
Using Physics Simulators to Aid in Real-Time Robot
Planning

Michael Tong

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-68
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-68.html

May 15, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Would like to firstly thank Professor Ronald Fearing for his advice and
guidance throughout this project. Would also like to thank Justin Yim for his
help on understanding the precise mechanisms of the ODE phsyics engine,
Anusha Nagabandi for help understanding ROS, Carlos Casarez for help in
understanding the VelociRoACH robots, and everyone else in the
Biomimetics lab group for their help and support.

Abstract

In this report we focus on building a framework for a feedback loop for robot planning that

incorporates physics simulations in modeling complex interactions between the robots and

their corresponding environment. By using a physics simulator to handle the dynamics, one

can consider the tasks of building an environment and the dynamics of the robot separately,

making it much easier to design and implement tests. Additionally, using a physics simulation

allows for the testing of hypothetical environments and scenarios that would be prohibitively

expensive to physically build and test. This report will show how to conceptually build such

a framework, describe in detail the realization of such a framework, and discuss the results

of experiments performed using the framework.

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Goals and Motivation . 1
1.2 Problem . 2
1.3 Related Work . 2
1.4 Introduction . 3

2 Physical World Systems 5
2.1 Kinect . 5
2.2 Robots . 6
2.3 Optitrack . 6

3 ROS systems 7
3.1 PCL: point cloud processing . 8
3.2 PCL: mesh generation . 10
3.3 Environment Generator . 11
3.4 Performance Evaluator . 11
3.5 Driver . 14

4 VREP systems 18
4.1 Introduction to VREP . 18
4.2 Simulation Scene . 19
4.3 Robot Used . 20
4.4 OMPL . 21

5 Software Based Experiments 24
5.1 OpenSCAD . 24

ii

6 Experiments 27
6.1 Picking the lowest energy path . 28
6.2 Picking rough terrain . 28
6.3 Running the robot on an environment generated from the physical world . . 30

7 Results 34
7.1 Picking the lowest energy path . 35
7.2 Picking rough terrain . 35
7.3 Running the robot on an environment generated from the physical world . . 38

8 Conclusion 41
8.1 Limitations to the system . 41
8.2 Future Work . 42
8.3 Overall Conclusion . 42

A Modeling the turning radius of the robot 44

B Sample *yml configuration file. 46

C OpenSCAD shapes 49
C.1 Double Bridge . 49
C.2 Introduction of random bumps . 51

Bibliography 53

iii

List of Figures

1.1 Block diagram of the system. Blue arrows have been implemented, red arrows
are planned but not fully implemented. 4

3.1 Example of voxelization. (top) Original sampled points. (bottom) Pixels grouped
into voxels with their respective centroids in black. 9

3.2 Setup of experiment. 10
3.3 Mesh generation example. 12
3.4 Plot of simulated VelociRoACH turning behavior at various motor ratios. 17

4.1 Picture of the simulated VelociRoACH. 20
4.2 Example of projection of the robot onto a 2 dimensional surface. 22

5.1 Simplified block diagram. 25
5.2 The double bridge, an example of a simplified mesh generated with OpenSCAD. 26

6.1 The setup for the experiment described in Section 6.1. 29
6.2 The setup for the experiment described in Section 6.2. 30
6.3 Close up rendering of the bumps used for the experiment described in section 6.2. 31
6.4 Picture of the setup in 6.3. 32
6.5 Close up of the ramp in 6.3. 33
6.6 Screenshot from the physics simulation in 6.3. The robot is starting from the

right and trying to reach the position marked by the dummy robot (blue) on the
left. 33

7.1 Example path generated from section 6.2. In this case the robot succeeds in
traversing the path. 36

7.2 Example path generated from section 6.2. In this case the robot fails in traversing
the path. 37

7.3 Example path generated from section 6.3. In this case the robot succeeds travers-
ing the path. 39

7.4 Example path generated from section 6.3. In this case the robot fails traversing
the path. 40

iv

A.1 Example run that was used to generate data for Fig 3.4. 45

B.1 Annotated screenshot of the scene described in B. 48

C.1 Conceptual drawing of the ramps of the double bridge. 50
C.2 Conceptual drawing of the bridges of the double bridge. 50
C.3 Drawing of the bumps used when constructing the double bridge with artificial

height variation. 52

v

List of Tables

3.1 Results of the Kinect experiment. 9

7.1 Results of the experiment described in section 6.1. 35
7.2 Results of the experiment described in section 6.2. 37
7.3 Results of the experiment described in section 6.3. 38

C.1 Dimensions of the bridge. 51

vi

Acknowledgments

Would like to firstly thank Professor Ronald Fearing for his advice and guidance throughout
this project. Would also like to thank Justin Yim for his help on understanding the precise
mechanisms of the ODE phsyics engine, Anusha Nagabandi for help understanding ROS,
Carlos Casarez for help in understanding the VelociRoACH robots, and everyone else in the
Biomimetics lab group for their help and support.

1

Chapter 1

Introduction

1.1 Goals and Motivation

The main goal of this report is to predict how a robot will perform in a given environment

without having to run a physical experiment. This report’s proposed solution to this problem

is to use a combination of ROS (a common middleware used in robotics) and VREP (a physics

simulator) to simulate what might happen. This allows for one to run more trials than one

could using only physical tests because of the lower cost of failure in simulation.

