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Abstract

Interpretable Machine Learning with Applications in Neuroscience

by

Reza Abbasi Asl

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Bin Yu, Chair

In the past decade, research in machine learning has been principally focused on the

development of algorithms and models with high predictive capabilities. Models such

as convolutional neural networks (CNNs) achieve state-of-the-art predictive performance

for many tasks in computer vision, autonomous driving, and transfer learning. However,

interpreting these models remains a challenge, primarily because of the large number of

parameters involved.

In this thesis, we investigate two regimes based on (1) compression and (2) stability to

build more interpretable machine learning models. These regimes will be demonstrated

in a computational neuroscience study. In the first part of the thesis, we introduce a

greedy structural compression scheme that prunes filters in a trained CNN. To do this,

we define a filter importance index equal to the classification accuracy reduction (CAR)

of the network after pruning that filter (similarly defined as RAR for regression). CAR

achieves state-of-the-art classification accuracy compared to other filter pruning schemes.

Furthermore, we demonstrate the interpretability of CAR-compressed CNNs by showing

that our algorithm prunes filters with visually redundant functionalities such as color

filters.

In the second part of this thesis, we introduce DeepTune, a stability-driven visu-

alization and interpretation framework for CNN-based models. DeepTune is used to

characterize biological neurons in the V4 area of the primate visual cortex. V4 is a large

retinotopically-organized area of the visual cortex located between the primary visual cor-

tex and high-level areas in the inferior temporal lobe. V4 neurons have highly nonlinear

response properties and it is notoriously difficult to construct quantitative models that

accurately describe how visual information is represented in V4. To better understand

the filtering properties of these neurons, we study recordings from 71 well isolated cells

stimulated with 4000-12000 static grayscale natural images collected by the Gallant Lab
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at UC Berkeley. Our CNN-based models of V4 neurons achieve state-of-the-art accuracy

in predicting neural spike rates in a hold-out validation set (average predictive correlation

of 0.53 for 71 neurons). Then, we employ our DeepTune stability-driven interpretation

framework and discover that the V4 neurons are tuned to a remarkable diversity of tex-

tures (40% of the neurons), contour shapes (30% of the neurons), and complex patterns

(30% of the neurons). Most importantly, these smooth DeepTune images provide testable

naturalistic stimuli for future experiments on V4 neurons.

In the final part of this thesis, we study the application of CAR and RAR compressed

CNNs in modeling V4 neurons. Both CAR and RAR compression give rise to a new set of

simpler models for V4 neurons with similar accuracy to existing state-of-the-art models.

For each of the accurate CAR and RAR compressed models of V4 neurons (up to 90%

compression rate), the smooth DeepTune images are stable and exhibit similar patterns

to the uncompressed model’s consensus DeepTune image. Our results suggest, to some

extent, that these CNNs resemble the structure of the primate brain.
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Chapter 1

Overview

Recent developments in machine learning research such as artificial deep neural net-

works (DNN) have achieved cutting-edge performance for many tasks in Artificial Intel-

ligence. Areas such as computer vision, autonomous driving and natural language and

speech processing have been the focus of this developments in the past decade. How-

ever, the substantial number of weights in these accurate machine learning tools has

made it challenging to humanly interpret or investigate these models for possible domain

knowledge gain. While there is no unified technical definition of interpretability in the

literature, interpretablity in machine learning is loosely described as the ability to ex-

plain or to present the decisions made by the model in understandable terms to a human

[18]. Interpretability is typically studied from one of two perspectives [39, 10, 22, 41,

17]. The first is algorithmic interpretablity and transparency of the algorithmic learning.

The other is post-hoc interpretability and explanation of the learned model using tools

such as visualization. The first perspective attempts to answer the question of how the

model learns and works, while the second perspective describes the output (prediction,

etc.) from learned parameters without explaining the algorithmic learning. Although the

statistics community has a long history of studying transparent and elegant models such

as linear regression, neither of the two perspectives have been sufficiently investigated for

the state-of-the-art machine learning algorithms and models.

Our main goal throughout this thesis is to develop and evaluate interpretable machine

learning tools using stability principle [73] and ideas from applied statistics. In particular,

we focus on stability-driven post-hoc interpretation and intelligibility of machine learning

models. Our main goal is to build and to interpret computational models using large

volumes of data in domains such as neuroscience. In these cases, model interpretability is

an essential part of ensuring that the conclusions drawn from the model will be considered

trustworthy by the scientific community. In the field of computational neuroscience, we
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will focus on understanding the visual pathway of primates’ brains. Machine learning

models such as convolutional neural networks (CNNs) inspired by the physiology of the

visual cortex have been widely used to predict neural spike rates and to explain repre-

sentations in primate’s visual cortex [7]. Although these models achieve state-of-the-art

performance in predicting neural spike rates, a reliable interpretation of these models is

necessary to make any scientific conclusion regarding the functionality of neurons. An

interpretable machine learning algorithm will help pave the road towards important dis-

coveries in domains such as computational neuroscience, vision science and biology. In

the following paragraphs, I will summarize the main contributions of this thesis.

Structural compression of convolutional neural networks Huge numbers of pa-

rameters in deep CNNs often make it difficult to interpret these network. From the

perspective of post-hoc interpretability, a network with fewer parameters is easier to vi-

sualize and explain to a human interpreter. Therefore, compression has a natural role

in building more interpretable models. CNNs are often visualized using graphical expla-

nation of their filters [74]. Thus to increase the interpretability, a compression method

should decrease the number of filters. This is different from classical approaches in com-

pression of CNNs where individual weights are pruned and quantized [23]. To fill in the

gap, we have introduced a greedy structural compression scheme that prunes filters in a

trained CNN [2, 1]. We first quantify the importance of each filter by the classification

accuracy reduction (CAR) of the network after pruning that filter. Then, the filters are

iteratively pruned based on the CAR index. Our algorithm achieves remarkably higher

classification accuracy (up to 25% for AlexNet [33]) compared to the best benchmark filter

pruning schemes. When combined with further weight pruning, coding and quantization,

the CAR algorithm reduces the size of individual convolutional layers in AlexNet by a

factor of 8 to 15, while achieving close to original accuracy through retraining. More im-

portantly, structural compression leads to a more interpretable CNN. We demonstrated

the interpretability of CAR-compressed CNNs by showing that CAR algorithm prunes

filters with visually redundant functionalities such as color filters. Additionally, when

working on our structural compression, we discovered that using a variant of our CAR in-

dex, it is possible to present a verbal and graphical interpretation of each filter in a CNN.

We were able to quantify the importance of each image category to each CNN filter. By

identifying the most and the least important class labels for each filter, we presented a

meaningful post-hoc interpretation of each filter.

Interpretable computational models of neurons in the visual area V4 The Yu

research group, that I am part of, has had a long-term collaboration with Jack Gallant’s

lab at UC Berkeley, one of the leading neuroimaging and neurophysiology labs in the world.
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This collaboration has led to several pioneering works in computational neuroscience.

Among them is the first visual experience decoder from brain activity [46] which was

declared one of the top 50 best inventions of 2011 by TIME magazine. By virtue of this

collaboration, I had the opportunity to work closely with remarkable neuroscientists on

datasets varied from measurements of single neurons to fMRI recordings of the whole

brain.

Together with my collaborators at Yu Group and Gallant lab, we have developed an

interpretable model for single neurons in area V4 of the primate’s visual cortex. Inter-

mediate areas of visual pathway including the V4 area are known to play an important

role in visual object recognition. While the spiking patterns of neurons in the early vi-

sual cortex (V1 area) can be fairly accurately modeled using a few parameters such as

spatial and frequency tunings [8], these methods fail to generalize to area V4, due to its

highly nonlinear response properties [56]. To uncover the functionality of these neurons,

we have studied recordings from 71 neurons in the cortical area V4 of two macaque mon-

keys being shown thousands of static natural images. CNN-based predictive models of

neuron spike rates achieve state-of-the-art performance for V4 neurons. To build these

models, we train a CNN to accurately classify natural images. Then for each stimulus

image, a feature-set is extracted by feeding the image forward through several layers of

this network. Finally, a linear model (Ridge or Lasso) predicts the neuron spike rates

from this feature-set. By varying the CNN architecture and number of layers, 18 dis-

tinct and accurate models emerge from this setting. To visualize the pattern selectivity

and tuning of each neuron in V4, we introduce ”DeepTune”, a statistical framework for

stability-driven [73] interpretation of our 18 models. DeepTune presents a visualization

of neural tuning and pattern selectivity using model-based naturalistic optimized images.

