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Abstract—We present software tools, VAPP and VALint, for the
development of new Verilog-A compact models and also for applica-
tions involving existing models. VAPP, the Berkeley Verilog-A Parser
and Processor, translates Verilog-A device models into executable and
accessible model code. VALint is a graphical code quality checking tool.
By virtue of its intuitive syntax for creating compact device models,
Verilog-A has come to be used as the standard compact modeling
language in the electrical engineering community. However, the high-
level language constructs of Verilog-A necessitate the translation of
device model code into a lower-level model description format before
it can be used in simulations. VAPP runs in MATLAB/Octave, takes a
Verilog-A model as input and, by default, generates executable model
code in the open ModSpec format complete with symbolically computed
derivatives. VAPP features a modular software architecture which can be
easily modified and extended to be used with different model description
formats and target programming languages. Together with the Berkeley
Model and Algorithm Prototyping Platform (MAPP), VAPP offers a
powerful framework for testing, debugging and analyzing compact device
models. VALint assists model developers in writing clean Verilog-A
code by checking models for common mistakes and bad Verilog-A
practices. VALint implements rules for best Verilog-A modeling practices
accumulated over the years by leading industry experts. VAPP and
VALint are freely available and released as open source code.

Index Terms—Compact device modeling, Verilog-A.

I. INTRODUCTION

Circuit simulators use compact device models to mimic the behav-
ior of physical devices in simulations. Each simulator has a different
format to describe device models. The details of this format depend
on the simulator architecture and its data structures. Consequently,
device model developers face the problem of having to provide
multiple implementations of the same model if they want to support
different simulators. Over the years, the Verilog-A modeling language
has come to be used as a remedy for this problem and provided
a common programming language to the compact device modeling
community [1].

Today, most compact semiconductor device models are written
using Verilog-A, e.g., [2], [3], [4], and most circuit simulators provide
tools to convert Verilog-A models into their internal model descrip-
tion formats. These tools are known as Verilog-A compilers [5].
On the one hand, Verilog-A models cannot be tested, debugged or
used in simulations unless they are translated via a compiler. On
the other hand, the translated lower-level model code is usually
not accessible to the user because of the opaque and closed nature
of commercial simulators. This makes compact model development
an arduous process since developers lack the necessary testing and
debugging tools.

In this paper, we present open source tools aimed both at the
developers and the users of compact models. These tools will enable
model developers to create better models in a streamlined manner.
Moreover, users of compact models will be able to translate, examine
and execute complicated Verilog-A model code. The first tool we
present is the Berkeley Verilog-A Parser and Processor (VAPP), an
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open source, modular Verilog-A compiler. The second one is VALint,
a model quality checker built on VAPP’s infrastructure. Both of these
tools are integrated into the larger framework of the Berkeley Model
and Algorithm Prototyping Platform (MAPP) [6].

VAPP is completely written from scratch in MATLAB1 and seam-
lessly integrates with MAPP. The design of the software is object
oriented and modular to facilitate easy extensions. VAPP takes a
Verilog-A file as input and prints out a lower-level model description
format which can be used in simulations directly. The default output
format of VAPP is ModSpec [7], the executable model description
format used in MAPP. Once a Verilog-A model is converted into a
ModSpec file, it can be executed directly, e.g., in MATLAB/Octave,
to produce test data or to visualize the characteristic curves of the
device. Unlike its predecessor, ADMS [8], using VAPP does not re-
quire creating complicated XML code generator specifications. Users
with basic programming knowledge can write their own backends
composed of simple but powerful print functions to create different
output formats or different target languages.

VALint utilizes the powerful visitor design pattern of VAPP to
process Verilog-A input files and checks them for mistakes. It
implements a set of rules regarding best practices for Verilog-A
models laid down by industry experts [5], [9], [10]. Through its
graphical user interface, VALint visually marks problem spots in
model code and provides suggestions to eliminate them.

In the remainder of this paper, we present details about the software
architecture and the internal data structures of VAPP. We provide
guidelines on how to implement additional features such as a new
backend. We demonstrate, with examples, how VAPP and ModSpec
can be powerful tools in identifying regions where a model breaks
down. We also provide sample use cases of VALint and point out
how it can help to write cleaner Verilog-A models.

II. VAPP—THE BERKELEY VERILOG-A PARSER AND

PROCESSOR

VAPP provides a single-command user interface. By default, when
called with the filename of the Verilog-A model as an argument,
VAPP will print its output to a file with the same name as the main
Verilog-A module. For example, the command

vapp('bsim6.1.1.va');

will produce a file with the name bsim6.m, bsim6.cpp etc.
depending on the target language. The output filename can, of course,
be changed using the options provided by the command-line interface
along with various other settings.