Since VREP can model the interactions between the robots and their environment, we

can treat the problems of reconstructing a simulated environment, building dynamics models

for robots, and how the robots interact with their environment separately. This allows one

to make quantitative predictions about how robots will perform in environments that would

otherwise be too complicated to make such predictions. Additionally, this system allows for

CHAPTER 1. INTRODUCTION 2

planners that do not need to consider the robots’ dynamics when planning. Since the physics

simulator can simulate any series of actions a robot can perform it can validate and evaluate

potential plans given by the planner.

1.2 Problem

The problem this report is trying to solve is a path-planning problem, where given some

environment find a lowest energy cost path to guide a legged robot from a start position

to a goal position. Since trying to model the dynamics of robots is di�cult on arbitrary

environments, an alternative is to model the environment and robot dynamics independently

and to use a physics simulation to model their interactions.

1.3 Related Work

The approach this report takes to solving this problem can be seen as a version of software in

the loop. Software in the loop is a test methodology where executable code such as algorithms

(or even an entire controller strategy), usually written for a particular mechatronic system,

is tested within a modelling environment that can help prove or test the software. Currently,

there has been work on writing software in the loop for specific systems such as modeling

automotive powertrain systems [19] [10] or robot manipulators [1]. There has also been work

on building general framework [5].

CHAPTER 1. INTRODUCTION 3

For the modeling of the robotics models itself, there are several models to learn robot

control [12] that can be used in order to plan how legged robots can move along a specified

path [3]. The goal of this report is to combine these two ideas to allow for the testing of

planning algorithms that work in a simulated environment and on a physical robot.

1.4 Introduction

As seen in Fig. 1.1, the system is divided into 3 main parts: the physical world, ROS, and the

physics simulator VREP [15]. In the physical world, we rely on sensors such as the Kinect

and Optitrack to get an idea of what the environment looks like. In VREP, we build and run

physics simulations to get an idea of what might happen to a robot locomoting and to plan

optimal paths. Lastly, we use ROS to handle most of the data processing and coordination.

In chapters 2, 3, and 4 the report will go into more detail about each of the blocks in the

block diagram as shown in Fig. 1.1. A discussing about a simplified block diagram that only

relies on software components is in chapter 5. Chapters 6 and 7 will go into the experiments

and results. Finally, the conclusion is in chapter 8.

CHAPTER 1. INTRODUCTION 4

Kinect

Robots

Optitrack

PCL:4pcd
processing

PCL:4mesh
generation

Driver

OMPL

Simulation4Results

Path4Problem

Point4cloud

Sensory
Data

Stl files

Scenes4to4construct

Driver
Sensory4Data

Best
Path

Sim.4Path

Driver
Commands

Driver
Commands

Environment4
Generator

Performance
Evaluator

Physical4World ROS VREP

Robot4Position4Data

Simulation4
scene

Figure 1.1: Block diagram of the system. Blue arrows have been implemented, red arrows
are planned but not fully implemented.

5

Chapter 2

Physical World Systems

The components in this section all exist in the physical world, and their primary goals are

to gather data about the real world and to run physical tests in it. The goal of the Kinect

is to provide an approximation of the environment in the real world that will be used for

physical simulations by the rest of the system. The robots are used to perform the physical

tests and provide validation and feedback on the simulated models and results. Finally, the

Optitrack system is a motion capture system used to provide information to be used when

controlling the robots.

2.1 Kinect

In order to get a sample of the environment, we use an RGB-D camera. For this system,

we are using the Kinect 2 camera, though other options such as the Intel RealSense cam-

CHAPTER 2. PHYSICAL WORLD SYSTEMS 6

era. When using the Kinect, it can record in 3 definitions: standard (424 ⇥ 512), QHD

(540 ⇥ 960), and HD (1080 ⇥ 1920). Using higher resolution results in more computation-

ally expensive processing and a lower framerate from the Kinect. For this system, I have

found that processing the environment in QHD seems to be a good compromise between the

computation time and fidelity of the image.

2.2 Robots

In order to test and develop the system I needed physical robots. The physical robots I

decided to use are the VelociRoACH robots [7]. I chose this robot because it is di�cult in

general to predict the behavior of these legged robots. In contrast to wheeled robots, such

as the Zumy robots [20], physics of the legs colliding with the ground are very di�cult to

model accurately, especially when the terrain is not flat.

2.3 Optitrack

The Optitrack is a motion capture system that can track the position and orientation of

objects in 3D space in real time. While not fully implemented, the plan was to use the

Optitrack system to help in controlling the physical robots by providing their locations and

orientations. With the robot’s position and orientation, it becomes possible to control the

robot using ROS in real-time.

7

Chapter 3

ROS systems

The ROS systems form the backbone of the system, and serve as the center for processing that

as well as interfacing with the physical and simulated systems. In order to internally process

the environments, the raw point data from the Kinect is converted into a 3D mesh that can

be used in physics simulations. These meshes are then used to generate the surrounding

environment to use in simulation. To interface with the physical and simulated tests, there

is a performance evaluator to evaluate how well simulated tests perform and a driver to

control the physical and simulated robots. The next parts of this section will go into more

detail about the individual pieces of the ROS system.

CHAPTER 3. ROS SYSTEMS 8

3.1 PCL: point cloud processing

In this block, the raw point data from the Kinect is downsampled and denoised in order

to make it easier for the later steps to process the point cloud data. Currently the only

processing done on the point cloud is the downsampling step. Currently the downsampling

is done using a technique called voxelization. Voxelization is when one takes the points and

group them into voxels of size dx⇥dy⇥dz. Then within each voxel one outputs the centroid

of the points in the voxel as shown in in Fig. 3.1. In this manner one can take point clouds

of arbitrary density and transform it to a point cloud of a specific density determined by the

voxel size.

