming with classic Verilog elements. The result is
an extremely complicated language—intractable to support and confusing to learn—that is
still missing other modern features like higher-order functions. To the author’s knowledge,
no commercial SystemVerilog compiler implements the entire specification.

High-level synthesis (HLS) takes a different approach by having the user design in a
higher level language, with a compiler translating down to RTL. The input language can
be C-like [50][31][11][8][*4], a parallel C-like language [13][36][37], general purpose [2], or
domain specific [18][20][32][21][33][22]. Many HLS tools are evaluated on simplicity of use,
performance relative to a hand-coded implementation, succinctness, and resource footprint;
their ability to foster reusable hardware libraries is not usually considered.
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Unfortunately, HLS approaches suffer from two competing concerns: (1) a more expres-
sive source language enables better software engineering (and thus more reusability); (2) a
more expressive source language is more difficult to translate to hardware and creates more
compilation /abstraction layers that the user must understand to fine-tune their design.

2.3 Hypothesis 2—Underlying complexity requires RTL
customization

In spite of the success of logic synthesis, many underlying constraints still influence RTL
design.

ASIC implementations often require RTL customizations. For example, Verilog lacks
an explicit memory construct; users must use a register array. In modern technologies,
SRAMs are provided by the fabrication company because large memories often contribute to
a design’s critical path, area, and power. RTL designers must rewrite their design to replace
these register arrays with black-boxed SRAMs; this eliminates any future reuse that does
not use this ASIC technology or performance envelope.

hw.v
+ BRAM macros + SRAM macros
y LN
FPGA ASIC FPGA ASIC
Implementation Implementation Implementation Implementation
. underlying constraints programmatic transformation

Figure 2.1:  Underlying constraints for ASIC versus FPGA implementations means the
same RTL cannot get good results on both platforms. This limits the reusability of any RTL
design. To solve this problem, programmatic RTL transformations must take generic RTL
and specialize it for a given platform.

FPGA implementations are no different; many FPGAs have hardened logic blocks to
improve design quality. A designer can receive significant performance, power, or utilization
advantages by modifying their RTL to be friendlier to a particular FPGA’s synthesis tool.
These changes, however, may be detrimental to an ASIC implementation or another FPGA
implementation.

To solve this problem, some designers write a collection of custom scripts to do ad-hoc
programmatic RTL modifications; these scripts are neither reusable, robust, nor composable.

Commercial CAD tools do not completely solve this problem either. While some do
contain RTL-to-RTL transformations, CAD tools primarily focus on the separate problem
of synthesis and place-and-route. Additionally, they are not organized in an open-source
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compiler framework and are insufficient for custom flows that may have unsupported use
cases.

One exception is Yosys|18], which is an open-source framework for Verilog RTL synthesis,
and maps Verilog to ASIC standard cell libraries or Xilinx FPGAs. The main focus of Yosys is
logic synthesis, not RTL to RTL transformations, and thus its internal design representation
is very low level, and cannot represent higher-level constructs like aggregate types, width
inference, and conditional assignment.

Separate from CAD tools, there exist stand-alone RTL modifiers, but many are closed
source[6] and like commercial CAD tools cannot support custom flows. One exception is
PyVerilog|12], which is an RTL-to-RTL modifier tailored specifically to Verilog. As such, it
makes it difficult to act upon designer intent that is not directly represented in a Verilog
construct. PyVerilog does not support SRAM inference or aggregate types, and these features
would be very difficult to support given its internal circuit representation.

2.4 Hypothesis 3—Design collateral is necessary but
not reusable

To obtain an ASIC implementation of a hardware design, its RTL must undergo many
necessary and guided steps to obtain a tape-out-ready GDS. For example, one of these steps
is place and route, the class of algorithms underlying physical design (physical realization
of a logical design) which is generally considered to be NP-hard [10] [12]. As a result,
designer intervention is often required to achieve high quality of results (QoR) within a
reasonable timeframe. The dominant mode of designer intervention and interaction with
CAD/EDA tools is through tool-specific TCL scripts which set constraints and run various
physical design tasks in the tool. Place and route is one of many necessary-and-guided steps
including standard cell synthesis, clock-tree synthesis, macro placement, 10 cell selection
and placement, and power strap specifications.

While existing CAD tools can perform all of these tasks, each step requires a significant
amount of customization dependent on the following orthogonal concerns: the logical
design features (SRAM size and number, signal fan-outs/fan-ins, bus bandwidths etc.), the
physical design features (area constraints, shape constraints, desired frequency, floorplan)
the transistor technology (restrictions on metal layers, SRAM macros and 10 standard
cells), and CAD tools used (specific placement directives, tool settings, flow structure).

Given the current status of interacting with EDA tools, the traditional approach towards
"re-using" physical design effort is manual customization of tool vendor provided reference
methodologies, essentially templates of physical design flow scripts e.g. To add a modicum of
reuse, an approach is to use macro/string preprocessing, either within TCL itself or through
other tools, to customize reference methodologies and generate tool scripts e.g. [35] [10] [14].
Macro/string preprocessing, however, has no awareness of the underlying physical design
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Figure 2.2: To create pad frames for an ASIC, the CAD tool expects to be told to create an
IO frame. For each 10 cell in the frame, one must use a tool-specific command to indicate its
physical design-specific placement, its corresponding logical design-specific signal, and the
technology-specific 10 cell. Because this design collateral lacks any abstraction of concerns,
these commands are impossible to reuse under technology, logical design, physical design, or
CAD tool changes.

concepts; this approach gives rise to ad-hoc approaches which make it difficult to achieve
safe programmatic re-use.

This lack of reusable design collateral is also present for both FPGA-implementations and
efficient simulators. FPGA development requires many of the same steps as ASIC designs
(synthesis, place and route) as well as requiring specific FPGA CAD tool directives in order
to improve its clock frequency, LUT usage, and hard-block usage. Software simulators have
an endless list of settings, flags, and debug features which improve debuggability, simulation
speed, or both. Verification flows also require specific tools, commands, and other collateral
in order to target the design (e.g. constrained-random criteria for improved coverage, or
directives reducing the valid state-space for formal tools). All of this design collateral is
heavily dependent on which tool or design used, regardless of function (e.g. feature-equivalent
formal tools still employ unique API’s which influence the associated design collateral).

Most manually created design collateral is contained within design tool scripts (see Figure
2.2). Because these scripts do not abstract these orthogonal concerns, changing one concern
requires an entire rewrite of this design collateral (e.g. switching technologies, but preserving
the tools, logical design and physical design). Figure 2.2 contains a snippet from the design
collateral of a 28nm ASIC tapeout; every CAD tool command is directly dependent on every
orthogonal concern, eliminating any reuse of this code if any one concern changes.

Design collateral is necessary for real products in ASIC, FPGA, simulator and verification
flows. At the same time, it lacks abstraction and is manually written to a given design
instance; this makes the design collateral non-reusable to changes in technology, design
logic, physical design, or tools used.
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Figure 2.3: The overall architecture of the Hammer methodology showing the points of
design entry, compilers/libraries, generated files/formats, and Hammer plugins, as well as
the interactions between them.
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The Hammer Framework

To enable design collateral reuse, the Hammer framework is designed to develop abstractions
for tool, technology, and physical design concerns; this enables writing design collateral that
is only dependent on design features. Like how programming languages provide abstract
classes as an implementation-agnostic interface (and thus make a program reusable across
class implementations), Hammer provides an abstraction for these concerns. Hammer scripts
are independent of physical design, technology, and tool concerns. This section is a brief
overview of the main components of Hammer; see Figure 5.4 for a diagram of the components
discussed below.

The Hammer IR is the primary standardized data exchange format of Hammer. The IR
standardizes physical design constraints such as placement constraints and clock constraints.
In addition, the Hammer IR also standardizes communication among and to Hammer plugins,
including tool control (e.g. loading tools, etc.) and configuration options (e.g. number
of CPUs). Users can generate Hammer IR directly from a logical design generator like
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Chisel (e.g. retiming) by triggering a custom physical design transformation; these compiler
transforms ingest annotations and emit the appropriate Hammer IR to implement the desired
feature. Users can still explicitly pass physical design features by writing Hammer IR or
writing a TCL hook.

The Hammer Tool Abstractions create a CAD-tool abstraction layer which consists of
APIs for performing various physical design tasks, including synthesis and place and route.
Different plugins implement the same interface for interoperability. To use Hammer tool
plugins, physical design information and settings using the Hammer IR must be provided.
Developers implement Hammer tool plugins as Python classes which consume Hammer IR
and emit the appropriate TCL fragments to implement those features for a certain tool.
TCL hooks allow expert users to bypass the abstraction by injecting TCL code directly into
the generated flow, similar to how inline assembly allows injection of assembly into C.

The Hammer Technology Abstraction provides a standard data interchange format and
corresponding Python library to encapsulate technology concerns. Hammer tool plugins are
linked with a technology library so that they can perform actions involving technologies,
like reading timing libraries or inserting filler cells. Creating a new technology plugin in-
volves describing paths for components of the foundry-provided PDK, including standard
cell libraries, timing databases, memories, layouts, and design rules. The interface can be
bypassed by using TCL hooks to inject arbitrary TCL code that may include technology-
specific references/functions.

The Hammer Flow Driver, Hammer’s interface for flow concerns (concerns about schedul-
ing builds, build dependencies, tracking/managing build outputs, etc), orchestrates the in-
gestion of inputs/outputs and loads/calls tools, all via programmatic Python and JSON
APIs. This allows users to build their own customized flow solutions using Hammer while
decoupling build/flow concerns from the other four concerns, making it possible to use a
variety of build tools (e.g. shell scripts, bazel, Make, SCons).

While Hammer scripts provide much of the reusability in ASIC flows, Hammer IR (Ham-
mer’s design collateral) is still heavily dependent on the design it is paired with. Manually
writing Hammer IR to indicate a module’s place-and-route floorplan will not work if the
same module is later re-parameterized. Design collateral must be generated in-sync with the
generated design. For this, another solution must be considered.
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Chapter 3

Hardware Construction Languages

Expressive languages and programmatic customizations are a key component to enabling
the development of reusable libraries. Previously, many influential works have introduced
and expanded upon the concept of a hardware construction language, but this thesis revisits
them in the sole context of providing a platform in which to develop hardware libraries. This
chapter contains a discussion of hardware description languages through (1) an analysis of
existing hardware description languages and their flaws, (2) an analysis of Chisel, a hardware
construction language, as a primary tool for hardware libraries, and (3) an evaluation.

3.1 Limitations of Hardware Description Languages

As described in Chapter 2, hardware description languages like Verilog or VHDL were de-
signed in the 1980s and have been slow to adopt modern programming improvements such as
object-orientation, polymorphism, and higher-order functions. These features enable the use
of good software engineering principles like abstraction, separation of concerns, and modular-
ity; these ultimately encourage and enable more hardware design reuse. While SystemVerilog
attempts to improve on existing HDLs by mixing in modern ideas like object-oriented pro-
gramming with classic Verilog elements, the result is an extremely complicated language
that is still missing other modern features like higher-order functions.

To illustrate this, consider a deeper dive into the example of a hardware module which
filters incoming packets from a network (Figure 3.1). First, the module reads packets from
the network; then, it checks if the packet violates its filtering condition. If true, the module
writes the packet to the network. If false, it writes a zero’d packet to the network. There
is one caveat however - the filtering condition depends on where the hardware module is
instantiated.

Unfortunately, Verilog, VHDL, and SystemVerilog only support String, Integer, and
Boolean parameters; our example requires a parameter that can generate the proper fil-
tering condition hardware based on where the module is instantiated. Because these HDL’s
lack the capacity to express a higher-order parameter, the user cannot create this module
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Figure 3.1: A module that filters packets by receiving them from a network, checking a
filtering condition, and processing the packet accordingly. For different instantiations of this
module, the filtering condition should be (1) Oth-bit is zero, (2) the signal is not 100, or (3)
the signal is greater than 8. Because the design requires multiple of these filtering modules
with unique filtering conditions, users cannot use an HDL because they lack these powerful
parameters.

that is parameterized by the filtering condition; instead, a user must create separate modules
for each separate filtering use case, even if the majority of the hardware block is reusable.

In industry, a common approach to address these types of examples is to write a custom
program in a scripting language like Perl or Python which accepts these powerful parameters
and generates a corresponding text file containing the corresponding HDL design. Unfortu-
nately, this approach does not compose and requires special consideration within any build
environment.
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3.2 Hardware Construction Languages for Hardware
Libraries

Hardware construction languages (HCLs) are a slightly different paradigm than HDLs for
describing RTL circuits. Instead of expressing an RTL design directly, a user instead writes
a program to construct the desired RTL design. Because HCL’s require this programmatic
approach, they are often created through embedding hardware construction capabilities in
an existing programming language. Instead of being constrained to the limited generative
capabilities of an HDL, designers have access to the rich control structures and abstractions
of a general-purpose language, allowing modular, parameterizable, and reusable designs.

Chisel[3] is one of many embedded HCLs [15][38][13][30][39][5][29] and is hosted in Scala[31],
a modern object-oriented and functional language.

Embedded HCLs, including Chisel, are software libraries with interfaces for constructing
synthesizable RTL. For example, an object-oriented HCL might have classes representing
registers and muxes:

// Represents synthesizable piece of hardware
abstract class HW {
// Emits corresponding HDL representation
def emit: String

class Register(name: String, width: Int)
extends HW { ...
def connect(r: HW) = ...
def emit = s"reg [${width-1}:0] $name;"

}
class Mux(cond: HW, ifTrue: HW, ifFalse: HW)
extends HW {...}

A designer can then create a register and hook it up by instantiating the Register object
and calling its connect method:

class Top { ... // Start of program
val my_reg = new Register("my_reg", 32)
my_reg.connect (my_mux)

}

Language features like operator overloading can also cut verbosity:

class Top { ... // Start of program
// Equivalent to my_reg.connect(my_mux)
my_reg := my_mux

To generate the complete design, the user simply executes their HCL code; this process
is called elaboration. Each HCL method call, including instantiations, builds up a data
structure representing the hardware design instance. This design can then be emitted to an
existing HDL.

Developing in a well-designed HCL can closely mimic the experience of writing in an
HDL.
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Enabling Hardware Libraries

HCLs by themselves do not provide any new hardware abstractions. However, host
language features allow designs to be more parameterizable and modular.

For example, Chisel users can write a recursive Scala function to construct an adder-
reduction tree, parameterized on bit-width. Unlike the explicitly unrolled version necessary
in Verilog, the same generator could be re-used anywhere an adder tree is desired.

Similarly, a Chisel designer can write a filter module which takes, as a parameter, a
higher-order-function that creates the condition-checking hardware. The user of this module
then only needs to write the filtering condition, re-using the base filter structure.

Ultimately, the benefit of any HCL is the expressiveness provided by the host language;
this opens the door for reusable hardware libraries.

3.3 Evaluating Chisel’s Support for Hardware Libraries

An expressive language requires fewer lines of code to more fully parameterize a design.
This parameterization enables reusing the same code in different contexts with different
parameters, potentially generating radically different hardware.

The following evaluates Chisel with regards to its expressiveness, parameterizability, and
ultimately its reusability.

Expressiveness

By using software engineering methods enabled by modern programming languages, one
should expect fewer lines of code to express similar projects.

RocketChip|1] is an open-source hardware library, written in Chisel, that can generate
many different instantiations of a symmetric multi-processor system (SMP). OpenPiton|/]
is a research project, written primarily in Verilog and enhanced with some Python-Verilog
generation scripts, that uses OpenSPARC cores with a custom interconnect and coherency
framework.

OpenPiton and RocketChip have many similarities from 10,000 feet — both are SOC
generators, containing cores, caches, network protocols, coherency domains, tests, and much
more. Both are used for computer architecture research, have been realized in silicon, and
boot Linux.

While clearly an apples-to-oranges comparison, Figure 3.2 depicts a comparison between
the code bases. OpenPiton takes 3x and 10x more code to express similar hardware struc-
tures; the sheer magnitude of code size differences between OpenPiton and RocketChip
cannot be explained solely by their differing feature sets. In addition, to the authors’ knowl-
edge, RocketChip’s out-of-order core, BOOM|9], requires the fewest lines of code of any
open-source out-of-order core implementation.
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Figure 3.2: Similar hardware structures show significant differences in code size, ranging
from between 3x to 10x. Because of their differing feature sets, this evaluation should not
be taken as a strict comparison, but rather interpreted as a general trend that using Chisel
enables a more expressive coding style.

While much of the OpenSPARC core was likely not entirely hand-written (tools like
editor extensions could have been used), the comparison of language expressivity remains
valid: Chisel is clearly more expressive than Verilog because RocketChip requires significantly
less source code.

Parameterizability

Parameterization precedes effective reusability - a flexibly parameterized module is more
useful, and thus more reusable.

While it is difficult to quantitatively evaluate the flexibility, magnitude, and degree of
parameterization that a general-purpose programming language provides an embedded HCL,
the type and degree of RocketChip’s parameterizability is described qualitatively:

e Out-of-order parameters: fetch width (1, 2, 4), issue width (1, 2, 3, 4), branch
predictors (BTB, GShare, TAGE)

e Data parallelism: number of parallel data operations (4 through 32), precision (half,
word, double)

e Multi-core: number of cores (1, 2, 4, 8, 16)

e Cache: size (64KB to 2MB), associativity (direct-mapped, two-way), type (scratch-
pad, blocking, non-blocking), coherence policy (MSI, MESI)

Note that the cross product of these parameters are all valid, and many (but not all) of
these design points have been experimented with or even realized in silicon.
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Furthermore, many of these parameters are not simply bit-widths, but impact the con-
trol logic, interface definitions, and communication protocols. As shown in Figure 3.3, the
different parameterizations can generate vastly different designs with very different microar-
chitectures, Coremark|! 7] performance results, and area numbers.

BOOM
3-wide integer, 2-wide FP
Rocket 4.49 Coremark (per MHz)
2.42 Coremark AT
(per MHz2)
1.64mm?

Figure 3.3: Two different configurations, a 3-issue out-of-order core and an in-order core,
were pushed through the FIRRTL compiler framework and synthesized them with the Synop-
sis SAED educational standard cell library[19]. These designs are very different in their area
footprint and Coremark performance; they are in fact very different processors generated
using a large percentage of shared source code.

Reusability

Three processors written in Chisel are analyzed next: (1) BOOM|[9], RocketChip’s out-of-
order machine, (2) Rocket, a single-issue in-order core, and (3) DecVec, a decoupled vector
co-processor, to understand whether parameterized designs foster reusability. As shown in
Figure 3.4, approximately 5000 lines of code are shared with all three designs, and even
more is shared between pairs of designs. In all, the three designs share half or more of their
codebases with one another.

3.4 Summary

Hardware construction languages provide additional expressibility and parameterizability
to hardware designers, greatly encouraging the development of reusable hardware libraries.
While successful in their own right, HCL’s lack the ability to fully separate their source
code from underlying platforms or technologies. The next chapter discusses how a hardware
compiler framework enables this separation, as well as providing additional capabilities to
Chisel hardware libraries.
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Figure 3.4: Three processors Rocket, BOOM and DecVec reuse each other’s code. Modules
used by all three designs include an ALU, a MulDiv unit, an ICache, a TLB, a Decoder, and
an FPU. Modules used by Rocket and BOOM include a non-blocking data cache, a PTW, a
CSR, and a BTB.
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Chapter 4

FIRRTL: A Hardware Intermediate
Representation and Compiler Framework

Like how software compilers transform general-purpose code into specialized assembly, a
hardware compiler transforms general RTL into specialized RTL. The FIRRTL compiler
enables this automatic transformation of a design, unlocking a huge amount of potential
through optimizations and other generic transformations. This potential is best understood
through two main features of the FIRRTL compiler framework: (1) its reusable transforma-
tions, and (2) its extensibility for customizations.

At first glance, writing an RTL transformation may seem like over-engineering; if a user
wants to inline a module, why write an entire transformation when inlining manually is
not very difficult? The key observation is that inlining is a common procedure required
for most physical design implementations, and thus automation via transformation saves
significant future manual effort. Indeed, writing a transformation only saves effort if its use-
case is common enough that all future uses amortize the cost of the initial transformation
development. This argument is similar to the argument in Chapter 1 for how reusable
hardware libraries amortize their development costs over time. By making transformations
easy to write and integrate within a compiler framework, the upfront development cost of a
transformation is reduced and the number of worthwhile automatable tasks increases.

To motivate the need for an extendable hardware compiler infrastructure, consider the
following example: a streaming digital-signal processing (DSP) hardware library. Every
component in this library has a decoupled interface, where a queue of unknown size could
be instantiated between each component. An unfortunate and unavoidable consequence of
this library is that, if the queue size is zero, then the decoupled ready and valid signals
between the components are vestigial yet form a combinational path. Ideally these signals
would never be generated, but detecting this circumstance depends on knowing a neighbor’s
configuration; the local information available to a given library component generator is not
sufficient.

Using an extendable hardware compiler framework enables this streaming DSP library
to analyze the entire design topology and remove these vestigial combinational loops au-
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tomatically by writing and integrating their own custom transformation. Supporting this
use-case requires the compiler framework to inspect and modify a design, be extendable
for custom transformations, and support a robust mechanism for communicate information
throughout the compilation process (e.g. which signals were generated by the library so
other combinational paths remain untouched.)

This chapter contains a discussion of FIRRTL’s hardware compiler framework (HCF)
through the following topics: (1) analysis of LLVM, an existing software compiler framework;
(2) introduction of FIRRTL’s intermediate representation (IR); (3) description of value in-
ference (e.g. widths) and its implementation; (4) support for arbitrary metadata throughout
the compilation process; (5) the mechanisms for transforms to inspect and modify a design;
(6) a description of interesting transformations; (7) an evaluation of the FIRRTL compiler
framework.

4.1 Background

Modern software compiler frameworks, such as LLVM|27], consist of (1) frontends, (2) trans-
formations, and (3) backends. A frontend parses programs written in a specific programming
language (e.g. C++ or Rust) into a compiler-specific IR. IR-to-IR transformations such as
optimization passes then can operate on and modify the program’s structure. Finally, a
backend converts the IR into a program in the target ISA, e.g. ARM or x86. This structure
of translating an input language into an IR enables reusing transformations among multiple
designs and languages.

| prog.c || prog.rs | hw.scala || hwv |

-_-_/_.

/Cem ) [(Rust ) /[ Chisel ] (Weriiog )

[+ debugging J - | + debugging | [ frontend
[ + const prop JZ | | [+ constprop ] 1%1 (] transformation
[ + dead code elim ] = [ + dead code elim ] . backend

\ 86 [MARMT) /) \ [TASICT) (CFPGAT) )/

[progs | [ progs | [ hwv | [ hwv |

Figure 4.1: LLVM can create a C+-+-to-x86 compiler or a Rust-to-ARM compiler, yet
share internal transformations on LLVM-IR. Similarly, our HCF can create a Chisel-to-ASIC-
Verilog compiler or Verilog-to-FPGA-Verilog compiler and share internal transformations.
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LLVM originated, like FIRRTL, as an academic project by Chris Lattner and advised
by Vikram Adve in 2000 at the University of Illinois at Urbana-Champaign. Since these
beginnings, the "compiler infrastructure project" has revolutionized compiler research by
providing an open source, modular, and modern compiler.

The LLVM compiler has a modular design of many passes that operate on a common
and well-defined intermediate representation (IR) of a program. This IR is independent of
source program and target machine.

The LLVM’s compiler infrastructure is composed of passes which operate in sequence on
a program’s IR. Each pass accepts a program’s IR and returns a modified IR. They pipe
together until the program is optimized, simplified, and instrumented.

Some passes require analyzing the program before modifying it, and many of these anal-
yses can be shared among passes. However, other passes invalidate previously run analyses,
which must be rerun. This presents an interesting challenge - how does the compiler know
when to recompute analyses? Another challenge is pass dependency - some passes expect
and require being run after other passes - how is this ordering done?

LLVM solves both of these challenges with a mechanism called pass scheduling and
registration. As part of their interface, passes specify the following:

e any prerequisite passes (default is no other passes)
e any passes they invalidate/preserve (default is invalidating all other passes)

Note that references to prerequisite or invalidated passes is by name, which can be brittle
to code modifications. Additionally, incorrect specification of prerequisites or invalidations
can cause undetermined runtime behavior.

After passes are declared, they must be registered (either statically or dynamically) to a
global Pass Manager with the following:

e Command-line option name

e Name of the pass

e Whether it walks and modifies the control-flow-graph
e Whether it is an analysis pass

LLVM has three pass categories: analysis passes, transform passes, and utility passes.
Analysis passes compute information that other passes can use, and can be reused multiple
times for multiple passes. Transform passes mutate the program in some way, and can use
(or invalidate) analysis passes. Utility passes provide some utility that don’t otherwise fit
categorization, e.g. passes to extract functions to bitcode.

