
Towards Practical Serverless Analytics

Qifan Pu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-105
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-105.html

June 25, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards Practical Serverless Analytics

by

Qifan Pu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair

Professor Joeseph Hellerstein

Professor Fernando Perez

Spring 2019

Towards Practical Serverless Analytics

Copyright 2019

by

Qifan Pu

1

Abstract

Towards Practical Serverless Analytics

by

Qifan Pu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Distributed computing remains inaccessible to a large number of users, in spite of

many open source platforms and extensive commercial offerings. Even though many

distributed computation frameworks have moved into the cloud, many users are still left

to struggle with complex cluster management and configuration tools there.

In this thesis, we argue that cloud stateless functions represent a viable platform for

these users, eliminating cluster management overhead, fulfilling the promise of elasticity.

We first build a prototype system, PyWren, which runs on existing serverless function

services, and show that thismodel is general enough to implement a number of distributed

computing models, such as BSP. We then identify two main challenges to support truly

practical and general analytics on a serverless platform. The first challenge is to facilitate

communication-intensive operations, such as shuffle in the serverless setting. The second

challenge is to provide an elastic cloud memory. In this thesis, we made progress on both

challenges. For the first, we develop a system called Locus, that can automate shuffle

operations by judiciously provisioning hybrid intermediate storage. For the second, we

present an algorithm, FairRide, that achieves near-optimal memory cache efficiency in a

multi-tenant setting.

i

To my family.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 The Promise of Cloud . 2

1.2 Scaling Functions with Serverless . 2

1.3 Challenge 1: Communication in Serverless Analytics 4

1.4 Challenge 2: Practical Elastic Memory . 6

1.5 Dissertation Roadmap . 9

2 Simplifying Data Analytics with Serverless Functions 10
2.1 Is the Cloud Usable? . 12

2.2 A Modest Proposal . 14

2.2.1 Systems Components . 14

2.2.2 PyWren: A Prototype . 15

2.2.3 Generality for the Rest of Us? . 18

2.3 Discussion . 21

3 Shuffling Fast and Slow on Serverless 23
3.1 Background . 25

3.1.1 Serverless Computing: What fits? . 25

3.1.2 Analytics on serverless: Challenges . 26

3.1.3 Scaling Shuffle: CloudSort Example 27

3.1.4 Cloud Storage Systems Comparison 27

3.2 Design . 29

3.2.1 System Model . 29

3.2.2 Storage Characteristics . 30

3.2.3 Shuffle Cost Models . 31

3.2.4 Hybrid Shuffle . 33

iii

3.2.5 Modeling Stragglers . 35

3.2.6 Performance Model Case Study . 36

3.3 Implementation . 37

3.3.1 Model extensions . 37

3.4 Evaluation . 38

3.4.1 TPC-DS Queries . 39

3.4.2 CloudSort Benchmark . 40

3.4.3 How Much Fast Storage is Needed? 43

3.4.4 Model Accuracy . 45

3.4.5 Big Data Benchmark . 45

3.5 Related Works . 47

3.6 Summary . 48

4 Fair Sharing for Elastic Memory 49
4.1 Background . 51

4.2 Pareto Efficiency vs. Strategy Proofness . 54

4.2.1 Max-min Fairness . 54

4.2.2 Shared Files . 56

4.2.3 Cheating . 56

4.2.4 Blocking Access to Avoid Cheating . 58

4.3 FairRide . 60

4.3.1 Expected Delaying . 60

4.4 Analysis . 62

4.4.1 The SIP theorem . 62

4.4.2 FairRide Properties . 63

4.5 Implementation . 64

4.6 Experimental Results . 66

4.6.1 Cheating and Blocking . 66

4.6.2 Benchmarks with Multiple Workloads 66

4.6.3 Many Users . 68

4.6.4 Pluggable Policies . 70

4.6.5 Facebook workload . 70

4.6.6 Comparing Global FairRide . 71

4.7 Related Works . 75

4.8 Summary . 76

5 Conclusion 77

Bibliography 78

iv

List of Figures

1.1 Different schemes. Global: single memory pool, agnostic of users or applica-

tions; Isolation: static allocations of memory among multiple users, possibly

under-utilization (blank cells), no sharing; Sharing: allowing dynamic alloca-

tions of memory among users, and one copy of shared files (stripe cells). 6

2.1 System architecture for stateless functions. 14

2.2 Running amatrix multiplication benchmark inside eachworker, we see a linear

scalability of FLOPs across 3000 workers. 16

2.3 Remote storage on S3 linearly scales with each worker getting around 30 MB/s

bandwidth (inset histogram). 16

2.4 Remote key-value operations to Redis scales up to 1000 workers. Each worker

gets around 700 synchronous transactions/sec. 16

2.5 Performance breakdown for sorting 1TB data by how task time is spent on

average. 17

2.6 Prorated cost and performance for running 1TB sort benchmark while varying

the number of Lambda workers and Redis shards. 17

3.1 S3 rate limiting in action. We use a TCP-like additive-increase/multiplicative-

decrease (AIMD) algorithm to probe the number of concurrent requests S3

can support for reading 10KB objects. We see that S3 not only enforces a rate

ceiling, but also continues to fail requests after the rate is reduced for a period

of time. The specific rate ceiling can change over time due to S3’s automatic

data-partition scaling. 26

3.2 S3 bandwidth per worker with varying concurrency (1 to 3000) and Lambda

worker size (0.5G to 3G). 29

3.3 Illustration for hybrid shuffle. 33

3.4 Lambda to S3 bandwidth distribution exhibits high variance. A major source

of stragglers. 35

3.5 Predicted time and cost for different sort implementations and sizes. 36

3.6 TPC-DS results for Locus, Apache Spark and Redshift under different config-

urations. Locus-S3 runs the benchmark with only S3 and doesn’t complete for

many queries; Locus-reserved runs Locus on a cluster of VMs. 38

v

3.7 Time breakdown for Q94. Each stage has a different profile and, compute and

network time dominate. 40

3.8 Runtime for stage 3 of Q94 when varying the number of Redis nodes (2, 4, 8, 10). 41

3.9 Running 100GB sort with Locus on a serverless infrastructure vs. running

the same code on reserved VMs. Labels for serverless series represents the

configured memory size of each Lambda worker. Labels for reserved series

represents the number of c1.xlarge instances deployed. 42

3.10 Comparing the cost and performance predicted by Locus against actual mea-

surements. The lines indicate predicted values and the dots indicate measure-

ments. 43

3.11 10GB slow storage-only sort, with varying parallelism (lines) andworkermem-

ory size (dots). 44

3.12 100GB slow storage-only sort with varying parallelism (different lines) and

worker memory size (dots on same line). We include one configuration with

fast-storage sort. 44

3.13 Runtime breakdown for 100TB sort. 45

3.14 Big Data Benchmark. 46

4.1 Typical cache setup for web servers. 52

4.2 Site B suffers high latency because unfair cache sharing. 52

4.3 Example with 2 users, 3 files and total cache size of 2. Numbers represent

access frequencies. (a). Allocation under max-min fairness; (b). Allocation

under max-min fairness when second user makes spurious access (red line) to

file C; (c). Blocking free-riding access (blue dotted line). 57

4.4 With FairRide, a user might be blocked to access a cached copy of file if the user

does not pay the storage cost. The blue box shows how this can be achieved

with probabilistic blocking. In system implementation, we replace the blue box

with the purple box, where we instead delay the data response. 60

4.5 Miss ratio for two users. At t � 300s, user 2 started cheating. At t � 700s, user
1 joined cheating. 67

4.6 Summary of performance results for three workloads, showing the gain com-

pared to isolated caches. 69

4.7 Average miss ratios of cheating users and non-cheating users, when there are

multiple cheaters. 69

4.8 Pluggable policies. 73

4.9 Overall reduction in job completion time for Facebook trace. 74

vi

List of Tables

1.1 Summary of various memory allocation policies against three desired properties. 8

2.1 Comparison of single-machine write bandwidth to instance local SSD and

remote storage in Amazon EC2. Remote storage is faster than single SSD

on the standard c3.8xlarge instance and the storage-optimized i2.8xlarge
instance. 15

2.2 Time taken for featurization and classification. 19

3.1 Measured throughput (requests/sec) limit for a single S3 bucket and a single

Redis shard. 29

3.2 Cloud storage cost from major providers (Feb 2019). 30

3.3 Comparison of time taken by different shuffle methods. S refers to the shuffle

data size, w to the worker memory size, p the number of workers, qs the

throughput to slow storage, q f throughput to fast storage b network bandwidth

from each worker. 31

3.4 Projected sort time and cost with varyingworker memory size. Smaller worker

memory results in higher parallelism, but also a larger numbers files to shuffle. 33

3.5 CloudSort results vs. Apache Spark. 42

3.6 1TB string sort w/ various configurations. 42

3.7 100TB Sort with different cache size. 45

4.1 Summary of simulation results on reduction in job completion time, cluster

efficiency improvement and hit ratio under different scheme, with no caching

as baseline. 71

4.2 Comparing against global schemes. Keep total memory size as constant while

varying the number of nodes in the cluster. Showing improvement over no

cache as in the reduction in median job completion time. 72

vii

Acknowledgments

viii

I am deeply indebted to my advisor, Ion Stoica, who tirelessly provided guidance

throughoutmy time at Berkeley. Ion tookme under his wingwhen Iwas little experienced

with distributed systems and relatively new to research. Among all things, he taught me

the value of simplicity in solving complex technical problems. Themost frequentword Ion

used during our meetings was the word “fundamentally”. It was during those moments

that I learned to pick up a researcher’s primal instinct to always examine problems with

a deeper lens.

I am also thankful to my committee members, Fernando Perez, Joseph Hellerstein,

and my qualification committee Scott Shenker. All of them are my role models and have

provided me with valuable insights and constructive feedbacks. I took much inspiration

from their works in this thesis, which one can find many links.

None of thework is possiblewithout help ofmy great collaborators. My first published

paper at Berkeley is with GaneshAnanthanarayanan and Srikanth Kandula, whoweremy

mentors at Microsoft Research. I also enjoyed much advice from Ganesh over the years

even after that collaboration. Haoyuan Li, Matei Zaharia and Ali Ghodsi collaborated

with me on the FairRide project. All of them shaped my research methodology in their

unique ways. Eric Jonas got me excited on the PyWren project, which forms the basis

of this thesis. From day I started at the RISELab, I never stopped bugging Shivaram

Venkataraman with questions. Shivaram was always patient to answer. When we collab-

orated on Locus, it was his encouragement and continuous help that pushed me through

multiple paper rejections. I also owe tremendous to Anand Padmanabha Iyer, Allan Pang,

Sameer Agarwal, Kai Zeng, Reynold Xin, Peter Bodik, Peter Boncz, Aditya Akella, Sylvia

Ratnasamy for putting up with me.

I would also like to thank my mentors before graduate school, Wenjun Hu, Shyam

Gollakota and Arvind Krishnamurthy. They opened the door of research for me, and

were generous enough to teach me from scratch.

Beyond direct collaborators on research projects, many colleagues and friends at Berke-

ley contributed to my graduate study and have made the journey a wonderful experience.

Michael Chang, Kaifei Chen, Mosharaf Chowdhury, Dan Crankshaw, Ankur Dave, Biye

Jiang, Anurag Khandelwal, Gautam Kumar, Chang Lan, Richard Liaw, Radhika Mittal,

Kay Ousterhout, Aurojit Panda, Johann Schleier-Smith, Colin Scott, Vaishaal Shankar,

Justine Sherry, Vikram Sreekanti, Liwen Sun, Alexey Tumanov, Amin Tootoonchian, Di

Wang, Yifan Wu, Stephanie Wang, Xin Wang, Neeraja Yadwadkar, Zongheng Yang, Zhao

Zhang, Ben Zhang, Wenting Zheng, David Zhu... I am also grateful to the RISELab ad-

ministrative staff, Kattt Atchley, Jon Kuroda, Boban Zarkovich, Carlyn Chinen and Shane

Knapp, who have made the lab like home.

The place I will miss most at Berkeley is the Berkeley Art Museum and Pacific Film

Archive. Thanks to my film buddies, Helen Jiang and Emerson Lin, I have watched many

films at BAMPFA over my PhD years, without which I might have graduated earlier.

Though I have no regret.

Last but not least, this dissertation is dedicated to my father and my mother, for their

unwavering love.

1

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION 2

1.1 The Promise of Cloud
The past decade has seen the widespread adoption of cloud computing infrastructure

where users launch virtual machines on demand to deploy services on a provisioned

cluster. As cloud computing continues to evolve towards more elasticity, there is a shift

to using serverless computing, where storage and compute is separated for both resource

provisioning andbilling. This trendwas started by services likeGoogle BigQuery [16], and

AWS Glue [44] that provide cluster-free data warehouse analytics, followed by services

like Amazon Athena[10] that allow users to perform interactive queries against a remote

object storage without provisioning a compute cluster. While the aforementioned services

mostly focus onprovidingSQL-like analytics, tomeet the growingdemand, allmajor cloud

providers now offer “general” serverless computing platforms, such as AWS Lambda,

Google Cloud Functions, Azure Functions and IBM OpenWhisk. In these platforms

short-lived user-defined functions are scheduled and executed in the cloud. Compared to

virtual machines, this model provides more fine-grained elasticity with sub-second start-

up times, so that workload requirements can be dynamically matched with continuous

scaling.

Fine-grained elasticity in serverless platforms is naturally useful for on-demand appli-

cations like creating image thumbnails [36] or processing streaming events [61]. However,

we observe such elasticity also plays an important role for data analytics workloads. Con-

sider for example an ad-hoc data analysis job exemplified by say TPC-DS query 95 [86] (See

Section 3.4 for more details). This query consists of eight stages and the amount of input

data at each stage varies from 0.8MB to 66GB. With a cluster of virtual machines users

would need to size the cluster to handle the largest stage leaving resources idle during

other stages. Using a serverless platform can improve resource utilization as resources

can be immediately released after use.

We argue that a serverless execution model with stateless functions can enable radically-

simpler, fundamentally elastic, and more user-friendly distributed data processing sys-

tems. In this model, we have one simple primitive: users submit functions that are

executed in a remote container; the functions are stateless as all the state for the function,

including input, output is accessed from shared remote storage. Surprisingly, we find that

the performance degradation from using such an approach is negligible for many work-

loads and thus, our simple primitive is in fact general enough to implement a number of

higher-level data processing abstractions, including MapReduce and parameter servers.

1.2 Scaling Functions with Serverless
Asafirst step,wedescribe a prototype system, PyWren, developed inPythonwithAWS

Lambda. By employing only stateless functions, PyWren helps users avoid the significant

developer and management overhead that has until now been a necessary prerequisite.

The complexity of state management can instead be captured by a global scheduler and

fast remote storage. With PyWren, we seek to understand the trade-offs of using stateless

functions for large scale data analytics and specifically what is the impact of solely using

CHAPTER 1. INTRODUCTION 3

remote storage for inputs and outputs. We find that we can achieve around 30-40 MB/s

write and read performance per core to a remote bulk object store (S3), matching the

per-core performance of a single local SSD on typical EC2 nodes. Further we find that

this scales to 60-80 GB/s to S3 across 2800 simultaneous functions, showing that existing

remote storage systems may not be a significant bottleneck.

Using this as a building block we implement image processing pipelines where we

extract per-image features during a map phase via unmodified Python code. We also

show how we can implement BSP-style applications on PyWren and that a word count

job on 83M items is only 17% slower than PySpark running on dedicated servers. Shuffle-

intensive workloads are also feasible as we show PyWren can sort 1TB data in 3.4 minutes.

However, we do identify twomajor challenges inmaking such serverless analytics systems

more practical, which we discuss in the next sections.

CHAPTER 1. INTRODUCTION 4

1.3 Challenge 1: Communication in Serverless Analytics
Directly using a serverless platform for data analytics workloads could lead to ex-

tremely inefficient execution. For example we find that running the CloudSort bench-

mark [102] with 100TB of data on AWS Lambda, can be up to 500× slower (Section 3.1.3)

when compared to running on a cluster of VMs. By breaking down the overheads we

find that the main reason for the slowdown comes from slow data shuffle between asyn-

chronous function invocations. As the ephemeral, stateless compute units lack any local

storage, and as direct transfers between functions is not always feasible1, intermediate

data between stages needs to be persisted on shared storage systems like Amazon S3. The

characteristics of the storage medium can have a significant impact on performance and

cost. For example, a shuffle from 1000 map tasks to 1000 reduce tasks leads to 1M data

blocks being created on the storage system. Therefore, throughput limits of object stores

like Amazon S3 can lead to significant slow downs (Section 3.1.3).

Our key observation is that in addition to using elastic compute and object storage

systems we can also provision fast memory-based resources in the cloud, such as in-

memory Redis or Memcached clusters. While naively putting all data in fast storage is

cost prohibitive, we can appropriately combine fast, but expensive storagewith slower but

cheaper storage, similar to the memory and disk hierarchy on a local machine, to achieve

the best of both worlds: approach the performance of a pure in-memory execution at a

significantly lower cost. However, achieving such a sweet spot is not trivial as it depends

on a variety of configuration parameters, including storage type and size, degree of task

parallelism, and the memory size of each serverless function. This is further exacerbated

by the various performance limits imposed in a serverless environment (Section 3.1.4).

In Chapter 3 we propose Locus, a serverless analytics system that combines multiple

storage types to achieve better performance and resource efficiency. In Locus, we build a

performance model to aid users in selecting the appropriate storage mechanism, as well

as the amount of fast storage and parallelism to use for map-reduce like jobs in serverless

environments. Our model captures the performance and cost metrics of various cloud

storage systems and we show how we can combine different storage systems to construct

hybrid shuffle methods. Using simple micro-benchmarks, we model the performance

variations of storage systems as other variables like serverless function memory and

parallelism change.

We evaluate Locus on a number of analytics applications including TPC-DS, Daytona

CloudSort and the Big Data Benchmark. We show that using fine-grained elasticity, Locus

can reduce cluster time in terms of total core·seconds by up to 59% while being close to

or beating Spark’s query completion time by up to 2×. We also show that with a small

amount of fast storage, for example, with fast storage just large enough to hold 5% of

total shuffle data, Locus matches Apache Spark in running time on CloudSort benchmark

and is within 13% of the cost of the winning entry in 2016. While we find Locus to

be 2× slower when compared to Amazon Redshift, Locus is still a preferable choice to

1
Cloud providers typically provide no guarantees on concurrent execution of workers.

CHAPTER 1. INTRODUCTION 5

Redshift since it requires no provisioning time (vs. minutes to setup a Redshift cluster) or

knowing an optimal cluster size beforehand. Finally, we also show that ourmodel is able to

accurately predict shuffle performance and cost with an average error of 15.9% and 14.8%,

respectively, which allows Locus to choose the most appropriate shuffle implementation

and other configuration variables.

CHAPTER 1. INTRODUCTION 6

…	

Cache

Secondary storage (Disk, S3...)

…	
 …	
 …	
 …	

global	
 isola)on	
 sharing	

Resource	
 Allocator	

(a)	
 (b)	
 (c)	

Figure 1.1: Different schemes. Global: single memory pool, agnostic of users or appli-

cations; Isolation: static allocations of memory among multiple users, possibly under-

utilization (blank cells), no sharing; Sharing: allowing dynamic allocations of memory

among users, and one copy of shared files (stripe cells).

1.4 Challenge 2: Practical Elastic Memory
While Locus leverages elastic memory service in the cloud, those services are not

provided in a “serverless” fashion, i.e., users need to provision machines in order to

use them, e.g., Amazon ElastiCache. A truely serverless elastic memory service, just

like serverless storage such as S3, should allow users to instantaneously acquire/release

memory based on demand, and only be charged at usage. One step towards such service is

to solving the problem of howmultiple users can share memory in a fair, efficient manner.