Voxelizing the points has two main advantages over using the raw point cloud data. The

first is that the voxelized cloud returns a point cloud of roughly uniform density, which is

useful since the Kinect does not uniformly sample the space in front of it. The second is that

with less points it is more computationally e�cient to compute the resulting meshes over the

point cloud. Another benefit of voxelization is that with voxelization the point clouds can

be processed in real-time as opposed to much slower methods such as Moving Least Squares.

Characterizing the e↵ectiveness of voxelization

To quantify how much voxelization reduces the error in measurements. I ran an experiment

where I had the Kinect camera 6 meters away from the wall and had it sample a 2m ⇥

2m square directly in front of it. A cartoon of the setup can be shown in Fig. 3.2. After

CHAPTER 3. ROS SYSTEMS 9

dx

dy

dz

Figure 3.1: Example of voxelization. (top) Original sampled points. (bottom) Pixels grouped
into voxels with their respective centroids in black.

voxelizing the raw camera data, I fit a linear plane to the wall and discarded outlier points

that were over 5 times the sampled standard error. This process was repeated until all the

points in the sampled point cloud are all part of the wall. The results of this experiment is

shown below in Table 3.1. From the results, it seems that using larger voxels does not reduce

the standard error by much. However, in practice the surfaces become much smoother than

the standard errors would suggest as the points are spread out by their voxel size, so even if

the errors were constant they would still be smoothed by a factor proportional to the voxel

size.

voxel size (cm) points points kept error (mm)
N/A 28359 28155 4.833
1 28420 28273 4.808
2 11209 11109 4.916
5 1908 1883 4.315
10 464 453 3.644
20 122 120 3.327

Table 3.1: Results of the Kinect experiment.

CHAPTER 3. ROS SYSTEMS 10

Kinect

Wall

2m

2m

6m

Figure 3.2: Setup of experiment.

3.2 PCL: mesh generation

The goal of mesh generation is to transform the sampled point cloud into a surface that is

usable by a physics simulator such as VREP. For the mesh reconstruction we use PCL’s [16]

implementation of mesh reconstruction described in [11]. We use PCL to take in the point

clouds and then output the reconstructed meshes as *.stl files. One important thing to note

is when reconstructing the meshes, some physics engines such as ODE [17] incorporate the

direction of the facet normals when doing collision detection. So in order to have proper

collision, one needs to align all of the surface normals such that they face in the outward

direction. Since the Kinect gives the coordinates of its point clouds relative to the camera,

CHAPTER 3. ROS SYSTEMS 11

we can write that for every facet in the mesh at position xi relative to the camera with the

surface normal ni, the inner product hxi, nii  0. In other words, the normals all point in

the direction towards the camera.

An example of the mesh generation can be seen in Fig. 3.3, where the Kinect is pointed

at the environment in Fig. 3.3a and after the voxelization and mesh generation processing

steps, the results can be seen in Fig. 3.3b.

3.3 Environment Generator

In order to generate the environments, I’ve been using bml vrep [2]. bml vrep takes in a

configuration file (*.yml), of which an example can be seen at in the appendix section B.

With this configuration file, all of the meshes and models are placed in an VREP simulation

environment in their respective positions and orientations to form a scene. Additionally,

bml vrep can also be used to control the VREP simulations.

3.4 Performance Evaluator

Currently I have two metrics for evaluating the performance of the robot. The first metric

is counting the number of times the robot successfully completes a given path trajectory,

and the second is the energy expended by the robot’s leg joints to traverse a given path

trajectory. In order to calculate the energy expended, at every step of the simulation, I use

CHAPTER 3. ROS SYSTEMS 12

(a) Sample environment captured through the

Kinect.

(b) Visualization of the mesh generated of the

sample environment.

Figure 3.3: Mesh generation example.

CHAPTER 3. ROS SYSTEMS 13

VREP API calls to get the velocity of each leg vt and the force being expended by that leg

to maintain its velocity ft. Then for each leg, I take the total energy expended by it across

the simulation E =
P

t vtft. Finally, I take the sum of the energy used by all of the legs

and output the resulting number. While this method is imperfect, as this result will return

di↵erent values if the legs are contacting the ground at the base compared to somewhere

closer to the motor, it serves as a good first order approximation when comparing the energy

expenditure across multiple potential paths.

The performance evaluator communicates with VREP using ROS services. Each of the

services use the std srvs/Trigger message, as it is the only message that contains the string

field to give the option of sending custom error messages. Now I will describe each of the

ROS service messages that the performance evaluator uses. Note for all of these names

<robot name> is a place holder for the robot’s name in VREP’s simulation.

• <robot name>/path plan: Tells VREP to start path planning using OMPL.

• <robot name>/reset pose: Resets the robot position to the original position as speci-

fied in the *.yml file.

• <robot name>/drive: With a given path, starts the driver code to have the robot

drive along a given path.

• <robot name>/best path: Load the best path found into the VREP planner to try

simulating again.

CHAPTER 3. ROS SYSTEMS 14

• <robot name>/drive time: If the path was successfully traversed, get the simulation

time it took to traverse the path.

• <robot name>/energy used: If the path was successfully traversed, get the energy the

robot used to traverse the path.

