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Abstract

Personalized Modeling for Human-Robot Collaborative Manipulation

by

Aaron Matthew Bestick

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

When two humans perform a collaborative manipulation task, they leverage an intuitive
understanding of which motions are natural and safe for their interaction partner. Intuition
lets human collaborators predict both the feasibility of an action, as well as their partner’s
ergonomic preference for one feasible action over another. This mutual understanding in
human-human teams allows for comfortable and efficient collaboration. However, in human-
robot teams, robots typically lack the models which would give them this same understanding
of human action choice. This problem is compounded by that fact that humans are unique.
A model that accurately predicts the actions of one human collaborator may be incorrect
for another.

This dissertation explores how personalized mechanical models and ergonomic cost func-
tions for humans can endow collaborative robots with an understanding of human action
feasibility and ergonomic preference analogous to that possessed by human teammates.
Specifically, we focus on the task of robot-to-human object handoffs. We show that plan-
ning handoffs with knowledge of a human’s arm kinematics yields improved ergonomics and
safety, and is preferred by human collaborators. Next, we demonstrate how ergonomic cost
functions which predict a human’s preference for different feasible actions can allow co-robots
to shape human action choices, helping humans choose globally ergonomically optimal ac-
tions in multi-part tasks. Finally, we show how these ergonomic cost functions can be learned
online, allowing co-robots to quickly adapt to the preferences of an individual human partner.
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Chapter 1

Introduction

1.1 Background

Robots have made impressive progress toward automating many types of physical labor
traditionally performed by humans. Speculation about the effect on the labor market and
our broader society of human workers displaced en masse by automation have been impossible
to avoid in recent years in both academia [1–3] and the popular press [4, 5].

This concern has been particularly acute for manufacturing and service jobs which
presently rely on human workers to assemble products, move and organize items, and per-
form other physical labor [1–3]. This concern is valid, timely, and important, but it can
overshadow another important fact: many physical tasks that on the surface seem ripe for
automation have elements which still require human perception and decision making, and
will continue to in the future, as far as we can predict.

This dissertation will address two broad classes of problems which arise in systems where
humans and robots physically collaborate:

Problem 1: Humans are Different from One Another

Individual humans have different physical abilities and preferences due to natural variation,
age, disability, disease and other factors. A person with a broken arm immobilized in a sling
will have a different reachable workspace than an “average” person (Chapter 2). Two people
with similar body dimensions and capabilities may choose different grasp configurations when
a robot hands them identical objects at identical handoff poses (Chapters 3 and 4).

This variation between individuals can limit the utility of generic, one-size-fits-all human
models learned across entire human populations (Chapter 2). It requires adjusting our human
models to specific, individual human collaborators, preferably online during an interaction
(Chapter 4).
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Problem 2: Human Actions are Nondeterministic

Even when dealing with a single human collaborator, we can’t assume that the human will
reliably choose the same action when presented with the same situation repeatedly. For
example, when a robot hands a human a coffee mug at the same pose multiple times, the
human will exhibit a strong preference for a small subset of the feasible grasp configurations
on the mug. This preference is noisy though: the chosen configuration will always vary
slightly from the last, and may be significantly different once in a while (e.g. grasping the
top of the mug rather than its side).

Modeling humans as deterministic can produce suboptimal collaborative behavior when
human action choices vary from the prediction. Using probabilistic models of human action
choice allows us to model this noise explicitly and ensure optimal interactions even in the
face of human nondeterminism (Chapters 3 and 4).

Automation-Resistant Tasks

To motivate the idea of physical human-robot collaboration, let’s examine several example
tasks that are in many ways ideal for automation, but are nonetheless still done by human
workers. What are the aspects of these tasks which make them difficult to fully automate?
We can observe two broad themes:

• One-off or ill-posed task specifications

• Perceptual or modeling uncertainty in environment or task

Consider a few selected examples:

Aircraft Interior Assembly

Ductwork, luggage bins, interior panels, and wiring are installed completely by hand, despite
heavy weight and awkward bending. Sometimes multiple people are needed to install a
single large assembly. Why? Installation often requires precise alignment of semi-flexible
parts (ducts, interior panels) which are then secured with a variety of fasteners (cable ties,
screws, bolts, electrical connectors). The precise dimensions of the parts vary throughout the
aircraft, and fit and finish are often not precisely controlled, requiring human intervention
to align screw holes, bend panels to achieve an acceptable fit, etc.

Building Construction

Drywall, plywood, and other building materials are measured, cut, lifted into position, and
secured by teams of human workers. Simple mechanical fixtures and hoists are used for
selected pieces (ceilings), but most work is performed by hand, with multiple people climbing
on ladders while maneuvering heavy and unwieldy pieces of material. Why? Similar to
airplane assembly, installation requires constant fine alignment, cutting of material to fit
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Figure 1.1: Automotive final assembly still relies largely on human workers, in contrast to the body assembly
and paint portions of the assembly process. Flexible materials like wiring, upholstery, and plastic interior
panels are difficult for robots to manipulate without elaborate fixtures, and human dexterity is required to
feed wires and align parts. Simple gravity compensation tooling (as shown) is sometimes used to lift heavy
pieces, but provides little additional assistance to the human workers. (Photo credit: Ford Motor Company,
https://flic.kr/p/5sqHgk)

around obstacles like light fixtures and electrical sockets, and precise maneuvering to fit
pieces together with an acceptable final appearance.

Automobile Final Assembly

In contrast to the highly automated body assembly and paint portions of a car manufacturing
line, final assembly still largely requires humans to do the work (as shown in Figure 1.1)
[6, 7]. Simple mechanical fixtures help to manipulate unwieldy items like seats and engines,
but humans still climb in and out of vehicles and bend in awkward positions to install
wiring, dashboards, interior paneling, and other components by hand. Why? As before, the
materials are too flexible to be easily modeled, the assembly processes require dexterity to
feed wires and align parts, which precludes large, rigid fixturing.

Furniture Moving

Human movers lift heavy and unergonomic furniture and items manually, despite the risks
of back and limb injury. Why? The task specification, where the human wants the furniture
placed, is unclear, and communicating it to the robot explicitly would be tedious and time-
consuming. In addition, its impractical for a robot to have the detailed physical models of
objects and environment that would be needed to manipulate furniture precisely without
damaging collisions.
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Patient Transfer in Medical Facilities

Nurses and caregivers frequently slide, lift, and turn patients with limited mobility to help
them in and out of bed or reposition them to avoid sores. The caregivers frequently work
alone, the patients they move are heavy, and the location (often in a bed) precludes good
body mechanics for lifting, pushing and pulling. Why? Again, the task specification is ill-
defined and difficult to communicate to a robot explicitly, and motions that may be feasible
for one patient may cause pain or injury for another.

Interestingly, all of these examples have attributes which make automated assistance
desirable. They require heavy lifting, awkward bending, and repetitive motions. This com-
bination makes injuries particularly prevalent, as shown in Table 1.1

Table 1.1: Workplace injury rates for selected automation-resistant tasks in 2015. All the example tasks
discussed above have injury rates equal to or greater than the average across all occupations. (Data from
the US Bureau of Labor Statistics [8]). *Injury rate is the number of reportable injuries or illnesses per 100
full-time equivalent workers.

Occupation Injury Rate*

All Occupations 3.3
Aircraft Manufacturing 3.3
Residential Building Construction 3.9
Motor Vehicle Manufacturing 6.6
Household and Office Goods Moving 5.6
Nursing and Residential Care Facilities 6.8

Its easy to imagine a robotic assistant which could mitigate many of these risks. The
assistant would handle the heavy lifting and rough alignment portions of a task, while leaving
the reasoning and precise manipulation to a human collaborator.

Communication in Collaborative Tasks

Human teams collaborate in similar ways all the time when they lift a heavy object together
or manipulate furniture through a crowded apartment. But what types of communication
or modeling are required for a robot to replicate a simple version of this task. As in many
human-robot interaction scenarios, its instructive to examine an equivalent human-human
interaction in more detail. Consider two humans manipulating a piece of furniture (Figure
1.2). They may use:

• Explicit verbal communication: talking to each other to coordinate actions

• Implicit visual communication: eye contact and gaze direction help to indicate under-
standing or motion intent

• Interaction forces: the forces transmitted though the object itself signal each human’s
motion intent
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Figure 1.2: Humans rely on a variety of communication modes when performing collaborative manipulation
tasks. These include explicit verbal communication, implicit visual signaling, interaction forces, and intuition
about their interaction partners’ ergonomic preferences and safety constraints. This thesis considers the
last of these modes, and investigates how personalized human mechanical models and cost functions can
approximate this human intuition for specific tasks. (Photo credit: https://flic.kr/p/pJFYxR)

• Intuition about human ergonomic costs and safety constraints: humans intu-
itively understand that some motions are dangerous or unergonomic for their collabo-
rators

While all of these modes are potentially useful and relevant in human-robot collaborative
manipulation, this dissertation will focus on the last one. Specifically, we’ll investigate how
personalized human mechanical models and cost functions can approximate this intuition for
the specific task of object handovers. We’d like our models to capture the limits on a specific
human collaborator’s motion imposed by safety and joint ranges of motion, as well as the
person’s ergonomic preference for some action choices over others (as mentioned in Problem
1: Humans are Different from One Another). We’ll investigate how co-robots can use such
models to generate safe and comfortable collaborative actions and even influence humans’
behavior to yield a more ergonomically optimal outcome in situations where humans are
noisy and short-sighted (Problem 2: Human Actions are Nondeterministic).

Comparison With Other Machine Learning Approaches

We choose to model humans using highly structured mechanical models, but one could
also apply more general machine learning methods. Recent approaches from the literature
follow the imitation learning or inverse reinforcement learning paradigms, and represent
variability in human mechanical structure and motion preferences as deep neural networks
[9,10], mixtures of multivariate Gaussians [11,12], or cost functions with more general, non-
mechanically derived parameterizations. Given these options, why would one choose to use
structured mechanical models?
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𝑞1

𝑞2

Scenario

Model

Training Data

Expressiveness

Generalization

Figure 1.3: Conceptual comparison of structured mechanical models with more generic learned models (e.g.
neural networks). Structured models have far fewer model degrees of freedom, and thus require much
less training data. Their generalization to unseen scenarios can also be superior if the model class of the
structured model fits the model class of the actual system closely. However, if the true class of the task
model is unknown, it can be wise to use a more expressive, less constrained model. For the human-robot
collaborative tasks we consider in this dissertation, rigid kinematic models are a reasonable approximation of
the human skeleton, making them a good choice when compared with other models which are more complex
and impose less a priori structure. (In the plots above, green represents the true model, blue the learned
model, and red the training data).

Human motion is governed by a person’s mechanical structure in much the same way as
a robot’s motion. By pre-specifying a model class with less degrees of freedom that “bakes
in” some of this mechanical structure (e.g. a kinematic model parameterized by twists), we
can obtain a personalized model that:

1. Requires less data to train (Chapter 2)

2. Generalizes more accurately to scenarios not seen previously (Chapters 2 and 4)
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3. Lets us directly apply mathematical tools from robotics for kinematic/dynamic analysis
and planning (as in [13], used in all subsequent chapters)

This assumes, of course, that the actual human-robot system conforms to the assump-
tions of the model (rigid kinematics, motion governed by Newtonian dynamics, etc.). Using
lower complexity models sacrifices expressiveness. In cases where a system’s true structure
is hard to discern (e.g. some human mental state/cognitive models) [14, 15], one would
be well advised to use less structured models which avoid incorporating possibly incorrect
assumptions.

The basic conceptual differences between structured mechanical models and more generic
learned models are illustrated in Figure 1.3.

Incremental Learning

It would be both unnecessary and impractical to learn a completely new human preference
model from scratch for every person a co-robot encounters. Instead, we’d like a more in-
cremental process, where a robot starts with a high-uncertainty generic model of human
preferences, then refines that model as it interacts with a new person and observes their be-
havior. The generic model, while suboptimal, will allow acceptable task performance while
the robot interacts with the human and learns a personalized, high-precision model which
will allow optimal task performance.

We investigate this scenario in Chapter 4, where we learn the parameters of a simple
human arm configuration ergonomic model online during a handoff task. This learning takes
place quickly – a personalized model is learned after only 5-10 handoffs, which illustrates
the benefits of a structured model with a low dimensional parameter space. This low model
dimensionality also facilitates the use of active learning approaches which would be compu-
tationally infeasible when paired with very complex models.

1.2 Example Application: Object Handoffs

Many real-world applications can get by with unsophisticated models of human capabilities
and preferences. Examples include scenarios where just replaying the same action over and
over, or applying a simple adaptation such as maintaining a constant pose relative to a
person’s torso (e.g. the ’Relative’ scheme in Chapter 2) are adequate. It’s easy to find
cases where these ad-hoc models are inadequate though. Examples include humans whose
capabilities differ from average due to natural variation, age, disease, or disability, or humans
whose characteristics change over time due to fatigue, familiarity with a task, or other factors.

Throughout this thesis, we’ll consider physical human-robot interaction (pHRI) problems
where we seek to minimize a human ergonomic cost function Cergo(uR, uH) defined for a given
task, where uR is the action chosen by the robot, and uH is the action chosen by the human.
The core challenge in this problem is that while we can control uR, we cannot control the
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human’s choice of uH , leaving us uncertain what the cost produced by a particular robot
action will be.

While the theory and concepts discussed in this thesis are quite general, for the sake
of concreteness, we’ll focus on the example task of a robot-to-human object handoff. This
deceptively simple task crisply illustrates many of the issues mentioned above, including
nondeterministic human actions (Chapters 3 and 4), humans optimizing greedily/myopically
(Chapter 3), and variation in human range of motion and ergonomic preferences between
individuals (Chapters 2 and 4).

1.3 Organization and Contributions

This dissertation is divided into three chapters, which address the planning of ergonomically
optimal handoffs using different formulations. A central question addressed in each chapter
is: How do the human and the robot select their actions uH

∗ and uR
∗, respectively. Each of

the following three chapters makes a set of assumptions about how these actions are chosen,
then investigates the implications for the resulting collaborative task.

The contributions of this dissertation are as follows:

Chapter 2: Human Kinematic Models for Safety and Feasibility

In Chapter 2, we present a methodology for fitting personalized kinematic models to people
that capture the feasibility of different arm configurations and object grasps. In contrast
to the existing literature, this modeling framework estimates kinematic model parameters
such as joint axes, joint ranges of motion, and limb lengths directly from a specific individ-
ual’s training data, without the use of a priori assumptions on joint and limb parameters.
This kinematic formalism explicitly encodes the natural kinematic constraints of the human
skeleton, such as joints with limited degrees of freedom and range of motion, given minimal
training data. It can be quickly adapted to human collaborators whose motion may be lim-
ited by disability, age, or injury. A user study demonstrates that planning with personalized
kinematic models yields less unergonomic bending and twisting during object handoff tasks
than generic approaches, when considering human collaborators with limited upper body
mobility.

Human/Robot Model Assumptions

This chapter assumes the human collaborator selects an action according to a known, deter-
ministic model:

uH
∗ = arg min

uH

Cergo(uR, uH) (1.1)

and that the robot need only choose the optimal corresponding action:

uR
∗ = arg min

uR

(
min
uH

Cergo(uR, uH)

)
(1.2)
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Chapter 3: Proactive Assistance for Collaborative Tasks

In Chapter 3, we consider that humans don’t plan their actions based solely on feasibility.
Instead, they have preferences for some feasible actions over others. Humans’ preferences
may also be greedy or myopic, leading to globally suboptimal action choices in some tasks.
We develop a method for modeling these preferences by assuming humans are approxi-
mately rational agents that optimize some task or ergonomic cost function Chuman(uR, uH)
which is known by the robot, but may be different from the global ergonomic cost function
Cergo(uR, uH). We develop an expected cost minimization algorithm which leads even greedy
humans to select globally optimal actions. Our user and simulation studies demonstrate
that this algorithm produces better ergonomic performance than existing state-of-the-art
methods in multi-part handoff tasks, is preferred by users, and is robust to inaccuracy in
our human models.

Human/Robot Model Assumptions

In this chapter, we assume a more empirically realistic model where the human chooses their
action nondeterministically according to a known distribution:

uH
∗ ∼ P (uH |uR), P (uH |uR) ∝ e−βChuman(uR,uH) (1.3)

and the robot chooses an action which yields a minimum human ergonomic cost in expectation
given the likelihood of different human responses:

uR
∗ = arg min

uR

(
E

uH∼P (uH |uR)
[Cergo(uR, uH)]

)
(1.4)

Chapter 4: Active Learning of Human Ergonomic Preferences

In Chapter 4, we consider that, because individual human preferences and capabilities differ
widely, a co-robot won’t know the P (uH) model for an unknown human it encounters. We’ll
model this uncertainty by assuming the Chuman cost function from Chapter 3 is parameterized
by a vector λ with an unknown value. We can expect to have only an uncertain prior belief
P0(λ), which we can update (P1(λ), P2(λ), . . .) as we observe the human’s action choices at
future time steps.