We study this problem in the FairRide project.
Unfortunately, we find that traditional caching policies do not provide a satisfactory

answer to this problem. Most cachemanagement algorithms (e.g., LRU, LFU) have focused

on global efficiency of the cache (Figure 1.1a): they aim to maximize the overall hit rate.

Regardless of being commonly used in today’s cache systems for cloud serving (Redis [88],

Memcached [71]) and big data storage (HDFS Caching [50]), this has two problems in a

shared environment. First, users who read data at long intervals may gain little or no

benefit from the cache, simply because their data is likely to be evicted out of the memory.

Second, applications can also easily abuse such systems by making spurious accesses to

increase their access rate. There is no incentive to dissuade users from doing this in a

cloud environment, and moreover, such shifts in the cache allocation can happen even

with non-malicious applications. We show later that a strategic user can outperform a

non-strategic user by 2.9×, simply by making spurious accesses to her files.

The other common approach is to have isolated caches for each user (Figure 1.1b). This

gives each user performance guarantees and there are many examples in practice, e.g.,

hypervisors that set up separate buffer caches for each of its guest VMs, web hosting

platforms that launch a separate memcached instance to each tenant. However, providing

CHAPTER 1. INTRODUCTION 7

such performance guarantees comes at the cost of inefficient utilization of the cache.

This inefficiency is not only due to users not fully utilizing their allocated cache, but

also because that a cached file can be accessed by multiple users at a time and isolating

cache leads tomultiple copies of such shared files. We find such non-exclusive sharing to be a
defining aspect of cache allocation, while other resources are typically exclusively shared,

e.g., a CPU time slice or a communication link can be only used by a single user at a time.

In practice, there are a significant number of files shared across users in many workloads,

e.g., we observe more than 30% files are shared by at least two users from a production

HDFS log. Such sharing is likely to increase as more workloads move to multi-tenant

environments.

In Chapter 4, we study how to share cache space between multiple users that access

shared files. To frame the problem, we begin by identifying desirable properties that we’d

like an allocation policy to have. Building on common properties used in sharing of CPU

and network resources [42], we identify three such properties:

• Isolation Guarantee: no user should receive less cache space than she would have

had if the cache space were statically and equally divided between all users (i.e.,

assuming n users and equal shares, each one would get 1/n of the cache space). This

also implies that the user’s cache performance (e.g., cache miss ratio) should not be

worse than isolation.

• Strategy Proofness: a user cannot improve her allocation or cache performance at the

expense of other users by gaming the system, e.g., through spuriously accessing

files.

• Pareto Efficiency: the system should be efficient, in that it is not possible to increase

one user’s cache allocation without lowering the allocation of some other user. This

property captures operator’s desire to achieve high utilization.

These properties are common features of allocation policies that apply tomost resource

sharing schemes, includingCPU sharing via lottery or stride scheduling [112, 20, 106, 113],

network link sharing via max-min fairness [68, 14, 30, 46, 99, 105], and even allocating

multiple resources together for compute tasks [42]. Somewhat unexpectedly, there has

been no equivalent policy for allocation of cache space that satisfies all three properties. As

shown earlier, global sharing policies (Figure 1.1a) lack isolation-guarantee and strategy-

proofness, while static isolation (Figure 1.1b) is not Pareto-efficient.

The first surprising result we find is that this deficiency is no accident: in fact, for

sharing cache resources, no policy can achieve all three properties. Intuitively, this is because
cached data can be shared across multiple users, allowing users to game the system by

“free-riding" on files cached by others, or optimizing usage by caching popular files. This

creates a strong trade-off between Pareto efficiency and strategy-proofness.

While nomemory allocation policy can satisfy the three properties (Table 1.1), we show

that there are policies that come close to achieving all three in practice. In particular, we

CHAPTER 1. INTRODUCTION 8

Table 1.1: Summaryofvariousmemoryallocationpolicies against threedesiredproperties.

Isolation Strategy- Pareto-
Guarantee Proofness Efficiency

global (e.g., LRU) 7 7 3

max-min fairness 3 7 3

FairRide 3 3 near-optimal

None Exist 3 3 3

propose FairRide, a policy that provides both isolation-guarantee (so it always performs

no worse than isolated caches) and strategy-proofness (so users are not incentivized to

cheat), and comeswithin 4% of global efficiency in practice. FairRide does this by aligning

each user’s benefit-cost ratio with her private preference, through probabilistic blocking
(Section 4.2.4), i.e., probabilistically disallowing a user from accessing a cached file if the

file is not cached on behalf of the user. Our proof in Section 4.4 shows that blocking
is required to achieve strategy-proofness, and that FairRide achieves the property with

minimal blocking possible.

In practice, probabilistic blocking can be efficiently implemented using expected delaying
(Section 4.3.1) in order to mitigate I/O overhead and to prevent even more sophisticated

cheating models. We implemented FairRide on Tachyon [62], a memory-centric storage

system, and evaluated the system using both cloud serving and big data workloads. Our

evaluation shows that FairRide comes within 4% of global efficiency while preventing

strategic users, meanwhile giving 2.6×more job run-time reduction over isolated caches.

In a non-cooperative environment when users do cheat, FairRide outperforms max-min

fairness by at least 27% in terms of efficiency. It is also worth noting that FairRide would

support pluggable replacement policies as it still obeys each user’s caching preferences,

which allows users to choose different replacement policies (e.g., LRU, LFU) that best suit

their workloads.

CHAPTER 1. INTRODUCTION 9

1.5 Dissertation Roadmap
The rest of the dissertation is organized as follows. Chapter 2 gives a background of

serverless computing and presents PyWren, a prototype systemwhich allows users to run

elastic functions on the serverless infrastructure. While PyWren can be used to express

a wide range of applications, we also identify bottlenecks, i.e., communication-intensive

operations and storage backend.

Chapter 3 describes our efforts in addressing the first challenge, i.e., to support cost-

efficient shuffles while maintaining performance compared to traditional approaches. In

this chapter, we present Locus, a system that can judiciously combine different storage

types for a given shuffle.

Chapter 4 starts to solve the problem of how to provide elastic memory in the cloud.

Elastic memory is not available in today’s cloud. One key reason is that sharing memory

across multiple users is difficult. We study the problem and derive theoretical results on

the impossibility of attaining all good properties that have been previously achieved by

other resource types. In this chapter, we also present a new policy called FairRide.

Finally we conclude in Chapter 5.

10

Chapter 2

Simplifying Data Analytics with Serverless Func-
tions

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 11

Distributed computing remains inaccessible to a large number of users, in spite of

many open source platforms and extensive commercial offerings. While distributed com-

putation frameworks have moved beyond a simple map-reduce model, many users are

still left to struggle with complex cluster management and configuration tools, even for

running simple embarrassingly parallel jobs. We argue that stateless functions represent

a viable platform for these users, eliminating cluster management overhead, fulfilling the

promise of elasticity. Furthermore, using our prototype implementation, PyWren, we

show that this model is general enough to implement a number of distributed computing

models, such as BSP, efficiently. Extrapolating from recent trends in network bandwidth

and the advent of disaggregated storage, we suggest that stateless functions are a natural

fit for data processing in future computing environments.

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 12

2.1 Is the Cloud Usable?
The advent of elastic computing has greatly simplified access to computing resources,

as the complexity ofmanagement is nowhandled by cloudproviders. Thus the complexity

has now shifted to applications or programming frameworks. However most software,

especially in scientific and analytics applications, is not written by computer scientists [53,

72], and it is many of these users who have been left out of the cloud revolution.

The layers of abstraction present in distributed data processing platforms are complex

and difficult to correctly configure. For example, PySpark, arguably one of the easier to

use platforms, runs on top of Spark [117] (written in Scala) which interoperates and is

closely coupled with HDFS [101] (written in Java), Yarn [109] (Java again), and the JVM.

The JVM in turn is generally run on virtualized Linux servers. Merely negotiating the

memory limit interplay between the JVM heap and the host operating system is an art

form [35, 108, 104]. These systems often promote “ease of use" by showing powerful

functionality with a few lines of code, but this ease of use means little without mastering

the configuration of the layers below.

In addition to the software configuration issues, cloud users are also immediately

faced with tremendous planning and workload management before they even begin run-

ning a job. AWS offers 70 instances types across 14 geographical datacenters – all with

subtly different pricing. This complexity is such that recent research has focused on al-

gorithmic optimization of workload trade-offs [52, 110]. While several products such as

Databricks and Qubole simplify cluster management, the users still need to explicitly start

and terminate clusters, and pick the number and type of instances.

Finally, the vast majority of scientific workloads could take advantage of dynamic

market-based pricing of servers, such as AWS spot instances – but computing spot in-

stance pricing is challenging, and additionally most of the above-mentioned frameworks

make it difficult to handle machine preemption. To avoid the risk of losing intermediate

data, usersmust be careful to either regularly checkpoint their data or run themaster and a

certain number of workers on non-spot instances. This adds another layer of management

complexity which makes elasticity hard to obtain in practice.

What users want: Our proposal in this chapter was motivated by a professor of

computer graphics at UC Berkeley asking us “Why is there no cloud button?" He outlined

how his students simply wish they could easily “push a button" and have their code –

existing, optimized, single-machine code – running on the cloud. Thus, our fundamental

goal here is to allow as many users as possible to take existing, legacy code and run it in

parallel, exploiting elasticity. In an ideal world, users would simply be able to run their

desired code across a large number of machines, bottlenecked only by serial performance.

Executing 100 or 10000 five-minute jobs should take roughly five minutes, with minimal

start-up and tear-down overhead.

Further, in our experience farmore users are capable of writing reasonably-performant

single-threaded code, using numerical linear algebra libraries (e.g., OpenBLAS, Intel’s

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 13

MKL), thanwriting complexdistributed-systems code. Correspondingly the goal for these

users is not to get the best parallel performance, but rather to get vastly better performance

than available on their laptop or workstation while taking minimal development time.
For compute-bound workloads, it becomes more useful to parallelize across functions

for many cases; to say sweep over a wide range of parameters (such as machine learning

hyperparameter optimization) or try a large number of random initial seeds (Monte Carlo

simulations of physical systems). In these cases, exposing function-level parallelism is

more worthwhile than having complex interfaces for intra-function optimization. There-

fore, a simple function interface that captures sufficient local state, performs computation

remotely, and returns the result is more than adequate. For data-bound workloads, a

large number of users would be served by a simpler version of the existing map-reduce

framework where outputs can be easily persisted on object storage.

Thus, a number of compute-bound and data-bound workloads can be captured by

having a simple abstraction that allows users to run arbitrary functions in the cloud

without setting up and configuring servers/frameworks etc. We next discuss why such

an abstraction is viable now and the components necessary for such a design.

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 14

Function Scheduler

Blob Store
(High Bandwidth)

Key Value Store
(Low Latency)

Container

Container

Container

Container
Function,
Dependencies

Figure 2.1: System architecture for stateless functions.

2.2 A Modest Proposal
Many of the problems with current cloud computing abstractions stem from the fact

that they are designed for a server-oriented resource model. Having servers as the unit of

abstraction ties together multiple resources like memory, CPU and network bandwidth.

Further servers are also often long running and hence require DevOps support for main-

tenance. Our proposal is to instead use a serverless architecture with stateless functions
as the unifying abstraction for data processing. Using stateless functions will simplify

programming and deployment for end users. In this section we present the high level

components for designing data processing systems on a serverless architecture. While

other proposals [11] have looked at implementing data processing systems on serverless

infrastructure, we propose a simple API that is tightly integrated with existing libraries

and also study performance trade-offs of this approach by using our prototype implemen-

tation on a number of workloads.

2.2.1 Systems Components
The main components necessary for executing stateless functions include a low over-

head execution runtime, a fast scheduler and high performance remote storage as shown

in Figure 2.1. Users submit single-threaded functions to a global scheduler and while

submitting the function they can also annotate the runtime dependencies required. Once

the scheduler determines where a function is supposed to run, an appropriate container

is created for the duration of execution. While the container maybe reused to improve

performance none of the state created by the function will be retained across invocations.

Thus, in such a model all the inputs to functions and all output from functions need to be

persisted on remote storage andwe include client libraries to access both high-throughput

and low latency shared storage systems.

Fault Tolerance: Stateless functions allow simple fault tolerance semantics. When

a function fails, we restart it (at possibly a different location) and execute on the same

input. We only need atomic writes to remote storage for tracking which functions have

succeeded. Assuming that functions are idempotent we obtain similar fault tolerance

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 15

Table 2.1: Comparison of single-machine write bandwidth to instance local SSD and

remote storage in Amazon EC2. Remote storage is faster than single SSD on the standard

c3.8xlarge instance and the storage-optimized i2.8xlarge instance.

Storage Medium Write Speed (MB/s)

SSD on c3.8xlarge 208.73

SSD on i2.8xlarge 460.36

4 SSDs on i2.8xlarge 1768.04

S3 501.13

guarantees as existing systems.

Simplicity: As evidenced by our discussion above, our architecture is very simple

and only consists of the minimum infrastructure required for executing functions. We

do not include any distributed data structures or dataflow primitives in our design. We

believe that this simplicity is necessary in order to make simple workloads like embar-

rassingly parallel jobs easy to use. More complex abstractions like dataflow or BSP can be

implemented on top and we discuss this in Section 2.2.3.

Why now? The model described above is closely related to systems like Linda [21],

Celias [48] and database trigger-based systems [87, 84]. While their ideas are used inwork-

stealing queues and shared file system, the specific programming model has not been

widely adopted. We believe that this model is viable now given existing infrastructure

and technology trends. While the developer has no control of where a stateless function

runs (e.g., the developer cannot specify that a stateless function should run on the node

storing the function’s input), the benefits of colocating computation and data – a major

design goal for prior systems like Hadoop, Spark and Dryad – have diminished.

Prior work has shown that hard disk locality does not provide significant performance

benefits [37]. To see whether the recent datacenter migration from hard disks to SSDs

has changed this conclusion, we benchmarked the I/O throughput of storing data on a

local SSD of an AWS EC2 instance vs. storing data on S3. Our results, in Table 2.1, show

that currently that writing to remote storage is faster than a single SSD but using multiple

SSDs can yield better performance. However, technology trends [49, 98, 34] indicate that

the gap between network bandwidth and storage I/O bandwidth is narrowing, andmany

recently publishedproposals for rack-scale computers feature disaggregated storage [55, 9]

and even disaggregated memory [38]. All these trends suggest diminishing performance

benefits from colocating compute with data in the future.

2.2.2 PyWren: A Prototype
We developed PyWren1 to rapidly evaluate these ideas, seamlessly exposing a map

primitive from Python on top of AWS Lambda. While Lambda was designed to run

1
A wren is much smaller than a Condor

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 16

Figure 2.2: Running a ma-

trix multiplication bench-

mark inside each worker,

we see a linear scalability of

FLOPs across 3000 workers.

Figure 2.3: Remote storage

on S3 linearly scales with

each worker getting around

30 MB/s bandwidth (inset

histogram).

Figure 2.4: Remote key-

value operations to Redis

scales up to 1000 workers.

Each worker gets around

700 synchronous transac-

tions/sec.

event-driven microservices (such as resizing a single user-uploaded image) with a fixed

funtion, by extracting new code from S3 during runtimewemake each Lambda invocation

run a different function. Currently AWS Lambda provides a very restricted containerized

runtime with a maximum 300 seconds of execution time, 1.5 GB of RAM, 512 MB of local

storage and no root access, but we believe these limits will be increased as AWS Lambda

is used for more general purpose applications.

PyWren serializes a Python function using cloudpickle [26], capturing all relevant

information as well as most modules that are not present in the server runtime2. This

eliminates the majority of user overhead about deployment, packaging, and code version-

ing. We submit the serialized function along with each serialized datum by placing them

into globally unique keys in S3, and then invoke a common Lambda function. On the

server side, we invoke the relevant function on the relevant datum, both extracted from S3.

The result of the function invocation is serialized and placed back into S3 at a pre-specified

key, and job completion is signaled by the existence of this key. In this way, we are able

to reuse one registered Lambda function to execute different user Python functions and

mitigate the high latency for function registration, while executing functions that exceed

Lambda’s code size limit.

Map for everyone: As discussed in Section 2.1, many scientific and analytic workloads

are embarrassingly parallel. The map primitive provided by PyWren makes addressing

these use cases easy – serializing all local state necessary for computation, transparently

2
While there are limitations in the serialization method (including an inability to transfer arbitrary

Python C extensions), we find this can be overcome using libraries from package managers such as Ana-

conda.

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 17

204

369

431

1,471

0 300 600 900 1200 1500 1800

(1000, 30)

(1000, 10)

(500, 10)

(100, 10)

time (seconds)

(w
or

ke
rs

, R
ed

is
sh

ar
ds

)

invocation
setup
S3 read/write
compute
Redis read/write

Figure 2.5: Performance breakdown for sorting 1TB data by how task time is spent on

average.

0

8

16

24

32

0

400

800

1200

1600

(100,10) (500,10) (1000,10) (1000,30)
Pr

ic
e

($
)

Ti
m

e
(s

)

(Lambda workers, Redis shards)

Figure 2.6: Prorated cost and performance for running 1TB sort benchmark while varying

the number of Lambda workers and Redis shards.

invoking functions remotely and returning when complete. Calling map launches as many

stateless functions as there are elements in the list that one is mapping over. An important

aspect to note here is that this API mirrors the existing Python API for parallel processing

and thus, unlike other serverless MapReduce frameworks [11], this integrates easily with

existing libraries for data processing and visualization.

Microbenchmarks: Using PyWrenwe ran a number of benchmarks(Figures 2.2,2.3,2.4)

to determine the impact of solely using remote storage for IO, and how this scales with

worker count. In terms of compute, we ran a matrix multiply kernel within each Lambda

andfind thatweget 18GFLOPSper core and that this unsurprisingly scales tomore than40

TFLOPS while using 2800 workers. To measure remote I/O throughput we benchmarked

the read, write bandwidth to S3 and our benchmarks show that we can get on average 30

MB/s write and 40 MB/s read per Lambda and that this also scales to more than 60 GB/s

write and 80 GB/s read. Assuming that 16 such Lambdas are as powerful as a single

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 18

server, we find that the performance from Lambda matches the S3 performance shown

in Table 2.1. To measure the overheads for small updates, we also benchmarked 128-byte

synchronous put/gets to two c3.8xlarge instances running in-memory Redis. We match

the performance reported in prior benchmarks [90] and get less than 1ms latency up to

1000 workers.

Applications: In our research groupwehave had students use PyWren for applications

as diverse as computational imaging, scientific instrument design, solar physics, andobject

recognition. Workingwith heliphysicists at NASA’s Solar Dynamics Observatory, we have

used PyWren for extracting relevant features across 16TB of solar imaging data for solar

flare prediction. Workingwith appliedphysics colleagues, wehaveusedPyWren todesign

novel types ofmicroscope point-spread functions for 3d superresolutionmicroscopy. This

necessitates rapid and repeat evaluation of a complex physics-based optical model inside

an inner loop.

2.2.3 Generality for the Rest of Us?
While the map primitive in PyWren covers a number of applications, it prohibits any

coordination among the various tasks. We next look at how stateless functions along

with high performance storage can also be used as a flexible building block to develop

more complex abstractions. We next discuss how the high bandwidth and throughput

discussed in the previous section, can be used to support a number of machine learning

and scientific applications.

Map + monolithic Reduce The first abstraction we consider is one where output

from all the map operations is collected on to one machine (similar to gather in HPC

literature) for further processing. Wefind this pattern covers a number of classicalmachine

learning workloads which consist of a featurization (or ETL) stage that converts large

input data into features and then a learning stage where the model is built using SVMs or

linear classifiers. In such workloads, the featurization requires parallel processing but the

generated features are often small andfit on a single largemachine [18]. These applications

can be implemented using amap that runs using stateless functions followed by a learning

stage that runs on a single multi-core server using efficient multi-core libraries [75]. The

wide array of machine choices in the cloud means that this approach can handle learning

problems with features up to 2TB in size [115].