• <robot name>/path found: If the path was successfully computed (sometimes OMPL

will fail and return a null path), return the path.

3.5 Driver

The driver code takes in a path and the robot’s current position and outputs the commands

in order to drive the robot. The path is broadcasted to other systems as a series of n points

{x1, x2, ..., xn} where x1 and xn are the start and end locations and the desired path of

traversal is to pass through each point sequentially. The robot’s position xr and quaternion

qr are also broadcast. The next subsections will go into more detail on the path, and the

driving controls.

Path following

The driver keeps track of index i 2 {1, 2, ...n} that represents the point xi the robot is trying

to reach. Once the robot comes within distance rpath of xi, i is incremented except for the

last point xn. If the robot is trying to reach xn, the robot will continue driving until it

CHAPTER 3. ROS SYSTEMS 15

comes within distance rend of xn. Once the robot is within rend distance of xn, the robot is

assumed to have reached its destination and the driver terminates. The pseudocode for this

algorithm is at Algorithm 1.

Algorithm 1 Path following algorithm.
1: path {x1, x2, · · · xn}
2: i 1
3: while true do
4: get xr, the position of the robot
5: x� xi � xr

6: Drive the robot
7: if i 6= n and kx�k2 < rpath then
8: i++
9: else if i == n and kx�k2 < rend then
10: return

Driving

In order to get the error in heading ✓, I first make some assumptions about the robot models

I work with. For a robot with the quaternion qr = 1, the forward direction is x̂ and the left

direction is ŷ. Then let the vectors x0
, y

0 be the unit vectors representing x̂, ŷ being rotated

by the given quaternion of the robot qr. Also let x� = xi � xr be the direction of the next

goal point in the path. Then the error ✓ can be expressed as

✓ = tan�1(
x

>
� y

0

x

>
� x

0)

In addition to calculating ✓, I also need a model for how the roach’s turning speed based

o↵ of di↵erential drive, I recorded the robots average turning radius across a variety of left

and right motor speeds. The results of these plots is shown if Fig. 3.4. For a more detailed

CHAPTER 3. ROS SYSTEMS 16

description of how I collected this data, see the appendix at section A. From the plot it

looks like the logarithm of motor ratio speeds is linearly related to the curvature of the path

taken. Thus empirically the amount the robot turns is proportional to the exponential of

the ratio of motor speeds.

With this relationship in mind, I used a P-controller with some gain p to drive the

VelociRoACH where if ✓ = 0, both of the motors run at some base velocity !0. If ✓ 6= 0, I

keep one side of the roach at !0 and exponentially increase the angular velocity of the other

leg with respect to the error angle ✓. The pseudocode for the driving code is at Algorithm

2.

Algorithm 2 Code that drives the robots using di↵erential drive.
1: Have some destination point xi

2: Have some gain on your controller p
3: Get xr, the position of the robot
4: x� xi � xr

5: Get qr, the quaternion of the robot
6: Compute x

0
, y

0 from the quaternion qr

7: i 1
8: ✓ tan�1(x>

� y
0
/x

>
� x

0)
9: if ✓ > 0 then
10: Set the left motor to !0

11: Set the right motor to !0 exp(|p✓|)
12: else
13: Set the right motor to !0

14: Set the left motor to !0 exp(|p✓|)

CHAPTER 3. ROS SYSTEMS 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

log(motor ratios)

cu
rv

at
ur

e
of

 p
at

h

Figure 3.4: Plot of simulated VelociRoACH turning behavior at various motor ratios.

18

Chapter 4

VREP systems

VREP serves as the novel element when doing robotics path planning. Since VREP is a

fully realized physics simulator, one can use VREP to account for complex interactions and

planning algorithms in a clean and abstract manner. The purpose of these systems in VREP

is to generate, test, and evaluate potential paths for the robots to traverse.

4.1 Introduction to VREP

Before I describe the corresponding parts of the block diagram in this section, I feel it is

necessary to describe some important details about VREP in order to make the following

sections more clear. This section serves as an introduction to the parts of VREP that are

important to this report.

CHAPTER 4. VREP SYSTEMS 19

Communication through ROS messages

VREP communicates externally using the ROS message and service systems. This is done

because for real robots ROS is one of the common software packages when running real

physical robots.

Non-threaded scripting

When writing code in VREP, there is the option for threaded and non-threaded scripts.

Threaded scripts run unsynchronized from the beginning of the simulation and non-threaded

scripts run at every step of the simulation. Keeping in line with best practices, all of the

code I have written in VREP is non-threaded. This reduces the complexity of the simulation

scenes being run and makes the code overall more e�cient.

4.2 Simulation Scene

In order to create a simulation scene that is compatible with ROS, VREP takes in the scenes

given by the environment generator and generates a scene from it. One thing to note is that

in order to be compatible with bml vrep, there needs to be a ROS publisher broadcasting

the simulation time so the ROS controller can properly control the VREP scene.

CHAPTER 4. VREP SYSTEMS 20

4.3 Robot Used

For the simulation scenes, we are using a simulated approximation of one of the VelociRoACH

made by Andrew Pullin [14] which can be see in Fig. 4.1. The simulated roach contains one

central body (approximated as a box) with 6 identical legs. To simulate the legs moving, the

abduction and protraction angles change as the leg spins in order to match what the real

VelociRoACH does.

Figure 4.1: Picture of the simulated VelociRoACH.

