
Queries on Compressed Data

Anurag Khandelwal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-141
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-141.html

November 2, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Queries on Compressed Data

by

Anurag Khandelwal

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Joseph Hellerstein

Professor Marti Hearst

Fall 2019

Queries on Compressed Data

Copyright 2019
by

Anurag Khandelwal

1

Abstract

Queries on Compressed Data

by

Anurag Khandelwal

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Low-latency, high-throughput systems for serving interactive queries are crucial to today’s
web services. Building such systems for today’s web services is challenging due to the massive
volumes of data they must cater to, and the requirement for supporting sophisticated queries
(e.g., searches, filters, aggregations, regular expression matches, graph queries, etc.). Several
recent approaches have highlighted the importance of in-memory storage for meeting the
low-latency and high-throughput requirements, but these approaches are unable to sustain
this performance when the data grows larger than DRAM capacity. Existing systems thus
achieve these goals either by assuming large enough DRAM (too expensive) or by supporting
only a limited set of queries (e.g., key-value stores).

In this dissertation, we explore algorithmic and data structure-driven solutions to these
system design problems. We present Succinct, a distributed data store that addresses these
challenges using a fundamentally new approach — executing a wide range of queries (e.g.,
search, random access, range, wildcard) directly on a compressed representation of the input
data — thereby enabling efficient execution of queries on data sizes much larger than DRAM
capacity. We then describe BlowFish, a system that builds on Succinct to enable a dynamic
storage-performance tradeoff in data stores, providing applications the flexibility to modify
the storage and performance fractionally, just enough to meet the desired goals. Finally, we
explore approaches that enable even richer query semantics on compressed data, including
graph queries using ZipG, a memory efficient graph store, and regular expression queries
using Sprint, a query rewriting technique.

i

To my father.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Limitations of Existing Approaches . 2
1.2 Thesis Overview . 3
1.3 Outline and Previously Published Work . 5

2 Enabling Queries on Compressed Data 6
2.1 Succinct Interface . 8
2.2 Querying on Compressed Data . 9
2.3 Multi-store Design . 14
2.4 Implementation . 17
2.5 Evaluation . 18
2.6 Related Work . 24
2.7 Summary . 25

3 Dynamic Storage-Performance Tradeoff for Compressed Data 26
3.1 Applications and summary of results . 27
3.2 BlowFish Techniques and Contributions . 28
3.3 BlowFish Overview . 28
3.4 BlowFish Design . 31
3.5 Evaluation . 37
3.6 Related Work . 46
3.7 Summary . 47

4 Interactive Queries on Compressed Graphs 48
4.1 Data model and Interface . 51
4.2 ZipG Design . 52
4.3 ZipG Implementation . 60

iii

4.4 Evaluation . 64
4.5 Related Work . 75
4.6 Summary . 75

5 Executing RegEx Queries on Compressed Data 76
5.1 Preliminaries . 78
5.2 Need for Sprint . 79
5.3 Sprint . 84
5.4 Related Work . 94
5.5 Summary . 95

6 Conclusions and Future Work 96
6.1 Future Work . 97

A Succinct Data Structures 99
A.1 Compression . 99
A.2 Query Algorithms . 105

Bibliography 108

iv

List of Figures

1.1 Existing approaches expose a hard tradeoff between scale, performance and func-
tionality. 2

2.1 Succinct interface . 8
2.2 Semi-structured data in Succinct . 9
2.3 Example for AoS, AoS2Input . 10
2.4 Example for Input2AoS . 11
2.5 Reducing space usage of AoS . 12
2.6 Reducing space usage of AoS2Input . 12
2.7 Reducing the space usage of Input2AoS . 13
2.8 Two-dimensional NextCharIdx representation 14
2.9 Succinct multi-store architecture . 14
2.10 Succinct system architecture . 16
2.11 Succinct storage-footprint . 20
2.12 Succinct throughput . 21
2.13 Succinct latency I . 22
2.14 Succinct latency II . 22
2.15 Succinct throughput vs. latency . 23

3.1 BlowFish architecture . 29
3.2 Main idea behind BlowFish . 29
3.3 Layered Sampled Array (LSA) example . 31
3.4 Different queuing behaviors in BlowFish . 37
3.5 BlowFish storage-throughput tradeoff curve . 38
3.6 BlowFish storage-throughput tradeoff curve for other workloads 39
3.7 Storage and bandwidth efficient data repair . 39
3.8 Handling spatial skew . 40
3.9 Handling temporal skew for spiked workloads 42
3.10 Handling temporal skew for gradual workloads 43
3.11 Evaluation of BlowFish query scheduling . 45

4.1 NodeFile layout in ZipG . 53

v

4.2 EdgeFile layout in ZipG . 53
4.3 Supporting updates using update pointers . 55
4.4 Function shipping in ZipG . 57
4.5 Data fragmentation due to graph updates . 60
4.6 ZipG storage footprint . 65
4.7 ZipG single server throughput for TAO workload 65
4.8 ZipG single server throughput for LinkBench workload 67
4.9 ZipG single server throughput for Graph search workload 68
4.10 ZipG distributed cluster throughput . 70
4.11 ZipG latency for Regular Path Queries . 72
4.12 ZipG latency for BFS traversal . 74
4.13 ZipG join performance . 75

5.1 Performance for executing RegEx using Black-box approach 77
5.2 RegExTree example . 79
5.3 Example for Black-box RegEx execution . 80
5.4 Pull-Up Union transformation . 83
5.5 Other Sprint transformations . 84
5.6 Sprint storage footprint comparison . 88
5.7 Sprint performance comparison against existing systems. 88
5.8 Sprint performance on Apache Spark . 88
5.9 Sprint vs. Black-box approach for RegEx . 90
5.10 Storage footprint for Sprint-supported data structures 91
5.11 Performance for Sprint-supported data structures (Wikipedia Dataset) 92
5.12 Performance for Sprint-supported data structures (Pfam Dataset) 92
5.13 Sprint latency for supported data structures . 93
5.14 Why Sprint works . 94

A.1 Lookups on AoS2Input and Input2AoS . 100
A.2 Sampling AoS2Input and Input2AoS . 100
A.3 Rank and select data structures . 101
A.4 Skewed wavelet tree . 104

vi

List of Tables

2.1 Properties of individual stores in multi-store . 15
2.2 Datasets and workloads for Succinct evaluation 19

3.1 Storage & bandwidth required for data repair during failures 28

4.1 ZipG API . 50
4.2 TAO and LinkBench workloads . 62
4.3 Graph search workload . 62
4.4 Datasets used in ZipG evaluation . 64
4.5 Graph datasets that fit in memory . 66

5.1 Supported operator classes. 79
5.2 Protein signature RegEx queries . 85
5.3 Text analysis RegEx queries . 86

vii

Acknowledgments

I am greatly indebted to my advisor, Ion Stoica. Whether it came to developing skills required
for building large-scale systems, understanding the big picture in order to do impactful
research, or working through the many personal problems that came in the way, I could
always rely on Ion. I am also very grateful to Rachit Agarwal, who somehow managed to
pull-off being both an unofficial co-advisor and a close friend to me. Night or day, I could bug
Rachit with a research problem (or a personal one) and he would always be there. Having Ion
and Rachit guide me through my PhD has been amazing — I am proud to have a research
style that has been shaped by both of them.

I am also also thankful to my dissertation and qualification committee members Joseph
Hellerstein, Marti Hearst, and Joseph Gonzalez; their feedback has been invaluable in not
only improving my dissertation, but in me becoming a better researcher in the process.

My PhD would not have been possible without my amazing collaborators. I have been
extremely lucky to have worked with some of the most motivated and brilliant people at
Berkeley: Zongheng Yang, Evan Ye, Lloyd Brown, Ujval Misra, Yupeng Tang, Eric Jonas,
Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Qifan Pu, Vaishaal Shankar, Joao
Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, and David
Patterson. The open research environment at Berkeley has also allowed me to work with
extraordinary external collaborators: Aditya Akella at University of Wisconsin-Maddison,
and Thomas Ristenpart, Paul Grubbs, Marie-Sarah Lacharité and Lucy Li at Cornell Tech.
I also spent a summer at Microsoft Research Cambridge mentored by Dushyanth Narayanan,
Aleksandar Dragojevic and Miguel Castro. All of my collaborators have shaped my research
as well as my personality in unique and significant ways, and I am thankful to them for it.

I would also like to thank my mentors prior to starting graduate school: Seny Kamara
and Navendu Jain at Microsoft Research Redmond, and Niloy Ganguly and Indanil Sengupta
at Indian Institute of Technology, Kharagpur. Seny and Navendu were mentors to me on
my first research project during a summer internship: they were the reason I discovered my
love for research, and decided to apply for graduate school (with their guidance). Niloy and
Indranil, my advisors during undergraduate studies, were a constant source of encouragement
and support when I was deciding to pursue higher education.

Besides collaborators and mentors, my friends have had a profound impact on my life
during graduate school. Despite being thousands of miles away, Devvrath Bhartia has been
my rock, the best friend one could ask for. Thank you, Dev, for always being there. I could
also count on Nitesh Mor, Moitrayee Bhattacharyya and Tathagatha Das (TD) to celebrate
my joys and drown my sorrows. While they eventually moved on to great places, my life in
Berkeley would not have been as enjoyable without Nikunj Bajaj, Sreeta Gorripaty, Neeraja
Yadwadkar, Radhika Mittal, Saurabh Gupta, Shubham Tulsiyani, Bharath Hariharan, Vivek
Chawda, Gautam Kumar and Qifan Pu. I also relied on a lot of help from my coworkers at
Berkeley. I would be remiss if I did not mention the selfless hours Aurojit Panda, Philipp
Moritz and TD put in helping me understand inner workings of their systems for my projects.
I have also relied on help from the administrative and technical staff at Berkeley — Kattt

viii

Atchley, Boban Zarkovich, Jon Kuroda and Shane Knapp — on innumerable occasions; they
have always been patient and kind with all my (often unreasonable) requests.

This thesis is dedicated to my family; they have been unwavering in their support, without
which my PhD would not have been possible. My parents, Santosh and Sarla, have not just
been supportive of me pursuing my dreams, but have strived to provide the right environment
for me to do so, often at their own expense. My brother, Abhishek, has been my role model:
I have always aspired to his level of perfectionism. Whether I was a room away or thousands
of miles away, my sister, Ritu, always made sure I felt loved. My bhabhi Shikha and my jeeju
Sagar, have helped me with sage advice whenever I have been in a difficult situation. My
tiny nephews and nieces, Aarav, Vanya and Vedant, have always managed to bring a smile
to my face at any hard moment during graduate school.

Last but not least, words are not enough to express my gratitude for Shromona Ghosh,
my constant companion throughout my days at Berkeley. Thank you for being in my life.

1

Chapter 1

Introduction

The need for interactively querying large volumes of data is ubiquitous across a wide range
of cloud applications and web services, ranging from social networks [61, 193, 114], search
engines [80, 25, 203], recommender systems [157, 158, 3] to genomics [105] and bioinformat-
ics [132, 75, 150]. These applications have therefore come to rely heavily on an equally diverse
set of distributed data stores, including document stores [44, 130], key-value stores [125, 63,
154, 142, 112, 111, 50, 55], multi-attribute NoSQL stores [102, 36, 42, 59, 175, 57], relational
databases [128, 140, 147, 134], and a varied assortment of specialized stores [14, 188, 10, 189,
136].

While the application requirements may vary with their specific domains, they tend to
center around three familiar aspects: scale, performance, and functionality. Scale in data
stores typically corresponds to the massive volumes of data that they must serve queries
over. For instance, Google’s search index contains over 60 trillion webpages and is well
over 100s of petabytes in size [87]; Facebook stores over 1.5 petabytes of profile information
across more than 1 trillion records in its graph store [30]; Baidu’s storage exceeds over
2000 petabytes [51]. At the same time, since these services are user-facing services, the
backing data stores must meet stringent performance requirements, typically stated as low-
latency and high-throughput constraints. For instance, Facebook [16] and Twitter [187]
report throughput requirements of over 20 million queries per second, with millisecond-level
latency constraints on the 99.9th and 99.99th percentiles even under heavy spikes in query
load. Finally, queries to data stores, whether directly issued by a user or generated by the
service in response to a user request, are increasingly sophisticated. These queries range
from simple accesses to the data (e.g., fetching individual records) to searches [87, 25], filters
based on complex constraints [59, 57], regular expression matches [156, 57, 145] and even
graph queries [30, 136, 189].

The design of data stores that meet the threefold requirements of scale, performance and
functionality is challenging. For instance, several recent approaches [204, 55, 142, 111] have
highlighted the importance of in-memory storage for satisfying the stringent low-latency and
high-throughput performance constraints. How do we satisfy these constraints when the
volume of data being queried grows larger than the DRAM capacity? Moreover, several

CHAPTER 1. INTRODUCTION 2

Scale Performance

Functionality

In-memory KV Stores [154, 125],
Specialized Databases [188, 10]

Compute Platforms [204, 49],
Query Engines [12, 13]

Traditional
Databases [140, 128, 147]

Figure 1.1: Existing approaches expose a hard tradeoff between scale, performance and functionality.

production workloads experience performance degradation due to skew in query load distri-
bution even when the data fits completely in DRAM. These issues are amplified when the
query load changes with time, leading to high variability in the performance. Finally, the
complex access patterns of sophisticated queries such as graph traversals and regular expres-
sion matches effectively nullify the advantages of conventional systems approaches like data
locality. Figure 1.1 shows that many existing approaches achieve two of the three desirable
properties, but not all three.

Our key insight in this dissertation is that it is possible to address the aforementioned
challenges by operating on compressed data in memory. In particular, we explore the design of
practical systems that employ a fundamentally approach: executing a wide range of complex
queries directly on compressed data to enable rich functionality with performance for data
sizes much larger than DRAM capacity. We also show that enabling a dynamic trade-off
curve between storage footprint and query performance can allow us to handle dynamic,
skewed query workloads. Finally, we demonstrate that these techniques can be extended
to complex data types (e.g., graphs) and query workloads (e.g., regular expression queries),
extending their benefits to a wide range of modern cloud applications. In the remainder of
this chapter, we outline the shortcomings of existing approaches, followed by an overview of
the main techniques developed in this thesis to address these shortcomings.

1.1 Limitations of Existing Approaches

The need for scale, performance and functionality in distributed data stores has not only
driven a long line of research in academia [55, 142, 111, 112, 59, 35, 121, 63], but also
received much focus in industry [130, 102, 57, 154, 125, 175]. In this section, we outline
two aspects in which existing data stores are unable to meet these three requirements (see
Figure 1.1).

1.1.1 Querying data larger than DRAM capacity

The techniques employed by data stores to support queries on large datasets can broadly
be grouped into two categories: index-based approaches, and scan-based approaches. Index-

CHAPTER 1. INTRODUCTION 3

based approaches [102, 130, 57] maintain additional data structures that speed-up queries
such as searches and filters, and provide low latency and high throughput when stored in
memory. However, the main drawback of indexes is their high memory footprint. Tradi-
tionally, index-based systems resort to spilling over data to significantly slower secondary
storage when data grows larger than memory capacity, resulting in higher query latency and
reduced throughput. On the other hand, scan-based approaches like columnar stores [103,
181] simply scan the data for every query. While this reduces the storage footprint consider-
ably, scan-based approaches are typically associated with low throughput since they require
accessing data on all of the machines in a cluster for every query. As a consequence, most
existing systems either assume availability of sufficient DRAM capacity to store indexes, or
compromise on query functionality by storing few or no indexes (e.g., in-memory key-value
stores [154, 55, 142, 111]) to achieve low latency and high throughput.

1.1.2 Handling dynamism in query workloads

Distributed data store scale to large data volumes by partitioning their data across multiple
shards, which are then spread across a cluster of servers. Dynamism in query workloads
arise from two sources: due to skew in query load distribution across these shards, and
due to variation in skew across the shards over time. In order to handle query skew, the
conventional wisdom in data stores is to replicate the more popular shards, such that, the
number of replicas allocated to a shard is proportional to its query load [9]. Unfortunately,
this approach suffers from a number of issues. First, replication-based approaches are coarse-
grained in memory allocation, and lead to wastage of DRAM capacity. This, in turn, can
lead to worse performance when DRAM capacity is limited and data must now spill over
to secondary storage. Second, since creating new replicas and transferring them to a less
loaded server takes non-trivial amount time, these approaches do not adapt fast enough to
changes in query workloads in real-world scenarios. In contrast, approaches that replicate
data at finer-granularities (e.g., per-record or per-object replication [202, 198]) to address
these issues, need to maintain complex fine-grained metadata (i.e., at the granularity of
replication), which can add both performance (e.g., under rapid changes in query workloads)
as well as storage overheads (e.g., for datasets with many small records).

1.2 Thesis Overview

In this dissertation, we attempt to find data structure and algorithm driven solutions to
the systems challenges outlined above. We focus on three main approaches to overcome the
shortcomings of existing approaches: enabling queries on compressed data, exposing a dy-
namic storage-performance tradeoff in data-stores, and exploiting the compression structure
to enable richer query semantics on compressed data.

CHAPTER 1. INTRODUCTION 4

1.2.1 Enabling Queries on Compressed Data

We address the problem of querying datasets larger than DRAM capacity using a fundamen-
tally new approach — enabling a wide range of queries directly on a compressed representa-
tion of the data. We incorporate this approach in a distributed system called Succinct, which
allows applications to push as much as an order of magnitude larger volume of data into
memory, while supporting low-latency queries by avoiding overheads of data decompression
during query execution. Succinct is able to support queries as sophisticated as random access
and arbitrary substring search by embedding indexing functionality within its compressed
representation.

1.2.2 Dynamic Storage-Performance Tradeoff for Compressed
Data

We build on Succinct’s compression techniques to address the problem of performance degra-
dation under skew. In contrast to traditional replication-based techniques that expose a
coarse-grained tradeoff between storage and performance, our approach, BlowFish, provides
applications the flexibility to trade-off storage footprint for performance (and vice versa) in
a fine-grained manner, just enough to meet the requirements for data under skew. Blow-
Fish achieves this using novel data structures atop Succinct compressed representation, that
enable dynamic, fine-grained adaptation of its compression factor. In fact, this dynamic,
fine-grained storage-performance tradeoff in BlowFish provided a new “lens” to revisit sev-
eral classical systems problems, ranging from adaptation to time-varying workloads to data
repair during failures.

1.2.3 Richer Query Semantics on Compressed Data

Finally, we push the boundaries of queries that can be supported directly on compressed
data in two specific directions, building on Succinct and BlowFish techniques. The first of
these is ZipG, a distributed memory-efficient graph store that enables interactive queries
on compressed graphs. ZipG uses a novel graph layout that transforms the input graph
data into a flat unstructured file layout, which admits memory-efficient representation using
compression techniques from Succinct. In addition, this layout, along with some metadata,
supports efficient implementation of expressive graph queries from a wide range of real-world
workloads (e.g., Facebook TAO [30], LinkBench [15] and Graph Search [91]).

The second, Sprint, is a query rewriting technique that enabled efficient execution of regu-
lar expression queries on compressed data. Sprint exploits the performance characteristics of
basic query primitives supported by Succinct, such as search and random access into data, to
re-organize query plans for regular expression execution with the goal of latency-optimality.
As such, this allows Sprint to achieve both memory-efficiency as well as low-latency for reg-
ular expression query execution. While we have implemented Sprint on Succinct, the query

CHAPTER 1. INTRODUCTION 5

rewriting techniques are general enough to work with other compressed and uncompressed
data structures.

1.3 Outline and Previously Published Work

This dissertation is organized as follows. Chapter 2 introduces Succinct, a distributed data
store that enables a wide range of queries directly on compressed data. Chapter 3 describes
BlowFish, a system that builds on Succinct’s compressed representation to admit a smooth
tradeoff between storage and performance for point queries. The next two chapters focus on
enabling richer query semantics on Succinct: Chapter 4 describes ZipG, a memory efficient
graph store atop Succinct, and Chapter 5 presents Sprint, a query rewriting technique for
efficiently executing regular expression queries on Succinct data representation. We conclude
with our contributions and some possible directions for future work in Chapter 6.

Chapter 2 revises material from [4]1. Chapter 3 revises material from [95]1. Chapter 42

revises material from [97]. Finally, Chapter 5 includes material from [96]1.

1Work done in collaboration with Rachit Agarwal
2Work done in collaboration with Zongheng Yang, Evan Ye and Rachit Agarwal

6

Chapter 2

Enabling Queries on Compressed
Data

High-performance data stores, e.g. document stores [44, 130], key-value stores [125, 63, 154,
142, 112, 111, 50, 55], relational databases [128, 140, 147, 134] and multi-attribute NoSQL
stores [102, 36, 42, 59, 175, 57], are the bedrock of modern cloud services. While existing
data stores provide efficient abstractions for storing and retrieving data using primary keys,
interactive queries on values (or, secondary attributes) remains a challenge.

To support queries on secondary attributes, existing data stores can use two main tech-
niques. At one extreme, systems such as column oriented stores, simply scan the data [166,
103]. However, data scans incur high latency for large data sizes, and have limited through-
put since queries typically touch all machines1. At the other extreme, one can construct
indexes on queried attributes [130, 102, 57]. When stored in-memory, these indexes are not
only fast, but can achieve high throughput since it is possible to execute each query on a
single machine. The main disadvantage of indexes is their high memory footprint. Evalu-
ation of popular open-source data stores [130, 102] using real-world datasets (§2.5) shows
that indexes can be as much as 8× larger than the input data size. Traditional compression
techniques can reduce the memory footprint but suffer from degraded throughput since data
needs to be decompressed even for simple queries. Thus, existing data stores either resort to
using complex memory management techniques for identifying and caching “hot” data [125,
63, 130, 102] or simply executing queries off-disk or off-SSD [59]. In either case, latency and
throughput advantages of indexes drop compared to in-memory query execution.

We present Succinct, a distributed data store that operates at a new point in the design
space: memory efficiency close to data scans and latency close to indexes. Succinct queries
on secondary attributes, however, touch all machines; thus, Succinct may achieve lower
throughput than indexes when the latter fits in memory. However, due to its low memory
footprint, Succinct is able to store more data in memory, avoiding latency and throughput

1Most data stores shard data by rows, and one needs to scan all rows. Even if data is sharded by columns,
one needs to touch multiple machines to construct the row(s) in the query result.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 7

degradation due to off-disk or off-SSD query execution for a much larger range of input sizes
than systems that use indexes.

Succinct achieves the above using two key ideas. First, Succinct stores an entropy-
compressed representation of the input data that allows random access, enabling efficient
storage and retrieval of data. Succinct’s data representation natively supports count, search,
range and wildcard queries without storing indexes — all the required information is embed-
ded within this compressed representation. Second, Succinct executes queries directly on the
compressed representation, avoiding data scans and decompression. What makes Succinct a
unique system is that it not only stores a compressed representation of the input data, but
also provides functionality similar to systems that use indexes along with input data.
Specifically, Succinct makes three contributions:

• Enables efficient queries directly on a compressed representation of the input data. Suc-
cinct achieves this using (1) a new data structure, in addition to adapting data structures
from theory literature [82, 162, 164, 163], to compress the input data; and (2) a new query
algorithm that executes random access, count, search, range and wildcard queries directly
on the compressed representation (§2.2). In addition, Succinct provides applications the
flexibility to tradeoff memory for faster queries and vice versa (§2.3).

• Efficiently supports data appends by chaining multiple stores, each making a different
tradeoff between write, query and memory efficiency (§2.3): (1) a small log-structured
store optimized for fine-grained appends; (2) an intermediate store optimized for query
efficiency while supporting bulk appends; and (3) an immutable store that stores most of
the data, and optimizes memory using Succinct’s data representation.

• Exposes a minimal, yet powerful, API that operates on flat unstructured files (§2.1). Using
this simple API, we have implemented many powerful abstractions for semi-structured data
on top of Succinct including document store (e.g., MongoDB [130]), key-value store (e.g.,
Dynamo [50]), and multi-attribute NoSQL store (e.g., Cassandra [102]), enabling efficient
queries on both primary and secondary attributes.

We evaluate Succinct against a number of popular open-source data stores, including Mon-
goDB [130], Cassandra [102], HyperDex [59] and DB-X, an industrial columnar store that
supports queries via data scans. Evaluation results show that Succinct requires 10 − 11×
lower memory than data stores that use indexes, while providing similar or stronger function-
ality. In comparison to traditional compression techniques, Succinct’s data representation
achieves lower decompression throughput but supports point queries directly on the com-
pressed representation. By pushing more data in memory and by executing queries directly
on the compressed representation, Succinct achieves dramatically lower latency and higher
throughput (sometimes an order of magnitude or more) compared to above systems even for
moderate size datasets.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 8

f = compress(file)
append(f, buffer)
buffer = extract(f, offset, len)
cnt = count(f, str)
[offset1, . . .] = search(f, str)
[offset1, . . .] = rangesearch(f, str1, str2)
[[offset1, len1], . . .] = wildcardsearch(f, prefix, suffix, dist)

Figure 2.1: Interface exposed by Succinct (see §2.1).

2.1 Succinct Interface

Succinct exposes a simple interface for storing, retrieving and querying flat (unstructured)
files; see Figure 2.1. We show in §2.1.1 that this simple interface already allows us to model
many powerful abstractions, including the query semantics supported by popular data-stores
like MongoDB [130], Cassandra [102] and BigTable [36]. Succinct therefore enables efficient
queries on semi-structured data as well.

The application submits and compresses a flat file using compress; once compressed,
it can invoke a set of powerful primitives directly on the compressed file. In particular, the
application can append new data using append, can perform random access using extract
that returns an uncompressed buffer starting at an arbitrary offset in original file, and
count number of occurrences of any arbitrary string using count.

Arguably, the most powerful operation provided by Succinct is search which takes as
an argument an arbitrary string (i.e., not necessarily word-based) and returns offsets of all
occurrences in the uncompressed file. For example, if file contains abbcdeabczabgz,
invoking search(f, ‘‘ab’’) will return offsets [0, 6, 10]. While search returns an
array of offsets, we provide a convenient iterator interface in our implementation. What
makes Succinct unique is that search not only runs on the compressed representation but
is also efficient, that is, does not require scanning the file.

Succinct provides two other search functions, again on arbitrary input strings. First,
rangesearch returns the offsets of all strings between str1 and str2 in lexicographical order.
Second, wildcardsearch(f, prefix, suffix, dist) returns an array of tuples. A tuple
contains the offset and the length of a string with the given prefix and suffix, and whose
distance between the prefix and suffix does not exceed dist, measured in number of input
characters. Suppose again that file f contains abbcdeabczabgz, then wildcardsearch(f,
‘‘ab’’, ‘‘z’’, 2) will return tuples [6, 9] for abcz, and [10, 13] for abgz. Note that
we do not return the tuple corresponding to abbcdeabcz as the distance between the prefix
and suffix of this string is greater than 2.

2.1.1 Extensions for semi-structured data

Consider a logical collection of records of the form (key, avpList), where key is a unique
identifier, and avpList is a list of attribute value pairs, i.e., avpList = ((attrName1,

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 9

A1 A2 A3

key1

key2

key3

V11 V12 V13

V21 V22 V23

V31 V32 V33

V11*V12•V13†>

V21*V22•V23†>

V31*V32•V33†>

Attr Delimiter

A1

A2

A3

*

•

†
+ + key→ offset

pointers
+ end-of-record

delimiter (>)

Figure 2.2: Succinct supports queries on semi-structured data by transforming the input data into flat files (see
§2.1.1).

value1),... (attrNameN, valueN)). To enable queries using Succinct API, we encode
avpList within Succinct data representation; see Figure 2.2. Specifically, we transform the
semi-structured data into a flat file with each attribute value separated by a delimiter unique
to that attribute. In addition, Succinct internally stores a mapping from each attribute to
the corresponding delimiter, and a mapping from key to offset into the flat file where
corresponding avpList is encoded.

Succinct executes get queries using extract API along with the key→offset pointers,
and put queries using the append API. The delete queries are executed lazily, similar
to [166, 148], using one explicit bit per record which is set upon record deletion; subsequent
queries ignore records with set bit. Applications can also query individual attributes; for
instance, search for string val along attribute A2 is executed as search(val•) using the
Succinct API, and returns every key whose associated attribute A2 value matches val.

Flexible schema, record sizes and data types. Succinct, by mapping semi-structured
data into a flat file and by using delimiters, does not impose any restriction on avpList.
Indeed, Succinct supports single-attribute records (e.g., Dynamo [50]), multiple-attribute
records (e.g., BigTable [36]), and even a collection of records with varying number of at-
tributes. Moreover, using its key → offset pointers, Succinct supports the realistic case of
records varying from a few bytes to a few kilobytes [16]. Succinct currently supports primi-
tive data types (strings, integers, floats), and can be extended to support a variety
of data structures and data types including composite types (arrays, lists, sets).

2.2 Querying on Compressed Data

We describe the core techniques used in Succinct. We briefly recall techniques from theory lit-
erature that Succinct uses, followed by Succinct’s entropy-compressed representation (§2.2.1)
and a new algorithm that operates directly on the compressed representation (§2.2.2).

Existing techniques. Classical search techniques are usually based on tries or suffix
trees [185, 161]. While fast, even their optimized representations can require 10–20× more
memory than the input size [86, 99]. Burrows-Wheeler Transform (BWT) [32] and Suffix
arrays [120, 184] are two memory efficient alternatives, but still require 5× more memory
than the input size [86]. FM-indexes [69, 70, 68, 67] and Compressed Suffix Arrays [82,
162, 164, 163, 81] use compressed representation of BWT and suffix arrays, respectively, to
further reduce the space requirement. Succinct adapts compressed suffix arrays due to their

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 10

$
a$

ana$
anana$

banana$
na$

nana$

AoS

0
1
2
3
4
5
6

b
a
n
a
n
a
$

Input

6
5
3
1
0
4
2

AoS2Input

(a)

$
a$

ana$
anana$

banana$
na$

nana$

AoS

0
1
2
3
4
5
6

b
a
n
a
n
a
$

Input

6
5
3
1
0
4
2

AoS2Input

{1, 3} = search(‘‘an’’)

(b)

Figure 2.3: An example for input file banana$. AoS stores suffixes in the input in lexicographically sorted order. (a)
AoS2Input maps each suffix in AoS to its location in the input (solid arrows). (b) Illustration of search using AoS and
AoS2Input (dashed arrows). Suffixes being sorted, AoS allows binary search to find the smallest AoS index whose
suffix starts with searched string (in this case, the suffix is “ana$” for the searched string “an”); the largest such
index is found using another binary search. The result on the original input is showed on the right to aid illustration.

simplicity and relatively better performance for large datasets. We describe the basic idea
behind Compressed Suffix Arrays.

Let Array of Suffixes (AoS) be an array containing all suffixes in the input file in lexico-
graphically sorted order. AoS along with two other arrays, AoS2Input and Input2AoS2, is
sufficient to implement the search and the random access functionality without storing the
input file. This is illustrated in Figure 2.3 and Figure 2.4.

Note that for a file with n characters, AoS has size O(n2) bits, while AoS2Input and
Input2AoS have size n⌈log n⌉ bits since the latter two store integers in range 0 to n − 1.
The space for AoS, AoS2Input and Input2AoS is reduced by storing only a subset of values;
the remaining values are computed on the fly using a set of pointers, stored in NextCharIdx
array, as illustrated in Figure 2.5, Figure 2.6 and Figure 2.7, respectively.

The NextCharIdx array is compressed using a two-dimensional representation; see Fig-
ure 2.8. Specifically, the NextCharIdx values in each column of the two-dimensional repre-
sentation constitute an increasing sequence of integers3. Each column can hence be indepen-
dently compressed using delta encoding [52, 144, 169].

2AoS2Input and Input2AoS, in this chapter, are used as convenient names for Suffix array and Inverse
Suffix Array, respectively.

3Proof: Consider two suffixes cX<cY in a column (indexed by character ‘‘c’’). By definition,
NextCharIdx values corresponding to cX and cY store AoS indexes corresponding to suffixes X and Y. Since
cX<cY implies X<Y and since AoS stores suffixes in sorted order, NextCharIdx[cX]<NextCharIdx[cY];
hence the proof.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 11

$
a$

ana$
anana$

banana$
na$

nana$

0
1
2
3
4
5
6

AoS

b
a
n
a
n
a
$

Input

4
3
6
2
5
1
0

Input2Aos

(a)

$
a$

ana$
anana$

banana$
na$

nana$

0
1
2
3
4
5
6

AoS

0
1
2
3
4
5
6

b
a
n
a
n
a
$

Input

4
3
6
2
5
1
0

Input2AoS

“ban” = extract(0, 3)

(b)

Figure 2.4: (a) The Input2AoS provides the inverse mapping of AoS2Input, from each index in the input to the
index of the corresponding suffix in AoS (solid arrows). (b) Illustration of extract using AoS and Input2AoS (dashed
arrows). The result on the original input is showed on the right to aid illustration.

2.2.1 Succinct data representation

Succinct uses the above data representation with three main differences. We give a high-level
description of these differences; see Appendix A for a detailed discussion.

First, Succinct uses a more space-efficient representation of AoS2Input and Input2AoS
by using a sampling by “value” strategy. In particular, for sampling rate α, rather than
storing values at “indexes” {0,α, 2α, . . .} as in Figure 2.6 and Figure 2.7, Succinct stores
all AoS2Input values that are a multiple of α. This allows storing each sampled value
val as val/α, leading to a more space-efficient representation. Using α = 2 for example
of Figure 2.6, for instance, the sampled AoS2Input values are {6,0,4,2}, which can be
stored as {3,0,2,1}. Sampled Input2AoS then becomes {1,3,2,0} with i-th value being
the index into sampled AoS2Input where i is stored. Succinct stores a small amount of
additional information to locate sampled AoS2Input indexes.

Second, Succinct achieves a more space-efficient representation for NextCharIdx using the
fact that values in each row of the two-dimensional representation constitute a contiguous
sequence of integers4. Succinct uses its own Skewed Wavelet Tree data structure, based on
Wavelet Trees [82, 162], to compress each row independently. Skewed Wavelet Trees allow
looking up NextCharIdx value at any index without any decompression. The data structure
and lookup algorithm are described in detail in Appendix A. These ideas allow Succinct to
achieve 1.25–3× more space-efficient representation compared to existing techniques [81, 144,
169].

Finally, for semi-structured data, Succinct supports dictionary encoding along each at-

4Intuitively, any row indexed by rowID contains NextCharIdx values that are pointers into suffixes
starting with the string rowID; since suffixes are sorted, these must be contiguous set of integers.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 12

$
a$

ana$
anana$

banana$
na$

nana$

0
1
2
3
4
5
6

AoS

4
0
5
6
3
1
2

NextCharIdx

$
a
a
a
b
n
n

4
0
5
6
3
1
2

(a)

$
a

b
n

4
0
5
6
3
1
2

(b)

Figure 2.5: Reducing the space usage of AoS: NextCharIdx stores pointers from each suffix S to the suffix S′ after
removing the first character from S. (a) for each suffix in AoS, only the first character is stored. NextCharIdx pointers
allow one to reconstruct suffix at any AoS index. For instance, starting from AoS[4] and following pointers, we get
the original AoS entry “banana$”. (b) Since suffixes are sorted, only the first AoS index at which each character
occurs (e.g., {($,0),(a,1),(b,4),(n,5)}) need be stored; a binary search can be used to locate character at any
index.

$
a

b
n

6
5
3
1
0
4
2

0
1
2
3
4
5
6

AoS2Input

4
0
5
6
3
1
2

NextCharIdx

6

3

0

2

0
1
2
3
4
5
6

4
0
5
6
3
1
2?