As an example application we took off-the-shelf image featurization code [31] and

performed cropping, scaling, and GIST image featurization [78] of the 1.28M images

in the ImageNet LargeScale Visual Recognition Challenge [94]. We run the end-to-end

featurization using 3000 workers on AWS Lambda. and store the features on S3. This

takes 113 seconds and following that we run a monolithic reduce on a single r4.16xlarge
instance. Fetching the features from S3 to this instance only takes 22s and building a linear

classifier using NumPy and Intel MKL libraries takes 4.3s. Thus, we see that this model is

a good fit where a high degree of parallelism is initially required to do ETL / featurization

but a single node is sufficient (and most efficient [70]) for model building.

MapReduce: Formore general purpose coordination, a commonly used programming

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 19

Table 2.2: Time taken for featurization and classification.

phase mean std

lambda start latency 9.7s 29.1s

lambda setup time 14.2s 5.2s

featurization 112.9s 10.2s

result fetch 22.0s 10.0s

fit linear classifier 4.3s 0.5s

model is the bulk-synchronous processing (BSP) model. To implement the BSP model,

in addition to parallel task execution, we need to perform data shuffles across stages.

The availability of high-bandwidth remote storage provides an natural mechanism to

implement such shuffles. Using S3 to store shuffle data, we implemented a word count

program in PyWren. On the Amazon reviews [69] dataset consisting of 83.68M product

reviews split across 333partitions, this program took98.6s. We rana similar programusing

PySpark. Using 85 r3.xlarge instances, each having 4 cores to match the parallelism we

hadwith PyWren, the Spark job took 84s. The slowdown is from the lack of parallel shuffle

block reads in PyWren and some stragglers while writing/reading from S3. Despite that

we see that PyWren is only around 17% slower than Spark and our timings do not include

the 5-10 minutes it takes to start the Spark instances.

We also run the Daytona sort benchmark [102] on 1TB input, to see how PyWren

handles a shuffle-intensive workload. We implemented the Terasort [77] algorithm to

perform sort in two stages: a partition stage that range-partitions the input and writes out

to intermediate storage, and a merge stage that, for each partition, merges and sorts all

intermediate data for that partition and writes out the sorted output. Due to the resource

limitation on each Lambda worker, we need at least 2500 tasks for each stage. This results

in 2500
2
, or 6,250,000 intermediate files (each 160Kb) to shuffle in between. While S3

does provide abundant I/O bandwidth to Lambda for this case, it is not designed to

sustain high request rate for small objects. Also as S3 is a multi-tenant service, there is an

imposed limit on request throughput per S3 bucket for the benefit of overall availability.

Therefore, we use S3 only for storing input and writing final output, and deploy a Redis

cluster with cache.m4.10xlarge nodes for intermediate storage.3 Figure 2.5 shows the

end-to-end performance with varying numbers of concurrent Lambda workers and Redis

shards, with breakdown of task time. We see that higher level of parallelism does greatly

improve jobperformance (up to 500workers) until Redis throughput becomes a bottleneck.

From 500 to 1000 workers, the Redis I/O time increases by 42%. Fully leveraging this

parallelism requiresmore Redis shards, as shownby the 44% improvementwith 30 shards.

3
Redis here can be replaced by any other key-value store, e.g., memcached, as we were only using the

simple set/get API.

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 20

Interestingly, adding more resources does not necessarily increase total cost due to the

reduction in latency with scale (Figure 2.6).4 Supporting a larger sort, e.g., 100TB, does

become quite challenging, as the number of intermediate files increases quadratically. We

plan to investigate more efficient solutions.

Parameter Servers: Finally using low-latency, high throughput key-value stores like

Redis, RAMCloud [93] we can also implement parameter-server [1, 63] style applications

in PyWren. For example, we can implement Hogwild! stochastic gradient descent by

having each function compute the gradients based on the latest version of shared model.

Since the only coordination across functions happens through the parameter server, such

applications fit very well into the stateless function model. Further we can use existing

support for server-side scripting [89] in key value stores to implement features like range

updates and flexible consistencymodels [63]. However, currently this model is not easy to

use as unlike S3, the ElasticCache service requires users to select a cache server type and

capacity. To deploy more performant parameter servers [63] that go beyond simple key-

value store would involve more complexity, e.g., setting up on a EC2 cluster or requiring

a new hosted service, leaving the economic implications for further investigation.

4
Lambda bills in 100ms increments. Redis is charged per hour and is prorated here to seconds per

CloudSort benchmark rules [102].

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 21

2.3 Discussion
While we studied the performance provided by existing infrastructure in the previous

section, there are a number of systems aspects that need to be addressed to enable high

performance data processing.

Resource Balance: One of the primary challenges in a serverless design is in how a

function’s resource usage is allocated and as we mentioned in 2.2.2, the existing limits are

quite low. The fact that the functions are stateless and need to transfer both input and

output over the network can help cloud providers come up with some natural heuristics.

For example if we consider the current constraints of AWS Lambda we see that each

Lambda has around 35 MB/s bandwidth to S3 and can thus fill up its memory of 1.5GB

in around 40s. Assuming it takes 40s to write output, we can see that the running time

of 300s is appropriately proportioned for around 80s of I/O and 220s of compute. As

memory capacity and network bandwidths grow, this rule can be used to automatically

determine memory capacity given a target running time.

Pricing The simplicity of elastic computing comes with a premium that the users pay

to the cloud providers. At the time of writing Lambda is priced at ∼$0.06 per GB-hour

of execution, measured in 100ms-increments. Lambda is thus only ∼2× more expensive

than on-demand instances. This cost premium seems worthwhile given substantially

finer-grained billing, much greater elasticity, and the fact that many dedicated clusters are

often running at 50%utilization. Another benefit that stems fromPyWren’s disaggregated

architecture is that cost estimation or even cost prediction becomes much simpler. In

the future we plan to explore techniques that can automatically predict the cost of a

computation.

Scalable Scheduling: A number of cluster scheduling papers [97, 81, 82, 56] have

looked at providing low latency scheduling for data parallel frameworks running on

servers. However, to implement such scheduling frameworks on top of stateless functions,

we need to handle the fact that information about the cluster status (i.e., which containers

are free, input locations, resource heterogeneity) is only available to the infrastructure

provider, while the structure of the job (i.e. how functions depend on each other) is only

available to the user. In the future we plan to study what information needs to exposed by

cloud providers and if scheduling techniques like offers [54] can handle this separation.

Debugging: Debugging can be a challenge as PyWren is composed of multiple system

components. For monitoring Lambda execution we rely on service tools provided by

AWS. For example, CloudWatch saves off-channel logs from Lambda workers which can

be browsed through a cloud-viewer. S3 is another place to track as it contains metadata

about the execution. To understand a job execution comprehensively, e.g., caclulating how

much time is spent at each stage, however, would require tools to align events from both

the host and Lambda.

Distributed Storage: With the separation of storage and compute in the PyWren

programmingmodel, a number of performance challenges translate into the need formore

efficient distributed storage systems. Our benchmarks in 2.2.2 showed the limitations of

CHAPTER 2. SIMPLIFYING DATA ANALYTICS WITH SERVERLESS FUNCTIONS 22

current systems, especially for supporting large shuffle-intensive workloads, and we plan

to study how we can enable a flat-datacenter storage system in terms of latency and

bandwidth [74]. Further, our existing benchmarks also show the limitation of not lacking

API support for append in systems like S3 and we plan to develop a common API for

storage backends that power serverless computation.

Launch Overheads: Finally one of the main drawbacks in our current implementation

is that function invocation can take up to 20-30 seconds (∼10% of the execution time)

without any caching. This is partly due to lambda invocation rate limits imposed by AWS

and partly due to the time taken to setup our custom Python runtime. We plan to study

if techniques used to make VM forks cheaper [60], like caching containers or layering

filesystems can be used to improve latency. We also plan to see if the scheduler can be

modified to queue functions before their inputs are ready to handle launch overheads.

Other Applications: While we discussed data analytics applications that fit well with

the serverless model, there are some applications that do not fit today. Applications

that use specialized hardware like GPUs or FPGAs are not supported by AWS Lambda,

but we envision that more general hardware support will be available in the future.

However, for applications like particle simulations, which require a lot of coordination

between long running processes, the PyWren model of using stateless functions with

remote storage might not be a good fit. Finally, while we primarily focused on existing

analytics applications in PyWren, the serverless model has also been used successfully in

other domains like video compression [36].

23

Chapter 3

Shuffling Fast and Slow on Serverless

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 24

Serverless computing is poised to fulfill the long-held promise of transparent elasticity

andmillisecond-level pricing. To achieve this goal, serviceproviders impose afine-grained

computational model where every function has a maximum duration, a fixed amount of

memory and no persistent local storage. We observe that the fine-grained elasticity of

serverless is key to achieve high utilization for general computations such as analytics

workloads, but that resource limits make it challenging to implement such applications as

they need to move large amounts of data between functions that don’t overlap in time. In

this Chapter, we present Locus, a serverless analytics system that judiciously combines (1)

cheap but slow storage with (2) fast but expensive storage, to achieve good performance

while remaining cost-efficient. Locus applies a performance model to guide users in

selecting the type and the amount of storage to achieve the desired cost-performance

trade-off.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 25

3.1 Background
We first present a brief overview of serverless computing and compare it with the

traditional VM-based instances. Next we discuss how analytics queries are implemented

on serverless infrastructure and present some of the challenges in executing large scale

shuffles.

3.1.1 Serverless Computing: What fits?
Recently, cloud providers and open source projects [51, 79] have proposed services

that execute functions in the cloud or providing Functions-as-a-Service. As of now, these

functions are subject to stringent resource limits. For example, AWS Lambda currently

imposes a 5 minute limit on function duration and 3GB memory limit. Functions are also

assumed to be stateless and are only allocated 512MB of ephemeral storage. Similar limits

are applied by other providers such as Google Cloud Functions and Azure Functions.

Regardless of such limitations, these offerings are popular among users for two main

reasons: ease of deployment and flexible resource allocation. When deploying a cluster of

virtual machines, users need to choose the instance type, number of instances, and make

sure these instances are shutdown when the computation finishes. In contrast, serverless

offerings have a much simpler deployment model where the functions are automatically

triggered based on events, e.g., arrival of new data.

Furthermore, due to their lightweight nature, containers used for serverless deploy-

ment can often be launched within seconds and thus are easier to scale up or scale down

when compared to VMs. The benefits of elasticity are especially pronounced for work-

loadswhere the number of cores required varies across time. While this naturally happens

for event-driven workloads for example where say users upload a photo to a service that

needs to be compressed and stored, we find that elasticity is also important for data analyt-
icsworkloads. In particular, user-facing ad-hoc queries or exploratory analyticsworkloads

are often unpredictable yet have more stringent responsiveness requirements, making it

more difficult to provision a traditional cluster compared to recurring production work-

loads.

We present two common scenarios that highlight the importance of elasticitiy. First,

consider a stage of tasks being run as a part of an analytics workload. Asmost frameworks

use a BSP model [28, 116] the stage completes only when the last task completes. As the

same VMs are used across stages, the cores where tasks have finished are idle while the

slowest tasks or stragglers complete [3]. In comparison, with a serverless model, the

cores are immediately relinquished when a task completes. This shows the importance of

elasticity within a stage. Second, elasticity is also important across stages: if we consider

say consider TPC-DS query 95 (details in 3.4), the query consists of 8 stages with input

data per stage varying from 0.8Mb to 66Gb. With such a large variance in data size, being

able to adjust the number of cores used at every stage leads to better utilization compared

to traditional VM model.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 26

0

2000

4000

6000

8000

0 500 1000 1500 2000

co
nc

ur
re

nt
 re

qu
es

ts

time (seconds)

Window
Running

Figure 3.1: S3 rate limiting in action. We use a TCP-like additive-increase/multiplicative-

decrease (AIMD) algorithm to probe the number of concurrent requests S3 can support

for reading 10KB objects. We see that S3 not only enforces a rate ceiling, but also continues

to fail requests after the rate is reduced for a period of time. The specific rate ceiling can

change over time due to S3’s automatic data-partition scaling.

3.1.2 Analytics on serverless: Challenges
To execute analytics queries on a serverless infrastructure we assume the following

system model. A driver process, running on user’s machine, “compiles” the query into

a multi-stage DAG, and then submits each task to the cloud service provider. A task is

executed as one function invocation by the serverless infrastructure. Tasks in consecutive

stages exchange data via a variety of communication primitives, such as shuffle and

broadcast [22]. Each task typically consists of three phases: read, compute, and write [80].

We next discuss why the communication between stages i.e., the shuffle stage presents the

biggest challenge.

Input, Output: Similar to existing frameworks, each task running as a function on a server-

less infrastructure reads the input from a shared storage system, such as S3. However,

unlike existing frameworks, functions are not co-located with the storage, hence there

is no data locality in this model. Fortunately, as prior work has shown, the bandwidth

available between functions and the shared storage system is comparable to the disk band-

widths [4], and thus we typically do not see any significant performance degradation in

this step.

Compute: With serverless computing platforms, each function invocation is put on a new

container with a virtualized compute core. Regardless of the hardware heterogeneity,

recent works have shown that the almost linear scaling of serverless compute is ideal for

supporting embarrassingly parallel workloads [32, 36].

Shuffle: Themost commonly used communication pattern to transfer data across stages is

the shuffle operation. The map stage partitions data according to the number of reducers

and each reducer reads the corresponding data partitions from the all themappers. Given

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 27

M mappers and R reducerswewill have M∗R intermediate data partitions. Unfortunately,

the time and resource limitations imposed by the serverless infrastructures make the

implementation of the shuffle operation highly challenging.

A direct approach to implementing shuffles would be to open connections between

serverless workers [36] and transfer data directly between them. However, there are

two limitations that prevent this approach. First cloud providers do not provide any

guarantees on when functions are executed and hence the sender and receiver workers

might not be executing at the same time. Second, even if the sender and receiver overlap,

given the execution time limit, theremight not be enough time to transfer all the necessary

data.

A natural approach to transferring data between ephemeral workers is to store inter-

mediate data in a persistent storage system. We illustrate challenges for this approach

with a distributed sorting example.

3.1.3 Scaling Shuffle: CloudSort Example
The main challenge in executing shuffles in a serverless environment is handling the

large number of intermediate files being generated. As discussed before, functions have

stringent resource limitations and this effectively limits the amount of data a function can

process in one task. For example to sort 100TB, we will need to create a large number of

map partitions, as well as a large number of reduce partitions, such that the inputs to the

tasks can be less than the memory footprint of a function. Assuming 1GB partitions, we

have 10
5
partitions on both the map side and the reduce side. For implementing a hash-

based shuffle one intermediate file is created for each (mapper, reducer) pair. In this case

we will have a total of 10
10
, or 10 billion intermediate files! Even with traditional cluster-

based deployment, shuffling 10 billion files is quite challenging, as it requires careful

optimization to achieve high network utilization [77]. Unfortunately, none of the storage

systems offered by existing cloud providers meets the performance requirements, while

also being cost-effective. We next survey two widely available storage systems classes and

discuss their characteristics.

3.1.4 Cloud Storage Systems Comparison
To support the diverse set of cloud applications, cloud providers offer a number of

storage systems each with different characteristics in terms of latency, throughput, storage

capacity and elasticity. Just as within a single machine, where we have a storage hierarchy

of cache, memory and disk, each with different performance and cost points, we observe

that a similar hierarchy can be applied to cloud storage systems. We next categorize two

major storage system classes.

Slow Storage: All the popular cloud providers offer support for scalable and elastic blob

storage. Examples of such systems include Amazon S3, Google Cloud Storage, Azure

Blob Store. However, these storage systems are not designed to support high throughput

on reading and writing small files. In fact, all major public cloud providers impose a

global transaction limit on shared object stores [95, 13, 39]. This should come as no

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 28

surprise, as starting with the Google File System [40], the majority of large scale storage

systems have been optimized for reading and writing large chunks of data, rather than

for high-throughput fine-grained operations.

We investigated the maximum throughput that one can achieve on Amazon S3 and

found that though the throughput can be improved as the number of buckets increases, the

cloud provider throttles requestswhen the aggregate throughput reaches a few thousands

of requests/sec (see Figure 3.1). Assuming a throughput of 10K operations per second,

this means that reading and writing all the files generated by our CloudSort example

could take around 2M seconds, or 500× slower than the current record [114]. Not only

is the performance very low, but the cost is prohibitive as well. While the cost per write

request is as low as $0.005 per 1,000 requests for all three aforementioned cloud providers,

shuffling 10
10

files would cost $5,000 alone for write requests. Thus, supporting large

shuffles requires a more efficient and economic solution for storing intermediate data.

Fast Storage: One approach to overcome the performance limitations of the slow storage

systems is to use much faster storage, if available. Examples of faster storage are in-

memory storage systems backed by Memcached or Redis. Such storage systems support

much higher request rates (more than 100,000 requests/sec per shard), and efficiently

handle objects as small as a few tens of bytes. On the flip side, these systems are typically

much more expensive than large-scale blob storage systems. For example to store 1GB of

data for an hour, it costs 0.00319 cents in AWS S3 while it costs 2.344 cents if we use a

managed Redis service such as AWS ElastiCache, which makes it 733×more expensive!1

Given the cost-performance trade-off between slow (e.g., S3) and fast (e.g., ElastiCache)

storage, in the following sectionswe show that by judiciously combining these two types of

storage systems, we can achieve a cost-performance sweet spot in a serverless deployment

that is comparable, and sometimes superior to cluster-based deployments.

1
We note that ElastiCache is not “serverless”, and there is no serverless cache service yet as of writing

this thesis and users need to provision cache instances. However, we envision that similar to existing storage

and compute, fast storage as a resource (possibly backed by memory) will also become elastic in the future.

There are already several proposals to provide disaggregated memory across datacenters [38] to support

this.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 29

0

20

40

60

80

100

0.5G 1G 1.5G 2G 3G

w
rit
e
BW

/w
or
ke
r(
M
B/
se
c)

1 10 300 1000 3000

(a) write

0

20

40

60

80

100

0.5G 1G 1.5G 2G 3G

re
ad

BW
/w

or
ke
r(
M
B/
se
c)

1 10 300 1000 3000

(b) read

Figure 3.2: S3 bandwidth per worker with varying concurrency (1 to 3000) and Lambda

worker size (0.5G to 3G).

Table 3.1: Measured throughput (requests/sec) limit for a single S3 bucket and a single

Redis shard.

object size 10KB 100KB 1M 10M 100M

S3 5986 4400 3210 1729 1105

Redis 116181 11923 1201 120 12

3.2 Design
In this section we outline a performance model that can be used to guide the design

of an efficient and cost-effective shuffle operations. We start with outlining our system

model, and then discuss how different variables like worker memory size, degree of

parallelism, and the type of storage system affect the performance characteristics of the

shuffle operation.

3.2.1 SystemModel
We first develop a high level system model that can be used to compare different

approaches to shuffle and abstract away details specific to cloud providers. We denote

the function-as-a-service module as compute cores or workers for tasks. Each function

invocation, or a worker, is denoted to run with a single core and w bytes of memory (or

theworkermemory size). The degree of the parallelism represents the number of function

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 30

Table 3.2: Cloud storage cost from major providers (Feb 2019).

Service $/Mo/GB $/million writes

Slow

AWS S3 0.023 5

GCS 0.026 5

Azure Blob 0.023 6.25

Fast

ElastiCache 7.9 -

Memorystore 16.5 -

Azure Cache 11.6 -

invocations or workers that execute in parallel, which we denote by p. The total amount

of data being shuffled is S bytes. Thus, the number of workers required in the map and

reduce phase is at least
S
w leading to a total of (S

w)2 requests for a full shuffle.

We next denote the bandwidth available to access a storage service by an individual

worker as b bytes/sec. We assume that the bandwidth provided by the elastic storage

services scale as we add more workers (we discuss how to handle cases where this is

not true below). Finally, we assume each storage service limits the aggregate number of

requests/sec: wedenote by qs and q f for the slowand the fast storage systems, respectively.