Each pass can take on one of a variety of traversal types. An ImmutablePass doesn’t
traverse the program but just reports statistics or other information. A ModulePass operates
on the entire program and thus cannot optimize its execution. A CallGraphSCCPass tra-
verses the program IR bottom up and can only access local information. Due to its traversal
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behavior, it is possible to optimize its execution, but is tough to write one that is correct
conceptually. A FunctionPass visits each function, independent of visiting other functions.
This makes it easily parallelizable, conceptually simple, but has limited functionality. Fi-
nally, a LoopPass executes on each loop in the function, independent of all the other loops
in the function.

The LLVM compiler infrastructure is well designed and has some important takeaways
that can be applied to designing the FIRRTL compiler infrastructure. First, there can exist
a user-enforced dependency between a pass’s actual and specified behavior; a disconnect here
would be difficult to debug. In addition, the variety of program traversal APIs can restrict
passes but also enable optimizations such as inter-mixing the execution of multiple passes
for better cache behavior from data locality. It is also important to keep the window open
for multithreaded compilation. Finally, be sure to implement lots of useful infrastructure to
simplify writing (and integrating) a compiler pass.

FIRRTL’s compiler framework is similarly structured: Chisel and Verilog frontends parse
into its IR, transformation passes provide simplification, optimization, and instrumentation,
and the resulting IR can either be simulated directly or passed to one of many Verilog back-
ends tailored for simulators, FPGAs, or ASIC technology processes. Dependencies between
transformations are specified, enabling a total ordering of tranformations to be determined
prior to running the compiler. Custom transformations are integrated automatically through
this dependency interface.

4.2 FIRRTL’s Intermediate Representation

To support an ecosystem of transformations which can consume, transform, and produce
hardware designs, clear and exact behavior of the hardware design’s representation at each
stage of transformation must be defined. This collection of hardware element definitions is
the FIRRTL specification. Its clean but powerful design is one reason why the FIRRTL
compiler project has been successful.

The original goal of the project was for Chisel, when elaborating a design, to emit a
FIRRTL representation. However, while FIRRTL was designed to resemble the Chisel HDL
after all meta-programming has executed, it is not fundamentally tied to Chisel. In fact,
additional HDLs written in other languages can target FIRRTL and reuse the majority of
the compiler toolchain.

This section first introduces FIRRTL and its concrete syntax, as well as the FIRRTL
forms which provide the basis for the lowering transformations.

FIRRTL Concrete Syntax

FIRRTL represents a standardized non-parameterized digital logic design, and consists of
hardware modules for encapsulation, registers and memories for state elements, and primitive
operations and muxes for combinational logic.
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FIRRTL also has first-class support for high-level constructs such as vector types, bundle
types, conditional statements, partial connects, and modules. These high-level constructs
are then gradually removed by a sequence of lowering transformations. Eventually the circuit
is simplified to resemble a structured netlist, which can then be translated into any output
language (e.g. Verilog). All FIRRTL constructs interoperate with one another; a simplified
circuit is expressed using a subset of the FIRRTL specification, rather than a separate
specification.

Productions in the following concrete syntax tree are italicized and keywords are written
in monospaced font. The special productions id, int, and string, indicates an identifier, an
integer literal, and a string respectively. The notation [e].. is used to indicate that e is
repeated zero or more times, and the notation [€]; is used to indicate that including e is
optional.

For a detailed explanation of all FIRRTL components, see Appendix A.
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circuit
module

port
dir
type

b
ub
bval

field

stmt

rUw
info

circuit id : [info]. ([module] )
module id : [info], ([port].. stmt)
extmodule id : [info]s ([por]..)
dir id : type [info]-
input | output
UInt[<int>],
SInt[<int>];
Fixed[<int>];[«int»]-
Interval[ib,bval,bval,ub]s[«int»]-
Clock
Analog[<int>]-,
{[field]...}
typel int]
(
[
)
]
?
int] . int])7
[flip]- id : type
wire id : type [info]-
reg id : type exp [(with: {reset => (exp, exp)})]- [info]-
mem id : [info]s (
data-type => type
depth => int
read-latency => int
write-latency => int
read-under-write => ruw
[reader =>id]. .
[writer =>id]. .
[readwriter => id] )
inst id of id [info]-
node id = exp [info]-
exp <= exp [info],
exp <- exp [info]-
exp is invalid [info],
attach([exp]..) [info]-
when ezp : [info]. stmt [else :
stop(exp, exp, int)[info]-
printf (ezp, exp, string, [exp]..) [info]-
skip [info]-
([stmd]..)
old | new | undefined
@[ string]

stmi])»

26

Circuit

Module

External Module
Port

Port Direction
Unsigned Integer
Signed Integer
Fixed Point

Interval

Clock

Analog

Bundle

Vector

Open Lower Bound
Closed Lower Bound
Open Upper Bound
Closed Upper Bound
Unknown Bound Value
Known Bound Value
Bundle Field

Wire

Register

Memory

Instance

Node

Connect

Partial Connect
Invalidate

Attach

Conditional

Stop

Printf

Empty

Statement Group
Read Under Write Flag
File Information Token
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exp = UInt[<int>]- (int) Literal Unsigned Integer
| UInt[<int>] (string) Literal Unsigned Integer From Bits
| SInt[<int>]. (int) Literal Signed Integer
| SInt[<int>]-(string) Literal Signed Integer From Bits
| id Reference
| exp.id Subfield
| explint] Subindex
| explexp] Subaccess
|  mux(exp, exp, exp) Multiplexor
| validif(exp, exp) Conditionally Valid
| primop([exp].., [int]..) Primitive Operation
primop = add Add
| sub Subtract
| mul Multiply
| div Divide
| rem Remainder
| 1t Less Than
| Tleq Less or Equal
| gt Greater Than
| geq Greater or Equal
| eq Equal
| neq Not-Equal
| pad Pad
| asUInt Interpret Bits as Ulnt
| asSInt Interpret Bits as SInt
| asClock Interpret as Clock
| asFixedPoint Interpret as Fixed Point
| asInterval Interpret as Interval
| asAnalog Interpret as Analog
| shl Shift Left
| shr Shift Right
| dshl Dynamic Shift Left
| dshr Dynamic Shift Right
| incp Increase Precision
| decp Decrease Precision
| setp Set Precision
| cvt Arithmetic Convert to Signed
| neg Negate
| not Not
| and And
| or Or
| xor Xor
| andr And Reduce
| orr Or Reduce
| xorr Xor Reduce
| cat Concatenation
| bits Bit Extraction
| head Head
| tail Tail
| wrap Wrap
| clip Clip
|
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The Lowered FIRRTL Forms

FIRRTL contains richer elements than a pure netlist design to capture as much user intent
as possible within FIRRTL’s representation, without drastically increasing the number of
constructs. However, this requires any FIRRTL compiler to rewrite a circuit with richer
constructs into an equivalent circuit with simpler, lower-level constructs.

FIRRTL’s simplification process is standardized into three well-defined forms, where each
uses a smaller, stricter and simpler subset of FIRRTL features than the previous form.

The lowered FIRRTL forms, MidFIRRTL and LoFIRRTL, are increasingly restrictive
subsets of the FIRRTL language that omit many of the higher level constructs. All confor-
mant FIRRTL compilers must provide a lowering transformation that transforms arbitrary
FIRRTL circuits into equivalent LoFIRRTL circuits. However, there are no additional re-
quirements related to accepting or producing MidFIRRTL, as the LoFIRRTL output of the
lowering transformation will already be a legal subset of MidFIRRTL.

Any transformation can specify which FIRRTL form it consumes, but can always emit
a higher form that is subsequently lowered. While less-rich inputs have fewer corner cases,
generating and modifying IR is simpler with richer features.

MidFIRRTL
A FIRRTL circuit is defined to be a valid MidFIRRTL circuit if it obeys the following

restrictions:
e All unknown values must have been inferred or explicitly defined.
e The conditional statement is not used.
e The partial connect statement is not used.

e All components are connected to exactly once.

LoFIRRTL

A FIRRTL circuit is defined to be a valid LoFIRRTL circuit if it obeys the following restric-
tion, in addition to the MidFIRRTL restrictions:

e All components must be declared with a ground type.

The additional restriction gives LoOFIRRTL a direct correspondence to a circuit netlist.

Low level circuit transformations can be conveniently written by first lowering a circuit to
its LOFIRRTL form, then operating on the restricted (and thus simpler) subset of constructs.
Note that circuit transformations are still free to generate high level constructs as they can
simply be lowered again.

The following module:
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Example 4.1:

module MyModule :
input in: {a:UInt<l>, b:UInt<2>[3]}
input clk: Clock
output out: UInt
wire c: UInt
Cc <= 1in.a
reg r: UInt[3], clk
r <= in.b
when c :

r[l] <= in.a

out <= r[0]

is rewritten as the following equivalent LoFIRRTL circuit by the lowering transform.

Example 4.2:

module MyModule :
input in_a: Ulnt<l>
input in_b_0: UInt<2>
input in_b_1: UInt<2>
input in_b_2: UInt<2>
input clk: Clock
output out: UInt<2>
wire c: UInt<l>
C <= in_a
reg r_0: UInt<2>, clk
reg r_1: UInt<2>, clk
reg r_2: UInt<2>, clk
rr0 <= in_b_0
r_l <= mux(c, in_a, in_b_1)
r-2 <= in_b_2
out <= r_0

4.3 Width, Bound, and Precision Inference

Many hardware design languages require the hardware designer to manually specify the num-
ber of bits of every signal in their design. This requires a significant amount of boilerplate,
as well as requiring a designer to "figure-out" the size of signals for which they don’t care
about, as long as it’s "big enough" to not lose information carried on the wire.

Instead, FIRRTL has significant support for inferring these signal widths automatically,
enabling the designer to specify the important signal widths, and let the compiler infer
the rest. In addition, FIRRTL supports datatypes other than integers which require addi-
tional characteristics; fixed-point datatype signals require a width and precision, and interval
datatype signals require a precision, upper bound, and lower bound.

This section discusses the motivation, behavior, and implementation of value inference,
i.e. the inference of widths, precision, and interval-bounds. Included are the details of how
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the FIRRTL compiler derives constraints on these unknown values from the design, as well
as the algorithm behind solving these constraints.

Motivation

For all signal types, hardware designers often desire this value inference for primitive op-
erations, enabling intermediate signal widths, precisions and intervals to be automatically
determined. In addition to reducing boilerplate, it reduces the possibility of incorrect width
specifications. Manually specifying the precision of intermediate signals is especially difficult
to do properly and is more convenient to be inferred.

In addition, interval type signals are useful for domains of RTL design such as digital sig-
nal processing where a module’s input /output ranges are known, even though the hardware
design language requires a bitwidth. Since a signal’s range cannot be inferred optimally from
its bitwidth, the resulting overly-conservative width inference causes suboptimal power and
area results. Manual bitwidth optimization, especially for generators, is tricky, inconvenient,
and error-prone. Designer intent can be better captured by directly encoding input ranges
into the design, allowing automatic range propagation and bitwidth reductions.

These techniques have been used in high-level synthesis flows[16] but require users to
express their designs using non-zero-cost abstractions. The benefits of these optimizations
are offset by the difficulties encountered when porting existing RTL to a new flow and/or
application. Ideally, a hardware description language would directly support interval types
and these bitwidth optimization to enable hardware designers to use them within an RTL
abstraction.

Overview

FIRRTL supports width, precision, and interval-bound inference. The width inference is
used for the following types: unsigned integers, signed integers, analog, and fixed-point.
The precision inference is used for the fixed-point and interval types. The interval-bound
inference is only used for the interval type, which represents a range of fixed-point values
with a given precision.

All width, precision, and bound inference is conservative; they grow to never lose accu-
racy. If the desired width or precision or bound is less conservative than the inferred value,
the value must be manually specified.

Our implementation of the interval type uses simple forward /backward range propagation
[24] [11]; while still conservative, this approach still offers improved bitwidth inference over
non-interval approaches without complex symbolic analysis of ranges. Potential ranges are
tracked for each operation, and the solver finds the worst-case bitwidth. A different interval
inference uses affine analysis of ranges [28], which can cancel correlated terms (e.g., A — A
has a range of [0, 0]). While enabling more powerful inference, affine analysis has non-local
effects; the resulting range of an arithmetic operation is no longer solely determined by its
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input arguments. As a standard supported datatype, this non-locality is undesirable for
transformations attempting to reason about local behavior.

Specification

For all circuit components declared with unspecified width, bound, or precision, the FIRRTL
compiler will attempt to infer the strictest possible value which can still represent all possible
values of its incoming connections. If a component has no incoming connections, and the
width /bound /precision is unspecified, then an error is thrown to indicate that the value
could not be inferred.

For module input ports with an unspecified width/bound/precision, the inferred value
is the strictest possible value that maintains the legality of all incoming connections to all
instantiations of the module.

For the specific (and local) width, precision or bound inference rules for each expression,
see their corresponding section in the Expression section of Section A.

To resolve all unknown widths, bounds and precisions, the FIRRTL compiler performs
the following circuit transformations:

1. Resolve unknown precisions - constraints on unknown precisions for all signals are
derived from the design and solved for

2. Trim interval-bounds to known precision - all known open interval upper/lower bounds
are converted to closed bounds based on the (now) known precision of the interval

3. Resolve unknown widths and bounds - all constraints on upper bounds, lower bounds,
and widths are derived from the design and solved for

Collecting Constraints

Every node in the FIRRTL graph is visited and unknown width, precision and bound values
are replaced with a unique variable. Then, depending on the stage of the compiler, either
precision or bound/width constraint expressions are built by visiting every FIRRTL expres-
sion and statement. When an assignment statement is encountered, a variable constraint is
created from the right-side constraint expression and the left-side variable. See Table 4.3 for
an example demonstrating this process.

Precision and bound constraint expressions are formed based on the FIRRTL primitive
operation. For precision, many primitive operations simply take the maximum precision of
its input arguments. Others explicitly set the precision or shift the binary point position. Fi-
nally, some have unique rules, like multiplication which takes the sum of the input argument
precisions.

The relationship between bound constraints and their FIRRTL expressions are more
complex, but all these relationships are summarized in the Expression section in Section A.
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Example 4.3: Collected Constraints:
wire x: Intervall[0, 10].1 Lower Bound | z; <=0+ 2

wire y: Interval[2, 7].2 —
wire z: Interval Upper Bound | z, >=10+7

7 <= add(x, y) Precision 2, >=max(1,2)

Table 4.1: In this example, the constraints on the upper bound, lower bound, and precision
of z are collected. The lower bound is the largest value that is less than the sum of the
lower bounds of its incoming connection. In this case, the incoming connection is the add
operation, whose lower bound is the sum of its inputs lower bounds (6 and 2). The upper
bound and precision constraints are similarly calculated, but their value is the smallest value
which is larger than the corresponding value of the incoming connection.

After all variable constraints are collected, all variable constraints on a given variable are
checked to be either >= or <=, but not both. Due to how the constraints are structured,
this monotonicity constraint will never be violated with a legal FIRRTL circuit.

Solving Constraints

The following description references Figure 4.2, where the bolded terms refer to the corre-
sponding algorithm.

After collecting all variable constraints and ensuring monotonicity, the constraints are
solved by first merging constraints on the same variable. Groups of >= are combined
with a max(...) constraint, while groups of <= are combined with a min(...) constraint.
This guarantees there is a single variable constraint per variable.

Next, forward substitution is performed by iterating top to bottom through all variable
constraints, replacing any references to variables previously seen with their corresponding
constraint (this is done recursively). This is a legal substitution because of monotonicity;
each variable must take the smallest value (if increasing monotonically) or the largest value
(if decreasing monotonically) that still abides its constraints. Thus, if x >= 10, then z
should take value 10 (and 10 can be directly substituted for ). After forward substitution,
all variable constraint expressions only reference variables below them.

Finally, backward substitution iterates bottom to top through all forward-solved vari-
able constraints, again recursively replacing previously seen variables with their constraints.
Since each forward-solved variable constraint only references variables below it, all constraints
are guaranteed to be solved (if a solution exists) after backward substitution.

Forward-backward substitution theoretically solves a set of constraints in linear time, as it
only iterates through a list of constraints twice. However, constraint-expression substitution
causes an exponential growth in the size of the constraint expression. In practice, aggressive
in-line optimizations immediately after substitution will dramatically reduce the constraint
expression to a tractable size.
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Algorithm Forward-Backward Substitution
procedure OPTIMIZE(c: Constraint) ...
procedure REMOVECYCLE(n: Name, ¢: Constraint) ...
procedure MERGE(con: Map[Name, Constraint/) ...

procedure SUBSTITUTE(sol: Map[Name, Constraint/,c: Constraint)
if ¢ typeof Variable & sol.has(c.name) then
¢ < sol.get(c.name)

if ¢ typeof Operator then
for : in (0 — c.children.length) do
c.childrenli] < optimize(c.children]i])
c.childrenli] < substitute(sol, c.childrenl|i])

return c
procedure FORWARD(con: Map[Name, Constraint/)

sol < Map|Name, Constraint].empty

for i in (0 — (con.size — 1)) do > in insertion order
(name, ¢) < conli > get ith (key,value)
sol[name] « substitute(sol, c)
sol[name] < optimize(sol[name)])
sol[name] < removecycle(name, sol[name])

return sol
procedure BACKWARD(con: Map[Name, Constraint])
sol < Map[Name, Constraint].empty
for i in ((con.size — 1) — 0) do > reverse insertion order
(name, ¢) < conli > get ith (key,value)
sol[name] < substitute(sol, c)
sol[name] < optimize(sol[name])

return sol
procedure SOLVE(con: Map[Name, Constraint/)
con +— merge(con)
con + forward(con)
con < backward(con)
return con

Figure 4.2: Forward substitution populates sol with forward-solved variable constraints. It
uses the substitution procedure which recursively visits constraint children and substitutes
variables with their optimized constraints in sol (if they exist). It also attempts to remove
cyclic constraints - failures are reported to the user. Backward substitution iterates through
the forward-solved constraints in reverse order, calling substitute and optimizing the result.
The solver ignores whether Name is >= or <= Constraint in Map, as all constraints are
monotonic.
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During both forward- and backward-substitution, constraint expressions are aggressively
optimized. In addition, during forward-substitution, cyclic constraints are attempted to be
removed; when not all cyclic constraints can be removed, the constraint solver moves on.
For example, w; >= max(w;, 10) becomes wy >= 10, while wy >= wy+1 is unsolvable. Any
unsolved constraint (due to an unsolvable cyclic constraint or an underspecified constraint)
is an error and is reported back to the user.

4.4 Specificity and Metadata

In their most general form, annotations are arbitrary metadata associated with an IR node.
As illustrated by the DSP library example at the beginning of the chapter, a compiler frame-
work’s annotation system can be leveraged to support novel features and libraries. Common
uses of annotations include marking signals to exclude from optimization, naming specific
modules as targets for a topological transformation (e.g. flattening), or carrying command-
line options like the target directory or debug flags. FIRRTL uses its annotation system as
the single mechanism to pass information to and from a transformation, which simplifies its
interface but adds two significant requirements: (1) robustness, meaning annotations do not
get stale, and (2) completeness, meaning annotations can contain arbitrary information.

While at first glance supporting robustness and completeness may seem straightforward,
these innocuous features require solutions for many subtle problems. For example, suppose a
transformation deletes, renames, or modifies an IR node with an annotation - how should the
annotation propagate to remain robust? Given that annotations are arbitrary, their desired
behavior could include any of the following:

e Error (e.g. if annotation means 'don’t delete this node’, and the node got deleted)

Delete the annotation

Move the annotation to a different IR node

Duplicate the annotation

Track history of how that IR node changed

Additionally, annotations could refer to multiple IR nodes - what’s the behavior then?
For example, an annotation could specify pairs of signals - what happens if only one of them
is deleted?

Another perspective is that supporting both arbitrary metadata and arbitrary transforms
requires the compiler to make them robust to one another. However, the arbitrariness of
behavior means paradoxical scenarios can be constructed; for example, a transform desires
to deletes an IR node, but metadata desires to prevent deletion. Given the contradiction,
how can the desired system behavior be robustly determined?

To address this question, first consider the following observations:
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1. In the general case, a compiler must be able to detect this paradox and error

2. Only the system that uses both the annotation and the transformation knows how to
resolve this (neither the transform nor the annotation has enough information)

3. Transforms that seek large interoperability should provide escape-hatch annotations
to enable systems that use contradictory libraries to resolve the contradiction (e.g.
optimization passes must provide a DontTouchAnnotation, if they are to interoperate
with other transforms that may require some signals to not be deleted)

This section first delves into how other compilers tackle this problem and the shortcom-
ings of their approaches. Then, the FIRRTL compiler’s support for annotations is discussed
via (1) the transform/annotation interface; (2) target, a mini-language for specifying named
components within a FIRRTL circuit; and (3) support for tracking renaming/modifying
signals.

Related Work

Most compiler infrastructures use ad hoc methods to attach metadata to their intermediate
representation. This unfortunately can result in their annotation system being unreliable,
as any other transformation could delete a node (and its metadata along with it), with no
ability to detect whether this deletion was done in error. For example, a user may add
a custom annotation to trigger a custom transform, but the transform never runs because
the annotation was deleted sometime earlier in the compilation process. One examples of a
compiler which uses this approach is Yosys [15].

LLVM has a slightly different approach. Instead of tackling the complete problem of
arbitrary metadata behavior, it restricts it to classes of metadata which have different prop-
agation properties. All transforms must indicate which class of metadata it preserves, and
which it invalidates. While this does provide more robustness to the metadata system, it
does not allow for more fine-grained control over annotation-propagation behavior. [27]

Annotations

The first important realization is that the metadata should not be kept in the AST, but
instead in a separate datastructure. This separation enables the propagation behavior of IR
nodes to be distinct from the propagation behavior of their metadata.

Secondly, each annotation contains its metadata, as well as references to IR nodes in the
circuit. To support this, the FIRRTL compiler framework introduces the target language
(see the next subsection). This separation also provides the added benefit of enabling one
annotation to refer to multiple targets in the design.

Thirdly, changes to nodes in the AST (renaming, deletion, splitting, merging) must be
reported by all transformations and passed to each annotation’s update method, for which
the annotation can implement its desired propagation behavior.
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To support these realizations, the FIRRTL compiler passes a CircuitState data structure
to/from each transformation; a CircuitState contains three values: the FIRRTL AST, the
annotations in a AnnotationSeq, and a RenameMap which contains a representation of the
AST changes of that transform. After the transformation is run, an update method of every
annotation is called with the RenameMap, enabling annotations to dictate their own propa-
gation behavior. Because transforms can also add or delete annotations, the AnnotationSeq
prior to transformation is compared to the one returned to detect deleted annotations; for
every deleted annotation, a DeletedAnnotation is added to keep a record of all deleted an-
notations (for debugging).

Although transforms can arbitrarily transform/modify IR AST, they must keep the Re-
nameMap in sync with their changes to the AST. While future work could be to expose
AST-modifying APIs that automatically updated the RenameMap, this requires significant
work to support without limiting the power of arbitrary transformations.

Annotations can contain arbitrary fields, including any number of references to FIR-
RTL nodes through targets (see next section). The only requirement is for every annotation
to implement an update method that accepts a RenameMap and returns a list of new anno-
tations.

RenameMap is a structure that maps from old IR node targets to a list of new IR node
targets. This mapping of one-to-many can represent renaming (A’ — ['B’|), deleting ("A’
— []), splitting (A" — ['B’, 'C’]), and merging ("A’” — ['/C’], 'B" — ['C’]).

To illustrate the capabilities of FIRRTL’s annotation system, consider the following cir-
cumstances for resolving conflicting behavior between annotations and transformations.

First, one transform deletes a signal that another transform was relying on metadata to
preserve. One possible solution is for the signal-preserving transform’s annotation to error
if it detects a deletion in the RenameMap. While this returns a valid error message, this
transform doesn’t support scaling to a larger ecosystem. A second solution is for the signal-
deleting transform to provide an annotation which exempts a signal from being deleted;
the user of both transformations can then use this annotation to enable both transforms to
interoperate.

A second circumstance is for one transform to delete an annotation that is required for
a second transform. A reasonable solution for the second transformation is to enforce its
requirement by searching through the DeletedAnnotation list and error gracefully if it finds
its annotation was deleted (rather than the default behavior of silently failing). A solution
that is similar to a solution if the previous circumstance is to update the first transform to
enable exempting the annotation deletion with an exemption annotation.

A final circumstance is for one transform to rename, split, or delete an IR node which has
associated metadata. As described previously, an annotation can customize its propagation
behavior via its update method.