Figure 2.6: Reducing the space usage of AoS2Input. (left) Since AoS2Input stores locations of suffixes in AoS,
NextCharIdx maps AoS2Input values to next larger value. That is, NextCharIdx[idx] stores the AoS2Input index
that stores AoS2Input[idx]+15; (right) only a few sampled values need be stored; unsampled values can be computed
on the fly. For instance, starting AoS2Input[5] and following pointers twice, we get the next larger sampled value 6.
Since each pointer increases value by 1, the desired value is 6− 2 = 4.

tribute to further reduce the memory footprint. This is essentially orthogonal to Succinct’s
own compression; in particular, Succinct’s dictionary encodes the data along each attribute
before constructing its own data structures.

2.2.2 Queries on compressed data

Succinct executes queries directly on the compressed representation from §2.2.1. We describe
the query algorithm assuming access to uncompressed data structures; as discussed earlier,
any value not stored in the compressed representation can be computed on the fly.

Succinct executes an extract query as illustrated in Figure 2.7 on Input2AoS repre-
sentation from §2.2.1. A strawman algorithm for search would be to perform two binary
searches as in Figure 2.3. However, this algorithm suffers from two inefficiencies. First, it
executes binary searches on the entire AoS2Input array; and second, each step of the binary
search requires computing the suffix at corresponding AoS index for comparison purposes.
Succinct uses a query algorithm that overcomes these inefficiencies by aggressively exploiting
the two-dimensional NextCharIdx representation.

5Proof: Let S be a suffix and S′ be the suffix after removing first character from S. If S starts at location
loc, then S′ starts at loc+1. NextCharIdx stores pointers from S to S′. Since AoS2Input stores locations of

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 13

4
3
6
2
5
1
0

Input2AoS

4

6

5

0

$
a

b
n

0
1
2
3
4
5
6

4
0
5
6
3
1
2

NextCharIdx(b)(a)

?

Figure 2.7: Reducing the space usage of Input2AoS. (a) only a few sampled values need be stored; (b) extract
functionality of Figure 2.4 is achieved using sampled values and NextCharIdx. For instance, to execute extract(3,
3), we find the next smaller sampled index (Input2AoS[2]) and corresponding suffix (AoS[2]=“nana$”). We then
remove the first character since the difference between the desired index and the closest sampled index was 1; hence
the result “ana$”.

Recall that the cell (colID, rowID) in two-dimensional NextCharIdx representation
corresponds to suffixes that have colID as the first character and rowID as the following
t characters. Succinct uses this to perform binary search in cells rather than the entire
AoS2Input array. For instance, consider the query search(‘‘anan’’); all occurrences of
string ‘‘nan’’ are contained in the cell ⟨n,an⟩.

To find all occurrences of string anan, our algorithm performs a binary search only in
the cell ⟨a,na⟩ in the next step. Intuitively, after this step, the algorithm has the indexes for
which suffixes start with ‘‘a’’ and are followed by ‘‘nan’’, the desired string. For a string
of length m, the above algorithm performs 2(m−t−1) binary searches, two per NextCharIdx
cell (see Appendix A, which is far more efficient than executing two binary searches along the
entire AoS2Input array for practical values of m. In addition, the algorithm does not require
computing any of the AoS suffixes during the binary searches. For a 16GB file, Succinct’s
query algorithm achieves a 2.3× speed-up on an average and 19× speed-up in the best case
compared to the strawman algorithm.

Range and Wildcard Queries. Succinct implements rangesearch and wildcardsearch
using the search algorithm. To implement rangesearch(f, str1, str2), we find the
smallest AoS index whose suffix starts with string str1 and and the largest AoS index
whose suffix starts with string str2. Since suffixes are sorted, the returned range of indices
necessarily contain all strings that are lexicographically contained between str1 and str2.
To implement wildcardsearch(f, prefix, suffix, dist), we first find the offsets of all
prefix and suffix occurrences, and return all possible combinations such that the difference
between the suffix and prefix offsets is positive and no larger than dist (after accounting
for the prefix length).

suffixes in input, NextCharIdx maps value loc in AoS2Input to AoS2Input index that stores the next larger
value (loc+1).

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 14

$
a$

ana$
anana$

banana$
na$

nana$

AoS

4
0
5
6
3
1
2

NextCharIdx

$ a b n

$b
a$
an
ba
na

0
1

3 2
4

5, 6

Two-dim. NextCharIdx

Figure 2.8: Two-dimensional NextCharIdx representation. Columns are indexed by all unique characters and rows are
indexed by all unique t−length strings in input file, both in sorted order. A value belongs to a cell (colID, rowID) if
corresponding suffix has colID as first character and rowID as following t characters. For instance, NextCharIdx[3]=5
and NextCharIdx[4]=6 are contained in cell (a, na), since both start with ‘‘a’’ and have ‘‘na’’ as following two
characters.

.
appendsequence# → InputFile

.
SuccinctStore SuffixStore LogStore

Figure 2.9: Succinct uses a write-optimized LogStore that supports fine-grained appends, a query-optimized Suffix-
Store that supports bulk appends, and a memory-optimized SuccinctStore. New data is appended to the end of
LogStore. The entire data in LogStore and SuffixStore constitutes a single partition of SuccinctStore. The properties
of each of the stores are summarized in Table 2.1.

2.3 Multi-store Design

Succinct incorporates its core techniques into a write-friendly multi-store design that chains
multiple individual stores each making a different tradeoff between write, query and memory
efficiency. This section describes the design and implementation of the individual stores and
their synthesis to build Succinct.

Succinct design overview. Succinct chains three individual stores as shown in Figure 2.9;
Table 2.1 summarizes the properties of the individual stores. New data is appended into a
write-optimized LogStore, that executes queries via in-memory data scans; the queries are
further sped up using an inverted index that supports fast fine-grained updates. An inter-
mediate store, SuffixStore, supports bulk appends and aggregates larger amounts of data
before compression is initiated. Scans at this scale are simply inefficient. SuffixStore thus
supports fast queries using uncompressed data structures from §2.2; techniques in place en-
sure that these data structures do not need to be updated upon bulk appends. SuffixStore
raw data is periodically transformed into an immutable entropy-compressed store Succinct-
Store that supports queries directly on the compressed representation. The average memory
footprint of Succinct remains low since most of data is contained in the memory-optimized
SuccinctStore.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 15

Table 2.1: Properties of individual stores. Data size estimated for 1TB original uncompressed data on a 10 machine
64GB RAM cluster. Memory estimated based on evaluation (§2.5).

SuccinctStore SuffixStore LogStore

Stores Comp. Data (§2.2.1) Data + AoS2Input Data + Inv. Index

Appends - Bulk Fine

Queries §2.2.2 Index Scans + Inv. Index

#Machines n− 2 1 1

Memory ≈ 0.4× ≈ 5× ≈ 9×

2.3.1 LogStore

LogStore is a write-optimized store that executes data append via main memory writes, and
other queries via data scans. Memory efficiency is not a goal for LogStore since it contains
a small fraction of entire dataset.

One choice for LogStore design is to let cores concurrently execute read and write requests
on a single shared partition and exploit parallelism by assigning each query to one of the cores.
However, concurrent writes scale poorly and require complex techniques for data structure
integrity [121, 126, 111]. Succinct uses an alternative design, partitioning LogStore data
into multiple partitions based on the order of writes, each containing a small amount of data.
However, straightforward partitioning may lead to incorrect results if the query searches for
a string that spans two partitions. LogStore thus uses overlapping partitions, each annotated
with the starting and the ending offset corresponding to the data “owned” by the partition.
The overlap size can be configured to expected string search length (default is 1MB). New
data is always appended to the most recent partition. We note that although this approach
effectively serializes write operations, read-only queries (e.g., search and extract) can scale
independent of write operations.

LogStore executes an extract request by reading the data starting at the offset specified
in the request. While this is fast, executing search via data scans can still be slow, requiring
tens of milliseconds even for 250MB partition sizes. Succinct avoids scanning the entire
partition using an “inverted index” per partition that supports fast updates. This index
maps short length (default is three character) strings to their locations in the partition;
queries then need to scan characters starting only at these locations. The index is memory
inefficient, requiring roughly 8× the size of LogStore data, but has little affect on Succinct’s
average memory since LogStore itself contains a small fraction of the entire data. The speed-
up is significant allowing Succinct to scan, in practice, up to 1GB of data within a millisecond.
The index supports fast updates since, upon each write, only locations of short strings in
the new data need to be appended to corresponding entries in the index.

2.3.2 SuffixStore

SuffixStore is an intermediate store between LogStore and entropy-compressed SuccinctStore
that serves two goals. First, to achieve good compression, SuffixStore accumulates and

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 16

Coordinator

Partition→Machine
Offset→Partition

Key→Offset (NoSQL only)

search(string str)

Query
Handler

P→M
O→P
K→O

.

Query
Handler

P→M
O→P
K→O

. . .

SuccinctStore

Query
Handler

P→M
O→P
K→O

. . .

SuffixStore

Query
Handler

P→M
O→P
K→O

. . .

LogStore

Figure 2.10: Succinct system architecture. Server and coordinator functionalities are described in §2.4. Each
server uses a light-weight Query Handler interface to (1) interact with coordinator; (2) redirect queries to appropriate
partitions and/or servers; and (3) local and global result aggregation. P→M, O→P and K→O are the same pointers
as stored at the coordinator.

queries much more data than LogStore before initiating compression. Second, to ensure that
LogStore size remains small, SuffixStore supports bulk data appends without updating any
existing data.

Unfortunately, the LogStore approach of fast data scans with support of inverted index
does not scale to data sizes in SuffixStore due to high memory footprint and data scan
latency. SuffixStore thus stores an uncompressed AoS2Input array (§2.2); note that since
the AoS2Input array stores locations of sorted suffixes in the input, the SuffixStore can
execute search queries via binary search on the sorted suffixes. SuffixStore avoids explicitly
storing the sorted suffixes in the AoS, by storing the uncompressed input — the sorted
suffixes can be obtained using AoS2Input pointers into the input. Similarly, extract can
be directly supported using the uncompressed input. SuffixStore achieves the second goal
using a combination of partitioning and overlapping partitions, similar to LogStore. Bulk
appends from LogStore are executed at partition granularity, with the entire LogStore data
constituting a single partition of SuffixStore. AoS2Input is constructed per partition to
ensure that bulk appends do not require updating any existing data.

2.3.3 SuccinctStore

SuccinctStore is an immutable store that contains most of the data, and is thus designed
for memory efficiency. SuccinctStore uses the entropy-compressed representation from §2.2.1
and executes queries directly on the compressed representation as described in §2.2.2. Suc-
cinctStore’s design had to resolve two additional challenges.

First, Succinct’s memory footprint and query latency depends on multiple tunable pa-
rameters (e.g., AoS2Input and Input2AoS sampling rate and string lengths for indexing
NextCharIdx rows). While default parameters in SuccinctStore are chosen to operate on a
sweet spot between memory and latency, Succinct will lose its advantages if input data is

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 17

too large to fit in memory even after compression using default parameters. Second, Log-
Store being extremely small and SuffixStore being latency-optimized makes SuccinctStore
a latency bottleneck. Hence, Succinct performance may deteriorate for workloads that are
skewed towards particular SuccinctStore partitions.

Succinct resolves both these challenges by enabling applications to tradeoff memory for
query latency. Specifically, Succinct enables applications to select AoS2Input and Input2AoS
sampling rate; by storing fewer sampled values, lower memory footprint can be achieved at
the cost of higher latency (and vice versa). This resolves the first challenge above by reduc-
ing the memory footprint of Succinct to avoid answering queries off-disk6. This also helps
resolving the second challenge by increasing the memory footprint of overloaded partitions,
thus disproportionately speeding up these partitions for skewed workloads.
We discuss data transformation from LogStore to SuffixStore and from SuffixStore to Suc-
cinctStore in §2.4.

2.4 Implementation

We have implemented three Succinct prototypes along with extensions for semi-structured
data (§2.1.1) — in Java running atop Tachyon [108], in Scala running atop Spark [204], and
in C++. We discuss implementation details of the C++ prototype that uses roughly 5, 200
lines of code. The high-level architecture of our Succinct prototype is shown in Figure 2.10.
The system consists of a central coordinator and a set of storage servers, one server each
for LogStore and SuffixStore, and the remaining servers for SuccinctStore. All servers share
a similar architecture modulo the differences in the storage format and query execution, as
described in §2.2.

The coordinator performs two tasks. The first task is membership management, which
includes maintaining a list of active servers in the system by having each server send periodic
heartbeats. The second task is data management, which includes maintaining an up-to-date
collection of pointers to quickly locate the desired data during query execution. Specifically,
the coordinator maintains two set of pointers: one that maps file offsets to partitions that
contain the data corresponding to the offsets, and the other one that maps partitions to
machines that store those partitions. As discussed in §2.1.1, an additional set of key→ offset
pointers are also maintained for supporting queries on semi-structured data.

Clients connect to one of the servers via a light-weight Query Handler (QH) interface; the
same interface is also used by the server to connect to the coordinator and to other servers
in the system. Upon receiving a query from a client, the QH parses the query and identifies
whether the query needs to be forwarded to a single server (for extract and append queries)
or to all the other servers (for count and search queries).

In the case of an extract or append query, QH needs to identify the server to which the
query needs to be forwarded. One way to do this is to forward the query to the coordinator,

6Empirically, Succinct can achieve a memory footprint comparable to GZip. When even the GZip-
compressed data does not fit in memory, the only option for any system is to answer queries off disk.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 18

which can then lookup its sets of pointers and forward the query to the appropriate server.
However, this leads to the coordinator becoming a bottleneck. To avoid this, the pointers are
cached at each server. Since the number of pointers scales only in the number of partitions
and servers, this has minimal impact on Succinct’s memory footprint. The coordinator
ensures that pointer updates are immediately pushed to each of the servers. Using these
pointers, an extract query is redirected to the QH of the appropriate machine, which then
locates the appropriate partition and extracts the desired data.

In the case of a search query, the QH that receives the query from the client forwards
the query to all the other QHs in the system. In turn, each QH runs multiple tasks to
search all local partitions in parallel, then aggregates the results, and sends these results
back to the initiator, that is, to the QH that initiated the query (see Figure 2.10). Finally,
the initiator returns the aggregated result to the client. While redirecting queries using QHs
reduces the coordinator load, QHs connecting to all other QHs may raise some scalability
concerns. However, as discussed earlier, due to its efficient use of memory, Succinct requires
many fewer servers than other in-memory data stores, which helps scalability.

Data transformation between stores. LogStore aggregates data across multiple parti-
tions before transforming it into a single SuffixStore partition. LogStore is neither mem-
ory nor latency constrained; we expect each LogStore partition to be smaller than 250MB
even for clusters of machines with 128GB RAM. Thus, AoS2Input for LogStore data can
be constructed at LogStore server itself, using an efficient linear-time, linear-memory algo-
rithm [194]. Transforming SuffixStore data into a SuccinctStore partition requires a merge
sort of AoS2Input for each of the SuffixStore partitions, scanning the merged array once
to construct Input2AoS and NextCharIdx, sampling AoS2Input and Input2AoS, and finally
compressing each row of NextCharIdx. Succinct could use a single over-provisioned server
for SuffixStore to perform this transformation at the SuffixStore server itself but currently
does this in the background.

Failure tolerance and recovery. The current Succinct prototype requires manually han-
dling: (1) coordinator failure; (2) data failure and recovery; and (3) adding new servers to
an existing cluster. Succinct could use traditional solutions for maintaining multiple coor-
dinator replicas with a consistent view. Data failure and recovery can be achieved using
standard replication-based techniques. Finally, since each SuccinctStore contains multiple
partitions, adding a new server simply requires moving some partitions from existing servers
to the new server and updating pointers at servers. We aim to incorporate these techniques
and evaluate their overheads in future work.

2.5 Evaluation

We now perform an end-to-end evaluation of Succinct’s memory footprint (§2.5.1), through-
put (§2.5.2) and latency (§2.5.3).

Compared systems. We evaluate Succinct using the NoSQL interface extension (§2.1.1),

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 19

Table 2.2: (left) Datasets used in our evaluation; (right) Workloads used in our evaluation. All workloads use a query
popularity that follows a Zipf distribution with skewness 0.99, similar to YCSB [41].

Size (Bytes) #Attr- #Records
Key Value ibutes (Millions)

smallVal 8 ≈ 140 15 123–1393
LargeVal 8 ≈ 1300 98 19–200

Workload Remarks

A 100% Reads YCSB workload C
B 95% Reads, 5% appends YCSB workload D
C 100% Search -
D 95% Search, 5% appends YCSB workload E

since it requires strictly more space and operations than the unstructured file interface. We
compare Succinct against several open-source and industrial systems that support search
queries: MongoDB [130] and Cassandra [102] using secondary indexes; HyperDex [59] using
hyperspace hashing; and an industrial columnar-store DB-X, using in-memory data scans7.

We configured each of the system for no-failure scenario. For HyperDex, we use the
dimensionality as recommended in [59]. For MongoDB and Cassandra, we used the most
memory-efficient indexes. These indexes do not support substring searches and wildcard
searches. HyperDex and DB-X do not support wildcard searches. Thus, the evaluated sys-
tems provide slightly weaker functionality than Succinct. Finally, for Succinct, we disabled
dictionary encoding to evaluate the performance of Succinct techniques in isolation.

Datasets, Workloads and Cluster. We use two multi-attribute record datasets, one
smallVal and one largeVal from Conviva customers as shown in Table 2.2. The workloads
used in our evaluation are also summarized in Table 2.2. Our workloads closely follow YCSB
workloads; in particular, we used YCSB to generate query keys and corresponding query fre-
quencies, which were then mapped to the queries in our datasets (for each of read, write, and
search queries). All our experiments were performed on Amazon EC2 m1.xlarge machines
with 15GB RAM and 4 cores, except for DB-X where we used pre-installed r2.2xlarge in-
stances. Each of the system was warmed up for 5 minutes to maximize the amount of data
cached in available memory.

2.5.1 Memory Footprint

Figure 2.11 shows the amount of input data (without indexes) that each system fits across a
distributed cluster with 150GB main memory. Succinct supports in-memory queries on data
sizes larger than the system RAM; note that Succinct results do not use dictionary encoding
and also include pointers required for NoSQL interface extensions (§2.1.1, §2.4). MongoDB
and Cassandra fit roughly 10–11× less data than Succinct due to storing secondary indexes
along with the input data. HyperDex not only stores large metadata but also avoids touching
multiple machines by storing a copy of the entire record with each subspace, thus fitting up
to 126× less data than Succinct.

7For HyperDex, we encountered a previously known bug [89] that crashes the system during query
execution when inter-machine latencies are highly variable. For DB-X, distributed experiments require
access to the industrial version. To that end, we only perform micro-benchmarks for HyperDex and DB-X
for Workloads A and C.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 20

75

150

225

D
at
a
S
iz
e
th
at

F
it
s
in

M
em

or
y
(G

B
)

smallVal LargeVal

MongoDB

Cassandra
HyperDex

Succinct

Figure 2.11: Input data size that each system fits in-memory on a distributed cluster with 150GB main memory
(thick horizontal line). Succinct pushes 10-11× larger amount of data in memory compared to popular open-source
data stores, while providing similar or stronger functionality.

2.5.2 Throughput

We now evaluate system throughput using a distributed 10 machine Amazon EC2 cluster.
Figure 2.12 shows throughput results for smallVal and LargeVal datasets across the four
workloads from Table 2.2.

Workload A. When MongoDB and Cassandra can fit datasets in memory (17GB for smal-
lVal and 23GB for LargeVal across a 150GB RAM cluster), Succinct’s relative performance
depends on record size. For small record sizes, Succinct achieves higher throughput than
MongoDB and Cassandra. For MongoDB, the routing server becomes a throughput bot-
tleneck; for Cassandra, the throughput is lower because more queries are executed off-disk.
However, when record sizes are large, Succinct achieves slightly lower throughput than Mon-
goDB due to increase in Succinct’s extract latency.

When MongoDB and Cassandra data does not fit in memory, Succinct achieves better
throughput since it performs in-memory operations while MongoDB and Cassandra have
to execute some queries off-disk. Moreover, we observe that Succinct achieves consistent
performance across data sizes varying from tens of GB to hundreds of GB.

Workload B. MongoDB and Succinct observe reduced throughput when a small fraction of
queries are append queries. MongoDB throughput reduces since indexes need to be updated
upon each write; for Succinct, LogStore writes become a throughput bottleneck. Cassandra
being write-optimized observes minimal reduction in throughput. We observe again that, as
we increase the data sizes from 17GB to 192GB (for SmallVal) and from 23GB to 242GB
(for LargeVal), Succinct’s throughput remains essentially unchanged.

Workload C. For search workloads, we expect MongoDB and Cassandra to achieve high
throughput due to storing indexes. However, Cassandra requires scanning indexes for search
queries leading to low throughput. The case of MongoDB is more interesting. For datasets
with fewer number of attributes (SmallVal dataset), MongoDB achieves high throughput
due to caching being more effective; for LargeVal dataset, MongoDB search throughput

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 21

MongoDB Cassandra Succinct

25

50

75
90
×103

T
h
ro
u
gh

p
u
t

(O
p
s/
se
co
n
d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N
F

D
N
F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

5

10

15
18
×103

23 GB
RAM

62.5 GB
RAM+SSD

D
N
F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

10

20

30

×103
(a) Workload A, SmallVal

T
h
ro
u
gh

p
u
t

(O
p
s/
se
co
n
d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N
F

D
N
F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

5

10

15

×103
(a) Workload A, LargeVal

23 GB
RAM

62.5 GB
RAM+SSD

D
N
F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

200

400

600

(a) Workload B, SmallVal

T
h
ro
u
gh

p
u
t

(O
p
s/
se
co
n
d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N
F

D
N
F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

200

400

600

(a) Workload B, LargeVal

23 GB
RAM

62.5 GB
RAM+SSD

D
N
F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

200

400

600

(a) Workload C, SmallVal

T
h
ro
u
gh

p
u
t

(O
p
s/
se
co
n
d
)

17 GB
RAM

62.5 GB
RAM+SSD

D
N
F

D
N
F

62.5 GB
RAM+Disk

192 GB
RAM+Disk

200

400

600

(a) Workload C, LargeVal

23 GB
RAM

62.5 GB
RAM+SSD

D
N
F

62.5 GB
RAM+Disk

242 GB
RAM+Disk

(a) Workload D, SmallVal (a) Workload D, LargeVal

Figure 2.12: Succinct throughput against MongoDB and Cassandra for varying datasets, data sizes and workloads.
MongoDB and Cassandra fit 17GB of SmallVal dataset and 23GB of LargeVal dataset in memory; Succinct fits
192GB and 242GB, respectively. DNF denote the experiment did not finish after 100 hours of data loading, mostly
due to index construction time. Note that top four figures have different y-scales.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 22

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

C
D

F

Latency in Microseconds

Succinct
MongoDB

Cassandra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

C
D

F

Latency in Microseconds

Succinct
MongoDB

Cassandra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000 10000 100000 1e+06 1e+07

C
D

F

Latency in Microseconds

Succinct
MongoDB

Cassandra

Figure 2.13: Succinct’s latency for get (left), put (center) and search (right) against MongoDB and Cassandra for
smallVal dataset when data and index fits in memory (best case for MongoDB and Cassandra). Discussion in §2.5.3.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000 10000 100000 1e+06

C
D

F

Latency in Microseconds

Succinct
DB-X

HyperDex
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000 10000 100000 1e+06 1e+07
C

D
F

Latency in Microseconds

Succinct
DB-X

HyperDex

Figure 2.14: Succinct’s latency for get (left) and search (right) against HyperDex and DB-X for smallVal 10GB
dataset on a single machine. HyperDex uses subspace hashing and DB-X uses in-memory data scans for search.
Discussion in §2.5.3.

reduces significantly even when the entire index fits in memory. When MongoDB indexes do
not fit in memory, Succinct achieves 13–134× higher throughput since queries are executed
in-memory.

As earlier, even with 10× increase in data size (for both smallVal and LargeVal), Suc-
cinct throughput reduces minimally. As a result, Succinct’s performance for large datasets
is comparable to the performance of MongoDB and Cassandra for much smaller datasets.

Workload D. The search throughput for MongoDB and Cassandra becomes even worse as
we introduce 5% appends, precisely due to the fact that indexes need to be updated upon
each append. Unlike Workload B, Succinct search throughput does not reduce with appends,
since writes are no more a bottleneck. As earlier, Succinct’s throughput scales well with data
size.
Note that the above discussion holds even when MongoDB and Cassandra use SSDs to store
the data that does not fit in memory. When such is the case, throughput reduction is lower
compared to the case when data is stored on disk; nevertheless, the trends remain unchanged.
Specifically, Succinct is able to achieve better or comparable performance than SSD based
systems for a much larger range of input values.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 23

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10000 20000 30000 40000 50000

La
te

nc
y

(m
s)

Throughput (Ops/second)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

 50 60 70 80 90 100 110 120 130 140 150

La
te

nc
y

(m
s)

Throughput (Ops/second)

Figure 2.15: Throughput versus latency for Succinct, for get (left) and for search (right).

2.5.3 Latency

We now compare Succinct’s latency against two sets of systems: (1) systems that use in-
dexes to support queries (MongoDB and Cassandra) on a distributed 10 node Amazon EC2
cluster; and (2) systems that perform data scans along with metadata to support queries
(HyperDex and DB-X) using a single-machine system. To maintain consistency across all
latency experiments, we only evaluate cases where all systems (except for HyperDex) fit the
entire data in memory.

Succinct against Indexes. Figure 2.13 shows that Succinct achieves comparable or better
latency than MongoDB and Cassandra even when all data fits in memory. Indeed, Succinct’s
latency will get worse if record sizes are larger. For writes, we note that both MongoDB
and Cassandra need to update indexes upon each write, leading to higher latency. For
search, MongoDB achieves good latency since MongoDB performs a binary search over an
in-memory index, which is similar in complexity to Succinct’s search algorithm. Cassandra
requires high latencies for search queries due to much less efficient utilization of available
memory.

Succinct against data scans. Succinct’s latency against systems that do not store indexes
is compared in Figure 2.14. HyperDex achieves comparable latency for get queries; search
latencies are higher since due to its high memory footprint, HyperDex is forced to answer
most queries off-disk. DB-X being a columnar store is not optimized for get queries, thus
leading to high latencies. For search queries, DB-X despite optimized in-memory data scans
is around 10× slower at high percentiles because data scans are inherently slow.

2.5.4 Throughput versus Latency

Figure 2.15 shows the throughput versus latency results for Succinct, for both get and
search queries for a fully loaded 10 machine cluster with smallVal 192GB dataset. The
plot shows that Succinct latency and throughput results above are for the case of a fully
loaded system.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 24

2.5.5 Sequential Throughput

Our evaluation results for workload A and B used records of sizes at most 1300bytes per query.
We now discuss Succinct’s performance in terms of throughput for long sequential reads. We
ran a simple micro-benchmark to evaluate the performance of Succinct over a single extract
request for varying sizes of reads. Succinct achieves a constant throughput of 13Mbps using
a single core single thread implementation, irrespective of the read size; the throughput
increases linearly with number of threads and/or cores. This is essentially a tradeoff that
Succinct makes for achieving high throughput for short reads and for search queries using
a small memory footprint. For applications that require large number of sequential reads,
Succinct can overcome this limitation by keeping the original uncompressed data to support
sequential reads, of course at the cost of halving the amount of data that Succinct pushes
into main memory. The results from Figure 2.11 show that Succinct will still push 5-5.5×
more data than popular open-source systems with similar functionality.

2.6 Related Work

Succinct’s goals are related to three key research areas:

Queries using secondary indexes. To support point queries, many existing data stores
store indexes/metadata [130, 102, 57, 59] in addition to the original data. While indexes
achieve low latency and high throughput when they fit in memory, their performance dete-
riorates significantly when queries are executed off-disk. Succinct requires more than 10×
lower memory than systems that store indexes, thus achieving higher throughput and lower
latency for a much larger range of input sizes than systems that store indexes.

Queries using data scans. Point queries can also be supported using data scans. These
are memory efficient but suffer from low latency and throughput for large data sizes. Most
related to Succinct is this space are columnar stores [1, 181, 48, 103, 166]. The most advanced
of these [166] execute queries either by scanning data or by decompressing the data on the fly
(if data compressed [195]). As shown in §2.5, Succinct achieves better latency and throughput
by avoiding expensive data scans and decompression.

Theory techniques. Compressed indexes has been an active area of research in theoretical
computer science since late 90s [82, 162, 164, 163, 69, 70, 68, 67]. Succinct adapts data
structures from above works, but improves both the memory and the latency by using new
techniques (§2.2). Succinct further resolves several challenges to realize these techniques
into a practical data store: (1) efficiently handling updates using a multi-store design; (2)
achieving better scalability by carefully exploiting parallelism within and across machines;
and (3) enabling queries on semi-structured data by encoding the structure within a flat file.

CHAPTER 2. ENABLING QUERIES ON COMPRESSED DATA 25

2.7 Summary

In this chapter, we have presented Succinct, a distributed data store that supports a wide
range of queries while operating at a new point in the design space between data scans
(memory-efficient, but high latency and low throughput) and indexes (memory-inefficient,
low latency, high throughput). Succinct achieves memory footprint close to that of data
scans by storing the input data in an entropy-compressed representation that supports ran-
dom access, as well as a wide range of analytical queries. When indexes fit in memory,
Succinct achieves comparable latency, but lower throughput. However, due to its low mem-
ory footprint, Succinct is able to store more data in memory, avoiding latency and throughput
reduction due to off-disk or off-SSD query execution for a much larger range of input sizes
than systems that use indexes.

26

Chapter 3

Dynamic Storage-Performance
Tradeoff for Compressed Data

In the previous chapter, we showed that enabling a wide range of queries on compressed
data can lead to significant performance gains in data stores, due to two main reasons. First,
serving queries directly on compressed data avoids the traditional performance overheads of
decompressing data. Second, compression allows larger volumes of data to be resident in
faster storage, e.g., SSD or main memory.

While the former is unique to Succinct, the latter, i.e., compression, is often employed
across a number of data stores [102, 130, 57], with the goal of executing as many queries
in faster storage as possible. Often, the system architecture employed to incorporate com-
pression is also similar to Succinct — most data stores partition the data across multiple
shards (partitions) which are then compressed, with each server potentially storing multiple
compressed shards. Shards may be replicated and cached across multiple servers and the
queries are load balanced across shard replicas.

Unfortunately, compression leads to a hard tradeoff between throughput and storage
for the cached shards — when stored uncompressed, a shard can support high throughput
but takes a larger fraction of available cache size; and, when compressed, takes smaller
cache space but also supports lower throughput. Furthermore, switching between these two
extreme points on the storage-performance tradeoff space cannot be done at fine-grained
time scales since it requires compression or decompression of the entire shard. Note that
Succinct, as described in the previous chapter, suffers from these issues as well. Such a hard
storage-performance tradeoff severely limits the ability of existing data stores in many real-
world scenarios when the underlying infrastructure [151, 167], workload[21, 16, 143, 46, 199],
or both changes over time. We discuss several such scenarios from real-world production
clusters below (§3.1).

In this chapter, we present BlowFish, a distributed data store that builds on Succinct
to enable a smooth storage-performance tradeoff between the two extremes (uncompressed,
high throughput and compressed, low throughput), allowing fine-grained changes in storage
and performance. What makes BlowFish unique is that applications can navigate from one

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 27

operating point to another along this tradeoff curve dynamically over fine-grained time scales.
We show that, in many cases, navigating this smooth tradeoff has higher system-wide utility
(e.g., throughput per unit of storage) than existing techniques. Intuitively, this is because
BlowFish allows shards to increase/decrease the storage “fractionally”, just enough to meet
the performance goals.

3.1 Applications and summary of results

BlowFish, by enabling a dynamic and smooth storage-performance tradeoff, allows us to
explore several problems from real-world production clusters from a different “lens”. We
apply BlowFish to three such problems:

Storage and bandwidth efficient data repair during failures. Existing techniques
either require high storage (replication) or high bandwidth (erasure codes) for data repair,
as shown in Table 3.1. By storing multiple replicas at different points on a tradeoff curve,
BlowFish can achieve the best of the two worlds — in practice, BlowFish requires storage
close to erasure codes while requiring repair bandwidth close to replication. System state is
restored by copying one of the replicas and navigating along the tradeoff curve. We explore
the corresponding storage-bandwidth-throughput tradeoffs in §3.5.2.

Skewed workloads. Existing data stores can benefit significantly using compression [36,
102, 57, 4, 130]. However, these systems lose their performance advantages in case of dy-
namic workloads where (i) the set of hot objects changes rapidly over time [16, 143, 46,
199], and (ii) a single copy is not enough to efficiently serve a hot object. Studies from
production clusters have shown that such workloads are a norm [21, 16, 143, 46, 199]. Selec-
tive caching [9], that caches additional replicas for hot objects, only provides coarse-grained
support to handle dynamic workloads — each replica increases the throughput by 2× while
incurring an additional storage overhead of 1×.

BlowFish not only provides a finer-grained tradeoff (increasing the storage overhead frac-
tionally, just enough to meet the performance goals), but also achieves a better tradeoff
between storage and throughput than selective caching of compressed objects. We show in
§3.5.3 that BlowFish achieves 2.7–4.9× lower storage (for comparable throughput) and 1.5×
higher throughput (for fixed storage) compared to selective caching.

Time-varying workloads. In some scenarios, production clusters delay additional replica
creation to avoid unnecessary traffic (e.g., for 15 minutes during transient failures [151, 167]).
Such failures contribute to 90% of the failures [151, 167] and create high temporal load across
remaining replicas. We show that BlowFish can adapt to such time-varying workloads even
for spiked variations (as much as by 3×) by navigating along the storage-performance tradeoff
in less than 5 minutes (§3.5.4).

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 28

Table 3.1: Storage and bandwidth required for erasure codes, replication and BlowFish for data repair during failure.

Erasure (RS) Code Replication BlowFish

Storage 1.2× 3× 1.9×
Repair Bandwidth 10× 1× 1×

3.2 BlowFish Techniques and Contributions

BlowFish builds upon Succinct (§2), which supports queries on compressed data1. Recall that
Succinct stores two sampled arrays, whose sampling rate acts as a proxy for the compression
factor in Succinct. BlowFish introduces Layered Sampled Array (LSA), a new data structure
that stores sampled arrays using multiple layers of sampled values. Each combination of
layers in LSA correspond to a static configuration of Succinct. Layers in LSA can be added
or deleted transparently, independent of existing layers and query execution, thus enabling
dynamic navigation along the tradeoff curve.

Each shard in BlowFish can operate on a different point on the storage-performance trade-
off curve. This leads to several interesting problems: how should shards (within and across
servers) share the available cache? How should shard replicas share requests? BlowFish
adopts techniques from scheduling theory, namely the back-pressure style Join-the-shortest-
queue [83] mechanism, to resolve these challenges in a unified and near-optimal manner.
Shards maintain request queues that are used both to load balance queries as well as to
manage shard sizes within and across servers.

In summary, this chapter makes three contributions:

• Presents the design and implementation of BlowFish, a distributed data store that en-
ables a smooth storage-performance tradeoff, allowing fine-grained changes in storage and
performance for each individual shard.

• Enables dynamic adaptation to changing workloads by navigating along the smooth trade-
off curve at fine-grained time scales.

• Uses techniques from scheduling theory to perform load balancing and shard management
within and across servers.

3.3 BlowFish Overview

We briefly describe how BlowFish transforms Succinct data structures to enable the desired
storage-performance tradeoff in §3.3.1. We then discuss the storage model and target work-
loads for BlowFish (§3.3.2). Finally, we provide a high-level overview of BlowFish design
(§3.3.3).