Figure 1 shows the fundamental steps in VAPP’s model translation
process. First, the input Verilog-A file is parsed by VAPP’s frontend.
The resulting Abstract Syntax Tree (AST) contains syntactic infor-
mation about the input file such as nodes/branches, mathematical
operations, contributions and user defined functions. The AST serves
as an input to VAPP’s core, which, among other tasks, defines
model inputs/outputs, creates potentials/flows (voltages/currents), dis-
covers the dependency structure of the model variables/outputs, and

1A separate, Octave compatible version is also available.
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Fig. 1: VAPP’s operation steps. A Verilog-A file is supplied as input
and a lower-level model code is produced as output. The internal data
structures of VAPP are marked with AST (abstract syntax tree) and
IRT (intermediate representation tree) labels.

computes derivatives. This entire information is encoded in another
internal data structure called the Intermediate Representation Tree
(IRT). Finally, a backend is used to generate a printout of the IRT in
the desired programming language and the model description format.
In the remaining part of this section, we will describe how the
individual parts of VAPP function and how their operation can be
customized to suit different data processing needs and output formats.

After parsing the input file, VAPP’s frontend produces an AST. The
AST is a representation of the Verilog-A expressions in the form of
a Directed Acyclic Graph (DAG). An example of this is given in
Figure 2(a) for the following Verilog-A contribution line describing
a resistor and inductor pair in series.

V(p,n) <+ R*I(p,n) + L*ddt(I(p,n));

Because of the relatively simple nature of the AST, VAPP represents
every node in the tree with the same class, VAPP_AST_Node. The
type and attributes of each node is determined by the values of the
class properties (data members).

Figure 2(b) shows the IRT representation of the AST in Fig-
ure 2(a). The IRT encodes much more complex information than
the AST. Every node in the IRT is an instance of a special class.
A few examples of these classes are IrNodeContribution,
IrNodePotentialFlow and IrNodeParameter. As opposed
to the AST, the information in these classes does not only represent
the Verilog-A expressions in the model file but contains rich data
needed to analyze and reformulate a device model. Examples of these
data fields are shown in Figure 2(b). For instance, the voltage on
the LHS (V(p,n)), and the current on the RHS of the contribution
(I(p,n)) are marked as outputs and inputs, respectively. Moreover,
objects such as nodes and branches are represented with their own
classes. The (p,n) branch in Figure 2(b), for example, is represented
with an MsBranch object which is part of an MsNetwork object.
Both the IRT objects (prefixed with IrNode) and model specification
objects (prefixed with Ms) provide diverse methods for data retrieval
and analysis. Developers of new backends are expected to use these
properties and methods to create their own output formats.

VAPP implements the visitor design pattern for easy traversal and
manipulation of ASTs and IRTs [11]. VAPP’s internal computations
are implemented as individual visitor classes. For example, the

dependency structure of parameters, variables, potentials and flows is
created using the IrVisitorGenerateDependecy class. Visitor
classes that traverse the IRT implement a visit method for each
different IrNode class while AST visitors implement a visit method
for each type of VAPP_AST_Node object. The name of the visit
method determines for which type of node it will get called. These
method names are defined in the AstVisitor and IrVisitor
interface classes. An example of a visitor class is given in Listing 1.
This AstVisitor class counts the number of arithmetic operations
and function calls in a model file to estimate the runtime of a device
evaluation in simulations. Developers can implement their own visitor
classes and use them on ASTs and IRTs generated by VAPP.

An important capability of VAPP is provided by the visitor
class IrVisitorGenerateDerivative. Simulators require the
derivatives of model outputs with respect to their inputs—also known
as the model Jacobian. These can be computed by the simulator using
an automatic differentiation technique as in MAPP [6] and Xyce [12].
However this method generally slows down device evaluations be-
cause it relies on techniques such as operator overloading which
introduce additional overhead to the computations. The alternative
to automatic differentiation is to include hard-coded derivatives
into the model itself. The IrVisitorGenerateDerivative
class of VAPP traverses the IRT and computes derivatives sym-
bolically. The IRT is then extended with additional nodes for the
derivative computations. These additional nodes become a part of
the IRT and can be treated as any other parts of the tree, e.g.,
using visitors. This means that VAPP offers the possibility of
computing higher order derivatives by the repeated application of
IrVisitorGenerateDerivative.

The raison d’etre of VAPP is to translate a Verilog-A model into
a model description format native to a specific simulator. The default
output format of VAPP is ModSpec, the model specification format of
MAPP [6], [7]. However, VAPP’s modular structure makes it easy to
specify rules for other output formats. In order to create a new output
format, one has to implement a single class (a backend) containing
print functions for each node type in the IRT. An example of such
a function is given in Listing 2. This function is part of VAPP’s
default backend and facilitates the printing of an if/else statement
in MATLAB syntax. In lines 6 and 8, it calls the print methods
of its first two children (the condition and the then-statement) and
also prints the else-statement if it exists (lines 12-18). It is easy
to see how this method can be modified to use a different target
language, e.g., C++. In the same spirit, the entire backend can be
modified to generate model code in a different model description
format other than ModSpec. The open source nature of VAPP enables
the implementation of different backends for various simulators.

