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Abstract

In much of the world, electric vehicle adoption is increasing. This is a welcome change for
many of these countries, where gasoline-powered vehicles contribute to high levels of ozone
and fine particulate matter (PM2.5), which results in tens of thousands of deaths a year.

City planners can use this document to formulate plans regarding where to build charging
stations to meet new demand, how much infrastructure to build at each location, and how to
plan new electrical infrastructure to meet such demand. Herein, we provide a framework to
address the aforementioned issues.

Projections on EV sampling and the input data are used to construct Monte Carlo based
models on where these cars will be by the hour. It shows how to obtain the locations and
sizes of these stations using clustering algorithms and convex optimization. Load profiles are
generated given statistics regarding home and work charging, in addition to the newly found
information about public charging. Guadalajara was used as a case study for this model due
to the fact that it is one of the foremost technology hubs in Latin America and that there was
data provided about the city through the Instituto Nacional de Ecología y Cambio Climático
(INECC).
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2 Introduction

Global emissions from the transport sector account for about 23 percent of total energy related
emissions, and could grow as countries develop [4]. Deep decarbonization of our transportation
options is needed if we are to meet the Paris Agreement goal of stabilizing GHG emissions con-
centrations below a 2oC warming scenario, and to increase our mitigation efforts for a safer 1.5oC
temperature target. This will only be possible if climate action is taken at the scale and pace that
is needed to mitigate this change. New policy approaches that leverage the power of innovative
technologies are required to advance towards this goal.

In many countries, decarbonization is being achieved through the conversion from gasoline
powered vehicles to plug-in electric vehicles (PEVs). While EV charging still generates carbon
emissions and particulate expulsion due to modern grid reliance on fossil fuels, EV use would
result in better air quality [6]. Furthermore, EVs themselves produce less than half of the global
warming emissions of comparable gasoline-powered vehicles, meaning that adoption of such vehicles
would result in lower regional particulate and carbon emissions [7].

One of the biggest factors holding EVs back, apart from cost and range, is the lack of available
infrastructure for individuals to go about their charging needs [8]. If a consumer wants to go around
the city to run a long list of errands, or they want to go on a road trip, he or she will inevitably
be concerned with whether it is possible to recharge his or her car outside of home. Owners of
gasoline-powered vehicles have the advantage of being able to quickly refill their vehicles at gas
stations in a matter of minutes, whereas for EV owners, the closest analog to such infrastructure is
Level III (High Power DC Chargers)and IV (Very High Power DC Chargers; the only such chargers
on the market are Tesla Superchargers) charging stations, where even then, charging may take up
to 30 minutes [9]. Thus, for governments wishing to increase EV ownership among their citizens, it
is necessary to figure out how to place EV charging stations in a way that is economically feasible,
meets consumer demand, and ensures continuous or near-continuous electrical service.

Several publications deal with determining the optimal sizing and placement of electrical charg-
ing stations. A capacitated-flow refueling based approach is presented in [10] to capture Plug-in
Electric Vehicle (PEV) demand on the transportation network under driving range constraints. [1]
looks at ensuring coordinated PEV charging at the transmission system, distribution system, and
charging system level in order to ensure that load profile is optimized at the provincial, municipal,
and station level while meeting consumer demand. [2] proposes a method for charging station
planning to ensure that charging service is met while reducing power loss and voltage deviations
of distribution systems. [3] looks at optimal station placement considering EV energy loss, electric
grid loss, station development cost, and other factors. Lastly, [11] looks at optimal placement of
stations in urban environments given spatial and temporal charging demands.

This document takes many of the insights from the aforementioned publications and combines
them to create a comprehensive strategy to get charging station sizes and locations, and effects
on the grid. The method also allows for city planners to look at building proposed charging
infrastructure in phases, and figures out any distribution-level infrastructure that must be added
to account for the increased electrical demand. Insights can be obtained in order to meet consumer
demand and maximize profit.

The first stage of this process begins by talking about the process of obtaining the necessary
data and how to process the data so as to obtain a particle distribution that resembles the true
distribution of the municipality in question. The second stage discusses the method of determining
the size and locations of charging stations. The third stage involves using the proposed charging
station, along with EV users’ home and work charging habits, load profile projections, and EV
ownership projections to see what the impacts of this demand will be on the grid and what new
infrastructure needs to be built. Suggestions are made on how to tune this method for multi-phase
planning for EV charging station creation.

Mexico will experience explosive EV growth in the next decade; indeed, it has signed the Inter-
national Energy Agency’s pledge to reach 30% EV Penetration by 2030 [5]. Thus, this procedure
has the potential be useful to Mexican city planners who need to address these projections. The
city of Guadalajara is selected as a case study due to the fact that it is a tech hub in Mexico and
Latin America (and thus is more likely to adopt EV technology) and the fact that data on the
city was available through RAEL’s institutional partner, INECC. Several planning scenarios are
investigated for the city, including single phase examples for low, moderate, and high growth in
EV ownership. The process of obtaining information, finding station locations and charger con-
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figurations, investigating the load increase, and observing the impact on the grid are all described
for this scenario.
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3 Procedure

Figure 1: The EV Station Analysis Procedure

The process of the flowchart begins with Data Acquisition, which involves getting representative
samples for traffic, including EV traffic. The second step involves sampling data to show when
all n EVs in a particular city for all 24 hours for each of the seven days of the week. Next, a
linear program is used in order to get the optimal charger configuration for different brands and
levels of chargers. Load Profile information is found for the city using various pieces of information
regarding EV usage in that particular municipality, such as percentage of charges done at home,
work, and at social chargers, the number of EVs in the city, the average size of the battery, etc.
The last step is calculating the size and cost of grid updates using a capacity extension model
called SWITCH.

3.1 Obtaining and Processing the Data

The first necessary item is some heuristic to define the spatio-temporal distribution of cars
and/or people. The second necessary item is the current load profiles of the areas being surveyed,
so that it is possible to quantify the strain on the grid for that area, especially as the population
of an area, and the number of EVs that this population uses, grows over time. The last necessary
item is a general breakdown of the charging habits of EV users.

In general, EV owners have two options when charging in public. The first, destination charging,
includes placing a vehicle on a Level II charger. This strategy is useful if an individual has some
level of charge, but would like to charge their vehicle enough to get them a longer general range
[10]. On the other hand, urgent charging is a strategy employed when an EV has very low amounts
of charge. In such a case, an EV must be charged quickly in order to get the owner home [10].
EV owners in need of urgent charging will either be in traffic and about to go about fast charging
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or will be in a commercial location with their car at a charging station. Thus, sample points that
represent both of these situations can represent both above scenarios accurately.

The spatio-temporal distribution of cars and people can be obtained in a number of ways. An
accurate way to measure congestion of certain areas over time is to use data from Inrix, which
offers real-time traffic and parking availability in many cities. The specifics of this method are
outlined further in the appendix.

Assuming that Waze and Google Places data have been obtained using the methods described
in the appendix, it is now time to use Monte Carlo Sampling methods in order to create a rep-
resentative population of electric vehicles. In our scenario, the Waze Traffic Jam data shows
the popularity of certain road sections, and thus shows the density of cars (including EVs) going
through a certain region at a certain point in time. The Google Places data describes the distri-
bution over time of when individuals visit certain commercial establishments; such data generally
indicates when and EV will be parked near such places, and thus when and where and individual
would want Level II charging. The method has several limitations for several reasons. First of all,
Google PopularTimes data is normalized, so any data that is used from it does not incorporate how
many people go to different types of places (i.e. a large shopping mall will have more people in it
than a small shop, but on Google PopularTimes the populations for any given hour of any day will
be normalized to a height of 100). The issues with Waze, on the other hand, stem from the way
the data is sampled. Since Waze is sampled for the size of traffic jams, there could be inaccuracies
with how busy a place is, since traffic jams may simply be caused by lack of good infrastructure
rather than the actual popularity of certain areas of a city. For both of these data sources, there is
also bias in the data, since the data caters to smartphone users and users of the Waze app, so most
of this data will from individuals who have enough money to afford smart phones. This may not
be a problem, since many EV owners will share demographic similarities with those same power
smartphone users [13]. After going through the Monte Carlo Sampling method described in the
appendix, representative data points will now be available for input into the second step in the
process: finding station location and size.