Each V4 neuron’s spatial pattern selectivity is characterized by DeepTune. Through our

stability-driven interpretation framework, we discover that the V4 neurons are tuned to a

remarkable diversity of textures (40% of the neurons) and shapes such as contours (30%

of the neurons). We also demonstrate that close to half of the V4 neurons exhibit strong

suppressive tuning. Most importantly, these smooth DeepTune images provide testable

naturalistic stimuli for future experiments on V4 neurons.

Through this visualization, we show that V4 neurons are selective to a remarkable

diversity of shapes such as curvatures, textures and V1-like gratings.

Compressed models of neurons in visual area V4 The computational models for

V4 neurons based on pre-trained CNNs often have thousands of parameters. The large

number of parameters in these models makes it hard to interpret them. We study the

post-hoc interpretability of these models. To simplify these models, and consequently

to make them more interpretable, we use CAR-compressed CNNs in chapter 4 to build
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predictive models of V4 neurons. The modeling procedure is similar to chapter 3, but

instead of full CNN, the CAR-compressed version is employed to predict spike rate of V4

neurons. We show that CAR-compressed networks achieve similar accuracy to the original

network, with far fewer filters in CNN architecture. For example, a compressed network

that uses half of the filters from the second layer of AlexNet to predict the spike rate of

V4 neurons achieves comparable predictive accuracy to the full model. We further show

that the DeepTune images from compressed images are consistent with the ones from the

original uncompressed network. This is another form of stability in model interpretation.

Furthermore, we introduce RAR compression in chapter 4. RAR algorithm is similar

to CAR, but the filters are removed based on their contribution to the final regression

task. We employ RAR compression to prune the filters in each individual model for each

neuron. Interestingly, when pruning 90% of the filters in the second layer of AlexNet,

we observe a 5% increase in the average correlation coefficient between predicted and

measured neural spike rates. The 10% remaining filters in the network have sufficiently

diverse pattern selectivity to avoid any loss in V4 neuron models. Similar to CAR, the

DeepTune visual for RAR is also stable and has patterns consistent with the original

uncompressed DeepTune images.

Future directions The algorithms, methodologies and results presented in this thesis

lead to several exciting future research directions. These directions are discussed in detail

within each chapter. Here, we present a summary of these directions. In chapter 1, we dis-

cuss our unified framework for interpretable machine learning. However, investigating the

theoretical aspects of interpretability and compression in machine learning models needs

further study. A rigorous and unified technical definition of interpretability is an essential

next step in this line of research. This definition should take into account both algorithmic

interpretablity and post-hoc interpretation. Building theoretical frameworks to address

connections between compression and interpretability is another direction which demands

extensive study on the definition, derivation and evaluation of compressed interpretable

artificial intelligence. Exploring the role of information theory and specifically channel

coding in the compression of deep neural networks is one possible direction. Future work

includes bringing together ideas from information theory, non-convex optimization, and

manifold learning to better understand the error surface of neural networks and building

a compressed interpretable DNN.

Alongside this theoretical avenue, further study is necessary to pursue the vital in-

teractions between machine learning and computational neuroscience. In recent years,

techniques, including two-photon calcium imaging and optogenetics, have emerged to si-

multaneously record and manipulate neural activity. In particular, calcium imaging has

made it possible to record tens of thousands of neurons with fine-grained spatial and ad-
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equate temporal resolutions. With the increasing interest in these imaging techniques, a

more careful study on the interpretable and accurate models of neurons based on these

modalities is necessary. Such progress could shed light on the problem of building state-of-

the-art decoders of visual experience. With the recent progress in machine learning tools

that encode brain activity, it becomes necessary to study their application in decoding

human visual experience. When reconstructing the natural visual experience, one issue is

that the natural scenes manifold is unknown. Models such as generative adversarial net-

works (GANs) [21] have shown remarkable capabilities to estimate the prior distribution

of natural scenes and therefore, have application in brain decoders.

In many data-driven problems, elegant and transparent models such as scattering

transform and random forests are not as accurate as deep neural nets, however, intelli-

gently combining these models balances between the elegance and accuracy of final models.

Such combined models are more interpretable and have invaluable implications in applica-

tions such as neuroscience. Additionally, a combined model sheds light on the limitations

of each individual sub-model. For example, scattering transform presents a well-defined

and transparent multi-layer model for vision. However, the predictive performance of

models that are built upon this transform is considerably less than that of CNNs. This

is primarily because, unlike scattering transform, CNNs are data-driven and have filters

with more diverse functionalities. In a combined model of pre-defined scattering chan-

nels and learned CNN filters, visualizing CNN filters elucidates the missing components

in scattering transform. A complete framework to build such models demands extensive

theoretical and applied study and should be pursued in future.
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Chapter 2

Structural compression of
convolutional neural networks

2.1 Introduction

Deep convolutional neural networks (CNNs) achieve state-of-the-art performance for a

wide variety of tasks in computer vision, such as image classification and segmentation [33,

40]. Recent studies have also shown that representations extracted from these networks

can shed light on new tasks through transfer learning [48]. The superior performance of

CNNs for large training datasets has led to their ubiquity in many industrial applications.

Thus, CNNs are widely employed in many data-driven platforms such as cellphones, smart

watches and robots. However, limited memory and computational power in these devices,

along with the huge number of weights in CNNs, make necessary effective compression

schemes.

There have been many works on compressing deep CNNs. These studies mostly focus

on reducing the number and size of the weights or parameters by pruning and quantizing

them. We call such compression schemes ”weight compression”. Optimal brain damage

[36], optimal brain surgeon [24], Deep Compression [23] and most recently SqueezeNet

[28] are some examples.

In addition to significant resource savings, compressed networks with fewer numbers of

weights are easier to be investigated or interpreted by humans for possible domain knowl-

edge gain. Here, interpretablity is loosely defined as the ability to explain or to present the

decisions made by the model in understandable terms to a human [18]. Interpretability

is typically studied from one of two perspectives. The first is algorithmic interpretablity

and transparency of the learning mechanism. The other is post-hoc interpretability and

explanation of the learned model using tools such as visualization. The first perspective
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attempts to answer the question that how the model learns and works, while the second

perspective describes the predictions without explaining the learning mechanism. Huge

number of parameters in deep CNNs often cause difficulties in interpreting these network.

From the perspective of post-hoc interpretability, a network with less number of param-

eters is easier to visualize and explain to human interpreter. Therefore, compression has

a natural role in building more interpretable models. CNNs are often visualized using

graphical explanation of their filters [74]. Thus to increase the interpretability, a com-

pression method should decrease the number of filters. This is different from classical

approach in compression of CNNs where individual weights are pruned and quantized

[23].

For example, considering a convolutional neural network (CNN), convolutional filters

are the smallest meaningful components of a CNN. Therefore, to uncover redundant

information in a network and build more interpretable models, it is natural to compress

CNNs based on removing ”less important” filters. We call such schemes ”structural

compression” schemes. The challenge is in defining ”filter importance”. He et al. [26] and

Li et al. [37] have studied structural compression based on removing filters and introduced

importance indices based on average of incoming or outgoing weights to a filter. However,

these importance measures typically do not yield satisfactory compressions of CNNs [26]

because of the substantially reduced classification accuracy as a result. For example,

classification accuracy for AlexNet decreases by 43% when we prune half of the filters in

the first layer based on average incoming or outgoing weights.