We show that certain robot actions uR (“queries”) elicit informative human responses
which decrease the entropy of our belief H(P (λ)) more quickly than other less informative
queries. Using this observation, we develop an active perception/learning [16,17] approach to
choose uR’s which most precisely and rapidly identify a given human’s λ parameters online.

Human/Robot Model Assumptions

We assume the human chooses their actions according to the same model as in Equation 1.3,
but now parameterized by an uncertain λ:

uH
∗ ∼ P (uH |uR, λ), P (uH |uR, λ) ∝ e−βChuman(uR,uH ;λ) (1.5)
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and we choose robot actions to balance quickly learning the human’s λ with minimizing
expected ergonomic cost in the current task (an exploration vs. exploitation tradeoff):

uR
∗ = arg min

uR

(
E

λ∼Pt(λ)

[
E

uH∼P (uH |uR,λ)
[−∆H(Pt(λ), Pt+1(λ)) + Chuman(uR, uH ;λ)]

])
(1.6)
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Chapter 2

Human Kinematic Models for Safety
and Feasibility

2.1 Introduction

Throughout daily life, humans collaborate with one another to manipulate objects in the
world. Whether rearranging furniture or transferring tools, each person has a sense of their
partner’s preferential limb and body configurations. We prefer to grasp objects: close to
the body rather than out of reach; between waist and chest height rather than overhead or
underfoot; and within view rather than out of sight. Endowing co–robots with this collabo-
rative manipulation capability remains an obstacle to ubiquitous deployment of autonomous
service robots.

One subproblem in this domain which has received attention recently is the selection
of “handoff configurations” or “object transfer points” (Figure 2.1). This problem arises
in tasks where a robot must pass an object to or from a human collaborator. Previous
approaches construct a cost function over the possible handoff configurations with respect
to the human collaborator, then select an optimal configuration with respect to this cost
function from the set of all configurations which are feasible for the robot. Previous authors
have designed these functions to capture desirable qualities of handoff configurations, such
as safety, visibility, and comfort [19], or usability, naturalness, and appropriateness [20, 21].
Cost functions can also capture ergonomic risk factors for injury [22–26].

When computing these functions, many methods in the literature use a generic human
kinematic model to capture the comfort or ergonomics of handoff configurations. These
models typically use kinematic parameters determined a priori from average morphomet-

The material in this chapter is derived from A. Bestick, S. Burden, G. Willits, N. Naikal, S. S. Sastry,
and R. Bajcsy, “Personalized kinematics for human-robot collaborative manipulation,” in IEEE International
Conference on Intelligent Robots and Systems, 2015.
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rotate

Figure 2.1: It is easier for a robot to hand off an object when it knows the kinematics of its human
partner. If it neglects these kinematics, the person can compensate by rotating their torso, but this can
lead to injury [22–26]. Thus human–robot collaborative manipulation is aided by providing the robot with
a personalized kinematic model.

rics [19–21]. Though appropriate for a segment of the population, it is clear that injury,
disability, fatigue, and natural variation in body size and shape can make predictions from
any particular kinematic model inapplicable to many individuals. Simple adjustments such
as scaling kinematics with height may improve predictions, but a personalized model fit to
an individual’s kinematics should give superior performance (at the expense of additional
effort invested in model calibration and validation). Indeed, previous authors have noted
that customization to individual human partners is needed [20].

Algorithms for fitting a kinematic “skeleton” to an individual using motion capture or
vision data exist in the literature, but the resulting models often use only three degree-of-
freedom spherical joints and fail to capture other kinematic constraints such as limb length
and joint range of motion. The Kinect algorithm [27] for real-time skeletal pose estimation
is a prominent example. The proprietary software included with many motion capture
systems typically enforces fixed limb lengths, but does not model joints with limited degrees
of freedom or restricted range of motion [28–30].

Organization and Contributions

In this chapter we present a system for estimating personalized human kinematic models
from motion capture data. Our work makes two main contributions: First, kinematic model
parameters such as joint axes, joint ranges of motion, and limb lengths are estimated directly
from a specific individual’s training data, without the use of a priori assumptions on joint and
limb parameters. Second, our kinematic formalism explicitly encodes the natural kinematic
constraints of the human skeleton, such as joints with limited degrees of freedom and range of
motion, given minimal training data. We exploit a parsimonious twist representation [13] as
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in [31] to obtain a minimal intrinsic parameterization for joints. This work complements the
existing literature, as the models it generates can be directly incorporated into frameworks
for object handoff planning [19–21] and more general human modeling [32–34]. Specifically,
our personalized kinematic models are a drop-in replacement for the generic human kinematic
models used in [19–21] and our learned model parameters can be used to rescale and calibrate
the detailed musculoskeletal models in [32–34] to a specific individual.

We expect that adapting robot behavior using personalized models will confer advantages
including safer, more ergonomic interaction with humans of varying physical dimensions
and more effective collaboration with humans whose capabilities are restricted by injury
or disability. To demonstrate the utility of the proposed framework, we compared three
schemes for generating bimanual object handoff locations from a robot (Baxter Research
Robot, Rethink Robotics) to a human partner in a motion capture arena. The three handoff
schemes differed in the data available at the moment of object transfer:

• Constant: A handoff pose constant relative to the robot body frame. This was
selected as a naive approach to serve as a control.

• Relative: A handoff pose constant relative to the human torso frame. This scheme
represents configurations computed from the generic human kinematic models in [19–
21], as discussed in Section 2.2.

• Personal: A preferred handoff configuration predicted using a personalized human
kinematic model. This is the method developed in this paper, and is discussed in
Section 2.2.

To evaluate these approaches, we compared the rotation (Figure 2.1) in the human’s trunk
at the moment of object handoff, since this statistic correlates with lower back injury [26,
Table 1].

Each subject performed a randomized sequence of handoff experiments with the handoff
location generated using each scheme. In addition, each subject repeated the process with
two treatments: first unencumbered and subsequently with the dominant arm restricted by
a strap. Restricting the dominant arm with a strap was intended to simulate loss of range
of motion due to an acute injury, for instance if it is painful to move the limb through its
uninjured range of motion or if the limb is physically encumbered by a cast or sling. We
expected to observe significantly more trunk rotation when the robot only had access to
its own reference frame (the constant scheme), particularly for subjects whose morphology
differed from the generic model used to choose the fixed handoff location. Furthermore, we
expected that adjusting the handoff location to account for the human’s trunk position and
orientation (the relative scheme) would nevertheless result in significant rotation when the
dominant arm was restricted.
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2.2 Methods

Kinematic Model

Following conventions set by the International Society of Biomechanics [32,33], we represent
the topology of a human using a rooted tree composed of up to five kinematic chains. The tree
is represented by (J,E) where J is a set of joints and E ⊂ J×J is a set of edges representing
rigid links. Each j ∈ J has a single degree–of–freedom (DOF) specified by a twist ξj ∈ se(3).
Thus displacing joint j by an amount θj ∈ R yields a rigid body transformation

exp
(
ξ̂jθj

)
∈ SE(3) (2.1)

between the input and the output of j, where thêoperator maps a twist vector ξ = [ω|v]T ∈
R6 to its equivalent homogeneous representation:

ξ̂ =

[
ω̂ v
0 0

]
, ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.2)

Similarly, each edge (i, j) ∈ E represents a rigid link from the output of joint i to the
input of joint j. Thus given a configuration vector θ ∈ Rn specifying displacements for each
of the joints in J , the rigid body transformation from the input of the root r to the output
of joint j ∈ J is given by the product of exponentials [13]

gj(ξ, θ) =

∏
i∈c(j)

exp
(
ξ̂iθi

) , (2.3)

where c(j) is the unique, ordered sequence of joints connecting r to j. The world frame
position of a feature pi ∈ R3 (e.g. a motion capture marker) rigidly affixed to the output of
joint j is then given by

gj(ξ, θ)

[
pi
1

]
. (2.4)

This compact representation can model revolute (rotational) in addition to prismatic (linear
displacement) joints.

The twist formalism for kinematics has two main advantages for this application: First, its
lack of singularities makes the parameter estimation cost function J(ξ, θ, p) (in Section 2.2)
smooth with respect to the joint parameters ξ. Second, with only six free parameters per
joint, the twist parameterization is minimal, which minimizes the amount of training data
necessary for the identification algorithm to achieve a specified accuracy.

To complete our model, we define the map α : {1, . . . ,m} → J , which specifies which
joint’s output each feature is rigidly attached to. We refer to the collection S = (J,E, α, ξ, p)
of a tree (J,E) with a feature-to-joint mapping α, twists ξ ∈ se(3)n, and features p ∈ R3×m

as a kinematic skeleton.
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Joint
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joints

rigid 
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Figure 2.2: The human skeleton model illustrated with a single human arm assumed to have three degrees
of freedom. The model consists of three joints ji, each of which is parameterized by a twist ξi ∈ se(3),
which specifies the axis of motion of the joint. The joint also has a state θi, which specifies the current
joint displacement. The state is constrained to lie in the interval [θmi , θMi ] (the feasible range of motion for
this joint). Attached to each joint as children is a set of zero or more observable features (motion capture
markers, in this case). Each feature i is parameterized by pi ∈ R3, which specifies the position of the feature
relative to the world coordinate system with all of the joint states in the kinematic skeleton set to zero.
Finally, a map α : {1, . . . ,m} → J specifies which joint in the tree each feature is a child of.

Figure 2.3: The human skeleton model allows easy computation of the predicted position of each feature
using standard forward kinematics. First, the homogeneous transformation associated with each joint is
computed. Next, the transforms along the path from the selected feature to the tree’s root are composed,
in order. Finally, the resulting transformation matrix is multiplied by the zero-configuration position of the
feature to give its predicted position.
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Parameter Identification

To model human motion using the kinematic skeleton developed in Section 2.2, we assume the
tree structure (J,E) and feature-to-joint mapping α are known but the twists ξ ∈ SE(3)n

and feature locations p ∈ R3×m are unknown. It is difficult to directly measure ξ and p,
therefore we estimate these quantities from a training dataset η1:N , with each ηk ∈ R3×m.
This dataset conists of N (noisy) observations of the coordinates of m features in the world
frame (provided, in our case, by a motion capture system). These are collected while the
subject performs some sequence of training motions. For the upper body model used in our
experiments, this sequence consisted of moving the shoulder and elbow joints through their
full ranges of motion, as shown in Figure 2.4.

Given this training dataset, the skeleton parameters are estimated as in [31] using non-
linear least-squares prediction error minimization [35] on a collection of error vectors with
the form

ε(ξ, θk, pi) = gα(i)(ξ, θk)

[
pi
1

]
−
[
ηk,i
1

]
. (2.5)

Note that in addition to the skeletal parameters ξ and p, the joint displacements θ must
also be estimated for each frame in the training dataset to completely specify the prediction
error. Thus, the error function which is minimized is

J(ξ, θ, p) =
N∑
k=0

m∑
i=0

‖ε(ξ, θk, pi)‖2
2. (2.6)

For all joints j ∈ c(α(i)) that precede α(i), the derivatives of ε with respect to ξj, θj, and
pi are given by (see also (33) in [36])

Dξjε(ξ, θ, pi) = Âjpi,

Dθjε(ξ, θ, pi) = (Adgj(ξ,θ) ξj)
∧pi,

Dpiε(ξ, θ, pi) = Rj(ξ, θ),

where the matrix Aj is given in [36, Eqn. 14] and Rj is the rotational component of gj(ξ, θ).
(For joints j 6∈ c(α(i)) that do not precede α(i), the derivatives Dξjε,Dθjε = 0.) Prediction
error minimization was performed with the SciPy [37] interface to the lmder routine in
MINPACK [38].
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Figure 2.4: Calibration poses for 2–DOF human arm kinematics.
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State Estimation

After estimating the geometric parameters of a kinematic skeleton S for a specific individual
as in Section 2.2, we can estimate the state of the model (the joint displacements θ) online
from a sequence of motion capture feature position measurements. This estimation was
performed using an Unscented Kalman Filter (UKF) [39]. The filter is applied to discrete–
time stochastic processes of the form

xk+1 = f(xk) + uk, uk ∼ N(0, Uk),

yk = h(xk) + vk, vk ∼ N(0, Vk),
(2.7)

where f : Rn → Rn specifies the deterministic dynamics, h : Rn → Rm the observation func-
tion, and uk, vk are independent and (respectively) identically distributed Gaussian random
variables. The initial state distribution is assumed Gaussian and denoted by N(x0, P0).

For the kinematic model of Section 2.2 the state is given by the generalized joint coordi-
nates x = θ, the dynamics are driven entirely by the process noise u (i.e. f ≡ id Rn), while
the observation of a feature affixed to the output of joint j at a position p is given in (2.4),
and h(θ) is therefore obtained by vertically concatenating the three-dimensional position
vectors from all features.

The UKF recursively estimates the first two moments of the state N(xk+1, Pk+1) at step
k + 1 using the estimate N(xk, Pk) from the previous step and observations yk+1; for details
we refer the interested reader to [39]. First, an array of sigma points [39] are assembled.
The empirical process and observation covariances and cross-covariances are estimated by
propagating these points through the model (2.7). Finally, the innovation step of the classical
Kalman filter [40] is performed using the estimated covariances.

Pose Prediction

Given a kinematic tree (J,E) calibrated to a subject as in the preceding section, we now
consider the problem of predicting the behavior of the human subject during a collaborative
manipulation task. We begin by reviewing the rich scientific literature that aims to address
this problem before describing how some of the most popular theories can be incorporated
into our framework.

At present, one of the most popular and fruitful theories of motor control is optimal
feedback control theory, where it is posited that the central nervous system synthesizes motion
by minimizing a cost C ∈ R that varies as a function of the joint angle θ, torque τ , or end
effector x trajectory (and, possibly, their derivatives) over a time interval [0, T ] ⊂ R, either
in open–loop or through receding–horizon feedback [41, 42]. For trajectory generation, one
of the earliest proposed and oft–cited forms for the cost function is minimum jerk [43],

C...
x =

∫ T

0

‖...x (t)‖2 dt. (2.8)
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However, subsequent studies have shown that other statistics such as minimum torque
change [44],

Cτ̇ =

∫ T

0

‖τ̇(t)‖2 dt. (2.9)

or minimum motor command [42] produce better predictions.
In the present setting, we are more concerned with the final pose of the subject than

the trajectory adopted to reach that pose. For static posture prediction, a classical law
(alternately attributed to Donder or Listing [45]) posits that attributed to each hand pose
there exists a unique preferred limb posture. Though appropriate for some experimental
settings, [45] found that this “law” yields poor predictions for limb posture in a reaching
task, and demonstrated that minimum work,

CW =

∫ T

0

τT (t)θ̇(t)dt (2.10)

provides superior predictions.
We conclude that, depending on the collaborative manipulation task under consideration,

a cost function with the form given in either (2.8), (2.9), or (2.10) may provide superior
predictions of human behavior. Note that our framework is applicable to any cost function
that varies smoothly with respect to joint angle θ, torque τ , or end effector x trajectory,
including but not limited to (2.8–2.10). For the handoff experiments in this paper, we elected
to choose the simplest cost function that is consistent with our kinematic skeleton model.
Specifically, we select a posture θ∗ that is merely feasible based on the subject–specific joint
limits computed in the calibration step, then minimize the preferred posture cost

Cθ∗ = ‖θ − θ∗‖ (2.11)

using the choice θ∗ = 1
2
(θM − θm), i.e. halfway between the upper and lower joint limits. We

emphasize that the cost (2.11) was chosen for its simplicity, and that we expect choosing a
more biologically–plausible cost will yield strictly superior results relative to those obtained
with (2.11). In particular, any ergonomic benefit conferred by employing the preferred
posture cost (2.11) should be enhanced by instead minimizing jerk (2.8), torque change (2.9),
or work (2.10).

Finally, we note that each of the costs above (2.8–2.11) only require a personalized
kinematic model for the subject. It is conceptually straightforward to extend the framework
in this paper to accommodate personalized dynamic models, but doing so requires conducting
a more elaborate set of calibration experiments to estimate inertial parameters [46, 47]. A
dynamic model is unnecessary in the present paper; since we focus on demonstrating the
value of personalized models using the simplest quasistatic cost (2.11), the inertial parameters
of a dynamic model would have no effect on the pose prediction.
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Handoff Experiments

We compared three schemes for generating bimanual object handoff locations from a robot
(Baxter Research Robot, Rethink Robotics) to a human partner in a motion capture arena.
The three handoff schemes differed in the data available at the moment of object transfer:

Constant

Generates a handoff pose in a fixed location relative to the robot body frame. This scheme
does not make use of any data about the human’s location or kinematic structure. It is a
naive scheme which we include as a control.