1Unlike Succinct, BlowFish does not enforce compression; some points on the tradeoff curve may have
storage comparable to systems that store indexes along with input data.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 29

search(string str)

Server
Handler

{Search result,Queue lengths}

. . .

Server
Handler

Server
Handler

Server
Handler

Figure 3.1: Overall BlowFish architecture. Each server has an architecture similar to the one shown in Figure 3.2.
Queries are forwarded by Server Handlers to appropriate servers, and query responses encapsulate both results and
queue lengths at that server.

Server
Handler

Server
Handler

Figure 3.2: Main idea behind BlowFish: (left) the state of the system at some time t; (right) the state of the
shards after BlowFish adapts — the shards that have longer outstanding queue lengths at time t adapt their storage
footprint to a larger one, thus serving larger number of queries per second than at time t; the shards that have smaller
outstanding queues, on the other hand, adapt their storage footprint to a smaller one thus matching the respective
load.

3.3.1 Sampled Arrays: Storage versus Performance

Recall that Succinct reduces the space requirements of Input2AoS and AoS2Input using
sampling — only a few sampled values (e.g., for sampling rate α, value at indexes 0, α,
2α, ..) from these two arrays are stored. NextCharIdx allows computing unsampled values
during query execution.

The tradeoff is that for a sampling rate of α, the storage requirement for Input2AoS
and AoS2Input is 2n⌈logn⌉/α and the number of operations required for computing each
unsampled value is α.

Succinct thus has a fixed small storage cost for AoS and NextCharIdx, and the sampling
rate α acts as a proxy for overall storage and performance in Succinct.

3.3.2 BlowFish data model and assumptions

BlowFish enables the same functionality as Succinct (§3.3.1) — support for random access
and search queries on flat unstructured files, with extensions for key-value stores and NoSQL
stores.

Assumptions. BlowFish makes two assumptions. First, systems are limited by the capacity
of faster storage, that is, they operate on data sizes that do not fit entirely into the fastest
storage. Indeed, indexes to support search queries along with the input data makes it hard
to fit the entire data in fastest storage especially for purely in-memory data stores (e.g.,

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 30

Redis [154], MICA [111], RAMCloud [142]). Second, BlowFish assumes that data can be
sharded in a manner that a query does not require touching each server in the system. Most
real-world datasets and query workloads admit such sharding schemes [143, 46, 199].

3.3.3 BlowFish Design Overview

BlowFish uses a system architecture similar to existing data stores, e.g., Cassandra [102] and
ElasticSearch [57]. Specifically, BlowFish comprises of a set of servers that store the data
as well as execute queries (see Figure 3.1). Each server shares a similar design, comprised
of multiple data shards (§3.4.1), a request queue per shard that keeps track of outstanding
queries, and a special module called the server handler that triggers navigation along the
storage-performance curve and schedules queries (§3.4.2).

Each shard admits the desired storage-performance tradeoff using Layered Sampled Array
(LSA), a new data structure that allows transparently changing the sampling factor α for
Input2AoS and AoS2Input over fine-grained time scales. Smaller values of α indicate higher
storage requirements, but also lower latency (and vice versa). Layers can be added and
deleted without affecting existing layers or query execution thus enabling dynamic navigation
along the tradeoff curve. We describe LSA and the layer addition-deletion process in LSA
in §3.4.1.

BlowFish allows each shard to operate at a different operating point on the storage-
performance tradeoff curve (see Figure 3.2). Such a flexibility comes at the cost of increased
dynamism and heterogeneity in system state. Shards on a server can have varying storage
footprint and as a result, varying throughput. Moreover, storage footprint and throughput
may vary across shard replicas. How should shards (within and across servers) share the
available cache? How should shard replicas share requests? When should a shard trigger
navigation along the storage-performance tradeoff curve?

BlowFish adopts a technique from scheduling theory, the Join-the-shortest-queue [83]
mechanism, to resolve the above questions in a unified manner. BlowFish servers maintain a
request queue per shard, that stores outstanding requests for the respective shard. A server
handler module periodically monitors request queues for local shards, maintains information
about request queues across the system, schedules queries and triggers navigation along the
storage-performance tradeoff curve.

Upon receiving a query from a client for a particular shard, the server handler forwards
the query to the shard replica with shortest request queue length. All incoming queries are
enqueued in the request queue for the respective shard. When the load on a particular shard
is no more than its throughput at the current operating point on the storage-performance
curve, the queue length remains minimal. On the other hand, when the load on the shard
increases beyond the supported throughput, the request queue length for this shard increases
(see Figure 3.2 (left)). Once the request queue length crosses a certain threshold, the navi-
gation along the tradeoff curve is triggered either using the remaining storage on the server
or by reducing the storage overhead of a relatively lower loaded shard. BlowFish internally
implements a number of optimizations for selecting navigation triggers, maintaining request

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 31

Idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Values 9 11 15 2 3 1 0 6 12 13 8 7 14 4 5 10

LayerID
Exists
Layer?

8 1 9 12

4 1 3 14

2 1 15 0 8 5

LayerID 8 2 4 2 8 2 4 2

LayerIdx 0 0 0 1 1 2 1 3

LayerID 8 4 2

Count 1 1 2

Figure 3.3: Illustration of Layered Sampled Array (LSA). The original unsampled array is shown above the dashed
line (gray values indicate unsampled values). In LSA, each layer stores values for sampling rate given by LayerID,
modulo values that are already stored in upper layers (in this example, sampling rates 8, 4, 2). Layers are added and
deleted at the bottom; that is, LayerID=2 will be added if and only if all layers with sampling rate 4, 8, 16, .. exist.
Similarly, LayerID=2 will be the first layer to be deleted. The ExistsLayer bitmap indicates whether a particular
layer exists (1) or not (0). LayerID and ExistsLayer allow checking whether or not value at any index idx is stored
in LSA — we find the largest existing LayerID that is a proper divisor of idx. Note that among every consecutive
8 values in original array, 1 is stored in topmost layer, 1 in the next layer and 2 in the bottommost layer. This
observation allows us to find the index into any layer LayerIdx where the corresponding sampled value is stored.

hysteresis to avoid unnecessary oscillations along the tradeoff curve, storage management
during navigation and ensuring correctness in query execution during the navigation. We
discuss these design details in §3.4.2.

3.4 BlowFish Design

We start with the description of Layered Sampled Array (§3.4.1) and then discuss the system
details (§3.4.2).

3.4.1 Layered Sampled Array

BlowFish enables a smooth storage-performance tradeoff using a new data structure, Layered
Sampled Array (LSA), that allows dynamically changing the sampling factor in the two
sampled arrays — Input2AoS and AoS2Input. We describe LSA below.

Consider an array A, and let SA be another array that stores a set of sampled-by-index
values from A. That is, for sampling rate α, SA[idx]=A[α×idx]. For instance, if A = {6,
4, 3, 8, 9, 2}, the sampled-by-index array with sampling rate 4 and 2 are SA4 = {6, 9}
and SA2 = {6, 3, 9}, respectively.

LSA emulates the functionality of SA, but stores the sampled values in multiple layers,
together with a few auxiliary structures (Figure 3.3). Layers in LSA can be added or deleted
transparently without affecting the existing layers. Addition of layers results in higher storage
(lower sampling rate α) and lower query latency; layer deletion, on the other hand, reduces

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 32

the storage but also increases the query latency. Furthermore, looking up a value in LSA
is agnostic to the existing layers, independent of how many and which layers exist (see
Algorithm 1). This allows BlowFish to navigate along the storage-performance curve without
any change in query execution semantics compared to Succinct.

Algorithm 1 LookupLSA

1: procedure GetLayerID (idx) ◃ Get the layer ID given the index into the sampled array; α is the sampling rate.

2: return LayerID[idx % α]

3: procedure GetLayerIdx(idx) ◃ Get the index into LayerID given the index into the sampled array; α is the
sampling rate.

4: count← Count[LayerID(idx)]

5: return count × (idx / α) + LayerIdx[idx % α]

6: procedure LookupLSA (idx) ◃ Performs lookup on the LSA.

7: if IsSampled(idx) then

8: lid ← GetLayerID(idx) ◃ Get layer ID.

9: lidx ← GetLayerIdx(idx) ◃ Get index into layer.

10: return SampledArray[lid][lidx]

Layer Addition. The design of LSA as such allows arbitrary layers (in terms of sampling
rates) to coexist; furthermore, layers can be added or deleted in arbitrary order. However,
our implementation of LSA makes two simplifications. First, layers store sampled values
for indexes that are powers of two. Second, new layers are always added in a manner that
ensures the sampling rate of the new layer is double the sampling rate of the last added layer.
The rationale is that these two simplifications induce a certain structure in LSA, that makes
the increase in storage footprint as well as time taken to add the layer very predictable.
In particular, under the assumption that the unsampled array is of length n = 2k for some
integer k, the number of sampled values stored at any layer is equal to the cumulative number
of sampled values stored in the layers added before it (see Figure 3.3). If the sampling rate
for the new layer is α, then this layer stores precisely n/2α sampled values; thus, the increase
in storage becomes predictable. Moreover, since the upper layers constitute sampling rate
2α, computing each value in the new layer requires 2α operations (§3.3.1). Hence, adding a
layer takes a fixed amount of time independent of the sampling rate of layer being added.

BlowFish supports two modes for creating new layers. In dedicated layer construction, the
space is allocated for a new layer2 and dedicated threads populate values in the layer; once all
the values are populated the ExistsLayer bit is set to 1. The additional compute resources
required in dedicated layer construction may be justified if the time spent in populating the
new layer is smaller than the period of increased throughput experienced by the shard(s).
However, such may not be the case for many scenarios.

2using free unused cache or by deleting layers from relatively lower loaded shards, as described in §3.4.2.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 33

Algorithm 2 CreateLayerOpportunistic

1: procedure CreateLayerOpportunistic(lid) ◃ Marks layer lid for creation, and initializes bitmap marking
layer’s sampled values; α is the sampling rate.

2: Mark layer lid for creation.

3: LayerSize ← InputSize/2α

4: for lidx in (0, LayerSize − 1) do

5: IsLayerValueSampled[lid][lidx] ← 0

6: procedure OpportunisticPopulate(val, idx) ◃ Exploit query execution to populate layers opportunistically;
val is the unsampled values computed during query execution, and idx is its index into the unsampled array.

7: lid ← GetLayerID(idx) ◃ Get layer ID.

8: if layer lid is marked for creation then

9: lidx ← GetLayerIdx(idx) ◃ Get index into layer.

10: SampledArray[lid][lidx] ← val

11: IsLayerValueSampled[lid][lidx] ← 1

The second mode for layer creation in BlowFish is opportunistic layer construction. This
mode exploits the fact that the unsampled values for the two arrays are computed on the
fly during query execution. A subset of the these values are the ones to be computed for
populating the new layer. Hence, the query execution phase can be used to populate the
new layer without using dedicated threads. The challenge in this mode is when to update
the ExistsLayer flag — if set during the layer creation, the queries may incorrectly access
values that have not yet been populated; on the other hand, the layer may remain unused
if the flag is set after all the values are populated. BlowFish handles this situation by using
a bitmap that stores a bit per sampled value for that layer. A set bit indicates that the
value has already been populated and vice versa. The algorithm for opportunistic layer
construction is outlined in Algorithm 2.

It turns out that opportunistic layer construction performs very well for real-world work-
loads that typically follow a zipf-like distribution (repeated queries on certain objects). In-
deed, the required unsampled values are computed during the first execution of a query and
are thus available for all subsequent executions of the same query. Interestingly, this is akin
to caching the query results without any explicit query result caching implementation.

Layer Deletion. Deleting layers is straightforward in BlowFish. To maintain consistency
with layer additions, layer deletion proceeds from the most recently added layer. Layer
deletions are computationally inexpensive, and do not require any special strategy. Upon
the request for layer deletion, the ExistsLayer bitmap is updated to indicate that the
corresponding layer is no longer available. Subsequent queries, thus, stop accessing the
deleted layer. In order to maintain safety, we delay the memory deallocation for a short
period of time after updating the ExistsLayer flag.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 34

3.4.2 BlowFish Servers

We now provide details on the design and implementation of BlowFish servers.

Server Components

Each BlowFish server has three main components (see Figure 3.1 and Figure 3.2):

Data shards. Each server stores multiple data shards (employing the same partitioning
strategy as Succinct), typically one per CPU core. The shards are replicated for fault-
tolerance and load-balancing (§3.4.2). Each shard stores the two sampled arrays — In-
put2AoS and AoS2Input — using LSA, along with other data structures in Succinct. This
enables a smooth storage-performance tradeoff, as described in §3.4.1. The aggregate storage
overhead of the shards may be larger than available main memory. Each shard is memory
mapped; thus, only the most accessed shards may be paged into main memory.

Request Queues. BlowFish servers maintain a queue of outstanding queries per shard,
referred to as request queues. The length of request queues provide a rough approximation to
the load on the shard — larger request queue lengths indicate a larger number of outstanding
requests for the shard, implying that the shard is observing more queries than it is able to
serve (and vice versa).

Server Handler. Each server in BlowFish has a server handler module that acts as an
interface to clients as well as other server handlers in the system. Each client connects to
one of the server handlers that handles the client query (similar to Cassandra [102]). The
server handler interacts with other server handlers to execute queries and to maintain the
necessary system state. BlowFish server handlers are also responsible for query scheduling
and load balancing, and for making decisions on how shards share the cache available at the
local server. We discuss these functionalities below.

Query execution

Similar to existing data stores [102, 130, 57], an incoming query in BlowFish may touch
one or more shards depending on the sharding scheme. The server handler handling the
query is responsible for forwarding the query to the server handler(s) of the corresponding
shard(s); we discuss query scheduling across shard replicas below. Whenever possible, the
query results from multiple shards on the same server are aggregated by the server handler.

Random access and search. BlowFish does not require changes in Succinct algorithms for
executing queries at each shard, with the exception of looking up values in sampled arrays.
In particular, since the two sampled arrays in Succinct — Input2AoS and AoS2Input — are
replaced by LSA, the corresponding lookup algorithms are replaced by lookup algorithms for
LSA (§3.3.3, Figure 3.3). We note that, by using ExistsLayer flag, BlowFish makes LSA
lookup algorithms transparent to existing layers and query execution.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 35

Updates. BlowFish implements data appends exactly as Succinct does. Specifically, Blow-
Fish uses a multi-store architecture with a write-optimized LogStore that supports fine-
grained appends, a query-optimized SuffixStore that supports bulk appends and a memory-
optimized SuccinctStore. LogStore and SuffixStore, for typical cluster configurations, store
less than 0.1% of the entire dataset (the most recently added data). BlowFish does not
require changes in LogStore and SuffixStore implementation, and enables the storage- per-
formance tradeoff for data only in SuccinctStore. Since the storage and the performance of
the system is dominated by SuccinctStore, the storage-performance tradeoff curve of Blow-
Fish is not impacted by update operations for most workloads.

Scheduling and Load Balancing

BlowFish server handlers maintain the request queue lengths for each shard in the system.
Each server handler periodically monitors and records the request queue lengths for local
shards. For non-local shards, the request queue lengths are collected during the query phase
— server handlers encapsulate the request queue lengths for their local shards in the query
responses. Upon receiving a query response, a server handler unpacks the request queue
lengths and updates its local metadata to record the new lengths for the corresponding
shards.

Each shard (and shard replica) in BlowFish may operate on a different point on the
storage-performance curve (Figure 3.2). Thus, different replicas of the same shard may have
different query execution time for the same query. To efficiently schedule queries across such
a heterogeneous system, BlowFish adopts techniques from scheduling theory literature — a
back-pressure scheduling style Join-the-shortest-queue [83] mechanism. An incoming query
for a shard is forwarded to the replica with the smallest request queue length. By conceptually
modeling this problem as replicas having the same speed but varying job sizes (for the same
query), the analysis for Join-the-shortest-queue [83] applies to BlowFish, implying close to
optimal load balancing.

Dynamically Navigating the Tradeoff

BlowFish uses the request queues not only for scheduling and load balancing, but also to
trigger navigation along the storage-performance tradeoff curve for each individual shard.
We discuss below the details on tradeoff navigation, and how this enables efficient cache
sharing among shards within and across servers.

One challenge in using request queue lengths as an approximation to load on the shard
is to differentiate short-term spikes from persistent overloading of shards (Figure 3.4). To
achieve this, BlowFish server handlers also maintain exponentially averaged queue lengths for
each local shard — the queue lengths are monitored every δ time units, and the exponentially
averaged queue length at time t is computed as:

Qavg
t = β ×Qt + (1− β)×Qavg

t−δ (3.1)

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 36

The parameters β and δ provide two knobs for approximating the load on a shard based
on its request queue length. β is a fraction (β < 1) that determines the contribution of
more recent queue length values to the average — larger β assigns higher weight to more
recent values in the average. δ is the periodicity at which queue lengths are averaged —
smaller values of δ (i.e., more frequent averaging) results in higher sensitivity to bursts in
queue length. Note that a small exponentially average queue length implies a persistently
underloaded shard.

We now describe how shards share the available cache within and across servers by
dynamically navigating along the storage-performance tradeoff curve. We start with the
relatively simpler case of shards on the same server, and then describe the case of shards
across servers.

Shards on the same server. Recall that BlowFish implementation adds and deletes layers
in a bottom-up fashion, with each layer storing sampled values for powers of two. Thus, at
any instant, the sampling rate of LSA is a power of two (2, 4, 8, . . .). For each of these
sampling rates, BlowFish stores two threshold values. The upper threshold value is used to
trigger storage increase for any particular shard — when the exponentially averaged queue
length of a shard S crosses the upper threshold value, S must be consistently overloaded and
must increase its throughput.

However, the server may not have extra cache to sustain the increased storage for S.
For such scenarios, BlowFish stores a lower threshold value which is used to trigger storage
reduction. In particular, if the exponentially averaged queue length and the instantaneous
request queue length for one of the other shards S’ on the same server is below the lower
threshold, BlowFish reduces the storage for S’ before triggering the storage increase for S. If
there is no such S’, the server must already be throughput bottlenecked and the navigation
for S is not triggered.

We make two observations. First, the goals of exponentially averaged queue lengths
and two threshold values are rather different: the former makes BlowFish stable against
temporary spikes in load, while the latter against “flap damping” of load on the shards.
Second, under stable loads, the above technique for triggering navigation along the tradeoff
curve allows each shard on the same server to share cache proportional to its throughput
requirements.

Shard replicas across servers. At the outset, it may seem like shards (and shard replicas)
across servers need to coordinate among themselves to efficiently share the total system
cache. It turns out that local cache sharing, as described above, combined with BlowFish’s
scheduling technique implicitly provides such a coordination.

Consider a shard S with two replicas R1 and R2, both operating at the same point on
the tradeoff curve and having equal queue lengths. The incoming queries are thus equally
distributed across R1 and R2. If the load on S increases gradually, both R1 and R2 will
eventually experience load higher than the throughput they can support. At this point, the
request queue lengths at R1 and R2 start building up at the same rate. Suppose R2 shares
the server with other heavily loaded shards (that is, R2 can not navigate up the tradeoff

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 37

Q(t)

t
(a)

Q(t)

t
(b)

Q(t)

t
(c)

Figure 3.4: Three different scenarios of queue length (Q(t)) variation with time (t). (a) shows a very short-lasting
“spike”, (b) shows a longer lasting spike while (c) shows a persistent “plateau” in queue-length values. BlowFish
should ideally ignore spikes as in (a) and attempt to adapt to the queue length variations depicted in (b) and (c).

curve). BlowFish will then trigger a layer creation for R1 only. R1 can thus support higher
throughput and its request queue length will decrease. BlowFish’s scheduling technique
kicks in here: incoming queries will now be routed to R1 rather than equal load balancing,
resulting in lower load at R2. It is easy to see that at this point, BlowFish will load balance
queries to R1 and R2 proportional to their respective throughputs.

3.5 Evaluation

BlowFish is implemented in ≈ 2K lines of C++ on top of Succinct. We apply BlowFish to
application domains outlined in §3.1 and compare its performance against state-of-the-art
schemes for each application domain.

Evaluation Setup. We describe the setup used for each application in respective subsec-
tions. We describe here what is consistent across all the applications: dataset and query
workload. We use the LINEITEM table from the TPC-H benchmark dataset [191], that con-
sists of records with 8 byte primary keys and roughly 140 byte values on an average; the
values comprise of 15 attributes (or columns). We note that several of our evaluation results
are independent of the underlying dataset (e.g., bandwidth for data repair, time taken to
navigate along the tradeoff curve, etc.) and depend only on amount of data per server.

We use a query workload that comprises of 50% random access queries and 50% search
queries; we discuss the impact of varying the fraction of random access and search queries
in §3.5.1. Random access queries return the entire value, given a key. Search queries take
in an (attribute, value) pair and return all keys whose entry for the input attribute matches
the value. We use three query distributions in our evaluation for generating queries over
the key space (for random access) and over the attribute values (for search). First, uniform
distribution with queries distributed uniformly across key space and attribute values; this
essentially constitutes a worst-case scenario for BlowFish3. The remaining two query work-

3Intuitively, queries distributed uniformly across shards and across records alleviates the need for shards

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 38

 1
 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

BlowFish footprint / Input Size

Figure 3.5: Storage-throughput tradeoff curve (per thread) enabled by BlowFish. The y-axis is normalized by the
throughput of smallest possible storage footprint (71ops) in BlowFish.

loads follow Zipf distribution with skewness 0.99 (low skew) and 0.01 (heavily skewed), the
last one constituting the best-case scenario for BlowFish.

All our distributed experiments run on Amazon EC2 cluster comprising of c3.2xlarge
servers, with 15GB RAM backed by two 80GB SSDs and 8 vCPUs. Unless mentioned
otherwise, all our experiments shard the input data into 8GB shards and use one shard per
CPU core.

3.5.1 Storage Performance Tradeoff

We start by evaluating the storage-performance tradeoff curve enabled by BlowFish. Fig-
ure 3.5 shows this tradeoff for query workload comprising of 50% random access and 50%
search queries. We make two observations; first, BlowFish achieves storage footprint varying
from 0.5× to 8.7× the input data size (while supporting search functionality; the figure shows
only up to 1.5× the data size for clarity)4. In particular, BlowFish does not enforce com-
pression. Second, increase in storage leads to super-linear increase in throughput (moving
from ≈ 0.5 to ≈ 0.75 leads to 20× increase in throughput) due to non-linear computational
cost of operating on compressed data (see Chapter 2).

Storage-throughput Tradeoff for other workloads Figure 3.5 shows the storage-
throughput tradeoff enabled by BlowFish for query workload comprising of 50% random
access and 50% search queries. Figure 3.6 shows this tradeoff for other workloads. In par-
ticular, Figure 3.6a and Figure 3.6b show the storage-throughput tradeoff for workloads
comprising of 100% random access and 100% search queries, respectively. Note that the
tradeoff for mixed workload has characteristics similar to 100% search workload since, sim-
ilar to other systems, execution time for search is significantly higher than random access.
The throughput of the system is, thus, dominated by latency of search queries.

having varying storage footprints.
4The smallest footprint is 0.5× since TPC-H data is not very compressible, achieving compression factor

of 3.1 using gzip.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 39

 1

 5

 10

 15

 20

 25

 0 0.25 0.5 0.75 1 1.25 1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

BlowFish footprint / Input Size

(a) 100% random access

 1
 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

BlowFish footprint / Input Size

(b) 100% search

 1
 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

BlowFish footprint / Input Size

(c) 50% random access + 50% search

Figure 3.6: Storage-throughput tradeoff curve (per thread) enabled by BlowFish for workloads with varying fraction
of random access and search queries. The y-axis is normalized by the throughput of smallest possible storage
footprint in BlowFish (3874ops for random access only, 37ops for search only, and 71ops for the mixed workload).

50

100

150

B
an

d
w
id
th

U
sa
ge

(G
B
)

EC Rep BlowFish

(a) Bandwidth

Transfer Reconstruction

10

30

50

R
ep

ai
r
ti
m
e
(m

in
s)

EC Rep BlowFish

(b) Repair Time

EC Rep BlowFish

50

100

150

T
h
ro
u
gh

p
u
t
(K

O
p
s)

Before During

(c) Throughput

Figure 3.7: Comparison of BlowFish against RS erasure codes and replication (discussion in §3.5.2). BlowFish requires
5.4× lower bandwidth for data repair compared to erasure codes, leading to 2.5× faster repair time. BlowFish achieves
throughput comparable to erasure codes and replication under no failures, and 1.4− 1.8× higher throughput during
failures.

3.5.2 Data Repair During Failures

We now apply BlowFish to the first application: efficient data recovery upon failures.

Existing techniques and BlowFish tradeoffs. Two techniques exist for data repair
during failures: replication and erasure codes. The main tradeoff is that of storage and
bandwidth, as shown in Table 3.1. Note that this tradeoff is hard; that is, for both replication
and erasure codes, the storage overhead and the bandwidth for data repair is fixed for a fixed
fault tolerance. We discuss related work in §3.6, but note that erasure codes remain inefficient
for data stores serving small objects due to high repair time and/or bandwidth requirements.

Experimental Setup

We perform evaluation along four metrics: storage overhead, bandwidth and time required for
data repair, and throughput before and during failures. Since none of the open-source data
stores support erasure codes, we use an implementation of Reed-Solomon (RS) codes [115].
The code use 10 data blocks and 2 parity blocks, similar to those used at Facebook [167,
133], but for two failure case. Accordingly, we use 3× replication. For BlowFish, we use an

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 40

2.5

5

7.5

L
oa

d
(K

O
p
s)

ShardID 4 8 12 16 20

(a) Load distribution across shards

40

80

120

T
h
ro
u
gh

p
u
t
(K

O
p
s)

Sel. Rep.BlowFish Ideal

(b) Throughput for a fixed storage

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8

Sy
st

em
 S

to
ra

ge
 /

In
pu

t S
iz

e

Load (x 100Kops)

Sel. Rep.
BlowFish

(c) Storage needed to sustain load

Figure 3.8: Comparison of BlowFish and selective caching for skewed workload application. See §3.5.3 for discussion.

instantiation that uses three replicas with storage 0.9×, 0.5× and 0.5×, aggregating to 1.9×
storage — an operating point between erasure codes and replication.

We use 12 server EC2 cluster to put data and parity blocks on separate servers; each server
contains both data and parity blocks, but not for the same data. Replicas for replication and
BlowFish were also distributed similarly. We use 160GB of total raw data distributed across
20 shards. The corresponding storage for erasure codes, replication and BlowFish is, thus,
192, 480 and 310GB. Note that the cluster has 180GB main memory. Thus, all data shards
for erasure codes fit in memory, while a part of BlowFish and replication data is spilled to
disk (modeling storage-constrained systems).

We use uniform query distribution (across shards and across records) for throughput
results. Recall that this distribution constitutes a worst-case scenario for BlowFish. We
measure the throughput for the mixed 50% random access and 50% search workload.

Results

Storage and Bandwidth. As discussed above, RS codes, replication and BlowFish have
a storage overhead of 1.2×, 3× and 1.9×. In terms of bandwidth, we note that the three
schemes require storing 16, 40 and 26GB of data per server, respectively. Figure 3.7a shows
the corresponding bandwidth requirements for data repair for the three schemes. Note that
while erasure codes require 10× bandwidth compared to replication for each individual failed
shard, the overall bandwidth requirements are less than 10× since each server in erasure coded
case also stores lesser data due to lower storage footprint of erasure codes (best case scenario
for erasure codes along all metrics).

Repair time. The time taken to repair the failed data is a sum of two factors — time taken
to copy the data required for recovery (transfer time), and computations required by the
respective schemes to restore the failed data (reconstruction time). Figure 3.7b compares
the data repair time for BlowFish against replication and RS codes.

RS codes require roughly 5× higher transfer time compared to BlowFish. Although
erasure codes read the required data in parallel from multiple servers, the access link at the
server where the data is being collected becomes the network bottleneck. This is further

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 41

exacerbated since these servers are also serving queries. The decoding time of RS codes is
similar to reconstruction time for BlowFish. Overall, BlowFish is roughly 2.5× faster than
RS codes and 1.4× slower than replication in terms of time taken to restore system state
after failures.

Throughput. The throughput results for the three schemes expose an interesting tradeoff
(see Figure 3.7c).

When there are no failures, all the three schemes achieve comparable throughput. This is
rather non-intuitive since replication has three replicas to serve queries while erasure codes
have only one and BlowFish has replicas operating at smaller storage footprints. However,
recall that the cluster is bottlenecked by the capacity of faster storage. If we load balance
the queries in replication and in BlowFish across the three replicas, many of these queries are
executed off SSD, thus reducing the overall system throughput (much more for replication
since many more queries are executed off SSD). To that end, we evaluated the case of
replication and BlowFish where queries are load balanced to only one replica; in this case,
as expected, all the three schemes achieve comparable throughput.

During failures, the throughput for both erasure codes and replication reduces signif-
icantly. For RS codes, 10 out of (remaining) 11 servers are used to both read the data
required for recovery as well as to serve queries. This severely affects the overall RS through-
put (reducing it by 2×). For replication, note that the amount of failed data is 40GB (five
shards). Recovering these shards results in replication creating two kinds of interference: in-
terfering with queries being answered on data unaffected by failures and queries answered on
failed server now being answered off-SSD from remaining servers. This interference reduces
the replication throughput by almost 33%. Note that both these interferences are minimal
in BlowFish: fewer shards need be constructed, thus fewer servers are interfered with, and
fewer queries go to SSD. It turns out that the interference is minimal, and BlowFish ob-
serves minimal throughput reduction (less than 12%) during failures. As a result, BlowFish
throughput during failures is is 1.4− 1.8× higher than the other two schemes.

3.5.3 Skewed Workloads

We now apply BlowFish to the problem of efficiently utilizing the system cache for workloads
with skewed query distribution across shards (e.g., more queries on hot data and fewer
queries on warm data). The case of skew across shards varying with time is evaluated in
next subsection.

State-of-the-art. The state-of-the-art technique for handling spatially-skewed workloads
is selective caching [9] which caches, for each object, number of replicas proportional to the
load on the object.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 42

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120

Lo
ad

 (K
O

ps
),

Th
ro

ug
hp

ut
 (K

O
ps

)

Time (mins)

load
throughput

(a) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0

 50

 100

 150

 200

 250

Lo
ad

 (K
O

ps
)

Q
ue

ue
 L

en
gt

h
(K

O
ps

)

Time (mins)

load
queue-length

(b) Queue Length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0.6
 0.7
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4

Lo
ad

 (K
O

ps
)

St
or

ag
e

R
at

io

Time (mins)

load
storage-ratio

(c) Storage Ratio

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120

Lo
ad

 (K
O

ps
),

Th
ro

ug
hp

ut
 (K

O
ps

)

Time (mins)

load
throughput

(d) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

Lo
ad

 (K
O

ps
)

Q
ue

ue
 L

en
gt

h
(K

O
ps

)

Time (mins)

load
queue-length

(e) Queue Length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0.6
 0.7
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4

Lo
ad

 (K
O

ps
)

St
or

ag
e

R
at

io

Time (mins)

load
storage-ratio

(f) Storage Ratio

Figure 3.9: Opportunistic layer construction with spiked changes in load for uniform workload (top three) and skewed
workload (bottom three). The figures show variation in throughput (left), request queue length (center) and storage
footprint (right).

Experimental Setup

We use 20 data shards, each comprising of 8GB of raw data, for this experiment. We compare
BlowFish and Selective caching using two approaches. In the first approach, we fix the cluster
(amount of fast storage) and measure the maximum possible throughput that each scheme
can sustain. In the second approach, we vary the load for the two schemes and compute the
amount of fast storage required by each scheme to sustain that load.

For the former, we use a cluster with 8 EC2 servers. A large number of clients generate
queries with a Zipf distribution with skewness 0.01 (heavily skewed) across the shards. As
shown in Figure 3.8a, the load on the heaviest shard using this distribution is 20× the load
on the lightest shard — this models the real-world scenario of a few shards being “hot” and
most of the shards being “cold”. For selective caching, each shard has number of replicas
proportional to its load (recall, total storage is fixed); for BlowFish, the shard operates at
a point on the tradeoff curve that can sustain the load with minimal storage overhead. We
distribute the shards randomly across the available servers. For the latter, we vary the
load and compute the amount of fast storage required by the two schemes to meet the load
assuming that the entire data fits in fast storage. Here, we increase the number of shards to
100 to perform computations for a more realistic cluster size.

Results

For fixed storage. The storage required for selective caching and BlowFish to meet the
load is 155.52GB and 118.96GB, respectively. Since storage is constrained, some shards

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 43

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210

Lo
ad

 (K
O

ps
),

Th
ro

ug
hp

ut
 (K

O
ps

)

Time (mins)

load
throughput

(a) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0
 5
 10
 15
 20
 25
 30
 35
 40

Lo
ad

 (K
O

ps
)

Q
ue

ue
 L

en
gt

h
(K

O
ps

)

Time (mins)

load
queue-length

(b) Queue Length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0.6
 0.7
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4

Lo
ad

 (K
O

ps
)

St
or

ag
e

R
at

io

Time (mins)

load
storage-ratio

(c) Storage Ratio

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210

Lo
ad

 (K
O

ps
),

Th
ro

ug
hp

ut
 (K

O
ps

)

Time (mins)

load
throughput

(d) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

Lo
ad

 (K
O

ps
)

Q
ue

ue
 L

en
gt

h
(K

O
ps

)

Time (mins)

load
queue-length

(e) Queue Length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0.6
 0.7
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4

Lo
ad

 (K
O

ps
)

St
or

ag
e

R
at

io

Time (mins)

load
storage-ratio

(f) Storage Ratio

Figure 3.10: Opportunistic layer construction with gradual changes in load for uniform workload (top three) and
skewed workload (bottom three). The figures show variation in throughput (left), request queue length (center) and
storage footprint (right).

in selective caching can not serve queries from faster storage. Intuitively, this is because
BlowFish provides a finer-grained tradeoff (increasing the storage overhead fractionally, just
enough to meet the performance goals) compared to the coarse-grained tradeoff of selective
replication (throughput can be increased only by 2× by adding another replica requiring 1×
higher storage overhead). Thus, BlowFish utilizes the available system cache more efficiently.
Figure 3.8b shows that this leads to BlowFish achieving 1.5× higher throughput than selec-
tive caching. Interestingly, BlowFish achieves 89% of the ideal throughput, where the ideal
is computed by taking into account the load skew across shards, the total system storage, the
maximum possible per-shard throughput per server, and by placing heavily loaded shards
with lightly loaded shards. The remaining 11% is attributed to the random placement of
shards across servers, resulting in some servers being throughput bottlenecked.

Fixed load. Figure 3.8c shows that, as expected, BlowFish requires 2.7 – 4.9× lower amount
of fast storage compared to selective caching to sustain the load.

3.5.4 Time-varying workloads

We now evaluate BlowFish’s ability to adapt to time-varying load, in terms of time taken
to adapt and queue stability. We also evaluate the performance of BlowFish’s scheduling
technique during such time-varying loads.

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 44

Experimental Setup

We perform micro-benchmarks to focus on adaptation time, queue stability and per-thread
shard throughput for time-varying workloads. We use a number of clients to generate time-
varying load on the system. We performed four sets of experiments: uniform and skewed
(Zipf with skewness 0.01) query distribution (across queried keys and search terms); and,
gradual and spiked variations in load. Specifically perform the following micro-benchmarks:

• For the spiked variation in load, we increase the load on the shard from 600ops to
1800ops suddenly (3× increase in load models failures of two replicas, an extremely
unlikely scenario) at time t = 30 and observe the system for an hour before dropping
down the load back to 600ops at time t = 90.