Pruning activations or feature-maps to achieve faster CNNs has been also studied in

[44]. Pruning activations can be viewed as removing filters in specific locations of the in-

put, however, those filters almost always remain in other locations. Thus it seldom results

in any compression of weights. On the other hand, pruning filters from the structure is

equal to removing them for all the possible locations and avoiding storing them. Addi-

tionally, because of the simplified structure, filter-pruned networks are more interpretable

compared to activation-pruned ones.

Pruning a fully-trained neural network has a number of advantages over training the

network from scratch with less filters. A difficulty in training a network from scratch is

not knowing which architecture or how many filters to start with and the huge numbers

of possible architectures and filters would lead to high computational cost in a combina-

torial manner as in other model selection problems [53]. Pruning provides a systematic

approach to find the minimum number of filters in each layer required for accurate train-

ing. Furthermore, recent results suggest that for large-scale CNNs, the accuracy of the

pruned network is slightly higher compared to a network trained from scratch ( [38] for

VGG and ResNet, [30] for AlexNet). For small-scale CNNs, it is possible to train a net-

work from scratch that achieves the same accuracy as the pruned network even though
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the aforementioned computational cost is not trivial in this case. Additionally, in the ma-

jority of transfer learning applications based on well-trained CNNs, pruning algorithms

achieve higher accuracies compared to training from scratch given the same architecture

and number of filters [6, 44]. For example, [6] showed that a pruned AlexNet gains

47% more classification accuracy in bird species categorization compared to training the

network from scratch.

Our main contributions in this chapter are three folds. First, we introduce a greedy

structural compression scheme to prune filters in CNNs. A filter importance index is de-

fined to be the classification accuracy reduction (CAR) (similarly for regression or RAR)

of the network after pruning that filter. We then iteratively prune filters in a greedy

fashion based on the CAR importance index. Our CAR structural compression scheme is

shown to achieve much higher classification accuracies compared to other existing struc-

tural compression methods. CAR compressed AlexNet without retraining can achieve a

compression ratio of 1.17 (for layer 1) to 1.5 (for layer 5) while having a close-to-original

classification accuracy (or 54%). This is 21% to 43% higher than the compression ratio

from the best benchmark method. If we fine-tune or retrain the CAR-compressed net-

work, the compression ratio can be as high as 1.79 (for layer 3) when maintaining the

same 54% classification accuracy. Second, we take advantage of weight pruning, quan-

tization and coding by combining our method with Deep Compression [23] and report

considerably improved compression ratio. For AlexNet, we reduce the size of individual

convolutional layers by factor of 8 (for layer 1) to 21 (for layer 3), while achieving close

to original classification accuracy (or 54% compared to 57%) through retraining the net-

work. Third, we demonstrate the ability of our CAR algorithm to remove functionally

redundant filters such as color filters making the compressed CNNs more accessible to

human interpreters without much classification accuracy loss. To our knowledge, such a

connection has not been reported previously. Furthermore, we introduce a variant of our

CAR importance index that quantifies the importance of each image class to each CNN

filter. A meaningful interpretation of each filter can be learned from the most and the

least important class labels. This interpretation is consistent with the visualized pattern

selectivity of that filter.

The rest of the chapter is organized as follows. In section 2, we introduce our CAR

compression algorithm. The performance of the compression for the state-of-the-art CNNs

in handwritten digit image and naturalistic image classification tasks is investigated in

section 3. In section 4, we connect compression to the interpretation of CNNs by vi-

sualizing functionality of pruned and kept filters in a CNN. In section 5, a class-based

interpretation of CNN filters using a variant of our CAR importance index is presented.

The chapter is concluded in section 5.
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2.2 CAR-based structural compression

Notation

We first introduce notations. Let wL
i denote the ith convolutional filter in layer L of

the network and nL the number of filters in this layer (i ∈ {1, .., nL}). Each convolutional

filter is a 3-dimensional tensor with the size of nL−1 × fL × fL where fL × fL is the size

of spatial receptive field of the filter.

The activation or the feature map of filter i in layer L (i = 1, .., nL) is:

αL
i = f(wL

i ∗ P)

where f(·) is the nonlinear function in convolutional network (e.g. sigmoid or ReLU) and

P denotes a block of activations from layer L − 1 (i.e. the input to the neurons in layer

L). The activation for the first layer could be patches of input images to the convolutional

network.

Assuming network N is trained on classification task, top-1 classification accuracy of

network N is defined as:

Acc(N ) =
NCorrect

NCorrect +NIncorrect

where NCorrect and NIncorrect are the number of correct and incorrect predicted classes,

respectively.

In this chapter, we use FLOPs to quantify the computational cost in each convolutional

layer of the neural network. FLOPs for each layer of the network equals to the number

of floating-point operations required in that layer to classify one image. Let’s assume

A ∈ RnL−1×kL−1×kL−1 is the input feature map and B ∈ RnL×kL×kL is the output feature

map in layer L where kL × kL is the spatial size. The FLOPs for this convolutional layer

equals to k2
LnLf 2

LnL−1. Additionally, the storage overhead for each convolutional layer of

the network equals to 4f 2
LnL−1nL bytes [68].

The proposed algorithm based on CAR importance index

In this section, we introduce our greedy algorithm to prune filters in layers of a CNN

and structurally compress it. Figure 2.1 shows the process of greedy filter pruning. In each

iteration, a candidate filter together with its connections to the next layer, gets removed

from the network. The candidate filter should be selected based on an importance index

of that filter. Therefore, defining an index of importance for a filter is necessary for

any structural compression algorithm. Previous works used importance indices such as
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Figure 2.1: Greedy compression of CNNs based on pruning filters.

average of incoming and outgoing weights to and from a filter, but with unfortunately

a considerable reduction of classification accuracy (e.g. 43% as mentioned earlier if one

prunes only the first layer) for the compressed CNNs [26, 37]. To overcome this limitation,

we define the importance measure for each filter in each layer as the classification accuracy

reduction (CAR) when that filter is pruned from the network. That is,

CAR(i, L) = Acc(N )− Acc(N (−i, L))

where network N (−i, L) is network N except that filter i from layer L together with all

of its connections to the next layer are removed from the network.

In our CAR structural (or filter pruning) compression algorithm, the filter with the

least effect on the classification accuracy gets pruned in each iteration. The network can

be retrained in each iteration and after pruning a filter. This process is regarded as fine

tuning in this chapter. We present details of our fine tuning procedure in the next section.

Algorithm 1 shows the pseudo code of our CAR greedy structural compression algorithm.

Here, niter and riter are, respectively, the number of remaining filters and compression

ratio in the current iteration.

One can also compress based on variants of our algorithm. One possibility is to

avoid greedy process and remove several filters with lowest importance indices in one

pass. This compression is faster, but the performance of the compressed network is

worse than Algorithm 1 in the examples we tried. The greedy process with fine-tuning

at each iteration seems to allow for a better data and network adaptation and improves

compression performance.That is, in each iteration, we limit the algorithm to only find

the least important filter prune it. In the next iteration, we update all the importance

indexes using the new structure. This allows the algorithm to adapt to the new structure

gradually and improves the classification accuracy.
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Algorithm 1 Greedy compression of CNNs based on pruning filters
Input: Weights in CNN, target layer L with nL filters, target compression ratio rtarget

Set niter = nL and riter = 1
while riter < rtarget do
for i = 1 to nL do
Compute CAR(i, L), importance index for filter i in layer L

end for
Remove the least important filter, argmini CAR(i, L)
Update compression rate, riter = nL/niter

end while

2.3 Compression rates and classification accuracies

of the CAR compressed networks

To evaluate our proposed CAR structural compression algorithm, we have compressed

LeNet [35] (with 2 convolutional layers and 20 filters in the first layer), AlexNet [33]

(with 5 convolutional layers and 96 filters in the first layer) and ResNet-50 [25] (with

50 convolutional layers and 96 filters in the first layer). LeNet is a commonly used CNN

trained for classification task on MNIST [35] consisting of 60,000 handwritten digit images.