Relative

Generates a handoff pose that is constant relative to the human torso frame. This scheme
represents the handoff locations generated using the generic human kinematic models in prior
approaches. For example, in [20, 21], the authors use a generic human kinematic model to
evaluate one component (denoted ftake) of their handoff cost function, which is maximized
at the object pose with the largest number of possible “take” configurations. Similarly,
in [19], the authors optimize a handoff cost function which includes an “arm comfort” term.
This term is itself a sum of the squared displacement of the human’s joints from a resting
configuration, plus the gravitational potential energy of the arm’s current configuration,
and is also evaluated using a generic human kinematic model. Because these approaches
use generic human models, they will produce the same optimal handoff configurations with
respect to the human’s body frame, regardless of variations in the limb dimensions or range
of motion of a particular human partner. The relative scheme represents these approaches
by performing the object handoff at a configuration which is constant relative to a frame
attached to the human collaborator’s torso.

Personal

Predicts a preferred handoff configuration using a personalized kinematic model. This scheme
is our approach. It generates a handoff configuration which is optimal with respect to the
chosen ergonomic cost function (Section 2.2), for the limb dimensions and range of motion
of an individual human collaborator, identified as described in Section 2.2.

Each subject performed a randomized sequence of 3 × 10 handoff experiments with the
handoff location generated 10 times using each scheme. In addition, each subject repeated
the process with two treatments: first unencumbered and then with the dominant arm
restricted by a strap. Restricting the dominant arm with a strap was intended to simulate
loss of range of motion due to acute injury. As an evaluation criteria, we compared the
rotation in the human’s trunk at the moment of object handoff. We expected the following
outcome:



CHAPTER 2. HUMAN KINEMATIC MODELS FOR SAFETY AND FEASIBILITY 21

H0 The constant and relative schemes generate significantly more rotation than the per-
sonal scheme with the subject’s arm restricted.

kinematics
rotate

translate

kinematics

no change

translate

rotate

constant relative personal

Figure 2.5: Illustration of handoff schemes. Using the constant scheme, the robot hands the object off
at a fixed location in its frame of reference. With the relative scheme, it hands off to a fixed location in
the human’s reference frame, and therefore compensates for rotation and translation of the human’s torso.
The personal scheme compensates for general changes to kinematics, including rotation, translation, and
restriction of range–of–motion (e.g. due to injury, disability, or fatigue).

Human Subjects Protocol

Each test subject was first outfitted in an upper body motion capture suit. A total of
24 markers were attached to the suit, with four on the subject’s chest, four on the back,
and eight distributed along the length of each arm and hand (Figure 2.6). An active marker
motion capture system was used so that each marker was uniquely identifiable in the resulting
dataset. Data was collected at 50 Hz.
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Figure 2.6: A photo of the experimental setup. Each experiment tested 30 randomly ordered handoffs, of
which 10 were generated using each of the constant, relative, and personal schemes discussed in Section 2.2.
The pose of the human test subject’s torso was measured at the moment of the handoff using the eight
motion capture markers on the chest and back.

Before beginning the handoff trials, the test subject performed a calibration sequence to
fit a personalized kinematic model as described in Section 2.2, and to estimate the subject’s
preferred handoff pose as in Section 2.2. The subject performed three sets of each of the
calibration motions shown in Figure 2.4. The subject was then instructed to stand with
their feet at marked locations on the floor and the following test procedure was performed
for a total of 30 trials:

1. robot picks up a single cable from a table while displaying “Please wait” on its head
display;

2. robot chooses a handoff pose, hands the cable to the subject (Figure 2.6), and displays
“Ready?” on its display;

3. after two seconds, robot’s grippers open and arms retract;
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4. subject takes the cable and plugs it into a piece of network hardware, then waits for
the next handoff.

The handoff pose in each trial was randomly chosen as one of constant, relative, or person-
alized, as defined in Section 2.2 and illustrated in Figure 2.5. The handoff poses were chosen
such that 10 handoffs of each type were performed in one session. During each trial, motion
capture was used to record the pose of the subject’s torso both before the beginning of the
trial and at the moment the handoff occurs.

After completing the first set of 30 handoffs with normal arm movement, the test subject’s
dominant arm was affixed to their torso with a strap to restrict its movement. This was
intended to simulate the range of motion observed with one’s arm in a sling after an injury.
The test subject then completed another calibration sequence. This sequence was used to
identify a new kinematic model and predict a new handoff pose given the newly restricted
range of motion. A new session of 30 trials was then run using the same protocol as before.

2.3 Results

Personalized Kinematic Models

After fitting a kinematic model to a test subject’s calibration sequence, the accuracy with
which the model’s rigid kinematic structure captured the subject’s actual motion was evalu-
ated by computing the reprojection error for each motion capture marker in each frame of the
calibration sequence. Across all four test subjects and both the restricted and unrestricted
motion trials, the median reprojection error for the 16 arm markers ranged from 4.86 cm to
0.29 cm, with a mean of 1.49 cm. This relatively low error suggests that the kinematic model
identified by the parameter fitting algorithm accurately captured the kinematic constraints
observed in the subject’s actual motion.

Figure 2.7 shows the feasible workspaces computed from the personalized kinematic mod-
els of two test subjects. Note that though the workspaces are qualitatively similar, there
are significant differences between the two subjects. In particular, the workspaces of the
two subjects with restricted arm motion have only a small area of overlap, indicating that a
single, generic kinematic model would have had difficulty capturing both subjects’ physical
constraints simultaneously. Even in the unconstrained case, the portion of the reachable
workspace with the person’s arm extended rearward is significantly larger for Subject 2 than
for Subject 1 (Figure 2.7).
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Figure 2.7: Feasible workspaces computed from the personalized kinematic models of two selected test
subjects for both the restricted and unrestricted cases. Models were estimated as described in Section 2.2.
Note that there is little overlap between the restricted workspaces of the two subjects, and that even for the
unrestricted case, the portion of the workspace to the rear of the subject is significantly larger for Subject 2
than for Subject 1.

Handoff Ergonomics

We applied a pairwise t–test [48] to assess whether the choice of the constant, relative, or
personal handoff schemes produced a statistically significant change in the torso rotation
angles measured at the moment of the handoff. This analysis was performed both individu-
ally for each subject and on the pooled dataset from all four subjects. The t–test implicitly
assumes that the true distributions of rotation angles for a given subject are Gaussian and
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have identical variance across all three handoff schemes.
For trials with unrestricted arm movement, there was no statistically significant difference

(p < 0.05) between the torso rotation angles measured with the three different handoff
schemes when tested across the pooled dataset (Figure 2.8). However, the analysis on the
pooled dataset for trials with restricted arm movement produced significant differences in
rotation angles between the personal and constant as well as the personal and relative handoff
schemes.

This analysis suggests that the choice of handoff scheme produced a significant difference
in torso rotation angles in subjects with a restricted range of motion.

2.4 Discussion

The similarity of the torso rotation angles measured for all three handoff schemes in the un-
restricted case suggests that handoff planning methods based on generic kinematic models
perform well when interaction partners have “typical” body dimensions and range of motion
(Figure 2.8). However, the performance of these methods degrades when subjects’ range of
motion is restricted, since this necessitates significant compensatory motion in the torso to
adapt to the robot’s chosen handoff configurations. The use of handoff configurations gener-
ated using a personalized kinematic model significantly improved performance by allowing
test subjects to maintain a neutral body posture at the moment of object handoff.

We believe the use of personalized kinematic models shows promise not only for the
specific case of object handoffs, but also more broadly for human–robot collaboration. Our
present implementation utilizes motion capture data to provide a proof-of-concept demon-
stration of the personalized kinematic model framework. The framework is easily extensible
to real-world applications by using inertial measurements and other data streams such as
camera data that can be obtained from devices such as the Kinect [49]. For simplicity we
employed the personalized kinematic model only to estimate a feasible handoff location; it
is straightforward to extend our framework to incorporate other constraints and objective
functions [50] to predict human posture and motion from energetic [44, 51] or dynamic [47]
principles. This work complements the existing literature, as the models it generates can be
easily incorporated into frameworks for object handoff [19–21] and more general human mod-
eling [32–34]. More broadly, it provides a foundation for employing personalized kinematic
models in human–robot collaboration.

2.5 Extensions

While the bulk of this chapter investigates personalized kinematic models as applied to
humans with limbs composed of one degree-of-freedom joints, other modeling scenarios are
of interest as well. Two that we’ll investigate further are:
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Figure 2.8: Rotation angle distributions of the pooled datasets for unrestricted (top) and restricted (bottom)
kinematics. The distributions of rotation angles overlap substantially for the three handoff schemes with
unrestricted kinematics. However, the distribution obtained from the personalized kinematics is significantly
different from that obtained using only the relative position of the human or a constant handoff location
(pairwise t–test, N = 10, p < 0.05).

• Multiple Degree of Freedom Joints: Some human joints are more accurately modeled
not as a series of independent twists, but instead as a single joint with more than one
degree of freedom. Examples include the hip and shoulder, which are well approximated
by three degree of freedom ball joints.
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• Jacobian Computation: The manipulator Jacobian is a useful tool for numerical in-
verse kinematics, manipulability evaluation, and other applications. Our personalized
kinematic models support simple computation of Jacobians for arbitrary base and ma-
nipulator frames attached to any location on the kinematic tree.

Multiple Degree-of-Freedom Joints

While the kinematic representation used above, with a tree of one degree of freedom joints,
each parameterized by a twist ξj, is appropriate for the example situation in our human
experiments, it’s easy to imagine other scenarios for which this representation is not ideal.
Consider a scenario where we require a model of the full range of motion of a human shoulder,
for example, as opposed to the simple motion used above. The shoulder is well approximated
as a three degree of freedom “ball” joint. We could attempt to model the shoulder using
three twists in series, but this creates a number of problems:

• The resulting joint has 18 parameters to be estimated (6 per twist), requiring signifi-
cantly more training data to fully constrain all model parameters

• The twist axes of the resulting joint are not constrained to intersect at a common
point, as we’d like for a ball joint

• The twist axes are not constrained to be orthogonal, as in the typical Euler angle
parameterization of a ball joint’s state

In fact, without observable features on the intermediate links connecting the twists of
the ball joint, the three twist parameterization will be impossible to fully constrain, regard-
less of the amount or type of calibration data. The inability to force the twist axes to be
orthogonal is of particular concern, as this could cause the kinematic state estimation prob-
lem to be ill conditioned when twist axes are near-parallel. This problem could be partially
addressed by adding a regularization term to the optimization cost function which penal-
izes non-orthogonal twists, but even with this solution, the unnecessary high dimensionality
of the parameter estimation problem remains. The solution is to choose a different, more
appropriate joint parameterization for multi-DoF joints.

We’ll accomplish this by allowing each joint ji to have not just one, but multiple twists
associated with it, which we’ll denote as Ξi = [ξi,1, . . . , ξi,Ni ]. Each twist has an associ-
ated displacement, so the state of a single multi-DoF joint is given by the vector Θi =
[θi, 1, . . . , θi, Ni].

Finally, for each multi-DoF joint, we’ll specify a vector of parameters ri ∈ RNri that
together define the feasible motions for the joint, and a map ti : ri 7→ Ξi that maps a given
parameter vector to the joint’s sequence of twists.
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Example: Three DoF Ball Joint

Consider the case of the three degree of freedom ball joint we’d use to model a shoulder
or hip. The joint should have three orthogonal twists, each of which represents one of
its axes of rotation. Thus, Ξi = [ξi,1, ξi,2, ξi,3], and the corresponding joint state will be
Θi = [θi,1, θi,2, θi,3].

We’ll assume here that the three joint axes of rotation are parallel to the world frame
x, y, and z axes, so the joint is parametrized by the world frame (x, y, z) coordinates of the
intersection point of its three axes, and ri ∈ R3.

Finally, we’ll define the map ti as:

ti(ri) =

[[
−ω1 × ri

ω1

]
,

[
−ω2 × ri

ω2

]
,

[
−ω3 × ri

ω3

]]
(2.12)

where ω1 = [1, 0, 0], ω2 = [0, 1, 0], and ω3 = [0, 0, 1].

Jacobian Computation

Suppose we have two coordinate frames attached as children of joints jbase and jmanip on
a kinematic tree model. We’ll denote the world frame poses of these frames with all joint
displacements set to zero as Tbase and Tmanip, respectively, where Tbase, Tmanip ∈ SE 3. Note
that neither jbase nor jmanip need be the tree’s root joint. We’d like to compute the spatial
frame manipulator Jacobian Jbm(θ) of Tmanip with respect to Tbase at a specified configuration
θ.

The computation is as follows:

1. Compute the transformed twist associated with each joint at the current configuration
as:

ξ′i = Ad(
eξ̂1θ1 ...eξ̂i−1θi−1

)ξi
where Ad(...) is the adjoint transformation matrix generated by the displacements of
all the joints between ji and the root of the kinematic tree

2. Find the unique joint chains Cbase , c(jbase) and Cmanip , c(jmanip) which connect the
base and manipulator joints to the tree’s base joint

3. Remove any joints present in both Cbase and Cmanip from both sequences to yield the
shortest path connecting the two joints

4. Reverse the order of Cbase

5. Generate sequences of the transformed twists along the path from jbase to jmanip:

Ξbase = [−ξ′i]i∈Cbase , Ξmanip = [ξ′i]i∈Cmanip
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6. Concatenate the two transformed sequences into a single sequence of twists:

Ξchain = [Ξbase|Ξmanip]

7. Use the forward kinematics map to compute the world frame poses of the base and
manipulator frames at the current configuration θ, which we’ll denote as Tbase(θ) and
Tmanip(θ).

8. Express each ξ′chain,i ∈ Ξchain in the base coordinate frame:

ξ′chain,i = Ad(Tbase(θ)−1)ξ
′
chain,i

9. Compute the motion of Tmanip(θ) generated by each twist in Ξchain, expressed with
respect to Tbase(θ):

Jbm(θ) =

[
ν
ω

]
ξ′chain,i∈Ξchain

,where

[
ν
1

]
= ξ̂′chain,iTmanip(θ)


0
0
0
1

 , and

[
−
ω

]
= ξchain,i
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Chapter 3

Proactive Assistance for Collaborative
Tasks

3.1 Unconstrained Human Degrees of Freedom in

pHRI Tasks

A fundamental problem in pHRI is that we can’t control what the human does. A robot’s
actions can impose constraints on certain human degrees of freedom, but in general there
will be other DoFs where the human’s action is unconstrained. This is problematic because
the efficiency, safety, and comfort with which the task can be performed is a function of both
the robot and human’s actions, and variance due to human action choices is typically large.
This makes it difficult for a co-robot to offer effective active assistance.

In this section, we’ll give examples of uncertainty (grasp choice, kinematic configuration),
show how our individualized human models can quantify this uncertainty as a function of the
constraints imposed by the robot and the task, and discuss how predictive cost functions can
reduce uncertainty by predicting how humans will respond to different sets of constraints.

Formulation

We can think of a human-robot collaborative task as a two player game with a joint cost
function C(uR, uH). This function gives the total safety/ergonomic cost of the interaction as
a function of the robot action uR and the human action uH . We’d like to choose the robot
control action uR that minimizes the cost C.

The material in this chapter is derived from A. Bestick, R. Bajcsy, and A. Dragan, “Implicitly assisting
humans to choose good grasps in robot to human handovers,” in International Symposium on Experimental
Robotics, 2016.
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However, this cost is also dependent on the action of the human uH , which is not con-
trolled by us. We know that our choice of robot action can sometimes impose constraints on
the human action, so uH ∈ UH(uR). The robot’s action choice can also change the probability
with which the human will choose different actions, so that uH ∼ P (uH |uR).

This probability distribution allows us to predict the human’s action as a function of
the robot’s action choice. Given this prediction, we can choose a robot action choice which
minimizes the ergonomic cost of the interaction in expectation.

min
uR

EuH∼P (uH |uR) [C(uR, uH)] (3.1)

Intuitively, we can think of P (uH , uR) as our human model, which captures the way a
human collaborator is likely to respond when presented with different interaction scenarios.
This distribution can be specified explicitly, or learned from empirical observations. This
formulation also nicely models scenarios where a human is performing a greedy optimization
which would generally not yield a globally optimal value for C. Using our model, this human
greediness is modeled by P (uH , uR), and the robot’s optimization presents the human with
options which will incentivize them to make an action choice uH which yields a globally
optimal outcome in expectation.