The main limitation of FIRRTL’s annotation system are that changes to the AST must be
able to be represented as a deletion, a renaming, a split, or a merge of only nodes with names.
This limitation means AST changes like reordering nodes, changing the node types (which
have no name), updating signal widths, expanding unnamed nodes (e.g. the conditional when
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statement), or changing the connections between IR nodes cannot be directly represented
in the RenameMap. While intermediate expressions have no name, it is straightforward to
rewrite that expression as a node statement (with a name), and a new reference to that
statement, so this limitation in practice is not an issue. In the author’s experience, this
interface has been sufficient for all annotation use-cases. However, future work could be to
expand the set of AST changes that could be recorded by a transformation, as well as for the
RenameMap to also contain a reference to the transformation that generated these changes,
enabling even more annotation-propagation customization.

Target

Thus far, this chapter has mentioned that annotations must refer by name to the FIRRTL
components they annotate, but supporting mechanisms for representing names and their
renaming semantics have yet to be formally introduced. This section introduces FIRRTL’s
naming mechanism target, its design justifications, the renaming semantics of a target, and
many illustrative examples.

This section will often refer to the following FIRRTL example. In the top-level module
Top, two instances of module Leaf called foo and bar are instantiated. Top’s input port in is
connected to Top’s output port out through a path going through both Leaf instances.

Example 4.4:

circuit Top:

module Leaf:
input in: UInt<l>
output out: UInt<l>
out <= in

module Top:
input in: UInt<l>
output out: UInt<l>
inst foo of Leaf
inst bar of Leaf
foo.in <= in
bar.in <= foo.out
out <= bar.out

In the FIRRTL compiler, a target can refer to a circuit, a module, an instance, or a
reference (meaning any named non-instance component contained in a module, including a
subfield or subindex). In addition, a target may specify a path through the instance hierarchy
to reference an instance-specific reference or instance. This instance-specific component,
while conceptually distinct, has no distinct representation in the AST; target’s instance-
specificity feature cannot be implemented by a different mechanism that directly annotates
the AST with metadata.

A target has four subclasses: CircuitTarget refers to a circuit, ModuleTarget refers to
a root module, InstanceTarget refers to an instance (starting from a root module), and
ReferenceTarget refers to a named signal (or a subfield, subindex, or the special register
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Target Symbol | Example Meaning
ClircuitTarget ~ ~Top circuit Top
ModuleTarget | ~Top|Leaf module Leaf in circuit Top
InstanceTarget /,: ~Top|Top/foo:Leaf instance foo of module Leaf in
module Top in circuit Top
ReferenceTarget > ~Top|Top>foo reference foo in module Top in cir-
cuit Top
~Top|Leaf>out reference out in module Leaf in cir-
cuit Top
~Top|Top/foo:Leaf>out | reference out in instance foo of
module Leaf in module Top in cir-
cuit Top
~Top|Top>foo.in reference foo.in in module Top in
circuit Top

Table 4.2: Target concrete syntax for CircuitTarget, Module Target, InstanceTarget and Ref-
erence Target. Note that instances like foo in module Top could be referred to with either an

InstanceTarget or an ReferenceTarget. All examples reference components within Example
4.4.

ports for clock, reset, or init). Table 4.4 contains the target concrete syntax, as well as more
examples and descriptions. The target mechanism was designed with the following in mind.

Specify only component name and hierarchy. Other AST information such as a
component’s type (e.g. UInt vs SInt) or kind (e.g. reg vs wire) is not included in the target.
Although useful, it duplicates information that is already specified in the AST and creates
more opportunities for errors (i.e. updating the AST but not the target, and vice versa).
Keeping the names and hierarchy information in sync is difficult enough; no reason to make
it more difficult for minimal added gain.

No "local-only" target type. Originally, the authors considered capturing whether a
reference was directly contained in the root module (versus instance-specific) into the type
of the target (e.g. LocalReferenceTarget and NonLocalReference Target). After experimen-
tation they concluded that this "local-only" restriction significantly complicated the imple-
mentation and encouraged subtle anti-patterns. For example, an annotation might require
local-only targets, which appears to be a reasonable thing to do. However, this requirement
is never needed because an instance-specific component can always be converted to a local
component through transforming the AST by duplicating all modules in the component’s
instance-specific hierarchy (and updating each instance in the hierarchy to instantiate the
new duplicated module). Then, the instance-specific target can become a local target whose
root is the final duplicated module (which is now only instantiated once). This duplicating
circuit transformation is provided to enable easily converting instance-specific target’s to
local ones, thus eliminating the need for an annotation to require a local target type.
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Separate InstanceTarget from ReferenceTarget. A renaming corner-case is to
change which module an instance refers to. This change must be captured in the renaming
framework, thus requiring a separate target type for instances.

Renaming

As mentioned previously, every transform must populate a RenameMap with changes to
the circuit; for example if a transform renames a module from Leaf to Blah in circuit Top,
the returned RenameMap must have the entry mapping the old target to the new target:
~Top|Leaf => (~Top|Blah). After the transformation, every target in each annotation can
be updated to the new target (or an error can be thrown if the rename is unexpected).

Because it can be difficult to figure out how a target is renamed when pieces of its path or
components have changed, the RenameMap provides a get method which, given any target,
returns a set of updated targets. The two rules for calculating a new target under changes
are as follows:

1. All changes in RenameMap are final - no sub-piece can be renamed by another change
contained in the RenameMap. For example, under the changes
~Top|Leaf => (~Top|Blah) and ~Top => (~NewTop), the module ~Top|Leaf is re-
named to ~Top|Blah, rather than ~NewTop|Blah.

2. Check all relative paths to component (and subcomponents), before checking path to
leaf module

Table 4.4 contains multiple examples illustrating this automatic renaming capability.

The following example demonstrates the order each sub-piece of a target is checked
against the existing recorded changes. First the all relative paths to the component and
subcomponents are checked. Then, all sub-pieces of the path to the component are checked:

Example 4.5:

; First check relative paths to component and subcomponent
~Top|Top/a:A>b.c

~Top|Top/a:A>b

~Top|A>b.c

~Top|A>b

; Next check all pieces of the path to leaf module
~Top|Top/a:A

~Top|A

~Top|Top

Multiple rename maps to be created from one transform and chained, enabling Re-
nameMaps to be consecutively applied to a target to obtain a multiply-renamed target
(if desired). For example, a deduplication transformation has one RenameMap containing
how each original module is renamed to an instance, and a second RenameMap mapping the
original modules to the deduped module.
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The main limitation of this approach is its compute-intensive nature; changes must be
calculated for every target in every annotation after every transformation. To speed this
process up, renames are cached between multiple get calls to the same RenameMap. In
addition, a quick check is first performed whether a given target is sensitive to a RenameMap,
or shares a module in its path that is also in the RenameMap. These two optimizations
significantly speed up the renaming process.

4.5 Circuit Traversals

The in-memory structure of a FIRRTL design significantly influences how easily transforma-
tions are written. As is commonly done in software compilers, a FIRRTL design is internally
represented with an abstract syntax tree (AST) structure, where nested elements are walked
recursively to modify the circuit. If non-local information is necessary, transformations first
walk the tree to build a custom data structure, then walk the tree a second time to modify
the circuit.

An AST representation for the IR was chosen over a graph representation because an
AST can represent more complex nodes including when statements and bulk connects, which
do not have a direct representation in a graph. In addition due to their non-cyclical nature,
AST’s have more predictable traversals, are easier to keep internally consistent, and are easy
to convert to a human-readable form. All of these worked well given the goals of making the
compiler infrastructure extendable.

However, some transformations do require other representations of the design to compute
additional circuit information. Combinational loop detection, for example, requires a netlist-
like directed graph to compute connectivity information. FIRRTL’s compiler framework
has an accompanying directed graph library which builds from the AST representation;
transformations can use this library to build a graph and perform graph traversals.

AST Traversals

The FIRRTL AST consists of IR nodes represented by an in-memory object, each of which
is a subclass of one of the following IR abstract classes: circuit, module, port, statement,
expression, type. Each IR node can have children objects of other IR node classes, the
relationship of which is shown in Figure 4.3. Figure 4.4 demonstrates how a FIRRTL circuit
is represented in-memory as an AST of IR nodes.

The following recursive algorithm visits all expression nodes in a circuit: First, visit each
module’s statement nodes. For each visited statement, visit each of its children statement
and expression nodes. For each visited expression, visit each of its children expression nodes.

All transformations use these recursive walks of the FIRRTL AST to modify the circuit.

Because transformations always consume and produce a well-defined AST circuit and
easily pipe one-after-another, constraints on the design can be checked after each transfor-



CHAPTER 4. FIRRTL: A HARDWARE INTERMEDIATE REPRESENTATION AND
COMPILER FRAMEWORK

41

Description

RenameMap Entry

Automatic Renames

Rename module
Leaf to module
Blah

~Top|Leaf => (~Top|Blah)

~Top|Leaf => (~Top|Blah)

~Top|Leaf>in => (
~Top|Blah>in

)

~Top|Top/foo:Leaf>in => (
~Top|Top/foo:Blah>in

)

Rename reference
in in module Leaf
to reference x in
module Leaf

~Top|Leaf>in => (~Top|Leaf>x)

~Top|Leaf => (~Top|Leaf)*

~Top|Leaf>in => (
~Top|Leaf>x

)

~Top|Top/foo:Leaf>in => (
~Top|Top/foo:Leaf>x

)

Rename module
Leaf to module
Blah AND rename
reference foo in
module Top to
reference blah in
module Top

~Top|Leaf =>
~Top|Top>foo
~Top|Top>blah

(~Top|Blah)

=>(

)

~Top|Leaf => (~Top|Blah)

~Top|Leaf>in => (
~Top|Blah>in

)

~Top|Top/foo:Leaf>in => (
~Top|Top/blah:Blah>in

)

Rename reference
in in module Leaf
to references xi,

xj in module Leaf

~Top|Leaf>in => (
~Top|Leaf>x1i,
~Top|Leaf>xj

~Top|Leaf => (~Top|Leaf)*

~Top|Leaf>in => (
~Top|Leaf>xi,
~Top|Leaf>xj

)

~Top|Top/foo:Leaf>in => (
~Top|Top/foo:Leaf>xi,
~Top|Top/foo:Leaf>xj

)

Table 4.3: These examples demonstrate how rename changes entered into a RenameMap
would be applied to other targets. Specifically, this example demonstrates how the three
targets ~Top|Leaf, ~Top|Leaf>in, and ~Top|Top/foo:Leaf>in are renamed under different
RenameMap entries. All these examples reference components within Example 4.4. Rename
results marked with * are unchanged by the RenameMap
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Figure 4.3: A FIRRTL circuit is represented using these AST nodes. Each can have one or
many different children nodes of various types. For example, a FIRRTL statement can have
children statements, expressions, and/or a type.

circuit Delay:

module Delay:

input elk: Clock

input in: UInt<4>
output out: UInt<d>
reg r: UInt<4d>, clk
r <= in
out <= r

UInt<4> UInt<4>

“—

UInt<4> clk

Figure 4.4: An example FIRRTL circuit in its AST versus textual representation. This
circuit contains a single module that outputs the input signal delayed by one cycle. The
(...) statement is a block statement that only contains multiple children statements - this
node makes it easy to replace a single statement with multiple statements in a single walk

of the AST.

mation. This structure makes inserting new transformations straightforward and safe, unlike
the use of brittle, ad-hoc scripts.

If a transformation introduces a bug, it is straightforward to understand what happened,
as the circuit state is visible between transformations. This is in direct opposition to ex-
isting non-compiler methodologies of python/perl scripts, which have no clear intermediate
representation, and thus are extremely brittle.
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To express a recursive walk, every IR node has implemented a custom map function;
a node’s map applies a user-specified function to the subset of children whose node-type
matches the function’s input and return node-type.

The following example demonstrates calling a module’s map with a function that accepts
and returns a port, and with a function that returns a statement.

While simple, using map to recursively walk the FIRRTL AST is extremely powerful.
The following example is an optimization transformation that uses the map pattern to
perform constant propagation over muxes with constant predicates. First, walk all FIRRTL
modules, statements, and expressions recursively by calling map on modules, statements,
and expressions. For any mux seen, check the constant propagation condition and, if true,
perform the optimization. Note that this code visits expressions in postorder traversal,
requiring only one pass through the AST.

Graph Traversals

While the AST traversals are very powerful, there are some transformations, analyses, checks,
or novel features which require the ability to know or query circuit topological information.
This requires the FIRRTL compiler infrastructure to provide users a mechanism to view
a FIRRTL circuit as a directed graph, where components are nodes and connections are
directed edges between components.

The following use cases illustrate the need for a general graph-traversal solution:

e Optimizations - dead-code elimination, constant propagation (through modules).

e Analyses/Checks - determining a module’s clock domain, determining clock crossings
(e.g. "return a path, if it exists, between every pair of registers whose clocks are

different.")

e Novel Features - structural assert (e.g. ensure all paths between two specified signals
take exactly N number of cycles.)

While a generic graph-traversal solution is important to support these use cases, FIR-
RTL’s solution cannot be too complicated to use, especially given the short supply of CAD
developers with compiler knowledge. Enabling these specific topological queries requires a
lightweight, fast, space-efficient, and semantically simple graph-traversal solution.

This section first goes into more detail about why a generic graph-traversal solution is dif-
ficult and why previous approaches fail to address the needs of this compiler. Introduced next
is ConnectivityGraph, FIRRTL’s solution and implementation of a generic graph-traversal
library, followed by an explanation of additional implementation details. Finally, a fast and
easy-to-use implementation working on a variety of use cases is demonstrated. The following
sections will often reference FIRRTL example 4.8.
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circuit DO:
module DO:
input in: UInt<8>
output out: UInt<8>
inst cl of D1
inst c2 of D1
cl.in <= in
c2.in <= cl.out
out <= c2.out
module D1:
input in: UInt<8>
output out: UInt<8>
inst cl1 of D2
inst c2 of D2
cl.in <= in
c2.in <= cl.out
out <= c2.out
module D2:
input in: UInt<8>
output out: UInt<8>
inst cl of D3
inst c2 of D3
cl.in <= in
c2.in <= cl.out
out <= c2.out
module D3:
input in: UInt<8>
output out: UInt<8>
out <= in

Example 4.8: This example contains four modules named in the form module D[N], where
N is the module’s depth in the instance hierarchy. Each non-leaf module instantiates two
children instances, c1 and c2, of module D[N+1]. The module then connects its input port in
to its output port out through a path going through both child instances

Challenges and Related Work

Existing CAD tools represent their netlists with graph structures. The range of internal
representations of these graphs is not too large - they usually consist of an array-of-structs,
where each net has forward and backward pointers to each net it drives/is driven by. In
general this solution works well but requires the entire design to be flattened which expands
the memory footprint and limits the tool’s ability to exploit multiply-instantiated modules
for performance. To avoid these downsides and determine a sufficient underlying repre-
sentation, this section details the demands placed upon a hardware compiler framework’s
graph-traversal library.

(1) Efficient Hierarchical Node Representation. Representing a hierarchical design
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Figure 4.5: This diagram depicts two representations of FIRRTL example 4.8. The first is
a per-module representation, where every module is represented once and instances of them
all point to the same node. The second is a per-instance representation, where there is a
distinct node for each instance of a module. A per-module representation is space-efficient,
but could not resolve a connectivity query about a specific per-instance component. For
example, querying the connectivity of ~D0|D0/cl:D1>out is different than the connectivity ~
DO|DO/c2:D1>out. Resolving these per-instance queries would be impossible in a per-module
representation as all instances share a node but have distinct connectivity. However, it is
important to note that given a design with an instance hierarchy depth D and C' children
instances per module, the per-module representation size is O(D x C'), but per-instance
representation size is a massive O(CP*1)!

without flattening has complications. Queries like determining a net’s clock domain requires
a per-instance, not per-module, query. In other words, determining the clock domain of a
module’s register is an under-specified problem if that module is instantiated multiple times.
Thus, a hierarchical graph representation must be able to resolve per-instance queries, while
still retaining a per-module representation.

Another complication to this problem of designing a graph connected component rep-
resentation is the ability to represent subproblems efficiently. Often, RTL modules could
instantiate a child module multiple times, and that module could also instantiate multi-
ple child modules, etc. If the netlist can support this nested hierarchical structure, it can
drastically reduce the size of the graph because it does not need to flatten the entire design.

(2) Flexible Edges. An edge of a graph-traversal library may represent something other
than a straightforward hardware connection. For example, one transform may want to walk
the circuit connectivity, while another may want to walk the instance hierarchy. Another
example is determining path delays between registers versus dead-code elimination; the first
does not include the path through the register, while the second requires traversing that
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Figure 4.6: This diagram depicts the path length from FIRRTL example 4.8 between

~DO|DO>in and ~DO|DO>out. In this specific example, the worst case path length given
D =3 and C' = 2 is 28 edges.

connection.

(3) Limit Exponential Path Lengths. Connectivity paths can be exponential in the
depth of the instance hierarchy. For a generic FIRRTL circuit with an instance hierarchy
depth D and C' children instances per module, the worst-case path length is (2 % C') * (1 —
CP)/(1 — C), which is O(CP).

An important note is that this path length will be present regardless of node represen-
tation - neither inlining every instance with a per-module representation nor a per-instance
representation can address this length. While some connectivity queries are naturally limited
(e.g. computing combinational delays between registers will naturally not have excessively
long paths), other queries for use cases like dead-code elimination can have these long paths.

Finally, while a path delay is calculated on paths in the graph that in practice aren’t too
long because they are bounded by the frequency of the chip, other graph queries including
dead-code elimination could walk paths which traverse up and down the hierarchy. While the
nets in the path can have a hierarchical representation, the path itself may require traversing
the same path through a sub-module multiple times. In the worst case, this path could be
exponential with the depth of the hierarchy (see Figure 4.9).

(4) Understandable yet fast APIs. An extendable hardware compiler framework
must allow new users who are not compiler experts to write their own analyses. However,
there is often an implicit tradeoff between simple yet slow interfaces and fast yet complex
interfaces; an ideal solution is both simple and fast.

Simple graph interfaces often enable a program to walk the graph using known algorithms
(BFS, DFS) to resolve a query. For example, Yosys supports a find-connected-component
query by walking the graph. However, this interface can be difficult to speed up; if a user
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Figure 4.7: Topological search requires sorting FIRRTL modules by topological order leaf-
to-root, solve a module’s sub-problem, then use that solution to solve the next module’s
sub-problem. In this figure, the connectivity in FIRRTL example 4.8 from

~DO|DO>in to ~DO|DO>out is followed by first solving how D3’s ports are connected, then
use that solution to solve how D2’s ports are connected, etc. While as a generic solution
topological search would be fast and space efficient, it would also unnecessarily solve all
sub-problems of point-to-point connectivity queries and force a user to explicitly (and often
non-trivially) divide their circuit query into per-module queries.

wants to query many different components, each query walks the graph and causes a massive
slowdown for large numbers of queries.

On the other-hand, complex interfaces can be very fast, but difficult to understand or
reuse. Topological search is an interface that can be used to address challenges 1 — 3, but
fails short on exposing a generic yet understandable API (Figure 4.7). Topological search
works by sorting modules by topological order leaf-to-root. Then, a user solves the module-
specific sub-problem of their general problem. Finally, the user uses this partial solution to
solve the parent sub-problem (repeat until entire circuit is solved). The pros of this approach
are that it has linear time O(number of modules), is straightforward to implement, and is
good for global analyses. However, it unnecessarily solves all sub-problems which is bad for
user-friendly point-to-point connectivity problems. The biggest downside, however, is the
user must explicitly (and often non-trivially) divide problem into sub-problems, which is too
much to handle for a novice user.

The remainder of this section details the FIRRTL hardware compiler framework’s solu-
tion to these challenges which is encapsulated by a Connectivity Graph. First its underlying
representation, wvirtual occurrence graph, is motivated and discussed. Then, its separation
from the AST is motivated, followed by a traversal algorithm memoizing search. For exam-
ples of uses of this library, see Section 4.6.
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Figure 4.8: Virtual occurrence graphs maintains an underlying per-module graph and dy-
namically constructs the corresponding per-instance nodes along its search path. In this
example circuit from 4.8, the traversal is started on a virtual occurrence graph from node
~DO|DO>in. If a search traverses to the instance cl’s port in, the underlying per-module
representation ~DO|D1>in is converted to a new per-instance node ~D0|D0/c:D1>in.

Virtual Occurrence Graph

While a per-instance graph representation is exponential in space, a virtual occurrence graph
only represents the per-instance nodes along its search path. It does this by creating a graph
with a per-module representation, but any query starts with the per-instance node. When
descending into an instance, the new per-instance node is updated to include this instance
and module in its instance hierarchy. When ascending from an instance, drop the last
instance and module from the new node’s instance hierarchy.

A virtual occurrence graph starts with a space-efficient representation and maintains its
small size if queries do not have excessive path lengths. However, this type of graph does not
address the time and space concerns if a search continues along a path that explores large
parts of the design, as the virtual occurrence graph must still create a new node per unique
instance component it traverses.

Separate Graph Representation from AST

Instead of creating a "standard" graph representation of a FIRRTL circuit, a design’s AST
structure is used as the "ground-truth" of the design from which to build a new and separate
graph data-structure that can be queried. This separation provides a few benefits.

First, an AST structure is often conceptually easier to transform as well as keep internally
consistent. If a circuit must be transformed based on the results of connectivity query, an
AST traversal can be used make the desired modifications. FIRRTL’s HCF already has good
mechanisms to walk and modify ASTs - this allows users to only learn one concept for circuit
transformation.
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Secondly, the construction of a graph from an AST is a customizable process, enabling
users to customize which ‘edges’ exist (not just AST connections). For example, suppose a
user wanted a graph representation of the instance hierarchy, where nodes were instances and
edges were instantiations. This would be straightforward to implement given this separation.

Thirdly, users can override the generic graph’s getEdges function, giving the most amount
of flexibility. This allows users to filter edges based on the from and to nodes, as well as
external information (labeled edge information or previously searched nodes).

Finally, because there is a separate FIRRTL mechanism to represent references to named
FIRRTL components called target (see Section 4.4, this mechanism also works perfectly
to represent nodes in both per-module representations (as "local-only" targets) as well as
per-instance representations.

Memoizing search

Memoizing search reduces the length of paths explored by only traversing each module-
specific path once. To do this, a virtual occurrence graph is first traversed. When the
search enters and leaves a module, the entrance and exit ports are stored in a separate
data-structure. If the search enters a different instance of a module through a previously-
explored entrance port, it can immediately jump to the known exit port. Since a memoizing
search only visits each module entrance-port once, the corresponding virtual occurrence
graph remains small in its representation. In addition, all worst case path lengths are
reduced to be no greater than the size of the underlying per-module representation. Note
that memoizing search only performs necessary work to find a solution, and is thus equally
effective at solving both global connectivity analyses and point-to-point connectivity queries.

In order for memoizing search to work properly, a few subtle implementation details
are necessary. First, not all searching algorithms can be supported; a search must be a
priority-search where signals deeper in the instance hierarchy have priority over shallower
signals. This preserves the invariant that, before ascending from an explored module, that
all module port exits from the search’s entrance port are known. Otherwise, it is possible
for the search to encounter another instance of a module via an entrance port for which not
all corresponding module exits are known.

Secondly, like how connectivity information can be effectively memoized, search results
that consist of per-instance nodes (e.g. a clock domain search results in a per-instance clock
source) must also be similarly memoized as a per-module solution, and reconstructed when
visiting a new instance.

4.6 Transformation Evaluation

This section describes many different circuit transformations which are supported by the
compiler, ranging from straightforward optimizations to complex circuit analyses. Ideally,
users can rely on these transformations to keep their source-code more platform-agnostic;
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Figure 4.9: Memoizing search reduces the length of paths explored by only traversing each
module-specific path once. A memoizing search on FIRRTL example 4.8 starts from ~D@
|DO>in. The search then enters module D1 through ~D0|D0/c1l:D1>in and eventually exits
through ~D0|DO/cl:D1>out. At this time, the connectivity from ~D0|D1>in to ~DO|D1>out
is memoized. When the search again enters module D3 through ~DO|D0/c2:D1>in, it matches
the memoized connectivity and the search immediately returns ~D0|D0/c2:D1>out without
traversing module D3. Note that prior to memoizing module D1, module D2 and module D3 have
already been memoized.

when backend-specific customizations are reflected in source code changes, it limits code
reusability.