AlexNet and ResNet-50 are trained on the subset of ImageNet dataset used in ILSVRC

2012 competition [58] consisting of more than 1 million natural images in 1000 classes.

We used Caffe [29] to implement our compression algorithm for CNNs and fine tune

them. The pre-trained LeNet and AlexNet are obtained from Caffe model zoo. All com-

putations were performed on an NVIDIA Tesla K80 GPU. The CAR index is computed

using half of the ImageNet test set. To avoid overfitting, the final performance of CAR

compressed network is evaluated on the other half of the ImageNet test set. The running

time of each pruning iteration depends on the number of filters remaining in the layer.

On average, each iteration of CAR takes 45 minutes for the first layer of AlexNet. For

the fine-tuning, the learning rate has been set to 0 for the layer that is being compressed,

0.001 for the subsequent layer and 0.0001 for all other layers. The subsequent layer is

directly affected by the compressed layer, therefore, requires higher learning rate. The

network is retrained for 500 iterations. This is sufficent for the classification accuracy to

converge to the final value.
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LeNet on MNIST dataset

LeNet-5 is a four-layer CNN consisting of two convolutional layers and two fully-

connected layers. CAR-compression has been performed on the convolutional layers and

the performance on a hold-out test set is reported in Figure 2.2. We obtained classifi-

cation accuracies (top-1) of the CAR-compression results (purple curve) and those from

retraining or fine-tuning after CAR-compression on the same classification task (blue

curve).

To compare the performance of our compression algorithm to benchmark filter pruning

schemes, we have also implemented the compression algorithm based on pruning incoming

and outgoing weights proposed in [26] and reported the classification accuracy curve in

Figure 2.2. Furthermore, classification accuracy for random pruning of filters in LeNet

has been shown in this figure. Candidate filters to prune are selected uniformly at random

in this case. The error bar shows the standard deviation over 10 repeats of this random

selection.

We conclude that our CAR-algorithm gives a similar classification accuracy to [26] for

LeNet (using the outgoing weights in the first layer, and either weights for the second

layer). Their accuracies are similar to the accuracy of the uncompressed, unless we keep

very few filters for either layer. Fine-tuning improves the classification accuracy but there

is not a considerable gap among performances (unless we keep very few filters, less than

8 among 20 for the first layer or less than 10 among 50 for the second layer). Among the

8 kept filters in the first layer, 4 of them are shared between the CAR-algorithm and that

based on averaging outgoing weights in [26], while among the 10 kept filters in the second

layer, 6 of them are shared.

AlexNet on ImageNet dataset

AlexNet consists of 5 convolutional layers and 3 fully-connected layers. Figure 2.3

shows the classification accuracy of AlexNet on a hold-out test set after each individ-

ual convolutional layer is compressed using our proposed CAR algorithms or benchmark

compression schemes.

Comparing the accuracies of compressed networks in Figure 2.3, there are considerable

gaps between our proposed CAR-algorithm (purple curves) and the competing structural

compression schemes that prune filters [26] for all five layers. Further considerable im-

provements are achieved by retraining or fine-tuning the CAR-compressed networks (see

the blue curves in Figure 2.3).

Pruning half of the filters in either of the individual convolutional layers in AlexNet, our

CAR algorithm achieves 16% (for the layer 5) to 25% (for the layer 2) higher classification
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Figure 2.2: Performance of CAR compression for LeNet. The top figure shows the
overall classification accuracy of LeNet when the first convolutional layer is compressed.
The bottom figure shows the classification accuracy when the second convolutional layer
is compressed. The classification accuracy of uncompressed network is shown with a
dashed red line. The purple curve shows the classification accuracy of our proposed CAR
compression algorithm for various compression ratios. The accuracy for the fine tuned
(retrained) CAR compression is shown in blue. The black and green curves shows the
accuracy for compressed network based on outgoing and incoming weights, respectively.
The red curve shows the accuracy when filters are pruned uniformly at random. The error
bas is reported over 10 repeats of this random pruning process.

accuracies compared to the best benchmark filter pruning scheme (pruning based on

average outgoing weights). If we retrain the pruned network, it achieves 50% to 52%

classification accuracy (compared with 57% of the uncompressed AlexNet). The superior

performance of our algorithm for AlexNet is due to the proposed importance index for

the filters in CNN. This figure demonstrates that our algorithm is able to successfully

identify the least important filters for the purpose of classification accuracy. In section

5.2, we discuss the ability of our compression scheme to reduce functional redundancy in

the structure of CNNs.

To present a different but equivalent quantitative comparison, we have reported the

compression ratio and feed-forward speed up in Table 2.1. Each individual convolutional

filter is pruned while the classification accuracy dropped a relative 5% from the accuracy

of uncompressed network (i.e. 54% compared to 57%). Results for CAR compression

with and without fine tuning and compression based on average incoming and outgoing

weights are presented in this table. The CAR algorithm (without retraining) can achieve

a compression ratio of 1.17 (for layer 1) to 1.50 (for layer 5), which is 21% to 43% higher
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Figure 2.3: Performance of CAR compression for AlexNet. Each panel shows
the classification accuracy of the AlexNet when an individual convolutional layer is com-
pressed. In each panel, the classification accuracy of uncompressed network is shown with
a dashed red line. The purple curve shows the classification accuracy of our proposed CAR
compression algorithm for various compression ratios. The accuracy for the fine tuned
(retrained) CAR compression is shown in blue. The black and green curves shows the
accuracy for compressed network based on outgoing and incoming weights, respectively.
The red curve shows the accuracy when filters are pruned uniformly at random. The error
bas is reported over 10 repeats of this random pruning process.

than those from the benchmark methods. If we fine-tune or retrain the CAR-compressed

network, the compression ratio can be as high as 1.79 (for layer 3) when maintaining the

same 54% classification accuracy.
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Table 2.1: Comparison of compression performance between our greedy CAR
compression algorithm and benchmark schemes on AlexNet. For the compressed
networks, the filters are pruned while the classification accuracy dropped a relative 5%
from the accuracy of original network (i.e. 54% compared to 57%). FLOPs equals to the
number of floating-point operations required in each layer to classify one image.

Layer Compression method

Number
of re-

maining
filters

Bytes FLOPs

Compression
ratio &
Feed-
forward
speed up

Layer 1

Original 96 0.14M 105.41M -
Incoming weights 90 0.13M 98.82M 1.07×
Outgoing weights 88 0.13M 96.63M 1.09×

CAR 82 0.12M 90.04M 1.17×

Layer 2

Original 256 1.23M 223.95M -
Incoming weights 223 1.07M 195.08M 1.15×
Outgoing weights 217 1.04M 189.83M 1.18×

CAR 189 0.91M 165.33M 1.35×

Layer 3

Original 384 3.54M 149.52M -
Incoming weights 342 3.15M 133.17M 1.12×
Outgoing weights 334 3.08M 130.05M 1.15×

CAR 287 2.64M 111.75M 1.34×

Layer 4

Original 384 2.65M 112.14M -
Incoming weights 332 2.29M 96.95M 1.16×
Outgoing weights 346 2.40M 101.04M 1.11×

CAR 279 1.93M 81.48M 1.38×

Layer 5

Original 256 1.77M 74.76M -
Incoming weights 220 1.52M 64.25M 1.16×
Outgoing weights 222 1.53M 64.83M 1.15×

CAR 171 1.18M 49.94M 1.50×
Layer 1

Fine-tuned CAR

58 0.08M 63.69M 1.66×
Layer 2 153 0.73M 133.84M 1.67×
Layer 3 214 1.97M 83.33M 1.79×
Layer 4 225 1.56M 65.71M 1.71×
Layer 5 176 1.22M 51.40M 1.45×