To measure the cost of each approach we denote the cost of a worker function as cl
$/sec/byte, the cost of fast storage as c f $/sec/byte. The cost of slow storage has two

parts, one for storage as cs $/sec/byte, and one for access, denoted as ca $/op. We assume

that both the inputs and the outputs of the shuffle are stored on the slow storage. In

most cases in practice, cs is negligible during execution of a job. We find the above cost

characteristics apply to all major cloud platforms (AWS, Google Cloud and Azure), as

shown in Table 3.2.

Among the above, we assume the shuffle size (S) is given as an input to the model,

while the worker memory size (w), the degree of parallelism (p), and the amount of fast

storage (r) are the model knobs we vary. To determine the characteristics of the storage

systems (e.g., b, qs , q f), we use offline benchmarking. We first discuss how these storage

performance characteristics vary as a function of our variables.

3.2.2 Storage Characteristics
The main storage characteristics that affect performance are unsurprisingly the read

andwrite throughput (in terms of requests/sec, or often referred as IOPS) and bandwidth

(in terms of bytes/sec). However, we find that these values are not stable as we change

the degree of parallelism and worker memory size. In Figure 3.2 we measure how a

function’s bandwidth (b) to a large-scale store (i.e., Amazon S3, the slow storage service

in our case) varies as we change the degree of parallelism (p) and the worker memory size

(w). From the figure we can see that as we increase the parallelism both read and write

bandwidths could vary by 2-3×. Further we see that as we increase the worker memory

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 31

Table 3.3: Comparison of time taken by different shuffle methods. S refers to the shuffle

data size, w to the worker memory size, p the number of workers, qs the throughput to

slow storage, q f throughput to fast storage b network bandwidth from each worker.

storage type shuffle time

slow 2 × max(S2

w2×qs
, S

b×p)
fast 2 × max(S2

w2×q f
, S

be f f
), where

be f f � min(b f , b × p)
hybrid

S
r Trnd + Tmr g , where

Trnd � 2 × max(T f b , Tsb , Tsq)
Tmr g � 2 × max((Sw

r)2Tsq , S
r Tsb)

T f b �
r

be f f
, Tsb �

r
b×p

Tsq �
r2

w2×qs

size the bandwidth available increases but that the increase is sub-linear. For example

with 60 workers each having 0.5G of memory, the write bandwidth is around 18 MB/s

per worker or 1080 MB/s in aggregate. If we instead use 10 workers each having 3GB of

memory, the write bandwidth is only around 40 MB/s per worker leading to 400 MB/s in

aggregate.

Using a large number of small workers is not always ideal as it could lead to an increase

in the number of small I/O requests. Table 3.1 shows the throughput we get as we vary

the object size. As expected, we see that using smaller object sizes means that we get a

lower aggregate bandwidth (multiplying object size by transaction throughput). Thus,

jointly managing worker memory size and parallelism poses a challenging trade-off.

For fast storage systems we typically find that throughput is not a bottleneck for object

sizes > 10 KB and that we saturate the storage bandwidth. Hence, as shown in Table 3.1

the operation throughput decreases linearly as the object size increases. While we can

estimate the bandwidth available for fast storage systems using an approach similar to

the one used for slow storage systems, the current deployment method where we are

allocating servers for running Memcached / Redis allows us to ensure they are not a

bottleneck.

3.2.3 Shuffle Cost Models
We next outline performance models for three shuffle scenarios: using (1) slow storage

only, (2) fast storage only, and (3) a combination of fast and slow storage.

Slow storage based shuffle. The first model we develop is using slow storage only to

perform the shuffle operation. As we discussed in the previous section there are two

limits that the slow storage systems impose: an operation throughput limit (qs) and

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 32

a bandwidth limit (b). Given that we need to perform (S
w)2 requests with an overall

operation throughput of qs , we can derive Tq , the time it takes to complete these requests

is Tq �
S2

w2×qs
, assuming qs is the bottleneck. Similarly, given the per-worker bandwidth

limit to storage, b, the time to complete all requests assuming b is bottleneck is Tb �
S

b×p .

Considering both potential bottlenecks, the time it takes towrite/read all the data to/from

intermediate storage is thus max(Tq , Tb). Note that this time already includes reading

data from input storage or writing data to output storage, since they can be pipelinedwith

reading/writing to intermediate storage. Finally, the shuffle needs to first write data to

storage and then read it back. Hence the total shuffle time is Tshu f � 2 ×max(Tq , Tb).
Table 3.4 shows our estimated running time and cost as we vary the worker memory

and data size.

Fast storage based-shuffle. Here we develop a simple performance model for fast storage

that incorporates the throughput and bandwidth limits. In practice we need to make

one modification to factor in today’s deployment model for fast storage systems. Since

services like ElastiCache are deployed by choosing a fixed number of instances, each

having some fixed amount of memory, the aggregate bandwidth of the fast storage system

could be a significant bottleneck, if we are not careful. For example, if we had just one

ElastiCache instance with 10Gbps NIC and 50G of memory, the aggregate bandwidth is

trivially limited to 10Gbps. In order to model this aspect, we extend our formulation to

include b f , which is the server-side bandwidth limit for fast storage. We calculate the

effective bandwidth as be f f � min(b × p , b f).
Using the above effective bandwidth we can derive the time taken due to throughput

and bandwidth limits as Tq �
S2

w2×q f
and Tb �

S
be f f

, respectively. Similar to the previous

scenario, the total shuffle time is then Tshu f � 2 × max(Tq , Tb).
One interesting scenario in this case is that as long as the fast storage bandwidth is a

bottleneck (i.e. b f < b × p), using more fast memory improves not only the performance,

but also reduces the cost! Assume the amount of fast storage is r. This translates to a cost

of p ∗ cl ∗ Tshu f + r ∗ c f ∗ Tshu f , with slow storage request cost excluded. Now, assume we

double thememory capacity to 2×r, whichwill also result in doubling the bandwidth, i.e.,

2×b f . Assuming that operation throughput is not the bottleneck, the shuffle operations

takes now
S

2b f
�

Tshu f
2

, while the cost becomes p ∗ cl ∗
Tshu f

2
+ 2 ∗ r ∗ c f ∗

Tshu f
2

. This does not

include reduction in request cost for slow storage. Thus, while the cost for fast storage

(second term) remains constant, the cost for compute cores drops by a factor of 2. In other

words, the overall running time has improved by a factor of 2while the cost has decreased.

However, as the amount of shuffle data grows, the cost of storing all the intermediate

data in fast storage becomes prohibitive. We next look at the design of a hybrid shuffle

method that can scale to much larger data sizes.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 33

Figure 3.3: Illustration for hybrid shuffle.

Table 3.4: Projected sort time and cost with varying worker memory size. Smaller worker

memory results in higher parallelism, but also a larger numbers files to shuffle.

worker mem(GB) 0.25 0.5 1 1.25 1.5

20GB time(s) 36 45 50 63 72

20GB cost($) 0.02 0.03 0.03 0.04 0.05

200GB time(s) 305 92 50 63 75

200GB cost($) 0.24 0.30 0.33 0.42 0.51

1TB time(s) 6368 1859 558 382 281

1TB cost($) 1.22 1.58 1.70 2.12 2.54

3.2.4 Hybrid Shuffle
We propose a hybrid shuffle method that combines the inexpensive slow storage with

the high throughput of fast storage to reach a better cost-performance trade-off. We find

that even with a small fast storage, e.g., less than
1

20
th of total shuffle data, our hybrid

shuffle can outperform slow storage based shuffle by orders of magnitude.

To do that, we introduce a multi-round shuffle that uses fast storage for intermediate

data within a round, and uses slow storage to merge intermediate data across rounds.

In each round we range-partition the data into a number of buckets in fast storage and

then combine the partitioned ranges using the slow storage. We reuse the same range

partitioner across rounds. In this way, we can use a merge stage at the end to combine

results across all rounds, as illustrated in Figure 3.3. For example, a 100 TB sort can be

broken down to 100 rounds of 1TB sort, or 10 rounds of 10TB sort.

Correspondingly the cost model for the hybrid shuffle can be broken down into two

parts: the cost per round and the cost for the merge. The size of each round is fixed at

r, the amount of space available on fast storage. In each round we perform two stages of

computation, partition and combine. In the partition stage, we read input data from the

slow storage andwrite to the fast storage, while in the combine stage we read from the fast

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 34

storage and write to the slow storage. The time taken by one stage is then the maximum

between the corresponding durations of the stage when the bottleneck is driven either by

(1) the fast storage bandwidth T f b �
r

be f f
, (2) the slow storage bandwidth Tsb � r/(b ∗ p),

or (3) the slow storage operation throughput Tsq �
r2

w2×qs
2. Thus, the time per-round is

Trnd � 2 ∗ max(T f b , Tsb , Tsq).
The overall shuffle consists of

S
r such rounds and a final merge phase where we read

data from the slow storage, merge it, and write it back to the slow storage. The time of

the merge phase can be similarly broken down into throughput limit Tmq � (Sw
r)2 ∗ Tsq

and bandwidth limit Tmb �
S
r ∗ Tsb , where Tsb and Tsq follows from the definitions

from previous paragraph. Thus, Tmr g � 2 ∗ max(Tmq , Tmb), and the total shuffle time is

S
r ∗ Trnd + Tmr g .

How to pick the right fast storage size? Selecting the appropriate fast storage/memory

size is crucial to obtaining good performance with the hybrid shuffle. Our performance

model aims to determine the optimal memory size by using two limits to guide the search.

First, provisioning fast storage does not help when slow storage bandwidth becomes

bottleneck, which provides an upper bound on fast storage size. Second, since the final

stage needs to read outputs from all prior rounds to perform the merge, the operation

throughput of the slow storage provides an upper bound on the number of rounds, thus

a lower bound of the fast storage size.

Pipelining across stages An additional optimization we perform to speed up round

execution and reduce cost is to pipeline across partition stage and combine stage. As

shown in Figure 3.3, for each round, we launch partition tasks to read input data, partition

them and write out intermediate files to the fast storage. Next, we launch combine tasks

that read files from the fast storage. After each round, the fast storage can be cleared to be

used for next round.

With pipelining, we can have partition tasks and combine tasks running in parallel.

While the partition tasks are writing to fast storage via append(), the merge tasks read

out files periodically and perform atomic delete-after-read operations to free space. Most

modern key-value stores, e.g., Redis, support operations such as append and atomic

delete-after-read. Pipelining gives two benefits: (1) it overlaps the execution of the two

phases thus speeding up the in-round sort, and (2) it allows a larger round size without

needing to store the entire round in memory. Pipelining does have a drawback. Since

we now remove synchronization boundary between rounds, and use append() instead of

setting a new key for each intermediate data, we cannot apply speculative execution to

mitigate stragglers, nor can we obtain task-level fault tolerance. Therefore, pipelining is

more suitable for smaller shuffles.

2
We ignore the fast storage throughput, as we rarely find it to be bottleneck. We could easily include it

in our model, if needed.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 35

0 25 50 75 100
rate (MB/s)

0.00

0.15
fra

ct
io

n
of

 w
or

ke
rs

read
write

(a) 500MB workers

0 25 50 75 100
rate (MB/s)

0.00

0.15

fra
ct

io
n

of
 w

or
ke

rs

read
write

(b) 3GB workers

Figure 3.4: Lambda to S3 bandwidth distribution exhibits high variance. A major source

of stragglers.

3.2.5 Modeling Stragglers
The prior sections provided several basic models to estimate the time taken by a shuffle

operation in a serverless environment. However, these basic models assume all tasks have

uniform performance, thus failing to account for the presence of stragglers.

Themain source of stragglers for the shuffle tasks we consider in this work are network

stragglers, that are caused by slow I/O to object store. Network stragglers are inherent

given the aggressive storage sharing implied by the serverless architecture. While some

containers (workers) might get better bandwidth than running reserved instances, some

containers get between 4-8× lower bandwidth, as shown in Figure 3.4. To model the

straggler mitigation scheme described above we initialize our model with the network

bandwidth CDFs as shown in Figure 3.4. To determine running time of each stage we

then use an execution simulator [80] and sample network bandwidths for each container

from the CDFs. Furthermore, our modeling is done for each worker memory size, since

bandwidth CDFs vary across worker sizes.

There are many previous works on straggler mitigation [118, 7, 92, 5]. We use a simple

online method where we always launch speculative copies after x% of tasks finish in the

last wave. Having short-lived tasks in the serverless model is more advantageous here.

The natural elasticity of serverless infrastructure makes it possible to be aggressive in

launching speculative copies.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 36

20GB

100GB

1TB

10TB
100TB

0.01

1

100

10000

1 100 10000 1000000

pr
ed

ic
te
d
co
st
($
)

predicted shuffle time (seconds)

slow	storage
fast	storage
hybrid	 (>1TB)

Figure 3.5: Predicted time and cost for different sort implementations and sizes.

3.2.6 Performance Model Case Study
We next apply our performance model described above to the CloudSort benchmark

and study the cost-performance trade-off for the three approaches described above. Our

predictions for data sizes ranging from 20GB to 100TB are shown in Figure 3.5 (we use

experimental results of a real prototype to validate these predictions in Section 3.4). When

the data shuffle size is small (e.g., 20GB or smaller), both the slow and fast storage only

solutions take roughly the same time, with the slow storage being slightly cheaper. As the

data size increases to around 100GB, using fast storage is around 2× faster for the same

cost. This speed up from fast storage is more pronounced as data size grows. For very

large shuffles (≥ 10 TB), hybrid shuffle can provide significant cost savings. For example,

at 100TB, the hybrid shuffle is around 6x cheaper than the fast storage only shuffle, but

only 2x slower.

Note that since the hybrid shuffle performs amerge phase in addition to writing all the

data to the fast storage, it is always slower than the fast storage only shuffle. In summary,

this example shows how our performance model can be used to understand the cost-

performance trade-off from using different shuffle implementations. We implement this

performance modeling framework in Locus to perform automatic shuffle optimization.

We next describe the implementation of Locus and discuss some extensions to our model.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 37

3.3 Implementation
We implement Locus by extending PyWren [32], a Python-based data analytics engine

developed for serverless environments. PyWren allows users to implement custom func-

tions that perform data shuffles with other cloud services, but it lacks an actual shuffle

operator. We augment PyWren with support for shuffle operations and implement the

performance modeling framework described before to automatically configure the shuffle

variables. For our implementationwe useAWSLambda as our compute engine and use S3

as the slow, elastic storage system. For fast storage we provision Redis nodes on Amazon

ElastiCache.

To execute SQL queries on Locus, we devise physical query plan from Apache Spark

and then use Pandas to implement structured data operations. One downside with

Pandas is that we cannot do “fine-grained pipelining” between data operations inside a

task. Whereas in Apache Spark or Redshift, a task can process records as they are read in

or written out. Note this fine-grained pipelining is different from pipelining across stages,

which we discuss in Section 3.2.4.

3.3.1 Model extensions
We next discuss a number of extensions to augment the performance model described

in the previous section

Non-uniform data access: The shuffle scenario we considered in the previous section

was the most general all-to-all shuffle scenario where every mapper contributes data to

every reducer. However, a number of big data workloads have more skewed data access

patterns. For example, machine learning workloads typically perform AllReduce or

broadcast operations that are implemented using a tree-based communication topology.

When a binary tree is used to do AllReduce, each mapper only produces data for one

reducer and correspondingly each reducer only reads two partitions. Similarly while

executing a broadcast join, the smaller table will be accessed by every reducer while the

larger table is hash partitioned. Thus, in these scenarios storing the more frequently

accessed partition on fast storage will improve performance. To handle these scenarios

we introduce an access counter for each shuffle partition and correspondingly update

the performance model. We only support this currently for cases like AllReduce and

broadcast join where the access pattern is known beforehand.

Storage benchmark updates: Finally one of the key factors that make our performance

models accurate is the storage benchmarks that measure throughput (operations per

sec) and network bandwidth (bytes per second) of each storage system. We envision

that we will execute these benchmarks the first time a user installs Locus and that the

benchmark values are reused across a number of queries. However, since the benchmarks

are capturing the behavior of cloud storage systems, the performance characteristics could

change over time. Such limits change will require Locus to rerun the profiling. We plan

to investigate techniques where we can profile query execution to infer whether our

benchmarks are still accurate over extended periods of time.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 38

0

50000

100000

150000

200000

250000

Q1 Q16 Q94 Q95

cl
us
te
rt
im
e
(c
or
e·
se
c) Locus

Spark
Redshift

+1%

-58%

-59% -4%

(a) Cluster time

159

0

100

200

300

400

500

Q1 Q16 Q94 Q95

av
er

ag
e

qu
er

y
tim

e
(s

)

Locus-S3
Locus-reserved
Locus
Spark
Redshift

(b) Query latency

0
0.5

1
1.5

2
2.5

3
3.5

Q1 Q16 Q94 Q95

co
st

 ($
)

Locus
Spark
Redshift

(c) Cost

Figure 3.6: TPC-DS results for Locus, Apache Spark and Redshift under different con-

figurations. Locus-S3 runs the benchmark with only S3 and doesn’t complete for many

queries; Locus-reserved runs Locus on a cluster of VMs.

3.4 Evaluation
We evaluate Locus with a number of analytics workloads, and compare Locus with

Apache Spark running on a cluster of VMs and AWS Redshift/Redshift Spectrum3. Our

evaluation shows that:

• Locus’s serverless model can reduce cluster time by up to 59%, and at the same time

being close to or beating Spark’s query completion time by up to 2×. Even with a

small amount of fast storage, Locus can greatly improve performance. For example,

with just 5% memory, we match Spark in running time on CloudSort benchmark

and are within 13% of the cost of the winning entry in 2016.

• When comparing with actual experiment results, our model in Section 3.2 is able to

predict shuffle performance and cost accurately, with an average error of 15.9% for

performance and 14.8% for cost. This allows Locus to choose the best cost-effective

shuffle implementation and configuration.

• When running data intensive queries on the same number of cores, Locus is within

1.61 × slower compared to Spark, and within 2 × slower compared to Redshift,

regardless of the baselines’more expensive unit-time pricing. Compared to shuffling

only through slow storage, Locus can be up to 4×-500× faster.

The section is organized as follows, we first show utilization and end-to-end perfor-

mance with Locus on TPC-DS [86] queries (3.4.1) and Daytona CloudSort benchmark

(3.4.2). We then discuss how fast storage shifts resource balance to affect the cost-

performance trade-off in Section 3.4.3. Using the sort benchmark, we also check whether

our shuffle formulation in Section 3.2 can accurately predict cost and performance(3.4.4).

Finally we evaluate Locus’s performance on joins with Big Data Benchmark [15](3.4.5).

3
When reading data of S3, AWS Redshift automatically uses a shared, serverless pool of resource called

the Spectrum layer for S3 I/O, ETL and partial aggregation.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 39

Setup: We run our experiments on AWS Lambda and use Amazon S3 for slow storage.

For fast storage, we use a cluster of r4.2xlarge instances (61GB memory, up to 10Gbps

network) and run Redis. For our comparisons against Spark, we use the latest version

of Apache Spark (2.3.1). For comparison against Redshift, we use the latest version as of

2018 September and ds2.8xlarge instances. To calculate cost for VM-based experiments

we pro-rate the hourly cost to a second granularity.4 For Redshift, the cost is two parts

using AWS pricing model, calculated by the uptime cost of cluster VMs, plus $5 per TB

data scanned.

3.4.1 TPC-DS Queries
The TPC-DS benchmark has a set of standard decision support queries based on those

used by retail product suppliers. The queries vary in terms of compute and network

I/O loads. We evaluate Locus on TPC-DS with scale factor of 1000, which has a total

input size of 1TB data for various tables. Among all queries, we pick four of them that

represent different performance characteristics and have a varying input data size from

33GB to 312GB. Our baselines are Spark SQL deployed on a EC2 cluster with c3.8xlarge
instances and Redshift with ds2.8xlarge instances, both with 512 cores. For Locus, we

obtainworkers dynamically across different stages of a query, butmake sure that we never

use more core·secs of Spark execution.