CHAPTER 4. VREP SYSTEMS 21

4.4 OMPL

The Open Motion Planning Library [18] (OMPL). Is an open source repository containing

state-of-the-art motion planning algorithms. To interact with OMPL, I am currently using

VREP’s API, which makes it very easy to interact with and test with in VREP at the cost of

being very di�cult to interact and test with outside of VREP. In order to use OMPL through

VREP’s interface, I am using a customized version of the ”pose3D” state sampler (which

incorporates the objects position and orientation) and state validation to find collision-free

paths in which the robot crawls along the ground. The next few subsections will go into

more detail about the custom state sampler and the state validation as well as how OMPL

is being used.

Custom State Sampler

Since the robot is restricted to be on the ground of the simulation, the search e↵ectively

covers a 2D surface in 3D space. From this, given a 3D search space for valid states, I

randomly sample points in a in the 2D xy plane then project the robot to lie in the 3D. A

cartoon of this process is shown if Fig. 4.2. With the projected plane, I rotated the robot

such that the forward direction and the left direction of the robot is consistent with the

projected robot.

CHAPTER 4. VREP SYSTEMS 22

`
Robot

Surface

Legs

Ground
ProjectionProjection5of

Robot

Figure 4.2: Example of projection of the robot onto a 2 dimensional surface.

Custom State Validation

In order to test if there exists a valid path between two points, one needs to check whether

the states along the path are valid. In order to do custom state validation, the model checks

if the following conditions are met to see if a state is valid:

• If the robot is not colliding with any of the meshes.

• If the robot body is reasonably close to the ground.

• If the all of the robot legs are close to the ground (instead of one of the legs being over

a pit for example).

CHAPTER 4. VREP SYSTEMS 23

Using OMPL

From OMPL I use probabilistic roadmaps (PRM) [8] to do the path planning with the custom

samplers and state validation. The reason why I am using PRM instead of some of the more

common path finding algorithms such as rapidly-exploring random trees (RRT) [9] is because

the VREP-OMPL interface only supports a small subset of the path planning algorithms

if one uses a custom state sampler and state validator. PRM happens to be supported,

while RRT is not. While other algorithms are supported such as Sparse Roadmap Spanners

(SPARS) [4], in general they perform slower and less optimally than PRM.

24

Chapter 5

Software Based Experiments

Before discussing the experiments, this report will cover a version of this system that can

be realized entirely through software. Since this system only relies on software, it is much

easier and faster to design and run experiments than ones that rely on data from the physical

world. The block diagram for software based experiments is shown in Fig. 5.1.

To replace the PCL mesh reconstruction, I instead use simplified meshes generated from

OpenSCAD [13], an open source software for creating 3D objects. The next section will go

into more detail about how I use OpenSCAD.

5.1 OpenSCAD

The primary way I have been using OpenSCAD is to generate simplified environment meshes

such as the one in Fig. 5.2. OpenSCAD allows one to draw custom polyhedrons and

CHAPTER 5. SOFTWARE BASED EXPERIMENTS 25

OpenScad
Simple,Meshes

OMPL

Simulation,Results

Path,ProblemStl files

Scenes,to,construct

Driver Sim.,Path

Driver
Commands

Environment,
Generator

Performance
Evaluator

ROS VREP

Robot,Position,Data

Simulation,
scene

Figure 5.1: Simplified block diagram.

build environments using simple shapes such as spheres, cubes, and triangles. In addition,

OpenSCAD can also generate height maps, which is another way to approximate a 3D

environment. Consult the Appendix in section C for more information.

CHAPTER 5. SOFTWARE BASED EXPERIMENTS 26

Figure 5.2: The double bridge, an example of a simplified mesh generated with OpenSCAD.

27

Chapter 6

Experiments

The purpose of these experiments is to test the e�ciency of this system in various scenarios.

In this report, there are a total of three experiments designed to try to characterize the

system in a noiseless software-based system, a software-based system with artificial height

variation, and a system that incorporates data from the physical world. For each of these

systems, the goal is to design an environment in which the goal is for a robot to go from a

start position to a goal position. For the planning of each path, the planner is only aware of

the physical environment layout without any idea about the underlying dynamics or control

model of the robot. However, despite this, the experiments will show that it is still possible

to discern which paths are relatively safer and more energy e�cient with the framework

described in this report.

CHAPTER 6. EXPERIMENTS 28

6.1 Picking the lowest energy path

The goal of the first experiment is to see how the system performs on a completely artificial

environment. For this environment, I used a double bridge setup in Fig. 6.1. For a more

detailed description of the environment used, see the appendix at section C. The goal of

this experiment is for the robot on the left to navigate to a point within 5 cm of the robot

on the right. Note that the robot on the right is a placeholder and has no collision physics.

This experiment was to test how OMPL will generate di↵erent paths and their relative

e�ciencies. Since for this experiment the bridges are symmetrical, the top and bottom

bridges should be chosen with roughly equal probability and the robots should traverse both

bridges with roughly equal success rates and energy expenditure. In order to evaluate the

relative successes of the paths, I generated a path using OMPL, had the robot run along

the simulated path, then calculated the total energy that the robot expended as described

in section 3.4.

6.2 Picking rough terrain

For this experiment, the goal was to see how the system performs on a system where arti-

ficial height variation is introduced. The reason behind adding the terrain roughness is to

increase the uncertainty in trajectories beyond what geometric planner can predict. For this

experiment, I am using a double bridge setup with bridges with artificial height variation.