To demonstrate the wide-ranging applicability and utility of this hardware compiler
framework, this section describes and evaluates the collection of transformations: (1) low-
ering transformations enabling FIRRTL’s IR to capture user intent, but remain simple; (2)
optimizations which support a similar degree of optimizations that CAD tools can employ; (3)
analyses including clock-crossing detection; (4) topology transformations which can modify
a design’s instance hierarchy; (5) instrumentation transformations for facilitating test cover-
age; (6) FPGA /ASIC specialization transformations which enable a Chisel design to remain
platform-agnostic; (7) a custom transform case study of a chip tape-out which employed
custom transformations to solve physical design issues.

Lowering Transformations

Designing an IR is an important part of any compiler, and this section considers three
desirable, yet sometimes competing, qualities:
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e clear: semantically straightforward
o simple: small set of IR nodes

e rich: captures user-intent

All tools that manipulate RTL or gate-level designs have an IR that they operate on,
whether rigorously defined or not. Each tool’s IR makes differing tradeoffs depending on
their use: an IR for operating only on behavioral Verilog-2005 should be more rich but less
clear and simple than an IR operating solely on netlists.

FIRRTL’s IR represents RTL digital circuits and is designed to specialize source RTL
code from underlying implementations.

As such, FIRRTL first prioritizes richness to capture as much source RTL user intent as
possible.

For example, FIRRTL contains explicit memory nodes, aggregate types, a clock type,
and typesafe connections to enable other languages, like Chisel, to map to these constructs
and capture the user’s intent.

Since FIRRTL’s compiler framework must eventually emit a less-rich representation for
downstream simulators and tools, FIRRTL is also simple. Finally, FIRRTL is clear because
it is rigorously defined and has straightforward width inference and type inference rules.

Lowering transformations take a FIRRTL circuit and simplify it to a lower form, enabling
the IR to remain both rich and simple (see Section 4.2 for more information about FIRRTL
forms). There are two lowering transformations: (1) high-to-mid, which takes in high form
and emits middle form; (2) mid-to-low, which takes in middle form and emits low form.

One task of the high-to-mid transformation is to remove FIRRTL’s bulk-connect opera-
tor. This operator allows components with aggregate types to be connected in a type-safe
manner with a single statement, capturing user intent. However, lower forms only support
connections between primitive types, so the high-to-mid transform rewrites the bulk-connect
into a series of individual connections.

For example, the high-to-mid transformation would rewrite the conditional statement
and aggregate-typed connections of the following module:

Example 4.9:

module MyModule :
input in: {a:UInt<l>, b:UInt<2>[3]}
input clk: Clock
output out: UInt
wire c: UInt

C <= in.a

reg r: UInt[3], clk
r <= in.b

when c :

r[l] <= in.a
rf0] <= in.b[0]
r[{l] <= mux(c, in.a, in.b[1])
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r[2] <= in.b[2]
out <= r[0]

Then, the mid-to-low transformation would expand the aggregate typed components into
multiple primitive-typed components, as well as inferring all unknown widths:

Example 4.10:

module MyModule :
input in: {a:UInt<l>, b:UInt<2>[3]}
input in_a: UInt<l>
input in_b_0: UInt<2>
input in_b_1: UInt<2>
input in_b_2: UInt<2>
input clk: Clock
output out: UInt<2>
wire c: Ulnt<l>
C <= in.ain_a
reg r: UInt[3], clk
reg r_0: UInt<2>, clk
reg r_1: UInt<2>, clk
reg r_2: UInt<2>, clk
rf0lr_0® <= in.b[0]in_b_0
r(llr_1 <= mux(c, in.ain_a, in.b[1]in_b_1)
r(2]r_2 <= in.b[2]in_b_2
out <= r[0]r_0

To demonstrate the utility of a rich IR, this section analyzes the following three designs:
(1) a reorder-buffer, (2) a branch reorder-buffer, and (3) a register renaming free list. As
the design’s rich features are simplified into FIRRTL’s middle and low forms, the lines of
code required to represent the design are recorded. Finally, the FIRRTI compiler emits
the design to Verilog. To ensure this compiler does not artificially inflate code size, the
degree Yosys can reduce the Verilog line size through optimizations is also shown. Since
emitters can emit different styles of Verilog, the code size of Yosys reading and writing
Verilog without optimizations is shown. Finally, Yosys reads and writes the Verilog design
with optimizations.

As shown in the Figure 4.10, some designs exhibit huge growths in code size during
lowering, in spite of FIRRTL and Yosys optimizations; this illustrates how a rich IR can
concisely express a design, if the designer or frontend chooses to use the rich features.

Optimization Transformations

The two major optimization transformations implemented are dead-code elimination, and
constant propagation. Because downstream tools perform aggressive logic analysis and other
optimizations, these two transformations have little effect on the gate-level design. They
primarily affect the compilation performance of the HCF and backend CAD tools.
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Figure 4.10: Code size normalized to size of representation in High FIRRTL. The ROB
and BranchROB both use aggregate types, bulk connections, and memory nodes while the
RenameFreelist is made primarily of logic and does not use rich FIRRTL features.

Dead-code elimination removes FIRRTL components which are never referenced in a
design; for example, this transform removes registers whose outputs are never connected to
another component. While useful in reducing the size of the design, it can be confusing for
Chisel users who accidentally generate dead-code which is correctly, although unexpectedly,
removed. To remedy this, this transformation also consumes a DontTouchAnnotation to
indicate which components should not be eliminated.

The following example demonstrates a FIRRTL design before and after the dead-code
elimination transformation, where the extraneous input port, output port, and connection
in module Leaf are removed:

Example 4.11:

circuit Top:
module Top:

input in: UInt<l>
output out: UInt<l>
inst leaf0 of Leaf
inst leafl of Leaf
leaf0.in@ <= in
leafl.in® <= leaf0.out0
out <= leafl.outO
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module Leaf:
input in0: UInt<l>
output out0: UInt<l>
input inl: UInt<l>
output outl: UInt<l>
out0® <= in0
outl <= inl

Constant propagation is another optimization transformation which replaces signals
with constant values, if a signal can be statically determined to always have one value.
The following example demonstrates how this transformation can analyze the connectivity
of signals through instances, and still propagate constant values; the constants propagates
through the leaf0 and leafl instances, connecting constants UInt(0) and UInt(1l) to the
output ports in module Top

Example 4.12:

circuit Top:

module Top:
output out0: UInt<l>
output outl: UInt<l>
inst leaf@ of Leaf
inst leafl of Leaf
leaf0.in0@ <= UInt(0)
leafl.inO@ <= leaf0.out0
leaf0.inl <= UInt(1)
leafl.inl <= leaf0.outl
out® <= leafl.out@UInt(0)
outl <= leafl.outlUInt(1)

module Leaf:
input in0: UInt<l>
output out@: UInt<l>
input inl: UInt<l>
output outl: UInt<l>
outd® <= in0
outl <= inl

A synthesis tool like Yosys implements bit-level analysis and can thus perform more
aggressive optimizations than FIRRTL can. However, as shown in Figure 4.11, these opti-
mization passes ultimately reduce the synthesized standard cell count by up to 71% compared
to up to 76% for Yosys. Running both FIRRTL’s and Yosys’s optimization passes results
in even further cell count reduction. These optimization passes speed up execution time of
backend CAD tools.

Analysis Transformations

Designers often desire insight into the compiler to understand the degree of optimizations
taking place. Node-counting, early area estimations, and module hierarchy depictions are
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Figure 4.11: FIRRTL optimization passes ultimately reduce the number of synthesized stan-
dard cells by a similar degree as the optimization passes of Yosys, an open-source CAD
synthesis tool.

three useful analysis transformations early in the design cycle.

A more complex analysis is to determine the clock sources of a signal in the design. This
information can then be used to determine every circumstance where a register is driven
by a signal which has a different clock source than the register’s clock. When designing
multi-clock circuits, every one of these clock-domain crossings is a potential source of bugs
and any unintentional clock-crossing can be flagged by this analysis.

To demonstrate this analysis, the following example is used as well as the additional
information that the top-level ports ~Top|Top>in and ~Top|Top>clkSel have the clock
source of the other input port, ~Top|Top>clk

Example 4.13:

circuit Top:

module Top:
input clk: Clock
input in: UInt<l> ; Has clock source clk

input clkSel: UInt<l> ; Has clock source clk
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output out: UInt<l>

inst clkdiv of CLKDIVIDER

clkdiv.clk <= clk

inst leaf0 of Leaf

inst leafl of Leaf

inst leaf2 of Leaf

leaf0@.clk <= clk

leaf0.in <= in

leafl.clk <= clkdiv.slow

leafl.in <= leaf0.in

leaf2.clk <= mux(clkSel, clk, clkdiv.slow)

leaf2.in <= leafl.in
extmodule CLKDIVIDER:

input clk: Clock

output slow: Clock
module Leaf:

input clk: Clock

input in: UInt<l>

output out: UInt<l>

reg r: UInt<l>, clk

r <= in

out <= r

The clock-domain analysis transform analyzes this circuit and determines the unique
clock source for each register in the design. Note that registers can be driven by multiple
clocks:

e ~Top|Top/leaf@:Leaf>r — ~Top|Top>clk
e ~Top|Top/leafl:Leaf>r — ~Top|Top/clkdiv:CLKDIVIDER>slow

e ~Top|Top/leaf2:Leaf>r — (~Top|Top/clkdiv:CLKDIVIDER>slow, ~Top|Top>clk)

The analysis then uses this information to determine all clock-crossings in the design,
and returns a path, if it exists, between every pair of registers having distinct clock-domains.

For example, the registers ~Top|Top/leaf0:Leaf>r and ~Top|Top/leafl:Leaf>r have
distinct clock-domains, and thus the following path is returned from this analysis:

Example 4.14:

~Top|Top/leaf0d:Leaf>r
~Top|Top/leaf0d:Leaf>out
~Top|Top>leaf0.out
~Top|Top>leafl.in
~Top|Top/leafl:Leaf>in
~Top|Top/leafl:Leaf>r
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Topology Transformations

The following transformations modify a FIRRTL circuit by changing the instance hierarchy
of modules. These transformations are often used to facilitate physical design, which may
require additional constraints on modules that differ from the logical grouping of signals.
Most of the transforms described in this section operate on the following FIRRTL example
circuit, where a top-level module instantiates a leaf module twice:

Example 4.15:

circuit Top:

module Leaf:
input in: UInt<l>
output out: UInt<l>
out <= in

module Top:
input in: UInt<l>
output out: UInt<l>
inst foo of Leaf
inst bar of Leaf
foo.in <= in
bar.in <= foo.out
out <= bar.out

Inlining is the process of replacing an instance with all of the components contained in
the instance. Inlining is necessary to represent the entire design as a single module. The
following example inlines ~Top|Top/bar:Leaf; note that all ports of an inlined module are
replaced with wires, and the name of the instance is prefixed to each inlined component’s
name.

Example 4.16:

circuit Top:

module Leaf:
input in: UInt<l>
output out: UInt<l>
out <= in

module Top:
input in: UInt<1>
output out: UInt<l>
inst foo of Leaf

inst bar of Leaf ;Remove instance bar
wire bar_in: UInt<1l> ;Insert bar port as prefixed wire
bar_out <= bar_in ;Insert bar connections with prefixes

foo.in <= in
bar._in <= foo.out
out <= bar._out

Grouping is the process of creating a new module that contains a subset of a different
module’s components; this new module is then instantiated in place of this component subset.
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Grouping is the inverse operation of inlining. The following example groups two instances,
~Top|Top/bar:Bar and ~Top|Top/foo:Foo, into a new module ~Top|FooBar, instantiated
as ~Top|Top/foobar:FooBar:

Example 4.17:

circuit Top:
module Leaf:
input in: UInt<l>
output out: UInt<l>

out <= in
module FooBar: ;Insert new FooBar module
input in: UInt<l> ;Insert Top reference as port
output out: UInt<l> ;Insert Top reference as port
inst foo of Leaf ;Insert foo instance
inst bar of Leaf ;Insert bar instance
foo.in <= in ;Insert connection to foo
bar.in <= foo.out ;Insert connection between foo and bar
out <= bar.out ;Insert connection from bar
module Top:

input in: UInt<1>
output out: UInt<l>

inst foobar of LeafFooBar ;Instantiate FooBar instead

inst bar of Leaf ;Remove bar instance

foobar.in <= in ;Rename foo to foobar

bar.in <= foo.out ;Remove connections betweem foo and bar
out <= foobar.out ;Rename bar to foobar

Renaming is simply the process of changing a module’s name. This also requires updat-
ing all instances of the renamed module to refer to the new module name. In the following
example, ~Top|Leaf is renamed to ~Top|PassThrough

Example 4.18:

circuit Top:

module LeafPassThrough: ;Rename module name
input in: UInt<l>
output out: UInt<l>
out <= in

module Top:
input in: UInt<l>
output out: UInt<l>
inst foo of LeafPassThrough ;Rename foo’'s module name
inst bar of LeafPassThrough ;Rename bar’s module name
foo.in <= in
bar.in <= foo.out
out <= bar.out

Retopping redefines the top-level module of the design; any module that is no longer
instantiated is removed. In this example, the top of the design changed from ~Top to ~Leaf;
because ~Top is no longer instantiated, it is also removed:
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Example 4.19:

circuit TopLeaf: ;Rename circuit
module Leaf:
input in: UInt<l>
output out: UInt<l>
out <= in
module Top: ;Remove unused module Top
input in: UInt<l>
output out: UInt<l>
inst foo of Leaf
inst bar of Leaf
foo.in <= in
bar.in <= foo.out
out <= bar.out

Duplication is the process of duplicating a module such that multiple instances of the
same module are instead instantiating different modules, which are duplicates of each other.
This transformation has no behavioral change to the circuit and increases the size of the
FIRRTL AST, but is required for downstream transformations which intend to transform
these instances in different ways. The following example duplicates ~Top|Leaf and changes
its instances to point to different, duplicate versions:

Example 4.20:

circuit Top:

module Leaf:
input in: UInt<l>
output out: UInt<l>
out <= in

module Leaf2: ;Duplicate Leaf as Leaf2
input in: UInt<1>
output out: UInt<l>
out <= in

module Top:
input in: UInt<l>
output out: UInt<l>
inst foo of Leaf
inst bar of Leaf2 ;Rename bar’s module to Leaf2
foo.in <= in
bar.in <= foo.out
out <= bar.out

Deduplication is the process of identifying duplicate modules, removing the duplicates
and creating multiple instances of the same module. It is the inverse operation of duplication.
While deduplication in theory is a computationally complex problem, this transformation
implementation requires the modules to contain identical FIRRTL components. The only
difference between modules which does not prevent deduplication is component name differ-
ences. The following example, given the previous result of duplication, removes the duplicate
module ~Top|Leaf2.
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Example 4.21:

circuit Top:

module Leaf:
input in: UInt<l>
output out: UInt<l>
out <= in

module Leaf2: ;Remove Leaf2
input in: UInt<1>
output out: UInt<l>
out <= in

module Top:
input in: UInt<l>
output out: UInt<l>
inst foo of Leaf
inst bar of Leaf2 ;Rename bar’s module to Leaf
foo.in <= in
bar.in <= foo.out
out <= bar.out

Instrumentation Transformations

The FIRRTL compiler framework’s modular structure makes it straightforward to add simple
instrumentation passes. These can include inserting hardware counters, hardware assertions,
or even improving simulation line-coverage detection.

This FIRRTL line-coverage transform instruments the circuit to print coverage informa-
tion as throughout its simulation execution. This instrumentation was necessary for Chisel
because some of its constructs cannot map directly to Verilog, and so must first be sim-
plified. This simplification destroys source-level information that Verilog line-coverage tools
rely on, making them largely ineffective. This transformation works by associating high-level
source-line information with low-level execution statements.

Figure 4.12 shows the percentage of modules in an instance of the RocketChip SoC binned
by the percentage of those modules source lines covered. The results for three different
configurations of the SoC are shown; modules with low coverage exist in all three, but larger
designs have fewer low-coverage modules relative to their larger total number of modules.
At the high end there is no clear trend in coverage based on configuration. In general, most
modules have a high level of coverage on the given test-suite with a few modules that are
very lightly tested. This enables the designer to specifically target these modules with new
tests to improve verification.

Specialization Transformations

Different backend targets, especially FPGAs and ASIC process nodes, require RTL modifi-
cations to achieve good results.
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Figure 4.12:  The results for three different configurations of the SoC are shown: a min-
imally sized configuration, ExampleSmallConfig, a moderately sized configuration with a
small L2 cache, Smalll.2Config, and the default sized configuration with a 256 KB L2 cache,
DefaultL.2Config. The majority of modules have high coverage, but there remain a few which
need targeted testing.

When simulating on an FPGA, there is little default visibility into a design. Commercial
tools like Chipscope[19] enable real-time analysis, but require a long iteration cycle to select
specific signals to target. In addition, Chipscope does not provide visibility into the BRAM
memories on the FPGA, so cannot provide a full “snapshot” of the design at a given cycle.

A specialized FPGA transformation enables pausing a design on the FPGA, and another
transformation enables reading out a state snapshot of the target design on the FPGA. These
transformations involves threading an enable signal to all registers, inserting buffers to record
input and output traces, inserting address-generation hardware to read out memory state,
and attaching a custom daisy chain to scan out register and BRAM state from the FPGA.

In addition, other FPGA specializations aim to provide the most effective use of resources
when mapping a design to an FPGA. In particular, BRAMs are a valuable resource that
can easily be wasted through replication to accommodate high port counts; instead, another
FPGA specialization transformation automatically replaces memories with high port counts
with double-pumped memories with half as many ports by providing clock doubling and
glue logic. Although this may reduce the maximum clock rate, the high speed potential of
BRAM macros means that many microarchitectures will suffer much less than the worse case
halving of throughput. In exchange for this trade off, the pass attains a 3x reduction
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Figure 4.13: The decoupling and snapshotting transforms can add significant demands on
FPGA resources, but do provide visibility into the design that was previously unobtainable.
The baseline design can run at 50MHz, but the other two transformed designs run at 40MHz.

in BRAM utilization for a streaming vector arithmetic block consuming three operands
and producing one result per cycle, as shown in Figure 4.14. This comes at a small 1.43%
increase in logic slice utilization.
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Figure 4.14: Automatic double-pumping saves FPGA resources by emulating expensive,
highly-ported memories. This approach maintains abstractions that facilitate reuse.
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ASIC designs benefit from the use of highly optimized hard-IP macros that are targeted
towards specific functions. For example, large memory-based designs are typically mapped
to vendor-provided SRAMs rather than registers, to improve QoR (in terms of area, power,
and timing closure) and tool runtime. As seen in Figure 4.15, after synthesis a 2048-point
memory-based FFT (20-bit real and imaginary) implemented with SRAMs (4 banks of 512-
depth memories) is 6x smaller than the same FFT implemented with registers. The savings
will increase after place and route due to excess routing penalties incurred in the register-
based design. Additionally, synthesizing the SRAM-based design takes considerably less time
than the register-based design, because the tools need to handle significantly fewer hardware
instances.

However, specializing RTL to make use of these macros on a per-technology basis is
non-trivial. Vendor-provided SRAMs often require additional pins that must be properly
connected for initialization and verification but do not contribute to the functionality at a
high-level. To address this issue, a memory-replacement transformation replaces a generic
FIRRTL memory with a custom black-box that matches the ports of the vendor-provided
SRAM. Without running the transformation, FIRRTL translates the generic FIRRTL mem-
ory into a large register array. When the transformation is run, design-specific memory
signals (data, address, and enable) are connected to the ports of a vendor-provided SRAM
instance, and any additional initialization and verification signals to and from the SRAM are
automatically connected, across module boundaries, to top-level ports. This greatly reduces
the design effort required to map generic RTL to optimized hardware.

Il Combinational Logic [l Sequential Logic SRAMs

SRAMs I

Reg Arrays

2 3 4 5 6
Relative Area

Figure 4.15: A hardware FFT Chisel design generated with and without the memory-
replacement transformation was synthesized in a 16nm process. Using the transformation
improved utilized area by 6x. Both transformed designs met timing at 800ps (1.25GHz).
Synthesis took ~6 minutes with SRAMs, compared to 1 hour 44 minutes without.

Custom Transform Case Study

To illustrate a workflow using Chisel and the FIRRTL hardware compiler framework, a
custom parameterization of RocketChip was synthesized and place-and-routed on a 28nm

process to DRC/LVS-clean GDS.



CHAPTER 4. FIRRTL: A HARDWARE INTERMEDIATE REPRESENTATION AND
COMPILER FRAMEWORK 64

The design consists of two cores with a large data-parallel cache-coherent accelerator.
The L2 cache is heavily banked, which requires multiple SRAMs. In addition, there are
multiple clock and voltage domains, as well as multiple high speed off-chip 10s.

Because of the parameterization and reuse employed by the Rocket Chip hardware library,
it is very easy to specify the desired design - only 1817 new lines of code were added, which
consisted of specialized configuration parameters, top-level glue logic, and an associated test
harness. Many modules had already been verified and evaluated in previous projects, and
thus needed less verification and design effort. Almost all verification effort was spent on the
new code as a result and this reusability was key to reducing design overhead.

Targeting the 28nm process reused the memory-transformation and the deduplication
transformation described in Section 4.6. However, this process presented two new problems:
(1) the synthesis tools required specifying which modules were in which clock and voltage
domains; (2) the SRAMs had additional initialization and control pins that were unique to
this process.

Due to the modularity of FIRRTL’s compiler implementation, two custom FIRRTL trans-
formations were written to solve these problems; additionally, they were added as part of an
open-source FIRRTL transformation ecosystem and have since been used without modifica-
tion for other designs, backends, and projects. In total, these customizations required only
680 new lines of code, demonstrating the principle of reusability and growing a hardware
design ecosystem.

4.7 Summary

This chapter contains a discussion of FIRRTL’s hardware compiler framework through an
introduction of FIRRTL’s intermediate representation (IR), a description of its value in-
ferencing (width, bound, precision), its support for robust and arbitrary metadata, circuit
traversal strategies, and an overview of many existing FIRRTL transformations. It has been
used in a variety of ASIC tapeouts and FPGA emulation projects, and its ability to customize
the RTL has accelerated the development of these projects. The development strategy of
FIRRTL was generally forward looking; important infrastructure features like the annotation
system were worked on early to enable its implementation to be well-architected for future
use.
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Chapter 5

Colla-Gen: A Chisel Interface for
Hardware Collateral Generation

As Chapter 3 and Chapter 4 demonstrate, the language of Chisel and the hardware compiler
infrastructure for FIRRTL accelerate the process of designing digital logic. However, a digital
logic design is far removed from a silicon chip, requiring verification and physical design steps.
As described in Chapter 2, these steps consist of manually writing design-, technology- and
tool-specific collateral for verification and CAD programs. This manual process limits reuse
and lags behind the now-accelerated digital logic generation. FPGA emulation of a digital
logic design also requires additional collateral, such as adding instrumentation for design
visibility or changing a design’s memory structure to better synthesize on FPGA block
RAMs. Arguably, even the process of simulating a design requires a sizable amount of code
collateral; break-point selection, collected statistics specification, and traced signals are all
design-specific collateral which designers and verification engineers spend significant time
specifying manually.

All of these examples demonstrate the need for additional design collateral when deliv-
ering a usable product, regardless of the actual simulation, emulation, or implementation
technology used. Because much of this collateral is specified manually, it lags behind the
generator-based flows of Chisel and FIRRTL and limits the utility of this framework. To
address this problem, the Chisel and FIRRTL hardware compiler framework must provide a
solution for generating this code collateral such that it is in-sync with the generated design,
while also maintaining reusability across designs and platforms.

This chapter contains a detailed description of aspect-oriented programming (AOP), an
analysis of its flaws, and an argument for its consideration within a hardware context. Next,
Colla-Gen, is introduced as an AOP-inspired interface for generating hardware collateral and
is illustrated with a physical design floorplanning example. Finally, Colla-Gen’s implemen-
tation and additional reusable libraries for generating design collateral are presented and
discussed.
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Collect related code together to avoid “tangling” and eliminate “scattering”
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Figure 5.1: In many software programs, there are side concerns like security or logging, which
permeate a program but are unrelated to the core functionality of a program. Aspect oriented
programming solves this "scattering" of related code by collecting all concern-related code
(modularization) in an aspect, and specifying where in the central program to inject itself.

5.1 Aspect-Oriented Programming

In software, a cross-cutting issue can cause significant problems when its code is scattered
throughout a large project. For example, security code, transaction code, or logging code
are separate concerns and tend to be scattered throughout a project. Due to this scattering,
one simple conceptual change (e.g. logging on standard out, not standard err) requires
updating code in many disparate program locations. Of note, these scattered code snippets
are not usually related to the program’s core functionality; usually, these snippets are a
complementary but cross-cutting concern to the program.