• we increase the load from 600ops to 2000ops, with a gradual increase of 350ops at 30
minute intervals. This granularity of increase in load is similar to those reported in
real-world production clusters [16], and constitutes a much easier case for BlowFish
compared to the spiked increase in load.

Results

BlowFish adaptation time and queue stability for spiked variation in load. As
the load is increased from 600ops to 1800ops, the throughput supported by the shard at
that storage ratio is insufficient to meet the increased load (Figures 3.9a and 3.9d). As a
result, the request queue length for the shard increases (Figures 3.9b and 3.9e). At one
point, BlowFish triggers opportunistic layer creation — the system immediately allocates
additional storage for the two sampled arrays (increased storage ratio in Figures 3.9c and
3.9f); the sampled values are filled in gradually as queries are executed.

At this point, the results for uniform and skewed query distribution differ. For the uniform
case, the already filled sampled values are reused infrequently. Thus, it takes BlowFish longer
to adapt (≈ 5 minutes) before it starts draining the request queue (the peak in Figure 3.9b).
BlowFish is able to drain the entire request queue within 15 minutes, making the system
stable at that point.

For the skewed workload, the sampled values computed during query execution are reused
frequently since queries repeat frequently. Thus, BlowFish is able to adapt much faster
(≈ 2minutes) and drain the queues within 5 minutes. Note that this is akin to caching of
results, explicitly implemented in many existing data stores [102, 130, 57] while BlowFish
provides this functionality inherently.

Gradual workload variations. For the uniform query distribution (Figure 3.10, top), as
the load increases from 600ops to 950ops (Figure 3.10a), the load becomes higher than the
throughput supported by the shard at that storage ratio (800ops). Consequently, the request
queue length starts building up (Figure 3.10b), and BlowFish triggers a layer addition by
allocating space for the new layers (Figure 3.10c). BlowFish opportunistically fills up values

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 45

 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 30 60 90 120 150 180

Lo
ad

,
Th

ro
ug

hp
ut

 (K
O

ps
)

Time (mins)

load
replica-1
replica-2
replica-3

(a) Throughput

 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 30 60 90 120 150 180
 0

 1

 2

 3

 4

 5

 6

Lo
ad

 (K
O

ps
)

Q
ue

ue
 L

en
gt

h
(K

O
ps

)

Time (mins)

load
replica-1
replica-2
replica-3

(b) Queue Length

 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 30 60 90 120 150 180
 0.6
 0.7
 0.8
 0.9
 1
 1.1
 1.2
 1.3
 1.4

Lo
ad

 (K
O

ps
)

St
or

ag
e

R
at

io

Time (mins)

load
replica-1
replica-2
replica-3

(c) Storage ratio

Figure 3.11: The effectiveness and stability of BlowFish’s query scheduling mechanism in a replicated
system (discussion in §3.5.4). Variation in throughput (left), request queue lengths (center) and storage-footprints
(right) for the three replicas.

in the new layer, and the throughput for the shard increases gradually. This continues
until the throughput matches the load on the shard; at this point, however, the throughput
continues to increase even beyond the load to deplete the outstanding requests in the queue
until the queue length reduces to zero and the system resumes normal operation. A similar
trend can be seen when the load is increased to 1650ops.

For the skewed query distribution (Figure 3.10, bottom), the trends observed are similar
to those for the uniform workload, with two key differences. First, we observe that BlowFish
triggers layer creation at different points for this workload. In particular, the throughput for
the skewed workload at the same storage footprint (0.8 in Figure 3.10c and 3.10f) is higher
than that for the uniform workload. To see why, note that the performance of search
operations varies significantly based on the queries; while the different queries contribute
equally for the uniform workload, the throughput for the skewed workload is shaped by
the queries that occur more frequently. This effect attributes for the different throughput
characteristics for the two workloads at the same storage footprint.

Second, as noted before (§3.5.4), BlowFish adaptation benefits from the repetitive nature
of queries in the skewed workload, since repeated queries can reuse the values populated
during their previous execution. In comparison to uniform query distribution, this leads to
faster adaptation to increase in load and quicker depletion of the increased request queue
lengths.

Note the difference in results for the case of spiked increase in load (Figure 3.9) and
gradual increase in load (Figure 3.10). In the former case, the increase in load leads to
significantly higher request queue lengths and hence, it takes much longer for the system
to return to normal operations. In the latter, however, due to gradual increase in load,
the system can drain the outstanding request queue significantly faster, can resume normal
operations faster, and thus provides adaptation at much finer time granularity.

BlowFish scheduling. To evaluate the effectiveness and stability of BlowFish scheduling,
we turn our attention to a distributed setting. We focus our attention on three replicas
of the same shard. We make the server storing one of these replicas storage constrained
(replica #3); that is, irrespective of the load, the replica cannot trigger navigation along the

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 46

storage-performance tradeoff curve. We then gradually increase the workload from 3KOps to
8KOps in steps of 1KOps per 30 minutes (Figure 3.11) and observe the behavior of request
queues at the three replicas.

Initially, each of the three replicas observe a load of 1KOps since queue sizes are equal,
and BlowFish scheduler equally balances the load. As the load is increased to 4KOps, the
replicas are no longer able to match the load, causing the request queues at the replicas to
build up (Figure 3.11b). Once the queue lengths cross the threshold, replica #1 and #2
trigger layer construction to match higher load (Figure 3.11c).

As the first two replicas opportunistically add layers, their throughput increases; however,
the throughput for the third replicas remains consistent (Figure 3.11a). This causes the
request queue to build up for the third replica at a rate higher than the other two replicas
(Figure 3.11b). Interestingly, the BlowFish quickly adapts, and stops issuing queries to
replica#3, causing its request queue length to start dropping. We observe a similar trend
when the load increases to 5KOps. BlowFish does observe queue length oscillations during
adaptation, albeit of extremely small magnitude.

3.6 Related Work

BlowFish’s goals are related to three key areas:

Storage-performance tradeoff. Existing data stores usually support two extreme oper-
ating points for each cached shard — compressed but low throughput, and uncompressed
but high throughput. Several compression techniques (e.g., gzip) can allow achieving dif-
ferent compression factors by changing parameters. However, these require decompression
and re-compression of the entire data on the shard. As shown in this chapter, a smooth and
dynamic storage-performance tradeoff not only provides benefits for existing applications
but can also enable a wide range of new applications.

Data repair. The tradeoff between known techniques for data repair — replication and
erasure codes — is that of storage overhead and bandwidth. Studies have shown that the
bandwidth requirement of traditional erasure codes is simply too high to use them in prac-
tice [167]. Several research proposals [88, 152, 167] reduce the bandwidth requirements of
traditional erasure codes for batch processing jobs. However, these codes remain inefficient
for data stores serving small objects. As shown in §3.5, BlowFish achieves storage close to
erasure codes, while maintaining the bandwidth and repair time advantages of replication.

Selective Replication. As discussed in §3.5, selective replication can achieve good perfor-
mance for workloads skewed towards a few popular objects. However, most approaches [9]
only provide a coarse-grained support — increasing the throughput by 2× by increasing the
storage overhead by 1×. BlowFish, instead, provides a much finer-grained control allowing
applications to increase the storage fractionally, just enough to meet the performance goals.

In contrast, approaches that replicate data at finer-granularities (e.g., per-record or per-
object replication [202, 198]) to address these issues, need to maintain complex fine-grained

CHAPTER 3. DYNAMIC STORAGE-PERFORMANCE TRADEOFF FOR
COMPRESSED DATA 47

metadata (i.e., at the granularity of replication), which can add both performance (e.g.,
under rapid changes in query workloads) as well as storage overheads (e.g., for datasets with
many small records).

3.7 Summary

BlowFish is a distributed data store that enables a smooth storage-performance tradeoff be-
tween two extremes — compressed but low throughput and uncompressed but high through-
put. In addition, BlowFish allows applications to navigate along this tradeoff curve over
fine-grained time scales. Using this flexibility, we explored several problems from real-world
production clusters from a new “lens” and showed that the tradeoff exposed by BlowFish can
offer significant benefits compared to state-of-the-art techniques for the respective problems.

48

Chapter 4

Interactive Queries on Compressed
Graphs

While Succinct enables a wide range of queries directly on compressed data, emerging cloud
applications demand even more in terms of both the structure of data to be queried, as
well of the kinds of queries that they need to support. In keeping with these demands,
this chapter, and the next, explores the problem of exploring richer data models and query
semantics on Succinct. More specifically, we ask the following question: How can we encode
different types of data and support different types of queries, so as to leverage Succinct’s
(and BlowFish’s) unique advantages outlined in Chapters 2 and 3?

This chapter, in particular, focuses on graph data, and the queries that cloud applications
perform on them. Large graphs are becoming increasingly prevalent across a wide range of
applications including social networks, biological networks, knowledge graphs and cryptocur-
rency. Many of these applications store, in addition to the graph structure (nodes and edges),
a set of attributes or properties associated with each node and edge in the graph [30, 15, 149,
136, 189]. Many recent industrial studies [15, 30, 137] report that the overall size of these
graphs (including both the structure and the properties) could easily lead to terabytes or
even petabytes of graph data. Consequently, it is becoming increasingly hard to fit the entire
graph data into the memory of a single server [30, 171, 136].

How does one operate on graph data distributed between memory and secondary storage,
potentially across multiple servers? This question has attracted a lot of attention in recent
years for offline graph analytics, e.g., recent systems like GraphLab [116], GraphX [79],
GraphChi [100] and Trinity [171]. These systems now enable efficient “batch processing” of
graph data for applications that often run at the scale of minutes.

Achieving high performance for interactive user-facing queries on large graphs, however,
remains a challenging problem. For such interactive queries, the goal is not only to achieve
millisecond-level latency, but also high throughput [30, 15, 56]. When the graph data is dis-
tributed between memory and secondary storage, potentially across multiple servers, achiev-
ing these goals is particularly hard.

For instance, consider the query: “Find friends of Alice who live in Berkeley”. One

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 49

possible way to execute this query is to execute two sub-queries — find friends of Alice,
and, find people who live in Berkeley — and compute the final result using an intersection of
results from two sub-queries. Such joins may be complex1, and may incur high computational
and bandwidth2 overheads [53].

Another interesting possibility to execute the above query is to first find friends of Alice,
and then for each friend, check whether or not the friend lives in Berkeley. Executing the
query in this manner alleviates the overheads of the first approach, but requires random
access into the “location” property of each friend of Alice. The well-known problem here is
that typical graph queries exhibit little or no locality — the query may touch arbitrary parts
of the graph, potentially across multiple servers, some of which may be in memory and some
of which may be on secondary storage. Unless the data for each of Alice’s friends is stored in
memory, the query latency and system throughput suffers. Thus, intuitively, to achieve high
system performance, graph stores should store as large a fraction of graph data as possible
in memory.

One way to store a larger fraction of graph data in memory is to use compression. How-
ever, traditional block compression techniques (e.g., gzip) are inefficient for graph queries
precisely due to lack of locality — since queries may touch arbitrary parts of the graph,
each query may require decompressing a large number of blocks (e.g., all blocks that contain
Alice’s friends in the above example). Thus, designing compression techniques specialized
to graphs has been an active area of research for the better part of last two decades [24, 27,
38, 66, 85, 123, 84, 173, 118]. Many of these techniques even support executing queries on
compressed graphs [27, 38, 66, 85, 123, 84, 118]. However, existing techniques ignore node
and edge properties and are limited to a small subset of queries on graph structure (e.g.,
extracting edges incident on a node, or subgraph matching). Contemporary applications
require executing far more complex queries [30, 91, 31, 53], often involving node and edge
properties.

We present ZipG — a memory-efficient, distributed graph store for efficiently serving
interactive graph queries. ZipG achieves memory efficiency by storing the input graph data
(nodes, edges and the associated properties) using Succinct’s compressed representation, and
consequently stores a larger fraction of graph data in memory when compared to existing
graph stores. What differentiates ZipG from existing graph stores is its ability to execute a
wide range of queries directly on this compressed representation — ZipG exposes a minimal
API that is rich enough to implement functionalities from several graph stores including those
from Facebook [30], LinkedIn [200] and Twitter [90]. We demonstrate this by implementing
and evaluating the published graph queries from Facebook TAO, LinkBench, Graph Search
and several other workloads on top of ZipG. Using a single server with 244GB memory, ZipG
executes tens of thousands of TAO, LinkBench and graph search queries for raw graph data
over half a Terabyte.

1Graph search queries (such as the ones that we evaluate later in §4.4) when implemented using naive
join algorithms are referred to as “Join Bombs” by one of the state-of-the-art graph serving companies [53].

2The cardinality of results for the two sub-queries may be orders of magnitude larger than the final result
cardinality.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 50

Table 4.1: ZipG’s API and an example for each API. See §4.1.2 for definitions and detailed discussion.

API Example

g = compress(graph) Compress graph.

List<String> g.get node property(nodeID, propertyIDs) Get Alice’s age and location.

List<NodeID> g.get node ids(propertyList) Find people in Berkeley who like Music.

List<NodeID> g.get neighbor ids(nodeID, edgeType, Find Alice’s friends who live in Boston.

propertyList)

EdgeRecord g.get edge record(nodeID, edgeType) Get all information on Alice’s friends.

Pair<TimeOrder> g.get edge range(edgeRecord, tLo, tHi) §4.1.2; tLo and tHi are timestamps.

EdgeData g.get edge data(edgeRecord, timeOrder) Find Alice’s most recent friend.

g.append(nodeID, PropertyList) Append new node for Alice.

g.append(nodeID, edgeType, edgeRecord) Append new edges for Alice.

g.delete(nodeID) Delete Alice from the graph.

g.delete(nodeID, edgeType, destinationID) Delete Bob from Alice’s friends list.

While ZipG builds upon Succinct, it must resolve a number of challenges regarding the
graph layout. Specifically, it must not only transform the graph data into a format that
Succinct understands, but ensure that the format still preserves the benefits of Succinct
for graph queries, i.e., it should still be possible to perform graph queries directly on the
compressed graph representation. To this end, ZipG uses a new simple and intuitive graph
layout that transforms the input graph data into a flat unstructured file (§4.2). This layout
admits memory-efficient representation using Succinct. In addition, this layout carefully
stores small amount of metadata along with the original input graph data in a manner
that the two primitives of Succinct (random access and substring search) can be extended
to efficiently implement interactive graph queries as expressive as those in Facebook TAO,
LinkBench and Graph Search workloads directly on compressed representation of ZipG.

There are two additional challenges associated with storing data using a compressed
representation. The first challenge is to support high write rates. The traditional approach
to resolving this challenge is to use a log-structured approach — updates are appended into a
log; these logs are periodically compressed into an immutable representation, after which the
new updates are written into a new log. However, näıvely using a log-structured approach
in graph stores results in nodes and edges having their data “fragmented” across multiple
logs; without any additional data structures, each query now requires touching all the logs
resulting in reduced throughput (§4.2.5). ZipG uses the log-structured approach, but avoids
touching all logs using the idea of fanned updates. Specifically, each server in ZipG stores
a set of update pointers that ensure that during query execution, ZipG touches exactly
those logs (and bytes within the logs) that are necessary for query execution. The second
challenge with compressed representation is in providing strong consistency guarantees and
transactions. ZipG currently does not attempt to resolve this challenge. While several graph
stores used in production [30, 200, 90] make a similar design choice, extending ZipG to
provide such guarantees is an interesting future direction.

We evaluate ZipG against Neo4j [136] and Titan [189], two popular open-source graph

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 51

stores. All our experiments run on a set of commodity Amazon EC2 machines, and use
five workloads — Facebook TAO [30], LinkBench [15], Graph Search [91], Regular Path
Queries [17] and simple graph traversals. We use graphs from the real-world (annotated
with node and edge properties using TAO distribution) as well as LinkBench generated
graphs containing millions of nodes and billions of edges. Our evaluation shows that ZipG
significantly outperforms Neo4j and Titan in terms of system throughput, usually by an
order of magnitude but sometimes by as much as 23×.

4.1 Data model and Interface

We start by outlining ZipG graph data model (§4.1.1) and the interface exposed to the
applications (§4.1.2).

4.1.1 ZipG Data Model

ZipG uses the property graph model [149, 136, 189, 30], with graph data comprising of nodes,
edges, and their associated properties.

Nodes and Edges. ZipG employs the usual definitions of nodes and edges. Edges in ZipG
could be directed or undirected. To model applications where graphs may have different
“types” of edges (e.g., comments, likes, relationships) [30], ZipG represents each edge using
a 3-tuple comprising of sourceID, destinationID and an EdgeType, where the latter iden-
tifies the type of the edge. Each edge may potentially have a different EdgeType and may
optionally have a Timestamp. The precise representation is described in §4.2.

Node and Edge Properties. Each node and edge in ZipG may have multiple properties,
represented by PropertyList. Each PropertyList is a collection of (PropertyID, Proper-
tyValue) pairs; e.g., the PropertyList for a node may be {(age, 20), (location, Berkeley),
(zipcode, 14853)}. Each PropertyList in ZipG may have arbitrarily many properties.

4.1.2 ZipG Interface

ZipG exposes a minimal, yet functionally rich, interface that abstracts away the internal
graph data representation details (e.g., compression). Applications interact with ZipG as if
they were working on original graph data. In this section, we outline this interface. We start
with some definitions:

• EdgeRecord: An EdgeRecord holds a reference to all the edges of a particular EdgeType
incident on a node and to the data corresponding to these edges (timestamps, destina-
tionID, PropertyList, etc.).

• TimeOrder: EdgeRecord can be used to efficiently implement queries on edges. Many
queries, however, also require a notion of time (e.g., find all comments since last login).

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 52

To efficiently execute such queries, ZipG uses TimeOrder — for each node, the incident
edges of the same type are logically sorted using timestamps. TimeOrder of an edge
represents the order (e.g. i-th) of the edge within this sorted list.

• EdgeData: Given the TimeOrder within an EdgeRecord, the EdgeData stores the triplet
(destinationID, timestamp, PropertyList) for the corresponding edge.

Table 4.1 outlines the interface exposed by ZipG, along with some examples. Applications
submit the graph, represented using the property model in §4.1.1, to ZipG and generate
a memory-efficient representation using compress(graph). Applications can then invoke
powerful primitives (Table 4.1) as if the input graph was stored in an uncompressed manner;
ZipG internally executes queries efficiently directly on the compressed representation. Most
queries in Table 4.1 are self-explanatory; we discuss some of the interesting aspects below,
and return to details on query implementation in §4.3.2.

Wildcards. ZipG queries admit wildcard as an argument for PropertyID, edgeType, tLo,
tHi and timeOrder. ZipG interprets wildcards as admitting any possible value. For in-
stance, get node property(nodeID,*) returns all properties for the node, and get edge -
record(nodeID,*) returns all edgeRecords for the node (and not just of a particular ed-
geType).

Node-based queries. Consider again the query “Find friends of Alice who live in Berkeley”.
Letting Alice to be the NodeID and assuming friends have edgeType 0, the query get -
neighbor ids(Alice,0,{Location, Berkeley}) returns the desired results. Internally,
ZipG implements this query by first finding Alice’s friends, and then checking for each of
the friends, whether or not the friend lives in Berkeley. Applications that have knowledge
about the structure of the graph and/or queries can also execute the same query using a
different approach — using get neighbor ids(Alice,0,*) ∩ g.get node ids(Location,
Berkeley), where the former returns all friends of Alice and the latter returns all people
who live in Berkeley. We compare the performance of executing queries these two approaches
in §4.4.6.

Edge-based queries and Updates. ZipG allows applications to get random access to any
EdgeRecord using get edge record, and, into the data for any specific edge in EdgeRecord
using get edge data. If edges contain timestamps, ZipG also allows applications to access
edges based on timestamps using get edge range. Finally, applications can insert EdgeRe-
cords using append, delete existing EdgeRecords using delete, and update an EdgeRecord
using a delete followed by an append.

4.2 ZipG Design

In this section, we present ZipG’s design and implementation.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 53

NodeID PropertyList
Alice nickname: Ally, age: 42, location: Berkeley
Bob nickname: Bobby, location: Princeton
Eve age: 24, nickname: Cat

PropertyID
(Order,

Delimiter)
age (0, •)

location (1, †)
nickname (2, *)

NodeID offset
Alice 0
Bob 21
Eve 42

284•42†Berkeley*Ally‡

095•†Princeton*Bobby‡

203•24†*Cat‡

+ +

Figure 4.1: An example for describing the layout of NodeFile. See description in §4.2.2.

$S1#EdgeType1,Metadata,T0,...,TM,D0,...,DM,PropertyList0,...,PropertyListM
$S1#EdgeType2,Metadata,T0,...,TM,D0,...,DM,PropertyList0,...,PropertyListM

...
$Sf#EdgeTypek,Metadata,T0,...,TM,D0,...,DM,PropertyList0,...,PropertyListM

•EdgeCount*Tlength † DLength

Figure 4.2: EdgeFile Layout in ZipG (§4.2.2). Each row is an EdgeRecord for a (sourceID, edgeType) pair.
Each EdgeRecord contains, from left to right, metadata such as edge count and width of different edge data fields,
sorted timestamps, destination IDs, and edge PropertyLists.

4.2.1 ZipG overview

ZipG builds on top of Succinct, and at a high level, employs the following strategy:

• Graph data is first converted into “flat file” representations so that they can be com-
pressed using Succinct. This allows ZipG to exploit Succinct’s search and random
access operations.

• Graph queries are supported directly on the compressed graph representation using a
combination of random access and search.

However, ZipG has to resolve a number of challenges to achieve the desired expressivity,
scalability and performance. We outline some of these challenges below, and provide a brief
overview of how ZipG resolves these challenges.

Storing graphs. One of the fundamental challenges that ZipG has to resolve is to de-
sign an efficient layout for storing graph data using the underlying data store. This is akin
to GraphChi [100] and Ligra [172], that design new layouts for using the underlying stor-
age system for efficient batch processing of graphs. ZipG’s layout should not only admit
a memory-efficient representation when using Succinct, but should also enable efficient im-
plementation of interactive graph queries using the random access and search primitives of
Succinct.

ZipG’s graph layout uses two flat unstructured files:

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 54

• NodeFile stores all NodeIDs and corresponding properties. ZipG NodeFile adds a small
amount of metadata to the list of (NodeID, nodeProperties) before invoking compression;
this allows ZipG to tradeoff storage (in uncompressed representation) for efficient random
access into node properties.

• EdgeFile stores all the EdgeRecords. By adding metadata and by converting variable
length data into fixed length data before invoking compression, ZipG EdgeFile trades off
storage (in uncompressed representation) to optimize random access into EdgeRecords
and more complex operations like binary search over timestamps.

We discuss design of ZipG NodeFile and EdgeFile, and associated tradeoffs in §4.2.2.

Updating graphs. Another challenge for ZipG is to support high write rates over com-
pressed graphs. As described earlier, while Succinct (§2) resolves this using log-structured
storage [4, 95], näıvely adapting this approach to graph stores results fragmentation of node
and edge data across multiple logs. This increases overheads for queries, which would now
need to touch all the data. ZipG resolves this problem using the idea of fanned updates. At
a high-level, ZipG servers stores update pointers that ensure that during query execution,
ZipG touches only the logs necessary for query execution. We discuss fanned updates in
§4.2.5 in greater detail.

4.2.2 Graph Representation

Existing graph stores use layouts that expose a hard tradeoff between flexibility and scal-
ability. On the one hand, systems like Neo4j [136] heavily use pointers to store both the
structure of the graph and the properties for nodes and edges. While flexible in represen-
tation, a pointer-based approach suffers from scalability issues when the entire graph data
does not fit into the memory of a single server3. Systems like Titan [189], on the other
hand, scale well by using a layout that can be mapped to a key-value (KV) store abstraction.
However, KV abstraction is not very well suited for interactive graph queries [30] — by en-
forcing values to be stored as a “single opaque object”, KV abstraction limits the flexibility
of graph stores. Specifically, storing all the node properties (or, set of incident edges) as a
single opaque object precludes these systems from fine-grained access into individual node
properties (or, individual edges).

ZipG uses a new graph layout that, while simple and intuitive, provides both the scala-
bility and flexibility by operating on flat unstructured files. ZipG uses two flat unstructured
files, which we describe next.

3Pointer chasing during query execution requires multiple accesses to secondary storage and/or different
servers, leading to undesired bottlenecks.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 55

(1,0) ... 2,1 ...

..
.

Shard#1

(1,0) • •

Update Pointers

... (1,0) ... 5,3 ...

..
.

Shard#k

(NodeID,EdgeType) ... Timestamps ...

... (1,0) ... 10 ...

..
.

Shard#n

Read Request
for (1,0)

Figure 4.3: Update Pointers for the EdgeFile (§4.2.5).

NodeFile

NodeFile stores all the NodeIDs and associated properties, and is optimized for two kind of
queries on nodes: (1) given a (NodeID, List<propertyID>) pair, extract the corresponding
propertyValues; and (2) given a PropertyList, find all NodeIDs whose properties match the
propertyList.

NodeFile consists of three data structures (see Figure 4.1). First, each propertyID in the
graph is assigned a unique delimiter4 and stored as a PropertyID → (order, delimiter)
map, where order is lexicographic ranking of the propertyID among all propertyIDs.

The second data structure is a flat unstructured file that stores PropertyLists along with
some metadata as described next. The propertyValues are prepended by their propertyID’s
delimiter and then written in the flat file in sorted order of propertyIDs; if a propertyID
has a null propertyValue, we simply write down the delimiter. An end-of-record delimiter
is appended to the end of the serialized propertyList of each node. For instance, Alice’s
propertyList in Figure 4.1 is serialized into •42†Berkeley*Ally‡, where ‡ is the end-of-record
delimiter.

The metadata in the second data structure exposes a space-latency tradeoff. Specifi-
cally, the size of propertyValues within a node’s propertyList vary significantly in real-world
datasets (e.g., Alice’s age 42 and location Berkeley in above example) [30]. Using the largest
size of PropertyValues (6bytes for Alice) as a fixed size representation for each property-
Value enables efficient random access but at the cost of space inefficiency. On the other
hand, näıvely using a space-efficient variable size representation (2bytes for age, 8bytes for
location, etc.) without any additional information leads to inefficient random access — Alice
may put her age, name, nickname, location, status, workplace, etc. and accessing status may
require extracting many more bytes than necessary. To that end, ZipG uses variable size
representation for propertyValues but also explicitly stores the length of each propertyValue
into the metadata for each propertyList. The lengths of propertyValues are encoded using a
global fixed size len, since they tend to be short and of nearly similar size. In the example
of Figure 4.1, the propertyList for Alice is thus encoded as 284•42†Berkeley*Ally‡.

4Graphs usually have a small number of propertyIDs across all nodes and edges; ZipG uses one byte
non-printable characters as delimiters (for up to 25 propertyIDs) and two byte delimiters (for up to 625
propertyIDs).

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 56

The third data structure stored in NodeFile is a simple two-dimensional table that stores
a sorted list of NodeIDs and the offset of node’s PropertyList in NodeFile.

EdgeFile

EdgeFile stores the set of edges and their properties. Recall from §4.1 that each edge
is uniquely identified by the 3-tuple (sourceNodeID,destinationNodeID,EdgeType) and
may have an associated timestamp and a list of properties. See Figure 4.2 for an illustration.

Each EdgeRecord in the EdgeFile corresponds to the set of edges of a particular Ed-
geType incident on a NodeID. The EdgeRecord for (NodeID, EdgeType) pair starts with
$NodeID#EdgeType, where $ and # are two delimiters. Next, the EdgeFile stores cer-
tain metadata that we describe below. Following the metadata, the EdgeFile stores the
TimeStamps for all edges, followed by destinationIDs for all edges, finally followed by the
PropertyLists of all edges. We describe below the design decisions made for each of these
individually.

Edge Timestamps. Edge timestamps are often used to impose ordering (e.g., return results
sorted by timestamps, or find new comments since last login time [30]). Efficiently executing
such queries requires performing binary search on timestamps. ZipG stores timestamps in
each EdgeRecord in sorted order. To aid binary search, ZipG also stores the number of edges
in the EdgeRecord within the metadata (denoted by EdgeCount in Figure 4.2).

There are several approaches for storing individual timestamp values. At one extreme
are variable length encoding and delta encoding. In the former, each timestamp can be
stored using minimum number of bytes required to represent that timestamp along with
some additional bytes (delimiters and/or length) to mark boundaries of timestamp values.
While space-efficient, this representation complicates random access on timestamps since
extracting a timestamp requires extracting all the timestamps before it. Storing timestamps
using delta encoding [129] also leads to a similar tradeoff. The other extreme is fixed length
representation for all edge timestamps (e.g., 64 bits) that enables efficient random access at
the cost of increased storage.

ZipG uses a middle-ground: it uses a fixed length representation but rather than using a
globally fixed length, it uses the maximum length required across edges within an EdgeRecord.
Since this length varies across EdgeRecords, ZipG stores the fixed length for each EdgeRecord
in the corresponding metadata (TLength in Figure 4.2).

DestinationIDs. A natural choice for storing the destinationIDs is to order them according
to edge timestamps, such that the ith timestamp and ith destinationID correspond to the
same edge. Such an ordering avoids the need to maintain an explicit mapping between edge
timestamps and corresponding destinationIDs, enabling efficient random access. ZipG uses
a fixed length representation similar to timestamps for destinationIDs and stores this length
in the metadata (DLength in Figure 4.2).

Edge Properties. As with destinationIDs, edge propertyLists are ordered such that ith

timestamp and ith propertyList correspond to the same edge. The edge properties are en-

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 57

aggregator

shard-1 ... shard-n

Friends of Alice
in Berkeley?

aggregator

shard-1 ... shard-n

aggregator

shard-1 ... shard-n

...

aggregator

shard-1 ... shard-n

Friends of Alice?
Bob’s city?

Carol & Dan’s cities?

Figure 4.4: Function Shipping in ZipG. See §4.3.1 for discussion.

coded similar to node properties, since the layout design criteria and tradeoffs for both are
identical. Specifically, the lengths of all the propertyLists are stored, followed by delimiter
separated propertyValues (similar to NodeFile). ZipG currently does not support search on
edge propertyLists, but can be trivially extended to do so using ideas similar to NodeFile.

4.2.3 ZipG Query Execution

We now describe how ZipG uses the graph layout from §4.2.2 to efficiently execute queries
from Table 4.1.

Implementing node-based queries. It is easy to see that the NodeFile design allows im-
plementing get node property query using two array lookups (one for property delimiter
and one for ProperList offset), and one extra byte (for accessing propertyValue length) in
addition to extracting the PropertyValue itself (using Succinct’s extract primitive, see Fig-
ure 2.1 in Chapter 2). Implementing get node ids is more interesting; we explain this using
an example. Suppose the query specifies {‘‘nickname’’ = ‘‘Ally’’} as the propertyList.
Then, ZipG first finds the delimiter of the specified PropertyID (*, for nickname) and the
next lexicographically larger PropertyID (in this case, ‡ for end-of-record delimiter). It then
prepends and appends Ally by * and ‡, respectively and uses Succinct’s search primitive
(see Figure 2.1 in Chapter 2). This returns the offsets into the flat file where this string
occurs, which are then translated into NodeIDs using binary search over the offsets in the
two-dimensional array.

Implementing edge-based queries. The get edge record operation returns the EdgeRe-
cord for a given (sourceID, edgeType) pair and is implemented using search($sourceID
#edgeType) on the EdgeFile. This returns the offset for the EdgeRecord within the Edge-
File. Using the metadata in the EdgeRecord, ZipG can efficiently perform binary searches
on the timestamps (get time range) and random access into the destination IDs and edge
properties (get edge data).

4.2.4 Graph Partitioning (Sharding)

Several previous studies have established that efficient partitioning of social graphs is a
hard problem [104, 106, 6]. Similar to existing graph stores [189], ZipG uses a simple

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 58

hash-partitioning scheme — it creates a number of shards, default being one per core, and
hash partitions the NodeIDs on to these shards. All the data corresponding to NodeID
(PropertyList and edge information of edges incident on NodeID) are then stored in that
shard. This ensures that all node and edge data associated with a node is co-located on the
same shard, enabling efficient execution of neighborhood queries. Finally, each of the shards
is transformed into the ZipG layout comprising EdgeFiles and NodeFiles, as described in
§4.2.2.

4.2.5 Fanned Updates

As outlined earlier, while storing data in a compressed form leads to performance benefits
when the uncompressed data does not fit in faster storage, it also leads to the challenge of
handling high write rates. Specifically, the overheads of decompressing and re-compressing
data upon new writes need to be amortized over time, while maintaining low memory and
computational overheads and while minimizing interference with ongoing queries on existing
data. The traditional approach to achieve this is to use log-structured storage; within this
high-level approach, there are two possible techniques that expose different tradeoffs.

The first technique is to maintain a log-structured store (LogStore), per shard or for
all shards on a server, and periodically merge the LogStore data with the compressed data.
To avoid scanning the entire LogStore during query execution (to locate the data needed
to answer the query), additional nodeID → LogStore-offset pointers can be stored that
allow random access for each node’s data. The benefit of this approach is that all the data
for any graph node remains “local”. The problem however is that such an approach requires
over-provisioning of memory for LogStore at each server, which reduces the overall memory
efficiency of the system. Moreover, periodically merging the LogStore data with compressed
data interferes with ongoing queries (as does copying the data to background processes for
merging process). Finally, this approach requires using concurrent data structures to resolve
read-write conflicts at each server (for concurrent reads and writes over LogStore data).

ZipG instead uses a single LogStore for the entire system — all write queries are di-
rected to a query-optimized (rather than memory-optimized) LogStore. Once the size of
the LogStore crosses a certain threshold, the LogStore is compressed into a memory-efficient
representation and a new LogStore is instantiated. A single LogStore in ZipG offers three
advantages. First, ZipG does not require decompressing and re-compressing the previously
compressed data, and thus observes minimal interference on queries being executed on pre-
viously compressed data. Second, a single LogStore in ZipG also achieves higher memory
efficiency than the first technique discussed above — rather than over-provisioning each
server for a LogStore, ZipG requires just one dedicated LogStore server which can be opti-
mized for query efficiency rather than memory efficiency. Finally, a single LogStore in ZipG
avoids complicated data structures for concurrent reads and writes at each server, making
the entire system simpler.

For unstructured and semi-structured data, where records are usually modeled as disjoint
entities, a single LogStore leads to benefits compared to per-server LogStores [4, 95, 36, 8].

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 59

However, for graph structured data, using a single LogStore leads to a new challenge —
fragmented storage. In the absence of decompression and re-compression, as new edges are
added on a node, the EdgeRecord of the node will be fragmented across multiple shards.
For instance, suppose at time t = 0 we upload the graph data to ZipG and create a single
LogStore ℓ. Consider a node u that has some data in the originally uploaded data to ZipG.
Suppose that multiple updates happen between time t = 0 and t = t1 such that: (1) the
size of ℓ crosses the threshold at time t1; and (2) some of these updates are on node u.
Then, at time t1, we convert ℓ into ZipG’s memory-efficient representation and create a new
LogStore ℓ′. Then, for all updates on node u after time t1, the data belonging to node u
will now be fragmented across at least three shards: the original one that had the data for
node u in pre-loaded graph data, the shard corresponding to the old LogStore ℓ and the new
LogStore ℓ′. Depending on the update rates and on the skew in update queries, any node in
the graph may thus have data fragmented across multiple shards over time (we evaluate the
fragmentation over time and across nodes below). We thus need some additional techniques
to efficiently exploit all the benefits of having a single LogStore.