While there are ways to obtain information related to EV charging habits and the density of
people in certain locations over time, it is more difficult to get information about load demand
for entire municipalities. It may be necessary to get habits on charging from other areas of the
world, and then assume that users in the current municipality follow similar habits. Environmental
agencies at the national level (in our case, INECC) will likely have easier access to data related
to the various load zones of a country, and thus, will be able to get access to the load profiles for
a desired municipality more easily. The data should be formatted as a time series with hourly
granularity so that it can be fed into the final step of this process, which is described in later
sections.

3.2 Finding the Location of an EV Charging Station

City planners with to optimally find locations of new stations with the constraint that other
charging stations may already exist. In this case, it is ideal to place new stations in locations that
would best meet new demand, and expand stations that already exist. This process uses a mod-
ification of k-means clustering. The iterative process is similar to traditional k-means clustering,
with the constraint that m stations were kept at the same place (i.e. at the same centroid), while
n stations were placed in new locations. Thus, the n non-fixed station locations will change after a
number of iterations, but the partitions of classified samples will differ for both fixed and non-fixed
cluster centers. The pseudo-code, which is a modification of Lloyd’s Algorithm, is as follows:

de f s t a t i on_ l o ca t i on s ( data_pts , cur rent_stat ions , m) :
# m i s the number o f new s t a t i o n s you want to c r e a t e
n = len ( cur r en t_sta t i on s )
randomly i n i t i a l i z e m s t a t i o n s − now have (n + m) t o t a l s t a t i o n s
i n i t i a l i z e voronoid diagrams f o r a l l (n + m) s t a t i o n s
whi l e s t a t i o n s have not converged and i t e r a t i o n s < max_iterat ions :

f o r each o f the points , f i g u r e out the c l o s e s t s t a t i o n
f i nd a new cen t ro id f o r new s t a t i o n voronoid diagrams (m new)

return a l l s t a t i o n l o c a t i o n s and corre spond ing voronoid diagrams

We now we have our n old station locations and m new station, locations, as well as the relative
popularity of each station.
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There are a few things to note about the results of this algorithm. The first thing to note is that
the algorithm can converge to different solutions on different runs given the way that clustering
algorithms work. This, of course, is not necessarily the best situation if multiple planners are
using different instances of the same software tool for this approach. A good rule of thumb is to
generally see what configuration the algorithm converges to on multiple attempts in order to see
if the solution is generally correct. The second thing to note is that the station "locations" do not
necessarily have to be set in stone. As long as the station is generally close to the area that the
algorithm converges to, it will properly serve the cars that are assigned to it effectively.

3.3 Determining Infrastructure to Meet Requirements

Upon getting the new station locations, it is necessary to figure out what infrastructure to
allocate to each station. In other words, how many types of chargers, and what types of chargers,
should we place at different EV charging stations to meet the following requirements:

(a) Need to minimize total building costs
(b) Must take into account infrastructure/building costs, O&M costs, electricity costs, and revenue
from customers
(c) Must ensure that the new demand due to public charging stations do not cause overall munic-
ipal demand to exceed the load zone’s capacity
(d) Each station must have enough charging infrastructure to meet car demand at all hours, in-
cluding peak hours.
(e) Each station must have at least one charger and may also have a maximum number of chargers,
since there could be land limitations, cost limitations, electrical limitations, etc.

Let us assume we have stations i ∈ 1, ..., u and charger types j ∈ 1, ..., v. These requirements
are met with the following Linear Program:

min 1T (Csta + Cener − Crev) + α|T̂ n|2 (i)

s.t. Csta = Ksetup + (Kinfra + β̂)n (ii)

Cener = γpsc(1
TΨτ)Ên (iii)

Crev = 12γrδstation (iv)
Ŵn− (φ− ηυ) ≥ 0 (v)
Ŝn ≥ 1 (vi)
Ŝn ≤ cmax (vii)
θM̂n ≥ pscδmax (viii)
n ≥ 0 (ix)

The variables above are defined by the following:

• Csta ∈ Ru is the operating cost of building and operating each station i.

• Cener ∈ Ru is the energy cost for each station i.

• Crev ∈ Ru is the revenue at each station i. The unit is dollars

• T̂ ∈ Ru x uv is a matrix of the average charging time of charger type j at station i. The unit
is in hours per charger, and entries can be decimal values. *

• α is the L2 Regularization term that is weighed on the aforementioned variable corresponding
to the time that a person has to wait - think of it as a penalty for "customer dissatisfaction
with spending time at a station." This is not a regularization term in a traditional sense, since
we already are minimizing, so the main purpose is to add extra weight to a new parameter.
We would like to have a unique solution and do not necessarily care about sparsity, so the L2
norm is preferred. This is technically a unitless parameter, but can be thought of as inverse
minutes.

• n ∈ Ruv gives the number of chargers at each station. The units is number of chargers**
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• Ksetup ∈ Ru is the setup cost (i.e. the cost to buy land, connect the station to the grid, etc.)
of each station i. The unit is dollars.

• K̂infra ∈ Ru x uv is the cost of connecting some charger type j at station i to the grid

• β̂ ∈ Ru x uv is the cost of a each charger type, including both purchasing and O&M costs.
The unit is dollars *

• psc is a constant that gives the proportion of the time that the charger is operating at peak
capacity (i.e. the proportion of time a charger is using the values in Ê - otherwise, energy
use is 0 for sake of simplicity). This is a unitless constant.

• Ê ∈ Ru x uv is a modified the matrix that contains a vector that corresponds to the amount
of energy each charger type in an hour if a car is plugged into it. The unit is kWh *

• γ is a constant that determines the number of years a station will be in service. The unit is
years.

• Ψ ∈ R24 x 6 is a matrix that corresponds to the tariff price for all six tariff types (summer
and winter peak, intermediate, and base prices) for each hour of the day. It is multiplied
by the tau matrix. If, for some hour h, h is a peak hour in winter time, then the column
corresponding to the winter peak tariff (in our case, the first column) will contain the number
of days a year that this row will be under that particular tariff. The unit is days.

• τ ∈ R6 is the vector corresponding to the hourly tariff rates for electricity for winter peak,
winter intermediate, winter base, summer peak, summer intermediate, and summer base
respectively. The unit is dollars

• δstation ∈ Ru is a vector that corresponds to the number of cars that come to a station in a
week. The unit is number of cars

• r is a constant that corresponds to the average revenue per month per car. In this scenario,
we assume monthly membership rates for fast charging, as is common in the United States.
The unit is dollars.

• Ŵ ∈ R7∗24 is a vector that has, for every day, the amount of energy produced by every
single station in that hour (which, in turn, is the proportion of time the charger is being used
multiplied by the maximum power that a charger can produce in an hour multiplied by the
probability distribution of when drivers arrive at chargers to use them). This is replicated
seven times to represent each day. The unit is kWh

• φ ∈ R7∗24 is a vector of the maximum capacity that a substation can take in an hour (every
item is the same in this vector). The unit is kWh

• υ ∈ R7∗24 corresponds to the load profile of a municipality of every hour in an average week.
The unit is kWh.

• η is a constant that scales up the load profile to represent a higher-than-average load profile.
It is unitless.

• Ŝ ∈ Ru x uv is a modified matrix, where the original vector is the "ones" vector. Performing
the multiplication Ŝn gives the number of chargers for an individual station i ∈ 1, .., u. It is
unitless.

• cmax is a constant that corresponds to the maximum number of chargers that can be built
at an individual station.

• θ is a coefficient create a buffer, since δmax is the hourly maximum for the average number of
cars arriving at a station (but it is just that, an average, so we want a gap to make sure that
we can handle more cars in the event of an especially busy day). A higher value indicates a
higher willingness to let people wait, while a lower value indicates a lower willingness to let
people wait. It is unitless.
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• M̂ This is a vector corresponding to the capacities per hour of each of the chargers at each
station, turned into the matrix format discussed in the appendix. The unit is number of cars.
*

• δmax ∈ Ru is the value corresponding to the average number of cars in the busiest hour and
day of a representative week for each station. The unit is number of cars.