Aspect oriented programming (AOP) is a programming paradigm designed to eliminate
this scattering of cross-cutting issues with a unique set of language-supported programming
constructs. Invented by Gregor Kiczales and colleagues at Xerox PARC, its seminal paper
was published in 1997 and has over 9000 citations as of the writing of this thesis|20].

A programmer expresses their cross-cutting concern as AOP code in a separate and
distinct location called an aspect; this code is later injected into the main program via a
process called weaving. Join points are specific instances during the execution of a program
where code can be injected; for example, both entering a method and leaving a method are
valid join points. Each aspect can inject its executable code, called an advice, when the
executing program arrives at a join point that matches the advice’s pointcut, a regex-like
selector of join points. For an example of aspect-oriented programming, see Figure 5.2.

While AOP made a large splash in the programming languages research community,
almost no mainstream programming language has added support for an aspect-oriented
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Aspect Program Execution
¥

execute setName*() Pointcut Q——G call setName1(“Joe”) Join Point
print(“Setting name!”) Advice . _

call setName2(“Jacob”) Join Point
execute setName3() Pointcut |@-

call setName3(“Adam”) Join Point
print(“What a cool name!”) Advice

Figure 5.2: In this above example, the two aspects declare their (1) pointcut (when during
the program’s execution they take effect) and (2) advice (the behavior they are injecting).
The first aspect triggers when any function matching the regex setName* is called and
executes its advice which prints "Setting name!". The second aspect triggers only when the
function setName3 is called, and prints "What a cool name!".

paradigm (one notable exception being the Spring library in Java). For many language
developers, the downsides of aspect-oriented programming significantly outweighed any re-
deeming qualities of the paradigm.

Firstly, overusing an aspect-oriented paradigm will significantly obscure a program’s con-
trol flow. Because aspects change program semantics, a reader must have whole-program
knowledge to reason about the local dynamic execution of an aspect-oriented program. As-
pects are in some ways analogous to the joke assembly instruction “come-from”, which is the
reverse of the much maligned (and equally harmful) “goto” instruction [10].

A second major criticism of the aspect-oriented paradigm is its lack of aspect-ordering
semantics. When multiple aspects select the same join point, the default behavior is unclear
regarding the order with which each aspect is weaved. AspectJ[25], an implementation of
AOP, partially addresses this problem with a non-scalable ad-hoc numbering system. With-
out more formal treatment, this aspect-ordering problem continues to obscure an already
unclear control flow.

Finally, the aspect-paradigm has a fragile pointcut problem, or the sensitivity of a point-
cut to future modifications of the central program. A pointcut can become out-of-date by
simple changes like renaming a method, and knowing which aspects are affected is difficult
because pointcuts are separated from the modified code. Providing explicit flags or event
annotations, a technique used by the Ptolemy language, can help mitigate this problem while
still preventing scattering of cross-cutting concerns.

While AOP has many upsides and downsides, the following are lessons to takeaway. First,
treat the program as data to modify; rather than viewing AOP as two running programs
modifying each other (which leads to paradoxical behavior), the central program is data
being transformed by an aspect. Second, use AOP for secondary concerns like debuggability,
instrumentation, or specialization /optimization rather than for the main program behavior.
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Third, be transparent about when weaving occurs; a human-readable representation of the
program as it undergoes aspect modification can help debugging this process. Fourth, design
robust mechanisms to select places to transform to avoid the fragile point cut problem that
plagued other AOP implementations.
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Bottom line: Hardware product collateral has greater
impact on revenue than software product collateral.

Figure 5.3: Note - this figure is illustrative in nature and does not represent any quantified
data or measurements.

Given AOP has so many detriments, why is it useful inspiration for improving hardware
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design methodology? There are two key differences between software languages and hardware
construction languages which demonstrate why an AOP-inspired approach has more benefits
for hardware design; see Figure 5.3 for an illustration of some of these differences.

First, hardware collateral is necessary and impactful. Hardware requires significant col-
lateral for physical design, verification, and other steps in the hardware design process.
Before any return on investment, upfront development of hardware collateral is often fruitful
and necessary because hardware design flaws cannot be fixed after fabrication. In direct
contrast, software collateral is often an afterthought because its secondary concerns can be
addressed in the future and a project’s primary application is by far the main determining
factor in a project’s success.

Secondly, AOP’s paradigm of separating program and aspect fits naturally into hardware
construction languages. Hardware construction languages already have a meta-programming
construction paradigm that can be leveraged for an AOP-like framework; by not creating
new constructions with new semantics, there is no additional conceptual barriers limiting
adoption that have negatively affected software AOP implementations.

5.2 The Colla-Gen Interface

Adding a standard collateral generation mechanism to hardware construction languages ad-
dresses a necessary code collateral problem by leveraging an existing language paradigm.
For these reasons, an AOP-inspired interface has been added to Chisel, Colla-Gen, to enable
building aspect libraries for generating hardware code collateral.

This section first provides a background section that introduces floorplanning as a running
example of hardware collateral. Then, the typical interfaces between a user and a Colla-Gen
library, and between that library and the Chisel/FIRRTL framework, are described.

Background

This section first introduces RISC-V Mini, a simple RISC-V core, as an example Chisel
design with which hardware collateral can be generated for. Next, this section describes
a set of ASIC floorplanning elements which are later leveraged for a Colla-Gen floorplan
library for generating floorplans for Chisel modules.

RISC-V Mini is an existing Chisel core generator that will be used in later examples. Its
simple 3-stage pipeline implements RV32I of the User-level ISA Version 2.0 and the Machine-
level ISA of the Privileged Architecture Version 1.7. Mini consists of a tile containing a core,
an instruction cache, and a data cache. Many of its modules are parameterized, where
providing different top-level parameters will generate different hardware instances.

Floorplanning is usually a manual process to specify the placement (via absolute coor-
dinates) of large modules and macros. They are necessary to seed place-and-route tools,
reducing tool run times from years to days. Generally, physical designers rely on their expe-
rience and trial-and-error to create effective floorplans, making early design space exploration
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Figure 5.4: For this design of four clusters, each containing two tiles, two floorplans are
depicted. Knowing which floorplan is better depends on the logical connections of the design
and the physical characteristics of the transistor technology - the ability to quickly generate
multiple floorplans can have significant effects on the resulting area, frequency, and chip
power consumption.

an important step. Because floorplans are so design-, technology-, and tool-dependent, they
are rarely reused from design to design, between vendors, or between technologies. There is
little room for RTL design space exploration due to the manual effort involved; this makes
Chisel generators less useful.

The floorplan elements are a hierarchical layout framework in Scala and consists of three
major portions - a geometry API references to FIRRTL modules/signals for interfacing
with the RTL, and a numeric solver to concretize the design with absolute coordinates and
dimensions to enable a tapeout. After composing these elements into a floorplan, they can
be translated into Hammer IR and reused across technologies and tools (see Chapter 2). In
addition, these floorplans can also be depicted with a JavaScript hierarchical visualization.

A variety of geometry constructs are provided to enable the construction of a floorplan.
These constructs can be nested within one another and are independent of any numerical
co-ordinates to enable re-use of floorplans across different technologies and chip projects.

These constructs include:

e HBox - tile its children elements horizontally.
e VBox - tile its children elements vertically.

e AutolLayout - do not specify any particular constraints to the backend tools for the
module in this box.

e Expander - create a space/separate the given modules as much as possible.

e HardMacro - represents a hard macro, which has fixed dimension but can vary in position.
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Each geometry element can be attached to a module or signal at the RTL level via
a FIRRTL target (see Chapter 4), a reference for exactly one hardware component. Not
every geometry element is required to have a FIRRTL target. For example, a VBox could be
attached to a module and have two sub-elements to floorplan parts of that module and an
Expander in between. In this case, the Expander would not need a RTL module attached to
it. Geometry elements are attached to a targets via the replaceTarget() function.

Notably, the RTL hierarchy does not need to correspond to the physical hierarchy. For
example, in the RTL, one module could exist as logical child of another, but in the floorplan
hierarchy the two modules could be siblings.

Finally, a floorplan’s elements must to be resolved into concrete positions and dimensions.
Since the exact co-ordinates for a particular module or layout will differ wildly between
different process nodes, numbers can be specified separately in a second stage as opposed to
being required when the layout is created - while the hierarchy structure can be reused, the
actual widths and sizes do not have to be.

Geometric elements can have dimensions entered to them via functions like replaceHeight,
replaceWidth. All the co-ordinates can then be resolved in the system (e.g. for visualization
or export to backend tools) via the resolve() function.

Using a Colla-Gen Library

While there are no limitations on the API a hardware collateral generator library can expose
to a user, this interface typically follows the standard practice described below. Then,
a concrete floorplanning example of this user-interface is described. Finally, the benefits of
this interface are emphasized including its support for in-step hardware collateral generation,
its between-generator reuse model, and its support for robust signal references.

A typical user-interface for a Colla-Gen library is a user-provided custom function that,
given the top-level elaborated Chisel instance, returns their generated hardware collateral.
For example, using the floorplanning Colla-Gen library on RISC-V Mini requires the user
to provide a function that, given the top-level module of Mini, returns the nested geometry
floorplan elements as described in the previous section.

After creating an instance of a Colla-Gen library for a project, it is passed in as an argu-
ment to the Chisel elaboration step (or a tester’s elaboration step). Because the Colla-Gen
class extends Annotation, it relies on the same metadata mechanism as all other annotations.

Hardware collateral usually requires references to their associated design (e.g. a floorplan
requires associating a geometric element to a module or signal in the Chisel design). Like the
‘fragile pointcut problem’ of aspect-oriented programming, without proper treatment these
design references can easily become outdated due to the separation of the design definition
from the collateral definition.

Fortunately, hardware construction languages have a natural separation between the
constructed design and the programmatic assembly of the design; this gives an intermediate
and statically-typed representation of the post-elaboration constructed design which can be
inspected. Note that this is different from a FIRRTL representation, which is an AST; this
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elaborated statically-typed representation is the object directly constructed when executing
a Chisel generator. While this object is later translated into a FIRRTL AST that is given
to the compiler, prior to this it can be inspected to derive robust references to a design.

Inspecting this elaborated object has other benefits as well - the parameter values used to
elaborate a Chisel module can also be inspected and used to also parameterize the collateral
generation. The signals in this object are also type-safe; because Chisel is hosted in Scala
(a statically-typed language), a signal reference is a statically-known member of a class.
Any change to the name of a signal will trigger compile-time errors in any user-defined
collateral generation function that references that signal. In essence, this solution converts
the ‘fragile pointcut problem’ into a problem already solved by programming languages:
robust references to class members.

While referencing signals by name is robust in this system, it may be inadequate for
selecting all signals/modules of a certain kind. For example, a user may desire to generate
collateral for all registers in a design, and reference all registers by name is fragile to a
later user adding another register. To account for these more general selection use-cases,
Colla-Gen provides a selector object Select which contains functions that select a module’s
signals by kind (logical operation, register/wire, ports, module), as well as iterate through
all module instances in the design.

Because the user-facing interface of Colla-Gen libraries is to require a function that
accepts the top-level module instance, this function cannot be directly reused by a differ-
ent project that shares internal Chisel modules. Instead, the typical reuse model between
projects is to implement the top-level hardware collateral generation by composing the results
of other per-module collateral generator functions called on children modules. For example,
a reusable cache-to-floorplan collateral generator function may accept a RISC-V Mini Cache
and return the floorplan for that cache (see Figure 5.6. The top-level RISC-V Mini floorplan
generator function will then call this cache-to-floorplan function and integrate the cache’s
floorplan into its top-level floorplan. This reuse module enables the cache-to-floorplan func-
tion to be reused with any project that uses the RISC-V Cache and desires a corresponding
floorplan.

In summary, the typical user-facing interface for a Colla-Gen library is a custom function
that maps the top-level Chisel instances to its hardware collateral. With access to the
elaborated Chisel design, a user can inspect instance parameter values and parameterize
their hardware collateral generation similarly. With robust by-name selectors and general
selection mechanisms, a user can robustly select and associate their desired hardware logical
components to their generated hardware collateral. Finally, a user can express their hardware
collateral generation on a per-module basis, enabling reuse between projects sharing Chisel
modules.

A concrete example of this user-facing interface is depicted in Figure 5.5. This floorplan
Colla-Gen library’s hardware collateral are nested geometric elements associated with Chisel
modules/signals. However, the returned hardware collateral will depend on the Chisel RISC-
V top-level instance and can generate different floorplans accordingly. For instance, RISC-
V Mini’s cache module is highly parameterized; by giving a different nwords parameter,
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Figure 5.5: A RISC-V Mini floorplan generator and generates both Hammer IR and a d3
visualization of the floorplan hierarchy. Note that the boxes in this visualization are not
size-accurate. The Select object is used to select all ports of the Core module.

class Cache(implicit val p: Parameters) extends Module with CacheParams {
val dataMem = Seq.fill(nWords)(SeqMem(nSets, Vec(wBytes, UInt(8.W)))) <————— Chisel Design

Although the number of memories depends on a parameter (nWords), the cache layout remains
in-sync because Colla-Gen functions can programmatically interface with a Chisel design

def layoutCache(cache: Cache, name:lString): LayoutBase = { <+— Colla-Gen Function
val elements = cache.dataMem.foldLeft(Seq[LayoutBasel (VerticalExpander())){
(elems, m) => elems :+ HardMacro(m.toTarget.serialize, m.length, m.t.getWidth) :+ VerticalExpander()

VBox(cache, name, elements)

}

Figure 5.6: Our layoutCache function generates different floorplan objects (VBox, which sub-
classes LayoutBase) because it can programmatically iterate through the elaborated Chisel
design’s components, signals and modules. As a consequence, the generated floorplan is
always in-sync with the generated Chisel instance.

the number of instantiated memories changes. This change affects the number of SRAMs
eventually needed for physical design; the floorplan must adapt accordingly. The user-
provided function calls layoutCache, the function in Figure 5.6 which iterates through all
memories in dataMem (the memories affected by the nwWords parameter) regardless of their
number. Direct access to the elaborated Chisel design enables this synchronization between
the floorplan and the Chisel instance.
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Figure 5.7: Colla-Gen generators are resolved prior to FIRRTL compilation but after Chisel
elaborates the design. The Collateral Stage resolves each Colla-Gen generator by calling the
Colla-Gen’s toAnnotations function with the elaborated Chisel design. All returned anno-
tations are consumed during FIRRTL compilation. A Colla-Gen library-specific FIRRTL
transform can then write the collateral instances to a file, where all changes to a signal’s
name are tracked via FIRRTL’s renaming capabilities.

Implementing a Colla-Gen Library

When designing a Colla-Gen library, a library writer must ensure their library integrates
properly with the Chisel/ FIRRTL framework. This section first describes this interface.
Then, the ordering semantics of libraries and their propagation semantics under compiler
transformations is discussed. Finally an example library implementation is provided.

As explained in the previous section, most libraries accept a user-defined function that,
given the top-level Chisel instance, returns the generated hardware collateral. The interface
between a Colla-Gen library and greater ecosystem, toAnnotations, is similar: given the
user-defined function and the top-level design, return a list of FIRRTL annotations that
will be passed downstream to the FIRRTL compiler. These annotations can consist of
existing annotation types, or custom annotations which can trigger or be consumed by a
custom transform. As shown in Figure 5.7, each Colla-Gen library is resolved after Chisel
compilation but before FIRRTL compilation. This enables libraries to use the elaborated
Chisel design while still providing annotations to affect the FIRRTL compilation.

When multiple libraries are used simultaneously by a project, Colla-Gen ordering seman-
tics dictate the order of observable effects of these libraries. Most Colla-Gen libraries focus
on generating collateral and thus have no design side-effect changes. However, other libraries
may modify the design indirectly by triggering a transform. In this case, the order in which
these transforms are applied are independent of the order of the libraries; instead, they are
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applied according to the FIRRTL compiler infrastructure’s dependency API. This is similar
to Chisel’s annotation mechanism; the order with which a signal is annotated is irrelevant
to the order with which they are processed by a transformation.

Often, a Colla-Gen library will want their generated collateral to update itself under ar-
bitrary compiler transformations; for example, a signal removed from dead code elimination
may also require deleting its corresponding collateral. To customize this behavior, a library
should track the changes to their referenced components with an annotation and the renam-
ing API (see Chapter 4). Then, these annotations should be processed in a final custom
transformation which can update the collateral accordingly and serialize it to disk.

To illustrate, consider the floorplanning example in Example 5.1. The floorplanning
library takes the top-level design and calls the user-provided function with it, returning the
geometric elements corresponding to the floorplan. Then, the library analyzes the geometric
elements and generates custom floorplan annotations on each referenced module/signal to
track its changes during compilation. Finally, these annotations are consumed downstream
by a custom floorplan transformation which updates the floorplan and serializes it to either
Hammer IR (see Chapter 2) or a javascript D3 visualization. See the three code blocks of
Example 5.1 and Example 5.2 which demonstrates this library’s implementation.

Overall, Colla-Gen provides a powerful mechanism for hardware collateral generation
libraries to remain consistent with a design undergoing compiler transformations, trigger
arbitrary compiler transformations, and define their ordering semantics for design modifica-
tions.

5.3 Colla-Gen Library Examples

Now that the motivation of generating hardware collateral, as well as the Colla-Gen library
interfaces have been described, this section details a wide variety of different hardware de-
sign collateral libraries which leverage the Colla-Gen interface. In addition to the previous
section’s physical design theme of floorplanning, these libraries address collateral problems
of a general-purpose, instrumentation, verification, or resiliency nature. In all, the diver-
sity and power of these libraries demonstrate the usefulness and wide-reaching power of an
AOP-inspired methodology for generating hardware design collateral.

General-Purpose Collateral

Many Colla-Gen libraries require similar infrastructure in addition to the interfaces defined in
the previous sections. This subsection describes in detail a Colla-Gen library which provides
a mechanism to inject custom Chisel code into an already-elaborated module. While most
collateral libraries can rely on downstream tools to consume the collateral, in some cases a
library writer may implement this feature directly in the FIRRTL compiler. For example, a
verification library writer may create a library to generate coverage bins to be consumed by a
downstream verification tool; alternatively, this library could also synthesize these coverage
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Example 5.1: Floorplan Colla-Gen Library

/*x A Colla-Gen Library
Use to generate a floorplan for a given Chisel design
Uses LayoutBase geometric primitives to represent floorplan

@param name Name of the file to serialize floorplan to
@param dir Directory to write file to
@param buildFloorplan User-defined function to build floorplan from
top-level Chisel module
* @param tTag Necessary detail to properly record type of top-level Chisel
module, ignore if a user
* @tparam T Type of top-level module
*/
case class FloorplanLib[T <: RawModule] (
name: String,
dir: String,
buildFloorplan: T => LayoutBase
) (implicit tTag: TypeTag[T]) extends CollaGen[T] {

*
*
*
*
*
*

/** Search given layout to collect all signal/module references
* Return a tracking annotation for each reference to record
* FIRRTL Compiler changes to these signals
*/

def collectTrackers(layout: LayoutBase): Seq[MemberTracker] = ...

/** Given the top-level elaborated Chisel module, generate FIRRTL
Annotations x*/

override def toAnnotation(top: T): AnnotationSeq = {
val layout = buildFloorplan(top)
val trackers = collectTrackers(layout)
Seq(FloorplanInfo(layout, dir, name),

RunFirrtlTransformAnnotation(new FloorplanTransform())

) ++ trackers

}

}

bins and directly instrument the design. For similar cases where the process consuming
the hardware collateral is implemented in FIRRTL, this generic hardware injection library
proves very useful.

It is important to emphasize that this process of injecting hardware should be used with
extreme caution. It should not be used to implement primary RTL behavior, as this would
obscure the hardware generation process and result in the same problems as aspect-oriented
programming. Instead of exposed to users, this library should only be used by other Colla-
Gen libraries to implement these secondary, collateral-consuming processes.

Because this library is generally useful and requires additional calls to Chisel elaboration,
its implementation required minor modifications to Chisel. However, it primarily uses the
Colla-Gen interfaces and other Colla-Gen libraries which require similar features can use
InjectingLib instead of modifying Chisel directly.

To use the injecting Colla-Gen library, simply provide a selector function that collects
instances of a given Chisel module from the top-level elaborated design. Secondly, provide
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Example 5.2: Floorplan Colla-Gen Library

/**x Contains original floorplan generated from FloorplanLib
* Also contains additional info required for serialization
x/

case class FloorplanInfo(

layout: LayoutBase,
dir: String = "test_run_dir/html",
name: String = "layout"
) extends NoTargetAnnotation with Unserializable

/** Records changes to targeted nodes as FIRRTL compiles
* Given the set of rename mappings optionally select the one to be the
final renaming
x/
case class MemberTracker(
name: String,
targets: Seq[IsMember],
finalSelection: Seq[IsMember] => Option[IsMember]
) extends Annotation with Unserializable {...}

/**x Consumes [FloorplanInfo] and [MemberTracker] to update floorplan
* Then, serializes floorplan to disk
*/

class FloorplanTransform extends Transform {...}

7

a function that, given a module to inject code into, creates Chisel components which will be
injected into that module. This Chisel code can reference signals within the module directly,
and this library will correctly resolve these references. The following example, if included

when compiling RISC-V Mini, would inject a Chisel print statement into Mini’'s ALU:

Example 5.3: Injecting print into ALU

val inlinedLogging = InjectinglLib(
{ top: Tile => Seq(top.core.dpath.alu) },
{ alu: ALU =>
when(alu.io.alu_op === 15.U) {
printf("A == %d, B == %d, opcode == %d\n", alu.io.A, alu.io.B,
alu.io.alu_op)
}
}
)

This Colla-Gen library is implemented by using custom annotations to pass the injected
hardware from the resolution of the Colla-Gen library to a custom FIRRTL transform which
does the hardware injection. The two code blocks in Example 5.7 and Example 5.8, located
at the end of this chapter, contain the source code for the Colla-Gen library InjectingLib,

the custom annotation InjectStmt, and the custom transform Injecting Transform.
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Verification Libraries

To help understand or debug existing hardware, a user may want additional visibility into
the per-cycle execution behavior of the reused hardware; this is most often done with explicit
addition of debugging RTL and loggers, or relying on the debugging features of the user’s
simulator. However, since one goal of reusing hardware is to reuse without modification,
a user may become frustrated with the lack of per-cycle visibility and instead copy the
source-code to enable custom simulation-specific instrumentation modifications.

To address this problem, we created a histogramming library to enable users to collect
and bin per-cycle values of specified signals, and then when the test finishes, display the
histogram values. With the ability to mix-in on a per-test basis, the user’s visibility concern
is separated from the actual hardware source code.

Below is a description of this histogramming library. First, a user can instantiate the
library and mix it in with their tests as follows, as all subclasses of Colla-Gen also subclass
Annotation:

Example 5.4: Using HistogramLib

object MiniHistograms {
def selectALU(t: TileTester): Seq[ALU] = ...

// Create a HistogramLib that instruments Mini'’s ALU

val aluHistogram = HistogramLib[TileTester, ALU](
selectALU, // Selects module to add histogram
{ alu: ALU => Seq(new HistogramSignal(alu.io.alu_op)) }, // Select signal
to histogram, and wrap in HistogramSignal which enables bin customization
{ tester: TileTester => tester.isDone }, // Indicates when the test is
finished
{ tester: TileTester => tester.setDone } // Indicates when the simulation
is killed

)

}

// To create custom tests with the histogrammer, pass the aluHistogram
//  to the tester as an annotation
class TileSimpleTestsWithHistogrammer extends TileTests(

SimpleTests,

annotations = Seq(MiniHistograms.aluHistogram)

)

When the TileSimpleTestsWithHistogrammer is executed, Example 5.5 contains what is
printed at the end of the simulation.

Example 5.5: Test output with ALU’s Opcode Histogram

Enabling waves...

Starting simulation!

Histogram for signal alu_op in ALU:
Bin 0 ( until 1) -> 100

Bin 1 ( until 2) -> 0

Bin 2 ( until 3) -> 0

Bin 3 ( until 4) -> 0

WNRERO
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Bin 4 ( 4 until 5) -> 0
Bin 5 ( 5 until 6) -> 0
Bin 6 ( 6 until 7) -> 0
Bin 7 ( 7 until 8) -> 0
Bin 8 ( 8 until 9) -> 0
Bin 9 ( 9 until 10) -> 0
Bin 10 (10 until 11) -> 7
Bin 11 (11 until 12) -> 0
Bin 12 (12 until 13) -> 0
Bin 13 (13 until 14) -> 0
Bin 14 (14 until 15) -> 0
Bin 15 (15 until 16) -> 14

Process finished with exit code 0

This prototype can be used as the basis for other verification libraries such as a coverage
library.

Resiliency Libraries

Some applications like computation upon a satellite or airplane controllers require ASIC chips
to be more robust to random bit toggling. These applications drive a need for augmenting
an existing design to improve its reliability.