Figure 3.6(b) shows the query completion time for running TPC-DS queries on Apache

Spark, Redshift and Locus under different configurations and Figure 3.6(a) shows the the

total core·secs spent on running those queries. We see that Locus can save cluster time up

to 59%, while being close to Spark’s query completion time to also beating it by 2×. Locus
loses to Spark on Q1 by 20s. As a result, even for now AWS Lambda’s unit time cost per

core is 1.92×more expensive than the EC2 c3.8xlarge instances, Locus enjoys a lower cost

for Q1 and Q4 as we only allocate as many Lambdas as needed. Compared to Redshift,

Locus is 1.56× to 1.99× slower. There are several causes that might contribute to the cost-

performance gap: 1) Redshift has a more efficient execution workflow than that of Locus,

which is implemented in Python and has no fine-grained pipelining; 2) ds2.8xlarge are
special instances that have 25Gbps aggregate network bandwidths; 3) When processing

S3 data, AWS Redshift pools extra resource, referred as the serverless Spectrum layer, to

process S3 I/O, ETL and partial aggregation. To validate these hypotheses, we perform

two what-if analyses. We first take Locus’s TPC-DS execution trace and replay them to

numerically simulate an pipelined execution by overlapping I/O and compute within a

task. We find that with pipelining, query latencies can be reduced by 23% to 37%, being

much closer to the Redshift numbers. Similarly, using our cost-performance model, we

also find that if Locus’s Redis nodes have 25Gbps links, the cost can be further reduced

by 19%, due to a smaller number of nodes needed. Performance will not improve due to

25Gbps links, as network bottleneck on Lambda-side remains. Understanding remaining

4
This is presenting a lower cost than the minute-granularity used for billing by cloud providers like

Amazon, Google.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 40

49
27

19
5

1
1

0 20 40 60

1
2
3
4
5
6

time (s)

st
ag

e
in

de
x

start setup
read compute
write total

Figure 3.7: Time breakdown for Q94. Each stage has a different profile and, compute and

network time dominate.

performance gap would require further breakdown, i.e., porting Locus to a lower-level

programming language.

Even with the performance gap, an user may still prefer Locus over a data warehous-

ing service like Redshift since the latter requires on-demand provisioning of a cluster.

Currently with Amazon Redshift, provisioning a cluster takes minutes to finish, which is

longer than these TPC-DS query latencies. Picking an optimal cluster size for a query is

also difficult without knowledge of underlying data.

We also see in Figure 3.6(b) that Locus provides better performance than running on

a cluster of 512-core VMs (Locus-reserved). This demonstrates the power of elasticity

in executing analytics queries. Finally, using the fast storage based shuffle in Locus also

results in successful execution of 3 queries that could not be executed with slow storage

based shuffle, as the case for Locus-S3 or PyWren.

To understand where time is spent, we breakdown execution time into different stages

and resources for Q94, as shown in Figure 3.7. We see that performing compute and

network I/O takes up most of the query time. One way to improve overall performance

given this breakdown is to do “fine-grained pipelining” of compute and network inside

a task. Though nothing fundamental, it is unfortunately difficult to implement with the

constraints of Pandas API at the time of writing. Compute time can also be improved if

Locus is prototyped using a lower-level language such as C++.

Finally, for shuffle intensive stages such as stage 3 of Q94, we see that linearly scaling

up fast storage does linearly improve shuffle performance (Figure 3.8).

3.4.2 CloudSort Benchmark
We run the Daytona CloudSort benchmark to compare Locus against both Spark and

Redshift on reserved VMs.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 41

0

20

40

60

80

start setup network compute

av
er

ag
e

tim
e

(s
) 2

4

8

10

Figure 3.8: Runtime for stage 3 of Q94 when varying the number of Redis nodes (2, 4, 8,

10).

The winner entry of CloudSort benchmark which ranks the cost for sorting 100TB data

on public cloud is currently held by Apache Spark [114]. The record for sorting 100TB

was achieved in 2983.33s using a cluster of 395 VMs, each with 4 vCPU cores and 8GB

memory. The cost of running this was reported as $144.22. To obtain Spark numbers

for 1TB and 10TB sort sizes, we varied the number of i2.8xlarge instances until the sort
times matched those obtained by Locus. This allows a fair comparison on the cost. As

discussed in Section 3.2, Locus automatically picks the best shuffle implementation for

each input size.

Table 3.5 shows the result cost andperformance comparingLocus against Spark. We see

that regardless of the fact Locus’s sort runs onmemory-constrained compute infrastructure

and communicates through remote storage, we arewithin 13%of the cost for 100TB record,

and achieve the same performance. Locus is even cheaper for 10TB (by 15%) but is 73%

more expensive for 1TB. This is due to using fast storage based-shuffle which yields a

more costly trade-off point. We discuss more trade-offs in Section 3.4.3.

Table 3.6 shows the result of sorting 1TB of random string input. Since Redshift does

not support querying against random binary data, we instead generate random string

records as the sort input as an approximation to the Daytona CloudSort benchmark. For

fair comparison, we also run other systems with the same string dataset. We see that

Locus is an order of magnitude faster than Spark and Redshift and is comparable to Spark

when input is stored on local disk.

We also run the same Locus code on EC2 VMs, in order to see the cost vs. performance

difference of only changing hardware infrastructure while using the same programming

language (Python in Locus). Figure 3.9 shows the results for running 100GB sort. We run

Locus on AWS Lambda with various worker memory sizes. Similar to previous section,

we then run Locus on a cluster and vary the number of c1.xlarge instances to match the

performance and compare the cost. We see that both cost and performance improves for

Locus-serverless when we pick a smaller memory size. The performance improvement

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 42

Table 3.5: CloudSort results vs. Apache Spark.

Sort size 1TB 10TB 100TB

Spark nodes 21 60 395[77]

Spark time (s) 40 394 2983

Locus time (s) 39 379 2945

Spark cost ($) 1.5 34 144

Locus cost ($) 2.6 29 163

Table 3.6: 1TB string sort w/ various configurations.

time cost($)

Redshift-S3 6m8s 20.2

Spark RDD-S3 4m27s 15.7

Spark-HDFS ($) 35s 2.1

Locus ($) 39s 2.6

27
24 22 20 17

0.5
1

1.5
2

3

0.1

0.2

0.3

0.4

75 100 125 150

co
st
($
)

shuffle time (seconds)

Locus-serverless
Locus-reserved

Figure 3.9: Running 100GB sort with Locus on a serverless infrastructure vs. running

the same code on reserved VMs. Labels for serverless series represents the configured

memory size of each Lambda worker. Labels for reserved series represents the number of

c1.xlarge instances deployed.

is due to increase in parallelism that results in more aggregate network bandwidth. The

cost reduction comes from both shorter run-time and lower cost for small memory sizes.

For Locus-reserved, performance improves with more instances while the cost remains

relatively constant, as the reduction in run-time compensates for the increased allocation.

We see that even though AWS Lambda is considered to be more expensive in terms

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 43

0.01

1

100

10000

10 1000 100000 10000000

co
st
($
)

sort time (seconds)

S3-only
Redis-only
Hybrid
S3-only	(predict)
Redis-only	(predict)
Hybrid	(predict)

Figure 3.10: Comparing the cost and performance predicted by Locus against actual

measurements. The lines indicate predicted values and the dots indicate measurements.

of $ per CPU cycle, it can be cheaper in terms of $ per Gbps compared to reserved

instances. Thus, serverless environments can reach a better cost performance point for

network-intensive workloads.

3.4.3 HowMuch Fast Storage is Needed?
One key insight in formulating the shuffle performance in Locus is that adding more

resources does not necessarily increase total cost, e.g., increasing parallelism can result in a

better configuration. Another key insight is that using fast storage or memory, sometimes

even a small amount, can significantly shift resource balance and improve performance.

We highlight the first effect with an example of increasing parallelism and hence over

allocating worker memory compared to the data size being processed. Consider the case

where we do a slow storage-only sort for 10GB. Here, we can further increase parallelism

by using smaller data partitions than the worker memory size. We find that by say

using a parallelism of 40 with 2.5G worker memory size can result in 3.21× performance

improvement and lower cost over using parallelism of 10 with 2.5G worker memory

(Figure 3.11).

However, such performance increase does require that we add resources in a balanced

manner as one could also end up incurring more cost while not improving performance.

For example, with a 100GB sort (Figure 3.12), increasing parallelism from 200 to 400

with 2.5G worker memory size (Figure 3.12) makes performance 2.5× worse, as now the

bottleneck shifts to object store throughput and each worker will run slower due to a even

smaller share. Compared to the 10GB sort, this also shows that the same action that helps

in one configuration can be harmful in another configuration.

Another way of balancing resources here is to increase parallelism while adding fast

storage. We see this in Figure 3.12, where increasing parallelism to 400 becomes beneficial

with fast storage as the storage system can now absorb the increased number of requests.

These results provide an example of the kinds of decisions automated by the performance

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 44

0.5G
1G1.5G

2.5G
3G

1.5G
2G2.5G

3G
2.5G
3G

0

0.01

0.02

0.03

0.04

0 20 40 60 80

co
st
($
)

sort time (seconds)

40

20

10

Figure 3.11: 10GB slow storage-only sort, with varying parallelism (lines) and worker

memory size (dots).

0.5G1G
1.5G

2.5G

3G

0.5G1G
1.5G

2.5G
3G

1.5G2.5G

3G 2.5G
3G

0.100

0.200

0.300

0.400

0.500

0 50 100 150 200

co
st
($
)

sort time (seconds)

400 200 100 400	w/	fast

Figure 3.12: 100GB slow storage-only sort with varying parallelism (different lines) and

worker memory size (dots on same line). We include one configuration with fast-storage

sort.

modeling framework in Locus.

The second insight is particularly highlighted for running 100TB hybrid sort. For

100TB sort, we vary the fast storage used from 2% to 5%, and choose parallelism for each

setting based on the hybrid shuffle algorithm. As shown in Table 3.7, we see that even

with 2% of memory, the 100TB sort becomes attainable in 2 hours. Increasing memory

from 2% to 5%, there is an almost linear reduction in terms of end-to-end sort time when

we use larger cache size.This matches the projection in our design discussion. Further

broken down in Figure 3.13, we see that the increase of cost per time unit is compensated

by reduction in end-to-end run time.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 45

Table 3.7: 100TB Sort with different cache size.

cache 5% 3.3% 2.5% 2%

time (s) 2945 4132 5684 6850

total cost ($) 163 171 186 179

0 2000 4000 6000 8000 10000 12000

20

30

40

50

time (seconds)

nu
m

be
r o

f r
ou

nd
s

s3-read-input
redis-write
redis-read
s3-write-block
s3-read-block
s3-write-final

Figure 3.13: Runtime breakdown for 100TB sort.

3.4.4 Model Accuracy
To automatically choose a cost-effective shuffle implementation, Locus relies on a

predictive performance model that can output accurate run-time and cost for any sort

size and configuration. To validate our model, we ran an exhaustive experiment with

varying sort sizes for all three shuffle implementations and compared the results with the

predicted values as shown in Figure 3.10.

We find that Locus’s model predicts performance and cost trends pretty well, with an

average error of 16.9% for run-time and 14.8% for cost. Among different sort implementa-

tions, predicting Redis-only is most accurate with an accuracy of 9.6%, then Hybrid-sort

of 18.2%, and S3-only sort of 21.5%. This might due to the relatively lesser variance we see

in network bandwidth to our dedicated Redis cluster as opposed to S3 which is a globally

shared resource. We also notice that our prediction on average under-estimates run-time

by 11%. This can be attributed to the fact that we don’t model a number of other overheads

such as variance in CPU time, scheduling delay etc. Overall, similar to database query

optimizers, we believe that this accuracy is good enough tomake coarse grained decisions

about shuffle methods to use.

3.4.5 Big Data Benchmark
The Big Data Benchmark contains a query suite derived from production databases.

We consider Query 3, which is a join query template that reads in 123GB of input and

then performs joins of various sizes. We evaluate Locus to see how it performs as join

size changes. We configure Locus to use 160 workers, Spark to use 5 c3.xlarge, and

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 46

0

500

1000

1500

2000

2500

Query 3A Query 3B Query 3C

av
er

ag
e

qu
er

y
tim

e
(s

) Locus-S3
Locus
Spark
Redshift

Figure 3.14: Big Data Benchmark.

Redshift to use 5ds2.8xlarge, all totalling 160 cores. Figure 3.14 shows that even without

the benefit of elasticity, Locus performance is within 1.75× to Apache Spark and 2.02× to

Redshift across all join sizes. The gap is similar to what we observe in Section 3.4.1. We

also see that using a default slow-storage only configuration can be up to 4× slower.

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 47

3.5 Related Works
ShuffleOptimizations: As a critical component in almost all data analytics system, shuffle

has always been a venue for performance optimization. This is exemplified by Google

providing a separate service just for shuffle [45]. While most of its technical details are

unknown, the Google Cloud Shuffle service shares the same idea as Locus in that it

uses elastic compute resources to perform shuffle externally. Modern analytics systems

like Hadoop [101] or Spark [117] often provide multiple communication primitives and

sort implementations. Unfortunately, they do not perform well in a serverless setting,

as shown previously. There are many conventional wisdom on how to optimize cache

performance [47], we explore a similar problem in the cloud context. Our hybrid sort

extends on the classic idea of mergesort (see survey [33]) and cache-sensitive external

sort [76, 96] to do joint optimization on the cache size and sort algorithm. There are also

orthogonalworks that focus on the network layer. For example, CoFlow [23] andVarys [24]

proposed coordinated flow scheduling algorithms to achieve better last flow completion

time. For join operations in databases, Locus relies on existing query compilers to generate

shuffle plans. Compiling the optimal join algorithm for a query is an extensively studied

area in databases [25], and we plan to integrate our shuffle characteristics with database

optimizers in the future.

Serverless Frameworks: The accelerated shift to serverless has brought innovations to

SQL processing [16, 10, 44, 91], general computing platforms (OpenLambda [51], AWS

Lambda, Google Cloud Functions, Azure Functions, etc.), as well as emerging general

computation frameworks [11, 36] in the last two years. These frameworks are architected

in different ways: AWS-Lambda [11] provides a schema to compose MapReduce queries

with existing AWS services; ExCamera [36] implemented a state machine in serverless

tasks to achieve fine-grained control; Prior work [32] has also looked at exploiting the

usability aspects to provide a seamless interface for scaling unmodified Python code.

Database Cost Modeling: There has been extensive study in the database literature on

building cost-models for systemswithmulti-tier storage hierarchy [66, 64] andon targeting

systems that are bottlenecked on memory access [17]. Our cost modeling shares a similar

framework but examines costs in a cloud setting. The idea of dynamically allocating

virtual storage resource, especially fast cache for performance improvement can also be

found in database literature [103]. Finally, our work builds on existing techniques that

estimate workload statistics such as partition size, cardinality, and data skew [67].

CHAPTER 3. SHUFFLING FAST AND SLOW ON SERVERLESS 48

3.6 Summary
With the shift to serverless computing, there have been a number of proposals to

develop general computing frameworks on serverless infrastructure. However, due to

resource limits and performance variations that are inherent to the serverless model, it is

challenging to efficiently execute complex workloads that involve communication across

functions. In this chapter, we show that using a mixture of slow but cheap storage with

fast but expensive storage is necessary to achieve a good cost-performance trade-off. We

presents Locus, an analytics system that uses performancemodeling for shuffle operations

executed on serverless architectures. Our evaluation shows that the model used in Locus

is accurate and that it can achieve comparable performance to running Apache Spark

on a provisioned cluster, and within 2 × slower compared to Redshift. We believe the

performance gap can be improved in the future, and meanwhile Locus can be preferred

as it requires no provisioning of clusters.

49

Chapter 4

Fair Sharing for Elastic Memory

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 50

Memory caches continue to be a critical component to many systems. In recent years,

there has been larger amounts of data into main memory, especially in shared environ-

ments such as the cloud. The nature of such environments requires resource allocations to

provide both performance isolation for multiple users/applications and high utilization

for the systems. We study theproblemof fair allocationofmemory cache formultiple users

with shared files. We find that, surprisingly, no memory allocation policy can provide all

three desirable properties (isolation-guarantee, strategy-proofness and Pareto-efficiency)

that are typically achievable by other types of resources, e.g., CPU or network. We also

show that there exist policies that achieve any two of the three properties. We find that the

only way to achieve both isolation-guarantee and strategy-proofness is through blocking,
which we efficiently adapt in a new policy called FairRide. We implement FairRide in

a popular memory-centric storage system using an efficient form of blocking, named as

expected delaying, and demonstrate that FairRide can lead to better cache efficiency (2.6×
over isolated caches) and fairness in many scenarios.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 51

4.1 Background
Most of today’s cache systems are oblivious to the entities (users) that access data:

CPU caches do not care which thread accesses data, web caches do not care which client

reads a web page, and in-memory based systems such as Spark [119] do not care which

user reads a file. Instead, these systems aim tomaximize system efficiency (e.g., maximize

hit rate) and as a result favor users that contribute more to improve efficiency (e.g., users

accessing data at a higher rate) at the expense of the other users.

To illustrate the unfairness of these cache systems, consider a typical setup of a hosted

service, as shown in Figure 4.1. We setup multiple hosted sites, all sharing a single

Memcached [71] caching system to speed up the access to a back-end database. Assume

the loads of A and B are initially the same. In this case, as expected, the mean request

latencies for the two sites are roughly the same (see left bars in Figure 4.2). Next, assume

that the load of site A increases significantly. Despite the fact that B’s load remains

constant, the mean latency of its requests increases significantly (2.9×) and the latency for

A’s requests surprisingly drops! Thus, an increase in A’s load improves the performance

of A, but degrades the performance of B. This is because A accesses the data more

frequently, and in response the cache system starts loading more results from A while

evicting B’s results.
While the example is based on synthetic web workload, this problem is very real, as

demonstrated by the many questions posted on technical forums [57], on how to achieve

resource isolation across multiple sites when using either Redis [88] or Memcached [71].

It turns out that none of the two popular caching systems provide any guarantee for per-

formance isolation. This includes customized distributions from dominant cloud service

providers, such as Amazon ElastiCache [2] and Microsoft Azure Redis Cache [12]. As we

will show in Section 4.6, for such caching systems, it is easy for a strategic user to improve

her performance and hurt others (with 2.9× performance gap) by making spurious access

to files.

To provide performance isolation, the default answer in the context of cloud cache

services today is to setup a separate caching instance per user or per application. This

goes against consolidation and comes at a high cost. Moreover, cache isolation will

eliminate the possibility of sharing cached files, which makes isolation evenmore expensive

as there is a growing percentage of files to be shared. We studied a production HDFS

log from a Internet company and observed 31.4% of files are shared by at least two

users/applications. The shared files also tend to be more frequently accessed compared

to non-shared files, e.g., looking at the 10% most accessed files, shared files account for

as much as 53% of the accesses. The percentage of sharing can go even higher pair-wise:

22% of the users have at least 50% of their files accessed by another user. Assuming files

are of equal sizes, we would need at least 31.4%more space if we assign isolated instances

for each user, and even more cost on additional cache as the percentage of shared files in

the working set is even larger.

Going back to the example in Figure 4.1, one possible strategy for B to reclaim some of

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 52

Database
site A

site B

Cache
(Redis/Memcached)

access

access

fetch

HTTP Req

HTTP Req

Figure 4.1: Typical cache setup for

web servers.

0	

400	

800	

1200	

re
sp
on

se
	
 la
te
nc
y	

(m

s)
	

site	
 A	

site	
 B	

Site A : low load
Site B : low load

Site A : high load
Site B : low load

Figure 4.2: Site B suffers high la-

tency because unfair cache sharing.

its cache backwould be to artificially increase its access rate. While this strategymayhelpB
to improve its performance, it can lead to worse performance overall (e.g., lower aggregate

hit rate). Worse yet, site A may decide to do the same: artificially increase its access rate.