One way to handle fragmented data is to send each query to all shards, and retrieve
the corresponding results. This is extremely inefficient — as our results Figure 4.5 below
suggest, most queries can be answered by touching an extremely small fraction of the shards
(less than 10% for 99.9% of the nodes); executing each query at all shards would thus have
high unnecessary CPU overhead. ZipG instead uses the idea of Fanned Updates. Consider
a static graph, that is, a graph that has never been updated since the initial upload to ZipG.
The sharding scheme used in ZipG (described in §4.2.4) ensures that most ZipG queries are
first forwarded to a single shard5. At a high-level, Fanned Updates avoid touching all shards
using a set of update pointers that logically chain together data correspond to the same node
or edge. As shown in Figure 4.3, these pointers store a reference to offsets of NodeFile and/or
EdgeFile at other shards that store the updated data. ZipG stores these update pointers
only at the shard where the node/edge first occurs; that is, in our example above, only the
shard containing the data for node u in pre-loaded graph will store the update pointers for
all occurrences in shards corresponding to ℓ, ℓ′ and any other future shards. We describe
below how ZipG uses fanned updates to optimize query execution. As the graph is updated
or is fragmented over time, these update pointers are updated as well. For workloads where
updates form a small fraction of all queries [30, 15, 91], the overhead of storing and updating
these pointers is minimal. ZipG, thus, keeps these pointers uncompressed.

Data Fragmentation We now provide more insights on how data fragments over time
and across nodes. We start with the LinkBench dataset (described later in Table 4.4) and
partition it across 40 shards. We then execute LinkBench queries for a varying amount
of time over a running system — we start with a single LogStore and when the size of

5Most ZipG queries in Table 4.1 are node-based and are first forwarded to the shard that stores queried
node’s data. Some of these queries may then be forwarded to shards that store node’s neighbors’s data. The
only exception is get node ids that requires touching all shards.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

#Shards node is
fragmented across

0.5B Ops
1B Ops
2B Ops

(a) CDF of Fragmentation

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8 9 10

#S
ha

rd
s

no
de

 is
fra

gm
en

te
d

ac
ro

ss

#Queries (x 108)

Most Fragmented
Average

(b) Fragmentation vs #Queries

Figure 4.5: (a) Most of the nodes have their data fragmented across a small number of shards. In addition, as
expected, nodes have their data fragmented across more shards as more queries are executed by the system. (b) As
more queries are executed, the data fragmentation gets worse for both: average fragmentation across all the nodes,
and fragmentation for the most fragmented node (the one that has its data fragmented across the maximum number
of shards).

the LogStore crosses 8GB threshold, we compress the LogStore data into a new shard and
create a new LogStore. We then take snapshots of the system every time the system has
executed 100 million LinkBench queries. Using these snapshots, we can evaluate the data
fragmentation. Figure 4.5a shows the CDF (across all nodes) for the fraction of shards
(among all shards at the time of the snapshot) that a particular node’s data is fragmented
across for three snapshots — after the system has executed 0.5, 1 and 2 billion queries. We
make two observations. First, for more than 99% of the nodes, their data is fragmented
across a very small albeit non-trivial number of shards (< 10% of the shards in the system).
This is precisely the case where update pointers help — ZipG needs to touch more than a
single server, but touching all servers for query execution has significantly higher overheads
than using update pointers. Moreover, as more queries are executed, data gets fragmented
across a larger number of shards (also shown in Figure 4.5b).

ZipG query execution for updates. Fanned Updates require minimal extension to ZipG
query execution for static graphs. In addition to executing query as in a static graph,
the ZipG servers also forward the query to the precise servers that store updated data by
following the update pointers, and collect the additional query results while avoiding touching
all servers. Note that since most nodes and edges are unlikely to be updated frequently in
real-world graph workloads [30, 15], a majority of read queries would be confined to a single
server. ZipG implements deletes as lazy deletes with a bitmap indicating whether or not a
node or an edge has been deleted; finally, updating a previously written record in ZipG is
implemented as deletes followed by an append.

4.3 ZipG Implementation

We have implemented ZipG on top of Succinct using roughly 4000 lines of C++ code, as
well as a package running atop Apache Spark in Scala. We start this section by outlining

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 61

some of the system implementation details (§4.3.1). We then show how ZipG API can be
used to implement published functionalities from a variety of graph stores (§4.3.2).

4.3.1 System Implementation

We now outline the key aspects of ZipG implementation.

Fault Tolerance and Load Balancing. ZipG currently uses traditional replication-based
techniques for fault tolerance; an application can specify the desired number of replicas per
shard. Queries are load balanced evenly across multiple replicas. While orthogonal to ZipG
design, extending current implementation to incorporate storage-efficient fault tolerance and
skew-tolerant load balancing techniques [95, 46] is an interesting direction.

Data Persistence and Caching. To achieve data persistence, ZipG stores NodeFiles,
EdgeFiles, newly added data on LogStore and the update pointers on secondary storage as
serialized flat files. ZipG maps these files to virtual memory using the mmap system call, and
all writes to them are propagated to the secondary storage before the operation is considered
complete.

Query Execution via Function Shipping (Figure 4.4). Graph queries often require
exploring the neighborhood of the queried node (e.g., “friends of Alice who live in Berkeley”).
To minimize network roundtrips and bandwidth utilization in a distributed setting, ZipG
pushes computation closer to the data via function shipping [73, 177]. Each ZipG server
hosts an aggregator process that maintains a pool of local threads for executing queries
on the server. When an aggregator receives a query that requires executing subqueries on
other servers, it ships the subqueries to the corresponding servers, each of which execute the
subquery locally. Once all the subquery results are returned, the aggregator computes the
final result. Indeed, ZipG also supports multi-level function shipping; that is, a subquery
may be further decomposed into sub-subqueries and forwarded to respective servers.

Concurrency Control. Having a log-store for data updates significantly simplifies con-
currency control in ZipG. The compressed data structures are immutable (except periodic
garbage collection) and see only read queries; locks are only required at uncompressed up-
date pointers and deletion bitmaps (§4.2.5), that are fast enough and do not become system
bottleneck.

4.3.2 ZipG Expressiveness

ZipG design and interface is rich enough to implement published functionalities from several
industrial graph stores. To demonstrate this, we have implemented all the published queries
from Facebook TAO [30], LinkBench [15], Graph Search [91] as well as more complex graph
queries such as regular path queries [18] and graph traversal queries [29] on top of ZipG.
We now discuss these implementations and associated tradeoffs. Table 4.2 outlines the

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 62

Table 4.2: Queries in TAO [30] and LinkBench [15] workloads.

Query Execution in ZipG TAO % LinkBench %

assoc range Algorithm 3 40.8 50.6

obj get get node property 28.8 12.9

assoc get Algorithm 4 15.7 0.52

assoc count get edge record 11.7 4.9

assoc time range Algorithm 5 2.8 0.15

assoc add append 0.1 9.0

obj update delete, append 0.04 7.4

obj add append 0.03 2.6

assoc del delete 0.02 3.0

obj del delete < 0.01 1.0

assoc update delete, append < 0.01 8.0

Table 4.3: The Graph Search Workload and implementation using ZipG API; p1 and p2 are node properties, id
and type are NodeID and EdgeType. All queries occur in equal proportion in the workload.

QID Example Execution in ZipG

GS1 All friends of Alice get neighbor ids(id,*,*)

GS2 Alice’s friends in Berkeley get neighbor ids(id,*,{p1})

GS3 Musicians in Berkeley get node ids({p1,p2})

GS4 Close friends of Alice get neighbor ids(id,type,*)

GS5 All data on Alice’s friends assoc range(id,type,0,*)

implementation for TAO and LinkBench queries6, and Table 4.3 outlines the implementation
of Graph Search queries using ZipG API.

Algorithm 3 assoc range(id, atype, idx, limit): Obtain at most limit edges with source node id and edge type
atype ordered by timestamps, starting at index idx.

1: rec ← get edge record(id, atype)
2: results ← ∅
3: for i ← idx to idx+limit do
4: edgeEntry ← get edge data(rec, i)
5: Add edgeEntry to results

6: return results

Facebook TAO queries are of two types. First, those that do not operate on Timestamps
(obj get and assoc count in Table 4.2). These queries translate to obtaining all properties
for a NodeID and counting edges of a particular type incident on a given NodeID. These are
easily mapped to ZipG API — get node property(id, *) and the EdgeCount metadata
using get edge record, respectively.

The second type of queries are based on Timestamps. For instance, consider the follow-
ing query: “find all comments from Alice between SIGMOD abstract and paper submission

6The nodes and edges in ZipG are equivalent to objects and associations in TAO and LinkBench.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 63

Algorithm 4 assoc get(id1, atype, id2set, hi, lo): Obtain all edges with source node id1, edge type atype,
timestamp in the range [hi,lo), and destination ∈ id2set.

1: rec ← get edge record(id1, atype)
2: (beg, end) ← get time range(rec, hi, lo)
3: results ← ∅
4: for i ← beg to end do
5: edgeEntry ← get edge data(rec, i)
6: Add edgeEntry to results if destination ∈ id2set

7: return results

Algorithm 5 assoc time range(id, atype, hi, lo, limit): Obtain at most limit edges with source node id, edge
type atype and timestamps in the range [hi,lo).

1: rec ← get edge record(id, atype)
2: (beg, end) ← get time range(rec, hi, lo)
3: results ← ∅
4: for i ← beg to min(beg+limit, end) do
5: edgeEntry ← get edge data(rec, i)
6: Add edgeEntry to results

7: return results

deadlines”. ZipG is particularly efficient for such queries due to its ability to efficiently
perform binary search on timestamps (§4.2) and return corresponding edges and their prop-
erties. Algorithms 3, 4 and 5 show that these fairly complicated Facebook TAO queries can
be implemented in ZipG using less than 10 lines of code.

LinkBench models Facebook’s database workload for social graph queries. Note that TAO
and LinkBench have the same set of queries, but vary significantly in terms of query distri-
bution (LinkBench is much more write-heavy). Thus, ZipG implements LinkBench queries
similar to TAO queries, as outlined above.

Facebook Graph Search originally supported several interesting, and complex, queries on
graphs [91]. Implementing graph search queries is even simpler in ZipG since most queries
directly map to ZipG API, as shown in Table 4.3.

Regular path queries and graph traversals differ significantly from the above queries. In
particular, while the queries discussed above usually require information from the immediate
neighborhood of a single node, path queries and traversals examine the structure for larger
subgraphs. However, both of these classes of queries can be implemented in a recursive
manner where each step requires access to the set of edges incident on a subset of nodes
(and the corresponding neighbor nodes). In ZipG, this translates to sequences of get -
neighbor ids, get edge record and get edge data operations.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 64

Table 4.4: Datasets used in our evaluation.

Dataset #nodes & #edges Type On-disk Size

R
ea
l-
w
or
ld orkut [93] ∼ 3M & ∼ 117M social 20 GB

twitter [27] ∼ 41M & ∼ 1.5B social 250 GB

uk [27] ∼ 105M & ∼ 3.7B web 636 GB

L
in
k
B
en

ch small ∼ 32.3M & ∼ 141.7M social 20 GB

medium ∼ 403.6M & ∼ 1.76B social 250 GB

large ∼ 1.02B & ∼ 4.48B social 636 GB

4.4 Evaluation

We evaluate ZipG against popular open-source graph stores across graphs of varying sizes,
real-world and benchmark query workloads, and varying cluster sizes.

Compared Systems. We compare ZipG against two open-source graph stores. Neo4j [136]
is a single machine graph store and does not support distributed implementations. Our
preliminary results for Neo4j were not satisfactory. We worked with Neo4j engineers for over
a month to tune Neo4j and made several improvements to the Neo4j query execution engine.
Along with the original version (Neo4j), we also present the results for this improved version
(Neo4j-Tuned).

We also compare ZipG against Titan, a distributed graph store that requires a separate
storage backend. We use Titan version 0.5.4 [189] with Cassandra 2.2.1 [102] as the storage
backend. We also experimented with DynamoDB 0.5.4 for Titan but found it to be perform-
ing worse. Titan supports compression. We present results for both uncompressed (Titan)
and compressed (Titan-compressed) representations.

We note that our comparisons are restricted to graph stores that serve interactive graph
queries — graph processing systems like GraphX [79], GraphChi [100] and Pregel [119]
support offline graph analytics (which run at the scale of minutes), and are not well suited
to serve interactive graph queries.

Experimental Setup. All our experiments run on Amazon EC2. To compare against
Neo4j, we perform single machine experiments over an r3.8xlarge instance with 244GB of
RAM and 32 virtual cores. Our distributed experiments use 10 m3.2xlarge instances each
with 30GB of RAM and 8 virtual cores. Note that all instances were backed by local SSDs
and not hard drives. We warm up each system for 15 minutes prior to running experiments
to cache as much data as possible. To make results consistent (Neo4j does not support graph
partitioning across servers), we configured all systems to run without replication.

Workloads. Our evaluation employs a wide variety of graph workloads. We use TAO and
Linkbench workloads from Facebook (with original query distributions, Table 4.2), and a
synthetic Graph Search workload (Table 4.3). We also evaluate more complex workloads
such as regular path queries [77] and graph traversal queries [29]. In addition, we evaluate
the performance for each workload’s component queries in isolation to build in-depth insights

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 65

Neo4j Titan Titan-Compressed ZipG

1

2

S
to
ra
ge

F
o
ot
p
ri
n
t

T
ot
al

In
p
u
t
S
iz
e

D
N
F

orkuttwitter uk

Real-world datasets

1

2

D
N
F

small medium large

LinkBench datasets

Figure 4.6: ZipG’s storage footprint (§4.4.1) is 1.8 − 4× lower than Neo4j and 1.8 − 2× lower than Titan. DNF
denotes that the experiment did not finish after 48 hours of data loading.

15

30

45

T
h
ro
u
gh

p
u
t
(K

O
p
s)

D
N
F

D
N
F

orkut twitter uk

TAO Workload
Neo4j Neo4j-Tuned Titan Titan-Compressed ZipG

15

30

45

D
N
F

D
N
F

orkut twitter uk

(a) assoc range

15

30

45

D
N
F

D
N
F

orkut twitter uk

(b) obj get

T
h
ro
u
gh

p
u
t

(K
O
p
s)

30

60

90

D
N
F

D
N
F

orkut twitter uk

(c) assoc get

80

160

240

D
N
F

D
N
F

orkut twitter uk

(d) assoc count

15

30

45

D
N
F

D
N
F

orkut twitter uk

(e) assoc time range

Figure 4.7: Single server throughput for the TAO workload, and its top 5 component queries in isolation.
DNF indicates that that the experiment did not finish after 48 hours of data loading. Note that the figures have different
y-scales.

on the performance of the three systems.

Datasets. Table 4.4 shows the datasets used in our evaluation. For real-world datasets, we
used the node and edge property distribution from Facebook TAO paper [30]. Each node
has an average propertyList of 640 bytes distributed across 40 propertyIDs. Each edge is
randomly assigned one of 5 distinct EdgeTypes, a POSIX timestamp drawn from a span of
50 days, and a 128-byte long edge property. For LinkBench datasets, we directly use the
LinkBench benchmark tools [113] to generate three datasets: small, medium and large.
These datasets mimic the Orkut, Twitter and UK graphs in terms of their total on-disk size.
LinkBench assigns a single property to each node and edge in the graph, with the properties

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 66

Table 4.5: Summary of which datasets fit completely in memory.

Dataset Neo4j Titan-C Titan ZipG

orkut / linkbench-small ! ! ! !

twitter / linkbench-medium ! !

uk / linkbench-large

having a median size of 128 bytes.

4.4.1 Storage Footprint

Figure 4.6 shows the ratio of total data representation size and raw input size for each system.
We note that ZipG can put 1.7 − 4× larger graphs in main memory compared to Neo4j
and Titan uncompressed (which, as we show later, leads to degraded performance7). The
main reason is the secondary indexes stored by Neo4j and Titan to support various queries
efficiently; ZipG, on the other hand, executes queries efficiently directly on a memory-efficient
representation of the input graph.

Since LinkBench assigns synthetically generated properties to nodes and edges, LinkBench
datasets have lower compressibility compared to the real-world datasets. Accordingly, ZipG’s
compression factor is roughly 15% lower for the LinkBench datasets than the corresponding
real-world datasets. The storage overheads for Neo4j and Titan, on the other hand, are lower
for the LinkBench datasets, since they have to maintain much smaller secondary indexes for
a single node property. As such, ZipG’s storage footprint is 1.8−2× smaller than Neo4j and
Titan uncompressed, while being comparable to Titan-Compressed.

Table 4.5 summarizes which datasets fit completely in memory for different systems our
experiments.

4.4.2 Single Machine (Figure 4.7, 4.8, 4.9)

We now analyze the performance of different graph stores on a single server with 244GB
of RAM and 32 CPU cores. We note that across all experiments, Neo4j-Tuned achieves
strictly better performance than Neo4j. Similarly, Titan uncompressed achieves strictly
better performance Titan compressed (for reasons discussed in Footnote 7). The discussion
thus focuses on Neo4j-Tuned, Titan uncompressed and ZipG.

TAO Workload (Figure 4.7)

We start by observing that when the dataset fits in memory (e.g., Orkut), all systems
achieve comparable performance. There are two reasons for ZipG achieving slightly better

7Intuitively, Titan uses delta encoding for edge destinationNodeIDs, and variable length encoding for
node and edge attributes [190] which leads to high CPU overhead during query execution. Moreover, en-
abling LZ4 compression for Cassandra’s SSTables reduces the storage footprint for Titan, but required data
decompression for query execution.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 67

7

14

21

T
h
ro
u
gh

p
u
t
(K

O
p
s)

D
N
F

D
N
F

small medium large

LinkBench Workload
Neo4j Neo4j-Tuned Titan Titan-Compressed ZipG

10

20

30

D
N
F

D
N
F

small medium large

(a) assoc range

30

60

90

D
N
F

D
N
F

small medium large

(b) obj get

T
h
ro
u
gh

p
u
t

(K
O
p
s)

10

20

30

D
N
F

D
N
F

small medium large

(c) assoc add

10

20

30

D
N
F

D
N
F

small medium large

(d) assoc update

25

50

75

D
N
F

D
N
F

small medium large

(e) obj update

Figure 4.8: Single server throughput for the LinkBench workload, and its top 5 component queries in
isolation. DNF denotes that the experiment did not finish after 48 hours of data loading. Note that the figures have
different y-scales.

performance than Neo4j and Titan. First, ZipG is optimized for random access on node
PropertyList while Neo4j and Titan are not — Neo4j requires following a set of pointers
on NodeTable, while Titan needs to first extract the corresponding (key, value) pair from
Cassandra and then scan the value to extract node properties. The second reason ZipG
performance is slightly better is that ZipG extracts all edges of a particular edgeType directly,
while other systems have to scan the entire set of edges and filter out the relevant results.

For the Twitter dataset, Neo4j can no longer keep the entire dataset in memory; Titan,
however, retains most of the working set in memory due to its lower storage overhead than
Neo4j and also because TAO queries do not operate on edge PropertyList. Neo4j observes
significant impact in throughput for a reason that highlights the limitations of pointer-based
data model of Neo4j — since pointer-based approaches are “sequential” by nature, a single
application query leads to multiple SSD lookups leading to significantly degraded throughput.
Titan, on the other hand, maintains its throughput for all queries. This is both because
Titan has to do fewer SSD lookups (once the key-value pair is extracted, it can be scanned
in memory) and also because Titan essentially caches most of the working dataset in memory.

For the UK dataset, none of the systems can fit the data in memory (Neo4j cannot even
scale to this dataset size). Titan now starts experiencing significant performance degra-
dation due to a large fraction of queries being executed off secondary storage (similar to
the performance degradation of Neo4j in Twitter dataset). ZipG also observes performance
degradation but of much lesser magnitude than other systems because of two reasons. First,

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 68

10

20

30

T
h
ro
u
gh

p
u
t
(K

O
p
s)

D
N
F

D
N
F

orkut twitter uk

Graph Search Workload
Neo4j Neo4j-Tuned Titan Titan-Compressed ZipG

30

60

90

D
N
F

D
N
F

orkut twitter uk

(a) GS1

5

10

15

D
N
F

D
N
F

orkut twitter uk

(b) GS2

T
h
ro
u
gh

p
u
t

(K
O
p
s)

40

80

120

D
N
F

D
N
F

orkut twitter uk

(c) GS3

60

120

180

D
N
F

D
N
F

orkut twitter uk

(d) GS4

15

30

45

D
N
F

D
N
F

orkut twitter uk

(e) GS5

Figure 4.9: Single server throughput for the Graph Search workload, and its component queries in
isolation. DNF indicates that that the experiment did not finish after 48 hours of data loading. Note that the figures
have different y-scales.

ZipG is able to execute a much larger fraction of queries in memory due to its lower stor-
age overhead; and second, even when executing queries off secondary storage, ZipG has
significantly lower I/O since it requires a single SSD lookup for all queries unlike Titan and
Neo4j.

Individual TAO queries (Figure 4.7a-4.7e). Analyzing the performance of the top 5
TAO queries for the Orkut dataset, node-based queries involving random access (obj get,
Figure 4.7b) perform better for ZipG than Neo4j and Titan due to reasons cited earlier.
Similarly, for the edge-based queries (e.g., assoc get, Figure 4.7c), ZipG achieves higher
throughput by avoiding the overheads of scans employed by other systems. When queries
have a limit on the result cardinality, other systems can stop scanning earlier and thus
achieve relatively improved performance, e.g., assoc range and assoc time range in Fig-
ures 4.7a and 4.7e respectively. For larger datasets, while compared systems fail to keep
their data in memory, ZipG achieves considerably higher throughput for all the individual
queries, since its lower storage footprint permits execution of most queries in memory.

LinkBench Workload (Figure 4.8)

Despite having the same set of queries as TAO, the absolute throughput for the LinkBench
workload is distinctly lower for all systems. This is due to two main reasons: first, a much
larger fraction of the queries (see Table 4.2) are either write, update or delete operations,

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 69

requiring modification of graph elements. This leads to overheads due to data persistence,
as well as lock-based synchronization for atomicity and correctness of graph mutations in
all compared systems. Second, most of the queries perform filters on node neighborhoods,
with their accesses being skewed towards nodes with more neighbors [15] — as a result,
the average number of edges accessed per query is much larger than in the TAO workload,
leading to lower query throughput.

Also observe that Neo4j and Titan observe much lower throughput than ZipG for all
datasets. While Neo4j is relatively efficient in executing read-only queries, write queries
become a significant performance bottleneck, since they require modifications at multiple
random locations due to Neo4j’s pointer based-approach. Titan, on the other hand, is able
to support write and update operations at relatively higher throughput due to Cassandra’s
write-optimized design. However, the throughput for edge-based operations is significantly
lower because Cassandra is not optimized for range queries.

ZipG avoids both of the above issues for the small and medium datasets. In particular,
all graph mutations are isolated to a write-optimized LogStore through Fanned Updates
(§4.2.5), while edge-based operations do not need to scan the entire neighborhood to filter
the required edges (§4.2.2). However, ZipG’s throughput drops for the large dataset; this
is due to the relatively lower compressibility of LinkBench generated graphs, which prevents
crucial data-structures in the underlying Succinct representation for the NodeFile from fitting
in memory.

Individual LinkBench Queries (Figures 4.8a-4.8e). Note that the top 5 queries in the
LinkBench workload differ from the TAO workload. The performance trends for the assoc -
range (Figure 4.8a) and obj get (Figire 4.8b) queries are similar to the corresponding
TAO queries, except for a few key differences. First, Titan observes significantly worse
performance for assoc get query in the LinkBench workload. This is because the average
number of neighbors for each node in the LinkBench dataset is much larger than the TAO
workload, and is heavily skewed, i.e., some nodes have very large neighborhoods, while most
others have relatively few neighbors. Titan’s performance drops significantly due to range
queries over large neighborhoods, since Cassandra is not optimized for such queries, resulting
in reduced throughput. Second, Neo4j observes better performance for obj get query in the
LinkBench workload, because of the workload’s query skew. Since the accesses to the nodes
for obj get query are heavily skewed, Neo4j is able to cache the most frequently accessed
nodes, leading to higher throughput. Finally, for the large dataset, ZipG is unable to keep
one of Succinct’s component data structures in memory that is responsible for answering
node-based queries, leading to a reduced throughput for the obj get query.

Finally, we note that ZipG outperforms compared systems for write-based queries includ-
ing assoc add (Figure 4.8c), assoc update (Figure 4.8d) and obj update (Figure 4.8e).
As discussed above, Neo4j’s write performance suffers since each write incurs updates at
multiple random locations in its graph representation. Titan achieves a relatively better
performance due to Cassandra’s write-optimized design. ZipG, on the other hand, is able to
maintain a high write throughput due to its write optimized LogStore and Fanned Updates

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 70

Titan Titan-Compressed ZipG

T
h
ro
u
gh

p
u
t

(K
O
p
s)

30

60

90

twitter uk

(a) TAO Workload

7

14

21

medium large

(b) LinkBench Workload

15

30

45

twitter uk

(c) Graph Search Workload

Figure 4.10: Throughput for TAO, LinkBench and Graph Search workloads for the distributed cluster.

approach.

Graph Search Workload (Figure 4.9)

We designed the graph search workload for two reasons. First, while TAO and LinkBench
workloads are mostly random access based, graph search workload mixes random access (GS1,
GS4, GS5) and search (GS2, GS3) queries. Second, this workload highlights both the power
and overheads of ZipG. In particular, as shown in Table 4.3, ZipG’s powerful API enables
simple implementation of queries that are far more complex than the TAO and LinkBench
queries. Indeed, most of the graph search queries can be implemented using a couple of lines
of code on top of ZipG API. On the flip side, the graph search workload also highlights the
overheads of executing queries on compressed graphs. We discuss the latter below.

The results for the graph search workload follow a very similar pattern as for TAO
workload (Figure 4.7, left), with two main differences. First, as with the LinkBench workload,
the overall throughput reduces for all systems. This is rather intuitive — search queries are
usually far more complex than random access queries, and hence have higher overheads.
Second, when the uncompressed graph fits entirely in memory, Neo4j-Tuned achieves better
performance than ZipG. The latter highlights ZipG overheads. In particular, for the Orkut
dataset, both Neo4j-Tuned and ZipG fit the entire data in memory. However, in graph search
workload, Neo4j could use its indexes to answer search queries (and avoid heavy-weight
neighborhood scans). As a result, for the Orkut dataset, Neo4j starts observing roughly
1.23× higher throughput than ZipG as opposed to lower throughput for TAO queries, which
is attributed to ZipG executing queries on compressed graphs. Of course, as the graph
size increases, the overhead of executing queries off secondary storage becomes higher than
executing queries on compressed graphs, leading to ZipG achieving 3× higher throughput
than Neo4j-Tuned.

The second overhead of ZipG is for search-based queries like “Find musicians in Berkeley”.
For such a query, ZipG’s partitioning scheme requires ZipG touching all partitions. Neo4j
and Titan, on the other hand, use global indexes and thus require touching no more than
two partitions. Thus, for small datasets, ZipG observes significantly lower throughput for

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 71

this query than Neo4j and Titan. As earlier, for larger graph sizes, this overhead becomes
smaller than the overhead of executing queries off secondary storage and ZipG achieves
higher throughput.

Individual Graph Search Queries (Figure 4.9a-4.9e). Most Graph Search queries fol-
low trends similar to the TAO workload since they are random-access intensive. In particular,
queries GS1 (Figure 4.9a), GS4 (Figure 4.9d) and GS5 (Figure 4.9e) perform random-access
on edge data, while query GS2 (Figure 4.9b) performs random access on both edge and node
data. For all such queries, Neo4j-Tuned achieves high throughput for the orkut dataset since
all the data fits in memory, but as the datasets no longer fit in memory the performance
drops drastically due to Neo4j’s pointer-based approach, similar to the TAO workload. Ti-
tan, on the other hand, extracts the data corresponding to nodes and edges as key value
pairs and scans the value component to obtain the relevant data (node or edge properties),
resulting in lower throughput, which drops even lower when the datasets no longer fit in
memory. ZipG, on the other hand, exploits its random-access friendly layout to achieve high
throughput for all such queries, with little degradation on increasing the dataset size due to
its memory-efficient graph representation.

Finally, query GS3 (Figure 4.9c) is unique, in that, it performs search queries on node
attributes. As discussed before, ZipG’s performance for this query is comparable or worse
than the compared systems for the orkut dataset, since it touches multiple partitions to
evaluate search results while other systems use global indexes. However, as the dataset sizes
grow larger, the compared systems observe much lower throughput since these indexes no
longer fit in memory, resulting in expensive accesses to secondary-storage.

We note that, as discussed earler, while executing queries GS2 and GS3, ZipG exploits the
cardinality of intermediate outputs (e.g., number of friends Alice’s friends vs. the number
of people in Berkeley) to pick the appropriate join strategy. We provide performance com-
parisons for these queries executed with different join strategies in ZipG in Appendix 4.4.6.

4.4.3 Distributed Cluster (Figure 4.10)

Neo4j does not have a distributed implementation. We therefore restrict our discussion to
the performance of ZipG and Titan on a distributed cluster of 10 servers, with a total of
300GB of RAM and 80 CPU cores across the cluster.

TAO Workload (Figure 4.10a)

We make two observations. First, Titan can now fit the entire Twitter dataset in memory
leading to 2× higher throughput compared to single server setting, despite the increased
overhead of inter-server communication (similar remarks for UK dataset). The second obser-
vation is that ZipG achieves roughly 2.5× higher throughput in distributed settings compared
to single server setting. Note that our distributed servers have 10×8 cores, 2.5× of the single
beefy server that has 32 cores. ZipG thus achieves throughput increase proportional to the
increase in number of cores in the system, an ideal scenario.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 72

Neo4j ZipG

0.01

0.1

1

10

100

1000

L
at
en

cy
(s
ec
s)

D
N
F

D
N
F

D
N
F

D
N
F

q2 q4 q6 q8 q10 q12 q14 q16 q18 q20 q22 q24 q26 q28 q30 q32 q34 q36 q38 q40 q42 q44 q46 q48 q50

Figure 4.11: Latency for executing Regular Path Queries from gMark workload. Note that the y-axis has
a log scale. For most of the queries, ZipG performs significantly better than Neo4j. However, for some queries, ZipG
does perform worse than Neo4j. We discuss the properties of the queries that lead to such performance in §4.4.4.

LinkBench Workload (Figure 4.10b)

These results allow us to make an interesting observation — unlike single machine setting,
ZipG is able to cache a much larger fraction of crucial Succinct data-structures, leading to
almost negligible performance degradation on going from the medium to the large dataset.
Second, unlike the TAO workload, ZipG is unable to achieve throughput increase propor-
tional to the number of cores. This is because the access pattern for edge-based queries in
LinkBench is skewed towards nodes that have larger neighborhoods. As a consequence, a
small set of servers that store nodes with large neighborhoods remain bottlenecked due to
higher query volume and computational overheads.

Graph Search Workload (Figure 4.10c)

Again, most performance trends for the Graph Search workload are similar for the distributed
cluster and single server settings. We note that Titan’s performance for the Graph Search
workload scales better than ZipG’s performance when the number of servers is increased.
This is due to the contribution of search based queries, i.e., query GS3. As discussed in
§4.4.2, the difference in performance for such queries lie in the choice of partitioning scheme
for the two systems. While ZipG touches all partitions, and therefore all servers in the
cluster for search-based queries, Titan’s global index approach confines such queries to a
single server for most situations, allowing the query performance to scale better. However,
Titan’s global index approach suffers in performance when the index grows too large to fit
in memory.

4.4.4 Regular Path Queries

General regular path queries [45, 33, 110] identify paths in graphs through regular expres-
sions over the edge labels (edgeTypes in ZipG terminology) of the graph. Their results are
collections of paths, where the concatenation of consecutive edge labels in each path satisfy
the regular expression.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 73

Implementation. We implemented unions of conjunctive regular path queries [18] in ZipG
by executing regular expressions over edge labels on ZipG layout, translating them into
sequences of operations from ZipG’s API. In fact, ZipG is able to execute all regular path
queries generated by the gMark benchmark tool [17].

The execution of regular path queries in ZipG begins by obtaining all EdgeRecords cor-
responding to the first edge in the path expression using get edge record(*,edgeType).
Subsequently, ZipG identifies the neighbor nodes in these EdgeRecords using get edge data,
and iteratively searches for non-empty EdgeRecords corresponding to the neighbor nodes and
the subsequent edge labels in the path expression. To minimize communication overheads,
ZipG ships the get edge record requests to the shards that hold the data for the particu-
lar node using function shipping (§4.3.1). ZipG supports recursion in path queries via the
Kleene-star (“*”) operator by computing the transitive closure of the set of paths identified
by the path expression under the Kleene-star. Currently, the transitive closure computation
requires collecting all the paths at an aggregator and employs a serial algorithm; this can
be further optimized using careful modifications in the underlying data structures and query
execution.

Performance. In order to evaluate the performance of regular path queries, we used
the gMark [17] benchmark tool to generate both the graph datasets and the path queries.
We used gMark’s encoding of the schema provided with the LDBC Social Network Bench-
mark [58], which models user activity in a typical social network. gMark generates 50 queries
of widely varying nature [77], ranging from linear path traversals, to branched traversals and
highly recursive queries; these can be easily mapped to their Cypher representations [139].
We ran our benchmarks for datasets with varying number of nodes and edges for ZipG and
Neo4j; Figure 4.11 shows results for graphs with 2 million nodes on a single machine setup8.

Note that given the dataset size, both systems are able to fit their entire data completely
in memory. For most queries, ZipG’s performance is either comparable to or better than
Neo4j. The queries where ZipG outperforms Neo4j by a large margin (e.g., q18, q25, q38,
q48, q49, etc) are typically branched or long linear path traversals, with little or no recursion
in them. On the other hand, Neo4j outperforms ZipG for queries that are heavy on recursion,
or where computing the transitive closure becomes a bottleneck in ZipG (e.g., q4, q15, q21,
q29, q30, etc.). This is precisely due to the communication and serial bottlenecks in executing
transitive closure in ZipG, as discussed above.

4.4.5 Graph Traversal

We now compare the performance for breadth first traversal of graphs for Neo4j and ZipG
on a single machine. The traversals were performed starting at 100 randomly selected nodes,

8Due to the complexity of the queries, both systems timed out (with a time limit of 10 minutes) in
executing most queries on graphs with more than 2 million nodes on a single 8 core machine. Moreover,
despite significant effort, we could not run these queries on Titan even for smaller graphs due to some bug
in the Titan release that supports regular path queries.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 74

Neo4j ZipG

20

40

60

L
at
en

cy
(s
ec
s)

orkut twitter

Figure 4.12: Breadth First Traversal Latency for Neo4j and for ZipG. When the entire graph data fits in
memory (orkut), Neo4j performs better than ZipG. However, when the data does not fit in memory for Neo4j, ZipG
outperforms Neo4j for graph traversal queries.

and the average traversal latencies for the two systems are shown in Figure 4.12. We bound
the traversal depth to 5 for the datasets — unbounded depth led to timeouts for Neo4j for
the larger dataset (that does not fit in memory).

For the orkut dataset, the graph fits completely in memory for both systems. For this
case, Neo4j achieves lower latency. This is because ZipG has overheads to execute queries
on the compressed representation; in addition, ZipG stores its graph data across multiple
shards, and incurs some aggregation overheads in combining results from different shards.
However, for the twitter dataset, Neo4j is no longer able to fit its data in memory, and incurs
significantly higher latency for breadth first traversals. This is because even the data for a
single node not fitting in memory requires Neo4j to access the slower storage, significantly
slowing down the overall graph traversal query. ZipG, on the other hand, is able to maintain
its data in memory, and thus achieves lower query latency compared to Neo4j.