Triple modular redundancy (TMR) is a robustness strategy where key elements are du-
plicated three times; if one element produces the wrong answer, it is overruled by the other
two elements producing the correct answer. Because this strategy requires three times the
amount of digital logic, it has a large area and power cost. As a trade-off between cost and
reliability, TMR can be applied to the most vulnerable sub-components of a design, rather
than the entire design. Exploring this design space of TMR versus cost can require large
engineering costs if TMR is manually applied to the design; an attractive alternative is to
automatically apply TMR to selected components.

A TMR Colla-Gen library RedundancyLib was designed to support automatically apply-
ing TMR on selected registers. To test this library, another Colla-Gen library StuckFaultLib
was designed to automatically inject faults into a design. Through use of these two libraries,
a designer can iterate applying TMR and evaluating its reduction in resilience, search for
an optimal solution given the associated costs. The code in Example 5.6 demonstrates how
Colla-Gen functions are reused to select the registers to apply TMR or stuck-faults, and how
they are then passed to tests to confirm their correctness/incorrectness.

While these libraries only work with registers, future work is to support TMR on modules
as well. In addition, these libraries provide a starting place for implementation of other
resiliency strategies with similar hardware collateral requirements.
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Example 5.6: TMR Example

object MiniTMR {
def selectDpath(tester: TileTester): Datapath = ...

// Selects all registers in the datapath module to apply TMR

val redundantDPathRegs = RedundancylLib(
{ dut: TileTester => Select.getDeep(selectDpath(dut)) { Select.registers
}}

)

// Selects one register in datapath to apply stuck fault to
val faultyInst = StuckFaultLib(
{ dut: TileTester => Seq(selectDpath(dut).ew_inst) }
)
}

// This will fail because it injects a fault
class TileSimpleTestsWithFault extends TileTests(SimpleTests, annotations =
Seq(MiniTMR. faultyInst))

// This will pass even when it injects a fault because TMR is on every
datapath register
class TileSimpleTestsWithRegRedundancyAndFault extends TileTests(SimpleTests,
annotations = Seq(MiniTMR.redundantRegs, MiniTMR. faultyInst)
)

5.4 Summary

Colla-Gen provides a flexible yet powerful framework for generating hardware collateral in-
sync with the generated design. It provides a reliable mechanism to reference design signals,
as well as update these references under arbitrary FIRRTL transformations. By leveraging
the FIRRTL hardware compiler framework’s annotation system, its ordering semantics are
no different than other compiler transformations. Its utility is demonstrated through the
implementation of a wide variety of Colla-Gen libraries to tackle physical design, simulation,
verification, and reliability issues. Overall, the Colla-Gen library interface provide a strong
foundation for tackling the sizable and severe hardware collateral generation problem.
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Example 5.7: Injecting Colla-Gen Library

/*x Colla-Gen library to inject Chisel code into a module of type M x/
case class InjectingLib[T <: RawModule, // Type of top-level module
M <: RawModule]l( // Type of module to inject HW
selectRoots: T => Iterable[M], // Picks module instances from top-level
to inject
injection: M => Unit // Generate Chisel hardware to inject in M
) (implicit tTag: TypeTag[T]) extends CollaGen[T] { // tTag prevents
type-erasure

final def toAnnotation(top: T): AnnotationSeq = {...} // Calls other
toAnnotation

/**x Create annotations to trigger transformation which injects FIRRTL
statements
* Creates annotations by elaborating injection (Chisel code)
*/
final def toAnnotation(modules: Iterable[M], circuit: String):
AnnotationSeq = {
val injectAnnos = modules.map {
module =>
// Elaborate hardware to inject by executing Chisel’s builder
// ModuleAspect is an internal detail to allow seamless Chisel
generation
val (chiselIR, _) = Builder.build(Module(new ModuleAspect(module) {
module match {
case x: experimental.MultiIOModule =>
withClockAndReset(x.clock, x.reset) { injection(module) }
case x: RawModule => injection(module)
b
)
// Collect injected hardware, contained in a DefModule
val comps = chiselIR.components.map {
case x: DefModule if x.name == module.name => x.copy(id = module)
case other => other

}

// Collect any additional annotations generated from injected HW
val annotations = chiselIR.annotations.map(_.toFirrtl).filterNot{ a
=> a.isInstanceOf[DesignAnnotation[_]] }

// Convert elaborated injected HW into FIRRTL

val stmts = mutable.ArrayBuffer[ir.Statement]()

val modules = CollaGen.getFirrtl(chiselIR.copy(components =
comps) ) .modules. flatMap {

case m: firrtl.ir.Module if m.name == module.name =>
stmts += m.body
Nil

case other =>Seq(other)

}

// Return annotations containing injection information
InjectStatement(ModuleTarget(circuit, module.name), ir.Block(stmts),
modules, annotations)
}.toSeq
Seq(RunFirrtlTransformAnnotation(new InjectingTransform)) ++ injectAnnos
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Example 5.8: Injecting Annotation and Transformation

/** Contains all information needed to inject statements into a module */

case class InjectStatement(
module: ModuleTarget, // Module to inject code into at the end of the
module
s: firrtl.ir.Statement, // Statements to inject
modules: Seq[firrtl.ir.DefModule], // Additional instantiated modules in s
annotations: Seq[Annotation] // Additional annotations

) extends SingleTargetAnnotation[ModuleTarget] {...}

/** Appends statements contained in [[InjectStatement]] to corresponding
module */
class InjectingTransform extends Transform {...}
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Chapter 6

Research Contributions and Future
Outlook

With Dennard scaling and Moore’s law coming to a close, specialization is a promising ap-
proach to tackle the increasing demand for computation, but is limited by the time and cost
of designing a custom chip. Designing for future reuse enables more amortization of cost to
bring down the future cost of chips. However, unlike the software industry the hardware in-
dustry is inhibited by a lack of code reuse. Capturing reusable designs as hardware libraries
requires a powerful programming language, as well as an abstraction layer to separate func-
tion from implementation.

This thesis outlines one approach to facilitating reuse through a hardware construction
language, hardware compiler framework, and an aspect-oriented-programming (AOP) in-
spired paradigm for reusable design collateral. To enable hardware libraries, this thesis
contributes the following: (1) a reemphasis on how hardware construction languages (HCLs)
provide language expressivity to enable reusability, (2) hardware compiler frameworks as
a mechanism for additional reusability via digital logic customization using a novel hard-
ware intermediate representation, and (3) an AOP-inspired paradigm and implementation
for tackling the design collateral reusability problem.

After a detailed introduction in Chapter 1 of the current landscape of the market and
methodologies behind hardware design, Chapter 2 details the following three hypotheses for
the current lack of hardware library development:

e Existing hardware description languages lack the expressivity to support hardware
libraries

e Diverse underlying implementations require digital logic customization, limiting a de-
sign’s reusability

e Effective physical design, verification, emulation and instrumentation require addi-
tional design collateral which is too tool/platform/technology dependent and brittle to
design modifications



CHAPTER 6. RESEARCH CONTRIBUTIONS AND FUTURE OUTLOOK 84

The remaining Chapters of the thesis strive to address the deficiencies highlighted by
these hypotheses. Chapter 3 demonstrates how Chisel, a hardware construction language,
provides the expressivity and power to support hardware libraries with a comparison between
a Verilog-based project and a Chisel-based project, as well as multiple evaluations of its ex-
pressive power. Chapter 4 describes the details of a novel hardware compiler framework and
intermediate representation (IR). It concludes with an extensive demonstration of its sup-
ported transformations and an evaluation of its optimization transformations as compared to
another open-source synthesis tool. Finally, Chapter 5 introduces aspect-oriented program-
ming as inspiration for a design collateral generator approach; many prototypes of collateral
generator libraries are described and discussed, the central example enabling physical design
floorplan generation. Through evaluating the reuse potential of Chisel, the demonstrating
wide-ranging applications of a hardware compiler framework, and illustrating in-sync and
reusable hardware collateral generators, this thesis demonstrates an approach to speeding
the entire hardware design loop to bring custom hardware faster to market.

6.1 Status and Future Work

As of the writing of this thesis, many companies spanning from small start-ups to well-
established companies have used Chisel and FIRRTL (but not yet Colla-Gen) to accelerate
their custom hardware design processes. In this applied setting, the results were successful:
hardware design was faster with this methodology. As also expected, future designs in the
same family as the first design were significantly faster because large amounts of engineer-
ing effort were directly reused through the powerful parameterization that Chisel supports.
However, their experience was not entirely rosy - these companies ran abruptly into the next
bottlenecks in the design loop, namely verification and physical design. Verification was dif-
ficult but feasible with infrastructure additions, and physical design was mostly unchanged;
however, neither could be reused for future designs. Given the newness of the aspect-inspired
Colla-Gen framework, at this time no commercial entities have adopted it. As this uptake
process continues, only time will tell whether it can live up to its promise of design col-
lateral generation and reuse. However, this ecosystem’s established following increases the
likelihood of future adopters due to the reduced shared risk.

While Chisel, FIRRTL and Colla-Gen have many features and paths forward, there are
certainly foreseeable limitations which require novel ideas and/or significant engineering.
For Chisel, most analog design is outside its scope, as well as some digital constructs like
latches; these features require using Chisel’s blackbox module, but direct language support
would be preferred by the user. Additionally, design testing is a large concern - existing
Chisel testers are slow and difficult to create large reusable test benches; work is being done
to improve the testing infrastructure but it remains to be seen whether it can address this
large need. Another foreseeable Chisel limitation is its large requirement for memory size
to compile large designs; these take up large amounts of heap, and thus often compile times
are often slowed down. Worse, the Colla-Gen framework requires this design to be contained
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in memory, which may limit its applicability to smaller designs or submodules of designs.
For FIRRTL, its limitations are primarily in its friendliness for new users; standardization
of FIRRTL transform writing, providing larger libraries of transformations, and a more
detailed tutorial would ease the onboarding process for new FIRRTL transformation writers.
Another current limitation is how FIRRTL transformations are scheduled; while a more
powerful dependency feature is in the works, it remains to be seen whether it can capture
relative transformation ordering constraints in a user-understandable way. One limitation
of the Colla-Gen libraries is their resolution immediately after Chisel elaboration but before
FIRRTL transformations, placing the restriction that generating collateral on signals which
are added via a transformation requires non-trivial workarounds (as a generic approach to this
problem has not yet been supported). As also detailed earlier, all Colla-Gen implementations
are prototypes and have not been used for tapeouts or industry adoption - more development
effort is required to make them accessible to users and for a real evaluation of their industry-
ready potential.

The future challenges of this project are significant but still conquerable. The largest
impediment is better integration with existing design ecosystems; learning Chisel is hard
and most hardware engineers have little real software development experience (learning how
to write hardware compiler transformations is even harder). Not every company can shift
to this ecosystem and thus integration with non-Chisel digital logic designs gracefully is a
major but important challenge to tackle. One approach which can ease this integration
challenge is to build better tools for integration. There do exist some new solutions but are
not widely adopted and its unknown whether they adequately tackle this problem. Another
major challenge is verification in a generator-based design flow. While leveraging the Colla-
Gen framework is an important first step, the exact verification constructs and approach is
still unknown and an excellent area for additional research; lots of novelty is needed in this
area to elevate verification to generator level. The next challenge is that this methodology
still requires large run times for synthesis and place-and-route tools to get energy/area num-
bers. Faster evaluation of these metrics would further accelerate a designer’s productivity.
Additionally, generator-approaches increase the need for cloud-based regular regressions for
which the per-user license model of current CAD (computer-aided design) companies doesn’t
address, and open-source CAD tools are still too premature to provide effective results (while
hopefully this will change soon). A reasonable solution to this problem are FIRRTL-based es-
timations which would be less accurate but faster to compute and easily scalable to the cloud.
Finally, managing a growing project and ecosystem is a future challenge; any open-source
project must balance the disparate demands of many companies. Perhaps more difficult is
finding and keeping the right contributors who match the specialized skill set required by this
project. While the future challenges of Chisel, FIRRTL and Colla-Gen span open research
problems, technical engineering effort, and human management, there are no fundamental
challenges which block its increasing adoption into industry workflows.

This is a very exciting time for challenging the methodology status-quo. Market de-
mands and current limitations point to a methodology solution, making tool designers in
high demand and opening an opportunity to think big picture about how tools can make
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hardware designers (and verification/physical design engineers) more effective and efficient.
The impact potential has never been greater - there is a massive under-served market in
custom silicon that can be torn wide open given the right tools and methodologies. As more
companies begin building their own custom chips and run into the same methodology bot-
tlenecks of the status-quo, the more attractive Chisel and other similar solutions become.
Widely-used open-source solutions provide risk mitigation, as bugs are shared. Addition-
ally, vertically-integrated companies have little incentive to bear the large upfront costs of
building a competing custom tool when their individual market is smaller - sharing this
infrastructure is a win-win for the industry because a large percentage of the players are not
directly competing.

Of the future challenges mentioned, many of these problems require engineering solutions,
which can be addressed with good integration with existing designs and tools/methodologies
which are missing in the Chisel ecosystem. These missing features can then be incrementally
supported directly in Chisel, enabling developers the time to properly design these features.
Separate from the engineering problems is the project management, which requires active
effort to maintain and grow the project, as well as finding dedicated contributors. Open-
source contributions are best done by passionate individuals, and while the project is exciting,
it is important to keep it an enjoyable experience as well.

Specialization is the future of hardware design, and increasing reusability within our
hardware design methodologies is critical to meeting the incoming demand for chip diver-
sity. Designers should focus on developing reusable hardware libraries, while researchers and
developers should consider reusability as a primary focus of future languages and compil-
ers. This thesis describes a Chisel ecosystem which is perfectly poised to support hardware
libraries and tackle the hardware collateral barriers within the hardware design loop.
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Appendix A
The FIRRTL Specification

The ideas for FIRRTL (Flexible Intermediate Representation for RTL) originated from work
on Chisel, a hardware description language (HDL) embedded in Scala used for writing highly-
parameterized circuit design generators. Chisel designers manipulate circuit components us-
ing Scala functions, encode their interfaces in Scala types, and use Scala’s object-orientation
features to write their own circuit libraries. This form of meta-programming enables expres-
sive, reliable and type-safe generators that improve RTL design productivity and robustness.

A.1 Project History

The computer architecture research group at U.C. Berkeley relied critically on Chisel to
allow small teams of graduate students to design sophisticated RTL circuits. Over a three
year period with under twelve graduate students, the architecture group has taped-out over
ten different designs.

Internally, the investment in developing and learning Chisel was rewarded with huge gains
in productivity. At the time, Chisel’s external rate of adoption was slow for the following
reasons.

1. Writing custom circuit transformers requires intimate knowledge about the internals
of the Chisel compiler.

2. Chisel semantics are underspecified and thus impossible to target from other languages.

3. Error checking is unprincipled due to underspecified semantics resulting in incompre-
hensible error messages.

4. Learning a functional programming language (Scala) is difficult for RTL designers with
limited programming language experience.

5. Confounding the previous point, conceptually separating the embedded Chisel HDL
from the host language is difficult for new users.
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6. The output of Chisel (Verilog) is unreadable and slow to simulate.

As a consequence, Chisel needed to be redesigned from the ground up to standardize its
semantics, modularize its compilation process, and cleanly separate its front-end, interme-
diate representation, and backends. A well defined intermediate representation (IR) allows
the system to be targeted by other HDLs embedded in other host programming languages,
making it possible for RTL designers to work within a language they are already comfortable
with. A clearly defined IR with a concrete syntax also allows for inspection of the output of
circuit generators and transformers thus making clear the distinction between the host lan-
guage and the constructed circuit. Clearly defined semantics allow users without knowledge
of the compiler implementation to write circuit transformers; examples include optimization
of circuits for simulation speed, and automatic insertion of signal activity counters. An addi-
tional benefit of a well defined IR is the structural invariants that can be enforced before and
after each compilation stage, resulting in a more robust compiler and structured mechanism
for error checking.

A.2 Details about Syntax

FIRRTL’s syntax is designed to be human-readable but easily algorithmically parsed.

The following characters are allowed in identifiers: upper and lower case letters, digits,
and _. Identifiers cannot begin with a digit.

An integer literal in FIRRTL begins with one of the following, where ‘#’ represents a
digit between 0 and 9.

e ‘0x’ : For indicating a hexadecimal number. The rest of the literal must consist of

Y

either digits or a letter between ‘A’ and ‘F’, or the separator ‘.

e ‘00’ : For indicating an octal number. The rest of the literal must consist of digits

?

between 0 and 7, or the separator * .

e ‘Ob’ : For indicating a binary number. The rest of the literal must consist of either 0

b

or 1, or the separator © .

¢

e ‘4 : For indicating a negative decimal number. The rest of the literal must consist
of digits between 0 and 9.

e ‘4’ : For indicating a positive decimal number. The rest of the literal must consist of
digits between 0 and 9.

Comments begin with a semicolon and extend until the end of the line. Commas are
treated as whitespace, and may be used by the user for clarity if desired.

Block structuring is indicated using indentation. Statements are combined into statement
groups by surrounding them with parentheses. A colon at the end of a line will automatically
surround the next indented region with parenthesis and thus create a statement group.
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The following statement:

Example A.1:
when ¢ :
a<=b
else :
c<=d
e <= f

can be equivalently expressed on a single line as follows.

Example A.2:
when ¢ : (a <= b) else : (c <=d, e <= f)

All circuits, modules, ports and statements can optionally be followed with the info token
@[fileinfo] where fileinfo is a string containing the source file information from where it was
generated.

The following example shows the info tokens included:

Example A.3:

circuit Top : @["myfile.txt: 14, 8"]
module Top : @["myfile.txt: 15, 2"]
output out:UInt @["myfile.txt: 16, 3"]
input b:UInt<32> @["myfile.txt: 17, 3"]
input c:UInt<l> @["myfile.txt: 18, 3"]
input d:UInt<l6> @["myfile.txt: 19, 3"]
wire a:UInt @["myfile.txt: 21, 8"]
when ¢ : @["myfile.txt: 24, 8"]
a <=b @["myfile.txt: 27, 16"]
else :
a <=d @["myfile.txt: 29, 17"]
out <= add(a,a) @["myfile.txt: 34, 4"]

A.3 Circuits and Modules

A.3.1 Circuits

Every FIRRTL circuit consists of a list of modules, each representing a hardware block that
can be instantiated. The circuit must specify the name of the top-level module; because the
circuit represents an entire hardware design, the top-level input/outputs are dictated by the
top-level module.
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Example A.4:

circuit MyTop :
module MyTop :

module MyModule :

A.3.2 Modules

Each module has a given name, a list of ports, and a statement representing the circuit
connections within the module. A module port is specified by its direction (which may be
input or output), a name, and the data type of the port.

The following example declares a module with one input port, one output port, and one
statement connecting the input port to the output port. See section A.5.1 for details on the
connect statement.

Example A.5:

module MyModule :
input foo: UInt
output bar: UInt
bar <= foo

Note that a module definition does not indicate that the module will be physically present
in the final circuit. Refer to the description of the instance statement for details on how to
instantiate a module (section A.5.13).

A.3.3 Externally Defined Modules

Externally defined modules consist of a given name, and a list of ports, whose types and
names must match its external definition.

Example A.6:

extmodule MyExternalModule :
input foo: UInt
output bar: UInt
output baz: SInt

A.4 Types

Types are used to specify the structure of the data held by each circuit component. Every
type in FIRRTL is either one of the fundamental ground types or built up by aggregating
other types.
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A.4.1 Ground Types

There are six ground types in FIRRTL: an unsigned integer type, a signed integer type, a
fixed-point type, an interval type, a clock type, and an analog type.

Integer Types

Both unsigned and signed integer types may optionally be given a known positive integer
bit width.

Example A.7:

UInt<10>
SInt<32>

Alternatively, if the bit width is omitted, it will be automatically inferred by FIRRTL’s
width inferencer, as detailed in section 4.3.

Example A.8:

UInt
SInt

Fixed-Point Type

Fixed-point types have both a width and a precision; a precision’s value refers to the number
of bits, from the full bit width, that represent fractional bits. The precision value can be
negative, but cannot be greater than the bit width. The precision value is represented by
the second integer surrounded by « and ».

Example A.9:

Fixed<10><<2>>
Fixed<4><<-1>>

Both the width and precision values can be inferred by FIRRTL’s value inferencer, as
detailed in section 4.3.

Interval Type

Interval types have an upper bound, a lower bound, and a precision. Their bound values
can be either closed or open, and are represented by a double as opposed to an integer. Both
their bounds and precision can be inferred by FIRRTL’s value inferencer (section 4.3). Like
the fixed point type, the interval type precision can be negative.

Example A.10:

Interval[0, 10.432].2
Interval(-1, 20].4
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If the bounds are not evenly divided into their precision, they will be trimmed to the
closest evenly-divided value within the interval. Open bounds indicate an interval boundary
that does not include the specified value; this is useful when the precision is unknown and
thus the true boundary value of an open bound is unknown.

Clock Type

The clock type is used to describe wires and ports meant for carrying clock signals. The
usage of components with clock types is restricted. Clock signals cannot be used in most
primitive operations, and clock signals can only be connected to components that have been
declared with the clock type.

The clock type is specified as follows:

Example A.11:

Clock

Analog Type

The analog type is used to describe wires and ports meant for signals that lack directionality.
The usage of components with analog types is restricted. Analog signals cannot be used in
most primitive operations, nor can they be used in the connection statement. They can only
be used in the attach statement and in partial connection statements to other analog-typed
signals.

The analog type is specified as follows:

Example A.12:

Analog<10>

Ports can also be declared as an analog type; the direction of this port is irrelevant to
the behavior of the signal.

A.4.2 Vector Types

A vector type is used to express an ordered sequence of elements of a given type. The length
of the sequence must be greater than zero and known.
The following example specifies a ten-element vector of 16-bit unsigned integers.

Example A.13:

UInt<16>[10]

The next example specifies a ten-element vector of unsigned integers of omitted but
identical bit widths.



APPENDIX A. THE FIRRTL SPECIFICATION 93

Example A.14:

UInt[10]

Note that any type, including other aggregate types, may be used as the element type of
the vector. The following example specifies a twenty-element vector, each of which is a ten
element vector of 16-bit unsigned integers.

Example A.15:

UInt<16>[10][20]

A.4.3 Bundle Types

A bundle type is used to express a collection of nested and named types. Every field in a
bundle type must have a given name and a type. No two fields in a bundle type may have
the same name.

The following is an example of a possible type for representing a complex number. It has
two fields, real, and imag, each a 10-bit signed integer.

Example A.16:
{real:SInt<10>, imag:SInt<10>}

Additionally, a field may optionally be declared with a flipped orientation.

Example A.17:
{word:UInt<32>, valid:UInt<l>, flip ready:UInt<1l>}

In a connection from a circuit component with a bundle type to another circuit component
with a bundle type, the data carried by the flipped fields flow in the opposite direction as
the data carried by the non-flipped fields.

As an example, consider a module output port declared with the following type:

Example A.18:
output a: {word:UInt<32>, valid:UInt<l>, flip ready:UInt<1>}

In a connection to the a port, the data carried by the word and valid subfields will flow out of
the module, while data carried by the ready subfield will flow into the module. More details
about how the bundle field orientation affects connections are explained in section A.5.1.

As in the case of vector types, a bundle field may be declared with any type, including
other aggregate types.

Example A.19:

{real: {word:UInt<32>, valid:UInt<1l>, flip ready:UInt<1>}
imag: {word:UInt<32>, valid:UInt<l>, flip ready:UInt<1>}}
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When calculating the final direction of data flow, the orientation of a field is applied
recursively to all nested types in the field. As an example, consider the following module
port declared with a bundle type containing a nested bundle type.

Example A.20:
output myport: {a: UInt, flip b: {c: UInt, flip d:UInt}}

In a connection to myport, the a subfield flows out of the module. The c subfield contained
in the b subfield flows into the module, and the d subfield contained in the b subfield flows
out of the module.

A.4.4 Passive Types

It is inappropriate for some circuit components to be declared with a type that allows for
data to flow in both directions. For example, all subelements in a memory should flow in
the same direction. These components are restricted to only have a passive type.

Intuitively, a passive type is a type where all data flows in the same direction, and is
defined to be a type that recursively contains no fields with flipped orientations. Thus every
ground type is a passive type. A vector type is passive if and only if its element type is
passive. A bundle type is passive if and only if every one of the bundle type’s fields is not
flipped and has a passive type.

A.4.5 Type Equivalence

The type equivalence relation is used to determine whether a connection is proper. See
section A.5.1 for further details about connect statements.

An unsigned integer type is always equivalent to another unsigned integer type regardless
of bit width, and is not equivalent to any other type. Similarly, a signed integer type is always
equivalent to another signed integer type regardless of bit width, and is not equivalent to
any other type.