The setup can be seen in Fig. 6.2, a closeup shot of the bumpy terrain can be seen in Fig.

CHAPTER 6. EXPERIMENTS 29

Figure 6.1: The setup for the experiment described in Section 6.1.

6.3 and a more detailed description of how exactly I generate the bumps is in the appendix

at section C. The height of all of the bumps in the top and bottom bridge are randomly

selected from the uniform distribution [0, 1.5 cm] and [0, 1.0 cm] respectively. Intuitively,

the top path should be more di�cult to cross, and the goal of this experiment is to gain

some quantitative understanding on exactly how much harder the top path is to cross than

the bottom one.

CHAPTER 6. EXPERIMENTS 30

Figure 6.2: The setup for the experiment described in Section 6.2.

6.3 Running the robot on an environment generated

from the physical world

For the last experiment, the goal was to test on a system from the physical world without

extra artificial height variation. For this experiment, I have a setup of a single bridge made

of plywood supported by cinder blocks using paper to smooth the transitions between sheets

of plywood. The setup of the experiment can be seen in Fig. 6.4 and 6.5. Then I used the

Kinect to generate a mesh to use for simulation in VREP which can be seen in Fig. 6.6.

Note for this simulation, I used the path planning algorithm STRIDE [6] as in this case it

worked better than using PRM.

CHAPTER 6. EXPERIMENTS 31

Figure 6.3: Close up rendering of the bumps used for the experiment described in section
6.2.

CHAPTER 6. EXPERIMENTS 32

Figure 6.4: Picture of the setup in 6.3.

CHAPTER 6. EXPERIMENTS 33

Figure 6.5: Close up of the ramp in 6.3.

Figure 6.6: Screenshot from the physics simulation in 6.3. The robot is starting from the
right and trying to reach the position marked by the dummy robot (blue) on the left.

34

Chapter 7

Results

For the results, the goal is to quantify how well the robots could successfully traverse the

paths generated in the experiments. In order visualize the results better, the paths returned

by OMPL are black while the paths the robot actually took are in blue. In the results data,

I kept track of whether a path was successfully traversed and if it was traversed how much

energy was used. For considering whether or not a path was successfully traversed, I checked

to see whether or not the robot reached its destination within 60 seconds of simulation

time. Since for the majority of trials the robot reached the destination in under 30 seconds,

the failure cases were only ones in which the VelociRoACH fell o↵ of the bridge. Finally,

when quoting the amount of energy used, the statistics are only collected from the successful

traversals. In this manner I can characterize which paths can be traversed e�ciently and

safely as well as get a general sense of how OMPL performs without incorporating information

about the robot’s dynamics.

CHAPTER 7. RESULTS 35

7.1 Picking the lowest energy path

For this experiment I ran OMPL PRM until it generated 20 paths for each of the top and

bottom paths. The results represent the control case, where there is a smooth terrain for

both paths and are summarized in Table 7.1. Note the amount of energy is a relative unit,

so only comparisons in energy used are meaningful.

From the results, it seems that the results from running the robot along the top and

bottom path is functionally identical. This makes sense since the paths are symmetric. One

thing to note is that some of the randomized paths are poor and give roughly 20% higher

energy expenditure costs than normal.

top bridge bottom bridge
number of trials 20 20

successful traversals 18 19
average energy expended 1.082 1.111
std. dev energy expended 0.0596 0.0909
minimum energy expended 1.009 1.009
maximum energy expended 1.192 1.371

Table 7.1: Results of the experiment described in section 6.1.

7.2 Picking rough terrain

For this experiment I ran OMPL until I had a total of 25 paths for both the top and bottom

paths. The results are summarized in Table 7.2. Note the amount of energy is a relative

unit, so only comparisons in energy used are meaningful.

CHAPTER 7. RESULTS 36

Figure 7.1: Example path generated from section 6.2. In this case the robot succeeds in
traversing the path.

In general, when the robot successfully traversed the paths it had smooth paths that

were centered on the bridge, and the unsuccessful paths were ones in which the path was too

close to the edge. Examples of successful and unsuccessful paths that were traversed can be

seen in Fig. 7.1 and 7.2.

From the results, it seems clear that the top path is much worse than the bottom path.

Both the failure rate and the energy cost is roughly twice as large for the top path as opposed

to the bottom path. The failure rate for this experiment is much higher than the previous

experiment due to the terrain roughness making it much harder for the di↵erential drive

CHAPTER 7. RESULTS 37

Figure 7.2: Example path generated from section 6.2. In this case the robot fails in traversing
the path.

controller to stay close to the intended path.

top path bottom path
number of trials 25 25

successful traversals 19 23
average energy expended 1.210 2.424
std. dev energy expended 0.1133 1.7228
minimum energy expended 1.058 1.288
maximum energy expended 1.452 7.154

Table 7.2: Results of the experiment described in section 6.2.

CHAPTER 7. RESULTS 38

7.3 Running the robot on an environment generated

from the physical world

For this experiment I placed the robots 2m apart from each other and ran 25 trials. The

results are summarized in Table 7.3. From looking at the results, the path planning algorithm

returned a fairly high success rate. Indicating that it is possible to drive the roach across

the bridge in simulation. The lowest energy and safest paths tended to be ones that had

paths that were closer to the center of the bridge and relatively straight like the paths in

Fig. 7.3. Conversely, paths that tended to have sharper turns and were closer to the edge

of the bridge tended to fail, such as the path in Fig. 7.4.

parameter value
number of trials 25

successful traversals 20
average energy 0.938
std. dev. energy 0.329
min. energy 0.656
max. energy 2.061

Table 7.3: Results of the experiment described in section 6.3.