* The structure of such matrices (denoted by X̂) is described in the appendix in the "Determining
Infrastructure to Meet Requirements" section
** The "n" array contains how many of each type of charger should be at which station

The steps below, as numbered, correspond to each line of the optimization problem shown at the
beginning of the section. (i) In the objective function, we are minimizing 1T (Csta+Cener −Crev),
where we have the cost of building Csta and maintaining the station added to the costs of energy
Cener. We subtract the revenue from this sum to reflect the fact that we will be getting some of
this money back from our revenue Crev. Lastly, we add an L2 Regularization term in order to
weigh public discontent for having to wait for charging. Such discontent is weighed by parameter
α.
(ii) This constraint basically defines the station cost as the cost of setting up the station (parking
lots, land, electrical connections), cost of infrastructure (i.e. buying each charger and connecting
it), and O & M cost of each charger
(iii) This constraint defines the energy cost at each station. This is done in two steps. The first
part of this involves calculating the cost per kWh over the lifetime of the charger, which is done
by taking the tariff cost, which is done by taking the tariff cost vector τ , multiplying that by Ψ,
which gives the tariff cost of hour h over an entire year , assuming that the charger is always on.
We sum up all of these hours to get the overall cost for a year, assuming we use a single kWh for
every hour of the year. Multiplying this by γ, or the number of years, gives the overall cost for
the entire phase assuming we use a single kWh for the entire year. The other part of this is pscÊn

gives the energy use by station per hour (assuming that it is always in use), multiplying that by
the proportion of time the charger is in use.
(iv) We get the revenue for each station by looking at the hourly rate for charging and multiplying
this by the total demand at each week at the station.
(v) This constraint tells us that the amount of energy produced in total at all of the stations at
each hour in an average week must be less than the gap between the capacity of a substation and
the demand load profile at this average hour.
(vi) This constraint states that we must have at least one charger per station.
(vii) This constraint states that each station can have at most cmax chargers.
(viii) This constraint states that each station must meet customer demand at all hours of the day.
(ix) This constraint states that we can never have a negative number of a particular charger at a
station.

3.4 New Load Profile

In the long term, the load profiles of any studied city will change substantially due to the new
loads from EV chargers at home (the primary charging source for most EVs, mostly used at night),
at work, and in other public places (fast chargers fall under the latter category) [12]. Knowing the
projected new load profile is important in knowing whether the current electrical infrastructure
will be able to handle increased demand or whether new infrastructure must be built in order to
increase capacity.

We start out by getting the load profile without the new EVs. Many municipal governments
will have this information available. To get the information on the the home and work charger load
profiles, it is necessary to first know the number of EVs and the average size of an EV in the area
studied. It is also necessary to know the proportion of charges that are done at home, work, and
at social charges. While data may not be necessary on the municipality in question, it is certainly
possible to study the home, work, and social charging habits of individuals around the world and
make generalizations. Some of the most useful insights came from charging habits in Melbourne
[15] and in Massachusetts [19].

To get the EV Profile of a particular charger type, we run the following circular convolution:
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g(x) =
∑23

s=0
f(s)h((x− s) mod 24)

In the above equation, f(x) is the probability density function that represents the probability
people begin to charge their vehicle at hour x and h(x) is the amount of power for every hour x

after you begin charging, assuming you leave a single car charging. This is an impulse train that
is of length hours_to_charge and height energy_per_hour, given below:

hours_to_charge = ⌈
avg_proportion_commute_drain∗battery_size_kw

charger_capacity_kw
⌉

energy_per_hour =
avg_proportion_commute_drain∗battery_size_kw

hours_to_charge

Assume a 30 kW battery, 15 percent battery drain (calculated from the assumed range of 200
miles, and an average commute of 30 miles) [16]. Assume values for home charger (Level I - 1 kW),
work charger (Level II - 2.2 kW), and public charger (Level III - 10 kW) sizes for the final battery
size values. We thus get impulse train lengths for Level I, II, and III chargers of 5, 2, and 1 hours
respectively, with heights of 0.9 kW, 2.25 kW, and 10.0 kW respectively. The different graphs for
f(x) and h(x) are given below.

Figure 2: Probability Density Function and Power Usage (kW) for Home Charges to be used for
the circular convolution

Figure 3: Probability Density Function and Power Usage (kW) for Work Charges to be used for
the circular convolution
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Figure 4: Probability Density Function and Power Usage (kW) for Social Charges to be used for
the circular convolution

Once a representative day’s worth of charging data is obtained, this series is replicated over
the entirety of the time series of the original load profile (in other words, there is a repeated day
for every single day in the time series). The overall new load profile is found by adding the dif-
ferent charger load profiles to the original baseline load profile without the EV data. This is done
by considering the proportion done at home, work, and public places. Such data should also be
scaled up to reflect population increases. In the end, for a particular year, the load curve can be
calculated with the following:
overall_profile = baseline_profile+ n_evs(psocial ∗ lpsocial + pwork ∗ lpwork + phome ∗ lphome).
In each case, baseline_profile is the baseline representative load profile for a day. phome, pwork,
and psocial refers to the proportion of charges that are done at home, work, and publicly (for
instance if 85% of charges are done at home chargers, then phome = 0.85). Furthermore, lphome,
lpwork, and lpsocial corresponds to the circular convolution described above for home, work, and
social respectively (i.e. lphome = ghome(x) =

∑23

s=0
fhome(s)hhome((x− s) mod 24)). The result of

these convolutions are below:

Figure 5: The results of convolving the PDFs with hourly power usage of the charges are shown
above for home, work, and social charging (kW)

3.5 Adapting to New Load Demand

The last step in this process is running the scenario in question on a specifically-designed
module of for the SWITCH Power System planning tool, which was developed in RAEL to plan
new generation and transmission assets as well as in end-use and demand-side management options
(including electrified vehicles and storage) [23]. The parameters required to run SWITCH are
described in the next section. Once the SWITCH module is run, output information includes
the amount that is necessary to invest in transmission and distribution infrastructure, as well as
operating and management costs for this infrastructure.
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4 Running a Scenario

4.1 Overview

4.1.1 Getting inputs

The purpose of the infrastructure planning framework is for it to be as generalizable to different
scenarios as possible. The program requires the following pieces of data provided in CSV format in
order for it to function properly (see the "example" folder in "inputs" for specific details on what
information is necessary):

(1) Charger types - We want to have our program select the optimal configuration of different
brands of chargers that we may want to construct at our charger site.
(2) EV Profiles - Information relating to what the situation for EVs looks like for a given year (i.e.
the number of EVs in the city in question, the proportion of people using social vs. home chargers,
etc.)
(3) Load PDF - For home, work, and social chargers, we want to see a probability density function
for what proportion of charges start at a certain hour.
(4) Load Profile - This will usually be obtained from the city government in question. It will be
a time series, generally by hour, of what the load demand is for that particular time.
(5) Miscellaneous - Various pieces of information that doesn’t really fall under any other category.
This can include, say, things like charger lifetime, the amount of time a social charger is used by
EV owners on average, etc.
(6) Municipality - City information (city name, population)
(7) Planning - Information about the different planning phases for the EV stations, including the
year of the phase in question, and the number of stations that should exist in that phase.
(8) Samples - These are the representative samples that you obtain from your Monte Carlo Sam-
pling of the representative Waze/PopularTimes points.
(9) Stations - Sometimes, there may be existing stations for a particular scenario and you may
want to build new stations. This CSV will give you information about station names, locations,
and charger configurations.
(10) Tariffs - For the area in question, give the average seasonal rates and the hours for medium
vs. peak times.

4.1.2 Outputs

Sample outputs also have the following format, which can be found in the "example" subdirec-
tory of the "outputs" folder. The results are by year and include:

(1) Costs - Considers Construction and O&M
(2) Load Profiles - Looks at Baseline, Home Charger, Work Charger, Public Charger, and Com-
bined Loads.
(3) Stations - Looks at the new stations that will be built during the phase in question (includes
location, charger configuration, etc.)

4.1.3 Running SWITCH

SWITCH Requires the following inputs in order to run:

(1) The load profile corresponding to each scenario (for example, different EV growth scenar-
ios). If load profile information of all load zones is already being run by default, simply place the
scenario you are interested in under the desired load zone.
(2) A list of loads zones for the municipality in question.
(3) A list of generation projects (i.e. power plants and other distribution assets) for the entire
country in question
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(4) Time Series and Time Points corresponding to the desired planning period (see example code
for details).
(5) Municipality location (latitude, longitude)
(6) Cost of transmission and distribution in the area in question in dollar per megawatt year
( $

MWyear
).