As wewill show in this chapter, this may lead to everyone losing out, i.e., everyone getting

worse performance than when acting truthfully. Thus an allocation policy such as LRU is

not strategy proof, as it does incentivize a site to misbehave to improve its performance.

Furthermore, like with prisoner’s dilemma, sites are incentivized tomisbehave even if this

leads to worse performance for everyone.

While in theoryusersmight be incentivized tomisbehave, a natural question iswhether

they are actually doing so in practice. The answer is “yes", with many real-world exam-

ples being reported in the literature. Previous works on cluster management [111] and

job scheduling [42] have reported that users lie about their resource demands to game the

system. Similarly, in peer-to-peer systems, “free-riding" is a well known and wide spread

problem. In an effort to save bandwidth and storage, “free-riders" throttle their uplink

bandwidth and remove files no longer needed, which leads to decreased overall perfor-

mance [85]. We will show in Section 4.2 that shared files can easily lead to free-riding

in cache allocation. Finally, as mentioned above, cheating in the case of caching is as

easy as artificially increasing the access rate, for example, by running an infinite loop that

accesses the data of interest, or just by making some random access. While some forms of

cheating do incur certain cost or overhead (e.g., CPU cycles, access quota), the overhead

is outweighed by the benefits obtained. On the one hand, a strategic user does not need

many spurious accesses for effective cheating, as we will show in Section 4.6. If a caching

system provides interfaces for users to specify file priorities or evict files in the system,

cheating would be even simpler. On the other hand, many applications’ performances

are bottle-necked at I/O, and trading off some CPU cycles for better cache performance is

worthwhile.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 53

In summary, we argue that any caching allocation policy should provide the following

three properties: (1) isolation-guaranteewhich subsumes performance isolation (i.e., a user

will not be worse off than under static isolation), (2) strategy-proofness which ensures that

a user cannot improve her performance and hurt others by lying or misbehaving, and (3)

Pareto efficiencywhich ensures that resources are fully utilized.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 54

4.2 Pareto Efficiency vs. Strategy Proofness
In this section we show that—under the assumption that the isolation-guarantee prop-

erty holds—there is a strong trade-off between Pareto efficiency and strategy-proofness,

that is, it is not possible to simultaneously achieve both in a caching system where files

(pages) can be shared across users.

Model: To illustrate the above point, in the remainder of this section we consider a

simple model where multiple users access a set of files. For generality we assume each

user lets the cache system know the priorities in which her files can be evicted, either by

explicitly specifying the priorities on the files or based on a given policy, such as LFU or

LRU. For simplicity, in all examples, we assume that all files are of unit size.

Utility: We define each user’s utility function as the expected cache hit rate. Given a

cache allocation, it’s easy to calculate a user’s expected hit rate by just summing up her

access frequencies of all the files cached in memory.

4.2.1 Max-min Fairness
One of the most popular solutions to achieve efficient resource utilization while still

providing isolation is max-min fairness.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 55

FUNC u.access(f) // user u accessing file f
1: if (f ∈ Cache . f ileSet) then
2: return CACHED_DATA;

3: else
4: return CACHE_MISS;
5: end if

FUNC cache(u , f) // cache file f for user u
6: while (Cache .availableSize < f .size) do
7: u1 � users .getUserWithLar gestAlloc();
8: f 1 � u1.getFileToEvict();
9: if (u1 �� u and
10: u.getPriorit y(f 1) > u.getPriorit y(f)) then
11: return CACHE_ABORT;
12: end if
13: Cache . f ileSet .remove(f 1);
14: Cache .availableSize += f 1.size;
15: u.allocSize -= f 1.size;
16: end while
17: Cache . f ileSet .add(f)
18: Cache .availableSize -= f .size;
19: u.allocSize += f .size;
20: return CACHE_SUCCEED;

Algorithm 1: Pseudocode for accessing and cahing a

file under max-min fairness.

In a nutshell, max-min fairness aims to maximize the minimum allocation across all

users. Max-min fairness can be easily implemented in ourmodel by evicting from the user

with the largest cache allocation, as shown in Algorithm 1. When a user accesses a file, f ,
the system checks whether there is enough space available to cache it. If not, it repeatedly

evicts the files of the users who have the largest cache allocation to make enough room

for f . Note that the user from which we evict a file can be the same as the user who is

accessing file f , and it is possible for f to not be actually cached. The latter happens when

f has a lower caching priorit y than any of the other user’s files that are already cached.

At line 10 from Algorithm 1, the user.getPriorit y() is called to obtain priorit y. Note

caching priorit y depends on the eviction policy. In the case of LFU, priorit y represents

file’s access frequency, while in the case of LRU it can represent the inverse of the time

interval since it has been accessed. Similar to access frequency, priorit y need not to be

static, but rather reflects an eviction policy’s instantaneous preference.

If all users have enough demand, max-min fairness ensures that each user will get an

equal amount of cache, and max-min fairness reduces to static isolation. However, if one

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 56

or more users do not use their entire share, the unused capacity is distributed across the

other users.

4.2.2 Shared Files
So far we have implicitly assumed that each user accesses different files. However,

in practice multiple users may share the same files. For example, different users or

applications can share the same libraries, input files and intermediate datasets, or database

views.

The ability to share the same allocation acrossmultiple users is a keydifference between

caching and traditional environments, such as CPU and communication bandwidth, in

which max-min fairness has been successfully applied so far. With CPU and communi-

cation bandwidth, only a single user can access the resource that was allocated to her: a

CPU time slice can be only used by a single process at a time, and a communication link

can be used to send a single packet of a single flow at a given time.

A natural solution to account for shared files is to “charge” each user with a fraction of

the shared file’s size. In particular, if a file is accessed by k users, and that file is cached,

each user will be charged with 1/k of the size of that file. Let fi , j denote file j cached on

behalf of user i, and let k j denote the number of users that have requested the caching of

file j. Then, the total cache size allocated to user i, alloci , is computed as

alloci �
∑

j

size(fi , j)
k j

. (4.1)

Consider a cache that can hold 6 files, and assume three users. User 1 accesses files

A, B, C, . . . user 2 accesses files A, B,D , . . ., and user 3 accesses files F,G, Assuming

that each file is of unit size, the following set of cached files represent a valid max-min

allocation: A, B, C, D, F, and G, respectively. Note that since filesA and B are shared by the

first twousers, each of these users is only chargedwith half of the file size. In particular, the

cache allocation of user 1 is computed as size(A)/2+size(B)/2+size(C) � 1/2+1/2+1 � 2.

The allocation of user 2 is computed in a similarmanner, while allocation of user 3 is simply

computed as size(F) + size(G) � 2. The important point to note here is that while each

user has been allocated the same amount of cache as computed by Eq. 4.1, users 1 and 2

get three files cached (as they get the benefit of sharing two of them), while user 3 gets

only two.

4.2.3 Cheating
While max-min fairness is strategy-proof when users access different files, this is no

longer the case when files are shared. There are two types of cheating that could break

strategy-proofness: (1) Intuitively, when files are shared, a user can “free ride" files that

have been already cached by other users. (2) A thrifty user can choose to cache files that

are shared by more users, as such files are more economic due to cost-sharing.

Free-riding To illustrate “free riding”, consider two users: user 1 accesses files A and

B, and user 2 accesses files A and C. Assume size of cache is 2, and that we can cache

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 57

LEGEND
	

	

	

	

	

	

	

	

	

A

C

5

5

A

B

C

5

5
10

B

50%	

	

100%	

50%	

100%	

	

100%	

	

0%	

	

A

B

C

5

5
10

100%	

	

100%	

	

0%	

	
 true access

free-ride

cheat

blocked

(a)	
 (b)	
 (c)	

Figure 4.3: Example with 2 users, 3 files and total cache size of 2. Numbers represent

access frequencies. (a). Allocation under max-min fairness; (b). Allocation under max-
min fairness when second user makes spurious access (red line) to file C; (c). Blocking

free-riding access (blue dotted line).

a fraction of a file. Next, assume that every user uses LFU replacement policy and that

both users access A much more frequently than the other files. As a result, the system

will cache file A and “charge” each user by 1/2. In addition, each user will get half of

their other files in the cache, i.e., half of file B for user 1, and file B for user 2, as shown in

Figure 4.3(a). Each user gets a cache hit rate of 5 × 0.5 + 10 � 12.51 hits/sec.
Now assume user 2 cheats by spuriously accessing file C to artificially increase its

access rate such that to exceed A’s access rate (Figure 4.3(b)), effectively sets the priorit y
of C higher than B. Since now C has the highest access rate for user 2, while A remains

the most accessed file of user 1, the system will cache A for user 1 and C for user 2,

respectively. The problem is that user 2 will still be able to benefit from accessing file A,

which has already been cached by user 1. At the end, user 1 gets 10 hits/sec, and user 2

gets 15 hits/sec. In this way, user 2 free-rides on user 1’s file A.

Thrifty-cheating To explain the kind of cheatingwhere a user carefully calculates cost-

benefits and then changes file priorities accordingly, we first define cost/(hit/sec) as the
amount of budget cost a user pays to get 1 hit/sec access rate for a unit file. To optimize

over the utility, which is defined as the total hit rate, a user’s optimal strategy is not to cache

the files that one has highest access frequencies, but the ones with lowest cost/(hit/sec).
Compare a file of 100MB, shared by 2 users and another file of 100MB, shared by 5 users.

Even though a user access the former 10 times/sec and the latter only 8 times/sec, it is
overall economic to cache the second file (comparing 5MB/(hit/sec) vs. 2.5MB/(hit/sec)).

The consequence of “thrift-cheating”, however, is more complicated. As it might

appear to improve user and system performance at first glance, it doesn’t lead to an

1
When half of a file is in cache, half of the page-level accesses to the file will result in cache miss.

Numerically, it is the equal to missing the entire file 50% of the time. So hit rate is calculated as access rate

multiplied by percentage cached.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 58

equilibrium where all users are content about their allocations. This can cause users to

constantly game the system which leads to a worse outcome.

In the above examples we have shown that due to another user cheating, one can

experience utility loss. A natural question to ask is, how bad could it be? i.e. What is the

upper bound a user can lose when being cheated? By construction, one can show that for

two-user cases, a user can lose up to 50% of cache/hit rate when all her files are shared and

“free ridden” by the other strategic user. As the free-rider evades charges of shared files,

the honest user double pays. This can be extended to a more general case with n (n > 2)

users, where loss can increase linearly with the number of cheating users. Suppose that

cached files are shared by n users, each user pays
1

n of the file sizes. If n − 1 strategic users

decide to cache other files, the only honest user left has to pay the total cost. In turn, the

honest user has to evict at most (
n−1

n) of her files to maintain the same budget.

It is also worth mentioning that for many applications, moderate or even minor cache

loss can result in drastic performance drop. For example, in many file systems with

overall high cache hit ratio, the effective I/O latency with caching could be approximated

as TIO � RatiomissLatenc ymiss . A slight difference in the cache hit ratio, e.g. from 99.7%

to 99.4%, means 2× I/O average latency drop! This indeed necessitates strategy-proofness

in cache policies.

4.2.4 Blocking Access to Avoid Cheating
At the heart of providing strategy-proofness is this question of how free-riding can be

prevented. In the previous example, user 2 was incentivized to cheat because she was

able to access the cached shared files regardless her access patterns. Intuitively, if user 2

is blocked from accessing files that she tries to free-ride, she will be dis-incentivized to

cheat.

Applying blocking to our previous example, user 2 will not be allowed to access A,

despite the fact that user 1 has already cached A (Figure 4.3(c)). The system blocks user

2 but not user 1 because user 1 is the sole person who pays the cache. As a result, user 2

gets only 1 cache size with a less important file C.

As wewill show in Section 4.4 this simple scheme is strategy-proof. On the other hand,

this scheme is unfortunately not Pareto efficient by definition, as the performance (utility)

of user 2 can be improved without hurting user 1 by simply letting user 2 access file A.

Furthermore, note that it is not necessary to have a user cheating to arrive at the

allocation in Figure 4.3. Indeed, user 2 can legitimately access file C at a much higher

rate than A, In this case, we get the same allocation—file A is cached on behalf of user 1

and file C is cached on behalf of user 2—with no user cheating. Blocking in this case will

reduce the system utilization by punishing a well-behaved user.

Unfortunately, the cache system cannot differentiate between a cheating and a well-

behaved user, so it is not possible to avoid the decrease in the utilization and thus the

violation of Pareto efficiency, even when every user in the system is well-behaved.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 59

Thus, in the presence of shared files, with max-min fairness allocation we can achieve

either Pareto efficiency or strategy-proofness, but not both. In addition, we can trade

between strategy-proofness and Pareto efficiency by blocking a user from accessing a

shared file if that file is not in the user’s cached set of files, even though that file might

have been cached by other users.

In Section 4.4, we will show that this trade-off is more general. In particular, we

show that in the presence of file sharing there is no caching allocation policy that can

achieve more than two out of the three desirable properties: isolation-guarantee, strategy-

proofness, and Pareto efficiency.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 60

File	
 j	
 cached?	

	
 By	
 user	
 i	
 ?	
 Yes	

No	
 cache_miss	

cache_hit	
 Yes	

No	
 	
 rand	
 <	
 	

Yes	

No	
 cache_miss	

cache_hit	
 User	
 i	
 	

accesses	

file	
 j	

1
nj +1

?	

wait	
 	

Delay
nj +1
,return	
 data	

Figure 4.4: With FairRide, a user might be blocked to access a cached copy of file if the

user does not pay the storage cost. The blue box shows how this can be achieved with

probabilistic blocking. In system implementation, we replace the blue box with the purple

box, where we instead delay the data response.

4.3 FairRide
In this section, we describe FairRide, a caching policy that extends max-min fairness

with probabilistic blocking. Different from max-min fairness, FairRide provides isolation-

guarantee and strategy-proofness at the expense of Pareto-efficiency. We use expected
delaying to implement the conceptual model of probabilistic blocking, due to several system

considerations.

Figure 4.4 shows the control logic for a user i accessing file j under FairRide. We will

compare it with the pseudo-code of max-min fairness, Algorithm 1. In max-min, a user i
can directly access a cached file j, as long as j is cached in memory. While with FairRide,

there is an chance that the user might get blocked for accessing the cached copy. This

is key to making FairRide strategy-proof and the only difference with max-min fairness,

which we prove in Section 4.4. The chance of blocking is not an arbitrary probability, but

is set at
1

n j+1
, where n j is the number of other users caching the file. We will prove in

Section 4.4 that this is the only and minimal blocking probability setting that will make a

FairRide strategy-proof.

Consider again the example in Figure 4.3. If user 2 cheats and makes spurious access

to file C, file A will be cached on behalf of user 1. In that case, FairRide recognizes user 2 as

a non-owner of the file, and user 2 has
1

2
chance to access directly from the cache. So user

2’s total expected hit rate becomes 5+10× 1

2
� 10, which is worse than 12.5 before without

cheating. In this way, FairRide discourages cheating and makes the policy strategy-proof.

4.3.1 Expected Delaying
In real systems, probabilistic blocking couldnot thoroughly solve theproblemof cheating,

as now a strategic user can make even more accesses in hope that one of the accesses is

not blocked. For example, if a user is blocked with a probability of
1

2
, he can make

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 61

three accesses so to reduce the likelihood of being blocked to
1

8
. In addition, blocking

itself is not an ideal way to implement in a system as it further incurs unnecessary I/O

operations (disk, network) for blocked users. To address this problem, we introduce

expected delaying to approximate the expected effect of probabilistic blocking. When a user

tries to access an in-memory file that is cached by other users, the system delays the data

response with certain wait duration. The wait time should be set as the expected delay

a user would experience if she’s probabilistically blocked by the system. In this way, it

is impossible to get around the delaying effect, and the system does not have to issue

additional I/O operations. The theoretically equivalent wait time could be calculated as

twait � Dela ymem × (1 − pblock) + Dela ydisk ,network × pblock , where pblock is the blocking

probability as described above, and Dela yx being the access latency of medium x. As

memory access latency is already incurred during data read time, we simply set the wait

time to be Dela ydisk ,newtwork × pblock . We will detail how we measure the secondary

storage delay in Section 4.5.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 62

4.4 Analysis
In this section, we prove that the general trade-off between the three properties is

fundamental with existence of file sharing. Next in Section 4.4.2, we also show by proof

that FairRide indeed achieves strategy-proof and isolation-guarantee, and that FairRide

uses most efficient blocking probability to achieve strategy-proofness.

4.4.1 The SIP theorem
We state the following SIP theorem: With file sharing, no cache allocation policy can satisfy

all three following properties: strategy-proofness (S), isolation-guarantee (I) and Pareto-efficiency
(P).

Proof of the SIP theorem
The three properties are defined as in Section 1.4, and we use total hit rate as the perfor-

mancemetric. Reusing the example setup in Figure 4.3(a), we nowexamine a generalpolicy
P. The only assumption of P is that P satisfies isolation-guarantee and Pareto-efficiency,

and we shall prove that such policy P must not be strategy-proof, i.e. a user can cheat to

improve under P. We start with the case when no user cheats for Figure 4.3(a). Let y1, y2

be user 1 and 2’s total hit rate:

y1 � 10xA + 5xB (4.2)

y2 � 10xA + 5xC (4.3)

Where xA, xB, xC are fractions of the each file A, B, C cached in memory.2 Because

xA + xB + xC � 2, and y1 + y2 � 15xA + 5(xA + xB + 5xc), it’s impossible for y1 + y2 > 25,

or, for both y1 and y2 to be greater than 12.5. As the two users have symmetric access

patterns, we assume y2 < 12.5 without loss of generality.

Now if user 2 cheats and increases her access rate of file C to 30, we can prove that she

can get a total rate of 13.3, or y2 > 13.3. This is partly because the system has to satisfy a

new isolation guarantee:

y′
2
� 10xA + 30xC > 30 (4.4)

It must hold that xC > 2

3
, because xA ≤ 1. Also, because xC ≤ 1 and xA+xB+xC � 2, we

have xA+xB ≥ 1 to achieve Pareto-efficiency. For the same reason, xA � 1 is also necessary

as it’s strictly better to cache file A over file B for both users. Plugging xA � 1, xC > 2

3
back

to user 2’s actual hit rate calculation (Equation 4.3), we get y2 > 13.3.
So far, we have found a cheating strategy for a user 2 to improve her cache performance

and hurt the other user. This is done under a general policy P that assumes only isolation-

guarantee and Pareto-efficiency but nothing else. Therefore, we can conclude that any

policy P that satisfies the two properties cannot achieve strategy-proofness. In other

2
Weuse fractions only for simplifying the proof. The theorem holdswhenwe can only cache a file/block

in its entirety.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 63

words, no policy can achieve all three properties simultaneously. This ends the proof for

the SIP theorem.

4.4.2 FairRide Properties
We now examine FairRide (as described in Section 4.3) against three properties.

Theorem FairRide achieves isolation-guarantee.
Proof Even if FairRide does complete blocking, in which each user gets strictly less mem-

ory cache, the amount of cache a user accesses is: Cachetotal �
∑

j size(f ile j), j for all
the files the user caches. Because FairRide splits the charges of shared files across all

users, a user’s allocation budget is spent up by: Alloc �
∑

j
size(f ile j)

n j
, with n j being the

number of users sharing f ile j . Combining the two equations we can easily derive that

Cachetotal > Alloc. As Alloc is also what a user can get in isolation, we can conclude that

the amount of memory a user can access is always bigger than isolation. Likewise, we can

prove the total hit rate user gets with FairRide is greater than isolation.