3.2 Object Handovers

Object handovers are an important component of many collaborative manipulation tasks.
When a co-robot helps a human to cook a meal or assemble a device in a factory work
cell, it must hand objects to the human in a way which is intuitive, ergonomic, and safe.
This seemingly simple task requires the control of many different variables, including handoff
pose in SE(3), robot grasp, and robot approach trajectory. The optimal handoff sequence
may also depend on a particular human collaborator’s physical preferences or capabilities,
and on the parts of the task preceding or following the handover. As a result, making
robot-to-human object handovers seamless has been an area of growing interest in robotics
research [18,53–61].

Imagine a co-robot helping you to unload a dishwasher. The robot hands you a mug so
you can place it in the cupboard. The way the robot presents the mug to you (its pose in
SE(3), the grasp already occupied by the robot on the object) gives you a number of options
for how to grasp it, some more natural and ergonomic than others. Ultimately, the robot’s
choice of handoff pose and grasp affects how comfortable the handover is for you, as well as
how easily you can perform other tasks with the object after the handover.

Naturally, the robot can take this into account when planning its handover. Prior work
has focused on selecting robot grasping configurations [53, 55, 57–59, 61] or object handover
locations [18,54,56,60] that maximize the number or range of feasible human grasps [53,58,59]
or minimize human ergonomic cost [18,54–57,60,61].

Two wrinkles make existing approaches problematic in many real-world situations though:
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Figure 3.1: Setup & Summary. We focus on finding robot handover grasps and object transforms that
encourage the human to select good grasps, especially when the human has a next goal for the object.
We model how humans select grasping configurations, and leverage that model to minimize expected total
ergonomic cost to the human.

• Humans are myopic: Even though the human’s choice of grasp at handover may affect
the ergonomics of subsequent tasks they perform with the object (e.g. placing it in
a cupboard), the human will often select a grasp based on immediate comfort at the
moment of handover, without regard to the ergonomic cost that choice will incur in
subsequent task stages

• Humans are noisy : we can’t control the human’s actions directly, and therefore we
can’t guarantee that the human will select exactly the lowest cost grasp

This work makes two contributions that address these limitations: First, we select han-
dover configurations which are optimal with respect to total (handover + goal) cost, given
the our knowledge that the human chooses their grasp myopically. Second, we optimize this
cost in expectation, given a probability model which assumes humans are less likely to select
higher cost grasps.

These contributions have two key implications, which we’ll examine in detail throughout
this paper:

Encouraging the human to plan ahead

A robot typically hands a person an object so the person can do something with it (like place
it at a specified goal pose). However, humans are often not very good at thinking ahead
to this eventual goal: they might myopically select a grasp which requires them to contort
uncomfortably or even set the object down and regrasp it to reach the goal.
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Our first contribution has the effect of implicitly assisting humans to choose globally op-
timal grasps, by selecting handover configurations at which the most appealing grasp options
for a myopic human are also near-globally optimal. Our simulation and user studies demon-
strate that this implicit assistance produces more ergonomic interactions and is preferred
by human collaborators. We show that giving the robot explicit knowledge of the human’s
myopic nature significantly improves overall task ergonomics, versus assuming the human is
a global optimizer.

Reducing the risk of the human selecting a suboptimal choice

Of course, we can’t control or predict exactly which grasp the human will choose in any given
handover. Our human grasp selection model is probabilistic: We know only that lower cost
grasps are preferred to higher cost ones. Our approach minimizes the chances of the human
selecting a grasp with high total cost by maximizing the ergonomic cost incurred at handoff
by humans that choose them. We do this by choosing handoff poses where suboptimal grasps
require uncomfortable bending for the person to reach them, or by having the robot grasp a
suboptimal grasp region itself so as to block the human from choosing it.

This behavior arises naturally from our second contribution: selecting handoff poses
which have optimal expected total cost. This objective function penalizes handover configu-
rations where high cost grasps are likely to be chosen, and rewards those where grasps with
low global cost are likely.

The chapter is organized as follows: In Section 3.4, we describe the mathematical formu-
lation of our problem and the solution methods we use. Section 3.5 presents the results of
several simulation experiments which compare our method to existing methods in the liter-
ature (Section 3.5), test the importance of properly modeling a human’s myopic and noisy
characteristics (Section 3.5), and evaluates the consequences if our human model assump-
tions are incorrect (Section 3.5). Section 3.6 presents two user studies which compare our
approach to previous methods from the literature (Section 3.6) and assess the importance
of modeling the human’s myopic and noisy characteristics (Section 3.6)

Our results suggest that a robot can successfully influence people to take objects in a way
that makes it easier for them to achieve their goal, and that modeling people as both myopic
and noisy is a “safe” assumption, in that it produces low total ergonomic cost handovers
even when a human is, in reality, not myopic or noisy.

3.3 Related Work

The literature on robot-human handover planning considers a variety of approaches. These
differ in whether they consider some notion of ergonomic cost, whether they optimize the
full pose of the object at handoff or just the position, and whether they explicitly model the
human collaborator’s myopic/noisy aspects. We discuss this existing work below.
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Table 3.1: Prior Handover Planning Approaches

Feasibility Only Ergonomic Cost
H Only H + G H Only H + G

Position Only [18], [54], [56], [60]
Grasp Config. [53] [58], [59] [57], [61], [55] [52](this work)

Ergonomics and Feasibility

The majority of existing work considers the cost and feasibility of a given handoff plan only
at the instant of object handoff. This is particularly true for work which considers the
human ergonomic cost of a handoff [18, 53, 54, 56, 57, 60, 61]. As discussed previously, the
handoff configuration chosen by the human significantly impacts the ease with which they
can perform the remainder of the task after the object handoff. Thus, evaluating ergonomics
at the start and goal positions of the object as well as during the handoff should confer
significant ergonomic benefits upon humans working with co-robots in such tasks.

Several other existing works take this approach. In [55], the authors assess the ergonomic
cost to reach the start, goal and handoff configurations, while in [58,59] the authors consider
the feasibility of the start, goal, and handoff configurations, but don’t define any ergonomic
cost which would allow them to choose an optimal configuration from the set of all which
are feasible.

The prior work also differs in whether it considers the full 6 DOF human and robot grasp
configurations on the object [53, 55, 57–59, 61], or only the 3 DOF positions at which the
handoff will occur [18, 54, 56, 60]. Considering the full 6 DOF grasp configuration allows us
to more accurately assess the feasibility and/or cost of a plan, since it’s possible that the
human or robot could reach a given point in the 3D workspace, but still be unable to grasp
the a particular object at that point using an allowable configuration. Other prior work is
summarized in Table 3.1, which categorizes the existing literature along three axes:

• Full 6 DoF grasp configuration vs. 3 DoF position only

• Optimization of some ergonomic cost vs. planning only for feasibility

• Planning only for the handover vs. for both the handover and goal

Myopic/Noisy Human Collaborators

As discussed earlier, two features of human collaborators’ behavior complicate a co-robot’s
attempts to plan joint actions: humans are both myopic and noisy. Previous authors address
these features differently. Many simply ignore the myopic/noisy nature of humans, and
instead assume that humans are perfect global optimizers, always choosing the globally
optimal action given the options presented to them by a co-robot. Some of our previous
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Table 3.2: Prior Work with Myopic/Noisy Humans

Perfect Human Myopic Only Noisy Only Myopic+Noisy
[18], [55], [56], [58], [60] [53], [54], [61] [52], [62], (this work)

work makes these assumptions [18]. The nondeterminism of human action choice is well
known though, and some previous authors model this human noisiness explicitly [53,54,61].
Perhaps the most common of these approaches makes no attempt to predict which action
choice the human will make, and instead tries only to present the human with the greatest
number of possible grasp configuration options, assuming that they will make an acceptable
choice if given the opportunity to do so [53,61].

We were unable to find any prior work on object handoffs or human-robot collaborative
manipulation more generally that models a myopic, but deterministic human. In [62], the
authors consider a robotic collaborator who is both myopic and noisy, and plan actions that
lead to optimal task performance. Our earlier work [52], from which this paper is derived,
considers human collaborators who are both myopic and noisy.

Existing work is summarized in Table 3.2.

3.4 Methods

To fully specify a handoff configuration, we must select the robot’s grasp on the object
gR and the object pose with respect to the world frame T hand at which the object will
be presented to the human. We can then compute which grasp options are available to
the human collaborator and compute the likelihood of the human choosing each of these
options using our grasp selection model. Finally, we use this data to find the expected total
handover+goal ergonomic cost incurred by the human for a given handoff configuration
(gR, T

hand), and to select a configuration which yields the lowest possible expected cost. The
steps of this procedure are explained in detail below.

Handoff Task Model

The object to be handed off allows the human to grasp it at some set of poses GH ⊂ SE(3),
which we represent as a collection of Task Space Regions [63], and discretize to give a finite
set of feasible human grasps, so that GH , {gH1, ..., gHk}.

To compute the configurations the human can use to reach different possible object grasps,
we use a human arm kinematic model combined with an analytical inverse kinematics (IK)
solver. The kinematic model uses seven degrees of freedom to model the human arm, with
three in the shoulder, one in the elbow, and three in the wrist. Given a handoff grasp and
object pose, (gR, T

hand), each possible human grasp gHi will be reachable with zero or more
IK solutions, which we collect into a set Qhand

gHi
.
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The union of these sets Qhand
(gR,Thand)

,
⋃
∀iQ

hand
gHi

gives all the available “taking” configura-

tions available to the human given the robot’s choice of (gR, T
hand).

A human grasp gHi also induces IK solutions at the object’s goal pose, T goal, which we
collect in a set Qgoal

gHi
.

Human Grasp Selection Model

We model the human ergonomic cost as the squared distance from some ideal nominal resting
configuration q∗ w.r.t. some metric W :

C(q) , (q − q∗)ᵀW (q − q∗) (3.2)

where W = diag(w).
While we chose this cost function for its simplicity, it would be easy to substitute any

other function which maps human limb configurations q to some scalar ergonomic cost. We
would expect superior performance when using cost functions which more accurately capture
the human’s preferences.

We model the human as approximately-rational, selecting a grasping configuration q at
handover time with higher probability when it has lower cost:

P (q) ∝ e−λC(q) (3.3)

P (q) at the time of handover is normalized over all possible grasping configurationsQhand
(gR,Thand)

.

We can also compute the probability of a grasping configuration given a particular grasp,P (qhand|gH),
by normalizing over Qhand

gH
, and P (qgoal|gH) at the goal by normalizing over Qgoal

gH
. Finally,

we can compute the probability of a human grasp by summing over all the IK solutions at
that grasp: P (gH) =

∑
q∈Qhand

gH

P (q).

Expected Total Cost Computation

To compute the expected ergonomic cost of a given handover configuration, we must specify
two different ergonomic cost functions: the actual handover+goal ergonomic cost incurred
by the human Cergo, and the perceived ergonomic cost Cchoice the human expects to incur as
a function of their grasp choice. The first cost Cergo is what we seek to minimize with our
choice of handover configuration, and the second cost Cchoice is what we assume the human
tries to optimize when they make their choice of grasp at handover.

The total ergonomic cost Cergo is simply the sum of the ergonomic costs at the handover
and goal:

Cergo , C(qhand) + C(qgoal) (3.4)

The human’s perceived cost considers that that, for a myopic human, the immediate cost
incurred at handover may be weighted more heavily than a future cost incurred at the goal.
We add a variable weight γ ∈ [0, 1] to capture this possibility:

Cchoice , γC(qhand) + (1− γ)C(qgoal) (3.5)
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We can represent different assumptions about the human by varying γ. For example:

• γ = 1: The human is perfectly myopic, and makes action choices based solely on the
immediate ergonomic cost incurred at handover

• γ = 0.5: The human is a perfect global optimizer, and balances ergonomic cost at
handover with cost at the goal

• γ = 0: The human ignores the handover ergonomic cost, and chooses an action based
only on the goal ergonomic cost it will result in

Optimization Procedure

When the human does not have a (known) goal, we optimize for expected cost at the handover
time:

min
gR,T

hand
OW

∑
q∈Qhand

(gR,T
hand
OW

)

P (q)C(q)
(3.6)

When the human does have a goal, we optimize for expected total cost. The expected
cost at the goal is based on the probability of each grasp based on what happened at the
handover, P (gH), and the probability of each configuration given that grasp:

min
gR,T

hand
OW

∑
gH

 ∑
q∈Qhand

gH

P (q|gH)P (gH)C(q) +
∑

q∈Qgoal
gH

P (q|gH)P (gH)C(q)

 (3.7)

3.5 Simulation

Comparison to Heuristics

We evaluated our proposed expected total cost optimization in three simulation studies by
comparing the expected total human ergonomic cost it achieved against the cost produced
by two other common heuristic optimization criteria used in earlier work. The heuristic
criteria were:

• max |Q|: Maximize the number of feasible human arm configurations at the moment
of handover

• min
∑
qH∈Q

C(qH)

|Q| : Minimize the average ergonomic cost of all feasible human arm con-
figurations at handover, assuming that all configurations are equally likely

First we performed two case studies, which compared the expected ergonomic costs pro-
duced by our method against those from the two baseline heuristics in an object handover
task using a coffee mug. In the first case study, we consider a one part task in which the
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human simply takes the mug from the robot. In the second, we add a goal pose at which
the human must place the mug after taking it from the robot, and the expected ergonomic
cost is the sum of the expected costs at both the handoff and the goal.

Next, we conducted a simulation experiment which compared the two baseline methods’
performance with our proposed method over a range of objects and object goal poses. The
results of these studies are presented below.

Case Study: Expected Cost at Handover

Figure 3.2 compares optimizing for feasibility, average cost, and expected cost, in a scenario
where the PR2 robot is handing over a mug to a human. For each case, we take the robot
grasp and object transform that arises from the optimization, and compute: 1) the human
grasping configuration of minimum cost; 2) the most “risky” human grasping configuration,
that is not high-cost cost enough to be easily discarded by the human; 3) all human grasping
configurations available; and 4) the histogram of costs for these configurations.

We find that maximizing the number of feasible options can be dangerous, because it
might mean the expected cost is rather high, and the best configuration is not as good.
Compared to minimizing average cost, we find that minimizing expected cost will allow more
high-cost configurations because there is a very low probability for the human to pick them
(marked “unimportant” on the histogram), but will allow fewer configurations that have
good cost but not great (marked “problematic” on the histogram). These are configurations
for which the probability is high enough that the human might pick them, but they are not
as good as the best configurations.

Experimental Insight 1: A robot that models human handover choices can make it
more likely that the person will actually select a comfortable handover grasp.
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Figure 3.2: Case Study w/o Goal - Increasing Great Choices, Reducing OK Choices, Disregarding Bad Choices. A comparison
between maximizing the number of feasible human grasping configurations Q (top), minimizing the average ergonomic cost (middle), and
minimizing expected ergonomic cost (bottom), for the case of a single handover without a known object goal pose. The columns show the
most probable human configuration (left), the configuration with the largest contribution to the total cost (middle), and the full space of
configurations (right). Our method increases the number of great choices and decreases the number of OK choices which the human might
actually pick. It also keeps bad choices if needed, because they have a low probability of being selected anyway.
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Case Study: Expected Total Cost (Goal + Handover)

Figure 3.3 compares the three approaches from above when accounting for the human goal.
Feasibility here accounts for the number of feasible configurations at both the handover and
the goal, average cost accounts for cost at the start and goal, and so does expected cost.
For each case, we take the resulting robot grasping configuration and compute 1) the human
grasping configuration of minimum handover cost, which is what the human will most likely
choose if they are being myopic; 2) given this grasp, the configuration of minimum cost at
the goal (assuming no regrasp); and 3) the expected cost at the handover and at the goal
for each human grasp.

We find that maximizing feasible options can lead to very poor options at the goal.
Compared to minimizing average cost, we find that minimizing expected cost is better at
eliminating grasps that have low cost at handover time but only allow for high cost at the
goal.

Experimental Insight 2: A robot that models human handover choices can make it
more likely that the person will select a handover grasp that also allows for comfortably
achieving the goal after the handover.



C
H
A
P
T
E
R

3.
P
R
O
A
C
T
IV

E
A
S
S
IS
T
A
N
C
E
F
O
R

C
O
L
L
A
B
O
R
A
T
IV

E
T
A
S
K
S

41

m
ax

|𝑄
|

m
in
σ
𝑞
𝐻
∈
𝑄
𝐶
(𝑞

𝐻
)

|𝑄
|

m
in
𝐸
𝑞
𝐻
∈
𝑄
[𝐶

𝑞
𝐻
]

Handoff Goal

C
o

st

Human Grasp

Goal Handover

C
o

st

Human Grasp

Goal Handover

C
o

st

Human Grasp

Goal Handover

Human Grasp Costs

E[Total Cost] 
= 9.08

E[Total Cost] 
= 6.83

E[Total Cost] 
= 5.13

Figure 3.3: Case Study w. Goal - Reducing Total Cost. A comparison between maximizing the number of feasible human grasping
configurations Q at the handover and goal (top), minimizing the average ergonomic total cost (middle), and minimizing expected total cost
(bottom). The columns show the most probable human configuration at handover time (left), and at the goal (center), along with a plot of
cost for each available grasp to the human. Our method makes it such that the tempting configurations (low cost at handover) also have
low cost at the goal.
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Simulation Study

Our case studies used a single object and a single goal configuration. Here we expand to an
experiment that manipulates both as factors.