4.2 Running the Guadalajara Scenario

4.2.1 Making our Scenario for Guadalajara

When going about seeing what EV Charging Station scenario was optimal for the situation of
Guadalajara, it was first necessary to gather general data about Guadalajara and EV Chargers
in general. This process is defined in the Appendix section entitled "Gathering common data for
Guadalajara".

Since little data was available about charging habits in Guadalajara, charging habits were found
for other parts of the world and then generalizing to Guadalajara. It was found that 85 percent of
charges in the United States are done at home, while the remainder of charges are done outside of
home [14]. From this information, around 7.5 percent of charges are done at a Level II charging
location (usually a workplace) and the remainder is done at social chargers [14]. The average
battery size is found by looking at the sizes of battery packs in EVs available on the market today;
30 kWh seemed to be an adequate battery size according to this metric [18]. It is also necessary
to know when people charge. Probability distribution functions on where to charge were found
using the studies in [19] and [15]. This procedure is not perfect, since work habits and automobile
usage habits may vary quite widely between cultures, but since limited data is available on this
topic, back-of-the-envelope calculations and data reuse are necessary in order to gain insights for
this particular problem.

One thing that we found is that there could have been several growth trajectories that could
have been possible, given that Guadalajara’s growth was in no way guaranteed to follow a particular
trajectory. Thus, scenarios were created to reflect low, medium, and high EV growth.

From INECC, we know that there were 7,155 electric vehicles sold in 2017. 42% of these were
sold in Mexico City. Data related to electricity consumption was given in MWh. Population data
for Guadalajara and Mexico City for 2020 and 2025 are available, so linear interpolation is used
to find population in 2020-2025 and 2025-2030. Calculations to find Low, Medium, and High EV
growth numbers are described. The high growth scenario was constructed under the consumption
that there would be almost full penetration of EVs by 2030.

Table 1: The population in Mexico City and Guadalajara and EV power consumption in Mexico
City used to find number of EVs in Guadalajara in low, medium, and high growth scenarios using
the aforementioned equation. CDMX EV Csmp (Consumption) is in MWh, while GDH Low, Med,
and High are the number of cars in each scenario.

Year CDMX Pop GDH Pop CDMX EV Csmp GDH Low GDH Med GDH High

2018 21493000 5068000 1456.22 708 2834 11337
2019 21680500 5139000 5022.69 2456 9827 39309
2020 21868000 5210000 10522.12 5173 20693 82772
2021 22077600 5276800 18118.89 8936 35747 142988
2022 22287200 5343600 27987.15 13847 55389 221558
2023 22496800 5410400 40311.01 20006 80024 320098
2024 22706400 5477200 55285.54 27520 110081 440325
2025 22916000 5544000 73115.91 36502 146011 584047
2026 23105800 5602600 94020.44 47046 188184 752736
2027 23295600 5661200 118228.53 59291 237164 948656
2028 23485400 5719800 145985.41 73370 293483 1173935
2029 23675200 5778400 177544.95 89424 357696 1430784
2030 23865000 5837000 238258.15 120256 481025 1924101

To get the approximate number of cars that will be in Guadalajara in 2020 once EV growth
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proliferates, assume that the battery sizes and MWh usage per car does not change significantly
in the next 10 years. In such a case, say that the number of cars will grow proportionally to the
growth in EV electricity use. When calculating the Guadalajara numbers, the main idea is to scale
up the Mexico City numbers to the projections for 2020 and 2025. Then we take the ratio of the
Guadalajara Metro Area population to that of the CDMX (the Federal District that Mexico City
is located in) for 2020 and 2025. An exponential growth model is assumed for the population and
EV growth of all cities.

For general number of EVs in a particular year, we get the following calculations:

nevsyr = 0.42 ∗
popguad

popmxc
∗ elecmxc

1,456.22
∗ 7, 155

For 2020, this is:

nevs2020 = 0.42 ∗ 5,210,000
21,868,000

∗ 10,522.12
1,456.22

∗ 7, 155 = 5, 173

More aggressive scenarios showcase what the algorithm outputs for different scenarios. The
scenarios are summarized as follows:

Table 2: Number of cars, stations, and regularization coefficient for different Guadalajara EV
Growth Scenarios

Scenario Name Phase I Cars Phase I Stations Regularization Coefficient

One Phase, Light 5,173 15 200
One Phase, Moderate 10,346 20 300
One Phase, Aggressive 20,692 25 375

In all of the scenarios below, the maximum chargers per stations is set to an upper bound in
order to indicate that a station can have limited spacial capacity for chargers. The value was set
to six after internal discussion about reasonable upper bound values. All Level II Chargers have
virtually the same capacity and little data was available for O&M costs. Optimization was done
mainly for base costs and always picked the General Electric DuraStation charger, which costs a
mere $400 while having the same capacity of cars per hour of 0.67. For Level III chargers, it is a
similar scenario. The optimization algorithm always automatically picked the Delta EV DC Quick
Charger. This charger had a cost of $30,000 (relatively low for a Level III charger) while having a
capacity of 15 cars per hour.

For SWITCH, it was determined that the best way to actually run the scenarios was to get the
SWITCH module for the entirety of Mexico and then swap the load profile for Guadalajara with
the hypothetical load profiles from the EV growth. This meant that all of the other portions of
Mexico stayed the same, while only Guadalajara changed. This is not the ideal setup, since overall,
the EV growth in Guadalajara will account very small percentage growth for the entire average
and peak loads for Mexico, so it is likely that no new infrastructure will be necessary. It is also
likely that other load areas can easily redirect electricity to meet the increased demand from the
Guadalajara load zones. Once new projections are made for more of Mexico, better predictions
can be constructed to better reflect the growth in the entire country.
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4.2.2 Light Scenario

Figure 6: EV Charging Station placement for low penetration scenario (darker squares correspond
to higher traffic, while yellow dots correspond to representative cars from data processing)

Table 3: EV Station Locations and Charger Configurations - Low Penetration Scenario

Number Longitude Latitude GE Durastation (Lvl 2) Delta DC Wallbox (Lvl 3)

0 -103.386282164 20.6716386092 5 0
1 -103.324990936 20.6666196406 5 0
2 -103.303125454 20.6432771379 5 0
3 -103.385239446 20.7396758971 5 0
4 -103.417336944 20.6259782562 4 0
5 -103.387258242 20.715746364 5 0
6 -103.313810851 20.5703138422 1 0
7 -103.253758809 20.6272018742 2 0
8 -103.450962481 20.7248086194 4 0
9 -103.448854086 20.5256974078 1 0
10 -103.429178162 20.6763656796 3 0
11 -103.354015753 20.7067087864 5 0
12 -103.348117524 20.6795045081 5 0
13 -103.375951178 20.5612240837 1 0
14 -103.361812579 20.6411060074 2 0

Table 4: EV Station Cost and Electrical Usage - Low Penetration Scenario (5 year period)

Number Construction + O&M Electricity (kWh)

0 5583.98 2000877.66
1 10793.11 3489709.66
2 2419.82 620306.53
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3 4074.02 1348629.74
4 6939.79 2388325.10
5 1902.76 395668.24
6 10473.32 3398273.04
7 6688.86 2316638.79
8 2859.12 813420.71
9 3309.29 1011411.48
10 1902.64 395668.03
11 3293.78 1004584.21
12 8669.47 2882570.51
13 4228.72 1416902.42
14 6060.75 2136935.35

Table 5: EV Load Profile by Type - Low Penetration Scenario (MWh)

Hour Baseline Home EV Work EV Social EV Overall

0 1900 55 0 1 1957
1 1822 41 0 0 1863
2 1778 32 0 0 1810
3 1751 24 0 0 1776
4 1755 18 0 0 1773
5 1781 12 0 1 1795
6 1880 8 0 3 1892
7 1956 7 2 3 1969
8 2058 8 4 5 2075
9 2148 9 5 6 2169
10 2197 10 6 10 2224
11 2230 14 7 8 2259
12 2257 18 6 8 2290
13 2261 22 6 10 2298
14 2235 27 5 7 2274
15 2222 36 4 7 2268
16 2214 50 3 9 2276
17 2173 68 2 8 2251
18 2134 85 1 7 2227
19 2146 94 1 6 2246
20 2185 94 1 4 2284
21 2180 90 1 4 2275
22 2138 82 1 3 2224
23 2048 71 0 1 2119