4.4.6 Graph Queries with different Join Strategies

ZipG implementation for queries outlined so far avoids inefficient join strategies to ensure
optimal performance of graph queries (as discussed in the introduction). In order to highlight
the impact of inefficient join strategies, we execute queries GS2 and GS3 from the Graph
Search workload using two different join strategies. In particular, a GS2 query of the form
“Find Alice’s friends in Ithaca” (Table 4.3), can be executed by finding the intersection of
all of Alice’s friends and all people living in Ithaca, or by finding all of Alice’s friends, and
then checking if they live in Ithaca. The same holds true for a GS3 query.

Figure 4.13 shows the performance for the two execution alternatives in ZipG on a single
machine. Clearly, the alternative that employs the second strategy (Strategy#2) yields
higher throughput across different graph datasets. Intuitively, this is because Alice is likely
to have much fewer friends than the people living in Ithaca, and checking if Alice’s friends
is more efficient than finding the intersection of her friends and the people living in Ithaca.
Moreover, the former approach has added communication overheads in distributed settings.

CHAPTER 4. INTERACTIVE QUERIES ON COMPRESSED GRAPHS 75

Strategy#1 Strategy#2

5

10

15

T
h
ro
u
gh

p
u
t
(K

O
p
s)

orkut twitter uk

(a) GS2

8

16

24

T
h
ro
u
gh

p
u
t
(K

O
p
s)

orkut twitter uk

(b) GS3

Figure 4.13: Executing queries with different join strategies in ZipG.

4.5 Related Work

Graph Stores. In contrast to graph batch processing systems [79, 116, 172, 100], graph
stores [30, 72, 189, 136, 141, 171, 178, 127, 122, 56] usually focus on queries that are user-
facing. Consequently, the goal in design of these stores is to achieve millisecond-level query
latency and high throughput. We already compared the performance of ZipG against Neo4j
and Titan, two popular open-sourced graph stores. Other systems, e.g., Virtuoso [197],
GraphView [127] and Sparksee [178] that use secondary indexes for efficiently executing
graph traversals suffer from storage overhead problems similar or to Neo4j (high latency and
low throughput due to queries executing off secondary storage).

Graph Compression. Traditional block compression techniques (e.g., gzip) are inefficient
for graphs due to lack of locality: each query may require decompressing many blocks. Sev-
eral graph compression techniques that focus on supporting queries on compressed graphs [24,
27, 38, 66, 85, 123, 84, 173, 118] are limited in expressiveness to queries like extracting ad-
jacency list of a node, or matching subgraphs. Graph serving often requires executing much
more complex queries [30, 91, 200, 53] involving node and edge attributes. ZipG achieves com-
pression without compromising expressiveness, and is able to execute all published queries
from Facebook TAO [30], LinkBench [15] and graph search [91].

4.6 Summary

We have presented ZipG, a distributed memory-efficient graph store that supports a wide
range of interactive graph queries on compressed graphs. ZipG exposes a minimal but
functionally rich API, which we have used to implement all the published queries from
Facebook TAO, LinkBench, and Graph Search workloads, along with complex regular path
queries and graph traversals. Our results show that ZipG can executes tens of thousands
of queries from these workloads for a graph with over half a TB of data on a single 244GB
server. This leads to as much as 23× higher throughput than Neo4j and Titan, with similar
gains in distributed settings where ZipG achieves up to 20× higher throughput than Titan.

76

Chapter 5

Executing RegEx Queries on
Compressed Data

Continuing the theme of supporting richer query semantics using Succinct from Chapter 4,
this chapter focuses on regular expression (RegEx) queries, a powerful tool for text analytics
and information extraction. Traditionally, RegEx have been used in applications like textual
data analytics [57, 145], information extraction [62, 28, 109, 47, 26, 98, 39] and bioinformat-
ics [132, 75]. Unsurprisingly, efficiently executing queries involving RegEx is a problem that
has been studied for decades.

However, RegEx have recently witnessed a renewed interest due to queries involving
RegEx becoming both more important and more challenging. Increasingly many applications
use RegEx across various stages in their data analytics pipeline including natural language
processing [138, 170, 76, 179], recommender systems [168, 153] and even interactive queries
on graph data [65, 64, 20, 19]. One case in point is Apache Spark [204], a popular open-
source framework for distributed data analytics, where users frequently execute complex
RegEx queries for text analytics and machine learning pipelines.

Queries involving RegEx have also become more challenging due to increasingly large
data sizes in above applications. Traditional techniques for executing RegEx queries (e.g.,
full-data scans [156, 155] and word-based indexes supported by partial data scans [165, 57,
145]) are memory-efficient, allowing the data to be stored and scanned in main memory.
However, these techniques suffer from new scalability issues — data scans do not scale well
with input data size, resulting in high query latency as the input size grows to tens or
hundreds of gigabytes [40, 192, 146, 2]. On the other hand, powerful indexes like suffix trees
and tries [40, 201, 120, 11] have significantly better query latency. However, these indexes
often have high storage overheads [99, 86, 120]; for large datasets, these indexes suffer from
degraded performance when the index size grows larger than the available memory [4, 40].

This chapter builds on Succinct to achieve the best of the two worlds —memory-efficiency
of scan-based techniques and performance of powerful indexes. These compressed data struc-
tures support exact match of strings of arbitrary length in the input data as well as random
access of the input data. Our main contribution is Sprint, a query execution engine that

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 77

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

Query# 1 2 3 4 5

Elasticsearch MongoDB Black Box

(a) Text Analytics

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

Query# 1 2 3 4 5 6 7 8 9 10

ScanProsite Black-box

(b) Bioinformatics

Figure 5.1: The black-box approach for RegEx execution can be just as slow as, or even slower than, existing scan-
based approaches for many RegEx queries (see §5.3.5 for details on queries and experimental setup). Queries marked
DNF did not finish within 10 minutes of execution time.

extends the functionality from exact string match to RegEx queries directly on these com-
pressed data structures (that is, without requiring decompression). By storing and querying
a compressed representation of powerful indexes, Sprint not only avoids data scans but also
avoids the performance degradation due to indexes not fitting in main memory.

Sprint uses two key insights. The first insight is regarding the main challenge in efficiently
executing RegEx queries on compressed data. Consider the following “black-box” approach
(§5.2) — decompose the RegEx into tokens1, search for individual tokens using compressed
indexes (that support search of arbitrary substrings in input file), and combine the inter-
mediate results along the RegEx operators. Figure 5.1 shows that näıvely executing the
black-box approach can actually lead to performance even worse than scan-based techniques.
The observation in Figure 5.1 is not merely an experimental artifact; our key insight here is
a simple, yet surprising, analytical result supporting the result of Figure 5.1 (§5.2) — under
the standard algorithmic cost model, if the RegEx query contains Concatenation operator,
the execution time of the black-box approach could be arbitrarily far from optimal. Perhaps
more surprisingly, we show that the black-box approach executes in near-optimal time if the
RegEx query comprises of Union, Repeat and Wildcard operators only.

Our second insight is that RegEx queries containing Concatenation can be efficiently
handled via query re-writing. Intuitively, given an input RegEx query, we can perform a series
of transformations to eliminate the Concatenation operator (by concatenating multiple
smaller tokens into a longer token); this results in a new equivalent RegEx query that contains
only Union, Repeat and Wildcard operators along with (potentially longer) tokens. Since
the compressed indexes support exact match of arbitrary strings, we could then execute the
black-box approach on this new equivalent query. We present the Sprint transformations for
such RegEx query re-writing in §5.3.

We present evaluation of Sprint2 over real-world and benchmark datasets in §5.3.5. We
compare Sprint against four popular open-source systems that support RegEx query execu-

1Tokens are parts of RegEx that do not contain operators. For instance, a RegEx (Yo|Ho)(Ho+) has
two tokens Yo and Ho.

2Our implementation of Sprint, including all the datasets and queries necessary to reproduce our results
are open-source: https://github.com/amplab/sprint. We have also implemented Sprint on top of Apache Spark;
this implementation is being used in production and can be easily run on any Apache Spark cluster.

https://github.com/amplab/sprint

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 78

tion, including ElasticSearch [57], MongoDB [145], ScanProsite [74] and Apache Spark [204].
We find that Sprint achieves significant speedups compared to these systems, often as high
as two orders of magnitude.

Interestingly, many Sprint techniques turn out to have more general applicability and lead
to performance improvements even for uncompressed data structures. We have implemented
Sprint on top of a variety of data structures, including inverted indexes [165], suffix trees [201],
suffix arrays [120], compressed suffix trees [11], and compressed suffix arrays [82, 162, 164]3.

In summary, this chapter makes three contributions:

• We analyze the black-box approach to executing RegEx queries on compressed data. We
show that the black-box approach over RegEx queries containing only Union, Wildcard
and Repeat operators executes in near-optimal time; however, when the query contains
Concat operator, the execution time of black-box approach could be far from optimal.

• We present Sprint — a simple, yet efficient, RegEx query engine that enables execution
of RegEx queries directly on compressed data. We evaluate Sprint against four popular
open-source systems that support RegEx queries. The evaluation shows that Sprint leads
to significant speed up in RegEx query execution latency, sometimes by as much as two
orders of magnitude.

• We show that Sprint techniques are applicable to several uncompressed data structures as
well. In addition, we provide an open-source implementation of Sprint on top of a wide
range of data structures including inverted indexes, suffix trees and compressed indexes,
as well as on top of Apache Spark [204].

5.1 Preliminaries

We start with a description of the notation used in the chapter.

Notation. Throughout the chapter, we use the usual definitions of RegEx operators, as
summarized in Table 5.1. The supported RegEx syntax is the POSIX extended standard [60].
Let Σ denote a totally ordered set of alphabets in the input. The operators are interleaved by
tokens, which can be either (a) character class, denoted by ‘[]’; for example, [0-9a-dA-F]
represents any character from 0 through 9, a through d, and A through F; or (b) m-gram,
which is a sequence of m alphabets from Σ.

RegExTree. A RegEx can equivalently be represented as a binary tree that takes standard
precedence constraints between operators into account [78, 186]. We call this tree a RegEx-
Tree. Each internal node of the RegExTree represents a RegEx operator, while the leaves
represent tokens (see Figure 5.2). The problem of constructing an optimized RegExTree has
been explored in a number of previous works [7, 78, 186, 37] and is orthogonal to Sprint
techniques. We use an optimized RegExTree from [37] as an input to Sprint.

3Implementation also available in the open-source release.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 79

Table 5.1: Supported operator classes.

Operator Contents Explanation

Concat (RE1)(RE2) RE2 immediately follows RE1
Union RE1—RE2 Either RE1 or RE2

Repeat
RE?, RE*, RE+

Concat of RE with RE
Zero or one (?), Zero or more (*), One or more (+)

Wildcard (RE1).* (RE2) RE2 occurs anywhere after RE1

C

U

Yo Ho

R

Ho

(Yo|Ho)(Ho+)

Figure 5.2: RegExTree for RegEx (Yo|Ho)(Ho+). Nodes represent Concat (C), Union (U) and Repeat (R) opera-
tors.

Building on Succinct (and other Data Structures). All the algorithms discussed in
subsequent sections build on Succinct (Chapter 2). In particular, the algorithms assume the
underlying input is a flat, unstructured file, and encoded using Succinct in order to efficiently
support (a) search for arbitrarym-grams, and (b) random access into the file itself. Since this
functionality is not unique to Succinct, our algorithms can work with a range of other data
structures, including inverted indexes [165], suffix trees [201], suffix arrays [120], compressed
suffix trees [11], and compressed suffix arrays [4, 82, 162, 164].

5.2 Need for Sprint

In this section, we outline the need for Sprint using a näıve black-box approach to executing
RegEx queries on compressed data.

Black-box RegEx. The “black-box” approach can be summarized in three steps (see
example below):

1. Construct a RegExTree;

2. Compute search results (offsets into the input file) for each leaf of the tree (token) indi-
vidually.

3. Traverse the tree bottom up, generating the results at each operator node using interme-
diate results for left and right subtrees. Algorithms to combine intermediate results for
each operator are outlined in §5.2.1 and are illustrated in Figure 5.3.

Example. Consider a query (Yo|Ho)(Ho+) over the input file of Figure 5.3. The black-box
approach first constructs a RegExTree (Figure 5.2) and computes the offsets for individual
tokens ({Yo, Ho}). The RegExTree is then traversed bottom-up — token results are first

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 80

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Input Y o H o Y o H o H o Y o Y o H o H o H o $

Search(Yo) = {0, 4, 10, 12}; Search(Ho) = {2, 6, 8, 14, 16, 18}

Query: (Yo|Ho)

{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 2, 4, 6, 8, ...}

Lengths = {2, 2, 2, 2, 2, ...}

Query: (Yo)(Ho)

{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 4, 12}

Lengths = {4, 4, 4}

Query: (Ho)+

{2, 6, 8, 14, 16, 18}

Result = {2, 6, 6, 8, 14, 14, 14, ...}

Lengths = {2, 2, 4, 2, 2, 4, 6, ...}

Query: (Yo).*(Ho)

{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 0, 0, 0, 0, 4, 4, 4, ...}

Lengths = {4, 8, 10, 16, 20, 6, 12, 14, ...}

Figure 5.3: Illustration of the third step in black-box approach — executing algorithms in §5.2.1 on an example
input file (the top row shows the file offsets for ease of illustration). The intermediate search results (i.e., offsets
into the input file) for the 2-grams Yo and Ho are shown next. (top left) The Union operator outputs the set
union of the offsets for the two operands. (bottom left) The Concat operator outputs all left operand offsets for
which there exists a right operand offset satisfying offsetright = offsetleft + lengthleft. (top right) The Repeat
operator is similar to the Concat operator except for length admits values depending on last result. (bottom
right) The Wildcard operator outputs all left operand offsets for which there exists a right operand offset satisfying
offsetright ≥ offsetleft + lengthleft.

used to compute the result for (Yo|Ho) and for (Ho)+, as in Figure 5.3, and then combined
along the Concat operator to get the final result {4, 12, 14}. Note that to combine the
results across multiple operators, the length for corresponding intermediate results (e.g., 2
for (Yo|Ho)) also needs to be tracked.

5.2.1 Black Box Algorithms

We describe the algorithms for combining the intermediate results (corresponding to the
left and right subtree) for individual operators using the black-box approach4. We assume
the input to be a flat unstructured file, where a ResultSet is a collection of (offset,
length) pairs, corresponding to the offsets and the match length for the sub-RegEx rooted
at a node in the RegExTree. We discuss extending these algorithms to support RegEx on
semi-structured data in §5.3.9.

Union. The trivial algorithm for the Union operator outputs the set union of left (L) and
right (R) subtree results. Trivially, the complexity of the algorithm is O(|L|+ |R|). Since the
output cardinality is also so = |L|+ |R|, the complexity of the algorithm is O(so).

4We believe these algorithms to be standard, but outline them for sake of completeness of our analysis
results

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 81

Algorithm 6 Concat

1: procedure Concat(L: ResultSet, R: ResultSet) ◃ L, sorted by (offset + length), R sorted by offset

2: i← 0, j ← 0; O ← ∅

3: while i < L.size and j < R.size do

4: if (L[i].offset + L[i].length = R[j].offset) then

5: Put (L[i].offset, L[i].length + R[j].length) in O

6: i← i+ 1, j ← j + 1

7: else if (L[i].offset + L[i].length < R[j].offset) then

8: i← i+ 1

9: else

10: j ← j + 1

11: return O

Algorithm 7 Repeat

1: procedure Repeat(L: ResultSet) ◃ L, sorted by (offset + length)

2: for i← 0 to L.size do

3: j ← i; ℓ← 0

4: while (L[i].offset + ℓ = L[j].offset) do

5: ℓ + = L[j].length

6: Put (L[i].offset, ℓ) in O

7: j ← j + 1

8: return O

Concat. Algorithm 6 for the Concat operator scans L and R, and outputs all offsets
L[i].offset in L for which there exists an offset R[j].offset in R such that R[j].offset
= L[i].offset + L[i].length indicating that the sub-RegEx corresponding to results in
R immediately follows the one in L.

The algorithm maintains two pointers (each initialized to the first index of the two sets).
Whenever the above condition is satisfied, the pointers are advanced to the next index for
both the sets; else the pointer corresponding to the smaller offset is advanced. The algorithm
terminates when one of the sets is completely scanned. Since the algorithm accesses each
element in L and R at most once, the complexity is O(|L|+ |R|).

Repeat. Algorithm 7 for Repeat is similar to that of Concat; the main difference is that
the length variable (denoted by ℓ) now depends on the number of valid repetitions.

The algorithm maintains two pointers (on the same set) and checks, in each step, whether
the offset for the first pointer summed up with the current length matches the offset for the
second pointer. If the condition matches, a single result is output, the length value is
updated to reflect another repetition and the second pointer is advanced to check for further
repetitions; otherwise, the first pointer is advanced, the length is re-initialized to zero and
the second pointer is brought back to the position of the first pointer. Note that each input
value corresponds to at least one output value (for single repetitions). Moreover, note that
the first pointer access each element in L once; the second pointer may access any element

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 82

Algorithm 8 Wildcard

1: procedure Wildcard(L: ResultSet, R: ResultSet) ◃ L, sorted by (offset + length), R sorted by offset

2: O ← ∅

3: Binary search to find smallest index idx2 in R such that, L[0].offset+L[0].length ≤ R[idx2].offset
4: for i ← idx2 to R.size do

5: Binary search to find largest index idx1 in L such that,L[idx1].offset+L[idx1].length ≤ R[i].offset

6: for j ← 0 to idx1 do

7: ℓ ← (R[i].offset − L[j].offset) + R[i].length

8: Put (L[j].offset, ℓ) in O

9: return O

more than once but outputs at least one output for each access. The complexity of the
algorithm is, thus, |L|+ |O| < 2|O| = 2so, since L ⊆ O.

Wildcard. Algorithm 8 for the Wildcard operator takes L and R and outputs all pairs of
elements (ℓ, r) such that r occurs after ℓ.

The algorithm has two main ideas. First, to avoid unnecessary operations, the algorithm
first picks the element in R that occurs after than the first element in L into the file —
this ensures that there exists at least one element in L corresponds to the Wildcard results.
Second, to find the smaller element in L, the algorithm performs a binary search rather than
a scan. The binary search takes time log(|L|+|R|), and outputs, say x1 results (the first
idea ensures that x1 ≠ 0). The complexity of each step is, thus, x1 + log(|L|+|R|) <= x1 ·
log(|L|+|R|). The end-to-end complexity of the algorithm is: (x1+x2+. . .)·log(|L|+|R|) =
s0 · log(|L|+|R|) ≤ s0 · log(n).

5.2.2 Analysis of Black-box RegEx

We now analyze the black-box approach under the standard RAM computational model [43] 5.
Specifically, we obtain the following result for the individual operator algorithms:
Lemma 1 Given the intermediate results for the left and the right subtree as sorted arrays
of size m and n ≥ m, there exist algorithms for Union, Repeat, Wildcard and Concat
operators that combine the intermediate results in time O(so), O(so), O(so log n) and O(m+n),
respectively, where so is the final output cardinality.

It is known that, under the RAM computational model, the time complexity of an algorithm
is lower bounded by the output size [43]. Since the output cardinality so is dependent on the
input file and is unknown a priori, the above lemma shows that independent of the cardinality
of the results for the left and the right subtree, the Union, Repeat and Wildcard operators

5While a standard for algorithmic analysis, the RAM computation model ignores effects of data caching.
Nevertheless, it provides a rough estimate of the efficiency of the individual operators in the black-box
approach. Our evaluation (§5.3.5) takes this limitation into account by ensuring that all data fits in memory.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 83

C

U

RE1 RE2

RE3

(RE1—RE2)(RE3)

U

C

RE1 RE3

C

RE2 RE3

(RE1)(RE3)—(RE2)(RE3)

T1

C

RE1

U

RE2 RE3

(RE1)(RE2—RE3)

U

C

RE1 RE2

C

RE1 RE3

(RE1)(RE2)—(RE1)(RE3)

T2

Figure 5.4: Pull-Up Union (§5.3.1): transformation T1 is used if the Union operator is the left child, and T2 otherwise.

combine these results in almost optimal time for any fixed RegExTree6. However, such is not
the case for the Concat operator — the output cardinality for the Concat operator (O(1)
in the worst-case) can be arbitrarily smaller than the cardinality of results for the left or
the right subtree. Thus, the Concat operator when operating on intermediate results of the
left and the right subtree may end up performing significantly more operations than ideal —
linear in the output size — making the black-box approach inefficient.

The end-to-end performance of the black-box approach depends on the time taken to
construct the RegExTree, to search for leaf tokens, and to traverse up the tree combining
intermediate results at nodes. In our experiments, we found that the last step is indeed the
performance bottleneck (thus making Lemma 1 result more relevant). Intuitively, this is
because constructing a RegExTree (scanning the RegEx once) and searching for individual
tokens in index (binary search) is extremely fast. The performance of the third step, in turn,
requires combining intermediate results across the operators along the RegExTree, which is
significantly more complex.

Need for Sprint. Lemma 1 outlines the central problem in devising a technique for ex-
ecuting RegEx queries on compressed data. As shown in Figure 5.1, the performance for
queries containing Concat operator can be arbitrarily far from optimal, and requires care-
ful handling for efficient execution. In the following section, we outline a query re-writing
technique that enables the efficient execution of queries containing Concat operator through
simple transformations of the query RegExTree.

6The Wildcard operator requires an extra logarithmic factor in terms of the cardinality of the interme-
diate results.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 84

C

RE1

W

RE2 RE3

(RE1)(RE2.*RE3)

W

C

RE1 RE2

RE3

((RE1)(RE2)).*RE3

(a) Pull-Up Wildcard (§5.3.2)

R

W

RE1 RE2

(RE1.*RE2)+

W

RE1 RE2

(RE1.*RE2)

(b) Pull-Out Repeat (§5.3.3)

C

C

T1 T2

C

T3 T4

(T1)(T2)(T3)(T4)

C

T1T2 T3T4

(T1T2)(T3T4)

T1T2T3T4

(c) Pull-Out Concat (§5.3.4)

C

T R

[...]

(T)([...]+)

PS

T R

[...]

(T)([...]+)

(d) Partial Scans (§5.3.4)

Figure 5.5: Sprint Transformations

5.3 Sprint

We now describe Sprint, a query re-writing technique that improves upon the black-box
approach using two ideas. First, it transforms a näıvely built RegExTree into one where
most Union, Wildcard and Repeat operators are not the children of a Concat operator
(§5.3.1, §5.3.2, §5.3.3). These operators are, thus, pushed up the tree and operate in a near-
optimal manner as shown in Lemma 1. Second, it avoids the black-box approach for the
Concat operator (§5.3.4). We finally show how to combine these two ideas to construct an
efficient end-to-end RegEx execution engine (§5.3.5).

5.3.1 Pull-Up Union

The Pull-Up Union transformation attempts to transform a given RegExTree into one where
Union operator is not a child of a Concat operator. The transformation is formally described
in Algorithm 9, and is illustrated in Figure 5.4.

The transformation uses a simple observation that a RegEx of the form (RE1|RE2)(RE3)
is equivalent to (RE1)(RE3)|(RE2)(RE3), for arbitrary RegEx RE1, RE2, RE3, i.e., the Concat
operator is both left- and right-distributive [54] with the Union operator (see Figure 5.4 for
an example). Note that if both children of the Concat operator are Union operators, the
transformation needs to be applied recursively (as in Algorithm 9) since the transformation
introduces new Concat nodes in the RegExTree; this also follows from the left- and right-
distributive properties of the Concat operator over the Union operator.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 85

Algorithm 9 Pull-Up-Union (node: RegExTree)

/* Base case: terminate if leaf node is a token. */
1: if node type is Token then

2: return

/* Pull up unions in left and right sub-tree. */

3: pullUpUnion(node.left)
4: pullUpUnion(node.right)
5: if node type is Concat then

/ *Apply transformations (recursively)*/

6: if node.left type is Union then

7: apply transformation T1 to node (Figure 5.4)

8: else if node.right type is Union then

9: apply transformation T2 to node (Figure 5.4)

10: pullUpUnion(node.left)

11: pullUpUnion(node.right)

12: return

Table 5.2: Protein Signature RegEx queries taken from the Prosite Database [174]

QueryID Query Protein Family

Query#1 [DE][SN]L[SAN][ACDFHKMLNQPSRTWVY][ACDGFIHKMNQPSRWVY][DE].EL GRANINS 1
Query#2 [LIVMF][LIMN]E[LIVMCA]N[PATLIVM][KR][LIVMSTAC] CPSASE 2
Query#3 [KRG][KR].[GSAC][KRQVA][LIVMK][WY][LIVM][KRN][LIVM][LFY][APK] RIBOSOMAL L16 1
Query#4 [DE]GSW.[GE].W[GA][LIVM].[FY].Y[GA] TERPENE SYNTHASES
Query#5 Q[LIV]HH[SA]..DG[FY]H CAT
Query#6 [AC]GL.FPV HISTONE H2A
Query#7 CKPCLK.TC CLUSTERIN 1
Query#8 Y..[HP]W[FYH][APS][DE].P.KG.[GA][FY]RC[IV][RH][IV] BTG 1
Query#9 G[MV]ALFCGCGH MYELIN PLP 1
Query#10 [FYW]P[GS]N[LIVM]R[EQ]L.[NHAT] SIGMA54 INTERACT 3

5.3.2 Pull-Up Wildcard

The Pull-Up Wildcard transformation attempts to ensure that the resulting RegExTree
does not have a Wildcard operator as a child of a Concat operator. The transformation
builds upon another simple observation that a RegEx of the form (RE1)(RE2.*RE3) is equiv-
alent to (RE1)(RE2).*RE3. Figure 5.5a illustrates this transformation on a RegExTree con-
taining Wildcard as a child of the Concat operator. Note that no new nodes are introduced,
and thus, the transformation does not need to be applied recursively.

5.3.3 Pull-Out Repeat

Unlike Union and Wildcard operators, ensuring that a Repeat operator is not a child of
a Concat operator is more challenging. Sprint only partially handles this case — when
the child of the Repeat operator is either a Wildcard operator or an m-gram token, the
transformation pulls out the Repeat operator from the RegExTree. Otherwise, the subtree

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 86

Table 5.3: Text analysis RegEx queries taken from [40]; \d and \. refer to any digit (i.e.[0-9]) and to the dot (‘.’)
character, respectively.

Query ID Query Description

Query#1 <script>.*</script> HTML Scripts
Query#2 Motorola.*(XPC|MPC)([0-9])+([0-9a-z])* Motorola PowerPC chip numbers
Query#3 William [A-Z]([a-z])+ Clinton President Clinton’s middle name
Query#4 1-\d\d\d-\d\d\d-\d\d\d\d US Phone Numbers
Query#5 ([a-z0-9 \.])+(([a-z0-9])+\.)*stanford\.edu Stanford domain URLs.

rooted at the Repeat operator (denoted by RE+ below) is left as is.

RE with Wildcard. Note that if RE contains a Wildcard operator, the child of the Repeat
operator is the Wildcard operator (due to standard precedence order). If RE ≡ RE1.*RE2,
then it is easy to see that results for RE+ are same as that of RE, by definition of the Wildcard
operator. Therefore, if the (only) child of the Repeat operator is a Wildcard operator, we
simply remove the corresponding Repeat node from the RegExTree (see Figure 5.5b).

RE with m-gram token. Now consider the case when RE does not contain a Wildcard op-
erator; since Sprint does not transform the RegExTree when RE contains either of Union
or Concat operators, RE must be a token. If RE is an m-gram, the transformation ex-
ploits the observation that a Repeat operator can equivalently be represented as a Union
of Concatenations. Specifically, let REi represent exactly i self-concatenations of RE; that
is, RE1 = RE, RE2 = (RE)(RE), and so on. Then, the expression RE+ can be written as
RE+ = (RE1|RE2|RE3|...|REn), where n is the number of characters in the input file. The trans-
formation, thus, replaces the repeat operator by a subtree composed of Union and Concat
operators corresponding to the above expression.

However, näıvely doing this transformation will result in RegExTree having very large
depth (due to expanding RE+ for length n, the number of characters in the input file). Indeed,
in practice, there exists a small k such that REk has non-zero number of occurrences while
REk+1 has zero occurrences. It is therefore sufficient to expand the Repeat operator for
only k terms. Furthermore, since RE is an m-gram, it suffices to perform a binary search
for k — each step in the binary search looks up the index to check whether REi has non-
zero occurrences. This requires log(n) index lookups but is still faster than the black-box
approach. The subtree rooted at the Repeat operator is thus replaced by a combination of
Union and Concat operators. We then apply the transformations from §5.3.1 and §5.3.2 to
ensure that Concat is not a parent of the Union or Wildcard operators.

5.3.4 Pull-Out Concat

Finally, we introduce a simple Pull-Out Concat transformation, which is executed when
either of the two conditions are met. First, if both the children of a Concat operator are
tokens (say, T and T’), the transformation pulls out the Concat operator and replaces the
subtree rooted at the Concat operator with a new token TT’, a longer string that is a string
concatenation of the two children tokens (Figure 5.5c). Second, if the child of the Concat

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 87

operator is a Repeat operator with character class token as its child, the sub-RegEx must
be of the form (R1)(R2+). As discussed in §5.2, Sprint executes this sub-expression using
partial scans. The transformation thus pulls out the Concat operator and replaces it with a
partial scan (PS) operator (Figure 5.5d).

5.3.5 Putting it all together

We finally connect all the pieces together, and show how Sprint executes a given RegEx
query. Given the query, we construct a RegExTree; we then traverse the RegExTree in a
bottom-up fashion, applying the transformations from §5.3.1, §5.3.2 and §5.3.3 to transform
the original RegExTree into one with the property that most of the Concat operators only
have tokens or other Concat operators as its children. Given this new RegExTree, we again
traverse the tree bottom-up, applying Pull-Out Concat transformation. Finally, we execute
search for the tokens (corresponding to the leaves of the new RegExTree), and traverse the
RegExTree bottom-up combining the intermediate results across the operators. Once the
root of the tree is reached, the final query results are returned.

We now evaluate the performance of Sprint against popular open-source systems that
support RegEx query execution.

5.3.6 Experimental Setup

Datasets and Queries. Our datasets and queries are drawn from three applications:
bioinformatics [132, 75], text analytics [57, 145], and distributed computing framework
pipelines [204].

For the bioinformatics application, we use the standard Pfam-A Protein dataset [71],
which is 8GB in size and consists of 46 million protein sequences, each composed of 20
distinct amino-acids represented by the standard IUPAC one letter codes [92]. Typical
RegEx queries on these sequences search for protein signatures, that are certain important
regions within the sequence. We present results for 10 randomly selected protein signature
RegEx queries from the Prosite [174] database (see Table 5.2).

For the text analytics application, we use a collection of 4.8 million English Wikipedia
articles, constituting roughly 10GB of data for our single machine experiments, and a col-
lection of 19.2 million Wikipedia articles (∼ 10GB of data) for our distributed experiments.
Unfortunately, there is no standard workload for RegEx queries in text analytics; to that end,
we ran all the queries from [40], and present results for queries that output non-zero results
for Wikipedia dataset (see Table 5.3). For Apache Spark [204], we use the same dataset and
queries as text analytics application, but increase both the dataset size and cluster size by
4×. We provide details on the cluster used in our experiments below.

Compared Systems. We compare the performance of Sprint against several open-source
systems that support RegEx— Elasticsearch [57] and MongoDB [145] for the text analytics

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 88

Elasticsearch MongoDB Apache Spark ScanProsite Sprint

0.5

1

1.5

S
to
ra
ge

F
o
ot
p
ri
n
t

In
p
u
t
S
iz
e

Wikipedia Dataset

0.5

1

1.5

Pfam-A Dataset

Figure 5.6: Storage footprint for different systems for the Wikipedia and Pfam-A datasets.

101

103

105

107

L
at
en

cy
(m

s)

Query# 1 2 3 4 5

Elasticsearch MongoDB Sprint

(a) Text Analytics

101

103

105

107

L
at
en

cy
(m

s)

Query# 1 2 3 4 5 6 7 8 9 10

ScanProsite Sprint

(b) Bioinformatics

Figure 5.7: Sprint executes RegEx significantly faster than popular open-source systems across various application
domains.

101

103

105

107

L
at
en

cy
(m

s)

Query# 1 2 3 4 5

Apache Spark Apache Spark+Sprint Sprint

Figure 5.8: Sprint optimizations significantly speed up analytics pipelines involving RegEx queries on distributed
frameworks like Apache Spark.

application, Apache Spark [204] for text analytics on a distributed computing platform, and
ScanProsite [74] for the bioinformatics application.

Elasticsearch uses Lucene [124] as its underlying searching and indexing engine, and
executes RegEx queries using an automaton-based approach. MongoDB indexes are not
supported for text documents larger than 1KB (which is the case for some of the Wikipedia
articles); thus, MongoDB executes RegEx queries using full-data scans. Apache Spark is a
compute engine that can support arbitrary operations; prior to Sprint, Apache Spark used
Scala’s full-scan based RegEx engine to execute queries in a distributed manner. Finally,
ScanProsite is a publicly available tool for executing RegEx on protein sequences using in-
memory data scans.

Finally, Sprint executes RegEx queries directly on Succinct, as outlined in §5.2 and

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 89

§5.3. Figure 5.6 compares the storage overhead for the different systems. Elasticsearch
and MongoDB have storage footprint of 1.3− 1.5× the input size, while Apache Spark and
ScanProsite use storage exactly 1× the input size. Finally, Sprint on Succinct has the lowest
storage footprint of 0.6−0.8× the input size for different application domains, i.e., it operates
on compressed data.

The rest of the chapter focuses on latency of executing RegEx, over an Amazon EC2
r3.8xlarge instance with 244GB RAM (for bioinformatics and text analytics applications),
and a cluster of 4 c3.4xlarge instances with 30GB RAM each (for distributed computing
framework application). In both settings, the available RAM is large enough to fit each of
the data structures completely in memory (for all systems).

5.3.7 Comparison against Existing Systems

We start by discussing the performance of Sprint against existing systems that support
RegEx query execution.

Text Analytics. Figure 5.7a summarizes the query latency results for the text analytics
application. MongoDB scans through all of the documents to find matches to the RegEx,
while Elasticsearch scans through all the index entries. Sprint, however, transforms the
RegExTree to efficiently search for component m-grams within the RegEx, avoiding data
scans as much as possible. This enables Sprint to achieve much lower query latency compared
to existing systems, with benefits varying from 1–3 orders of magnitude across the evaluated
queries.

Bioinformatics. The query latencies for Sprint and ScanProsite are summarized in Fig-
ure 5.7b. Sprint significantly outperforms ScanProsite, often as much as by four orders
of magnitude. This is primarily because ScanProsite scans the entire data for each query
(leading to similar latency across queries). Sprint, on the other hand, avoids scans and can
efficiently lookup the RegEx tokens from the underlying data structure (Succinct, in this
case), allowing it to find matches for the protein signatures much faster.

Distributed Computing Framework. Figure 5.8 compares the RegEx query latency for
Apache Spark, with and without Sprint; the figure also shows the performance of Sprint
(outside Apache Spark) for relative comparison with Figure 5.7a results. We observe that
Sprint significantly speeds up Apache Spark (often by∼ 1–2 orders of magnitude) by avoiding
Apache Spark’s full-scan based approach. For Query#3, however, Sprint’s implementation
on Apache Spark suffers from Java’s GC overheads (since the intermediate results contain
a large number of small objects) and Apache Spark’s task startup time overheads. Sprint’s
standalone implementation, on the other hand, observes consistently low latency.