Combination with Deep Compression

One advantage of our CAR-algorithm is that it is amenable to combination with

weight based compression schemes to achieve substantial reduction in memory usage.
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Table 2.2: Compression performance of CAR-algorithm combined with Deep
Compression

Layer

Weight
pruning +
Quantiza-
tion [23],
Acc = 0.57

Weight pruning
+ Quantization
+ Huffman
Coding [23],
Acc = 0.57

CAR + Weight
pruning +

Quantization,
Acc = 0.54

CAR + Weight
pruning +

Quantization
+ Huffman
Coding,

Acc = 0.54

Layer 1 3.07× 4.87× 5.13× 8.13×
Layer 2 6.90× 10.60× 11.52× 17.70×
Layer 3 7.63× 11.85× 13.66× 21.21×
Layer 4 7.09× 10.98× 12.13× 18.77×
Layer 5 7.14× 10.60× 10.36× 15.38×

Deep Compression [23] is a recent weight-based compression procedure that uses weight

pruning, quantization and huffman coding. We have performed Deep Compression on top

of our proposed compression algorithm and reported the compression ratio for AlexNet

in Table 2.2. Again, the filters are pruned while the classification accuracy is in the range

of relative 5% from the accuracy of uncompressed network (54% compared to 57%). An

additional 5 fold (for layer 1) to 12 fold (for layer 3) increase in compression ratio is

acheived through joint CAR and Deep Compression. That is, further weight compression

boosts the compression ratio by sparsifying weights of the kept filters, although the number

of filters is the same as the CAR compression.

ResNet-50 on ImageNet dataset

First introduced by He et al. [25], deep residual networks take advantage of a residual

block in their architecture (Figure 2.4, right panel) to achieve higher classification accu-

racy compared to a simple convolutional network. We have studied the performance of

CAR compression on ResNet-50 architecture [25] with 50 layers of convolutional weights.

Figure 2.4 top left panel shows the classification accuracy of ResNet-50 after pruning

first convolutional layer using CAR algorithm or benchmark compression schemes. The

bottom panel shows the classification accuracy after pruning the first convolutional layer

in the first residual block (layer Conv a - Branch 2 in Figure 2.4). CAR pruning of other

convolutional layers in this residual block or higher blocks yields to similar figures and
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are not shown here to avoid redundancy. These accuracies are reported on the ILSVRC

2012 ImageNet hold out test set.

It is of great interest to compare at high compression ratio regimes where we keep

less than 30 filters out of 64. In this situation and pruning layer Conv 1, the CAR

algorithm (purple curve in Figure 2.4) outperforms the competitors based on incoming

and outgoing weights. The higher the compression ratio, the higher the improvements

by the CAR algorithm. For low compression ratio regimes, the performances are similar.

Compared to AlexNet, the gap between CAR and benchmark compressions is smaller

for the first layer. This might be an evidence that ResNet has less redundant filters.

Retraining (fine-tuning) the CAR-compressed network achieves further improvement in

classification accuracy (blue curve in Figure 2.4). In fact, our CAR-algorithm achieves

72% classification accuracy (compared with the 75% for the uncompressed ResNet-50)

when pruning half of the filters in the first layer of ResNet-50. This accuracy is 15%

higher than that of filter pruning based on average outgoing or incoming weights.

For the residual block, we have pruned layer Conv a - Branch 2 and reported the

classification accuracy in Figure 2.4. The accuracy of CAR algorithm is almost similar

to the compression based on incoming and outgoing weights. Interestingly, the accuracy

drops less than 15% if we fully prune the filters in this layer i.e. remove branch 2 from the

residual block. The drop in accuracy is less than 5% for the fine-tuned network. The main

reason for this is the existence of shortcuts in the residual module. The uncompressed

branch 1 that is a parallel channel with the pruned filter allows the information to transfer

through the residual layer.As a result of these parallel channels in the residual blocks, deep

residual networks are more robust to pruning filters compared to simple convolutional

networks.

2.4 CAR-compression algorithm prunes visually

redundant filters

To study the ability of our proposed CAR compression method to identify redundant

filters in CNNs, we take a closer look at the compressed networks. In this section, we focus

on the second layer of AlexNet. It has 256 filters with visually diverse functionalities,

which is considerably more than the numbers of filters in LeNet or the first layer of

AlexNet. It is also easier to visualize filters in this layer compared to higher layers of

AlexNet. However, similar results hold for the other layers of AlexNet and LeNet. Recall

that we first performed CAR structural compression to prune 256 filters in the second

layer of AlexNet, and continued to iterate the algorithm while the classification accuracy

is 54% or within a relative 5% from the accuracy of uncompressed network. This led to
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Figure 2.4: Performance of CAR compression for ResNet-50. The top left figure
shows the classification accuracy of the ResNet-50 when the first convolutional layer is
compressed. The bottom left figure shows the classification accuracy when filters in the
first residual module layers are pruned (with the first layer untouched). The classification
accuracy of uncompressed network is shown with a dashed red line. The purple curve
shows the classification accuracy of our proposed CAR compression algorithm for various
compression ratios. The accuracy for the fine tuned (retrained) CAR compression is
shown in blue. The black and green curves shows the accuracy for compressed network
based on outgoing and incoming weights, respectively. The red curve shows the accuracy
when filters are pruned uniformly at random. The error bas is reported over 10 repeats
of this random pruning process. The right panel shows the architecture of first layers in
ResNet-50.
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pruning 103 filters out of 256 filters in this layer. A subset of the removed and remaining

filters are visualized in Figure 2.5. To visualize the pattern selectivity of each filter,

we have fed one million image patch to the network and showed the top 9 image patch

that activate a filter. This approach has been previously used to study functionality of

filters in deep CNNs [74]. We have manually grouped filters with visually similar pattern

selectivity (blue boxes in 2.5). A hand-crafted image has been shown beside each group to

demonstrate the function of filters in that group. Our algorithm tends to keep at least one

filter from each group, suggesting that our greedy filter pruning process is able to identify

redundant filters. This indicates that pruned filters based on the CAR importance index

have in fact redundant functionality in the network.

Looking deeper into the CAR indexes, out of top 20 pruned filters, 17 of them in the

first layer and 14 of them in the second layer correspond to the color filters, respectively.

This finding points to the fact that shape is often first-order important for object recogni-

tion. To further investigate the effect of compression of each of the convolutional layers,

we have shown the scatter plots of the classification accuracy for each of the 1000 classes

in ImageNet in Figure 2.6. Although the total classification accuracy is about a relative

5% lower for the each compressed network, the accuracies for many of the categories are

comparable between compressed and uncompressed networks. In fact, 37% (for layer 5)

to 49% (for layer 2) of the categories have accuracies no larger than 3% below those for

the uncompressed network.

2.5 Class-based interpretation of filters

With a slight modification in our definition for the CAR importance index, we build a

new index that enables us to interpret the filters in CNNs with respect to image classes.

We define CARc(i, L) to be classification accuracy reduction in class c when filter i in

layer L is pruned. CARc identifies the set of classes that their classification accuracy

highly depends on the existence of a filter. These classes are the ones with highest CARc

among all of the classes. Similarly, for each filter, the performance in classes with the

smallest CARc have less dependency to that filter. Note that both CAR and CARc

indexes could be negative numbers, that is the pruned network has higher classification

accuracy compared to the original network. The labels of the two sets of classes with

highest and lowest CARc present a verbal interpretation of each filter in the network.