III. VALINT: A GRAPHICAL CODE QUALITY CHECKING TOOL

VALint is a Verilog-A code quality checking tool. It identifies bad
practices, common mistakes, programming pitfalls, and inefficiencies
using VAPP’s AST and IRT data structures. VALint analyzes device
models using a list of best modeling practices inspired by several
publications on this subject, e.g., [5], [9], [10], [13], [14]. These
rules identify problems in model code which are not usually covered
by Verilog-A compilers. These undesired patterns in Verilog-A code
do not usually interrupt the compilation process, but they can cause
various problems ranging from performance degradation to program
malfunction. A prominent example of an unwanted Verilog-A pro-
gramming practice is the use of hidden states [10]. Hidden states are
usually caused by local variables in the Verilog-A code which might
not get initialized under certain inputs to the model function, e.g.,
because of conditional statements [?]. Hidden states can cause issues
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Fig. 2: (a) The Abstract Syntax Tree (AST) representation of the Verilog-A expression, V(p,n) <+ R*I(p,n) + L*ddt(I(p,n)).
(b) The Intermediate Representation Tree (IRT) version of the same expression. The nodes of the IRT contain various information fields and
references to objects like branches and potentials/flows.

Fig. 3: Web-deployed VALint on nanoHUB.org. The GUI is accessible entirely through a web browser without any installation needed.

in simulations such as convergence problems or they can cause some
analysis types, such as PSS, to completely fail. VALint

The initial core VALint code was based on ADMS. An alpha-
testing release of this version was first published on nanoHUB.org.
However, the development of the ADMS based design quickly ran
into various issues. The reliance of ADMS on the aging lexer and
parser toolchain of Flex and Bison made both the development and
the installation processes a challenge. The static and limited parsing
scheme prevented the implementation of several new VALint rules in
a quick manner. For example, checking for the hidden states requires
a vigorous back-tracing of variable dependencies which has proved
to be difficult to do under the Bison parsing framework. These and
several similar reasons necessitated the migration of the VALint core
to VAPP. This VAPP based built enabled VALint to be fully integrated
with MAPP and its simulation/analysis tools.

VALint provides a command-line user interface that runs entirely
on MATLAB. It also features a QT based Graphical User Interface
(GUI) to compliment the command-line version. The GUI version of
VALint can either be installed as a standalone program or it can
be run on the cloud through a web browser2. Figure 3 shows a

2This service is offered through nanoHUB.org.

snapshot of VALint’s cloud based GUI. The GUI supports uploading
Verilog-A file from the local machine, and the evaluation of the code
is performed remotely on the cloud. After the evaluation, the output
is displayed in the GUI with parts of the model code highlighted.
VALint provides detailed information about the errors/warnings/-
suggestions for these lines in a bottom panel. Various convenience
features are also included such as sorting the output messages.

The sample Verilog-A model in Figure 3 implements a simple
resistor with a resistance value that depends on the parameter type
(this simple example was chosen because it fits nicely into the figure
estate). The code is syntactically valid and runs without errors in com-
mercial simulators. However, it contains various poor programming
practices which are detected and highlighted by VALint. The GUI
snapshot in Figure 3 displays four warnings: a parameter without a
predefined range, two instances of node labels in an access function
where a branch would be more appropriate, and a hidden state.

IV. EXAMPLE APPLICATIONS FOR MODEL DEVELOPMENT AND

ANALYSIS

As we have discussed in Section II, VAPP is versatile in analyzing
device models and easily extendible to produce model formats native
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1 c l a s s d e f AstVisitorOpCounter < AstVisitor
2 % Count the number of arithmetic operations
3 p r o p e r t i e s
4 nAdd = 0; % number of additions
5 nMult = 0; % number of multiplications
6 nFunc = 0; % number of function calls
7 end
8
9 methods

10 f u n c t i o n out = visitOp(this, opNode)
11 % Whenever we visit an operation node
12 % do the following
13 opType = opNode.get_attr('op');
14 sw i t ch opType
15 case {'+', '-'}
16 this.nAdd = this.nAdd + 1;
17 case {'*', '/'}
18 this.nMult = this.nMult + 1;
19 end
20 out = true; % continue to child nodes
21 end
22
23 f u n c t i o n out = visitFunc(this, funcNode)
24 % Whenever we visit a function call:
25 this.nFunc = this.nFunc + 1;
26 out = true; % continue to child nodes
27 end
28 end
29 end