5.3.8 Benefits of Sprint Optimizations

We now evaluate the benefits of Sprint optimizations on top of the black-box approach. Our
key observation is that when a query comprises of Union, Repeat and Wildcard operators

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 90

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

Query# 1 2 3 4 5

Black-box Sprint

(a) Text Analytics

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

Query# 1 2 3 4 5 6 7 8 9 10

Black-box Sprint

(b) Bioinformatics

Figure 5.9: Performance gains for Sprint optimizations over Black-box approach across different ap-
plication domains. Sprint achieves significant speedups for queries where Sprint transformations are applicable
(Query#4-5 for Text Analytics, all queries for Bioinformatics); queries where the transformations are not applicable
or require partial scans see performance similar to the black box approach (Query#1-3 for Text Analytics). Queries
marked DNF did not finish within 10 minutes of execution time.

only (that execute in near-optimal time as shown in Lemma 1), Sprint optimizations do not
provide benefits over the black-box approach. However, most queries (12 out of 15 in our
evaluation) can benefit significantly using Sprint, sometimes by as much as two orders of
magnitude. We discuss the results in depth below.

Queries for which Sprint is unnecessary. We start the discussion with queries where
Sprint transformations are unnecessary (3 out of 15 queries in our evaluation). These queries
either: (1) do not contain sub-optimal operators for the black-box approach (e.g., Query#1
for Wikipedia); or (2) contain character classes where both the black-box and the Sprint
approaches perform partial scans (e.g., Query#2, #3 for Wikipedia). Figure 5.9 shows that
Sprint has performance similar to the black-box approach for these queries.

Benefits of Sprint. For most of the queries (12 out of 15 queries in our evaluation; see
Figure 5.9), Sprint approach yields significant speedup over the black-box approach. These
queries have three peculiar properties that make the black-box approach inefficient. First,
some of these queries (e.g., Query #1--#5, #8, #10 in Pfam) contain a large number of
Concat operators, making the black-box approach inefficient due to Lemma 1. Second,
queries that contain fewer Concat operators (e.g., Query #6, #7, #9 in Pfam) often have
large number of occurrences for individual tokens; Lemma 1 shows that as the cardinality
of results for the left and the right subtree increases, the black-box approach may get worse
for the Concat operator. Finally, all Pfam queries as well as some Wikipedia queries (e.g.,
Query #4, #5) have character classes around frequently occurring tokens, making partial
data scans inefficient since a large fraction of the input needs to be scanned. Sprint overcomes
these inefficiencies of the black-box approach using its transformations, leading to one to two
orders of magnitude faster query execution than the black-box approach.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 91

5.3.9 Generality of Sprint

Although our discussions so far have been restricted to flat unstructured inputs encoded
using Succinct, Sprint algorithms can be adapted to more general data representations, and
even several uncompressed index structures.

Sprint RegEx Execution with Other Data Structures

Recall from §5.2 and §5.3 that the Sprint query execution relies on Succinct for arbitrary
token searches and random access to the input. Interestingly, Sprint leads to performance
improvements even for uncompressed index structures that provide functionality similar to
Succinct [40, 165, 201, 120, 11, 4, 82]. Although not originally our goal, we have implemented
Sprint on top of a variety of data structures, including inverted indexes [165], suffix trees
(ST) [201], suffix arrays (SA) [120], compressed suffix trees (CST) [11], and compressed suffix
arrays (CSA) [4, 82, 162, 164].

Each of these data structures achieves a unique tradeoff between the storage footprint
and the search latency for m-gram tokens. We present results for ST, SA, and CSA, since
these achieve strictly better space-latency tradeoff than other data structures. CSA can
achieve multiple operating points on the storage-latency tradeoff space depending on the
desired compression factor; we present the results for the two extremes (termed CSA1 and
CSA2).

6

12

18

S
to
ra
ge

F
o
ot
p
ri
n
t

In
p
u
t
S
iz
e

Wikipedia Dataset Pfam-A Dataset

ST SA CSA1 CSA2

Figure 5.10: Storage footprint for different data structures for the Wikipedia and Pfam datasets. Note that for ST
and SA, we store the original input as well (shown as solid fill), while CSA implicitly encodes the input.

On choice of data structure. While Sprint offers performance benefits across all the eval-
uated data structures, the absolute performance depends on the underlying data structure.
Figure 5.13 shows the performance of SA, and the two versions of CSA relative to the ST
data structure; these are the same results as in Figure 5.11 and Figure 5.12, just focusing on
Sprint performance and scaled by the ST latency. Interestingly, the higher storage footprint
of ST often offers super-linear latency benefits when the system is not memory-constrained
— ST requires 2.2×, 4.3× and 26.2× higher storage than SA, CSA1 and CSA2, and offers
4.7×, 10× and 13.3× lower latency on an average, respectively. Indeed, the tradeoff may
be different for memory-constrained systems; we leave a through evaluation of this case for
future work.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 92

101

103

105

L
at
en

cy
(m

s)

D
N
F

Query# 1 2 3 4 5

Black-box Sprint

(a) Suffix Tree

101

103

105

L
at
en

cy
(m

s)

D
N
F

Query# 1 2 3 4 5

Black-box Sprint

(b) Suffix Array

101

103

105

L
at
en

cy
(m

s)

D
N
F

Query# 1 2 3 4 5

(c) CSA1

101

103

105

L
at
en

cy
(m

s)

D
N
F

Query# 1 2 3 4 5

(d) CSA2

Figure 5.11: Performance gains for Sprint optimizations over Black-box approach across different data
structures for the Wikipedia dataset. Sprint achieves significant speedups for queries where Sprint transforma-
tions are applicable (Query#4-5); queries where the transformations are not applicable or require partial scans see
performance similar to black box approach (Query#1-3). Queries marked DNF did not finish within 10 minutes of
execution time.

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

D
N
F

Query# 1 2 3 4 5 6 7 8 9 10

Black-box Sprint

(a) Suffix Tree

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

D
N
F

Query# 1 2 3 4 5 6 7 8 9 10

Black-box Sprint

(b) Suffix Array

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

D
N
F

Query# 1 2 3 4 5 6 7 8 9 10

(c) CSA1

101

103

105

107

L
at
en

cy
(m

s)

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

D
N
F

Query# 1 2 3 4 5 6 7 8 9 10

(d) CSA2

Figure 5.12: Performance gains for Sprint optimizations over Black-box approach across different data
structures for the Pfam-A dataset. Since Sprint transformations are applicable for all queries, Sprint offers
significantly lower latency compared to the black box approach. Queries marked DNF did not finish within 10
minutes of execution time.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 93

10

100

N
or
m
al
iz
ed

L
at
en

cy

Query# 1 2 3 4 5

SA CSA1 CSA2

(a) Wikipedia Dataset

10

100

N
or
m
al
iz
ed

L
at
en

cy

Query# 1 2 3 4 5 6 7 8 9 10

SA CSA1 CSA2

(b) Pfam-A Dataset

Figure 5.13: Comparison of Sprint latency across different data-structures. Query latency results are
normalized against Suffix Tree latency. Note that the higher storage footprint of Suffix Tree offers super-linear gains
over Suffix Array and Compressed Suffix Arrays.

Semi-structured Data

For semi-structured data, we assume that the indexes above map each token to a (docu-
mentID, offset) pair, where the latter is the offset into the document where the token
occurs. This allows us to adapt Sprint algorithms for flat unstructured files to semi-structured
data without any change in the asymptotic complexity. We discuss extensions required for
semi-structured data below.

We assume that indexes map tokens to a pair (documentID, offset), where offset is
the starting offset of the document into a flat file containing all documents. The pairs (doc-
umentId, offset) are sorted by offsets; given an offset, the corresponding documentID
can be found via binary search.

Union. No modifications required, since each (documentID, offset) pair already corre-
sponds to a valid result.

Concat. Line 4 in Algorithm 6 is modified to additionally check if both L[i].offset and
R[j].offset have the same documentID. This ensures that two offsets are concatenated
only if they belong to the same documentID.

Repeat. As above, Line 4 in Algorithm 7 is modified to check if both L[i].offset and
L[j].offset have the same documentID.

Wildcard. Line 8 in Algorithm 8 is modified to insert only those results into R for which
L[j] and R[i] have the same documentID. For each R[i], we determine the start and
end offset for the corresponding document by consulting the (documentId, offset) pairs;
while inserting corresponding L[j] entries in ROut, we check if L[j].offset lies between
the begin and end offsets for R[i]’s document.

Since we perform an additional binary search on the list of documents for each R[i], this
adds an additional log(#documents) term to the complexity, bringing the overall complexity
to s0 · (log(|L|+|R|) + log(#documents)).

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 94

103

106

109

A
ve
ra
ge

#
O
cc
u
rr
en

ce
s

Token Length
2 4 6 8 10

Figure 5.14: Why Sprint works. Variation of token frequency with token length for the Pfam-A dataset — the
average number of occurrences of the tokens decrease as their length is increased.

5.3.10 Digging deeper into Sprint Performance: When & why it
works

Irrespective of the underlying data structure, Sprint achieves its performance benefits by
avoiding the Concat operator over the intermediate results altogether. This is, for instance,
the case for all queries in the bioinformatics application. Besides avoiding the suboptimal
Concat operator, Sprint achieves performance benefits due to another interesting reason.
Intuitively, after the transformations are applied on the RegExTree, the leaves of the result-
ing RegExTree has tokens that are of length longer than the tokens in the original query.
Figure 5.14 shows that, for the Pfam-A dataset, the number of occurrences (and hence,
the cardinality of intermediate results) decreases exponentially as the length of the tokens
increase; we see a similar trend for the Wikipedia dataset. The operators up the RegEx-
Tree, hence, operate on smaller cardinality sets leading to further improvements in the query
latency.

Finally, we observe that Sprint performance varies significantly across queries. Interest-
ingly, there is a particular parameter that allows us to explain this performance difference.
It turns out that Sprint performance is proportional to the number of leaves with non-zero
occurrences in the transformed RegExTree. Of course, it is hard to find the number of leaves
with non-zero occurrences apriori since it depends on the input file. We can, however, esti-
mate this by assuming that each leaf in the RegExTree has non-zero number of occurrences.
The number of leaves are then given by the cartesian product of the sets corresponding to
each token in the original RegExTree. Our evaluation suggests that in most cases (except
for one query, Query#8), the total number of leaves computed using the cartesian product
provides a good estimate for the number of leaves in the transformed RegExTree. Intuitively,
this is because most of the tokens have at least a few occurrences in large datasets.

5.4 Related Work

We compare and contrast Sprint against the two traditional approaches for RegEx queries.

CHAPTER 5. EXECUTING REGEX QUERIES ON COMPRESSED DATA 95

Index-based approaches. There are a multitude of techniques both for indexing and for
using indexes. On the indexing front, note that tokens in RegEx by nature are not linguis-
tically meaningful, making traditional indexing techniques (e.g., inverted indexes) that use
English words or other linguistic constructs [165] as keys less useful. As a result, specialized
indexes for RegEx have been designed — m-gram indexes [40, 159], full-text indexes [124],
and tree-based indexes [34, 201, 11], among others.

How these indexes are used to execute RegEx typically depends on the underlying in-
dexing technique. However, at a high-level, there are two possible approaches. First, using
indexes as a mechanism to filter the documents to be scanned [40]; and second, executing
the entire RegEx using indexes (the black-box approach from §5.2). The first approach is
extremely fast when the selectivity of indexed tokens is high, that is, filtering results in very
few documents to be scanned. However, such is often not the case (e.g., all Pfam-A queries),
leading to full data scans. Sprint improves the state-of-the-art for both approaches, by
avoiding full-data scans as well as using optimizations to speed up the black-box approach.

Scan-based approaches, and why are index-based approaches not used in prac-
tice? Most popular open-source data stores that support RegEx queries [57, 145] resort
to data scans rather than using index based techniques. We believe this is for two reasons:
(i) the storage overhead of indexes specialized for RegEx queries [40]; and (ii) index-based
techniques do not offer latency gains over data scans (even in our evaluation, compare results
for black-box approach with scan-based approaches in Figure 5.1). Indexes thus use more
storage while providing little or no latency benefits.

However, recent research has shown that the storage overhead of indexes can be reduced
down to no more than the input size without asymptotic increase in query latency (Chap-
ter 2, [82]), thus motivating us to revisit index-based approaches. Moreover, Sprint leads
to orders of magnitude speed up over the scan-based approaches for most of the evaluated
queries. Sprint, when operating on Succinct, resolves both the above issues with index-based
approaches making them an interesting choice for executing RegEx queries.

5.5 Summary

Motivated by new challenges due to growth in data sizes, this chapter revisits the problem
of efficient RegEx query execution — a powerful primitive for applications ranging from text
analytics to distributed data analytics pipelines in machine learning. We present Sprint —
a query execution engine that builds upon recent advances in compressed data structures to
enable RegEx query execution directly over compressed data. Evaluation of Sprint against
popular open-source data stores shows that Sprint leads to significant speed ups in RegEx
query execution, sometimes by 2− 3 orders of magnitude.

96

Chapter 6

Conclusions and Future Work

In this dissertation, we explored the problem of designing data stores that strive for three
goals: handling massive volumes of data (scale), supporting rich query semantics (function-
ality) and ensuring low latency and high throughput for such queries (performance). We
argued for a data structure and algorithm driven solutions to address the systems challenges
entailed in achieving these goals.

Our design philosophy culminated in Succinct, a distributed data store that takes a radi-
cally new approach to tackle these challenges — by enabling a wide range of queries directly
on a compressed representation of data. Succinct allows applications to serve sophisticated
queries in memory for an order of magnitude larger datasets than traditional approaches.
As a result, applications are able to achieve performance at scale, without compromising on
functionality.

To address the issue of dynamism in query workloads — arising out of skew in query
distributions, and variation of skew over time — we augmented Succinct compression tech-
niques in BlowFish. In contrast to traditional replication-based techniques that expose
a coarse-grained tradeoff between storage and performance, BlowFish provides applications
the flexibility to trade-off storage footprint for performance (and vice versa) in a fine-grained
manner, just enough to meet the requirements for data under skew. BlowFish achieves this
through a fine-grained, dynamic adaptation of Succinct’s compression factor, using a new
data structure called Layered Sampled Array. Interestingly, the unique storage-performance
tradeoff enabled by BlowFish allowed us to explore several classical systems problems through
a new “lens”.

Finally, we explored how we can enable even richer query semantics on compressed data
to meet the demands of increasingly sophisticated cloud applications. We pursued this in
two specific directions: supporting graph queries, and regular expression queries. The first of
these led to the design of ZipG, a memory efficient graph store for interactive queries. ZipG
employed a novel graph layout that is amenable to compression via Succinct, while supporting
expressive graph queries from a wide range of real-world workloads efficiently, directly on the
compressed graph representation. The second led to the design of Sprint, a query re-writing
technique that enables efficient execution of regular expression queries on compressed data

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 97

by exploiting Succinct’s performance characteristics for different operations. This allowed
Sprint to execute regular expression queries often as much as two orders of magnitude faster
than traditional approaches.

The techniques developed for this dissertation have been incorporated into an open source
system stack [182, 180]. We have also integrated Succinct and Sprint techniques into Apache
Spark, where users can execute several queries directly on compressed RDDs [183, 5].

6.1 Future Work

We next discuss problems in both in system and algorithm design that we leave open in this
dissertation.

Improving space and time complexity for compression. While we have made several
optimizations to Succinct’s compression algorithm, the current bottleneck in the process is
the suffix array construction. The we rely on the current state-of-the-art approach [131],
which has an O(n logn) time complexity and employs 5n+O(1) memory. A 5× overhead in
memory and a super-linear time complexity can be prohibitive in some deployments. Recent
advancements in parallel [101] and external suffix array construction [94] provide promising
alternatives, but these approaches tradeoff memory overheads for construction time, and vice
versa. As such, exploring the design of memory and time-efficient suffix array construction
is an interesting direction for future research.

Improving sequential throughput. Recall from §2.5.5 that Succinct achieves a through-
put of roughly 13Mbps per core; the throughput increases linearly with number of threads
and/or cores. Succinct effectively trades off high sequential throughput to achieve high
throughput for short reads and for search queries using a small memory footprint. However,
analytics applications [204, 49] that could benefit from Succinct’s efficient search and ran-
dom access primitives, often also require high sequential read throughput. There is potential
for interesting research in designing new algorithms to improve Succinct’s decompression
throughput.

A simpler alternative might be to maintain an additional uncompressed data copy, or
one compressed using an approach optimized for sequential throughput (e.g., Snappy [176]
or LZ4 [117]). This approach would tradeoff some amount of storage for achieving high
throughput for sequential scans as well as random access and search queries. Again, results
from Figure 2.11 (§2.5) suggest that Succinct would still push 5-5.5×more data than popular
open-source systems with similar functionality.

Efficient SQL semantics on compressed data. While Succinct, along with extensions
in ZipG and Sprint, supports a wide gamut of queries on compressed data, supporting SQL
queries on Succinct compressed representation is an open problem. Our interactions with the
open source community indicates there is sufficient need for supporting SQL semantics, but
without the high storage overheads of traditional relational databases. While our preliminary
analysis indicates that selection and projection primitives can be efficiently supported in Suc-

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 98

cinct, the join primitive is relatively inefficient, as outlined in ZipG (Figure 4.13, Chapter 4).
Designing efficient distributed join algorithms on Succinct presents interesting algorithmic
as well as system design challenges.

Approximate/statistical queries on compressed data. While Sprint enables efficient
execution of RegEx queries on compressed data, today’s text analytics applications often
require support for approximate queries, such as fuzzy searches (e.g., search for terms similar
to a given term, based on Levenshtein distance [107]) and proximity queries (e.g., search for
terms within bounded distance of a given term, based on some distance metric). While it
is possible to use additional indexes like Apache Lucene [124] in conjunction with Succinct,
an interesting direction for future work would be to provide such functionality directly on
Succinct data structures, or on compressed data in general.

Update Efficiency and Strong Consistency Semantics. The Succinct stack employs
a multi-store design to efficiently absorb updates, while merging these updates with the
compressed representation in batches in the background. Since Succinct targets read-heavy
workloads, such our approach is sufficient for low volumes of writes. However, supporting
high volume writes introduces challenges along two dimensions.

First, if the fraction of writes exceeds the rate at which Succinct can compress new data,
a majority of the data would now be uncompressed, negating some of the benefits of the
Succinct stack. Possible directions to explore in resolving this challenge include improving
the time complexity for Succinct compression as discussed above, and supporting in-place
updates in Succinct data structures — a far more daunting task.

Second, maintaining large volumes of data across multiple stores introduces challenges
in maintaining strong consistency semantics, when data items may have multiple versions
across multiple stores. Systems that employ similar multi-store approaches (e.g., columnar
stores [1, 181, 103]) typically provide snapshot isolation [22] guarantees. Efficient support for
stronger consistency semantics, such as serializability [23], would not only benefit Succinct,
but multi-store architectures in general.

We hope that open access to our techniques will help drive both academic and open source
community to develop novel solutions to these challenges.

99

Appendix A

Succinct Data Structures

We describe the four arrays used in Succinct, show how we achieve a compressed representa-
tion for each of the arrays and how these arrays are used for performing queries directly on
a compressed representation of the data.

AoS. AoS stores the set of suffixes in a file in lexicographically sorted order, with AoS[i]
storing the ith lexicographically smallest suffix.

AoS2Input. AoS2Input maps the suffixes in AoS to corresponding locations in the input.
That is, AoS2Input[i] stores the location of AoS[i] in the input file.

Input2AoS. Input2AoS maps locations in the input file to indexes into AoS2Input that
stores these locations. That is, Input2AoS[loc] stores an index idx such that AoS2Input[idx]
= loc.

NextCharIdx. NextCharIdx[i] stores the AoS2Input index that stores AoS2Input[i]+1.

A.1 Compression

Suppose input file contains n ASCII characters, and is of size 8n bits. Since there are n
suffixes varying from length 1 to n, AoS stores 0.5n(n + 1) characters requiring 4n(n + 1)
bits. Each of AoS2Input, Input2AoS and NextCharIdx require ⌈log n⌉ bits for each entry,
leading to a total space of 4n(n+1)+3n⌈log n⌉ bits. These arrays contain a lot of redundancy
since the size of input file is just 8n.

A.1.1 Compressing AoS2Input and Input2AoS

We now describe the details pertaining to the compression of the AoS2Input and Input2AoS
arrays.

Sampling. Succinct employs sampling to reduce the storage footprint of the AoS2Input
and Input2AoS arrays. Various sampling techniques have been used in theory [81, 82, 162,

APPENDIX A. SUCCINCT DATA STRUCTURES 100

0
1
2
3
4
5
6

6
5
3
1
0
4
2

AoS2Input

4
0
5
6
3
1
2

NextCharIdx

1
0
0
0
1
1
1

BPos

3
0
2
1

Sampled
AoS2Input

(a) Compressing AoS2Input

0
1
2
3
4
5
6

4
3
6
2
5
1
0

Input2AoS

4
0
5
6
3
1
2

NextCharIdx

1
0
0
0
1
1
1

BPos

1
3
2
0

Sampled
Input2AoS

(b) Compressing Input2AoS

Figure A.1: Lookups on AoS2Input and Input2AoS. (a) To find AoS2Input[2], note that BPos[2]=0;
following NextCharIdx[2]=5, find that BPos[5]=1, i.e., the value is sampled. rank(5)=2 gives us
the corresponding index into the SampledAoS2Input. Multiplying SampledAoS2Input[2]=2 with
α = 2 and subtracting the number of NextCharIdx hops gives us AoS2Input[2]=2×2-1=3. (b)
To lookup Input2AoS[1], we find the smallest multiple of α = 2 less than loc=1, i.e., loc1=0.
SampledAoS2Input[0] gives us the SampledAoS2Input index corresponding to loc1; we translate
the SampledAoS2Input index to the corresponding AoS2Input index from select(1)=4. Finally, we
follow loc-loc1=1 NextCharIdx pointers to get the required value Input2AoS[1]=3.

0
1
2
3
4
5
6

6
5
3
1
0
4
2

AoS2Input

1
0
0
0
1
1
1

BPos

3
0
2
1

Sampled
AoS2Input

1
3
2
0

Sampled
Input2AoS

Figure A.2: Sampling AoS2Input and Input2AoS: We sample AoS values that are multiples of
α (α = 2 in this example) and mark the positions in BPos. Note that we store each sampled value
val as val/α in SampledAoS2Input. SampledInput2AoS maps the sampled locations in the input
file to indexes into SampledAoS2Input that store these locations.

164, 163]. Our implementation samples and stores all AoS2Input values that are a multiple
of a configurable integer parameter α, with default being ⌈logn⌉. Each sampled value val is
stored as val/α in an array called the SampledAoS2Input, leading to a more space-efficient
representation. Additionally, we store a bitmap BPos that marks the positions in AoS2Input
where the values are sampled. Since AoS2Input stores locations of suffixes in input file,
SampledAoS2Input values correspond to sampled locations. Succinct’s compressed version
of Input2AoS maps the sampled locations in the input file to indexes into SampledAoS2Input
that store these locations; these indexes are stored in the SampledInput2AoS array. Observe
that the SampledInput2AoS is simply the inverse mapping of the SampledAoS2Input array.
Figure A.2 shows an example of sampling for the AoS2Input and Input2AoS arrays.

Rank and Select Data Structures. In order to efficiently translate an index into a
sampled array to the corresponding index into the unsampled array (and vice versa), we

APPENDIX A. SUCCINCT DATA STRUCTURES 101

1 0 0 0 1 1 1

rank(5)=2

select(2)=5

BPos

Figure A.3: Rank and Select Data Structures: rank(i) counts the number of 1’s before i, while
select(i) gives the position of the (i+ 1)th 1 in the bitmap.

store rank and select data structures for the BPos bitmap. The rank data structure takes
an index idx as an input and returns the number of 1’s before idx in the bitmap, whereas
the select data structure takes integer i as an input and returns the location of (i+ 1)th set
bit in the bitmap (see Figure A.3). Rank and Select are one of the most well-researched
data structures [160, 196, 135, 205]. We implemented several of the known algorithms
and found the one in [205] to perform the best in practice; we use this implementation in
Succinct. In order further reduce storage overheads, we compress the bitmap itself using
entropy compression.

Figure A.1 illustrates how lookups can be performed on compressed versions of AoS2Input
and Input2AoS through examples. We store only the sampled versions of each of the
two arrays, along with the BPos bitmap and associated rank/select data structures. The
NextCharIdx array along with BPos enables looking up unsampled values in the two sampled
arrays.

Looking up AoS2Input values. Looking up values in AoS2Input (Algorithm 10) can be
broken down into three steps:

1. Follow NextCharIdx pointers until we reach an index idx1 in AoS2Input where the
value is sampled; count the #hops it took to get there.

2. Translate the index into AoS2Input to the corresponding index into SampledAoS2Input
by consulting the rank data structure (i.e., rank(idx1)).

3. Multiply the corresponding SampledAoS2Input value with α and subtract the #hops
to get the AoS2Input value.

To see why Step 1 works, note that NextCharIdx[2] in Figure A.1a tells us where
AoS2Input[2]+1=4 is stored; or, NextCharIdx[i] tells us where AoS2Input[i]+1 is stored
in AoS2Input. Hence, to find an unsampled AoS2Input value, we check if AoS2Input
at NextCharIdx[i] is sampled by consulting the BPos array. If yes, we know the value
AoS2Input[i]+1 and hence, AoS2Input[i]. This process can be repeated until we find a sam-
pled value.

Note that the SampledAoS2Input values must be multiplied by α (Step 3) to get back the
corresponding AoS2Input value. Once we obtain the sampled value, we simply subtract the
number of additional hops we took to reach the sampled value to get the required AoS2Input
value. See Figure A.1a for an example.

APPENDIX A. SUCCINCT DATA STRUCTURES 102

Algorithm 10 Algorithm for lookupAoS2Input(i).

1: #hops ← 0
2: idx1 ← i
3: While !BPos[idx1]
4: idx1 ← lookupNextCharIdx[idx1]
5: #hops += 1
6: #BitsSet ← rank(BPos, idx1)
7: Val ← SampledAoS2Input[#BitsSet]
8: Return Val ×α - #hops

Looking up Input2AoS values. Similar to lookups on AoS2Input, lookups on Input2AoS
can also be viewed as three steps:

1. Find the largest multiple of α loc1 smaller than or equal to the location loc being
looked up; obtain the SampledInput2AoS value idx1 at loc1.

2. Translate this index into SampledAoS2Input to the corresponding index into AoS2Input
by consulting the select data structure (i.e., select(idx1).

3. Follow (loc-loc1) NextCharIdx pointers to get the required Input2AoS value.

Since Input2AoS and SampledInput2AoS are inverse mappings of AoS2Input and Sam-
pledAoS2Input respectively, observe that the algorithm for looking up Input2AoS values is
the inverse of the AoS2Input lookup algorithm.

Step 1 exploits the fact that given a location loc in the file, we know that the largest mul-
tiple of α that is smaller than or equal to loc (say, loc1) must be an AoS2Input value that is
sampled. The corresponding SampledInput2AoS value would give us the SampledAoS2Input
index for the sampled value.

Once we obtain the corresponding index into AoS2Input (Step 2), we observe that we
would have to follow (loc-loc1) NextCharIdx pointers to get from the sampled AoS2Input
value to the location which we started with (i.e., our query for the Input2AoS lookup algo-
rithm). Therefore, it suffices to follow as many NextCharIdx pointer to get the corresponding
AoS2Input index (Step 3), which would give us the required Input2AoS value. Figure A.1b
illustrates the lookup algorithm with an example.

Algorithm 11 Algorithm for lookupAoS2Input(loc).

1: loc1 ← α× ⌊i/α⌋
2: idx1 ← lookupInput2AoS[⌊i/α⌋]
3: idx ← select(BPos, idx1)
4: For i=1 to loc-loc1
5: idx ← lookupNextCharIdx[idx]
6: Return idx

APPENDIX A. SUCCINCT DATA STRUCTURES 103

A.1.2 Compressing AoS

The largest of the four arrays is AoS. The redundancy in AoS is best understood by observing
that AoS[4] and AoS[3] in Figure 2.3 (Chapter 2) overlap at “anana$”. Indeed, the second
character of AoS[4] is the first character of AoS[3]. Observe that interestingly, the value of
NextCharIdx[4] is 3. This is not a coincidence; intuitively, since AoS2Input stores locations
of suffixes in the input, AoS2Input[4] and AoS2Input[4]+1 are the locations of the first
and the second characters of AoS[4]. Since NextCharIdx[4] tells us where AoS2Input[4]+1
is stored into AoS2Input, the first character of AoS[3]=AoS[NextCharIdx[4]] is the second
character of AoS[4]. It follows that we only need to store the first character for each index
of AoS; the remaining characters can be computed on the fly using NextCharIdx. In fact,
we can do even better — since AoS stores suffixes in sorted order, all we need is each unique
character in the input file and the first index into AoS at which the suffix starts with the
character. This reduces the size of AoS from 4n(n + 1) bits to 512⌈log n⌉ bits.

Succinct representation of AoS stores: (a) all unique characters in the input file in sorted
order; and (b) for each character, first AoS index with suffix starting with that character.

Looking up AoS values. Let characters be the sorted array of unique characters, and char-
indexes be the corresponding array of indexes. Observe that binary searching for an index
idx on char-indexes yields the index of the first suffix that shares the same starting character
as AoS[i]; consulting the characters array gives us the first character. As described above,
the first character of AoS[NextCharIdx[idx]] is the second character of AoS[idx]. Therefore,
to get the second character of AoS[idx], we simply determine idx1 = NextCharIdx[idx] and
determine the first character of AoS[idx1]. If we repeat this process len times, we obtain the
first len bytes of AoS[idx]. Algorithm 12 summarizes this process.

Algorithm 12 Algorithm for lookupAoS(idx, len).

1: str ← NULL
2: idx1 ← idx
3: If i=0 to len-1
4: idx2 = BinSearch(char-indexes, idx1)
5: str += characters[idx2]
6: idx1 ← lookupNPA[idx1]
7: Return str

A.1.3 Compressing NextCharIdx

To compress NextCharIdx, Succinct exploits two properties identified in theory literature [82,
81, 162, 164, 163]. These properties are based on a two-dimensional representation of
NextCharIdx, where columns are indexed by all unique characters and rows are indexed
by all unique t−length strings, both in sorted order. The value NextCharIdx[idx] belongs to
cell (rowID, columnID) if the corresponding suffix at AoS[idx] starts with character colum-
nID, followed by string rowID.

APPENDIX A. SUCCINCT DATA STRUCTURES 104

3, 5, 7, 15 0 1 8, 9, 11 2, 4 6, 10 12, 16 13 14, 17

3, 5, 7, 15 8, 9, 11 2, 4 6, 10 12, 16 14, 17 0, 1, 13

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1

3, 5, 7, 15 8, 9, 11 2, 4 6, 10 12, 16 14, 17 0, 1, 13

2 6

2 3 4 5 7 8 9 11 15 0 1 6 10 12 13 14 16 17
1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1

3, 5, 7, 15 8, 9, 11 2, 4 6, 10 12, 16 14, 17 0, 1, 13

3 5 7

8, 9, 11 2, 4

2 4 8 9 11
1 1 0 0 0

6, 10 12, 16

6 10 12 16
0 0 1 1

14, 17 0, 1, 13

0 1 13 14 17
1 1 1 0 0

Figure A.4: Example for constructing the tree for each row of two-dimensional representation of
NextCharIdx.

Property1: NextCharIdx values in any column form an increasing sequence of
integers.

Property2: NextCharIdx values in any row form a contiguous sequence of inte-
gers.

Skewed Wavelet Trees We use the same two-dimensional representation of uncompressed
NextCharIdx with default value of t set to 3. However, our compressed representation differs
from previous ones in terms of a number of optimizations. In particular, the NextCharIdx
compression techniques in [81, 82, 162, 164, 163] were focused on providing theoretical
guarantees; our implementation uses subtle changes to trade-off theoretical guarantees in a
few corner cases to achieve lower memory footprint and query latency.

Recall that the NextCharIdx representation consists of as many rows as the number of
unique t−length substrings in input file. Each row contains a contiguous (not necessarily
sorted) sequence of integers (see Figure A.4, top row) distributed across multiple cells. To
start with, given an index idx, it is easy to find the row, the cell and the offset into the cell
where NextCharIdx[idx] is stored by storing a few small arrays.

Succinct compresses each row independently in a manner that allows looking up the
NextCharIdx value at a given offset into a cell. To achieve this, we construct a binary tree
over the cells (the leaves of the tree correspond to cells in the row), partitioning the cells
at each level such that the number of values in the cells assigned to the left children and
to the right children are as close as possible. We use simple heuristics to identify cells that
contain very few values (cells 1, 2 and 7 in top row each contain a single value) and store
these separately; all values in separated cells are put in a dummy cell (last cell in second
row of Figure A.4). By separating sparse cells and by partitioning cells based on number

APPENDIX A. SUCCINCT DATA STRUCTURES 105

of values, we attempt to reduce the height of the tree and to ensure that cells with a large
number of values have lower depth. These lead to significant reduction in memory footprint
and latency, at the cost of theoretical guarantees in some corner cases.

Next we construct a bit array for each node of the binary tree as follows. Let S be the set
of values contained in the cells being partitioned at the root. We create an array of —S—
bits; the ith bit of this array is set if the ith largest value in S is contained in a cell assigned
to the right child, and unset otherwise. See Figure A.4 and consider the left child of the root
of the tree. The root is assigned the first three cells and S = {3, 5, 7, 15, 11, 8, 9, 2, 4}; the
sorted version of S is {2, 3, 4, 5, 7, 8, 9, 11, 15} with values assigned to the right child being
{2, 4, 8, 9, 11}, precisely the set bits in the bit array stored at that root.

In addition to the values in separated cells, Succinct stores (a) cell identifiers at which
partitioning occurs at each node in the binary tree (circled values in Figure A.4) and (b) a
compressed representation of the bit arrays at each node for each level of the tree, together
with rank and select data structures.

Now suppose we want to locate the NextCharIdx value at the second offset in the second
cell, which is equal to 9. We first locate the cell by traversing down the tree, comparing
the identifier stored at the node to the identifier of the cell being located until we hit a leaf.
Once the cell is located in the tree, we start traversing up the tree. At each level, we check
if the current node is the left child or the right child of the parent. If it is the right child, we
update offset to be the index into parent’s bit array where the offset-th 1 (and 0 if it is the
left child) lies. Note that these translate into select operations on the bitmap corresponding
to the node; we represent searching for the position of the ith 1 as select1, and the ith 0 as
select0. Intuitively, offset maintains the order of the desired NextCharIdx value among (the
sorted) set of values at the binary tree node. Since the root of the tree contains the
set of contiguous integers (Property 2), the final value of offset gives us the desired
integer. For our example, offset = 2 at the leaf. Since the second cell is the left child of the
parent, we find the location of second ’0’ in parent’s bit array and set offset = 4. At the
next level, we find the location of fourth ’1’ in parent’s bit array since the current node is
the right child and set offset = 7. At the root, we find the location of the seventh ’0’, giving
us offset = 9 as desired.

A.2 Query Algorithms

We described how lookups can be performed on the compressed representations of AoS,
AoS2Input and Input2AoS using lookups on the NextCharIdx array in §A.1.1); we now
describe how we can perform search, count and extract using the compressed arrays.

A.2.1 Random access in Succinct

The extract operation forms the basis of random access in Succinct. In order to extract len
bytes starting at offset off in the uncompressed input file, we first lookup Input2AoS[off] to

APPENDIX A. SUCCINCT DATA STRUCTURES 106

obtain the index idx where AoS2Input[idx]=off. Once we have this index, we simply need
to obtain the first len bytes of the suffix at AoS[idx], as described in Algorithm 12.