CARc-based interpretation is a better fit for the higher layers in the CNN because filters

in these layers are more abstract and therefore more explainable by the class labels. In

Figure 2.7 we show that the interpretation based on CARc is consistent with the visualized

pattern selectivity of each filter in layer 5 of AlexNet. Similar to previous section, the
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Figure 2.5: CAR compression removes filters with visually redundant function-
ality from second layer of AlexNet. To visualize each filter, we have fed one million
image patch to the network and visualized each filter by 9 image patches with top response
for that filter. We have manually clustered 256 filters in the second layer of AlexNet into
30 groups (17 of them visualized here). Pattern selectivity of each group is illustrated in
the left top corner of each box using a manually designed patch. We continue to iterate
the CAR-based algorithm while the classification accuracy is in the relative range of 5%
from the accuracy of uncompressed network. This leads to pruning 103 out of 256 filters
in this layer. The pruned filters are specified with a red circle.
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Figure 2.6: Comparison of classification accuracy between compressed and un-
compressed networks for each class of image in AlexNet. Each panel corresponds
compression in one layer. Each point in plots corresponds to one of the 1000 categories
of images in ImageNet test set.

visualization is based on top 9 image patch activating that filter. We have selected three

filters in layer 5 that are among the most important filters in this layer based on our

original CAR pruning. Similar to the visualization in Figure 2.6, panel A illustrates the

top 9 image patches that activate each filter. Panels B and C show the top and bottom

5 classes with highest and lowest CARc, respectively. Besides the class label, one sample

image from that class is also visualized. Some of these classes are pointed out with green

arrows in the scatter plot of classification accuracy for 1000 classes in ImageNet (panel D).

The classes with highest CARc share similar patterns visible in the top 9 patch activating

each filter. For filter 1, the smooth elliptic curvature that consistently appears in the

classes such as steep arch bridge or soup bowel is visible in the top activating patches

(Panel A). On the other hand, less elliptic curvature patterns are expected in classes such

as mailbag or altar. Filter 2 has higher CARc for classes that contains patterns such as

insect or bird’s head. Filter 3 is mostly selected by the classes that contain images of a

single long tool, particularly musical instruments such as oboe or banjo.

2.6 Discussion

Structural compression (or filter pruning) of CNNs has the dual purposes of saving

memory cost and computational cost on small devices, and of resulted CNNs being more

humanly interpretable. In this chapter, we proposed a greedy filter pruning based on

the importance index of classification accuracy reduction (CAR). We have shown with

AlexNet that the huge gain (8 to 21 folds) in compression ratio of CAR+Deep Compression

schemes, without a serious loss of classification accuracy. Furthermore, we saw that the
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Figure 2.7: The interpretation based on CARc is consistent with the visualized
pattern selectivity of each filter in layer 5 of AlexNet. Panel A shows The top 9
image patches that activate each filter [74]. Panel B and C show the top and bottom 5
classes with highest and lowest CARc, respectively. Besides the class label, one sample
image from that class is also visualized. Panel D shows the scatter plot of classification
accuracy for each of the 1000 classes in ImageNet. Three of the top and bottom classes
with highest and lowest CARc are pointed out with green arrows. Each row corresponds
to one filter in layer 5 of AlexNet.

pruned filters have redundant functionality for the AlexNet. In particular, for many

categories in ImageNet, we found that the redundant filters are color-based instead of

shape-based. This suggests the first order importance of shape for such categories.

However, a greedy algorithm is likely to be sub-optimal in identifying the best candi-

date filters to drop. The optimal solution may be to search through all possible subsets of

filters to prune, but this can be computationally expensive and may lead to over-pruning.

Procedures for subset selection, including genetic algorithms and particle swarm opti-
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mization, could be helpful in the compression of CNNs and will be investigated in future

work. Even though the CAR compression of ResNet achieves state-of-the-art classifica-

tion accuracy among other structural compressions by pruning the identity branch and

identifying the redundant connections. ResNet compression merits further investigation

because of the identity branches in the residual blocks.

We also proposed a variant of CAR index to compare classification accuracies of orig-

inal and pruned CNNs for each image class. In general, we can compare any two convo-

lutional neural networks that are trained on the similar dataset through this index. The

comparison could be done by looking into set of classes that are important for each filter in

layer of each network. A similar class-based comparison for any two networks through our

importance index is possible. This is a fruitful direction to pursue, particularly given the

recent wave of various CNNs with different structures. Finally, we expect that our CAR

structural compression algorithm for CNNs and related interpretations can be adapted to

fully-connected networks with modifications.



24

Chapter 3

Computational models for V4
neurons

3.1 Introduction

Recent advancements of technologies have created tremendous potentials for under-

standing brain structure and function. These potentials manifest themselves mainly in

two directions: the huge amounts of brain data collected in different modalities (e.g. elec-

trophysiological single-cell recordings or imaging data) and the rapid machine learning

algorithm developments that are able to harness not only dramatically increased com-

puting resources but also large data using human intelligence through crowd sourcing.

Deep learning algorithms are among the most notable such algorithms. These algorithms

have been successful in many fields of artificial intelligence and machine learning such as

computer vision, robotics and speech recognition. It is natural to question whether these

algorithms suited for artificial intelligence systems could help our understanding of brain

function.

Understanding the function of primate visual pathways has been a major problem in

computational neuroscience. On the ventral visual pathway, cortical area V4 is a large

retinotopically-organized area located intermediate between the early primary visual cor-

tex areas such as V1 and V2 and high-level areas in the inferior temporal lobe. Although

believed to be crucial for visual object recognition and visual attention, area V4’s function

remains mysterious. In particular, Area V4’s highly nonlinear response properties [20] has

been one of the major difficulties to construct quantitative models that accurately describe

how visual information is represented in V4.

Area V4’s function is believed to be much more complex than that in area V1. While

it has been shown that the simple cells in the primary visual cortex area V1 can be fairly
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accurately modeled using a few parameters such as spatial, frequency, and velocity tun-

ing [27, 14, 8], these methods fail to generalize directly to area V4. This is mainly due

to its highly nonlinear response [65] and diverse tuning properties [56]. There has been

many studies concerning the tuning properties and shape representation of V4 neurons.

However, the current knowledge about V4 is far from providing a unified view on concrete

and consistent tuning properties of V4 neurons [56]. Gallant et al. [19, 20] have found

that V4 neurons are most selective for non-Cartesian gratings containing multiple orien-

tations by comparing V4’s response Cartesian gratings and polar and hyperbolic (non-

Cartesian) gratings stimulus. It has also been discovered by Pasupathy and Connor [51,

50] that V4 neurons are selective to curved contour features by using a parameterized

set of contour stimulus varying in angularity, curvature, and orientation. More recently,

studies based on spectral receptive model [12], which accounts for second-order nonlinear

response properties, successfully enhance the understanding of V4’s orientation tuning

properties. However, the lack of good quantitative models with prediction accuracies sim-

ilar to those for the V1 area and good visualization of V4’s tuning properties suggest that

V4 neurons might be more complex than those captured by the current quantitative mod-

els [56]. Therefore, a more precise characterization of shape selectivity with higher-order

non-linear models is necessary for neurons in this V4 cortical area .

On the other hand, deep learning algorithms especially convolutional neural networks

(CNN), trained on large-scale datasets such as ImageNet [15], have led to higher perfor-

mance models than traditional methods in many artificial intelligence tasks such as object

recognition. These CNNs not only are well suited for object recognition tasks [33], but

also provided transferable features for a wide range of vision tasks [61] such as image seg-

mentation and image captioning. Since the structures of these CNNs are inspired by the

hierarchical structure of neural networks in human visual cortex, one would expect that

these CNN features are also transferable and predictive of real neurons’ activity in human

or macaque’s brains. Indeed, fueled by innovation in the computer vision and artificial

intelligence communities, recent developments in computational neuroscience have been

using CNNs to make strides in modeling neural single-unit and population responses in

visual cortical areas [70]. The early use of artificial neural networks for modeling receptive

field properties of simple and complex cells in area V1 dates back to Prenger et al. [52].