Figure 7: Load Profiles of miscellaneous load types (including EV Loads) - Low Penetration (MWh)
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4.2.3 Moderate Scenario

Figure 8: EV Charging Station placement for medium penetration scenario (darker squares corre-
spond to higher traffic, while yellow dots correspond to representative cars from data processing)

Table 6: EV Station Locations and Charger Configurations - Medium Penetration Scenario

Number Longitude Latitude GE Durastation (Lvl 2) Delta DC Wallbox (Lvl 3)

0 -103.348935331 20.7302617075 2 0
1 -103.32823251 20.6610162375 4 0
2 -103.428521145 20.6317337813 3 0
3 -103.390806642 20.7184038151 4 0
4 -103.306352561 20.6412645108 4 0
5 -103.380892962 20.6781569178 4 0
6 -103.414320663 20.7371329374 3 0
7 -103.378532617 20.5287577982 1 0
8 -103.254270121 20.624273904 3 0
9 -103.355029185 20.701978361 3 0
10 -103.441533159 20.7672524041 1 0
11 -103.427953369 20.6770871956 3 0
12 -103.347786709 20.6788576557 3 1
13 -103.397819062 20.6511755658 3 0
14 -103.39404054 20.5937505006 2 0
15 -103.337013146 20.5839799858 2 0
16 -103.361350317 20.6441062409 3 0
17 -103.379046258 20.7388583368 4 0
18 -103.448786174 20.5701103914 1 0
19 -103.456326526 20.7119522097 3 0
20 -103.456067393 20.4743112445 1 0
21 -103.277738804 20.6614387881 2 0
22 -103.374307733 20.7089674165 3 0
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23 -103.269272057 20.5442199977 1 0
24 -103.319447422 20.6965468191 2 0

Table 7: EV Station Cost and Electrical Usage - Medium Penetration Scenario (5 year period)

Number Construction + O&M Electricity (kWh)

0 4003.53 1200626.25
1 21747.05 6550766.01
2 11403.67 3609676.55
3 35161.99 10386958.84
4 28324.76 8432165.86
5 4454.85 1377159.9
6 19013.47 5769043.89
7 7573.95 2477081.65
8 1914.29 395672.77
9 12667.22 3971521.77
10 8200.13 2663612.34
11 3186.87 885109.22
12 22250.69 6694870.12
13 13593.37 4232908.61
14 5862.54 1928218.07
15 7331.24 2404176.18
16 2810.11 748808.02
17 7840.18 2556570.54
18 22727.92 6831415.47
19 9008.43 2903542.01
20 8426.8 2730909.69
21 3005.92 817568.18
22 37868.09 11160634.54
23 5463.51 1776555.16
24 28596.8 8509947.94

Table 8: EV Load Profile by Type - Medium Penetration Scenario (MWh)

Hour Baseline Home EV Work EV Social EV Overall

0 1900 221 0 5 2127
1 1822 166 0 0 1987
2 1778 129 0 0 1907
3 1751 97 0 0 1848
4 1755 72 0 0 1827
5 1781 49 1 5 1836
6 1880 33 3 12 1928
7 1956 29 8 13 2006
8 2058 31 15 21 2125
9 2148 34 21 26 2230
10 2197 42 25 40 2305
11 2230 57 26 32 2346.01288642
12 2257 74 25 34 2389
13 2261 86 22 38 2408
14 2236 107 19 27 2388
15 2222 143 16 27 2408
16 2214 198 12 37 2461
17 2173 273 7 33 2486
18 2134 340 5 27 2506
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19 2146 374 3 26 2549
20 2185 375 3 18 2581
21 2180 359 3 18 2560
22 2138 328 2 13 2481
23 2048 283 1 2 2334

Figure 9: Load Profiles of miscellaneous load types (including EV Loads) - Medium Penetration
(MWh)

4.2.4 Aggressive Scenario

Figure 10: EV Charging Station placement for high penetration scenario (darker squares corre-
spond to higher traffic, while yellow dots correspond to representative cars from data processing)
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Table 9: EV Station Locations and Charger Configurations - High Penetration Scenario

Number Longitude Latitude GE Durastation (Lvl 2) Delta DC Wallbox (Lvl 3)

0 -103.410305829 20.7388171566 0 1
1 -103.328239503 20.6610734703 0 3
2 -103.382451709 20.5783864552 1 0
3 -103.347199431 20.6854189215 0 3
4 -103.400351927 20.6492076933 0 1
5 -103.296376123 20.6349483997 0 1
6 -103.42814094 20.6806202813 0 1
7 -103.387655646 20.7201298258 0 3
8 -103.407223257 20.5236901859 1 0
9 -103.244494984 20.6211124868 0 1
10 -103.455637489 20.6289271096 1 0
11 -103.368049782 20.6737822713 0 1
12 -103.44274652 20.731558642 0 1
13 -103.355319901 20.702346821 0 4
14 -103.379007452 20.7389096104 0 3
15 -103.346017644 20.6248209662 1 0
16 -103.458584177 20.7068256251 0 1
17 -103.439419875 20.5936671598 1 0
18 -103.348728121 20.730390327 0 1
19 -103.29427952 20.5510190288 1 0
20 -103.365361946 20.5304112402 1 0
21 -103.367973215 20.646844938 0 1
22 -103.420897163 20.6323106984 0 1
23 -103.319303641 20.6973060481 0 1
24 -103.277059313 20.6665286012 0 1
25 -103.391815329 20.6732787354 0 1
26 -103.441096336 20.769811641 1 0
27 -103.378644391 20.6922447286 0 1
28 -103.457910283 20.4694721789 1 0
29 -103.458645671 20.5538494662 1 0
30 -103.306335849 20.6470009238 0 3
31 -103.202380048 20.5256530758 1 0
32 -103.347162532 20.6715066532 0 3
33 -103.333765636 20.5797924415 1 0
34 -103.321852291 20.6259086229 0 1
35 -103.409221514 20.7053515808 0 1
36 -103.434373701 20.6584599084 0 1
37 -103.373266919 20.7117469693 0 2
38 -103.399963422 20.6063875934 0 1
39 -103.269318924 20.6321852968 0 1

Table 10: EV Station Cost and Electrical Usage - High Penetration Scenario (5 year period)

Number Construction + O&M Electricity (kWh)

0 47410.8 13478977.79
1 103971.57 29906115.31
2 92341.66 26528568.46
3 23700.59 6628058.51
4 17267.68 4788597.53
5 138743.68 40005351.04
6 44684.75 12687258.57
7 21765.77 6074806.0
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8 9511.44 2570954.68
9 28239.0 7924507.88
10 10877.52 2961571.93
11 13702.8 3769384.0
12 86824.83 24926355.03
13 18981.76 5278697.82
14 29531.16 8293911.83
15 91271.2 26217683.95
16 4250.08 1066517.44
17 6911.16 1827757.82
18 47341.12 13458739.82
19 100902.87 29014913.05
20 90481.16 25988238.99
21 21192.79 5910951.58
22 28456.67 7986684.78
23 8728.6 2347117.83
24 58347.0 16655364.07
25 10411.07 2828196.38
26 24006.77 6715593.84
27 7472.87 1988198.62
28 16570.07 4589143.78
29 44015.6 12492925.27
30 12055.16 3298302.52
31 14958.2 4128303.21
32 36787.77 10393540.46
33 2140.45 464498.81
34 22269.69 6218910.11
35 20626.62 5749047.8
36 24247.31 6784354.18
37 37310.5 10545447.17
38 3636.89 890959.13
39 1903.49 395669.1

Table 11: EV Load Profile by Type - High Penetration Scenario (MWh)