Clock types are equivalent to clock types, and are not equivalent to any other type.

Two vector types are equivalent if they have the same length, and if their element types
are equivalent.

Two bundle types are equivalent if they have the same number of fields, and both the
bundles’ i’th fields have matching names and orientations, as well as equivalent types. Con-
sequently, {a:UInt, b:UInt} is not equivalent to {b:UInt, a:UInt}, and {a: {flip b:UInt}} is
not equivalent to {flip a: {b: UInt}}.

A.4.6 Weak Type Equivalence

The weak type equivalence relation is used to determine whether a partial connection is
proper. See section A.5.2 for further details about partial connect statements.
Two types are weakly equivalent if their corresponding oriented types are equivalent.



APPENDIX A. THE FIRRTL SPECIFICATION 95

Oriented Types

The weak type equivalence relation requires first a definition of oriented types. Intuitively,
an oriented type is a type where all orientation information is collated and coupled with the
leaf ground types instead of in bundle fields.

An oriented ground type is an orientation coupled with a ground type. An oriented
vector type is an ordered sequence of positive length of elements of a given oriented type.
An oriented bundle type is a collection of oriented fields, each containing a name and an
oriented type, but no orientation.

Applying a flip orientation to an oriented type reverses the orientation of every oriented
ground type contained within. Applying a non-flip orientation to an oriented type does
nothing.

Conversion to Oriented Types

To convert a ground type to an oriented ground type, attach a non-flip orientation to the
ground type.

To convert a vector type to an oriented vector type, convert its element type to an
oriented type, and retain its length.

To convert a bundle field to an oriented field, convert its type to an oriented type, apply
the field orientation, and combine this with the original field’s name to create the oriented

field. To convert a bundle type to an oriented bundle type, convert each field to an oriented
field.

Oriented Type Equivalence

Two oriented ground types are equivalent if their orientations match and their types are
equivalent.

Two oriented vector types are equivalent if their element types are equivalent.

Two oriented bundle types are not equivalent if there exist two fields, one from each
oriented bundle type, that have identical names but whose oriented types are not equivalent.
Otherwise, the oriented bundle types are equivalent.

As stated earlier, two types are weakly equivalent if their corresponding oriented types
are equivalent.

A.5 Statements

Statements are used to describe the components within a module and how they interact.
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A.5.1 Connect Statement

The connect statement is used to specify a physically wired connection from one circuit
component to another circuit component.

The following example demonstrates connecting a module’s input port to its output port,
where port myinput is connected to port myoutput.

Example A.21:

module MyModule :
input myinput: UInt
output myoutput: UInt
myoutput <= myinput

In order for a connection to be proper the following conditions must hold:

1. The types of the left-hand and right-hand side expressions must be equivalent (see
section A.4.5 for details).

2. The bit widths of the two expressions must allow for data to always flow from a smaller
bit width to an equal size or larger bit width.

3. The flow of the left-hand side expression must be sink or duplex (see section A.8 for
an explanation of flow).

4. Either the flow of the right-hand side expression is source or duplex, or the right-hand
side expression has a passive type.

If a connect statement happens to connect a ground-type component to a wider compo-
nent, then the ground type must be an integer type, and the value that flows through that
connection will automatically be sign-extended (if it is a signed integer) or zero-extended
(if it is an unsigned integer). The behavior of a connect statement from one circuit compo-
nent with an aggregate type to another with an aggregate type is defined by the connection
algorithm in section A.5.3.

A.5.2 Partial Connect Statement

Like the connect statement, the partial connect statement is also used to specify a physically
wired connection from one one circuit component to another. However, it enforces fewer
restrictions on the types and widths of the circuit components it connects.

In order for a partial connect to be legal the following conditions must hold:

1. The types of the left-hand and right-hand side expressions must be weakly equivalent
(see section A.4.6 for details).

2. The flow of the left-hand side expression must be sink or duplex (see section A.8 for
an explanation of flow).
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3. Either the flow of the right-hand side expression is source or duplex, or the right-hand
side expression has a passive type.

If a partial connect statement happens to connect a ground-type component to a wider
component, then the ground type must be an integer type, and the value that flows through
that connection will automatically be sign-extended (if it is a signed integer) or zero-extended
(if it is an unsigned integer). Partial connect statements from a wider ground type component
to a narrower ground type component will have its value automatically truncated to fit the
smaller bit width.

Intuitively, bundle fields with matching names will be connected appropriately, while
bundle fields not present in both types will be ignored. Similarly, vectors with mismatched
lengths will be connected up to the shorter length, and the remaining subelements are ig-
nored.

The following example demonstrates partially connecting a module’s input port to its
output port, where port myinput is connected to port myoutput.

Example A.22:

module MyModule :
input myinput: {flip a:UInt, b:UInt[2]}
output myoutput: {flip a:UInt, b:UInt[3], c:UInt}
myoutput <- myinput

The above example is equivalent to the following:

Example A.23:

module MyModule :
input myinput: {flip a:UInt, b:UInt[2]}
output myoutput: {flip a:UInt, b:UInt[3], c:UInt}
myinput.a <- myoutput.a
myoutput.b[@] <- myinput.b[0]
myoutput.b[1l] <- myinput.b[1]

For details on the syntax and semantics of the subfield expression, subindex expression, and
statement groups, see sections A.6.6, A.6.7, and A.5.5.

A.5.3 The Connection Algorithm

Both connection statements and partial connection statements (both denoted as a connec-
tion) follow the following algorithm to determine whether each subelement of the left-hand
side of the connection is connected to or connected from a corresponding subelement of
the right-hand side of the connection. Any reference to a connection implies the original
statement type, either a connection statement or a partial connection statement.

A connection from one ground typed component to another ground typed component
connects the right-hand side component to the left-hand side component.
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A connection from a vector typed component to another vector typed component recur-
sively applies a connection from each of the first n indexed subelements in the right-hand
side component to each of the first n corresponding indexed subelements in the left-hand
side component, where n is the length of the shorter vector. Note that the vector lengths
can only mismatch in a partial connection statement.

A connection from a bundle typed component to another bundle typed component con-
siders all pairs of subelement fields with matching names, where the first field in the pair is
from the left-hand side component and the second field in the pair is from the right-hand
side component. If the first field in the pair is not flipped, then a connection is applied from
the second field in the pair (from the right-hand side component) to the first field in the pair
(from the left-hand side component). However, if the first field in the pair is flipped, then
a connection is applied from the first field in the pair (from the left-hand side component)
to the second field in the pair (from the right-hand side component). Note that unmatched
fields or pairs of differently-ordered fields within their respective bundle types can only occur
in a partial connection statement.

A.5.4 Attach

A sequence of analog-typed signals can be connected to one another with the attach state-
ment. Multiple attach statements can reference the same signal; if this occurs, it is as if the
set of both attach statement’s analog signals are all attached to one another. Only analog
types of equivalent widths can be attached.

Example A.24:

module MyModule :
input a: Analog<8>
input b: Analog<8>
output c: Analog<8>
output d: Analog<8>
attach(a, b, c)
attach(c, d)

In the previous example, signal d is attached to ¢ which is in turn attached to signals a
and b. Due to the nature of the attach statement, d is also attached to a and b.

A.5.5 Statement Group

An ordered sequence of one or more statements can be grouped into a single statement,
called a statement group. The following example demonstrates a statement group composed
of three connect statements.
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Example A.25:

module MyModule :
input a: UInt
input b: UInt
output myportl: UInt
output myport2: UInt
myportl <= a
myportl <= b
myport2 <= a

Last Connect Semantics

Ordering of statements is significant in a statement group. Intuitively, during elaboration,
statements execute in order, and the effects of later statements take precedence over earlier
ones. In the previous example, in the resultant circuit, port b will be connected to myportl,
and port a will be connected to myport2.

Note that if a user desires to enforce single-connection semantics, in some cases they may
instead use a node statement (see A.5.10).

Note that connect and partial connect statements have equal priority, and later connect
or partial connect statements always take priority over earlier connect or partial connect
statements. Conditional statements are also affected by last connect semantics, and for
details see section A.5.11.

In the case where a connection to a circuit component with an aggregate type is followed
by a connection to a subelement of that component, only the connection to the subelement
is overwritten. Connections to the other subelements remain unaffected. In the following
example, in the resultant circuit, the c subelement of port portx will be connected to the c
subelement of myport, and port porty will be connected to the b subelement of myport.

Example A.26:

module MyModule :
input portx: {b:UInt, c:UInt}
input porty: UInt
output myport: {b:UInt, c:UInt}
myport <= portx
myport.b <= porty

The above circuit can be rewritten equivalently as follows.

In the case where a connection to a subelement of an aggregate circuit component is
followed by a connection to the entire circuit component, the later connection overwrites the
earlier connections completely.

The above circuit can be rewritten equivalently as follows.

See section A.6.6 for more details about subfield expressions.
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Example A.27:

module MyModule :
input portx: {b:UInt, c:UInt}
input porty: UInt
output myport: {b:UInt, c:UInt}
myport.b <= porty
myport.c <= portx.c

Example A.28:

module MyModule :
input portx: {b:UInt, c:UInt}
input porty: UInt
output myport: {b:UInt, c:UInt}
myport.b <= porty
myport <= portx

Example A.29:

module MyModule :
input portx: {b:UInt, c:UInt}
input porty: UInt
output myport: {b:UInt, c:UInt}
myport <= portx

A.5.6 Skip Statement

The skip statement does nothing and is used simply as a placeholder where a statement is
expected. It is specified using the skip keyword.
The following example:

Example A.30:

a<=b
skip
c <=d

can be equivalently expressed as

Example A.31:

a<=b
d

C <=

The skip statement is most often used as a convenient placeholder for removed compo-
nents during transformational passes, or can also be used as the else branch in a conditional
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statement (a when statement with no else clause is syntactic sugar for an else branch with
a skip statement). See section A.5.11 for details on the conditional statement.

A.5.7 Wire Declaration

A wire is a named combinational circuit component that can be connected to and from using
connect and partial connect statements.

The following example demonstrates instantiating a wire with the given name mywire and
type UInt.

Example A.32:

wire mywire : UInt

A wire entirely equivalent to an instance of a module with one input port and one output
port of the same type, such that the input port is connected to the output port, except for
the syntactic shorthand that one can connect directly to and from the wire using just the
wire name without having to explicitly mention its port names.

A.5.8 Register Declaration

A register is a named stateful circuit component.

The following example demonstrates instantiating a register with the given name myreg
and type SInt, and is driven by the clock signal myclock. A register must be declared with a
passive type.

Example A.33:

wire myclock: Clock
reg myreg: SInt, myclock

Optionally, for the purposes of circuit initialization, a register can be declared with a
reset signal and value. In the following example, myreg is assigned the value myinit when the
signal myreset is high.

Example A.34:

wire myclk: Clock

wire myrst: UInt<l>

wire myinit: SInt

reg myreg: SInt, myclk with: (reset => (myrst, myinit))

Note that the clock signal for a register must be of type clock, the reset signal must be
a single-bit UInt, and the type of initialization value must match the declared type of the
register.
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A.5.9 Invalidation Statement

An invalidation statement is used to indicate that a circuit component contains indeterminate
values. It is specified as follows:

Example A.35:

wire w:UInt
w 1is invalid

Invalidation statements can be applied to any circuit component of any type. However,
if the circuit component cannot be connected to (for example, an input port of a module),
then the statement has no effect on the component. This allows the invalidation statement
to be applied to any component, to explicitly ignore initialization coverage errors.

The following example demonstrates the effect of invalidating a variety of circuit compo-
nents with aggregate types. See section A.5.9 for details on the algorithm for determining
what is invalidated.

Example A.36:

module MyModule :
input in: {flip a:UInt, b:UInt}
output out: {flip a:UInt, b:UInt}
wire w: {flip a:UInt, b:UInt}
in is invalid
out is invalid
w is invalid

is equivalent to the following:

Example A.37:

module MyModule :
input in: {flip a:UInt, b:UInt}
output out: {flip a:UInt, b:UInt}
wire w: {flip a:UInt, b:UInt}
in.a is invalid
out.b is invalid
w.a is invalid
w.b is invalid

For the purposes of simulation, invalidated components could either be initialized to
random values or supported directly if the simulator supports three-valued bits (0, 1, and
invalid). In terms of its specification behavior, operations on indeterminate values produce
undefined behavior.

The Invalidate Algorithm

Invalidating a component with a ground type indicates that the component’s value is inde-
termined if the component is sink or duplex (see section A.8). Otherwise, the component is
unaffected.
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Invalidating a component with a vector type recursively invalidates each subelement in
the vector.

Invalidating a component with a bundle type recursively invalidates each subelement in
the bundle.

A.5.10 Nodes

A node is simply a named intermediate value in a circuit. The node must be initialized to
a value with a passive type and cannot be connected to. Nodes are often used to split a
complicated compound expression into named subexpressions.

The following example demonstrates instantiating a node with the given name mynode
initialized with the output of a multiplexor (see section A.6.9).

Example A.38:

wire pred: UInt<l>

wire a: SInt

wire b: SInt

node mynode = mux(pred, a, b)

A.5.11 Conditionals

Connections within the first substatement (or statement group) of a conditional statement
that connect to components declared prior to the conditional statement hold only when the
given condition is high. If a conditional statement has an "else" clause, then connections
within the substatement (or statement group) after the "else" keyword that connect to
components declared prior to the conditional statement hold only when the given condition
is low. The condition must have a 1-bit unsigned integer type.

In the following example, the wire x is connected to the input a only when the en signal
is high. Otherwise, the wire x is connected to the input b.

Example A.39:

module MyModule :

input a: UlInt
input b: UInt
input en: UInt<l>
wire x: UInt
when en :

X <= a
else :

X <=b
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Syntactic Shorthands

The else branch of a conditional statement may be omitted, in which case a default else
branch is supplied consisting of the empty statement.
Thus the following example:

Example A.40:

module MyModule :
input a: UInt
input b: UInt
input en: UInt<l>
wire x: UInt
when en :
X <= a

can be equivalently expressed as

Example A.41:

module MyModule :

input a: UInt
input b: UInt
input en: UInt<l>
wire x: UInt
when en :

X <= a
else :

skip

To aid readability of long chains of conditional statements, the colon following the else
keyword may be omitted if the else branch consists of a single conditional statement.
Thus the following example:

Example A.42:

module MyModule :
input a: UInt
input b: UInt
input c: UlInt
input d: UInt
input cl: UInt<l>
input c2: UInt<l>
input c3: UInt<l>
wire x: UInt
when c1 :
X <= a
else :
when c2 :
X <=Db
else :
when c3 :
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X <= C
else :
X <=d

can be equivalently written as:

Example A.43:

module MyModule :
input a: UlInt
input b: UInt
input c: UInt
input d: UInt
input cl: UInt<l>
input c2: UInt<l>
input c3: UInt<l>
wire x: UInt

when cl :
X <= a
else when c2 :
X <=b
else when c3 :
X <= C
else :
X <=d

Declarations Nested Within Conditional Statements

If a component is declared within a conditional statement, connections to the component
are unaffected by the condition. In the following example, a is always connected to register
myregl, and b is always connected to register myreg2.

Example A.44:

module MyModule :

input a: UInt

input b: UInt

input en: UInt<l>

input clk : Clock

when en :
reg myregl : UInt, clk
myregl <= a

else :
reg myreg2 : UInt, clk
myreg2 <= b

Intuitively, a line can be drawn from the component on the left-hand side of a connection
(or partial connection) to that component’s declaration. All conditional statements that are
crossed by the line apply to that connection (or partial connection).
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Initialization Coverage

Because of the conditional statement, it is possible to syntactically express circuits containing
wires that have not been connected to under all conditions.

In the following example, the wire a is connected to the wire w when en is high, but it is
not specified what is connected to w when en is low.

Example A.45:

module MyModule :
input en: UInt<l>
input a: UInt
wire w: UInt
when en :
w <= a

This is an improper FIRRTL circuit and an error will be reported during compilation.
All wires, memory ports, instance ports, and module ports that can be connected to must
be connected to under all conditions. A register does not need to be connected to under all
conditions, as it will keep its previous value if unconnected.

Scoping

The conditional statement creates a new scope within each of its when and else branches. It
is an error to refer to any component declared within a branch after the branch has ended.
This is unlike a statement group, which does not create a new scope.

Conditional Last Connect Semantics

In the case where a connection to a circuit component is followed by a conditional statement
containing a connection to the same component, the connection is overwritten only when
the condition holds. Intuitively, a multiplexor is generated such that when the condition is
low, the multiplexor returns the old value, and otherwise returns the new value. For details
about the multiplexor, see section A.6.9.

The following example:

Example A.46:

wire a: UlInt
wire b: UInt
wire c: UInt<l>
wire w: UInt
w <= a
when ¢ :

w<=b

can be rewritten equivalently using a multiplexor as follows:
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Example A .47:

wire a: UInt
wire b: UInt
wire c: UInt<l>
wire w: UInt

w <= mux(c, b, a)

In the case where a component is first invalided with an invalidation statement, and
is then followed by a conditional statement containing a connection to this component,
the resulting connection to the component can be expressed using a conditionally valid
expression. See section A.6.10 for more details about the conditionally valid expression.

Example A.48:

wire a: UInt
wire c: UInt<l>
wire w: UInt
w is invalid
when ¢ :

w <= a

can be rewritten equivalently as follows:

Example A.49:

wire a: UInt

wire c: UInt<l>
wire w: UInt

w <= validif(c, a)

The behavior of conditional connections to circuit components with aggregate types can
be modeled by first expanding each connect into individual connect statements on its ground
elements (see section A.5.3 for the connection and partial connection algorithms) and then
applying the conditional last connect semantics.

For example, the following snippet:

Example A.50:

wire x: {a:UInt, b:UInt}
wire y: {a:UInt, b:UInt}
wire c: UInt<l>
wire w: {a:UInt, b:UInt}
w <= X
when ¢ :

W <=y

can be rewritten equivalently as follows:
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Example A.51:

wire x: {a:UInt, b:UInt}
wire y: {a:UInt, b:UInt}
wire c: Ulnt<l>

wire w: {a:UInt, b:UInt}
w.a <= mux(c, y.a, x.a)
w.b <= mux(c, y.b, x.b)

Similar to the behavior of aggregate types under last connect semantics (see section
A.5.5), the conditional connects to a subelement of an aggregate component only generates
a multiplexor for the subelement that is overwritten.

For example, the following snippet:

Example A.52:

wire x: {a:UInt, b:UInt}
wire y: UInt
wire c: Ulnt<l>
wire w: {a:UInt, b:UInt}
w <= X
when ¢ :

w.a <= Y

can be rewritten equivalently as follows:

Example A.53:

wire x: {a:UInt, b:UInt}
wire y: UInt

wire c: UInt<l>

wire w: {a:UInt, b:UInt}

w.a <= mux(c, y, x.a)
w.b <= x.b

A.5.12 Memories

A memory is an abstract representation of a hardware memory. It is characterized by the
following parameters.

1. A passive type representing the type of each element in the memory.
2. A positive integer representing the number of elements in the memory.

3. A variable number of named ports, each being a read port, a write port, or readwrite
port.
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4. A non-negative integer indicating the read latency, which is the number of cycles after
setting the port’s read address before the corresponding element’s value can be read
from the port’s data field.

5. A non-negative integer indicating the write latency, which is the number of cycles after
setting the port’s write address and data before the corresponding element within the
memory holds the new value.

6. A read-under-write flag indicating the behavior when a memory location is written to
while a read to that location is in progress.

The following example demonstrates instantiating a memory containing 256 complex
numbers, each with 16-bit signed integer fields for its real and imaginary components. It has
two read ports, r1 and r2, and one write port, w. It is combinationally read (read latency is
zero cycles) and has a write latency of one cycle. Finally, its read-under-write behavior is
undefined.

Example A.54:

mem mymem :
data-type => {real:SInt<16>, imag:SInt<16>}
depth => 256

reader => rl

reader => r2

writer => w

read-latency => 0
write-latency => 1
read-under-write => undefined

In the example above, the type of mymenm is:

Example A.55:

{flip rl: {flip data: {real:SInt<16>, imag:SInt<16>},
addr: UInt<8>,
en: UInt<l>,
clk: Clock}
flip r2: {flip data: {real:SInt<16>, imag:SInt<16>},
addr: UInt<8>,
en: UInt<l>,
clk: Clock}
flip w: {data: {real:SInt<16>, imag:SInt<16>},
mask: {real:UInt<l>, imag:UInt<1>},
addr: UInt<8>,
en: UInt<l>,
clk: Clock}}

The following sections describe how a memory’s field types are calculated and the behav-
ior of each type of memory port.
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Reader Ports

If a memory is declared with element type T, has a size less than or equal to 2%V, then its
reader ports have type:

Example A.56:
{flip data:T, addr:UInt<N>, en:UInt<l>, clk:Clock}

If the en field is high, then the element value associated with the address in the addr field
can be retrieved by reading from the data field after the appropriate read latency. If the en
field is low, then the value in the data field, after the appropriate read latency, is undefined.
The port is driven by the clock signal in the clk field.

Writer Ports

If a memory is declared with element type T, has a size less than or equal to 2V, then its
writer ports have type:

Example A.57:
{data:T, mask:M, addr:UInt<N>, en:UInt<l>, clk:Clock}

where M is the mask type calculated from the element type T. Intuitively, the mask type
mirrors the aggregate structure of the element type except with all ground types replaced
with a single bit unsigned integer type. The non-masked portion of the data value is defined
as the set of data value leaf subelements where the corresponding mask leaf subelement is
high.

If the en field is high, then the non-masked portion of the data field value is written, after
the appropriate write latency, to the location indicated by the addr field. If the en field is
low, then no value is written after the appropriate write latency. The port is driven by the
clock signal in the clk field.

Readwriter Ports

Finally, the readwriter ports have type:

Example A.58:

{wmode:UInt<l>, flip rdata:T, wdata:T, wmask:M,
addr:UInt<N>, en:UInt<l>, clk:Clock}

A readwriter port is a single port that, on a given cycle, can be used either as a read or
a write port. If the readwriter port is not in write mode (the wmode field is low), then the
rdata, addr, en, and clk fields constitute its read port fields, and should be used accordingly.
If the readwriter port is in write mode (the wmode field is high), then the wdata, wmask, addr,
en, and clk fields constitute its write port fields, and should be used accordingly.
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Read Under Write behavior

The read-under-write flag indicates the value held on a read port’s data field if its memory
location is written to while it is reading. The flag may take on three settings: old, new, and
undefined.

If the read-under-write flag is set to old, then a read port always returns the value existing
in the memory on the same cycle that the read was requested.

Assuming that a combinational read always returns the value stored in the memory (no
write forwarding), then intuitively, this is modeled as a combinational read from the memory
that is then delayed by the appropriate read latency.

If the read-under-write flag is set to new, then a read port always returns the value
existing in the memory on the same cycle that the read was made available. Intuitively, this
is modeled as a combinational read from the memory after delaying the read address by the
appropriate read latency.

If the read-under-write flag is set to undefined, then the value held by the read port after
the appropriate read latency is undefined.

In all cases, if a memory location is written to by more than one port on the same cycle,
the stored value is undefined.

A.5.13 Instance Declaration

FIRRTL modules are instantiated with the instance statement. The following example
demonstrates creating an instance named myinstance of the MyModule module within the top
level module Top.

Example A.59:

circuit Top :
module MyModule :
input a: UInt
output b: UInt
b <= a
module Top :
inst myinstance of MyModule

The resulting instance has a bundle type. Each port of the instantiated module is repre-
sented by a field in the bundle with the same name and type as the port. The fields corre-
sponding to input ports are flipped to indicate their data flows in the opposite direction as the
output ports. The myinstance instance in the example above has type {flip a:UInt, b:UInt}.

Modules have the property that instances can always be inlined into the parent module
without affecting the semantics of the circuit.

To disallow infinitely recursive hardware, a module must not contain instances of itself,
either directly, or indirectly through instances of other modules it instantiates.
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A.5.14 Stops

The stop statement is used to halt simulations of the circuit. Backends are free to generate
hardware to stop a running circuit for the purpose of debugging, but this is not required by
the FIRRTL specification.

A stop statement requires a clock signal, a halt condition signal that has a single bit
unsigned integer type, and an integer exit code.

Example A.60:

wire clk:Clock
wire halt:UInt<l>
stop(clk,halt,42)

A.5.15 Formatted Prints

The formatted print statement is used to print a formatted string during simulations of the
circuit. Backends are free to generate hardware that relays this information to a hardware
test harness, but this is not required by the FIRRTL specification.

A printf statement requires a clock signal, a print condition signal, a format string, and a
variable list of argument signals. The condition signal must be a single bit unsigned integer
type, and the argument signals must each have a ground type.