Theorem FairRide is strategy-proof.
ProofWewill sketch the proof using cost-benefit analysis, following the line of reasoning

in Section 4.2.3. With probabilistic blocking, a user i can access a file j without caching

it with a probability of

n j
n j+1

. This means that the benefit resulted from caching is the

increased_rate, equal to f reqi j
1

n j+1
. The cost is

1

n j+1
for the joining user, with n j other

users already caching it. Dividing the two, the benefit-cost ratio is equal to f reqi j , user i’s
access frequency of file j. As a user is incentivized to cache files based on the descending

order of benefit-cost ratio, this results in caching files based on actual access frequencies,

rather than cheating. In other words, FairRide is incentive-compatible and allows users to

perform truth-telling.

Theorem FairRide’s uses lower-bound blocking probabilities for achieving strategy-proofness.
Proof Suppose a user has 2 files: f j , fk with access frequencies of f req j and f reqk . We

use p j and pk to denote the corresponding blocking probabilities if the user chooses not

to cache the files. Then the benefit-cost ratios for the two files are f req jp j(n j + 1) and
f reqk pk(nk + 1), n j and nk being the numbers of other users already caching the files. For

the user to be truth-telling for whatever f req j , f reqk , n j or nk , we must have

p j
pk

�
nk+1

n j+1
.

Now p j and pk can still be arbitrarily small or big, but note p j(pk) must be 1 when n j(nk)
is 0, as no user is caching file f j(fk). Putting p j � 1, n j � 0 into the equation we will have

pk �
1

nk+1
. Similarly, p j �

1

n j+1
. Thus we show that FairRide’s blocking probabilities are

the only probabilities that can provide strategy-proofness in the general case (assuming

any access frequencies and sharing situations). The only probabilities are also the lower-

bound probabilities.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 64

4.5 Implementation
FairRide is evaluated through both system implementation and large-scale trace sim-

ulations. We have implemented FairRide allocation policy on top of Tachyon [62], a

memory-centric distributed storage system. Tachyon can be used as a caching system and

it supports in-memory data sharing across different cluster computation frameworks or

applications, e.g. multiple Hadoop Mapreduce [8] or Spark [119] applications.

Users and Shares Each application running on top of Tachyon with FairRide allocation

has a FairRide client ID. Shares for each user can be configured. When shares are changed

during system uptime, cache allocation is re-allocated over time, piece by piece, by evict-

ing files from the user who uses most atop of her share, i.e., ar gmaxi(Alloci − Capacit y ∗
Sharei), thus converging to the configured shares eventually.

Pluggable Policy Because FairRide obeys each user’s individual caching preferences, it

can apply a two-level cache replacement mechanism. It first picks the user who occupies

the most cache in the system, and then finds the least preferred file from that user to evict.

This naturally enables “pluggable policy”, allowing each user to pick a replacement policy

best fit for her workload. Note this would not be possible for some global policies such as

global LRU. A user’s more frequently accessed file could be evicted by a less frequently

accessed file just because the first file’s aggregate frequency across all users is lower than

the second file. We’ve implemented “pluggable policy” in the system and expose a simple

API for applications to pick best replacement policy.

Client.setCachePolicy(Policy.LRU)
Client.setCachePolicy(Policy.LFU)
Client.pinFile(fileId)

Currently, our implementation of FairRide supports LRU (Least-Recently-Used) and

LFU (Least-Frequently-Used), as well as policies that are more suited for data-parallel an-

alytics workloads, e.g. LIFE or LFU-F that preserves all-or-nothing properties for cached

files [6]. Another feature FairRide supports is “pinned files”. Through a pinfile(fileId)
API, a user can override the replacement policy and prioritize specified files.

Delaying The key to strategy-proofness in implementing FairRide is to emulate probabilis-
tic blocking by delaying the read of a file which a user didn’t cache before. Thus the amount

of wait time has to approximate the wait time as if the file is not cached, for any type of

read. We implement delaying by simply sleeping the thread before giving a data buffer

to the Tachyon client. The delay time is calculated by

size(bu f f er)
BWdisk

, with BWdisk being the

pre-measured disk bandwidth on the node, and size(bu f f er) being the size of the data

buffer sent to the client. The measured bandwidth is likely an over-estimate of run-time

disk bandwidth due to I/O contention when system is in operation. This causes shorter

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 65

delay, higher efficiency, and less strategy-proofness, though a strategic user should gain

very little from this over-estimate.

Node-based Policy Enforcement
Tachyon is a distributed system comprised of multiple worker nodes. We enforce

allocation policies independently at each node. This means that data is always cached

locally at the node when being read, and that when the node is full, we evict from the user

who uses up most memory on that node. This scheme allows a node to select an evicting

user and perform cache replacement without any global coordination.

The lack of global coordination can incur some efficiency penalty, as a user is only

guaranteed to get at least 1/n-th of memory on each node, but not necessarily 1/n-th of

total memory across the cluster. This happens when users have access skew across nodes.

To give an example, suppose a cluster of two nodes, each with 40GB memory. One user

has 30GB frequently accessed data on node 1 and 10GB on node 2, and another user has

10GB frequently accessed data on node 1 and 30GB on node 2. Allocating 30GB on node

1 and 10GB on node 2 to the first user will outperform a 20 to 20 even allocation on each

node, in terms of hit ratio for both users. Note that such allocation is still fair globally –

each user gets 40GB memory in total. Our evaluation results in Section 4.6.6 will show

that node-based scheme is within 3%∼4% compared to global fairness, because of the

self-balance nature of big data workloads on Tachyon.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 66

4.6 Experimental Results
We evaluated FairRide using both micro- and macro-benchmarks, by running EC2

experiments on Tachyon, as well as large-scale simulations replaying production work-

loads. The number of users in the workloads varies from 2 to 20. We show that while

non-strategy-proof policies can cause everybody worse-off by a large margin (1.9×), Fair-
Ride can prevent user starvation within 4% of global efficiency. It is 2.6× better than

isolated caches in terms of job time reduction, and gives 27% higer utilization compared

to max-min fairness.

We start by showing how FairRide can dis-incentivize cheating users by blocking them

from accessing files that they don’t cache, in Section 4.6.1. In Section 4.6.2, we compare

FairRide against a number of schemes, including max-min fairness using experiments on

multiple workloads: TPC-H, YCSB and a HDFS production log. Section 4.6.3 and Section

4.6.4 demonstrate FairRide’s benefits with multiple users and pluggable policies. Finally,

in Section 4.6.5, we use Facebook traces that are collected from a 2000-nodeHadoop cluster

to evaluate the performance of FairRide in large-scale clusters.

4.6.1 Cheating and Blocking
In this experiment, we illustrate howFairRide can prevent a user from cheating. We ran

two applications on a 5-node Amazon EC2 cluster. The cluster contains one master node

and four worker nodes, each configured with 32GB memory. Each application accessed

1000 data blocks (128MB each), among which 500 were shared. File access complied with

Zipf distribution. We assumed users knew a priori which files are shared, and could cheat

by making excessive accesses to non-shared files. We used LRU as cache replacement

policy for this experiment.

We ran the experiment under two different schemes, max-min fair allocation (Figure

4.5(a)) and FairRide (Figure 4.5(b)). Under both allocations, the two users got similar aver-

age block response time (226ms under max-min, 235ms under FairRide) at the beginning

(t < 300s). For max-min fair allocation, when user 2 started to cheat at t � 300s, she
managed to lower her miss ratio over time (∼130ms), while user 1 got degraded perfor-

mance with 380ms. At t � 750s, user 1 also started to cheat and both users stayed at high

miss ratio (315ms). In this particular case, there was strong incentive for both the users

to cheat at any point of time because cheating could always decrease the cheater’s miss

ratio (226ms→130ms,380ms→315ms). Unfortunately, both users get worse performance

compared to not cheat all. Such a prisoner’s dilemna would not happen with FairRide

(Figure 4.5(a)). When user 2 cheated at t � 300s, her response time instead increases to

305ms . Because of this, both users would rather not cheat under FairRide and behave

truthfully.

4.6.2 Benchmarks with Multiple Workloads
Now we evaluate FairRide by running three workloads on a EC2 cluster.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 67

0

100

200

300

400

500

0 150 300 450 600 750 900 1050

Av
g.

 re
sp

on
se

 (m
s)

Time (s)

user 1
user 2

user	
 2	
 cheats	

user	
 1	
 cheats	

(a) Max-min fair allocation

0

100

200

300

400

500

0 150 300 450 600 750 900 1050

Av
g.

 re
sp

on
se

 (m
s)

Time (s)

user 1
user 2

user	
 2	
 cheats	

user	
 1	
 cheats	

(b) FairRide

Figure 4.5: Miss ratio for two users. At t � 300s, user 2 started cheating. At t � 700s, user
1 joined cheating.

• TPC-H The TPC-H benchmark [107] is a set of decision support queries based on

those used by retailers such as Amazon. The queries can be separated into two

main groups: a sales-oriented group and a supply-oriented group. These two

groups of queries have some separate tables, but also share common tables such

as those maintaining inventory records. We treated two query groups as from two

independent users.

• YCSB The Yahoo! Cloud Serving Benchmark provides a framework and common

set of workloads for evaluating the performance of key-value serving stores. We

implemented a YCSB client and ran multiple YCSB workloads to evaluate FairRide.

We let half of files to be shared across users.

• ProductionClusterHDFSLogTheHDFS log is collected from aproductionHadoop

cluster at a large Internet company. It contains detailed information such as access

timestamps and access user/group information. We found that more than 30% of

files are shared by at least two users.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 68

We ran each workload under the following allocation schemes: 1) isolation: statically
partition the memory space across users; 2) best-case: i.e. max-min fair allocation and

assume no user cheats; 3) FairRide: our solution which uses delaying to prevent cheating;

4) max-min : max-min fair allocation with half users trying to game the system. We used

LRU as the default cache replacement algorithm for all users and assumed cheating users

know what files are shared.

We focus on three questions: 1) does sharing the cache improve performance signifi-

cantly? (comparing performance gain over isolation) 2) can FairRide prevent cheating with

small efficiency loss? (comparing FairRidewith best-case) 3) does cheating degrade system

performance significantly? (comparing FairRide with max-min).
To answer these questions, we plot the relative gain of three schemes compared to

isolation, as shown in Figure 4.6. In general, we find sharing the cache can improve

performance by 1.3∼3.1×, with best-case. If users cheat, 15%∼220% of the gain will be lost.

For the HDFS workload, we also observe that cheating causes a performance drop below

isolation. While FairRide is very close to best-case with 3%∼13% overhead, it prevents the

undesirable performance drop.

There are other interesting observations to note. First of all, the overhead of FairRide,

is more noticeable in the YCSB benchmark and TPC-H than in the HDFS trace. We find

that this is because the most shared files in the HDFS prodcution trace are among the top

accessed files for both users. Therefore, both users would cache the shared files, resulting

in less blocking/delaying. Secondly, cheating user benefits less in the HDFS trace, this is

due to fact that the access distribution across files are highly long tailed in that trace,

so that even cheating help user gain more memory, it doesn’t show up significantly in

terms of miss ratio. Finally, there is a varied degree of connection between miss ratio and

application performance (read latency, query time), e.g., YCSB’s read latency is directly

linked to miss ratio change, while TPC-H’s query response time is relatively stable. This

is because, for the latter, a query typically consists of multiple stages of parallel tasks. As

the completion time of a stage is decided by the slowest task, caching could only help

when all tasks speed up. Therefore, a caching algorithm that can provide all-or-nothing

caching for parallel tasks is needed to speed up query response time. We evaluated the

Facebook trace with such a caching algorithm in Seciton 4.6.5.

4.6.3 Many Users
We want to understand how the effect of cheating relates to the number of active

users in the system. In this experiment, we replay YCSB workloads with 20 users, where

each pair of users have a set of shared files that they access commonly. Users can cheat

by making excessive access to their private files. We increase the number of strategic

users in different runs and plot the average miss ratio for both the strategic user group

and the truthful user group in Figure 4.7. As expected, the miss ratio of the truthful

group increases when there is a growing number of strategic users. What’s interesting is

that for the strategic group, the benefit they can exploit decreases as more and more users

joining the group. With 12 strategic users, even the strategic group hasworse performance

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 69

0	

1	

2	

3	

Pe

rf
.	
 g
ai
n	

ov
er
	
 is
ol
a&

on
	
 Best-­‐case	
 FairRide	
 Max-­‐min	

TPC-­‐H	

Query	
 Time	

HDFS	

Latency	

YCSB	

Latency	

+120%	

+170%	

Figure 4.6: Summary of performance results for three workloads, showing the gain com-

pared to isolated caches.

10	

30	

50	

70	

90	

0	
 1	
 5	
 10	
 15	
 20	

Av
g.
	
 m

iss
	
 ra

2o
	
 (%

)	

No.	
 of	
 strategic	
 users	
 (out	
 of	
 20)	

strategic	
 users	

other	
 users	

52	

67	
 71	
 73	
 74	

16	
 22	

42	

57	
 50	

Figure 4.7: Average miss ratios of cheating users and non-cheating users, when there are

multiple cheaters.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 70

compared to the no-cheater case. Eventually both groups converge at a miss ratio of 74%.

4.6.4 Pluggable Policies
Next, we evaluated the benefit of allowing pluggable policies. We ran three YCSB

clients concurrently with each client running a different workload. The characteristics of

the three workloads are summarized below:

User ID Workload Distribution Replacement
1 YCSB(a) zipfian LFU

2 YCSB(d) latest-most LRU

3 YCSB(e) scan priority 3

In the experiment, each YCSB client sets up the best replacement specified in the above

table with the system. We compared our system with traditional caching systems that

support only configuration of one uniform replacement policy, applied to all users. We

ran the system with uniform configuration three times, each time with a different policy

(LRU, LFU and priority). As shown in Figure 4.8, by allowing the users to specify a best

replacement policy on their own, our system is able to provide gain of the best case for

each of the user among all uniform configurations.

4.6.5 Facebook workload
Our trace-driven simulator performed a detailed and faithful replay of a task-level

trace of Hadoop jobs collected from a 2000-node cluster from Facebook during the week

of October 2010. Our replay preserved read and write sizes of tasks, locations of input

data as well as job characteristics of failures, stragglers.

To make the effect of caching relevant to job completion time, we also use LIFE and

LFU-F from PACMan [6] as cache replacement policies. These policies performed all-
or-nothing cache replacement for files and can improve job completion time better than

LRU or LFU, as it speeds all concurrent tasks in one stage [6]. In a nutshell, LIFE evicts

files based on largest-incomplete-file-first eviction, and LFU-F is based on least-accessed-

incomplete-file-first. We also set each node in the cluster with 20Gb of memory so miss

ratio was around 50%. The conclusion would hold for a wider range of memory size.

Weadopted amore advancedmodel of cheating in this simulation. Insteadof assuming

users know what files are shared a priori, a user cheats based on the cached files she

observes in the cluster. For example, for a non-blocking scheme such as max-min fairness,

a user can figure out what shared files are cached by other users by continuously probing

the system. She would avoid sharing the cost of those files and only cache files for her

own interest.

3
Priority replacement means keeping a fixed set of files in cache. Not the best policy here, but still better

than LFU and LRU for the scan workload.

4
Effective miss ratio. For FairRide, we count a delayed access as a “fractional” miss, with the fraction

equal to the blocking probability, so we can effectively compare miss ratio between FairRide and other

schemes.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 71

Table 4.1: Summary of simulation results on reduction in job completion time, cluster

efficiency improvement and hit ratio under different scheme, with no caching as baseline.

job time cluster eff. eff. miss%4

u1 u2 u1 u2 u1 u2

isolation 17% 15% 23% 22% 68% 72%

global 54% 29% 55% 35% 42% 60%

best-case 42% 41% 47% 43% 48% 52%

max-min 30% 43% 35% 47% 63% 46%

FairRide 39% 40% 45% 43% 50% 55%

Caching improves overall performance of the system. Table 4.1 provides a summary

of reduction in job completion time and improvement in cluster efficiency (total task run-

time reduction) compared to a baseline with no caching, as well as miss ratio numbers.

Similar to previous experiments, isolation gave lowest gains for both users and global
improved users unevenly (compared to best-case). FairRide suffered minimal overhead of

blocking (2% and 3% in terms of miss ratio compared to best-case, 4% of cluster efficiency)

but could prevent cheating of user 2 that can potentially hurt user 1 by 15% in terms of

miss ratio. Similar comparisons were observed in terms of job completion and cluster

efficiency, FairRide can outperform max-min by 27% in terms of efficiency and has 2.6×
more improvement over isolation.

Figure 4.9 also shows the reduction in job completion time across all users, plotted in

median completion time (a) and 95 percentile completion time (b) respectively. FairRide

preserved better overall reduction compared to max-min. This was due to the fact that

marginal improvement of the cheating user was smaller than the performance drop of

the cheated. FairRide also prevented cheating from greatly increasing the tail of job

completion time (95 percentile) as the metric was more dominated by the slower user. We

also show the improvement of FairRide under different cache policies in (c) and (d).

4.6.6 Comparing Global FairRide
How much performance penalty does node-based FairRide suffer compared to global

FairRide, if any? To answer this question, we ran another simulation with the Facebook

trace to compare against two global FairRide schemes. The two global schemes both select

a evicting user based on users’ global usage, but differ in how they pick evicting blocks: a

“naive” global scheme chooses from only blocks on that node, similar to the node-based

approach, and an “optimized” global scheme chooses from any user blocks in the cluster.

We use LIFE as the replacement policy for both users.

As we find out, the naive global scheme has a great performance drop (23%∼25%
improvement difference compared to node-based FairRide), noticeably in Table 4.2. This

is due to the fact that the naive scheme is unable to allocate in favor of frequently accessing

user per node. With the naive global scheme, memory allocations on each node quickly

stabilizes based on initial user accesses. A user can get an unnecessarily large portion of

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 72

Table 4.2: Comparing against global schemes. Keep total memory size as constant while

varying the number of nodes in the cluster. Showing improvement over no cache as in the

reduction in median job completion time.

Cluster size 200 500 1000
Node-based FairRide 51% 44% 41%

Global FairRide, Naive 25% 21% 17%

Global FairRide, Optimized 54% 47% 44%

memory on a node because she accesses data earlier than the other, although her access

frequency on that node is low in general. The optimized global scheme fixes this issue

by allowing a user to evict least preferred data in the whole cluster and it makes sure the

1/n-th of memory allocated must store her most preferred data. We observe an increase

of average hit ratio by 24% with the optimized scheme, which reflects the access skew

for the underlying data. What’s interesting is that the optimized global scheme is only

3%∼4% better than node-based scheme in terms of job complete time improvement. In

addition to the fact data skew is not huge (considering 24% increase for hit ratio), the

all-or-nothing property of data-parallel caching again comes into play. Global scheme on

average increases the number of completely cached files by only 7%, and because now

memory allocation is skewed across the cluster, there is an increased chance that tasks

cannot be scheduled to co-locate with cached data, due to CPU slot limitation. Finally, we

also observe that as the number of nodes increases (while keeping the total CPU slots and

memory constant), there is a decrease in improvement in all three schemes, due to less

tasks can be scheduled with cache locality.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 73

0	

25	

50	

75	

100	

LFU	
 LRU	
 Priority	
 Pluggable	

eff
.	
 m

iss
	
 ra

;o
	
 (%

)	
 user1	

user2	

user3	

(a) Effective Miss Ratio

0	

0.25	

0.5	

0.75	

1	

LFU	
 LRU	
 Priority	
 Pluggable	

Av
g.
	
 la
te
nc
y	

(s
ec
)	
 user1	

user2	

user3	

(b) Average Latency

0	

10	

20	

30	

40	

LFU	
 LRU	
 Priority	
 Pluggable	

Th
ro
ug
hp

ut
	
 (o

ps
/s
/n
od

e)
	

user1	

user2	

user3	

(c) Throughput

Figure 4.8: Pluggable policies.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 74

0	

15	

30	

45	

60	

1-­‐10	
 11-­‐50	
 51-­‐100	
 101-­‐500	
 501-­‐	

Re
dc
u.

on
	
 in
	
 M

ed
ia
n	

Jo
b	

Ti
m
e	

(%

)	

Bin	
 (#Tasks)	

max-­‐min	

FairRide	

(a) Median, w/ LIFE

0	

15	

30	

45	

60	

1-­‐10	
 11-­‐50	
 51-­‐100	
 101-­‐500	
 501-­‐	
 Re
dc
u.

on
	
 in
	
 9
5	

%
-­‐.
le
	

Jo
b	

Ti
m
e	

(%

)	

Bin	
 (#Tasks)	

max-­‐min	

FairRide	

(b) 95%-tile, w/ LIFE

0	

10	

20	

30	

40	

50	

1-­‐10	
 11-­‐50	
 51-­‐100	
 101-­‐500	
 501-­‐	

Re
du

c.
on

	
 in
	
 M

ed
ia
n	

	

Jo
b	

Ti
m
e	

(%

)	

Bin	
 (#Tasks)	

LRU	
 LFU	

LIFE	
 LFU-­‐F	

(c) Median, w/ FairRide

0	

10	

20	

30	

40	

50	

1-­‐10	
 11-­‐50	
 51-­‐100	
 101-­‐500	
 501-­‐	

Re
du

c.
on

	
 in
	
 9
5%

	

Jo
b	

Ti
m
e	

(%

)	

Bin	
 (#Tasks)	

LRU	
 LFU	

LIFE	
 LFU-­‐F	

(d) 95%-tile, w/ FairRide

Figure 4.9: Overall reduction in job completion time for Facebook trace.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 75

4.7 Related Works
Management of shared resources has always been been an important subject. Over

the past decades, researchers and practitioners have considered the sharing of CPU [112,

20, 106, 113] and network bandwidth [68, 14, 30, 46, 99, 105], and developed a plethora

of solutions to allocate and schedule these resources. The problem of cache allocation

for better isolation, quality-of-service [58] or attack resilience [73] has also been studied

under various contexts, including CPU cache [59], disk cache [83] and caching in storage

systems [100].