Manipulated Factors: We manipulate three factors. The first is the metric we opti-
mize, as in the case study: maximizing number of feasible options, minimizing average cost,
or our metric, minimizing expected cost. The second is the object being handed over by the
robot: a mug as before, a glass, a pitcher, and a plate, for a total of 4 objects. These objects
have vastly different TSR choices. The third is the goal pose, for which we use 5 different
poses. This leads to a total of 3(metrics) x 4(objects) x 5(goals) = 60 conditions.

Dependent Measures: As in the case studies, we measure expected total cost.
Hypothesis: Our metric is designed to optimize expected total cost (the dependent

measure), so we already know it will perform the best. The question remains whether our
metric will be better by a significant margin. Our hypothesis is that it will: Our metric will
result in a significant improvement in expected cost compared to the baselines.
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Figure 3.4: Optimal Handover for Different Goal Poses. The different goal poses in our experiment
lead to different optimal handover configurations for the robot, each selected to minimize expected total cost
at the handover time and at that particular goal. The chart averages the expected total (handoff + goal)
ergonomic costs for each of the three metrics.

Analysis: We ran an ANOVA with metric as a factor to test differences among the
three metrics across objects and goal poses. We found a significant main effect, F (2, 58) =
1031.07, p < .0001. A post-hoc analysis with Tukey HSD showed that all three metrics
were significantly different from each other, with the average cost outperforming maximum
feasibility (p < .0001) and our metric outperforming average cost (p < .001), in line with
our hypothesis.

Fig. 3.4 shows how the robot’s grasping configuration changes as the goal pose for the
human changes. The robot will present the mug so that the person grabs it by the top



CHAPTER 3. PROACTIVE ASSISTANCE FOR COLLABORATIVE TASKS 43

16.66

10.49

6.39

A
v

er
ag

e 
E

[C
o

st
]

max |𝑄| min Avg(𝐶) minΕ[𝐶]

Figure 3.5: Optimal Handover for Different Objects. The different objects in our experiment lead to
different optimal handover configurations for the robot for a given goal. The chart averages the expected
total (handoff + goal) ergonomic costs for each of the three metrics across objects.

when it needs to be placed right side up, by the side when it needs to be placed upside
down, etc. In line with our hypothesis, the expected cost was three times lower with our
approach compared to the maximum feasibility baseline, and two times lower compared to
the minimum cost baseline.

Fig. 3.5 shows how the robot’s grasping configuration changes, for a given goal pose, as
the object changes. The robot holds the objects in different ways to ensure that the person
can easily grasp them by the side and set them down vertically with ease.

Importance of Myopic/Noisy Model

The previous section’s results make clear that our expected ergonomic cost minimization
produces consistently lower cost interactions then previous heuristic criteria. Let’s examine
the modeling assumptions made by the expected cost minimization more closely though. If
we know that a real human is myopic/noisy, how important is it for our model to capture
those features of the person’s behavior? What would happen if we made different assump-
tions, like assuming that the human was, in fact, a global optimizer? We conducted an
additional simulation experiment to investigate this question.

Simulation Study

Our simulation study used a single object and varied the object goal pose. Our simulated
human was both myopic and noisy, and we tested the expected ergonomic cost incurred by
the human when the robot explicitly modeled the human’s myopia/noisiness versus when it
was unaware of these features.

Manipulated Factors: We manipulate two factors. The first is the goal pose at which
the simulated human must place the object after taking it from the robot. The second is
the robot’s assumption about how the human chooses their actions. The four assumptions
tested were:

• Myopic/noisy (MN): Robot’s model assumption accurately reflects the true simulated
human
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• Myopic/perfect (MP): Robot believes the human is myopic, but deterministically se-
lects the action with the lowest perceived cost

• Global/noisy (GN): Robot believes the human is a global optimizer, but accurately
models their nondeterminism

• Global/perfect (GP): Robot believes the human deterministically optimizes the total
cost for handover+goal (i.e. the human always chooses the true optimal action)

This gives a total of 10(goal poses) x 4(model assumptions) = 40 conditions.
Dependent Measures: As before, we measure expected total cost.
Hypothesis: We know that giving the robot a correct model (MN) of the simulated

human will result in the lowest possible expected total cost. The question is how much higher
the expected total cost will be if the robot’s assumptions are incorrect (MP, GN, or GP).
Our hypothesis is that it will be significantly higher: Correctly modeling the myopic/noisy
nature of the human will result in expected ergonomic costs that are significantly lower than
those achieved with incorrect model assumptions.

Analysis: Figure 3.6 shows how the expected ergonomic cost incurred by the human
changes as the robot’s human model assumptions are varied. The correct model assumption
(MN, shown in orange) yields expected ergonomic costs that are significantly lower than
with any of the incorrect assumptions. This supports our hypothesis.
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Figure 3.6: Expected Human Ergonomic Cost vs. Robot Human Model for MN Human: Em-
pirically, humans display both myopic and noisy characteristics in ergonomic optimization tasks such as
handovers. If a human is truly myopic-noisy, then giving the robot a human model which omits one or both
of these characteristics (grey and black, respectively) causes the human to incur a significantly larger total
ergonomic cost compared to a robot with an accurate human model (orange). Note that this figure shows a
selected subset of the data in Figure 3.7.

Losses From Model Inaccuracy

The previous section’s results demonstrate that for a myopic/noisy human, using model as-
sumptions that accurately reflect both the myopic and noisy features of the human’s behavior
is important for minimizing ergonomic cost. What if the true human is not myopic/noisy
though? Are the same myopic/noisy modeling assumptions appropriate even if the real hu-
man deviates from them? In this section, we measure the loss in ergonomic performance
when the true human does not conform to the robot’s model.

Simulation Study

Our simulation study used a single object and varied the object goal pose. We varied
whether the simulated human was myopic and noisy, and we tested the expected ergonomic
cost incurred by the human when the robot’s model assumed myopia/noisiness versus when
it did not.



CHAPTER 3. PROACTIVE ASSISTANCE FOR COLLABORATIVE TASKS 46

Manipulated Factors: We manipulate three factors. The first is the goal pose at
which the simulated human must place the object after taking it from the robot. The
second is the robot’s assumption about how the human chooses their actions. The third are
the characteristics of the true human. Both the robot’s model assumptions and the true
human’s characteristics can take one of four values (MN, MP, GN, or GP, as described in
the previous section). This gives a total of 10(goal poses) x 4(model assumptions) x 4(true
human characteristics) = 160 conditions.

Dependent Measures: As in the previous simulation studies, we measure expected
total cost.

Hypothesis: We know that giving the robot a correct model (MN) of the simulated
human will result in the lowest possible expected total cost when the human is, in fact,
myopic/noisy. Our question here is whether this MN assumption is still a “safe” choice even
when the true human is not myopic/noisy. Our hypothesis is that the losses due to model
inaccuracy will be small when the robot assumes an MN human: Modeling the human as
myopic/noisy will produce expected ergonomic costs which are near optimal even when the
true human is not MN.

Analysis: Figure 3.7 shows the mean expected ergonomic cost incurred by the human for
each of the 16 possible combinations of true human/robot model assumption. Our proposed
modeling assumption, myopic/noisy, is shown in orange.

In the case where the human is, in fact, myopic/noisy (leftmost cluster of bars), we
see that modeling this myopic/noisy nature explicitly produces significantly lower expected
ergonomic costs than any of the other possible model assumptions (grey and black bars).

Next, examine the two cases where the human is actually a global optimizer (GN and GP,
the second and fourth clusters of bars, respectively). In both cases, using the correct model
assumption (GN and GP, respectively) produces the lowest expected ergonomic cost. This
is what we’d expect, since the robot will always be able to optimize most accurately when
it has a complete, correct model of the human’s decision making process. The differences
in ergonomic cost between the correct model assumptions and our proposed MN assump-
tion is statistically significant in both cases, but is also very small in absolute magnitude,
particularly when compared to the MN-GN and MN-GP expected cost differences when the
the human is truly MN. In effect, there is a large penalty for failing to explicitly model the
human’s myopia when the human is truly myopic, but only a small penalty for assuming the
human is myopic when they are really a global optimizer.

Finally, examine the case where the true human is myopic/perfect (myopic, but noiseless).
We see that the correct model assumption, MP, yields an expected ergonomic cost that is
significantly lower than any of the other alternatives. Our MN assumption is second best.
This suggests that modeling the human’s true degree of noisiness is more important for the
system’s ergonomic performance than it is in the case of myopic, where we can just assume
a myopic human and get close to optimal performance even if the human is not perfectly
myopic.
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Figure 3.7: Expected Human Ergonomic Cost vs. Robot Human Model for Different Humans:
It is plausible that, depending on the specific scenario and person, humans may be less myopic or less
noisy than we expect. In general, our robot’s human model will never match the exact degree of myopia
or noisiness displayed by an individual human. It’s therefore important to consider what the loss will be
due to this inaccuracy, and to choose a “safe” human model which which produces acceptable results for a
range of actual human characteristics. Modeling the human as myopic-noisy (orange) produces consistently
incurred ergonomic costs for a range of actual human characteristics, which other models (grey/black)
produce significantly higher costs for at least one of the four human characteristics we consider.

We can examine the importance of each piece of our myopic/noisy assumption in more
detail by separating our analysis into two pieces, the first focusing only on the impact of the
myopic assumption, and second only on the noisy assumption.

Figures 3.8 and 3.9 show the same data as in 3.7, but for only one of the model assump-
tions at once. Figure 3.8 shows the impact of the myopic/global assumption across all trials.
We can clearly see that when the human is truly myopic, modeling that myopia produces a
large drop in expected ergonomic cost. Conversely, when the human is not myopic, modeling
them as myopic anyway produces only a small loss. This suggests that making a blanket
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assumption that humans are myopic is well justified for this handoff task.
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Figure 3.8: Expected Human Ergonomic Cost vs. Actual Human/Robot’s Model for My-
opic/Global Only: Average ergonomic costs over all trials in which the human/robot were myopic/global,
respectively.

We can perform the same analysis for the noisy assumption. Figure 3.9 shows the impact
of only the noisy/perfect assumption across all trials. The results here are more ambigu-
ous. The model assumption which matched the true human’s noisy/perfect characteristic
produced the best performance, but this difference was not significant for either the noisy
or the perfect true human. The absolute magnitudes of the ergonomic cost differences were
similar, but slightly larger for the case where the true human was perfect. This means there
isn’t an obvious default choice for the noisy/perfect assumption, in the case where we don’t
know the human’s true characteristics.
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Figure 3.9: Expected Human Ergonomic Cost vs. Actual Human/Robot’s Model for
Noisy/Perfect Only: Average ergonomic costs over all trials in which the human/robot were noisy/perfect,
respectively.

3.6 Human Experiments

Our simulation results above demonstrated that our expected total cost optimization yields
improved ergonomic performance versus both the heuristics used in previous handover plan-
ning work, and versus alternate model assumptions about human preferences. In this section,
we further validate these conclusions.

We present two user studies: The first compared our expected total cost minimization
method to the maximum feasible options baseline heuristic from the literature. The second
compared the ergonomic performance of our proposed myopic/noisy human model assump-
tion with an alternate set of assumptions (global/perfect), in the expected cost minimization
framework.
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Our Model vs. Heuristics

The previous sections tested our method in simulation, assuming users who act according to
our model. Real people do not. We conducted a user study to test whether the simulation
results generalize, and to explore whether users perceive the improvement brought about by
our method.

Experimental Design

Manipulated Factors. We manipulated three factors. We manipulated the metric the
robot used to compute its handover configuration, using our metric based on the user model
we proposed, minE[C], and the maximum feasibility baseline min |Q|.

We used the mug as the handover object for this experiment, and manipulated the goal
pose using 10 different poses. In these poses, the mug was placed upside down, upright, and
to the side to ensure variance.

Finally, we manipulated whether the user knows the goal (Fig. 3.10). We did this be-
cause we wanted to separate the two assumptions our method is making: that users select
grasping configurations based on ergonomic cost, and that users are myopic or greedy in
this selection, only accounting for ergonomic cost at handover time but not at the goal.
Therefore, manipulating the user’s knowledge of the goal enables us to test not only how
our method performs overall (in realistic situations in which users have a goal and are aware
of it), but also whether our method is influencing the users’ grasp choice in the way we
expected, assuming users are actually myopic (which in reality might or might not be the
case). Altogether, this led to 2(metrics) x 10(goals) x 2(knowledge) = 40 conditions.

Subject Allocation. We recruited 9 users (6 male, 3 female, ages 22-29). All of the
factors were within-subjects, meaning each user experienced all conditions. We counterbal-
anced the order of the metrics to avoid order effects, and randomized the order of the goals.
We split the experiment in two parts, the first in which the user did not know the goal, and
the second in which they did:

In Part 1, the robot handed the object to the person at each of the 20 optimal handover
configurations (one for each metric and goal pose), but the user was not told the goal used
by the planner. We instructed the user to take the object from the robot and immediately
drop it in a box. This ensured that no notion of a goal pose would impact the subject’s
choice of object grasp. This portion of the experiment evaluated the two algorithms’ ability
to influence the subjects to select a particular grasp when the subject was not aware of a
goal, i.e. when the myopic/greediness assumption holds.

In Part 2, a pictorial marker was placed on a table next to the subject indicating the
object’s goal pose during each handoff. The subject was told that two different algorithms,
“Program 1” and “Program 2,” would be used during this part of the experiment. We
conducted handovers at the same 20 configurations as before, but this time the subject was
instructed to place the object at the indicated goal pose. We told the users before each
handover which of Programs 1 and 2 was in use. This portion of the experiment evaluated
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the algorithm’s ability to influence people to select ergonomically optimal grasps even when
they know the goal, i.e. they are not necessarily myopic. Furthermore, it enabled us to ask
users to compare the two methods, seeing if their notion of comfort matches ours. If people
are actually myopic about the goal when selecting a grasping configuration, then we expect
results for this second part to match those from the first part.

In both parts, the subject was instructed to use only their right hand to manipulate the
objects, and to not change or reposition their grasp before dropping the object or placing it
at the indicated goal position.

Handover

Part 1: Drop 
(No Goal)

Part 2: Place 
(Specific Goal)

Figure 3.10: User Study Setup.

Dependent Measures. We used both objective and subjective measures.
Objective: We annotated for each condition which of the 6 TSRs for the mug the person

selected. From this, we computed expected cost over all IK solutions at the goal, for all grasps
that were feasible at handover time (i.e. had feasible IK solutions), making 2 assumptions:
1) the person follows our ergonomic model, and 2) we know the human kinematics:

OM1: E[C(qgoal)], λ = 10,∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover (3.8)

To alleviate bias in our results induced by the two assumptions, we introduce 3 additional
metrics that break each assumption separately as well as both assumptions together: we
break the first assumption by computing average cost (which is the expected cost using a
uniform distribution, i.e. λ = 0) instead of expected ergonomic cost , and we break the
second assumption by allowing infeasible grasps that a person with different kinematics
might have chosen:

OM2: E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover (3.9)

OM3: E[C(qgoal)], λ = 10,∀qgoal ∈ IK(g),∀g ∈ TSR (3.10)

OM4: E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR (3.11)

We did not estimate cost at handover time, because we were specifically interested in
whether the robot successfully influences users to select grasps that are good at the goal.
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Indeed, we might see lower handover time costs for the baseline condition because it restricts
the users less.

Subjective. After each complete experiment, the subject answered a series of 1-7 Likert-
scale survey questions about which program they preferred, which program made their goal
easier to accomplish, and which program inspired the most trust in the robot. These capture
each subject’s subjective opinion about which metric was more effective at making interaction
with the robot comfortable and effective.

Hypotheses.
H1. IF humans are actually myopic when selecting grasping configurations (e.g. when

they are not even aware of the goal), our method successfully influences them to select con-
figurations with lower cost at the goal compared to the baseline.

H2. Our method influences people to select configurations with lower cost at the goal
compared to the baseline, even when they are aware of the goal.

H3. People prefer to work and are more comfortable with a robot using our method
compared to the baseline.

Analysis

H1. We used results for part 1 of the study, when users are not aware of the goal, to test
H1. We first computed Cronbach’s α for the four objective measures, which was high at
.9036. We thus computed an aggregate goal cost using all four measures.