Example A.61:

wire clk:Clock

wire condition:UInt<l>

wire a:UInt

wire b:UInt

printf(clk, condition, "a=0x%x, b=%d.\n", a, b)

On each positive clock edge, when the condition signal is high, the printf statement prints
out the format string where its argument placeholders are substituted with the value of the
corresponding argument.

Format Strings

Format strings support the following argument placeholders:
e %b : Prints the argument in binary
e %d : Prints the argument in decimal
e %x : Prints the argument in hexadecimal

e %% : Prints a single % character
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Format strings support the following escape characters:
e \n: New line

e \t: Tab

e \\ : Back slash

e \" : Double quote

e \' : Single quote

A.6 Expressions

FIRRTL expressions are used for creating literal unsigned and signed integers, for referring
to a declared circuit component, for statically and dynamically accessing a nested element
within a component, for creating multiplexors and conditionally valid signals, and for per-
forming primitive operations.

A.6.1 Unsigned Integers

A literal unsigned integer can be created given a non-negative integer value and an optional
positive bit width. The following example creates a 10-bit unsigned integer representing the
number 42.

Example A.62:

UInt<10>(42)

Note that it is an error to supply a bit width that is not large enough to fit the given
value. If the bit width is omitted, then the minimum number of bits necessary to fit the
given value will be inferred.

Example A.63:

UInt(42)

A.6.2 Unsigned Integers from Literal Bits

A literal unsigned integer can alternatively be created given a string representing its bit
representation and an optional bit width.
The following radices are supported:

1. b : For representing binary numbers.

2. o : For representing octal numbers.
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3. h: For representing hexadecimal numbers.

If a bit width is not given, the number of bits in the bit representation is directly repre-
sented by the string. The following examples create a 8-bit integer representing the number
13.

Example A.64:

UInt("b00001101")
UInt("hoD")

If the provided bit width is larger than the number of bits required to represent the
string’s value, then the resulting value is equivalent to the string zero-extended up to the
provided bit width. If the provided bit width is smaller than the number of bits represented
by the string, then the resulting value is equivalent to the string truncated down to the
provided bit width. All truncated bits must be zero.

The following examples create a 7-bit integer representing the number 13.

Example A.65:

UInt<7>("b0OOO1101")
UInt<7>("0015")
UInt<7>("hD")

A.6.3 Signed Integers

Similar to unsigned integers, a literal signed integer can be created given an integer value
and an optional positive bit width. The following example creates a 10-bit signed integer
representing the number -42.

Example A.66:

SInt<10>(-42)

Note that it is an error to supply a bit width that is not large enough to fit the given
value using two’s complement representation. If the bit width is omitted, then the minimum
number of bits necessary to fit the given value will be inferred.

Example A.67:

SInt(-42)

A.6.4 Signed Integers from Literal Bits

Similar to unsigned integers, a literal signed integer can alternatively be created given a
string representing its bit representation and an optional bit width.

The bit representation contains a binary, octal or hex indicator, followed by an optional
sign, followed by the value.
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If a bit width is not given, the number of bits in the bit representation is the minimal
bitwidth to represent the value represented by the string. The following examples create a
8-bit integer representing the number -13.

Example A.68:

SInt("b-1101")
SInt("h-d")

If the provided bit width is larger than the number of bits represented by the string,
then the resulting value is unchanged. It is an error to provide a bit width smaller than the
number of bits required to represent the string’s value.

A.6.5 References

A reference is simply a name that refers to a previously declared circuit component. It may
refer to a module port, node, wire, register, instance, or memory.

The following example connects two ports with a connection statement whose left-hand
side expression is a reference expression in (referring to the previously declared port in) and
whose right-hand side expression is the reference expression out (referring to the previously
declared port out).

Example A.69:

module MyModule :
input in: UInt
output out: Ulnt
out <= in

A.6.6 Subfields

The subfield expression refers to a subelement of an expression with a bundle type.
The following example connects the in port to the a subelement of the out port.

Example A.70:

module MyModule :
input in: UInt
output out: {a:UInt, b:UInt}
out.a <= in

A.6.7 Subindices

The subindex expression statically refers, by index, to a subelement of an expression with a
vector type. The index must be a non-negative integer and cannot be equal to or exceed the
length of the vector it indexes.

The following example connects the in port to the fifth subelement of the out port.
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Example A.71:

module MyModule :
input in: UInt
output out: UInt[10O]
out[4] <= in

A.6.8 Subaccesses

The subaccess expression dynamically refers to a subelement of a vector-typed expression
using a calculated index. The index must be an expression with an unsigned integer type.
The following example connects the n’th subelement of the in port to the out port.

Example A.72:

module MyModule :
input in: UInt[3]
input n: UInt<2>
output out: UInt
out <= in[n]

A connection from a subaccess expression can be modeled by conditionally connecting
from every subelement in the vector, where the condition holds when the dynamic index is
equal to the subelement’s static index.

Example A.73:

module MyModule :

input in: UInt[3]

input n: UInt<2>

output out: UInt

when eq(n, UInt(0))
out <= in[0]

else when eq(n, UInt(1l))
out <= in[1]

else when eq(n, UInt(2))
out <= in[2]

else :
out is invalid

The following example connects the in port to the n’th subelement of the out port. All
other subelements of the out port are connected from the corresponding subelements of the
default port.

A connection to a subaccess expression can be modeled by conditionally connecting to
every subelement in the vector, where the condition holds when the dynamic index is equal
to the subelement’s static index.

The following example connects the in port to the m’th UInt subelement of the n’th
vector-typed subelement of the out port. All other subelements of the out port are connected
from the corresponding subelements of the default port.
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Example A.74:

module MyModule :
input in: UInt
input default: UInt[3]
input n: UInt<2>
output out: UInt[3]
out <= default
out[n] <= in

Example A.75:

module MyModule :

input in: UInt

input default: UInt[3]

input n: UInt<2>

output out: UInt[3]

out <= default

when eq(n, UInt(0))
out[0] <= in

else when eq(n, UInt(1l))
out[1l] <= in

else when eq(n, UInt(2))
out[2] <= in

Example A.76:

module MyModule :
input in: UInt
input default: UInt[2][2]
input n: UInt<l>
input m: UInt<l>
output out: UInt[2][2]
out <= default
out[n][m] <= in

A connection to an expression containing multiple nested subaccess expressions can also
be modeled by conditionally connecting to every subelement in the expression. However the
condition holds only when all dynamic indices are equal to all of the subelement’s static
indices.

A.6.9 Multiplexors

A multiplexor outputs one of two input expressions depending on the value of an unsigned
single bit selection signal.
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Example A.77:

module MyModule :

input in: UInt

input default: UInt[2][2]

input n: UInt<l>

input m: UInt<l>

output out: UInt[2][2]

out <= default

when and(eq(n, UInt(0)), eq(m, UInt(0)))
out[0][0] <= in

else when and(eq(n, UInt(0)), eg(m, UInt(1l)))
out[0][1] <= in

else when and(eq(n, UInt(1l)), eq(m, UInt(0)))
out[1][0] <= in

else when and(eq(n, UInt(1l)), eq(m, UInt(1)))
out[1l][1] <= in

The following example connects to the c port the result of selecting between the a and b
ports. The a port is selected when the sel signal is high, otherwise the b port is selected.

Example A.78:

module MyModule :
input a: UInt
input b: UInt
input sel: UInt<l>
output c: UInt
c <= mux(sel, a, b)

A multiplexor expression is legal only if the following holds.

1. The type of the selection signal is a single bit unsigned integer.

2. The types of the two input expressions are equivalent.

3. The types of the two input expressions are passive (see section A.4.4).

For multi-way multiplexors and for non-passive connections, the when statement provides
the appropriate functionality.

The width, precision and bounds of a ground-typed multiplexor expression is the strictest
of its two corresponding input values. For multiplexing aggregate-typed expressions, the
resulting values of each leaf subelement is the maximum of its corresponding two input leaf
subelement values.
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A.6.10 Conditionally Valids

A conditionally valid expression is expressed as an input expression guarded with an unsigned
single-bit valid signal. It outputs the input expression when the valid signal is high; otherwise
the result is undefined.

The following example connects the a port to the ¢ port when the valid signal is high.
Otherwise, the value of the ¢ port is undefined.

Example A.79:

module MyModule :
input a: UInt
input valid: UInt<1>
output c: UInt
c <= validif(valid, a)

A conditionally valid expression is legal only if the following holds.
1. The type of the valid signal is a single bit unsigned integer.
2. The type of the input expression is passive (see section A.4.4).

Conditional statements can be equivalently expressed as multiplexors and conditionally
valid expressions. See section A.5.11 for details.

The width, precision or bound of a conditionally valid expression is the corresponding
value of its input expression.

A.6.11 Primitive Operations

Every fundamental operation on ground types is expressed as a FIRRTL primitive operation.
In general, each operation takes some number of argument expressions, along with some
number of static integer literal parameters.

The general form of a primitive operation is expressed as follows:

Example A.80:
op(arg0, argl, ..., argn, int@, intl, ..., intm)

The following examples of primitive operations demonstrate adding two expressions, a
and b, shifting expression a left by 3 bits, selecting the fourth bit through and including the
seventh bit in the a expression, and interpreting the expression x as a Clock typed signal.

Example A.81:

add(a, b)
shl(a, 3)
bits(a, 7, 4)
asClock(x)

Section A.7 will describe the format and semantics of each primitive operation.
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A.7 Primitive Operations

The arguments of all primitive operations must be expressions with ground types, while their
parameters are static integer literals. Each specific operation can place additional restrictions
on the number and types of their arguments and parameters.

Notationally, an argument e has their width, bounds, or precision represented as follows:
width — w,, upper bound — u,, lower bound — 1., precision — pe.

A.7.1 Add Operation

The add operation result is the sum of el and e2 without loss of precision.

Name: add Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt W = max(Wei,Wep)+1
(SInt,SInt) SInt W = max(Wei,Wep)+1
(Fixed,Fixed) Fixed W = MaX(We1-Pe1,We2-Pe2)+Max(pPe1,Pe2)+1
P = max(pei,Pe2)
(Interval,Interval) Interval 1 = la+le
U = UertUe2
p = max(pei,Pe2)

A.7.2 Subtract Operation

The subtract operation result is e2 subtracted from el, without loss of precision.

Name: sub Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt W = max(wei,Wep)+1
(SInt,SInt) SInt W = max(wWei,Wep)+1
(Fixed,Fixed) Fixed W = Max(We1-Pe1,We2-Pez2)+MaX(Pe1, Pe2)+1
p = max(Pe1,Pe2)
(Interval,Interval) Interval 1 = le1-Ue
U = Ue-le2
p = max(Pe1,Pe2)

A.7.3 Multiply Operation

The multiply operation result is the product of el and e2, without loss of precision.
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Name: mul Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt W = WeptWer
(SInt,SInt) SInt W = WeptWer
(Fixed, Fixed) Fixed W = WepH+Wer
P = Pe1tPe2
(Interval,Interval) Interval 1 = min(le1*lez, Ler*Uen, Uer* Leo, Ue1*Ue2)
u = max(ler*lez, Ler*Ue2, Uer* Len , Uer*Ue2)
P = Pe1tPe2

A.7.4 Divide Operation

The divide operation divides numerator num by denominator den, truncating the fractional
portion of the result. This is equivalent to rounding the result towards zero.

Name: div Arguments: (num,den) Parameters: ()
Argument Types: Result Type: Inference Rules:

(UInt,UInt) UInt W = Wnum

(SInt,SInt) SInt W = Wountl

A.7.5 Remainder Operation

The remainder operation yields the remainder from dividing numerator num by denominator
den, keeping the sign of the numerator. Together with the divide operator, the remainder
operator satisfies the relationship: num = add(mul(den,div(num,den)), rem(num,den))

Name: rem Arguments: (nhum,den) Parameters: ()
Argument Types: Result Type: Inference Rules:

(UInt,UInt) UInt W = min(Wnum,Wden)

(SInt,SInt) SInt W = Min(Wnum, Wgen)

A.7.6 Comparison Operations

The comparison operations return an unsigned 1 bit signal with value one if el is less than
(1t), less than or equal to (leq), greater than (gt), greater than or equal to (geq), equal to
(eq), or not equal to (neq) e2. The operation returns a value of zero otherwise.
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Name: lt,leq,gt,geq,eq,neq Arguments: (el,el) Parameters: ()

Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt w=1
(SInt,SInt) UInt w=1

(Fixed, Fixed) UInt w=1
(Interval,Interval) UInt w=1

A.7.7 Padding Operations

If e’s bit width is smaller than n, then the pad operation zero-extends or sign-extends e up
to the given width n. Otherwise, the result is simply e. n must be non-negative.

Name: pad Arguments: (e) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(UInt) UInt w = max(we,n)
(SInt) SInt w = max(we,n)
(Fixed) Fixed w = max(we,n)

P = Pe

A.7.8 Shift Left Operation

The shift left operation concatenates n zero bits to the least significant end of e. n must be
non-negative. The number of fractional bits remains constant.

Name: shl Arguments: (e) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(UInt) UInt W = We+n
(SInt) SInt W = We+n
(Fixed) Fixed W = We+n

P = Pe

(Interval) Interval 1 = 1ex2"
U = Uex2"
P = Pe

A.7.9 Shift Right Operation

The shift right operation truncates the least significant n bits from e. If n is greater than or
equal to the bit-width of e, the resulting value will be zero for unsigned types, the sign bit
for signed types, and the precision bits for fixed /interval types. n must be non-negative.
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Name: shr Arguments: (e€) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(UInt) UInt w = max(we-n,1)
(SInt) SInt w = max(we-n,1)
(Fixed) Fixed w = max(max(we-n,1),pe)
P = Pe
(Interval) Interval 1 = floor(Lg*x2PeN) /2P
u = floor(uex2Pe-")/2Pe
P = Pe

A.7.10 Dynamic Shift Left Operation

The dynamic shift left operation shifts the bits in e n places towards the most significant bit.
n zeroes are shifted in to the least significant bits. For intervals, the range grows accordingly

Name: dshl Arguments: (e, a) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt W = Wet2%a-1
(SInt,UInt) SInt W = Wet2%a-1
(Fixed,UInt) Fixed W = Wet2%a-1
P = Pe
(Interval,UInt) Interval 1 = min(le, 1ex22"°-1)
U = max(Ue,Ueg*x22"-1)
P = Pe

A.7.11 Dynamic Shift Right Operation

The dynamic shift right operation shifts the bits in e n places towards the least significant bit.
n signed or zeroed bits are shifted in to the most significant bits, and the n least significant
bits are truncated.

Name: dshr Arguments: (e, a) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt W = We
(SInt,UInt) SInt W = We
(Fixed,UInt) Fixed W = We
P = Pe
(Interval,UInt) Interval 1 =1¢
U= Ue
P = Pe
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A.7.12 Increase Precision Operation

The increase precision operation increases the precision of e by n. The value of non-fractional
bits remain the same. n must be non-negative.

Name: incp Arguments: (e) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(Fixed) Fixed W = We+n

P = Petn
(Interval) Interval 1 =1

U= Ue

P = Petn

A.7.13 Decrease Precision Operation

The decrease precision operation decreases the precision of e by n. The value of non-fractional
bits remain the same. n must be non-negative.

Name: decp Arguments: (€) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(Fixed) Fixed W = We-N
P = Pe-n
(Interval) Interval 1 = floor(1gx2Pe-")/2N-Pe
u = floor(uex2Pen)/2NPe
P = Pe-n

A.7.14 Set Precision Operation

The set precision operation sets the precision of e to n. The value of non-fractional bits
remain the same. n must be non-negative.

Name: setp Arguments: (e) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(Fixed) Fixed W = We-Pethn
p=n
(Interval) Interval 1 = floor(1ex2M) /2"
u = floor(uex2n)/2"
p=n
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A.7.15 Wrap Operation

The wrap operation wraps the first argument’s value around the range of the second argu-
ment. If the range of the first argument is significantly larger than the range of the second
argument (such that more than one wrap around the range could be required), the operator
will error as the required hardware implementation is too costly. The precision of the result
is the same as the first argument’s precision.

Name: wrap Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(Interval) Interval 1 = 1o
U = Ue
P = Pea

A.7.16 Clip Operation

The clip operation clips the first argument’s value to remain within the range of the second
argument. If the value of the first argument is larger or smaller than the range of the
second argument, the returned value is the corresponding upper /lower bound of the second
argument (regardless of whether the ranges are disjoint). The precision of the result is the
same as the first argument’s precision.

Name: clip Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(Interval) Interval 1 = min(max(le1, lez), Uez)
u = max(min(uey,Ue2), Le2)
P = Pa

A.7.17 Squeeze Operation

The squeeze operation tries to fit the first argument’s value into the smallest range given the
bounds of both arguments. If the value of the first argument outside of this range, the value
of the result is undefined. If defined behavior is needed, use the clip or wrap operator.

Name: squz Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(Interval) Interval 1 = min(max(le1, Lle2) s Ue2)

u = max(min(Ue1,Ue2), Llez)
P = Pe1
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A.7.18 Arithmetic Convert to Signed Operation

The result of the arithmetic convert to signed operation is a signed integer representing the
same numerical value as e.

Name: cvt Arguments: (e€) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt) SInt W = We+l

(SInt) SInt W = We

A.7.19 Negate Operation

The result of the negate operation is a signed integer representing the negated numerical
value of e.

Name: neg Arguments: (e) Parameters: ()
Argument Types: Result Type: Inference Rules:
(UInt) SInt W = We+l
(SInt) SInt W = Wet+l

A.7.20 Bitwise Complement Operation

The bitwise complement operation performs a logical not on each bit in e.

Name: not Arguments: (e) Parameters: ()

Argument Types: Result Type: Inference Rules:
(UInt) UInt W = We
(SInt) UInt W = We

A.7.21 Binary Bitwise Operations

The above bitwise operations perform a bitwise and, or, or exclusive or on el and e2. The
result has the same width as its widest argument, and any narrower arguments are automat-
ically zero-extended or sign-extended to match the width of the result before performing the
operation.
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Name: and,or,xor Arguments: (e€l,e2) Parameters: ()

Argument Types: Result Type: Inference Rules:
(UInt,UInt) UInt w = max(Wey,Wep)
(UInt,SInt) UInt W = max(wei,We2)
(SInt,UInt) UInt W = max(Wei,We2)
(SInt,SInt) UInt W = max(Wei,Wez)

A.7.22 Bitwise Reduction Operations

The bitwise reduction operations correspond to a bitwise and, or, and exclusive or operation,
reduced over every bit in e.

Name: andr,orr,xorr Arguments: (€) Parameters: ()

Argument Types: Result Type: Inference Rules:
(UInt) UInt w=1
(SInt) UInt w=1

A.7.23 Concatenate Operation

The result of the concatenate operation is the bits of el concatenated to the most significant
end of the bits of e2. Note that Anyx refers to UInt, SInt, Fixed, or Interval types.

Name: cat Arguments: (el,e2) Parameters: ()
Argument Types: Result Type: Inference Rules:
(Any*, Anyx) UInt W = WeptWe>

A.7.24 Bit Extraction Operation

The result of the bit extraction operation are the bits of e between lo (inclusive) and hi
(inclusive). hi must be greater than or equal to lo. Both hi and lo must be non-negative
and strictly less than the bit width of e.

Name: bits Arguments: (e) Parameters: (hi,10)
Argument Types: Result Type: Inference Rules:
(UInt) UInt w = hi-Tlo+l
(SInt) UInt w = hi-Tlo+1l
(Fixed) UInt w = hi-lo+1
(Interval) UInt w = hi-lo+1
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A.7.25 Head

The result of the head operation are the n most significant bits of e. n must be positive and
less than or equal to the bit width of e.

Name: head Arguments: (e) Parameters: (n)

Argument Types: Result Type: Inference Rules:
(UInt) UInt W = n
(SInt) UInt w =n

A.7.26 Tail

The tail operation truncates the n most significant bits from e. n must be non-negative and
strictly less than the bit width of e.

Name: tail Arguments: (e) Parameters: (n)
Argument Types: Result Type: Inference Rules:
(UInt) UInt W = We-N
(SInt) UInt W = We-N

A.7.27 Interpret As Ulnt

The interpret as Ulnt operation reinterprets e’s bits as an unsigned integer.

Name: asUInt Arguments: (e€) Parameters: ()
Argument Types: Result Type: Inference Rules:

(UInt) UInt W = We
(SInt) UInt W = We
(Clock) UInt w=1
(Analog) UInt W = We
(Fixed) UInt W = We
(Interval) UInt W = We

A.7.28 Interpret As SInt

The interpret as SInt operation reinterprets e’s bits as a signed integer according to two’s
complement representation.
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Name: asSInt Arguments: (€) Parameters: ()
Argument Types: Result Type: Inference Rules:

(UInt) SInt W = We
(SInt) SInt W = We
(Clock) SInt w=1
(Analog) SInt W = We
(Fixed) SInt W = We
(Interval) SInt W = We

A.7.29 Interpret as Clock

The result of the interpret as clock operation is the Clock typed signal obtained from inter-
preting a single bit integer as a clock signal.

Name: asClock Arguments: (e) Parameters: ()
Argument Types: Result Type: Inference Rules:

(UInt) Clock n/a
(SInt) Clock n/a
(Clock) Clock n/a
(Analog) Clock n/a
(Fixed) Clock n/a
(Interval) Clock n/a

A.7.30 Interpret as Analog

The result of the interpret as analog operation is the Analog typed signal obtained from
interpreting e’s bits as an analog signal.

Name: asAnalog Arguments: (€) Parameters: ()
Argument Types: Result Type: Inference Rules:

(UInt) Analog We
(SInt) Analog We
(Clock) Analog 1
(Analog) Analog We
(Fixed) Analog We

(Interval) Analog We
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A.7.31 Interpret as Fixed

The result of the interpret as fixed operation is the Fixed typed signal obtained from inter-
preting e’s bits as a fixed point signal, with p’s precision.

Name: asFixed Arguments: (e) Parameters: (p)
Argument Types: Result Type: Inference Rules:

(UInt) Fixed W = We

p=p

(SInt) Fixed W = We

p=p

(Clock) Fixed w=1
p:

(Analog) Fixed W = We

p=p

(Fixed) Fixed W = We

p=0p

(Interval) Fixed W = We

p=p

A.7.32 Interpret as Interval

The result of the interpret as interval operation is the Interval typed signal obtained from
interpreting e’s bits as an interval signal with precision of p. The provided lower and upper
bounds of 1 and u are the scaled value of the bound; the value of the returned Interval’s
bounds are 1/2° and u/2°. This is done to avoid adding another parameter list of doubles to
the primop ast.
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Name: asInterval Arguments: (e) Parameters: (1,u,p)

Argument Types: Result Type: Inference Rules:
(UInt) Interval 1 1/2P

u/2°

p

= l/zp

= u/zp

=p

= 1/2p

= u/2p

=p

1/2°

= u/2P

=p

= l/zp

= U/2p

=p

= l/zp

= U/2p

p

(SInt) Interval

(Clock) Interval

(Analog) Interval

(Fixed) Interval

(Interval) Interval

T ¢ ~|T € ~|T £ ~/|T € ~|T Cc ~|T C
]

A.8 Flows

An expression’s flow partially determines the legality of connecting to and from the expres-
sion. Every expression is classified as either source, sink, or duplex. For details on connection
rules refer back to sections A.5.1 and A.5.2.

The flow of a reference to a declared circuit component depends on the kind of circuit
component. A reference to an input port, an instance, a memory, or a node is source. A
reference to an output port is sink. A reference to a wire or register is duplex.

The flow of a subindex or subaccess expression is the flow of the vector-typed expression
it indexes or accesses.

The flow of a subfield expression depends upon the orientation of the field. If the field is
not flipped, its flow is the same flow as the bundle-typed expression it selects its field from.
If the field is flipped, then its flow is the reverse of the flow of the bundle-typed expression
it selects its field from. The reverse of source is sink, and vice-versa. The reverse of duplex
remains duplex.

The flow of all other expressions are source.



APPENDIX A. THE FIRRTL SPECIFICATION 132

A.9 Namespaces

All modules in a circuit exist in the same module namespace, and thus must all have a
unique name. Each module has an identifier namespace containing the names of all port and
circuit component declarations. Thus, all declarations within a module must have unique
names. Within a bundle type declaration, all field names must be unique. Within a memory
declaration, all port names must be unique.

During the lowering transformation, all circuit component declarations with aggregate
types are rewritten as a group of component declarations, each with a ground type. After the
lowering transformation, the names of the lowered circuit components are usually determined
by the name expansion algorithm. A name-uniquification transform occurs during type and
width inference to ensure that the lowered version of the names remain unique.
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