Hour Baseline Home EV Work EV Social EV Overall

0 1900 886 1 22 2809
1 1822 662 0 0.0 2484
2 1778 514 0 0 2292
3 1751 387 0 0 2138
4 1755 289 0 0 2044
5 1781 198 2 19 2000
6 1880 133 11 47 2071
7 1956 115 31 53 2155
8 2058 123 58 84 2324
9 2148 138 84 103 2473
10 2197 168 101 160 2626
11 2230 230 105 128 2693
12 2257 295 99 135 2785
13 2261 346 89 153 2849
14 2236 426 77 106 2846
15 2222 573 64 106 2965
16 2214 794 46 147 3202
17 2173 1091 29 131 3424
18 2134 1361 19 110 3624
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19 2146 1497 12 103 3758
20 2185 1500 13 72 3770
21 2180 1437 13 72 3702
22 2138 1313 9 50 3511
23 2048 1130 5 9 3193

Figure 11: Load Profiles of miscellaneous load types (including EV Loads) - High Penetration
(MWh)

4.2.5 SWITCH Results

Table 12: Miscellaneous Grid Information for different EV Penetration Scenarios (Default corre-
sponds to no EV growth)

Default Low Medium High

Unserved Load - GDH (MW) 0 0 0 0
Incoming Dispatch - GDH (MW) 367763 367763 367763 367763
Outgoing Dispatch - GDH (MW) 343335 343335 343335 343335

New Generation Assets (GW) 211 211 211 211
Total Gen Fixed Costs (Pesos) 14995206641 14995206641 14995206641 14995206641
Variable O&M Costs (Pesos) 872977321 872977321 872977321 872977321

Under-served Penalty 539756425 539756425 539756425 539756425
Total Cost 78835309162 78835309162 78835309162 78835309162

In the table above, the "Unserved Load" refers to any load demand that cannot be met by the
generation infrastructure available. The "Incoming Dispatch" refers to any incoming power coming
from other load zones into Guadalajara. "Outgoing Dispatch" refers to any power that comes from
Guadalajara and is transferred to other load zones. "New Generation Assets" refers to the size of
new generation infrastructure that is built to address new demand. "Total Gen Fixed Costs" refers
to the general cost to build new transmission and distribution assets. "Variable O&M Costs" are
operation and maintenance costs. The "Under-served Penalty Cost" is the net cost for a System
Operator to generate electricity that it is not paid for. "Total Cost" includes of cost of asset
construction (including both plants and transmission/distribution assets), O&M, dispatch, etc.

4.3 Scenario Analysis

This subsection begins with the discussion of charging station location placement. In the three
above plots, darker blue stations indicates stations with a higher number of cars assigned to them,
while lighter (whiter) stations indicate a lower number of cars assigned. The station placement
algorithm spread the stations out to be placed evenly around the city; station sizes are determined
such that stations closer to the urban center have larger capacities, while stations further away from
the urban center have smaller capacities. As the number of stations is increased, the algorithm
favors spreading smaller stations to less dense regions rather than building more stations towards

22



the downtown region. This seems to be consistent with trends in many major cities, such as New
York City, where gas stations are rare due to the high cost of building gas stations in areas of
high urban density [17]. There is certainly a trade-off between (i) building more stations to meet
demand in higher density areas through multiple stations versus (ii) building smaller stations in
the outskirts of the city and simply increasing the size of stations in areas of higher population
density. While this procedure favors the latter approach, in the future, tuning can be made to
favor the first approach if it is desired.

It is also important to note the effect on charger costs on how the Linear Program selects
charger configurations for stations. As can be observed above, for low and medium scenarios,
Level II (i.e. smaller) chargers are heavily favored, and only in the aggressive EV growth scenario
are Level III chargers ever favored. This is understandable given how the linear program works. If
the L2 Regularization term is ignored completely, the main constraint that comes into play when
setting the charger up is constraint (viii). If the only desire is to meet the demand for charging
as cheaply as possible, the algorithm will favor placing more Level II chargers, since they are
2

45
as efficient as Level III chargers and are 1

60
as expensive. There are two factors that can be

tuned by city planners to prevent this, which are shown by the aggressive scenario. The first is
the maximum number of chargers. If the number of stations is bottlenecked and the number of
chargers is bottlenecked, then the algorithm is forced to allocate Level III chargers, regardless of
cost, since it is the only way to meet charger demand given the constraints. The second is the L2
Regularization coefficient, which corresponds to the amount of importance that EV owners place
on not having to wait a long time for their vehicles to charge. Upon tuning the station parameter,
below a certain number of stations, the linear program breaks because no charger configuration
will allow for the stations to adequately meet demand. After a certain threshold is reached, the
algorithm is forced to choose Level III chargers for the aggressive scenario, as described earlier.
Furthermore, as described above, the L1 Coefficient also has a threshold of around 375 after which
it heavily favors Level II chargers, so if city planners wish for a scenario where they want to force
DC chargers, they can adjust this coefficient accordingly.

As shown in the graphs for all three scenarios, EVs have a fairly sizable effect on the grid.
EV charging accounts for an average of a 2.3/9.1/36 percent load increase, with a maximum of a
4.7/18.8/75.1 percent load increase at 7 PM for the low, medium, and high EV growth scenarios,
respectively.

The results of SWITCH showed that there is no change to the way the grid will operate given
the new EVs in Guadalajara. There will be no issues with meeting electrical demand in the city
(i.e. the unserved load is 0 for all scenarios), and the incoming and outgoing dispatch is the
same, and the new generation assets that are being built in order to account for new demand in
all three scenarios is the same. Fixed and variable costs are the same in all scenarios. The fact
that all electrical demand will still be met regardless is not too surprising. While there is a high
percentage growth in electrical demand from EVs in Guadalajara, wince SWITCH models Mexico
as a whole, the new electrical demand can be met by generation assets elsewhere in Mexico. This
also explains why the new generation assets that are built are the same in all scenarios. It was,
however, unexpected that incoming transmission to Guadalajara stayed the same in all scenarios.
It would be expected with the percentage increase in load at peak times that there would be an
increase in incoming electrical transmission to the Guadalajara Load Zone. However, the Jalisco
Load Zone is quite large, and includes both Guadalajara and various other cities, so this could be a
reason why the incoming electrical transmission is the same in all scenarios. Another likely reason
for the lack of difference between the three graphs is that the way the timepoints are sampled may
have been done incorrectly. This would lead to all three scenarios having the same loads, which
would then yield the same results.
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5 Conclusion

This paper has presented a comprehensive approach for city planners and government officials
to explore the process and effects of placing EV charging stations. The process starts with obtaining
data related to heuristics about where EV drivers are at given points in time in order to predict
where they might use public chargers. The next part of the process involves charger sizing and
placement using said data. The last part of the process is constructing the load profiles for the
scenarios with EVs. This gives a better idea of what investment and infrastructure must be added
in order to meet new demand.

In the Guadalajara example, the results of this procedure for low, medium, and high EV growth
were shown. The type of station placement and sizing that the procedure chose was discussed.
The optimal selection of chargers for each stations was explored. Lastly, the effect of the increase
in EV charging on the load was quantified for the city. Prior to the paper, we hypothesized that
in the low-penetration EV scenario, most chargers would be Level II chargers and there would not
be a drastic impact on the grid. This hypothesis turned out to be correct overall. For the medium-
penetration scenario, it was hypothesized that there would be a mix of Level II and III chargers,
and there would be some effect on the grid. This hypothesis turned out to be mostly incorrect, as
most chargers were level II chargers, possibly due to improper tuning of hyperparameters (i.e. the
coefficient in front of the L2 Norm); the lack of impact on the grid, particularly with regards to
the inflow of electricity to Guadalajara, could be due to the fact that all electricity demand could
already be met internally within Guadalajara’s load zone. For the high-penetration scenario, it was
hypothesized that most EV stations would be Level III stations and the grid would be drastically
affected. Most station chargers were Level III chargers, and there was a large impact on the
load; however, the actual grid was relatively unchanged, including the inflow of electricity due to
Guadalajara, possibly for the reasons mentioned before. Overall, it would be interesting to re-run
another impact study once scenarios are generated for multiple cities in Mexico.