We then ran a repeated-measures factorial ANOVA on this aggregate, with goal and
metric as factors. We found a significant main effect for metric, as expected (F (1, 179) =
377.83, p < .0001), and a significant main effect for goal (F (9, 171) = 26.79, p < .0001).
However, there was also a significant interaction effect, and so we conducted a Tukey HSD
post-hoc, comparing all pairs but compensating for multiple comparisons. The analysis
revealed that the expected cost (our) metric resulted in significantly lower cost at the goal
than the baseline for 7 out of the 10 goals, all with p < .03.

This supports our hypothesis H1, but suggests that the benefit of our method does depend
on the choice of the goal pose, with the maximum feasibility baseline being sufficient for some
goals.

Table 3.3 shows the goal ergonomic costs estimated by each of the four measures, averaged
across all nine study participants for this part of the study. It shows that pose optimization
with minE[C] gives consistently lower ergonomic cost at the goal than optimization with
min |Q|. This difference is particularly marked for the first two measures, which consider
only grasps feasible at the handover. These results suggest that expected ergonomic cost
can be used to influence humans to choose grasps with good ergonomic properties even when
they are completely unaware of the goal.
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Table 3.3: Estimated Human Ergonomic Costs at Goal (Part 1: Users not aware of goal)

Objective Measure min |Q| minE[C]

E[C(qgoal)], λ = 10,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 12.43 6.02
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 12.41 6.30
E[C(qgoal)], λ = 10,∀qgoal ∈ IK(g),∀g ∈ TSR 12.18 11.26
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR 12.28 11.45
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Figure 3.11: Estimated Goal Ergonomic Costs vs. Algorithm - Part 1: Expected goal ergonomic
costs for trials where the user was not aware of the final goal (i.e. a perfectly myopic human). Expected
costs were computed according to the four hypothesized human objective measures described in Section
3.6). For all objective functions, planning using our minimum expected cost algorithm (minE[C]) yielded
significantly reduced goal ergonomic costs relative to planning with the baseline algorithm (min |Q|).

H2. For part 2, when users were given specific goals, our objective measures again had
high item reliability, Cronbach’s α = .8830. We again computed an aggregate cost. We again
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ran a factorial repeated-measures ANOVA, and the results, as expected, were analogous
to the results from part 1. We again saw significant main effects, but also a significant
interaction between the factors. As before, a post-hoc with Tukey HSD corrections showed
that 7 out of the 10 goals saw significantly lower costs at the goal with our method than
with the baseline. The set of these 7 goals was almost identical to the one in part 1, with
the exception of one goal no longer showing a significant difference, and one goal starting to
show a significant difference.

This supports out hypothesis H2: our method does not only help users improve
performance when we force them to be myopic by not making them aware of
the goal – it helps in realistic situations, when users have a goal that they
are aware of . This suggests that people are indeed myopic in their selections of a grasp
configuration.

Table 3.4 shows the goal ergonomic costs estimated by each of the four objective metrics,
averaged across all nine study participants for Part 2 of the study, where subjects were
instructed to place the object on a pictoral marker at the goal pose after each handover. We
see a similar improvement in ergonomic costs when minimizing E[C] versus maximizing |Q|.

Here, we found it interesting that the costs dropped slightly across the board. This
suggests that perhaps when people are aware of the goal they perform slightly
better, but that still our method can significantly help them to further improve
their performance.

Table 3.4: Estimated Human Ergonomic Costs at Goal (Part 2: Users aware of the goal)

Objective Measure min |Q| minE[C]

E[C(qgoal)], λ = 10,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 11.42 5.37
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 11.52 5.61
E[C(qgoal)], λ = 10,∀qgoal ∈ IK(g),∀g ∈ TSR 11.72 11.02
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR 11.84 11.23
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Figure 3.12: Estimated Goal Ergonomic Costs vs. Algorithm - Part 1: Expected goal ergonomic
costs for trials where the user was aware of the final goal (i.e. human not necessarily myopic). Expected
costs were computed according to the four hypothesized human objective measures described in Section 3.6).
Even when the human was aware of the goal, planning using our proposed minE[C] algorithm produced a
significant reduction in expected goal ergonomic cost versus the baseline min |Q| algorithm.

H3. Table 3.5 summarizes users’ subjective ratings. t-tests showed that our method
outperformed the baseline in user overall preference, how helpful they thought
the robot was, how much they trusted the robot, and how easy it was to do the
task. Users thought that the robot understood their goal and that it handed
them objects in a way that made their task easier.

The users’ comments were particularly enlightening (here Program 1 refers to the baseline
and Program 2 refers to our method):

“With Program 2, I could move straight from grip to the target with a natural motion.
With Program 1, I would sometimes have to contort my arm unnaturally to place the mug
correctly.”; “Program 1 made it easier to pick up objects but harder to achieve the goal.
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Table 3.5: Post-Study Survey Results

Statement min |Q| minE[C] t(8) p

“I prefer Program ” 2.0 6.2 9.73 <.0001
“The robot was helpful when running Program ” 3.4 6.4 6.80 <.0001
“I trust the robot running Program ” 3.7 6.1 4.4 <.01
“The robot understood my goal when running

Program ” 2.8 6.4 5.33 <.001
“It was physically easy to do the task when

the robot was running Program ” 2.8 6.2 6.50 <.001
“The robot running Program handed me objects

in a way that made the task easier” 2.0 6.3 9.19 <.0001
“If you had to choose a program you prefer,

which would it be?” 0% 100% - -

Program 2 sometimes made it more difficult to pick up objects but achieving the goal was
easier.”; “Program 1 is an a**hole.”

Myopic/Noisy vs. Global/Perfect Assumptions

The user study in the previous section demonstrated how our expected total cost minimiza-
tion algorithm produced more ergonomic handovers than the maximum options heuristic.
The expected total cost method relies on a model of human action choice though, and the
specific model used is likely to have a large impact on the algorithm’s performance. In the
previous section we modeled the human as a myopic, noisy optimizer. In the next user study,
we compare this myopic/noisy assumption to an alternative global/perfect one.

Experimental Design

The experimental design in this study was similar to the previous one, with two modifications:

• We compared the MN and GP assumptions, both with the minE[C] algorithm, rather
than comparing the minE[C] to the max |Q| criterion

• Instead of the goal pose for the mug being on a table, it was in a shelf which made
certain grasps on the mug infeasible, as shown in Figure 3.13.
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Goal Feasible Grasp Goal Infeasible Grasp

Figure 3.13: The goal poses for the MN vs. GP user study were located in a shelf which restricted the
grasps on the mug which were feasible. The picture on the left shows a feasible human grasp, while the right
picture shows a grasp which is infeasible at the goal due to the shelf. OM5 counted the total number of goal
infeasible grasps chosen by each human test subject.

Manipulated Factors. We manipulated three factors. We manipulated the model
assumptions the robot used to compute its handover configuration using our minE[C] algo-
rithm.

We used the mug again as the handover object for this experiment, and manipulated the
goal pose using 10 different poses. As before, the mug was placed upside down, upright, and
to the side to ensure a representative range of scenarios. As noted above though, the goal
poses were now located in a shelf which restricted the range of feasible grasps available to
the human at the goal.

Finally, we manipulated whether the user knows the goal (Fig. 3.10). As in the previous
user study, this allows us to isolate the portion of the user’s action choice that is due to
knowledge of the goal from that which is based only on knowledge available at the handoff.
Stated differently, we could say that the scenario in which the user is not aware of the
goal simulates a perfectly myopic human. Altogether, this led to 2(model assumptions) x
10(goals) x 2(knowledge) = 40 conditions.

Subject Allocation. We recruited 10 users (7 male, 3 female, ages 22-27). All of the
factors were within-subjects, meaning each user experienced all conditions. We counterbal-
anced the order of the model assumptions to avoid order effects, and randomized the order
of the goals. We split the experiment into two parts, the first in which the user did not know
the goal, and the second in which they did:

In Part 1, the robot handed the object to the person at each of the 20 optimal handover
configurations (one for each model assumption and goal pose), but the user was not told
the goal used by the planner. We instructed the user to take the object from the robot and
immediately drop it in a box. This ensured that no notion of a goal pose would impact the
subject’s choice of object grasp. This portion of the experiment evaluated the two algorithms’
ability to influence the subjects to select a particular grasp when the subject was not aware
of a goal, i.e. when the myopic/greediness assumption holds.
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In Part 2, as before, a visual marker was placed on the shelf to illustrate the goal pose for
the mug. The subject was told that two different algorithms, “Program 1” and “Program
2,” would be used during this part of the experiment. We conducted handovers at the same
20 configurations as before, but this time the subject was instructed to place the object at
the indicated goal pose. We told the users before each handover which of Programs 1 and
2 was in use. This portion of the experiment evaluated the algorithm’s ability to influence
people to select ergonomically optimal grasps even when they know the goal, i.e. they are
not necessarily myopic. Furthermore, it enabled us to ask users to compare the two methods,
seeing if their notion of comfort matches ours. If people are actually myopic about the goal
when selecting a grasping configuration, then we expect results for this second part to match
those from the first part.

In both parts, the subject was instructed to use only their right hand to manipulate the
objects, and to not change or reposition their grasp before dropping the object or placing it
at the indicated goal position.

Dependent Measures. We used the same objective and subjective measures as in the
previous user study, and added one additional objective measure: number of goal infeasible
human grasps. We manually annotated each trial with which of the 6 TSRs the human
grasped, then estimated the incurred goal ergonomic cost using each of the four objective
measures OM1-OM4 used previously.

As before, we estimated ergonomic cost only at the goal, not the handover.
Objective. In addition to OM1-OM4, we added OM5, the number of goal infeasible grasps.

This is the number of grasps chosen by the human at handover which will be infeasible at
the goal (because there’s no room to fit a human hand at that location on the mug). If the
human was truly a global optimizer, this measure would be equal to zero for all conditions,
since the human would foresee and avoid infeasible grasps.

Subjective. The subjects answered the same Likert scale as before, which asked which
program they preferred, which program made their goal easier to accomplish, and which
program inspired the most trust in the robot.

Hypotheses.
H1. The myopic/noisy model assumption will result in lower goal ergonomic costs than

the global/perfect assumption, even when the human knows the goal.
H2. The myopic/noisy model assumption will result in less goal infeasible grasp choices

than the global/perfect assumption.

Analysis

H1. We used the human’s estimated goal ergonomic costs to evaluate this hypothesis. Figure
3.14 and Table 3.6 show the estimated costs for the case where the human is unaware of the
goal, while Figure 3.15 and Table 3.7 show this same data for the case where the human is
aware of the goal. The two figures both show our proposed myopic noisy model in orange.
The four pairs of numbers are the ergonomic costs estimated by each of the four objective
measures OM1-OM4.
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The results from Part 1 (human unaware of goal) show a significant decrease in ex-
pected goal ergonomic costs when the myopic/noisy assumption is used, as compared to the
global/perfect assumption. This decrease is present for all of the four expected cost objective
measures. This supports the first portion of our hypothesis: that humans unaware of the
goal will achieve a lower goal ergonomic cost with the MN model assumptions.

This effect was not seen when the humans were aware of the goal though. Figure 3.15
shows that the expected goal ergonomic costs for Part 2 of the study were essentially un-
changed between the MN and GP assumptions. This suggests that, for this simple task,
humans were able to successfully anticipate and avoid grasps which would be infeasible at
the goal.

Table 3.6: Estimated Human Ergonomic Costs at Goal (Part 1: Users not aware of goal)

Objective Measure GP MN

E[C(qgoal)], λ = 1,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 10.10 6.81
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 10.37 7.20
E[C(qgoal)], λ = 1,∀qgoal ∈ IK(g),∀g ∈ TSR 10.12 6.82
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR 10.88 7.86
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Figure 3.14: Estimated Goal Ergonomic Costs vs. Model Assumption - Part 1: Expected goal
ergonomic costs for trials where the user was not aware of the final goal (i.e. a perfectly myopic human).
Expected costs were computed according to the same four hypothesized human objective measures described
in Section 3.6). For all objective functions, planning under the assumption that the human was Myopic-
Noisy produced anticipated goal ergonomic costs significantly lower than when the human was assumed to
be Global-Perfect.

Objective Measure GP MN

E[C(qgoal)], λ = 1,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 5.93 6.01
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR feas. at handover 6.19 6.52
E[C(qgoal)], λ = 1,∀qgoal ∈ IK(g),∀g ∈ TSR 5.95 6.03
E[C(qgoal)], λ = 0,∀qgoal ∈ IK(g),∀g ∈ TSR 7.61 7.37

Table 3.7: Estimated Human Ergonomic Costs at Goal (Part 2: Users aware of the goal)
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Figure 3.15: Estimated Goal Ergonomic Costs vs. Algorithm - Part 2: Expected goal ergonomic
costs for trials where the user was aware of the final goal (i.e. human not necessarily myopic). Expected
costs were computed according to the same four hypothesized human objective measures described in Section
3.6). No significant difference was seen between the goal ergonomic costs under the two different planners,
suggesting that for this simple task, humans were usually able to look ahead to the goal and choose a feasible
grasp at handoff.

H2. To evaluate our second hypothesis, we’ll examine the final object measure, OM5,
which is the number of goal infeasible grasps selected at handover by the human. Figure
3.16 shows this data, averaged across the goal/no goal and the MN/GP conditions.

For the case where the human is unaware of the goal, we see the number of goal infeasible
grasps drop significantly when using the MN model assumptions. There was also a significant
decrease in infeasible grasps when the human was aware of the goal. This suggests that our
method does, in fact, help users to avoid grasps which will be infeasible at the goal, and
that this is true even when the users are aware of the goal, although the effect size is much
smaller.
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Figure 3.16: Number of Infeasible Human Grasps

3.7 Limitations and Future Work

In general, the preliminary results above suggest our algorithm works well. The feasible grasp
samples for both the human and robot are intuitively realistic, and provide good coverage
of the set of all feasible grasp configurations. Their accuracy could be improved by further
tuning the TSRs for the objects to be grasped, or even by building TSRs in a more data-
driven way using test data from actual human subjects collected using a motion capture
system.

The handoff IK solver also worked reliably. The relative poses of the human and robot in
this scenario meant that there were many feasible handoff poses at a variety of configurations.
Because of this freedom, most of the optimal configurations identified by the IK solver
were very close to the nominal neutral position of the human’s arm (at which the handoff
ergonomic cost achieves its absolute minimum).
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Table 3.8: Post-Study Survey Results

Statement GP MN

“I prefer Program ” 3.7 5.0
“The robot was helpful when running Program ” 4.7 5.7
“I trust the robot running Program ” 4.7 5.0
“The robot understood my goal when running

Program ” 4.5 5.5
“It was physically easy to do the task when

the robot was running Program ” 4.4 5.5
“The robot running Program handed me objects

in a way that made the task easier” 4.1 5.5
“If you had to choose a program you prefer,

which would it be?” 30% 70%

An additional problem is that sampling feasible grasp configurations for both the human
and robot and running the IK solver for every possible grasp combination is an inefficient,
brute force approach. It should be possible to locally parameterize the space of feasible
grasps for the object (perhaps along the degrees of freedom specified already by the TSR),
and then include the grasp pose as a decision variable directly in the optimization problem.

Lastly, we’d like to extend this approach to consider the ergonomic cost of the human’s
trajectory in addition to the costs of the static handoff and goal configurations. An important
question here will be tractability of the resulting optimization problem, since we would
essentially want to evaluate the gradient of a trajectory cost functional with respect to the
grasp and handover configurations, but defining the cost functional itself requires generating
an optimal motion plan for the human which makes assumptions about how the human’s
motion will change in response to the robot’s actions.
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Chapter 4

Active Learning of Human Ergonomic
Preferences

4.1 Introduction

When a robot hands over an object to a person, it has a choice to make – it chooses which
specific grasping configuration to use. When the person then takes that object, they too
have same choice to make. But depending on what the robot chose, their options might be
limited, and they might be forced to twist their arm in some uncomfortable way just to be
able to reach the object.

Our goal is to enable robots to choose handover configurations that result in comfortable
options for the person who is taking the object. But to do that, the robot needs to know
what “comfortable” actually means.

In this work, we capture comfort level via an ergonomic cost, mapping human grasping
configurations to a scalar, based on how comfortable or uncomfortable they are. If the robot
had access to this cost function, it could use it to plan its handovers to explicitly make low
cost human configurations for taking the object feasible. More interestingly, it could use it as
a predictive model for how the person will take the object (assuming lower cost configurations
are more likely). Having such a model empowers the robot to anticipate human action, and
even influence people towards grasps that better suit their ultimate goal for the object [52].