More recently, Yamins et al. [71] and Cadieu et al. [7] have investigated the similarity

between the representational performance of deep convolutional neural networks and the

V4/inferior temporal (IT) cortex on a image classification task. These results show that

deep neural networks have the potential to be used to build quantitative predictive models

of neural processing, however, it is not clear whether this phenomenon generalizes other

vision tasks, and how to interpret these complex CNN models to gain scientific insights

about the visual cortex.
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While fitting deep learning models have been made computationally easier recently,

interpreting and understanding the deep convolutional neural networks remains a difficult

research topic [74, 72]. Due to its nonlinear properties and parameter sharing properties,

it is much more difficult to associate an interpretation to the weight parameters in a

deep convolutional neural network based model than those in a simple linear regression

model. Another major concern of the neural network based modeling approach is that

conclusions about neuronal behavior based on in silico models of neurons will be over-

whelmingly dependent on the complicated details of the modeling procedure. We find

many deep neural network architectures lead to similar prediction performance, Given

high prediction performance, stability relative to the model and data perturbation is a

minimum requirement for the interpretability and reproducibility of data driven results

[73]. Therefore, only stable part of the results from the models should be interpreted.

In this work, we propose a deep convolutional neural network based predictive model

for V4 neurons and a stability based interpretation and visualization framework for un-

derstanding these deep models to address aforementioned questions. Our analysis use

input-response data of 71 well-separated V4 neurons in two behaving macaques collected

at the Gallant Lab [67]. For each neuron, the inputs are randomized natural images from

a black-white image database and the responses are spike response rates. We first build

state-of-the-art predictive models (with prediction error as a measure of goodness of fit)

for these 71 V4 neurons (that outperform V1 Gabor models and previous STRF models

for V4 neurons). We then apply the stability principle [73] to seek neuron characteri-

zations through stable tuning regions and stable smooth DeepTune patterns across 18

predictive models of similar state-of-the-art prediction accuracies. Specifically, instead of

training end-to-end nonlinear models, we employ transfer learning [49, 61] to build accu-

rate predictive models for V4 neurons with accuracies similar to those for the V1 neurons.

In our framework, ”transfer” happens in three different forms: we transfer CNNs to dif-

ferent black-white image data than they were trained on (color-images), and we transfer

from macro classification tasks to a regression problem at the micro neuron level, and we

transfer from human (label response) data to macaque (neuron response) data. Finally,

we show that, by examining the stable part of our smooth DeepTune images, we can

precisely characterize V4 neurons’ tuning to curvature or texture patterns and explain

the function of suppressive V4 neurons. Our characterization goes beyond the previous

methods such as the spectral receptive field model and demonstrates V4 tunings for a

wide variety of patterns in natural images such as curvatures and textures that are gener-

ated from natural input images (instead of synthetic images). Because smooth DeepTune

images provide a natural-looking image, these results are testable as they could serve as

input stimuli for future experiments.
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3.2 CNN-based strongly predictive and stable

models for individual V4 neurons

To study the ability of CNNs in explaining visual cortical area V4, we have recorded

spike rates from 71 well isolated neurons in V4 from two awake-behaving male macaque.

These recordings have been previously used to study the sparseness of neural codes in the

area V4 [67]. The stimuli consisted of a random sample of circular patches of grayscale

digital photographs from a commercial digital library (Corel). Random images were then

concatenated into long sequences so that each 16.7 ms frame contained a random image

patch from the library. All images were centered on the estimated classical receptive field

(CRF, see Appendix, Text , Data Collection for CRF estimation procedure) and patch size

was adjusted to be two to four times the CRF diameter (Figure 3.1-C). The training data

set for each neuron consists of 4, 000− 12, 000 natural images. Spike count was measured

at 60 Hz, resulting in two measurements per image. For the holdout test dataset, 300

images were shown for each neuron in a fixed order, distinct from the images shown for

the training dataset. The sequence of test images was repeated; on average, each image in

the test dataset was shown 9.3 times. The resulting spike counts were averaged to provide

a lower-variance estimate of the expected spike count; repeats also allowed for estimation

of the amount variance in the neuron explainable by the stimulus image (see Appendix,

Text , Data Collection for additional details).

We propose the following transfer learning framework to analyze our V4 input-response

data illustrated in Figure 3.1. For a given layer of a pre-trained convolutional neural

network, in the first stage (Figure 3.1-A), we extract features as intermediate outputs of

CNN for each stimulus image (represented to the CNNs as RGB color images by making

all three color channels the same grayscale intensities); In the second stage (Figure 3.1-

B), these features are served as predictors in a linear regression method with spike-rates

as the response. Formally, for one stimulus image at time t as zt ∈ Rs×s (s = 227 in

AlexNet model), the given layer of CNN transforms this image into a flattened feature

vector xt ∈ Rd. This feature transform is denoted as function h : Rs×s %→ Rd. We then

regress the spike count of the neuron at time t as yt ∈ R against the feature vector xt. V4

neuron’s behavior is sensitive to the recent history of images shown to the subject; hence,

in practice, to build an accurate predictive model of expected spike count, we regress yt
against the image features from last k frames of video prior to and including time t, i.e.

zt, ..., zt−k+1. The time lag k is set to be 9 (consisting frames at 0, 16.7, . . . , 150.3 ms) as

the common practice (e.g. in [66, 12]).
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Figure 3.1: Transfer learning of pre-trained convolutional neural networks to

predict spike rates of neurons in the area V4 and the stability-driven inter-

pretation. A. A convolutional neural network trained to perform 1000-class image clas-

sification task on ImageNet dataset which contains more than 1.2 million natural images.

In this chapter, three well-known CNN structures have been used: AlexNet, VGG and

GoogleNet. B. Weights from early layers of the trained CNN are fixed and transfered
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to extract features from stimulus images in animal experiments. Each stimulus image,

represented as grayscale pixel intensities, is propagated forward to CNN, yielding a vector

representation of the image. Then, a regularized linear regression model is constructed to

predicts spike rates of each V4 neuron from this vector representation. The linear model

is learned via the spike rates in training set and evaluated on a hold-out test set. The

training set contains 4,000-12,000 natural images. The test set contains 300 images where

spike rates are averaged across ten repeats. C. The classical receptive field (CRF) during

the experiment is set in the middle of the stimuli with width r while the whole image

has the width 3r. D. To discover the stable pattern selectivity of each V4 neruon, We fit

18 models using features from layers 2, 3, 4 of the three trained convolutional networks

(AlexNet, GoogleNet, VGG), with either ℓ1 or ℓ2 regularization in linear model. Then

”smooth DeepTune”, a stability-driven CNN-based model visualization framework is used

to characterize V4 neurons’ tuning preferences. This visualization is built upon finding

the optimal stimulus for each neuron from each model and interpret the stable pattern

across all models (More details in the next section). The consensus smooth DeepTune

visualization for this neuron among 18 models shows a stable curvature pattern with edges

forming an approximately 90 degree angle.

Finally, our predictive model for a single neuron response takes the following form

F : Rs×s×k → R

(zt, ..., zt−k+1) %→
k−1∑

j=0

βT
j+1h(zt−j),

where (β1, . . . ,βk) ∈ Rd×k are the regression parameters to be determined and h is the

fixed CNN feature transform.

The CNNs we used in this chapter are pre-trained CNNs for classification tasks on

ImageNet dataset from the ImageNet Large Scale Visual Recognition Challenge [58]. In

particular, we used three CNNs, AlexNet [33], GoogleNet [63] and VGG [62], with im-

plementation details provided by the deep learning package Caffe [29]. Layers 2, 3, 4 of

the three pre-trained convolutional networks are the main focus of our analysis (See Ap-

pendix, Text , Stability for the results on other layers). Because of the pooling operations,

normalization operations, and non-linear activation functions in the CNNs, the CNN fea-

tures are complex nonlinear functions of the raw input image. These CNN features are

the outcome of learning from the large scale image dataset ImageNet, and are in general

hard to explain via mathematical formula. To better understand the feature extracted

via CNN, we provide a visualization of these features in Appendix, Figs. S3, S4 and S5 .
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We observe that these features encode more complex patterns than the standard Gabor

wavelets do. This observation makes up our initial insight that CNNs could help model

V4 neurons which represent more complex patterns than V1 neurons [56].