In future work, key changes will be made to make this technology to be more accessible to
city planners. First of all, a GUI or web application will be created so that the tools can be
more easily utilized by individuals who wish to make explorations of these issues. Second of all,
more comprehensive data collections will be performed for many of the parameters passed into this
application. For instance, more research can be done into the actual sizes of the various charging
stations in Guadalajara and any other cities for which projections are desired. For instance,
information about Level III charger fixed and O&M costs were hard to come by online, so companies
could be called to get quotes on such data. Third of all, several portions of the algorithm could be
made to be substantially faster. Right now, the major bottlenecks to this process are in the Monte
Carlo simulation portion of the process and the clustering process, especially for existing stations.
The process can takes minutes for city planners with large amounts of data who wish to use this
procedure in the form of a software application. This data process will likely be recreated using
techniques involving State of Charge found via Kalman Filtering and Genetic Algorithms, as in
[24]. This filtering also be available as a separate package for other researchers who wish to use it.

While many research papers have been written about the problem of placing and sizing EV
charging stations, many focus on specific aspects of the EV charging station planning process -
for instance, only the station placement process or an analysis of the load change. The procedure
that is discussed in this document will empower policy makers who wish to look at what charging
station configurations are both the most economically feasible and meet public demand the most
effectively.
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6 Appendix

6A Sampling - Waze Data

The first part of the sampling process for cities that do not have Imrix data is getting data
relating to where traffic is at any given point in time. This data is provided in the form of an API
that is provided privately. One particular endpoint of the API allows to get all traffic jams in a
region at any given point in time.

To get all jams for some arbitrary period of time, simply keep all of the jams for the desired
region in a NoSQL database as JSON blobs. From there, simply query the created database for
desired data. In the example scenario for this project, there was too much data stored in the
database, and thus timeouts were common unless subsections of data were queried. Thus, for the
scenarios explored, only high-volume traffic jams (denoted Levels IV and V in the Waze API) were
queried.

6B Sampling - Google Places

The second part of the process is obtaining Google Places data, which is meant to show,
generally, where individuals park their cars before visiting commercial establishments. Specifically,
this process involves obtaining data using a library the scrapes Google PopularTimes created
by GitHub user m-wazr. PopularTimes data comes in the form of a JSON blob that, among
other things, contains a histogram (normalized to height 100) of what the density of people for a
representative day and hour of the week.

One thing to note is that for the PopularTimes package mentioned above, it is necessary to put
in a latitude/longitude bounding box as an input. Putting in such a sampling box for the entirety
of the city will result in timeout issues, so it is necessary to divide up your query into sections to
avoid such a problem. For each of these queries, only sample one location type (i.e gas station,
bank, park, etc.) at a time to avoid timeout.

To begin this process, start out by finding a GeoJSON file that corresponds to the municipality
in questions. Note the minimum and maximum latitudes and minimum and maximum longitudes
of this object. The corners of your bounding box are defined by:
(latmin, lonmin), (latmax, lonmin), (latmin, lonmax), (latmax, lonmax).
Using these corners, want to create smaller sampling boxes to prevent timeout. To do this, we define
a grid of size (m,n) to sample with. We then have mn sampling boxes, where each box is defined
by coordinate i ∈ (0, n) and j ∈ (0,m). If we define δh = latmax−latmin

m
and δw = lonmax−lonmin

n
,

we can say that our sample box (i, j) is defined by corners (latmin + iδh, lonmin + jδw), (latmin +
(i + 1)δh, lonmin + (j + 1)δw). We go through every i ∈ (0, n), j ∈ (0,m) to get the samples for
the entire city, and run through one location type at a time.

6C Sampling - Combining the Data Sources

The Waze data, as presented in the API, is already presented in such a way to represent
the general density of traffic in a particular location - in other words, it is already a line of time
points. Thus, there is no need to modify it in any way. The Google Popular Times data, however, is
normalized, so it is harder to get a valid population estimate for the number of people in a particular
location at any point in time. Under the assumption that most charging stations near stores will be
Level II chargers, and the information provided in previous sections that for all charges, we assume
half will use work chargers and half will use social chargers, points are upsampled in such a way that
the number of points from the PopularTimes data matches the number of points from traffic data.
Such a sampling rate was found to be num_pt_points = ⌈

pt_density

10
⌉. Where num_pt_points

is the number of representative points we will sample from Popular Times, and pt_density is
the population heuristic for an individual day and hour as provided by Google Popular Times,
normalized to 100.

6D Sampling - Monte Carlo Sampling

Before going about this sampling method, it is necessary to make sure that all of the required
input data is available. The first piece of necessary information is a list of the processed sample
points from the method described in the previous subsection. The second is a projection of the
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number of EVs for the years that planning is executed on (i.e. 2030, 2040, etc.). The last piece
of information is the number of trials desired for the sampling. A good rule of thumb is to have
one trial for each week for the “gap” between projections (i.e. for the aforementioned example, we
have 10 year gaps, each of which will have 52 trials, for a total of 520 trials).

For each of these trials, we randomly choose n points, where n is the number of EVs for that
given projection year. Repeat this process for every day and hour of a week. Thus, for each of
these years, we have a new representative sample of where our EV owners will be for any given
day and hour of the week.

6E Determining Infrastructure to Meet Requirements

For the linear program discussed in this section, let us first note that the vector n ∈ Ruv where
u is the number of stations and v is the number of charger types. The first v items are basically
the number of each charger type allocated to station 1, the second v items are the number of each
charger type allocated to station 2, etc. Scenarios arise involving matrix multiplication of some
vector ~x with each of the number of chargers and other information for each station. For example,
we may know the number of cars that can come to each charger type in an hour, and we may want
to get the total car capacity for an hour of the entire station. Such a piece of information can be
found using the following method:

X̂n =











~xT 0 0 . . . 0
0 ~xT 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ~xT





















~n1

~n2

...
~nu











Where ~ni ∈ Rv is the vector of the number of each charger type corresponding to the i-th station,
and vecx ∈ Rv is, similarly, some vector where each entry corresponds to some piece of information
for each entry. For example, the first entry of ~x may be the car capacity of the first charger type,
the second entry the car capacity of the second charger type, etc.

6F Running a Scenario - Gathering common data for Guadalajara

In order to run the scenario for Guadalajara, it was necessary to obtain information about the
Municipality, Planning, Chargers, Load PDFs, and Profiles, and Tariffs. The years for the different
Guadalajara Scenarios were 2020 and 2025.

We begin with the information that we need about Guadalajara as a whole (i.e. Municipality
and Population). The information for this CSV could be found using population growth projections
for Guadalajara. We assume a growth rate of 1.53% from 2017 to 2025 [20]. Using these growth
estimates, we obtain values of 5,210,000 in 2020 and 5,544,000 in 2025 [20]. Substation Capacity
was not available, so such a capacity, for now, is estimated to be 20 percent greater than the
maximum projected energy use for any hour between 2015 and 2020. This placeholder will be
changed when more information is available.

For the chargers, we did research on the different Level II and III commercial chargers available
on the market. We used figures from the internet. These chargers include Aerovironment DC
Fast Charge Station, ChargePoint CT4000 Series, Delta EV DC Quick Charger, Efacec QC50,
EVTEC PublicFastCharger, General Electric DuraStation, Leviton E40, LiquidSky Technologies
Inc QuadZilla, and Shorepower ePump. Figures related to cost, capacity, average energy use, and
car capacity were obtained for each charger. Average infrastructure connection costs were obtained
through [22].

The EV Profile contains various information about EV user behavior in Guadalajara. Using
internal projections from INECC, EV projection numbers were obtained for the city of Guadalajara.
Calculations for the growth in EVs is shown in section 3.2 entitled "Running the Guadalajara
Scenario". Numbers on the proportion of charges done at social vs. work vs. home chargers
are found in [14]. Lastly, numbers on revenue from social vs. work chargers are found through
using public charging cost models from the United States; many chargers use monthly subscription
models [21]. We assumed that a user is charger $25 per month for an entire year, much like in the
Chargepoint subscription model [21]. That being said, these values can easily be changed when
more information is available. For instance, if the individual running the model wishes to use a
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subscription based model paired that also has minute-by-minute charging rates, simply use the
following calculation: monthly_revenue = base_monthly_rate + avg_charges_per_month ∗
avg_length_charging_minutes.

Next, we obtain information on the Stations. Unfortunately, while some charging station
locations are available for Guadalajara, There is not information available on the charger sizes and
numbers for each station, so for now, we assume that in this scenarios, all chargers are being built
from scratch.