One of the most popular allocation policies is fair sharing [27] or max-min fairness [65,
19]. Due to the nice properties, it has been implemented using various methods, such

as round-robin, proportional resource sharing [112] and fair queuing [29], and has been

extended to support multiple resource types [42] and resource constraints [41]. The key

differentiator for our work from the ones mentioned above, is that we consider shared

data. None of the works above identifies the impossibility of three important properties

with shared files.

There are other techniques that have been studied to provide fairness and efficiency of

shared cache. Prefetching of data into the cache before access, either through hints from

applications [83] or predication [43], can improve the overall system efficiency. Profiling

applications [59] is useful for provding application-sepcific information. We view these

techniques as orthogonal to our work. Other techniques such as throttling access rate

requires the system to identify good thresholds.

CHAPTER 4. FAIR SHARING FOR ELASTIC MEMORY 76

4.8 Summary
In this chapter, we study the problem of cache allocation in a multi-user environment.

We show that with data sharing, it is not possible to find an allocation policy that achieves

isolation-guarantee, strategy-proofness and Pareto-efficiency simultaneously. We propose

a new policy called FairRide. Unlike previous policies, FairRide provides both isolation-

guarantee (so auser gets better performance thanon isolated cache) and strategy-proofness

(so users are not incentivized to cheat), by blocking access from cheating users. We pro-

vide an efficient implementation of the FairRide system and show that in many realistic

workloads, FairRide can outperform previous policies when users cheat. The two nice

properties of FairRide come at the cost of Pareto-efficiency. We also show that FairRide’s

cost is within 4% of total efficiency in some of the production workloads, when we con-

servatively assume users don’t cheat. Based of the appealing properties and relatively

small overhead, we believe that FairRide can be a practical policy for real-world cloud

environments.

77

Chapter 5

Conclusion

In a world where more and more decisions are driven by data, virtually everyone

requires large processing power to analyze their data. In this world, elastic provisioning

and sharing of compute and storage resources become inevitable. In the past, the cloud

has taught us two great lessons to achieve this vision: resource multiplexing and resource

disaggregation. We argue that both multiplexing and disaggregation have to be more

aggressive to accommodate the growing needs, as exemplified by the growing popularity

of serverless computing. In this dissertation, we show that one can build general analytics

systems on top of a serverless infrastructure. In addition, we develop techniques that

help achieve more aggressive multiplexing (by allowing fair sharing on memory) and

more aggressive disaggregation (by providing a storage solution that supports serverless

shuffle operations). We hope our results can be a stepping stone for more great works in

the space.

78

Bibliography

[1] Martín Abadi et al. “TensorFlow: A system for large-scale machine learning”. In:

OSDI. 2016.
[2] Amazon ElastiCache. https://aws.amazon.com/elasticache/.
[3] G. Ananthanarayanan et al. “Reining in the Outliers inMap-Reduce Clusters using

Mantri”. In: Proc. OSDI. 2010.
[4] Ganesh Ananthanarayanan et al. “Disk-locality in datacenter computing consid-

ered irrelevant”. In: HotOS. 2011.
[5] Ganesh Ananthanarayanan et al. “GRASS: Trimming Stragglers in Approximation

Analytics”. In: NSDI. 2014.
[6] Ganesh Ananthanarayanan et al. “PACMan: coordinated memory caching for par-

allel jobs”. In: NSDI’12.
[7] Ganesh Ananthanarayanan et al. “Reining in the Outliers in Map-reduce Clusters

Using Mantri”. In: OSDI. 2010.
[8] Apache Hadoop. http://hadoop.apache.org/.
[9] Krste Asanovic and D Patterson. “Firebox: A hardware building block for 2020

warehouse-scale computers”. In: FAST. 2014.
[10] Amazon Athena. http://aws.amazon.com/athena/.
[11] Serverless Reference Architecture: MapReduce. https : / / github . com / awslabs /

lambda-refarch-mapreduce.

[12] Azure Cache - Redis cache cloud service. http://azure.microsoft.com/en-us/
services/cache/.

[13] Azure Blob Storage Request Limits. https://cloud.google.com/storage/docs/
request-rate.

[14] Jon CR Bennett and Hui Zhang. “WF2Q: worst-case fair weighted fair queueing”.

In: INFOCOM’96.
[15] Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/.
[16] Google BigQuery. https://cloud.google.com/bigquery/.

BIBLIOGRAPHY 79

[17] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. “Database Architecture

Optimized for the New Bottleneck: Memory Access”. In: VLDB. 1999.
[18] John Canny and Huasha Zhao. “Big data analytics with small footprint: Squaring

the cloud”. In: KDD. 2013.

[19] Zhiruo Cao and EllenW Zegura. “Utility max-min: An application-oriented band-

width allocation scheme”. In: INFOCOM’99.
[20] BogdanCaprita et al. “GroupRatioRound-Robin:O (1)Proportional Share Schedul-

ing for Uniprocessor and Multiprocessor Systems.” In: ATC’05.
[21] Nicholas Carriero and David Gelernter. “Linda in Context”. In: CACM 32.4 (Apr.

1989).

[22] M. Chowdhury and I. Stoica. “Coflow: A Networking Abstraction for Cluster Ap-

plications”. In: Proc. HotNets. 2012, pp. 31–36.
[23] Mosharaf Chowdhury and Ion Stoica. “Coflow: A Networking Abstraction for

Cluster Applications”. In: HotNets. 2012.
[24] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. “Efficient Coflow Scheduling

with Varys”. In: SIGCOMM. 2014.

[25] Shumo Chu, Magdalena Balazinska, and Dan Suciu. “From Theory to Practice:

Efficient Join Query Evaluation in a Parallel Database System”. In: SIGMOD. 2015.

[26] cloudpickle: Extended pickling support for Python objects. https : / / github . com /
cloudpipe/cloudpickle.

[27] Jon Crowcroft and Philippe Oechslin. “Differentiated end-to-end Internet services

using a weighted proportional fair sharing TCP”. In: SIGCOMM CCR, 1998 ().
[28] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on

Large Clusters”. In: Proc. OSDI (2004).
[29] A. Demers, S. Keshav, and S. Shenker. “Analysis and Simulation of a Fair Queueing

Algorithm”. In: SIGCOMM’89.
[30] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and simulation of

a fair queueing algorithm”. In: SIGCOMM CCR, 1989.
[31] Matthĳs Douze et al. “Evaluation of gist descriptors for web-scale image search”.

In: ACM International Conference on Image and Video Retrieval. 2009.
[32] Eric Jonas, Qifan Pu, ShivaramVenkataraman, Ion Stoica, BenjaminRecht. “Occupy

the Cloud: Distributed Computing for the 99%”. In: SoCC. 2017.
[33] Vladmir Estivill-Castro and Derick Wood. “A Survey of Adaptive Sorting Algo-

rithms”. In: ACM Comput. Surv. (1992).
[34] IEEE P802.3ba, 40Gb/s and 100Gb/s Ethernet Task Force. http://www.ieee802.org/

3/ba/.

BIBLIOGRAPHY 80

[35] Lu Fang et al. “Interruptible tasks: Treating memory pressure as interrupts for

highly scalable data-parallel programs”. In: SOSP. 2015.
[36] Sadjad Fouladi et al. “Encoding, Fast and Slow: Low-Latency Video Processing

Using Thousands of Tiny Threads”. In: NSDI. 2017.
[37] G.Ananthanarayanan,A.Ghodsi, S. Shenker, I. Stoica. “Disk-Locality inDatacenter

Computing Considered Irrelevant”. In: Proc. HotOS. 2011.
[38] Peter X Gao et al. “Network requirements for resource disaggregation”. In: OSDI.

2016.

[39] Google Cloud Storage Request Limits. https://docs.microsoft.com/en-us/azure/
storage/common/storage-scalability-targets.

[40] S. Ghemawat, H. Gobioff, and S.T. Leung. “TheGoogle File System”. In:Proc. SOSP.
2003, pp. 29–43.

[41] Ali Ghodsi et al. “Choosy: Max-min Fair Sharing for Datacenter Jobs with Con-

straints”. In: EuroSys’13.

[42] AliGhodsi et al. “DominantResourceFairness: FairAllocationofMultipleResource

Types”. In: NSDI’11.

[43] Binny S. Gill and Luis Angel D. Bathen. “AMP: Adaptive Multi-stream Prefetching

in a Shared Cache”. In: FAST’07.
[44] Amazon Glue. https://aws.amazon.com/glue/.
[45] Google Cloud Dataflow Shuffle. https://cloud.google.com/dataflow/.
[46] Pawan Goyal, Harrick M Vin, and Haichen Chen. “Start-time fair queueing: a

scheduling algorithm for integrated services packet switching networks”. In: SIG-
COMM CCR, 1996.

[47] Jim Gray and Goetz Graefe. “The Five-minute Rule Ten Years Later, and Other

Computer Storage Rules of Thumb”. In: SIGMOD Rec. (1997).
[48] Sangjin Han and Sylvia Ratnasamy. “Large-Scale Computation Not at the Cost of

Expressiveness.” In: HotOS. 2013.
[49] SangjinHan et al. “Network support for resource disaggregation in next-generation

datacenters”. In: HotNets. 2013.
[50] HDFS Caching. http://blog.cloudera.com/blog/2014/08/new-in-cdh-5-1-

hdfs-read-caching/.

[51] ScottHendrickson et al. “Serverless computationwithOpenLambda”. In:HotCloud.
2016.

[52] HerodotosHerodotou et al. “Starfish: A Self-tuning System for BigDataAnalytics.”

In: CIDR. 2011.

BIBLIOGRAPHY 81

[53] Simon Hettrick et al. UK Research Software Survey 2014. https://doi.org/10.
5281/zenodo.14809. Dec. 2014. doi: 10.5281/zenodo.14809.

[54] B. Hindman et al. “Mesos: A Platform for Fine-Grained Resource Sharing in the

Data Center”. In: Proc. NSDI. 2011.
[55] HP The Machine: Our vision for the Future of Computing. https://www.labs.hpe.

com/the-machine.

[56] Michael Isard et al. “Quincy: Fair Scheduling for Distributed Computing Clusters”.

In: Proc. SOSP. 2009, pp. 261–276.
[57] Isolation in Memcached or Redis. http://goo.gl/FYfrOK;http://goo.gl/iocFrt;

http://goo.gl/VeJHvs.

[58] Ravi Iyer et al. “QoS Policies and Architecture for Cache/Memory in CMP Plat-

forms”. In: SIGMETRICS’07.
[59] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. “Fair Cache Sharing and

Partitioning in a Chip Multiprocessor Architecture”. In: PACT’04.

[60] Horacio Andrés Lagar-Cavilla et al. “SnowFlock: Rapid Virtual Machine Cloning

for Cloud Computing”. In: EuroSys. 2009.
[61] Using AWS Lambda with Kinesis. http://docs.aws.amazon.com/lambda/latest/

dg/with-kinesis.html.

[62] Haoyuan Li et al. “Tachyon: Reliable, Memory Speed Storage for Cluster Comput-

ing Frameworks”. In: SOCC’14.
[63] Mu Li et al. “Scaling Distributed Machine Learning with the Parameter Server.”

In: OSDI. 2014.
[64] Sherry Listgarten and Marie-Anne Neimat. “Modelling Costs for a MM-DBMS”.

In: RTDB. 1996.
[65] Qingming Ma, Peter Steenkiste, and Hui Zhang. “Routing high-bandwidth traffic

in max-min fair share networks”. In: SIGCOMM CCR, 1996.
[66] Stefan Manegold, Peter Boncz, and Martin L. Kersten. “Generic Database Cost

Models for Hierarchical Memory Systems”. In: VLDB. 2002.
[67] Michael V. Mannino, Paicheng Chu, and Thomas Sager. “Statistical Profile Estima-

tion in Database Systems”. In: ACM Comput. Surv. (1988).
[68] Laurent Massoulié and James Roberts. “Bandwidth sharing: objectives and algo-

rithms”. In: INFOCOM’99.
[69] Julian McAuley et al. “Image-based recommendations on styles and substitutes”.

In: SIGIR. 2015.
[70] Frank McSherry, Michael Isard, and Derek Gordon Murray. “Scalability! but at

what COST?” In: HotOS. 2015.

BIBLIOGRAPHY 82

[71] Memcached, a distributed memory object caching system. http://memcached.org/.

[72] Ivelina Momcheva and Erik Tollerud. “Software Use in Astronomy: an Informal

Survey”. In: arXiv 1507.03989 (2015).
[73] Thomas Moscibroda and Onur Mutlu. “Memory Performance Attacks: Denial of

Memory Service in Multi-Core Systems”. In: USENIX Security’07.
[74] Edmund B. Nightingale et al. “Flat Datacenter Storage”. In: OSDI. 2012.
[75] Feng Niu et al. “Hogwild: A lock-free approach to parallelizing stochastic gradient

descent”. In: NIPS. 2011.
[76] Chris Nyberg et al. “AlphaSort: A Cache-sensitive Parallel External Sort”. In: The

VLDB Journal (1995).
[77] Owen O’Malley. TeraByte Sort on Apache Hadoop. http://sortbenchmark.org/

YahooHadoop.pdf.

[78] Aude Oliva and Antonio Torralba. “Modeling the shape of the scene: A holistic

representation of the spatial envelope”. In: International Journal of computer vision
42.3 (2001), pp. 145–175.

[79] OpenWhisk. https://developer.ibm.com/openwhisk/.
[80] KayOusterhout et al. “Making sense of performance in data analytics frameworks”.

In: NSDI. 2015, pp. 293–307.
[81] Kay Ousterhout et al. “Sparrow: distributed, low latency scheduling”. In: SOSP.

2013.

[82] Kay Ousterhout et al. “The Case for Tiny Tasks in Compute Clusters.” In: HotOS.
2013.

[83] R. H. Patterson et al. “Informed Prefetching and Caching”. In: SIGOPS’95 ().
[84] Daniel Peng and Frank Dabek. “Large-scale Incremental Processing Using Dis-

tributed Transactions and Notifications.” In: OSDI. 2010.
[85] Michael Piatek et al. “Do Incentives Build Robustness in Bit Torrent”. In: NSDI’07.
[86] Meikel Poess et al. “TPC-DS, Taking Decision Support Benchmarking to the Next

Level”. In: SIGMOD. 2002.

[87] Russell Power and Jinyang Li. “Piccolo: Building Fast, Distributed Programs with

Partitioned Tables.” In: OSDI. 2010.
[88] Redis. http://redis.io/.
[89] Redis Server Side Scripting. https://redis.io/commands/eval.
[90] Redis Benchmarks. https://redis.io/topics/benchmarks.
[91] Amazon Redshift Spectrum. https://aws.amazon.com/redshift/spectrum/.

BIBLIOGRAPHY 83

[92] Xiaoqi Ren et al. “Hopper: Decentralized Speculation-aware Cluster Scheduling at

Scale”. In: SIGCOMM (2015).

[93] Stephen M. Rumble et al. “It’s Time for Low Latency”. In: Proc. HotOS. 2011.
[94] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:

ĲCV 115.3 (2015), pp. 211–252.

[95] S3 Request Limits. https://docs.aws.amazon.com/AmazonS3/latest/dev/
request-rate-perf-considerations.html.

[96] Betty Salzberg et al. “FastSort: A Distributed Single-input Single-output External

Sort”. In: SIGMOD. 1990.

[97] Malte Schwarzkopf et al. “Omega: flexible, scalable schedulers for large compute

clusters”. In: Proc. EuroSys. 2013.
[98] Colin Scott. Latency Trends. http://colin-scott.github.io/blog/2012/12/24/

latency-trends/.

[99] Madhavapeddi Shreedhar and George Varghese. “Efficient fair queuing using

deficit round-robin”. In: TON’96 ().
[100] David Shue, Michael J. Freedman, and Anees Shaikh. “Performance Isolation and

Fairness for Multi-Tenant Cloud Storage”. In: OSDI’12.
[101] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In:Mass storage

systems and technologies (MSST). 2010.
[102] Sort Benchmark. http://sortbenchmark.org.
[103] Gokul Soundararajan et al. “Dynamic Resource Allocation for Database Servers

Running on Virtual Storage”. In: FAST. 2009.
[104] Tuning Java Garbage Collection for Apache Spark Applications. https://goo.gl/

SIWlqx.

[105] Ion Stoica, Scott Shenker, and Hui Zhang. “Core-stateless fair queueing: Achiev-

ing approximately fair bandwidth allocations in high speed networks”. In: SIG-
COMM’98.

[106] Ion Stoica et al. “A proportional share resource allocation algorithm for real-time,

time-shared systems”. In: RTSS’96.
[107] TPC-H. http://www.tpc.org/tpch.

[108] TuningSpark.https://spark.apache.org/docs/latest/tuning.html\#garbage-
collection-tuning.

[109] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: Yet another resource

negotiator”. In: SoCC. 2013.
[110] Shivaram Venkataraman et al. “Ernest: Efficient Performance Prediction for Large-

scale Advanced Analytics”. In: NSDI. 2016.

BIBLIOGRAPHY 84

[111] Abhishek Verma et al. “Large scale cluster management at Google with Borg”. In:

Eurosys’15.

[112] CarlAWaldspurger andWilliamEWeihl. “Lottery scheduling: Flexibleproportional-

share resource management”. In: OSDI’94.
[113] CarlAWaldspurger andWilliamEWeihl. “Stride scheduling: deterministic proportional-

share resource management”. In:MIT Tech Report, 1995.
[114] Qian Wang et al. NADSort. http://sortbenchmark.org/NADSort2016.pdf.
[115] X1 instances. https://aws.amazon.com/ec2/instance-types/x1/.
[116] M. Zaharia et al. “Discretized streams: an efficient and fault-tolerant model for

stream processing on large clusters”. In: Proceedings of the 4th USENIX conference on
Hot Topics in Cloud Ccomputing. USENIX Association. 2012.

[117] M. Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

In-Memory Cluster Computing”. In: Proc. NSDI. 2011.
[118] Matei Zaharia et al. “Improving MapReduce Performance in Heterogeneous Envi-

ronments”. In: OSDI. 2008.
[119] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing”. In: NSDI’12.