CHAPTER 7. RESULTS 39

Figure 7.3: Example path generated from section 6.3. In this case the robot succeeds
traversing the path.

CHAPTER 7. RESULTS 40

Figure 7.4: Example path generated from section 6.3. In this case the robot fails traversing
the path.

41

Chapter 8

Conclusion

8.1 Limitations to the system

The main bottleneck to this system is the vast amounts of computation time required to run

the physics simulation. The experiments relying on purely simulated data take on the order

of 1 minute and the experiments on a physical environment take on the order of 3 minutes,

making them too slow to run in real-time. However, this system is heavily parallelizable,

as given a path or an environment one can have multiple instances of a single environment

being run at once.

Another limitation to this system is it relies heavily on the accuracy of the physics

simulation models. As physical tests were not conducted, it is still an open question how

accurate the physics simulations are at predicting the behavior of real physical robots.

CHAPTER 8. CONCLUSION 42

8.2 Future Work

One avenue of work would be to implement the red arrows as seen in Fig. 1.1. With this, it

will be possible to run physical tests using this framework, allowing for the validation of the

simulation results.

Another possibility would be to move the OMPL outside of VREP, perhaps into ROS

or another system entirely. The reason for this is that while using VREP’s OMPL interface

is easy to write, it is very limiting in the sense of what one can change. These limitations

prevented me from using more common planning algorithms like RRT to instead use only

supported algorithms like PRM. Additionally, due to how VREP is built it is di�cult to do

version control on the code, making it more di�cult to implement changes to the algorithm

from a software perspective.

8.3 Overall Conclusion

This report has shown a framework that incorporates physics simulations in a feedback loop

to aid in real-time robot planning. By using this framework, one can run experiments using

simulated and physical environments using a planner that does not need any knowledge

about the robot’s dynamics. Furthermore, one can run these experiments using code that

can control both the physical and the simulated robots.

43

APPENDIX A. MODELING THE TURNING RADIUS OF THE ROBOT 44

Appendix A

Modeling the turning radius of the

robot

For this section, let !l,!r be the angular velocities of the left and right sides of the robot

respectively. For each data point in Fig. 3.4, I ran the VREP simulated robot and at each

time step took its position and rotation. For calculating total rotation of the robot, I looked

at the change in rotation at each time step and summed them. I used a similar process for

calculating the distance travelled. The result of a sample run can be seen in Fig. A.1 Then

to get the curvature of travel, given the robot travelled a total of distance d and turned a

total number of n revolutions the curvature of the path taken was 2⇡n/d. Note that this

formula assumes that the robot travelled in perfect circles, which was not the case. The

robot tended to drift somewhat during all of the tests. However, since the purpose of this

test was to determine a reasonable empirical model, I ignored this error and the resulting

P-controller seems to work under this assumption.

APPENDIX A. MODELING THE TURNING RADIUS OF THE ROBOT 45

Figure A.1: Example run that was used to generate data for Fig 3.4.

46

Appendix B

Sample *yml configuration file.

Below is a sample *yml configuration file that sets up a sample path planning scene over a

double bridge described in section C. An annotated screenshot of resulting scene in VREP

can be found in Fig. B.1.

1. scene_file: "empty.ttt"

2. objects: [

3. {

4. model_filename: "ros_clock.ttm"

5. },

6. {

7. model_filename: "stl_object.ttm",

8. stl_filename: "double_bridge.stl",

APPENDIX B. SAMPLE *YML CONFIGURATION FILE. 47

9. position: [0.0, 0.0, 0.0],

10. orientation: [0.0, 0.0, 0.0, 1.0],

11. },

12.]

13. robots: [

14. {

15. model_filename:

16. "6leg_crawler_non_threaded.ttm",

17. position: [0.0, -1.6, 0.045],

18. orientation: [0, 0.0, 0, 1],

19. },

20. {

21. model_filename:

22. "6leg_crawler_dummy.ttm",

23. position: [0.0, 1.6, 0.045],

24. orientation: [0, 0.0, 0, 1],

25. },

26.]

APPENDIX B. SAMPLE *YML CONFIGURATION FILE. 48

scene%file%name
ROS%clock

*.stl file

6leg_crawler_dummy.ttm%object

6leg_crawler_non_threaded.ttm%object

Figure B.1: Annotated screenshot of the scene described in B.

49

Appendix C

OpenSCAD shapes

In this section of the appendix will go over some of the main shapes I use in the simplified

meshes.

C.1 Double Bridge

I chose to use the double bridge model because it is geometrically simple to describe and

o↵ers path planning algorithms two distinct ways to traverse from one side to the other.

The double bridge can be thought of as two mirrored right triangular prisms that are

joined by some bridge component, as seen in Fig. C.1. As for the bridge itself, it is composed

of two identical cuboids spanning the gap as shown in Fig. C.2.

Keeping with the dimensions described in figures C.1 and C.2, the dimensions of the

bridge are in Table C.1.

APPENDIX C. OPENSCAD SHAPES 50

Bridge'Component
Right'Triangular
Prisms

ramp'width

ramp'length

ramp'height

bridge'length

Figure C.1: Conceptual drawing of the ramps of the double bridge.

Bridge'Component

Open'Space

Bridges

bridge'length

separation

bridge'width

Figure C.2: Conceptual drawing of the bridges of the double bridge.