The Load Profile for Guadalajara was obtained. The profile is a 15 year projection of demand.
For the one-phase scenario, a five-year projection from 2020 to 2025 was selected, while for the
two-phase scenario, a ten-year projection from 2020 to 2030 was selected.

The Load Probability Density Function for home, work, and social chargers was obtained by
looking at [19]. The data comes from a simulation of the average EV load profile over each hour of
the day, under the assumptions that all EVs are battery electric vehicles with range of 200 miles.
The exact values are obtained by using WebPlotDigitizer on the plot of the simulated EV load of
charging at home, at work and in public.

In Mexico, tariff rates are seasonal for summer and winter. Each rate has a base, intermediate,
and peak rate. We found from the government website [cite here] that the rates for winter base, in-
termediate, and peak rates are 0.5472 pesos, 0.9120 pesos, and 1.0159 pesos respectively. Assuming
an exchange rate of 18.53 pesos per dollar, these values are $0.03, $0.05, and $0.055 respectively
in American dollars. For summer, the base, intermediate, and peak rates are 0.6406 pesos, 1.0976
pesos, and 1.2277 pesos respectively, which are equivalent to $0.035, $0.06, and $0.066 respectively
in American dollars by the aforementioned exchange rate.

References

[1] Zhang, Hongcai, et al. “Optimal Planning of PEV Charging Station With Single Output Mul-
tiple Cables Charging Spots .” IEEE, IEEE, 2017, ieeexplore.ieee.org/document/7390308/.

[2] Sadeghi-Barzani, Payam. “Optimal Fast Charging Station Placing and Sizing.” Applied Energy,
Elsevier, 19 Apr. 2014, www.sciencedirect.com/science/article/pii/S0306261914003171.

[3] Zhu, Zhiwei, et al. “A Hierarchical Framework for Coordinated Charging of Plug-
In Electric Vehicles in China.” IEEE, IEEE Transactions on Smart Grid, Jan. 2015.
https://ieeexplore.ieee.org/iel7/5165411/7361791/07017597.pdf.

[4] Sims R., R. Schaeffer, F. Creutzig, X. Cruz-Núñez, M. D’Agosto, D. Dimitriu, M.J. Figueroa
Meza, L. Fulton, S. Kobayashi, O. Lah, A. McKinnon, P. Newman, M. Ouyang, J.J. Schauer,
D. Sperling, and G. Tiwari, 2014: Transport. In: Climate Change 2014: Mitigation of Climate
Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S.
Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen,
S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA.

[5] Huizenga, Cornie. “New CEM Campaign Aims for Goal of 30% New Electric Ve-
hicle Sales by 2030.” International Energy Agency, International Energy Agency, 8
June 2017, www.iea.org/newsroom/news/2017/june/new-cem-campaign-aims-for-goal-of-30-
new-electric-vehicle-sales-by-2030.html.

[6] “Centralized Generation of Electricity and Its Impacts on the Environment.” EPA, Environmen-
tal Protection Agency, 13 Mar. 2018, www.epa.gov/energy/centralized-generation-electricity-
and-its-impacts-environment.

[7] Nealer, Rachael. “Gasoline vs Electric-Who Wins on Lifetime Global Warming Emissions?
We Found Out.” Union of Concerned Scientists, 13 Apr. 2018, blog.ucsusa.org/rachael-
nealer/gasoline-vs-electric-global-warming-emissions-953.

[8] Linke, Rebecca. “Newsroom.” The Real Barriers to Electric Vehicle Adoption, MIT Sloan School
of Management, 3 Aug. 2017, mitsloan.mit.edu/newsroom/articles/the-real-barriers-to-electric-
vehicle-adoption/.

27



[9] Chang, Daniel, et al. “Financial Viability Of Non-Residential Electric Ve-
hicle Charging Stations.” UCLA, luskin.ucla.edu/sites/default/files/Non-
Residential%20Charging%20Stations.pdf.

[10] Zhang, Hongcai, and Zhiwei Xu. “Optimal Planning of PEV Charging Station
With Single Output Multiple Cables Charging Spots.” IEEE, IEEE, Sept. 2017,
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7390308

[11] Zhang, Hongcai. “An Integrated Planning Framework for Different Types of PEV Charging
Facilities in Urban Area - IEEE Journals & Magazine.” IEEE Journal, IEEE, June 2015, iee-
explore.ieee.org/document/7122347/.

[12] Grahn, Pia. Electric Vehicle Charging Impact on Load Profile. KTH Royal Institute of Tech-
nology, 2013, www.diva-portal.org/smash/get/diva2:588875/fulltext01.pdf.

[13] Woodyard, Chris. “Studies: Smart, Rich People Buy Electric Cars.”
USA Today, Gannett Satellite Information Network, 20 Nov. 2012,
www.usatoday.com/story/money/cars/2012/11/19/electric-car-owners-survey-leaf-
volt/1703217/.

[14] Plugged In: How Americans Charge Their Electric Vehicles. Idaho National Lab,
2017, pscdocs.utah.gov/electric/16docs/1603536/291798SlidesINLPEVInfrastrucDemo2-
16-2017.pdf.

[15] Paevere, Phillip, et al. Spatio-Temporal Modelling of Electric Vehicle Charging Demand and
Impacts on Peak Household Electrical Load. Sustainability Science, Jan. 2014.

[16] Taylor, Chris. “Your Commute Is Costing You More than You Realize.” Reuters, Thom-
son Reuters, 27 May 2014, www.reuters.com/article/us-usa-commute-costs/your-commute-is-
costing-you-more-than-you-realize-idUSKBN0E721M20140527.

[17] Nir, Sarah Maslin. “With Gas Station’s Closing, a Fuel Desert Expands in
Manhattan.” The New York Times, The New York Times, 15 Apr. 2016,
www.nytimes.com/2016/04/16/nyregion/a-gas-station-closes-in-soho-making-lower-
manhattan-a-gasoline-desert.html.

[18] “BU-1003: Electric Vehicle (EV).” Battery University, Cadex Electronics Inc., 2014, batteryu-
niversity.com/learn/article/electric_vehicle_ev.

[19] Wood, Eric, et al. Regional Charging Infrastructure for Plug-In Electric Vehicles:
A Case Study of Massachusetts. National Renewable Energy Laboratory, Jan. 2017,
www.nrel.gov/docs/fy17osti/67436.pdf.

[20] “Guadalajara Population 2018.” Guadalajara Population 2018 (Demographics, Maps, Graphs),
25 Oct. 2017, worldpopulationreview.com/world-cities/guadalajara-population/. Date Ac-
cessed 12 April, 2018

[21] Schaal, Eric. “A Simple Guide to Electric Vehicle Charging.” FleetCarma, FleetCarma, 2 Mar.
2018, www.fleetcarma.com/electric-vehicle-charging-guide/. Accessed 12 April, 2018

[22] “Types of Electric Vehicle Chargers.” Plug My Ride, Northeast Utilities,
www.plugmyride.org/downloads/Handout%20Types%20of%20chargers%206-17-
13.pdf?id=4294989763&dl=t. Accessed 12 April, 2018

[23] Avrin, Anne-Perrine, et al. “SWITCH.” Renewable & Appropriate Energy Laboratory, Re-
newable & Appropriate Energy Laboratory, rael.berkeley.edu/project/switch/.

[24] Zhang, Hongcai, et al. “PEV Fast-Charging Station Siting and Sizing on Coupled Trans-
portation and Power Networks.” IEEE Transactions on Smart Grid, 2016, pp. 1–1.,
doi:10.1109/tsg.2016.2614939.

28


	Acknowledgements
	Introduction
	Procedure
	Obtaining and Processing the Data
	Finding the Location of an EV Charging Station
	Determining Infrastructure to Meet Requirements
	New Load Profile
	Adapting to New Load Demand

	Running a Scenario
	Overview
	Getting inputs
	Outputs
	Running SWITCH

	Running the Guadalajara Scenario
	Making our Scenario for Guadalajara
	Light Scenario
	Moderate Scenario
	Aggressive Scenario
	SWITCH Results

	Scenario Analysis

	Conclusion
	Appendix
	Sampling - Waze Data
	Sampling - Google Places
	Sampling - Combining the Data Sources
	Sampling - Monte Carlo Sampling
	Determining Infrastructure to Meet Requirements
	Running a Scenario - Gathering common data for Guadalajara