In our previous work, we have simply written down what seemed like a reasonable er-
gonomic cost function and handed it to the robot [18, 52]. Other works have done the
same [56, 60, 65]. But there was always something worrisome about this: how do we know
this cost is any good? Even for the average person, we might have gotten it wrong. And fur-

The material in this chapter is derived from A. Bestick, R. Pandya, R. Bajcsy, and A. Dragan, “Learning
human ergonomic preferences for handovers,” in IEEE International Conference on Robotics and Automation
(ICRA), 2018 (in review).
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Query

Feasible Set (𝑄𝑓𝑒𝑎𝑠)

Label (𝑞 ∈ 𝑄𝑓𝑒𝑎𝑠)

Figure 4.1: The robot learns the human ergonomic preferences by selecting a handover configuration for an
object (query), and using the way the person chooses to take the object (label) as an observation about their
hidden ergonomic parameters.

ther, not everyone is the average person. We expect to see individual variation in ergonomic
preferences, e.g. based on which muscles on their arm happen to be stronger. These dif-
ferences would be even more pronounced for people whose motion is restricted by age or
disability.

In this work, we turn to learning a cost function, rather than assuming one and planning
with it. The parameters of the cost are a hidden part of the state. Every choice the person
makes for a grasp configuration is an observation about these parameters, updating the
robot’s belief via Bayesian inference.

A key aspect of this learning problem is that observations do not happen in isolation
from the robot. The robot gets to influence them by selecting its own grasping configuration
for offering the object – an implicit query that the robot makes to the person (Fig. 4.1).
This query induces a feasible set of human grasp configurations for taking the object, which
results in a label, i.e. the person’s choice.

Therefore, which queries the robot makes affect its performance. Some queries elicit
more information and help the robot learn faster, but sacrifice some human comfort during
learning in order to do so.

We thus explore and contrast two natural approaches for selecting queries. In the passive
approach, we use the principle of separating estimation and control, and the robot always
selects the query that leads to the most comfortable configuration for the person according to
its current estimate of the ergonomic cost. In the active approach, the robot selects queries
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that lead to the highest expected information gain.1

What we contribute is a formulation of the ergonomic cost learning problem as online
estimation via implicit, physical robot queries, and an in-depth analysis of the advantages of
disadvantages of the two methods, including how the menu of objects and queries available
to the robot impacts their performance.

We do experiments in both simulation (with an easy to visualize 2DOF arm and a more
difficult, but realistic 7DOF arm), as well as a user study. We find that online learning of
ergonomic cost is feasible, that active learning can be faster, but that this depends on the
kinds of objects it has available, and that it comes at small, but non-trivial comfort cost
during learning.

4.2 Related Work

Both the active learning paradigm and the optimization of human-robot object handovers
have been studied extensively in the robotics/AI literature, respectively.

Learning from Implicit Queries in Robotics

Many robotic learning systems solicit explicit feedback from humans to optimize their own
actions. This feedback can include binary preferences for one trajectory over another [66,67],
rankings of grasp quality on a continuous scale [68], or class labels applied to images the
robot encounters [69].

Intuitively, some queries are more informative than others. The idea of actively selecting
the most informative queries to present to the human expert has been widely studied and
applied [17,70]. These explicit, actively selected queries include binary classification [71–76],
ranking [77, 78], and labeling [79]. Queries in robot learning can be particularly expensive
in both time and effort, often requiring physical motion of the robot. This makes active
learning approaches, which minimize the required number of queries to learn a model of a
given accuracy, attractive here as well [67–69,80,81].

Sometimes an explicit human response to a query isn’t required at all. In these implicit
learning tasks, the robot simply takes an action, observes the human’s response, and uses this
response to infer their label, under the assumption that the response represents an optimal
execution of a policy based on their true preferences. Recent work has used this framework
to learn the characteristics of human drivers in order to predict their future trajectories [82].
This implicit learning approach can be more intuitive in situations where the human doesn’t
have a conscious, explicit ordering over possible actions, but nonetheless exhibits a preference
for some over others, from which this ordering can be reconstructed [70]. We use implicit
human feedback. Our approach is conceptually similar to Inverse Reinforcement Learning

1Note that solving the problem as a POMDP is computationally prohibitive still, but would lead to
optimally trading off between exploration and exploitation, i.e. a hybrid between the active and passive
approaches.
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(IRL) [83], and is essentially Bayesian IRL [84], with the adjustment that, since our belief
space is simple the configuration space, maintaining a particle representation of the full belief
is tractable.

Ergonomic Handovers

Ideally, a robot would allow you the most comfortable configuration options possible. Ex-
isting work focuses on selecting object handover positions [18, 54, 56, 60] or poses [52, 53, 55,
57–59,61] which accomplish this.

Previous work uses a wide variety of metrics to compare the feasible human grasp con-
figurations allowed by a robot’s chosen handover. Examples include predefined ergonomic
costs [18, 52, 60], proximity of the object to the human’s body [56, 60], visibility of the ob-
ject [56,60], manipulability at a given grasp configuration [58,59] or simply the total number
of grasp configurations available to the human given a particular handover pose [61,69].

4.3 Learning Ergonomic Cost

We pose the ergonomic cost learning problem as one of learning from implicit queries, which
results in human demonstrations. Suppose a robot hands an object to a person using a
grasp gR and at a pose Thand. We’ll call the tuple (gR, Thand) the robot’s action, i.e the
query. This action, in combination with the kinematic structure of the human’s arm and the
object’s feasible grasp regions, induces a set of feasible human grasp configurations Qfeas,
which we’ll sometimes write as a function of the robot’s action Qfeas(gR, Thand). When the
human is presented this robot action, they choose a single grasp configuration qH ∈ Qfeas,
which is our observation or label. Given multiple action-observation pairs, we train a model
of P (qH |Qfeas), which is the probability that the human will choose a particular qH ∈ Qfeas

when the robot takes an action (gR, Thand) that results in the feasible set Qfeas.

Feasible Set Computation

We represent the set of all feasible human grasps GH on the object being handed off as a
Task Space Region (TSR) [63], where GH ⊂ SE(3). This TSR is discretized to produce a
finite set of all feasible grasps GH , {gH1, . . . , gHN}. Note that while we specify the TSRs
for each object manually here, they could just as easily be generated by a simulator which
evaluates possible grasps for force closure, a database of feasible object grasps, or many other
graspable region representations. TSRs are computationally convenient, and the fact that
we can derive the TSRs from many other possible graspable region representations allows
us to abstract away the details of the specific representation, and focus on the kinematic
constraints induced by the the available grasp regions.

For each grasp gHi ∈ GH , we can compute a set of inverse kinematics (IK) solutions Qfeas,i

which allow the human to reach the specified grasp. We collect all the IK solutions for all
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object grasps into a set Qfeas =
⋃N
i=0 Qfeas,i. As mentioned above, we’ll abstract away this

process by simply writing the feasible set as a function of the robot’s action Qfeas(gR, Thand).

Probabilistic Model

Given a set Qfeas of feasible human arm configurations, we seek a model P (qH |Qfeas), which
gives the probability that a given person will select any of the individual grasps qH ∈ Qfeas.

We structure this model with an assumption: we assume that the human is approximately
rational, and that the likelihood of them selecting a configuration decreases exponentially as
the ergonomic cost of that configuration increases:

P (qH) ∝ e−αCergo(qH). (4.1)

In general, Cergo can be any function which maps configurations to scalar costs. The
methods we present could estimate any parametrization of such a function. Nonetheless,
to experiment with the methods, we must commit to a parametrization. We choose an
intuitive one: we parametrize cost as squared distance from some neutral arm configuration
q∗H that captures the most comfortable configuration for the person, but measure distance
with respect to an inner product W which is not necessarily Euclidean:

Cergo(qH , λ) , (qH − q∗H)ᵀW (qH − q∗H). (4.2)

In our experiments, we assume for simplicity (in order to lower the number of parameters
we need to estimate) a diagonal weight matrix W = diag(w). This captures preferences in
moving certain joints away from the neutral configurations more than others (e.g. it might
require more effort to displace the shoulder by 0.5 rad than the wrist by the same amount).
We collect these parameters into a single parameter vector λ , [q∗H , w] which the robot needs
to estimate by interacting with the human.

Given a known λ and a set of feasible arm configurations Qfeas, the resulting probability
of the human choosing a given configuration qH takes the form of a Boltzmann distribution:

P (qH |Qfeas, λ) =
e−Cergo(qH ;λ)∑

q̂H∈Qfeas e
−Cergo(q̂H ;λ)

(4.3)

Importantly, this distribution normalized over all other configurations that the person could
have chosen.

Bayesian Belief Updates

We start with a generic, uncertain belief P (λ)0 over the human’s cost function parameters.
Our goal is to iteratively refine this belief as we collect more training data. Our technique
could be used across a population to learn an average ergonomic cost, or for an individual
to personalize the ergonomic cost to their preferences.
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Because the beliefs over possible cost function parameters produced by our training ex-
amples are potentially quite complex, we use a particle filter to perform belief updates. This
enables us to represent arbitrarily complex beliefs without being constrained by the form of
a parameterized distribution.

To perform a single belief update, the robot chooses an action (gR, Thand), which induces
a set of feasible human configurations Qfeas(gR, Thand). We then observe the human’s choice
qH . Our complete training example is then the tuple (qH , Qfeas). We update our prior belief
P (λ) with the training example to give a posterior P (λ|qH , Qfeas) by applying Bayes’ Rule:

P (λ|qH , Qfeas) ∝ P (qH |Qfeas, λ)P (λ) (4.4)

Note that the likelihood function P (qH |Qfeas, λ) is equal to the Boltzmann likelihood in
(4.3).

We represent the prior belief at each step as a set of N particles Λ = {λ̃1, . . . , λ̃N}
and corresponding weights Ωλ = {ωλ1 , . . . , ωλI }. Given a new training sample (qh, Qfeas), we

compute the new particle weights Ωλ′ as:

ωλi
′
= ωλi

(
e−Cergo(qH ;λ̃i)∑

q̂H∈Qfeas e
−Cergo(q̂H ;λ̃i)

)
(4.5)

Particles are then resampled to produce final Λ′ and Ωλ′ sets in which all the particle weights
are uniform. Note that the normalization constant in (4.5) is different for each value of i, in
contrast to a more typical particle filter implementation where the normalization constant
is the same for every particle.

Active Query Selection

Suppose we have a menu ofN possible robot actions, which induce feasible sets {Qfeas,1, . . . , Qfeas,N},
and our current belief about the cost function parameters is P (λ). When we present our hu-
man with any of the feasible sets, we’ll observe a training datapoint (qH , Qfeas). Intuitively
though, some queries elicit human responses which are more informative than others. The
active method actively seeks out these queries to present to the human.

If we assume the belief state P (λ) is represented using a set of particles pi with corre-
sponding weights ki, we can compute the Shannon entropy of the belief state H(P (λ)) by
discretizing the belief space into M discrete beliefs using a grid, then applying the standard
definition of entropy:

H(P (λ)) ,
M∑
i=1

P (λi) logP (λi) (4.6)

We can then compute the expected change in entropy E[∆H(Qfeas)] of our belief (i.e.
the information gain) given that we chose a particular query Qfeas:

E[∆H(Qfeas)] = H(P (λ))− Eλ̂∼P (λ)

[
Eq̂H∼P (qH |λ̂) [H (P (λ | q̂H , Qfeas))]

]
(4.7)
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To make the calculation more efficient, we approximate by substituting the maximum like-
lihood value of qH for the inner expectation:

E[∆H(Qfeas)] = H(P (λ))− Eλ̂∼P (λ)

[
H

(
P
(
λ | arg max

qH

P (qH | λ̂), Qfeas

))]
(4.8)

After computing the expected information gain for each feasible set in the menu of pos-
sibilities, we select the one which produces the greatest expected information gain:

Qactive
feas = arg max

Qfeas

E[∆H(Qfeas)] (4.9)

Passive Query Selection

The active query selection algorithm in Sec. 4.3 selects robot actions to maximize information
gain from each query. In contrast, a passive approach selects the action that that minimizes
expected ergonomic cost to the person at each step, i.e. the expected cost of the grasp
configuration the human is most likely to pick, given the robot’s current belief about their
ergonomic cost parameters. The passive approach still gains information at ever step, but
merely as a side effect. This corresponds to separating estimation from control or hindsight
optimization [85, 86], i.e. always planning with the current belief as if the ground truth
will be revealed at the next step, and updating the belief at every step based on the new
observation.

For a given feasible set Qfeas, the expected human ergonomic cost is:

E[Cergo(Qfeas)] = Eλ̂∼P (λ)

[
min

q̂H∈Qfeas
Cergo(q̂H ; λ̂)

]
(4.10)

We then select the feasible set which minimizes the expected ergonomic cost incurred by
the human:

Qpassive
feas = arg min

Qfeas

E[Cergo(Qfeas)] (4.11)

4.4 Experimental Design

We evaluate our active learning algorithm in three separate scenarios: 1) a simulated 2 DoF
planar arm with planar objects, 2) a simulated 7 DoF human arm with real, 3D objects,
and 3) a human user study on a real life object handover task. In the first two simulated
scenarios, we test the algorithm’s ability to recover the known ground truth parameters of
our simulated human’s ergonomic cost function. In the user study, we evaluate the accuracy
with which our learned model can predict the human’s grasp in future handoffs.

We test the learning of both the neutral configuration q∗H and the joint weights w.
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Manipulated Variables

In each scenario, we manipulated the query selection algorithm. In the simulation scenarios,
we compare active, passive, and random algorithms (i.e. choose an object and a configuration
at random). In the human user study, we compare active with passive. We also manipulated
the number of queries allowed, from 1 to 5 for the 2 DoF simulations and the user study,
and from 1 to 10 for the 7 DoF simulations.

Objective Measures

We measure accuracy and training cost – accuracy is most important if we think of this as
a training period with the robot, to be the followed by a lifelong interaction; cost is very
important if we think of this as a continuous interaction, in which the robot needs to learn
without making the person uncomfortable.

We measure the accuracy of the each algorithm’s belief P (λ) over the model parameters,
at every time step (i.e. # of iterations) using the following objective measures:

• P (λ∗): Probability density of the belief at the known ground truth parameter value

• || arg maxP (λ)− λ∗||: Euclidean distance between the ground truth parameter vector
and the mode of our belief

• logL(arg maxP (λ) | qtestH , Qtest
feas): The log likelihood of the mode of our belief, with

respect to a separate test dataset (i.e. test set log likelihood)

The first two measures require us to know the ground truth ergonomic cost function
parameters λ∗, so we evaluate them only for our two simulated experiments.

We also measure training cost:

• E[Cergo(qH)]: The expected ergonomic cost of a query with respect to the ground truth
cost

Subjective Measures

In the user study, we also care about what experience the users prefer, especially in light
of the fact that the difference between passive and active is in optimizing information gain
vs. (greedily) optimizing user comfort. We ask 4 Likert scale questions and a forced choice
(Table 4.1).

Hypothesis

Because the active algorithm is designed to quickly reduce the entropy of the belief, we
hypothesize that it will learn the parameters faster (i.e. have higher accuracy for the same
number of queries, especially when this number is low). However, we also expect that the
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amount of improvement will depend on the set of available queries, and that the passive
algorithm will incur lower true ergonomic cost during training.

4.5 Analysis for a Planar Two DoF Arm

We used a simulated planar 2 DoF arm. To create our training set, we randomly selected
eight task space object shapes (as shown in Figures 4.5 and 4.6 and enumerated all the
IK solutions for a discretized version of the object to yield a menu of eight feasible sets
{Qfeas,1, . . . , Qfeas,8}. The three algorithms – active, passive, and random – selected queries
from this menu.

We repeated the training process a total of 50 times. For each trial, we selected a random
menu of eight queries to make available to the robot. We selected a random ground truth
value q∗H or w to attempt to learn for each trial.

Each of the objective measures was evaluated after every iteration. The test set likelihood
was evaluated on a set of 300 randomly generated objects. Fig. 4.2 shows the results.

The active learning algorithm produced faster learning on all three objective measures,
for both the neutral configuration q∗ and the weights w. This difference was particularly
large between the passive and active algorithms when learning the weights, where the passive
algorithm failed to converge toward the correct belief even after many iterations.

On the other hand, active does suffer a loss in true cost, especially after several queries
when passive has converged to a decent estimate. How important this is depends on the use
case: it is perhaps alright to suffer an initial loss in order to converge to a better cost that
the robot will use for many additional interactions; however, users might not tolerate this
well in certain tasks.
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Figure 4.2: The values of each objective measure vs. the number of training handovers, shown for both neutral configuration (q∗) and
joint weights (w) learning with a simulated planar 2 DoF arm. The active query selection algorithm yields faster learning than the passive
and random algorithms for all three of the objective measures. This difference is particularly marked for learning of the joint weights w
(bottom), where the passive algorithm fails to converge towards an accurate belief even after many iterations.