Listing 1: Example usage of VAPP’s visitor pattern to estimate
the runtime of a model by counting arithmetic operations and
function calls. The visitOp method defined in line 10 is
called by VAPP whenever it encounters an AST node of type
op. Similarly, the visitFunc method (line 23) increments
the nFunc property of the class whenever a function call is
encountered.

to different simulators. However, when viewed in the larger frame-
work of the Berkeley Model and Algorithm Prototyping Platform,
VAPP fulfills a more fundamental function vis-à-vis the development
process of new device models. In this context, the appeal of VAPP
is that Verilog-A device models can immediately be converted into
ModSpec models which are directly executable in MATLAB/Octave
using MAPP. This means, that one can easily produce characteristic
curves of devices and spot problematic points. One can also test and
debug device models in a user friendly programming environment.

Figure 4 shows the principal model development flow using MAPP
and VAPP. The development of a new model starts in the upper left
corner by coding a prototype in Verilog-A. This Verilog-A model
is then translated using VAPP into ModSpec. The ModSpec model
can now be used as an input to MAPP’s model analysis tools. One
of these tools is the model exerciser which can evaluate and plot the
model equations and model outputs. It can also compute DC solutions
for models with internal unknowns and plot characteristic curves of
currents and voltages. Utilizing MAPP’s model development tools
and algorithms, the ModSpec model is then validated in a test-
ing/debugging loop where the model is iteratively improved. These
improvements are then implemented in the original Verilog-A model.
The above procedure can be applied as many times as necessary in
order to arrive at a model that can be reliably used in simulations.

Besides developing new models from scratch, VAPP can also be
used for spotting problems in existing models. One of the ways
glitches in device models manifest themselves is as convergence
problems in simulations. In those cases, models can be examined
using the process in Figure 4 in order to pinpoint the reasons for the

1 f u n c t i o n [outStr, printSub] = printIfElse(node)
2 % don't continue printing the children
3 printSub = false;
4
5 % the condition string
6 condStr = node.getChild(1).sprintAll();
7 % the then string
8 thenStr = node.getChild(2).sprintAll();
9

10 outStr = ['if', condStr, '\n',...
11 node.sprintfIndent(thenStr)];
12 i f node.nChild > 2 % is there an else part?
13 elseStr = node.getChild(3).sprintAll();
14 i f isempty(elseStr) == false
15 outStr = [outStr, 'else\n',...
16 node.sprintfIndent(elseStr)];
17 end
18 end
19 outStr = [outStr, 'end\n'];
20 end

Listing 2: Example of a VAPP backend print function. During the
generation of the executable model code, VAPP calls this method
when it encounters an if/else block in the IRT.

ModSpec Model
(in MATLAB)

test/debug
tools

The Berkeley Model
and Algorithm

Prototyping Platform

Verilog-A Model

VAPP
ModSpec Model
auto-generated
from Verilog-A

validateim
pr

ov
e

implement improvements

Fig. 4: Compact model development flow using VAPP and MAPP.
The development starts at the upper left corner, with a prototype
Verilog-A model. This prototype is translated using VAPP and the
model is iteratively refined in MAPP.

problem. Figures 5 and 6 show examples of the application of this
process in a real-life research setting. Figure 5 shows a discontinuity
in the drain current of the BSIM3 model [15]. This discontinuity was
discovered when working with this model in a project on speeding
up the device evaluation time [16]. Similarly, Figure 6 shows a
discontinuity in the derivative of the drain current with respect to
the drain voltage in the MVS model [17]. Both of these problems
were discovered using the VAPP/MAPP toolchain.

V. SUMMARY AND CONCLUSION

We have presented two modern software tools for compact model
development in Verilog-A: VAPP and VALint. VAPP can translate
Verilog-A models into executable code. The default output format of
VAPP is ModSpec which can be imported into MAPP [6]. Device
models can then be tested and debugged via MAPP’s simulation and
analysis tools. Using VAPP, one can also import industry standard
device models into MAPP and utilize them in circuit design activities.
The list of popular compact semiconductor models which have
been translated into ModSpec using VAPP includes BSIM3 [15],
BSIM4 [18], BSIM6 [2], R3 [4], PSP [3], HiSIM [19], Mextram [20]
and others. VALint offers a GUI that can load Verilog-A models
and highlight parts of the model code that can cause problems in
simulations. We believe that using VAPP and VALint in conjunction
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Fig. 5: The discontinuity in the drain current of the BSIM3 model.

Fig. 6: The discontinuity in the drain current derivative of the MVS
v1.0.1 model.

with MAPP will enable compact model developers to produce higher
quality models with less effort than the conventional methods.
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