Algorithm 13 Algorithm for extract(off, len).

1: idx ← lookupInput2AoS(off)
2: str ← lookupAoS (idx, len)
3: Return str

A.2.2 Counting and Searching

It is simple to see that two binary searches over the AoS array for an input string would
give us the first and the last suffix that start with a given input string. If the indexes of
these suffixes be idx1 and idx2 respectively, then the count of the string occurrences is simply
(idx2-idx1+1), and the AoS2Input values {AoS2Input[idx1], ..., AoS2Input[idx2]} would give
us the locations of each of these occurrences (i.e., the search results).

Succinct, however, exploits the two dimensional representation of NextCharIdx and the
information contained within it obtain the two indexes idx1 and idx2 more efficiently. Con-
sider the input string “banana”; recall from §A.1.3 that the cell=⟨n, ana⟩ contains all
NextCharIdx[idx] values for which the first character of the suffix at AoS [idx] is “a” and
the following three characters are “ana”.

Algorithm 14 Algorithm for findRange(str).

1: len ← length(str)
2: cell ← ⟨str[len-t-1], str[(len-t)...(len-1)]⟩
3: (idx1, idx2) ← (firstIdx(cell), lastIdx(cell))
4: For i=len-1 to 0
5: cell ← ⟨str[i-t-1], str[(i-t)...(i-1)]⟩
6: idx01 ← BinSearch(cell, idx1)
7: idx02 ← BinSearch(cell, idx2)
8: (idx1, idx2) ← (idx01, idx02)
9: Return (idx1, idx2)

Algorithm 15 Algorithm for count(str).

1: (idx1, idx2) ← findRange(str)
2: cnt ← idx2 - idx1 + 1
3: Return cnt

Our algorithm aggressively exploits the above interpretation. In particular, the algorithm
first finds indexes idx1 and idx2 for NextCharIdx values that belong to cell = ⟨n, ana⟩. In
the next step, the algorithm looks in cell = ⟨a, nan⟩ and performs a binary search over
the NextCharIdx values in the cell (they are sorted, not necessarily contiguous) and finds

APPENDIX A. SUCCINCT DATA STRUCTURES 107

Algorithm 16 Algorithm for search(str).

1: res ← {}
2: (idx1, idx2) ← findRange(str)
3: For i=idx1 to idx2
4: loc ← lookupAoS2Input[i]
5: Insert loc in res
6: Return res

indexes idx01 and idx02 such that NextCharIdx[idx01] = idx1 and NextCharIdx[idx02] =
idx2. Intuitively, after this round, idx01 and tt idx02 are indexes into AoS for which suffixes
start with a and are followed by nana. The final binary search is done in cell = ⟨b, ana⟩ and
the results are the desired indexes. The algorithm for finding idx1 and idx2 is depicted in
Algorithm 14, while count and search are summarized in Algorithms 15 and 16.

108

Bibliography

[1] Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. “Integrating Compression
and Execution in Column-Oriented Database Systems”. In: ACM International Con-
ference on Management of Data (SIGMOD). 2006.

[2] Accelerating Text Analytics Queries on Reconfigurable Platforms. url: http://ece.cmu.

edu/∼calcm/carl/lib/exe/fetch.php?media=carl15-atasu.pdf.

[3] Gediminas Adomavicius and Alexander Tuzhilin. “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions”. In:
IEEE Transactions on Knowledge & Data Engineering 6 (2005), pp. 734–749.

[4] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. “Succinct: Enabling Queries
on Compressed Data”. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2015.

[5] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct Spark from AMPLab:
Queries on Compressed RDDs. url: https://bit.ly/1LpVOxt.

[6] Amr Ahmed et al. “Distributed Large-scale Natural Graph Factorization”. In: ACM
International Conference on World Wide Web (WWW). 2013.

[7] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles, Techniques.
Addison Wesley, 1986.

[8] Ashok Anand et al. “Cheap and Large CAMs for High Performance Data-Intensive
Networked Systems.” In: NSDI. 2010.

[9] Ganesh Ananthanarayanan et al. “Scarlett: Coping with Skewed Content Popular-
ity in Mapreduce Clusters”. In: ACM European Conference on Computer Systems
(EuroSys). 2011.

[10] Michael P Andersen and David E. Culler. “BTrDB: Optimizing Storage System De-
sign for Timeseries Processing”. In: USENIX FAST. 2016.

[11] Aoe, Jun-ichi and Morimoto, Katsushi and Sato, Takashi. “An Efficient Implementa-
tion of Trie Structures”. In: Software: Practice and Experience (1992).

[12] Apache Hive. https://hive.apache.org.

[13] Apache Impala. https://impala.apache.org/.

http://ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-atasu.pdf
http://ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-atasu.pdf
https://bit.ly/1LpVOxt
https://hive.apache.org
https://impala.apache.org/

BIBLIOGRAPHY 109

[14] Apache Kafka. url: https://kafka.apache.org.

[15] Timothy G. Armstrong et al. “LinkBench: A Database Benchmark Based on the
Facebook Social Graph”. In: ACM SIGMOD. 2013.

[16] Berk Atikoglu et al. “Workload Analysis of a Large-scale Key-value Store”. In: ACM
SIGMETRICS Performance Evaluation Review. Vol. 40. 1. 2012, pp. 53–64.

[17] G. Bagan et al. “Generating Flexible Workloads for Graph Databases”. In: Proceedings
of the VLDB Endowment (PVLDB) 9.13 (2016), pp. 1457–1460.

[18] Pablo Barceló Baeza. “Querying Graph Databases”. In: ACM Symposium on Princi-
ples of Database Systems (PODS). 2013, pp. 175–188.

[19] Pablo Barceló Baeza, Miguel Romero, and Moshe Y. Vardi. “Semantic Acyclicity on
Graph Databases”. In: ACM Symposium on Principles of Database Systems (PODS).
2013.

[20] Barceló, Pablo and Libkin, Leonid and Reutter, Juan L. “Querying Graph Patterns”.
In: ACM Symposium on Principles of Database Systems (PODS). 2011.

[21] Doug Beaver et al. “Finding a Needle in Haystack: Facebook’s Photo Storage”. In:
USENIX Conference on Operating Systems Design and Implementation (OSDI). 2010.

[22] Hal Berenson et al. “A Critique of ANSI SQL Isolation Levels”. In: Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data (SIGMOD
’95). 1995, pp. 1–10.

[23] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. “Concurrency control
and recovery in database systems”. In: (1987).

[24] Bharat, Krishna and Broder, Andrei and Henzinger, Monika and Kumar, Puneet
and Venkatasubramanian, Suresh. “The connectivity server: Fast access to linkage
information on the web”. In: Computer networks and ISDN Systems 30 (1998).

[25] Bing. url: https://bing.com.

[26] Philip Bohannon et al. “Automatic Web-scale Information Extraction”. In: ACM
International Conference on Management of Data (SIGMOD). 2012.

[27] P. Boldi and S. Vigna. “The Webgraph Framework I: Compression Techniques”. In:
ACM WWW. 2004.

[28] Falk Brauer et al. “Enabling Information Extraction by Inference of Regular Expres-
sions from Sample Entities”. In: ACM International Conference on Information and
Knowledge Management (CIKM). 2011.

[29] Breadth First Search. url: https://en.wikipedia.org/wiki/Breadth-first search.

[30] Nathan Bronson et al. “TAO: Facebook’s Distributed Data Store for the Social
Graph”. In: USENIX Technical Conference (ATC). 2013.

[31] Building a follower model from scratch. url: https://bit.ly/2nDwvJU.

https://kafka.apache.org
https://bing.com
https://en.wikipedia.org/wiki/Breadth-first_search
https://bit.ly/2nDwvJU

BIBLIOGRAPHY 110

[32] Michael Burrows and David J Wheeler. “A block-sorting lossless data compression
algorithm”. In: (1994).

[33] Diego Calvanese et al. “Rewriting of Regular Expressions and Regular Path Queries”.
In: ACM Symposium on Principles of Database Systems (PODS). 1999, pp. 194–204.

[34] Chee-Yong Chan, Minos Garofalakis, and Rajeev Rastogi. “RE-tree: An Efficient
Index Structure for Regular Expressions”. In: Proceedings of the VLDB Endowment
(2003).

[35] Badrish Chandramouli et al. “FASTER: A Concurrent Key-Value Store with In-Place
Updates”. In: ACM SIGMOD. 2018.

[36] Fay Chang et al. “Bigtable: A Distributed Storage System for Structured Data”. In:
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2006.

[37] Surajit Chaudhuri. “An Overview of Query Optimization in Relational Systems”. In:
ACM Symposium on Principles of Database Systems (PODS). 1998.

[38] Flavio Chierichetti et al. “On Compressing Social Networks”. In: ACM International
Conference on Knowledge Discovery and Data Mining (KDD). 2009.

[39] Laura Chiticariu et al. “The SystemT IDE: An Integrated Development Environment
for Information Extraction Rules”. In: ACM International Conference on Manage-
ment of Data (SIGMOD). 2011.

[40] Junghoo Cho and Sridhar Rajagopalan. “A Fast Regular Expression Indexing Engine”.
In: IEEE International Conference on Data Engineering (ICDE). 2001.

[41] Brian F Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”. In: ACM
Symposium on Cloud Computing (SoCC). 2010.

[42] James Corbett et al. “Spanner: Google’s Globally-distributed Database”. In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 2012.

[43] Thomas H Cormen. Introduction to Algorithms. 2009.

[44] CouchDB. url: http://couchdb.apache.org.

[45] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. “A Graphical Query
Language Supporting Recursion”. In: ACM International Conference on Management
of Data (SIGMOD). 1987, pp. 323–330.

[46] Carlo Curino et al. “Schism: a Workload-Driven Approach to Database Replication
and Partitioning”. In: Proceedings of the VLDB Endowment 3.1-2 (2010), pp. 48–57.

[47] Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. “Automatic Wrappers for Large
Scale Web Extraction”. In: Proceedings of the VLDB Endowment (2011).

[48] Daniel J. Abadi and Samuel R. Madden and Nabil Hachem. “Column-Stores vs. Row-
Stores: How Different Are They Really?” In: ACM International Conference on Man-
agement of Data (SIGMOD). 2008.

http://couchdb.apache.org

BIBLIOGRAPHY 111

[49] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[50] Giuseppe DeCandia et al. “Dynamo: Amazon’s Highly Available Key-value Store”.
In: ACM Symposium on Operating Systems Principles (SOSP). 2007.

[51] Deep Learning Meets Heterogeneous Computing. url: http://on-demand.gputechconf.com/

gtc/2014/presentations/S4651-deep-learning-meets-heterogeneous-computing.pdf.

[52] Delta Encoding. url: http://en.wikipedia.org/wiki/Delta encoding.

[53] Demining the “Join Bomb” with graph queries. url: https://bit.ly/2m2kuNA.

[54] Distributive Property. url: https://en.wikipedia.org/wiki/Distributive property.

[55] Aleksandar Dragojević et al. “FaRM: Fast Remote Memory”. In: USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 2014.

[56] Ayush Dubey et al. “Weaver: A High-Performance, Transactional Graph Store Based
on Refinable Timestamps”. In: CoRR abs/1509.08443 (2015).

[57] Elasticsearch. url: http://elasticsearch.org.

[58] Orri Erling et al. “The LDBC Social Network Benchmark: Interactive Workload”. In:
ACM International Conference on Management of Data (SIGMOD). 2015, pp. 619–
630.

[59] Robert Escriva, Bernard Wong, and Emin Gün Sirer. “HyperDex: A Distributed,
Searchable Key-value Store”. In: ACM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM). 2012.

[60] Extended Regular Expressions. url: http://pubs.opengroup.org/onlinepubs/9699919799.

[61] Facebook. url: https://facebook.com.

[62] Ronald Fagin et al. “Spanners: A Formal Framework for Information Extraction”. In:
ACM Symposium on Principles of Database Systems (PODS). 2013.

[63] Bin Fan, David G. Andersen, and Michael Kaminsky. “MemC3: Compact and Con-
current MemCache with Dumber Caching and Smarter Hashing”. In: USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI). 2013.

[64] Wenfei Fan. “Graph Pattern Matching Revised for Social Network Analysis”. In: ACM
International Conference on Database Theory (ICDT). 2012.

[65] Wenfei Fan et al. “Adding regular expressions to graph reachability and pattern
queries”. In: IEEE International Conference on Data Engineering (ICDE). 2011.

[66] Wenfei Fan et al. “Query Preserving Graph Compression”. In: ACM International
Conference on Management of Data (SIGMOD). 2012.

[67] Paolo Ferragina and Giovanni Manzini. “An Experimental Study of a Compressed
Index”. In: Information Sciences 135.1 (2001), pp. 13–28.

http://on-demand.gputechconf.com/gtc/2014/presentations/S4651-deep-learning-meets-heterogeneous-computing.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4651-deep-learning-meets-heterogeneous-computing.pdf
http://en.wikipedia.org/wiki/Delta_encoding
https://bit.ly/2m2kuNA
https://en.wikipedia.org/wiki/Distributive_property
http://elasticsearch.org
http://pubs.opengroup.org/onlinepubs/9699919799
https://facebook.com

BIBLIOGRAPHY 112

[68] Paolo Ferragina and Giovanni Manzini. “An Experimental Study of an Opportunistic
Index”. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). 2001.

[69] Paolo Ferragina and Giovanni Manzini. “Indexing Compressed Text”. In: Journal of
the ACM (JACM) 52.4 (2005), pp. 552–581.

[70] Paolo Ferragina and Giovanni Manzini. “Opportunistic Data Structures with Appli-
cations”. In: IEEE Symposium on Foundations of Computer Science (FOCS). 2000.

[71] Robert D Finn et al. “Pfam: The protein families database”. In: Nucleic Acids Re-
search (2013).

[72] FlockDB. url: https://github.com/twitter/flockdb.

[73] Function Shipping: Separating Logical and Physical Tiers. url: https://docs.oracle.com/

cd/A87860 01/doc/appdev.817/a86030/adx16nt4.htm.

[74] Alexandre Gattiker, Elisabeth Gasteiger, and Amos Marc Bairoch. “ScanProsite: a
reference implementation of a PROSITE scanning tool”. In: Applied Bioinformatics
(2002).

[75] Gattiker, Alexandre and Gasteiger, Elisabeth and Bairoch, Amos Marc. “ScanProsite:
a reference implementation of a PROSITE scanning tool”. In: Applied Bioinformatics
(2002).

[76] Davide Gianfelice et al. “Modificatory Provisions Detection: A Hybrid NLP Ap-
proach”. In: ACM International Conference on Artificial Intelligence and Law (ICAIL).
2013.

[77] gMark Queries for LDBC Social Network Benchmark. url: https://github.com/graphMark/

gmark/tree/master/demo/social/social-translated.

[78] Robert R. Goldberg. “Finite state automata from regular expression trees”. In: The
Computer Journal (1993).

[79] Joseph E Gonzalez et al. “GraphX: Graph Processing in a Distributed Dataflow
Framework”. In: USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI). 2014.

[80] Google. url: https://google.com.

[81] Roberto Grossi, Ankur Gupta, and Jeffrey Vitter. “High-order Entropy-compressed
Text Indexes”. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). 2003.

[82] Roberto Grossi and Jeffrey Scott Vitter. “Compressed Suffix Arrays and Suffix Trees
with Applications to Text Indexing and String Matching”. In: SIAM Journal on Com-
puting 35.2 (2005), pp. 378–407.

[83] Varun Gupta et al. “Analysis of Join-the-Shortest-Queue Routing for Web Server
Farms”. In: (2007).

[84] Cecilia Hernández and Gonzalo Navarro. “Compressed Representations for Web and
Social Graphs”. In: Knowledge and Information Systems 40.2 (2014).

https://github.com/twitter/flockdb
https://docs.oracle.com/cd/A87860_01/doc/appdev.817/a86030/adx16nt4.htm
https://docs.oracle.com/cd/A87860_01/doc/appdev.817/a86030/adx16nt4.htm
https://github.com/graphMark/gmark/tree/master/demo/social/social-translated
https://github.com/graphMark/gmark/tree/master/demo/social/social-translated
https://google.com

BIBLIOGRAPHY 113

[85] Cecilia Hernández and Gonzalo Navarro. “Compression of Web and Social Graphs
supporting Neighbor and Community Queries”. In: ACM Workshop on Social Net-
work mining and Analysis (SNAKDD). 2011.

[86] Wing-Kai Hon et al. “Practical aspects of Compressed Suffix Arrays and FM-Index in
Searching DNA Sequences”. In:Workshop on Algorithm Engineering and Experiments
and Workshop on Analytic Algorithmics and Combinatorics (ALENEX/ANALC).
2004.

[87] How Google Search works. url: https://google.com/search/howsearchworks/crawling-indexing.

[88] Cheng Huang et al. “Erasure Coding in Windows Azure Storage.” In: USENIX Annual
Technical Conference (ATC). 2012.

[89] Hyperdex Bug. url: https://bit.ly/2mSipnN.

[90] Introducing FlockDB. url: https://blog.twitter.com/2010/introducing-flockdb.

[91] Introducing Graph Search Beta. url: https://bit.ly/2ogy4O7.

[92] IUPAC One letter codes for Amino Acids. url: http://bioinformatics.org/sms/iupac.html.

[93] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection. 2014. url: http://snap.stanford.edu/data.

[94] Juha Kärkkäinen, Dominik Kempa, and Simon J Puglisi. “Parallel external memory
suffix sorting”. In: Annual Symposium on Combinatorial Pattern Matching. Springer.
2015, pp. 329–342.

[95] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. “BlowFish: Dynamic Storage-
Performance Tradeoff in Data Stores”. In: USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 2016.

[96] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Sprint: Regular Expression
Queries on Compressed Data. Tech. rep. 2019.

[97] Anurag Khandelwal et al. “ZipG: A Memory-efficient Graph Store for Interactive
Queries”. In: SIGMOD. 2017.

[98] Rajasekar Krishnamurthy et al. “SystemT: A System for Declarative Information
Extraction”. In: ACM SIGMOD Record (2009).

[99] Stefan Kurtz. “Reducing the Space Requirement of Suffix Trees”. In: Software: Prac-
tice and Experience 29.13 (1999), pp. 1149–1171.

[100] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. “GraphChi: Large-Scale Graph
Computation on Just a PC”. In: USENIX Symposium on Operating Systems Design
and Implementation (OSDI). 2012.

[101] Julian Labeit, Julian Shun, and Guy E Blelloch. “Parallel lightweight wavelet tree,
suffix array and FM-index construction”. In: Journal of Discrete Algorithms 43 (2017),
pp. 2–17.

https://google.com/search/howsearchworks/crawling-indexing
https://bit.ly/2mSipnN
https://blog.twitter.com/2010/introducing-flockdb
https://bit.ly/2ogy4O7
http://bioinformatics.org/sms/iupac.html
http://snap.stanford.edu/data

BIBLIOGRAPHY 114

[102] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured
Storage System”. In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–
40.

[103] Andrew Lamb et al. “The Vertica Analytic Database: C-store 7 Years Later”. In:
Proceedings of the VLDB Endowment 5.12 (2012), pp. 1790–1801.

[104] Kevin Lang. “Finding good nearly balanced cuts in power law graphs”. In: Preprint
(2004).

[105] Ben Langmead et al. “Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome”. In: Genome Biology 10.3 (2009), pp. 1–10.

[106] Jure Leskovec et al. “Community Structure in Large Networks: Natural Cluster Sizes
and the Absence of Large Well-Defined Clusters”. In: Internet Mathematics (2009).

[107] Levenshtein distance. url: https://en.wikipedia.org/wiki/Levenshtein distance.

[108] Haoyuan Li et al. “Tachyon: Reliable, Memory Speed Storage for Cluster Computing
Frameworks”. In: ACM Symposium on Cloud Computing (SoCC). 2014.

[109] Yunyao Li et al. “VINERy: A Visual IDE for Information Extraction”. In: Proceedings
of the VLDB Endowment ().

[110] Leonid Libkin and Domagoj Vrgoč. “Regular Path Queries on Graphs with Data”. In:
ACM International Conference on Database Theory (ICDT). 2012, pp. 74–85.

[111] Hyeontaek Lim et al. “MICA: A Holistic Approach to Fast In-memory Key-value
Storage”. In: USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2014.

[112] Hyeontaek Lim et al. “SILT: AMemory-Efficient, High-Performance Key-Value Store”.
In: ACM Symposium on Operating Systems Principles (SOSP). 2011.

[113] LinkBench. url: https://github.com/facebookarchive/linkbench.

[114] Linkedin. url: https://linkedin.com.

[115] Longhair: Fast Cauchy Reed-Solomon Erasure Codes. url: https://github.com/catid/longhair.

[116] Yucheng Low et al. “GraphLab: A New Framework For Parallel Machine Learning”.
In: arXiv preprint arXiv:1408.2041 (2014).

[117] LZ4. url: https://lz4.github.io/lz4.

[118] Antonio Maccioni and Daniel J. Abadi. “Scalable Pattern Matching over Compressed
Graphs via Dedensification”. In: ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD). 2016.

[119] Grzegorz Malewicz et al. “Pregel: A System for Large-scale Graph Processing”. In:
ACM International Conference on Management of Data (SIGMOD). ACM. 2010.

[120] Udi Manber and Gene Myers. “Suffix Arrays: A New Method for On-line String
Searches”. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). 1990.

https://en.wikipedia.org/wiki/Levenshtein_distance
https://github.com/facebookarchive/linkbench
https://linkedin.com
https://github.com/catid/longhair
https://lz4.github.io/lz4

BIBLIOGRAPHY 115

[121] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. “Cache Craftiness for Fast
Multicore Key-value Storage”. In: ACM European Conference on Computer Systems
(EuroSys). 2012.

[122] Norbert Martinez-Bazan, Sergio Gómez-Villamor, and Francesc Escalé-Claveras. “DEX:
A high-performance graph database management system”. In: IEEE Data Engineer-
ing Workshops (ICDEW). 2011.

[123] Hossein Maserrat and Jian Pei. “Neighbor Query Friendly Compression of Social
Networks”. In: ACM International Conference on Knowledge Discovery and Data
Mining (KDD). Washington, DC, USA, 2010.

[124] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action, Second
Edition: Covers Apache Lucene 3.0. 2010.

[125] MemCached. url: http://memcached.org.

[126] Maged MMichael. “High Performance Dynamic Lock-free Hash Tables and List-based
Sets”. In: ACM Symposium on Parallel Algorithms and Architectures (SPAA). 2002.

[127] Microsoft GraphView. url: https://github.com/facebookarchive/linkbench.

[128] Microsoft SQL Server. url: https://www.microsoft.com/en-us/sql-server/sql-server-2016.

[129] Jeffrey C Mogul et al. “Potential benefits of delta encoding and data compression for
HTTP”. In: ACM SIGCOMM Computer Communication Review. 1997.

[130] MongoDB. url: http://mongodb.org.

[131] Y Mori. libdivsufsort: A lightweight suffix-sorting library. 2010.

[132] Mulder, Michael and Nezlek, GS. “Creating Protein Sequence Patterns Using Efficient
Regular Expressions in Bioinformatics Research”. In: IEEE International Conference
on Information Technology Interfaces (ITI). 2006.

[133] Subramanian Muralidhar et al. “f4: Facebook’s Warm BLOB Storage System”. In:
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2014.

[134] MySQL. url: https://mysql.com.

[135] Gonzalo Navarro and Eliana Providel. “Fast, Small, Simple Rank/Select on Bitmaps”.
In: Experimental Algorithms. Vol. 7276. Lecture Notes in Computer Science. 2012,
pp. 295–306.

[136] Neo4j. url: http://neo4j.com.

[137] Neo4j Pushes Graph DB Limits Past a Quadrillion Nodes. url: https://datanami.com/

2016/04/26/neo4j-pushes-graph-db-limits-past-quadrillion-nodes.

[138] Yasuhiro Ogawa, Shintaro Inagaki, and Katsuhiko Toyama. “Automatic Consolida-
tion of Japanese Statutes Based on Formalization of Amendment Sentences”. In: Con-
ference on New Frontiers in Artificial Intelligence (JSAI). 2008.

[139] openCypher. url: http://www.opencypher.org.

http://memcached.org
https://github.com/facebookarchive/linkbench
https://www.microsoft.com/en-us/sql-server/sql-server-2016
http://mongodb.org
https://mysql.com
http://neo4j.com
https://datanami.com/2016/04/26/neo4j-pushes-graph-db-limits-past-quadrillion-nodes
https://datanami.com/2016/04/26/neo4j-pushes-graph-db-limits-past-quadrillion-nodes
http://www.opencypher.org

BIBLIOGRAPHY 116

[140] Oracle Database. url: https://oracle.com/index.html.

[141] OrientDB. url: http://orientdb.com/.

[142] John Ousterhout et al. “The Case for RAMClouds: Scalable High-performance Stor-
age Entirely in DRAM”. In: ACM SIGOPS Operating Systems Review 43.4 (2010),
pp. 92–105.

[143] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. “Skew-Aware Automatic Database
Partitioning in Shared-Nothing, Parallel OLTP Systems”. In: ACM International
Conference on Management of Data (SIGMOD). 2012.

[144] Pizza&Chili Corpus: Compressed Indexes and their Testbeds. url: http://pizzachili.dcc.

uchile.cl/indexes/Compressed Suffix Array.

[145] Eelco Plugge, Tim Hawkins, and Peter Membrey. The Definitive Guide to MongoDB:
The NoSQL Database for Cloud and Desktop Computing. 2010.

[146] Raphael Polig et al. “Compiling text analytics queries to FPGAs”. In: IEEE Inter-
national Conference on Field Programmable Logic and Applications (FPL). 2014.

[147] PostgreSQL. url: https://postgresql.org.

[148] Presto. url: http://prestodb.io.

[149] Property Graph Model. url: https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model.

[150] Puntervoll, P̊al and Linding, Rune and Gemünd, Christine and Chabanis-Davidson,
Sophie and Mattingsdal, Morten and Cameron, Scott and Martin, David MA and
Ausiello, Gabriele and Brannetti, Barbara and Costantini, Anna and others. “ELM
server: A new resource for investigating short functional sites in modular eukaryotic
proteins”. In: Nucleic Acids Research (2003).

[151] K. V. Rashmi et al. “A Solution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on the Facebook Warehouse
Cluster”. In: USENIX Conference on Hot Topics in Storage and File Systems (Hot-
Storage). 2013.

[152] KV Rashmi et al. “A hitchhiker’s guide to fast and efficient data reconstruction
in erasure-coded data centers”. In: ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM). 2014.

[153] Recommender System with Mahout and Elasticsearch. url: https://bit.ly/2ojbRyV.

[154] Redis. url: http://redis.io.

[155] Regular Expressions in MySQL. url: https://dev.mysql.com/doc/refman/5.7/en/regexp.html.

[156] Regular Expressions in Oracle. url: https://bit.ly/1PUA96R.

[157] Paul Resnick and Hal R Varian. “Recommender systems”. In: Communications of the
ACM 40.3 (1997), pp. 56–59.

https://oracle.com/index.html
http://orientdb.com/
http://pizzachili.dcc.uchile.cl/indexes/Compressed_Suffix_Array
http://pizzachili.dcc.uchile.cl/indexes/Compressed_Suffix_Array
https://postgresql.org
http://prestodb.io
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://bit.ly/2ojbRyV
http://redis.io
https://dev.mysql.com/doc/refman/5.7/en/regexp.html
https://bit.ly/1PUA96R

BIBLIOGRAPHY 117

[158] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction to recommender
systems handbook”. In: Recommender systems handbook. Springer, 2011, pp. 1–35.

[159] Daniel Robenek, Jan Platos, and Vaclav Snasel. “Efficient In-memory Data Structures
for n-grams Indexing.” In: DATESO. 2013.

[160] Rodrigo González and Szymon Grabowski and Veli Mäkinen and Gonzalo Navarro.
“Practical implementation of rank and select queries”. In: Workshop on Efficient and
Experimental Algorithms (WEA). 2005.

[161] Kunihiko Sadakane. “Compressed Suffix Trees with Full Functionality”. In: Theory
of Computing Systems 41.4 (2007), pp. 589–607.

[162] Kunihiko Sadakane. “Compressed Text Databases with Efficient Query Algorithms
Based on the Compressed Suffix Array”. In: International Conference on Algorithms
and Computation (ISAAC). 2000.

[163] Kunihiko Sadakane. “New Text Indexing Functionalities of the Compressed Suffix
Arrays”. In: Journal of Algorithms 48.2 (2003), pp. 294–313.

[164] Kunihiko Sadakane. “Succinct Representations of Lcp Information and Improvements
in the Compressed Suffix Arrays”. In: ACM-SIAM Symposium on Discrete Algorithms
(SODA). 2002.

[165] Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. 1989.

[166] SAP HANA. url: http://saphana.com.

[167] Maheswaran Sathiamoorthy et al. “XORing Elephants: Novel Erasure Codes for Big
Data”. In: International Conference on Very Large Data Bases (VLDB). 2013.

[168] Scalable Recommender Systems: Where Machine Learning Meets Search! url: https://
goo.gl/g6eFf7.

[169] SDSL. url: https://github.com/simongog/sdsl-lite.

[170] Muzammil Shahbaz, Phil McMinn, and Mark Stevenson. “Automated Discovery of
Valid Test Strings from the Web Using Dynamic Regular Expressions Collation and
Natural Language Processing”. In: IEEE International Conference on Quality Soft-
ware (QSIC). 2012.

[171] Bin Shao, Haixun Wang, and Yatao Li. “Trinity: A Distributed Graph Engine on a
Memory Cloud”. In: ACM International Conference on Management of Data (SIG-
MOD). ACM. 2013.

[172] Julian Shun and Guy E. Blelloch. “Ligra: A Lightweight Graph Processing Framework
for Shared Memory”. In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoP). 2013.

[173] Julian Shun, Laxman Dhulipala, and Guy Blelloch. “Smaller and Faster: Parallel Pro-
cessing of Compressed Graphs with Ligra+”. In: IEEE Data Compression Conference
(DCC). 2015.

http://saphana.com
https://goo.gl/g6eFf7
https://goo.gl/g6eFf7
https://github.com/simongog/sdsl-lite

BIBLIOGRAPHY 118

[174] Christian JA Sigrist et al. “New and continuing developments at PROSITE”. In:
Nucleic Acids Research (2012).

[175] Swaminathan Sivasubramanian. “Amazon dynamoDB: A Seamlessly Scalable Non-
relational Database Service”. In: ACM International Conference on Management of
Data (SIGMOD). 2012.

[176] snappy. url: http://google.github.io/snappy.

[177] Yee Jiun Song et al. “RPC Chains: Efficient Client-server Communication in Geodis-
tributed Systems”. In: USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI). 2009.

[178] Sparksee by Sparsity Technologies. url: http://sparsity-technologies.com.

[179] PierLuigi Spinosa et al. “NLP-based Metadata Extraction for Legal Text Consolida-
tion”. In: ACM International Conference on Artificial Intelligence and Law (ICAIL).
2009.

[180] Sprint. url: https://github.com/amplab/sprint.

[181] Michael Stonebraker et al. “C-Store: A Column-Oriented DBMS”. In: International
Conference on Very Large Data Bases (VLDB). 2005.

[182] Succinct. url: https://github.com/amplab/succinct-cpp.

[183] Succinct on Apache Spark. url: https://github.com/amplab/succinct.

[184] Suffix Array. url: http://en.wikipedia.org/wiki/Suffix array.

[185] Suffix Tree. url: http://en.wikipedia.org/wiki/Suffix tree.

[186] James W Thatcher. “Tree Automata: An Informal Survey”. In: (1973).

[187] The Infrastructure Behind Twitter: Scale. url: https ://blog.twitter.com/engineering/en us/

topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html.

[188] TimescaleDB: SQL made scalable for time-series data. url: https://timescale.com/papers/

timescaledb.pdf.

[189] Titan. url: http://thinkaurelius.github.io/titan.

[190] Titan Data Model. url: http://s3.thinkaurelius.com/docs/titan/current/data-model.html.

[191] TPC-H. url: http://tpc.org/tpch/.

[192] Dominic Tsang and Sanjay Chawla. “A Robust Index for Regular Expression Queries”.
In: ACM Conference on Information and Knowledge Management (CIKM). 2011.

[193] Twitter. url: https://twitter.com.

[194] Esko Ukkonen. “On-Line Construction of Suffix Trees”. In: Algorithmica 14 (1995),
pp. 249–260.

[195] Vertica Does Not Compute on Compressed Data. url: http://tinyurl.com/l36w8xs.

http://google.github.io/snappy
http://sparsity-technologies.com
https://github.com/amplab/sprint
https://github.com/amplab/succinct-cpp
https://github.com/amplab/succinct
http://en.wikipedia.org/wiki/Suffix_array
http://en.wikipedia.org/wiki/Suffix_tree
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://timescale.com/papers/timescaledb.pdf
https://timescale.com/papers/timescaledb.pdf
http://thinkaurelius.github.io/titan
http://s3.thinkaurelius.com/docs/titan/current/data-model.html
http://tpc.org/tpch/
https://twitter.com
http://tinyurl.com/l36w8xs

BIBLIOGRAPHY 119

[196] Sebastiano Vigna. “Broadword Implementation of Rank/Select Queries”. In: Work-
shop on Efficient and Experimental Algorithms (WEA). 2008.

[197] Virtuoso Universal Server. url: http://virtuoso.openlinksw.com.

[198] Hoang Tam Vo, Chun Chen, and Beng Chin Ooi. “Towards Elastic Transactional
Cloud Storage with Range Query Support”. In: Proc. VLDB Endow. 3.1-2 (2010),
pp. 506–514.

[199] Christopher B Walton, Alfred G Dale, and Roy M Jenevein. “A Taxonomy and Per-
formance Model of Data Skew Effects in Parallel Joins”. In: International Conference
on Very Large Data Bases (VLDB). 1991.

[200] Rui Wang, C Conrad, and S Shah. “Using Set Cover to Optimize a Large-Scale
Low Latency Distributed Graph”. In: Workshop on Hot Topics in Cloud Computing
(HotCloud). 2013.

[201] Peter Weiner. Linear Pattern Matching Algorithms. 1973.

[202] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. “Autoscaling Tiered
Cloud Storage in Anna”. In: Proc. VLDB Endow. 12.6 (2019), pp. 624–638.

[203] Yahoo! Search. url: https://yahoo.com.

[204] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud). 2010.

[205] Dong Zhou, David Andersen, and Michael Kaminsky. “Space Efficient, High Perfor-
mance Rank and Select Structures on Uncompressed Bit Sequences”. In: Experimental
Algorithms. Vol. 7933. Lecture Notes in Computer Science. 2013, pp. 151–163.

http://virtuoso.openlinksw.com
https://yahoo.com

	Contents
	List of Figures
	List of Tables
	Introduction
	Limitations of Existing Approaches
	Thesis Overview
	Outline and Previously Published Work

	Enabling Queries on Compressed Data
	Succinct Interface
	Querying on Compressed Data
	Multi-store Design
	Implementation
	Evaluation
	Related Work
	Summary

	Dynamic Storage-Performance Tradeoff for Compressed Data
	Applications and summary of results
	BlowFish Techniques and Contributions
	BlowFish Overview
	BlowFish Design
	Evaluation
	Related Work
	Summary

	Interactive Queries on Compressed Graphs
	Data model and Interface
	ZipG Design
	ZipG Implementation
	Evaluation
	Related Work
	Summary

	Executing RegEx Queries on Compressed Data
	Preliminaries
	Need for Sprint
	Sprint
	Related Work
	Summary

	Conclusions and Future Work
	Future Work

	Succinct Data Structures
	Compression
	Query Algorithms

	Bibliography