APPENDIX C. OPENSCAD SHAPES 51

bridge dimension name length (m)
ramp length 1.0
ramp width 2.0
ramp height 0.2
bridge length 1.0
bridge width 0.5
separation 1.0

Table C.1: Dimensions of the bridge.

C.2 Introduction of random bumps

For the test introducing height variation into the bridges, I used the same double bridge

except added some pyramid-shaped bumps to the bridges. For each of the bumps I used a

pyramid with a square base with the peak at some random height in the range [0,max height]

and selected the location of the peak to be over the center of the pyramid. A schematic of

the random pyramid can be seen in figure C.3. For each bridge there is a 20 ⇥ 40 grid of

these pyramid bumps across the bridge with varying maximum heights. This makes each

pyramid base 2.5 cm ⇥ 2.5cm.

APPENDIX C. OPENSCAD SHAPES 52

Base%Width%dx

Base%Length%dy

Random%Height%in
[0,%max%height]

Center%of%peak
chosen%uniformly
from%here

dx/2

dy/2

Figure C.3: Drawing of the bumps used when constructing the double bridge with artificial
height variation.

53

Bibliography

[1] Mossaad Ben Ayed, Lilia Zouari, and Mohamed Abid. “Software In the Loop Simula-

tion for Robot Manipulators”. In: Engineering, Technology & Applied Science Research.

Vol. 7. 5. Springer Fachmedien Wiesbaden, 2017, pp. 2017–2021.

[2] Austin Buchan. bml vrep. 2016. url: https://github.com/biomimetics/bml_vrep

(visited on 04/24/2018).

[3] Ignasi Clavera, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,

and Chelsea Finn. “Learning to Adapt: Meta-Learning for Model-Based Control”. In:

CoRR abs/1803.11347 (2018). arXiv: 1803.11347. url: http://arxiv.org/abs/

1803.11347.

[4] David Coleman, Ioan Alexandru Sucan, Mark Moll, Kei Okada, and Nikolaus Correll.

“Experience-Based Planning with Sparse Roadmap Spanners”. In: CoRR abs/1410.1950

(2014). arXiv: 1410.1950. url: http://arxiv.org/abs/1410.1950.

BIBLIOGRAPHY 54

[5] S. Demers, P. Gopalakrishnan, and L. Kant. “A Generic Solution to Software-in-the-

Loop”. In: MILCOM 2007 - IEEE Military Communications Conference. Oct. 2007,

pp. 1–6. doi: 10.1109/MILCOM.2007.4455268.

[6] B. Gipson, M. Moll, and L. E. Kavraki. “Resolution Independent Density Estimation

for motion planning in high-dimensional spaces”. In: 2013 IEEE International Con-

ference on Robotics and Automation. May 2013, pp. 2437–2443. doi: 10.1109/ICRA.

2013.6630908.

[7] Duncan W. Haldane, Kevin C. Peterson, Fernando L. Garcia Bermudez, and Ronald

S. Fearing. “”Animal-inspired Design and Aerodynamic Stabilization of a Hexapedal

Millirobot””. In: ICRA (2013).

[8] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars. “Prob-

abilistic Roadmaps for Path Planning in Hihg-Dimension Configuration Spaces”. In:

IEEE Transactions on Robotics and Automation 12.4 (Aug. 1996), pp. 566–580.

[9] J. J. Ku↵ner and S. M. LaValle. “RRT-connect: An e�cient approach to single-

query path planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat.

No.00CH37065). Vol. 2. 2000, 995–1001 vol.2. doi: 10.1109/ROBOT.2000.844730.

[10] René Linssen, F. Uphaus, and J. Mauss. “Software-in-the-Loop at the junction of

software development and drivability calibration”. In: 16. Internationales Stuttgarter

BIBLIOGRAPHY 55

Symposium. Ed. by Michael Bargende, Hans-Christian Reuss, and Jochen Wiedemann.

Wiesbaden: Springer Fachmedien Wiesbaden, 2016, pp. 451–465.

[11] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz. “On Fast Surface Re-

construction Methods for Large and Noisy Datasets”. In: Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). Kobe, Japan, May

2009.

[12] Duy Nguyen-Tuong and Jan Peters. “Model learning for robot control: A survey”. In:

12 (Apr. 2011), pp. 319–40.

[13] OpenSCAD. 2018. url: http://www.openscad.org/index.html (visited on 04/25/2018).

[14] Andrew Pullin. Simulations. 2018. url: https://wiki.eecs.berkeley.edu/biomimetics/

Internal/Simulations (visited on 04/26/2018).

[15] Coppelia Robotics. VREP. 2018. url: http://www.coppeliarobotics.com/index.

html (visited on 04/24/2018).

[16] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL)”.

In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai,

China, May 2011.

[17] Russell Smith. ODE. 2015. url: http://www.ode.org/ (visited on 04/24/2018).

BIBLIOGRAPHY 56

[18] Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning Li-

brary”. In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012). http://ompl.

kavrakilab.org, pp. 72–82. doi: 10.1109/MRA.2012.2205651.

[19] Gabriele Vandi et al. “Development of a Software in the Loop Environment for Auto-

motive Powertrain Systems”. In: Energy Procedia 45 (2014), pp. 789–798.

[20] Zumy. 2016. url: https://wiki.eecs.berkeley.edu/biomimetics/Main/Zumy

(visited on 04/24/2018).