CHAPTER 4. ACTIVE LEARNING OF HUMAN ERGONOMIC PREFERENCES 74

Ground Truth 𝑞𝐻
∗ Observation 𝑞𝐻 Feasible Set 𝑄𝑓𝑒𝑎𝑠

Likelihood

High Low

Figure 4.3: Synthetic feasible sets shown with the ground truth optimal configuration (green), the simulated
human’s choice (yellow), and the resulting likelihood function (grey). Note how the shape of the feasible set of
configurations completely changes the resulting likelihood function, even as the human’s chosen configuration
is relatively similar in both examples.

Artificial Feasible Sets

These initial results suggest that both methods are better than random query selection, with
the active method learning faster and the passive method incurring less regret.

Next, we investigate what exactly causes the active learning algorithm to consistently
outperform in accuracy. To explore this question, let’s examine the active algorithm’s de-
cisions on the two simple feasible sets from Fig. 4.3. As the figure makes obvious, the
feasible set Qfeas of configurations available to the human has a huge impact on the re-
sulting likelihood function P (q∗H | qH , Qfeas), even if the human’s chosen configuration qH
is similar or identical. When the active query selection algorithm is applied to a menu of
queries containing just these two feasible sets, it makes the decisions shown in Fig. 4.4. The
probability density of the resulting belief after each iteration is shown in grey. Notice how
the active algorithm’s desire to reduce the belief’s entropy causes it to alternate between the
two queries, selecting whichever one will remove the greatest amount of probability mass
from the current belief at each iteration.

Object-Derived Feasible Sets

With this insight about the impact of feasible set shape and size on the resulting likelihood
used to update our belief, let’s return to our original two DoF planar arm scenario. Figures
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Ground Truth 𝑞𝐻
∗

Observation 𝑞𝐻

Feasible Set 𝑄𝑓𝑒𝑎𝑠

Belief Density

High Low

Figure 4.4: Sequence of belief updates when training sets are selected using the active learning algorithm
from the set of two possibilities above. Note how the active learning algorithm alternates between the two
queries so as to remove the maximum amount of probability mass from the belief at each iteration. Because
our model assumes humans are noisy, repeated iterations with the same query will continue to refine our
belief past it’s initial value after the first iteration.

4.5 and 4.6 show examples of the randomly generated task space objects included in the
training sets used to generate the experimental data shown in Fig. 4.2 (bottom row), and
the resulting configuration space feasible sets, ground truth q∗H ’s, simulated human’s chosen
qH ’s, and the likelihood functions resulting from each query and observation.

The highly nonlinear nature of the inverse kinematics map means that seemingly similar
task space objects can create completely different configuration space feasible sets. In addi-
tion, both the shape of the task space objects (Fig. 4.5), and their pose Thand ( Fig. 4.6)
affect the resulting likelihood function. We can see that, in general, configuration space feasi-
ble sets composed of multiple, widely separated disjoint regions produce likelihood functions
with sharp gradients which quickly eliminate large pieces of the belief.

What actually happens when we present the active and passive query selection algorithms
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IK 𝑞1

𝑞2

Ground Truth 𝑞𝐻
∗ Observation 𝑞𝐻 Feasible Set 𝑄𝑓𝑒𝑎𝑠

Likelihood

High Low

Figure 4.5: A collection of example 2D task space objects and their corresponding configuration space
representations. The objects are all centered at the same position, and only their shape varies. Even with
this constraint, the resulting configuration space feasible sets and likelihoods vary widely.

with a menu of feasible sets like the one shown in Fig. 4.5? Fig. 4.7 compares active and
passive. Notice how the active learning algorithm consistently selects training examples with
widely separated, disjoint feasible regions in the configuration space. In contrast, the passive
algorithm prefers feasible sets where at least one of the feasible configurations is near the
mode of the current belief P (q∗H). This is reasonable, as the passive algorithm attempts to
greedily reduce the human’s ergonomic cost, at the expense of slower learning. After the
third iteration, the active learning algorithm’s belief has converged to the correct ground
truth value. In contrast, the passive algorithm’s belief is still somewhat uncertain, and the
algorithm continues to select a query whose resulting likelihood function will not remove the
uncertainty.
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Ground Truth 𝑞𝐻
∗

Observation 𝑞𝐻
Feasible Set 𝑄𝑓𝑒𝑎𝑠

Likelihood

High Low

IK 𝑞1

𝑞2

Figure 4.6: A set of example 2D task space objects and their corresponding configuration space represen-
tations. Every object has the same shape, but they are each positioned at a different random pose. Just
this change in pose creates significant variation between the configuration space feasible sets and likelihoods
generated by each object.

4.6 Analysis for a Seven DoF Human Arm

Our second test scenario used a simulated 7 DoF human arm and real objects. Inspired
by the advantage of objects that induce separate feasible regions, we use a set of bicycle
handlebars, but also a bicycle U-lock which does not have this property.

As in Sec. 4.5, we conducted a total of 50 simulation trials each for the weight and
neutral configuration learning portions of the test. For each trial, we supplied the robot
with a randomly selected menu of eight object handoff poses and grasps. The ground truth
parameters were set to a randomly chosen value, which we attempted to recover. The results
are in Fig. 4.8.
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Ground Truth 𝑞𝐻
∗

Observation 𝑞𝐻

Feasible Set 𝑄𝑓𝑒𝑎𝑠

Belief Density
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𝑃 𝜆 0

Active

Passive

Figure 4.7: Active and passive learning algorithms applied to the same scenario with planar task space
objects and the 2 DoF arm. The active algorithm consistently selects queries with widely separated, disjoint
feasible regions in the configuration space, while the passive algorithm tends to select queries with at least
one feasible configuration close to the ground truth optimal value. The active algorithm’s belief converges
quickly to the ground truth value, while the passive algorithm allows significant uncertainty to remain after
the first three iterations.
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Figure 4.8: The values of each objective measure vs. the number of training handovers, shown for neutral configuration (q∗) learning on a
simulated handoff task with a 7 DoF human arm model.
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As in Sec. 4.5, the active learning algorithm produced consistently faster learning. Par-
ticularly notable was the learning of the joint weights, where the passive algorithm produced
a test set likelihood which was worse than that of the initial belief, but the active algorithm
performed acceptably.

Feasible Set 𝑄𝑓𝑒𝑎𝑠

IK

Task Space Configuration Space

Figure 4.9: Task space sets of human grasp configurations pictured alongside the corresponding configuration
space feasible sets Qfeas. Notice how the bicycle handlebars produce a large configuration space feasible
set with multiple disjoint portions (informative), while the lock produces a much more compact feasible set
(uninformative)

To help explain this, examine Fig. 4.9. It shows both the task space feasible sets and
corresponding configuration space feasible sets for two selected poses of the bike handlebars
and lock. As our earlier trials suggested, the bicycle handlebars, with their two widely
separated grip zones produced a much larger, more dispersed configuration space feasible set
than the bike lock. Active learning exploits this.
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4.7 User Study

Simulation enabled us to tease out interesting aspects of the passive and active approaches,
but we still need to study how well these methods perform with real people. We thus
conducted a user study with a real handover task.

The handover task used the same bike handlebar and lock objects from the previous
section. We selected a menu of robot queries containing four poses of the handlebars and
four poses of the lock. We attached rubber grips to both objects to limit the feasible grasps
on each to two distinct regions (as shown on the left side of Figure 4.9).

Our study consisted of three phases: two training and one test. In the first phase, the
robot conducted five iterations of training using the active learning algorithm. In the second
phase, five iterations of the passive algorithm were performed. In the third phase, each of
the two objects was presented to the participant at eight different poses, for a total of 16
testing examples.2

The performance of the two algorithms is shown in Fig. 4.10. The active learning algo-
rithm consistently yielded a higher likelihood on the test dataset than the passive algorithm
for the first two training iterations. After this, the two algorithms were close to identical
in performance. This suggests that the active algorithm successfully selected initial training
queries which helped it to quickly identify the human’s ergonomic model.

Although both training algorithms had access to both the bike handlebars and the bike
lock, the active algorithm selected the handlebars exclusively, while the passive algorithm
selected only the lock. This is intuitively reasonable: The handlebars induce a large, frag-
mented configuration space feasible set, which yields informative human responses. The lock
produces a small, compact set, which is much less informative, but makes it easy for the
robot to guarantee that whichever grasp the human chooses will be reachable comfortably.

As shown in Table 4.1, participants had a slight preference for the passive learning algo-
rithm, but found both just as physically easy.

4.8 Discussion

We formulated ergonomic cost learning as an online estimation problem based on implicit
physical queries from the robot. We compared a passive and an active learning approach.
In simulation, we found that the active method leads to much faster learning and higher ac-
curacy, but sacrifices user comfort during learning. We also discovered that active learning
works best when the object that the robot is handing, combined with the grasping con-
figuration it chooses, leads to feasible choices for the human that have different connected
components. With real people, the differences were more subtle: active learning is signif-

2Since we weren’t able to measure the human participants’ arm configurations accurately in real time,
we instead just provided the active and passive algorithms with the human’s chosen grasp region (i.e. which
handle they grabbed). The training example qH was then taken to be the most likely configuration given
that grasp, according to a previously specified model.
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Figure 4.10: The user study asked subjects to select one grasp configuration qH from a set of two available
grasps Qfeas in each training query. The passive learning algorithm induced many participants to choose
identical labels qH , and learned only two distinct neutral configurations q∗H from the set of five subjects.
The active algorithm’s informative queries elicited a wider variety of behavior, yielding four distinct q∗H ’s.
Measured by the test set log likelihood, active learning consistently produced a better model fit after the first
one to two iterations, after which the passive algorithm’s model had a comparable likelihood. This result is
similar to the 7 DoF simulation results in Fig. 4.8. The simulation results suggest that the active vs. passive
performance difference may be larger for weight (w) learning.

icantly more accurate in the beginning, but passive converges to a close accuracy. Users
choose the comfort of passive, but do not rate it as physically easier to work with.

Above all, what is exciting is that the user study suggests that this online estimation
works with real people, in that it improves how well the robot can predict what a real user
would do in new situations. An active technique will make it more likely that the robot
converges to a better model, but the extent to which that matters in practice remains an
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Table 4.1: Post-Study Survey Results

Statement Active Passive

“I prefer Program ” 3.4 4.4
“The robot was helpful when

running Program ” 4.6 4.6
“It was physically easy to do the task when

the robot was running Program ” 4.8 4.8
“The robot running Program

handed me objects in a way
that made the task easier” 4.8 4.6

“If you had to choose a program you prefer,
which would it be?” 20% 80%

open question, with passive techniques also performing well overall.
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Chapter 5

Discussion and Concluding Remarks

The past three chapters each presented a separate case study examining personalized human
modeling as applied to robot-human object handovers. We first examined how personalized
human models could be used to plan for feasibility (Chapter 2). Next, we added predictive
models of human grasp choice to our human kinematic models to generate ergonomically
optimal actions (Chapter 3). Finally, we investigated how our predictive action choice models
could be learned online using active information gathering techniques (Chapter 4).

This section summarizes the main conclusions from each of the three case studies, and
concludes with a discussion of the significant challenges and limitations which still remain
as well as directions for future work.

5.1 Takeaways

Chapter 2: Personalized modeling allows co-robots to seamlessly adapt to
human collaborators with different physical abilities

A human’s physical abilities may differ from average (due to natural variation, age, injury, or
disability) in ways that make a single, generic human model inadequate for planning feasible
interactions with the entire range of humans a collaborative robot may encounter.

Supplying the robot with personalized human kinematic models which capture a human’s
range of motion can allow the robot to automatically adapt its actions to each human’s
individual constraints. These personalized models can be learned from very little training
data.

Chapter 3: Giving co-robots knowledge of humans’ noisy, imperfect tendencies
allows them to more effectively optimize tasks for human comfort and safety

Simply assuming that human collaborators will always choose a globally ergonomically opti-
mal action if one is made available is problematic for two reasons: First, humans are often not
effective global optimizers, and instead make myopic decisions based on immediate comfort
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that may uncomfortable or infeasible actions to complete the task later. Second, we can’t
guarantee that the human will pick any particular action, because human action choice is
noisy.

We can address both these problems by having our co-robots optimize for total human
ergonomic cost in expectation. Optimizing total cost allows us to nudge even myopic humans
toward action choices which result in globally optimal ergonomics in multi part tasks. Do-
ing this optimization in expectation, over a probability distribution of the available human
actions, lets us maximize the likelihood of the human choosing a low cost action even if we
can’t say which exact action they’ll pick.

Chapter 4: Models of human action feasibility/preference can be learned online
by co-robots

Giving co-robots personalized models of human action feasibility and preference can allow
significant increases in safety and comfort for the robots’ human collaborators. Manually
constructing these personalized models for every individual is cumbersome and impractical
though.

We can mitigate this problem by learning human preference models online during in-
teraction with co-robots. This learning makes use of implicit queries, where the robot’s
action itself is the query, and the human’s natural response is the label. This learning can
start with an average belief learned over a whole population of people, and refine this belief
during interaction to reflect an individual’s unique preferences. Active learning techniques
can accelerate this learning by selecting robot queries which produce maximally informative
human responses.

5.2 Challenges and Future Directions

This work has many limitations, which will necessitate more work before these techniques
can be applied to robots in real applications. Examples include:

Our personalized kinematic model estimation and tracking algorithm in Chapter 2 relies
on data from a motion capture system, and requires the joint that each marker is attached
to be specified manually. Motion capture is impractical in most home, industrial, and other
application settings, and manual specification of marker assignments is too burdensome for
the average user. The system could be adapted to use data from consumer-grade sensors such
as the Kinect though. Even if motion capture is still used, approaches in the literature suggest
that the marker/limb assignments could be generated automatically, rather than prespecified
[87]. This automatic identification of kinematic structure could likely be extended to the
number and location of kinematic degrees of freedom as well.

The ergonomic cost function we use throughout this dissertation – squared weighted
configuration space distance – is somewhat ad hoc. It is adequate for differentiating between
obviously unergonomic arm postures (arm over head, arm fully outstretched) and more
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comfortable postures (arm by side with elbow flexed 90 degrees). For postures which are
not so obviously different, however, its predictions are less reliable. Cost functions which
more accurately reflect humans’ true behavior, whether they simply have more model degrees
of freedom or are more carefully derived from biomechanical data, should produce strictly
superior results with any of the work here when substituted for our weighted distance cost.

In Chapters 3 and 4, the optimization used to find the minimum expected ergonomic cost
uses simple brute force enumeration of every possible human and robot inverse kinematics
solution. This is very slow, taking on the order of 15 minutes to solve for one optimal handoff,
and precludes the use of these methods in online planning situations without precomputed
solutions. In addition, enumerating the possible IK solutions requires us discretize a solution
space that is, in general, a continuous manifold containing infinitely many solutions. This
limits the precision of our final solution, and also requires us to implicitly choose a metric
over the configuration space, in order to specify how far away each discrete IK solution
should be from the surrounding solutions. A more elegant solution would pose this problem
as a numerical optimization with continuous valued decision variables, in the same fashion
as numerical inverse kinematics. This is challenging though, because the expected total cost
minimization objective function considers the cost of all feasible configurations, not just one.

Aside from these limitations of the methods presented here, we’ve contemplated two other
future extensions of this work seem that seem promising:

While our work models the kinematic structure of humans collaborating with robots,
other objects in the environment have kinematic structure as well, like furniture in a home,
cardboard packaging in a warehouse, or even patients in a hospital being lifted by nurses
rather than moving under their own power. In all of these situations, the difference with our
work is that the kinematic chain is underactuated. Some or all their degrees of freedom are
moved only by forces from the environment, not controlled by individual muscles or motors,
as we assumed here. Because the constraints on the motion of the articulated object’s links,
as well as the forces it exerts on the environment, are dependent upon its kinematic structure
and current configuration, our kinematic modeling formalism is a natural fit for analyzing
collaborative manipulation of these objects.

Another obvious extension is to consider not just static configurations as we did here,
but full trajectories for collaborative motion. Both our analysis of motion constraints using
personalized kinematic models and our modeling of human ergonomic cost using configura-
tion cost functions extend nicely to this regime. The manipulator Jacobian of the combined
human-robot system specifies the feasible directions of motion at any given configuration,
and the static configuration cost can simply be integrated over an entire trajectory to give
a running ergonomic cost.

In conclusion though, regardless of which specific applications collaborative robots find
use in and which technologies are used to realize those robots, the features of human collab-
orators that we have explored in this dissertation will remain fundamental: 1)Humans are
physically different and co-robots should model and adapt to these differences, and 2)hu-
mans are noisy, and co-robots will only ever be able to predict human actions, not directly
control them. The work here represents a simple initial investigation into how to address
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these fundamental problems in future human-robot collaborative systems.
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