To perform the regression analysis, we solve the following regularized linear regression

problem

(
β̂1, . . . , β̂k

)
=argmin

β1,...,βk

1

2

T∑

t=k

(
yt −

k−1∑

j=0

βT
j+1h(zt−j)

)2

+

λ1

k∑

j=1

∥∥βj

∥∥
1
+ λ2

k∑

j=1

∥∥βj

∥∥2

2
.

The regularization is taken to be ℓ2 norm by default and the analysis with ℓ1 norm

regularization and the effect of sparse modeling are discussed in Appendix, Text . Note

that in our two-stage predictive model, the mapping to the feature vector is shared among

all V4 neurons, whereas the top-layer linear model learned by regularized linear regression

selects the specific CNN features for each neuron.

One concern of the CNN-based modeling approach is that conclusions about neuronal

behavior based these models may be dependent on the details of the modeling procedure.

To address this issue, we apply the stability principle [73] to interpret only the stable

characterization from a large family of accurate predictive models. For each of the 71 V4

neurons, we fit models using features from layers 2, 3, 4 of the three pre-trained convo-

lutional networks (AlexNet, GoogleNet, VGG), with either ℓ1 or ℓ2 regularization. This

procedure results in 18 models in total (3 networks × 3 layers × 2 regression methods). In

the next section, we propose smooth DeepTune, a stability-driven CNN-based model visu-

alization framework to characterize V4 neurons’ tuning preferences. This visualization is

built upon finding the optimal stimulus for each neuron from each model and interpret the

stable pattern across all models. Figure 3.1-D illustrates a summary of this framework.

A stable interpretation of the DeepTune images from a pool of accurate models reveals

the pattern selectivity of neurons. Subsequently, smooth DeepTune visualization is used

to study the entire population of 71 V4 neurons.

Before presenting our visualization framework, we evaluate the prediction performance

of our models. The correlation between the expected spike count predicted by the model

and the actual average spike count on the holdout set is computed for all 18 models. As a

baseline for comparison, we fit a V1-like model that extracts image features by applying

a bank of linear Gabor wavelet filters to the input image at varying orientations, spatial

frequencies, and phase, followed by half-wave rectification and a compressive nonlinearity.
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Figure 3.2: CNN-based models have better prediction performance compared

to Gabor wavelet model. Noise-corrected correlation coefficient [60] is used as pre-

diction performance measure in this figure. A. Histogram of correlation coefficients over

population of V4 neurons for four models are shown in the first column. B. Scatter plots
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comparing each pair of models. The four models shown here are: Model 1: AlexNet layer

2. Model 2: AlexNet layer 3. Model 3: VGG layer 2. Model 4: GoogleNet layer 2.

Ridge regression is used in all models. C. The average prediction performance across 71

neurons for models from all 7 layers of AlexNet. The model based on Layer 1 of AlexNet

has similar performance to that of Gabor wavelet model; while models from layers 2 to

5 have higher predictive performance. D. The average prediction performance across 71

neurons for all 18 models. All 18 models perform similar in prediction and much better

than the Gabor wavelet model.

Our CNN-based models are highly predictive of the neuron spike-rate on the hold-out

set. The AlexNet Layer 2-based model has an average correlation coefficient of 0.52 on

the hold-out set, achieving the state-of-the-art accuracy for V4 neurons and comparable

to that of V1 neurons. This is the noise-corrected correaltion computed based on the

method described in [60]. The average raw correlation coefficient for this model is 0.44.

All of the 18 models have average correlation coefficients higher than 0.51. Thehistogram

of correlation coefficients over population of V4 neurons for four models are shown in

Figure 3.2-A. These four models correspond to models based on (1) AlexNet Layer 2, (2)

AlexNet Layer 3, (3) VGG Layer 2, and (4) GoogleNet Layer 2. The first two models are

chosen in order to demonstrate the effect of the choice of layers and the last models are

chosen to show the similarity difference between different neural networks. The scatter

plots comparing each pair of models are illustrated in Figure 3.2-B. While all CNN-based

models perform similarly, they are more accurate than the Gabor wavelet model for nearly

all of the 71 V4 neurons. In Figure 3.2-C, we compare the prediction performance for

models from all seven layers of AlexNet for averaged across 71 neurons. The model based

on Layer 1 of AlexNet has similar performance to that of Gabor wavelet model; while

models from layers 2 to 5 have higher predictive performance (0.52 for layer 2 to 0.54

for layer 5). Figure 3.2-D illustrates a complete comparison of the average correaltion

coefficients between all 18 models. All of the CNN-based models perform similar in

prediction and much better than the Gabor wavelet model. The LASSO-based models

are in average slightly less accurate compated to Ridge-based models. However, the

model size (in our case, the number of CNN features used in regression) is much fewer

for LASSO-based models comapred to Ridge-based models. The median model size for

LASSO is ∼ 750, while it is ∼ 375, 000 for the Ridge regression.

The proportion of explainable variance captured by the model is an important met-

ric for model prediction performance in the literature [55, 60]. It attempts to control

for differences in noise levels between experimental setups, individual neurons, and brain

regions. We estimate the explainable variance through the noise-corrected correlation co-
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efficient [60] using the repeat presentations of images in the hold-out set (See Appendix, for

more information). Averaged over the 71 V4 neurons, the AlexNet-based model captures

30% of the explainable variance. This is close to the variance explained by state-of-the-art

of models of area V2 [66] However, there is still a slight gap between the performance of

these models for area V4 and that of the state-of-the-art Gabor-wavelet models for area

V1, which capture on the order of 40% of the explainable variance [13, 66].

3.3 Visualization of V4 neurons’ pattern selectivity

using stable smooth DeepTune images

Fully characterizing V4 neurons’ tuning and pattern selectivity has been a difficult

task, due to its highly nonlinear response properties [56]. It is expected that the high

prediction performance of our CNN-based model should provide better characterizations

of V4 neurons’ tuning and pattern selectivity. However, unlike Gabor wavelet based or

Fourier transform based models, the use of complex nonlinear CNN features renders the

task of interpreting our models extremely difficult.

In this section, inspired by previous work in the attempt of visualizing and interpreting

CNNs [74, 42], we introduce smooth DeepTune images as an representation of V4 neurons’

tuning and pattern selectivity for an individual neuron. For each individual neuron, its

smooth DeepTune images give rise to a collection of images that share some common

visual patterns illustrating its pattern selectivity.

For each individual neuron, one DeepTune image is obtained by optimizing the input

image stimulus, starting with a random image (e.g. white noise), such that our model

output is maximized. This optimization is accomplished by applying regularized gradient

ascent method from a random initial image until convergence. The regularization terms

encourage the natural image found to be smooth and naturalistic. Formally, given our

predictive model at a particular time lag f : Rs×s → R, we seek an input image stimulus

z ∈ Rs×s that minimizes the following objective function:

−f(z) + λpRp(z) + λTVRTV(z).

The regularization consists of two terms Rp and RTV. These two terms are designed to

capture prior information about natural images by constraining the optimization search

restricted to the smooth and naturalistic images [42]. The first regularizer Rp is defined

as Rp(z) = ∥z̃∥pp, where z̃ is obtained by mean-subtracting and flattening the image z

into a vector. It encourages the intensity of pixels to stay bounded. By choosing a large p

(p = 6 in our analysis), this regualarizer prevents the solution from taking extreme pixel

values.
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Figure 3.3: For single neuron, smooth DeepTune images are stable across mod-

els. A. Smooth DeepTune images based on four main models are shown for neuron 1.

Note that these images share a visually stable curvature pattern with edges forming an

approximately 90 degree angle (Also visible in the rest of our 14 models - see Appendix,

Figs. S8 and S9 ). B. Power spectral density (PSD) of the smooth DeepTune images in

polar coordinates. All four DeepTune images share a strong and stable frequency compo-

nent in the range of 45 to 135 degrees with spatial frequency of 2 to 5 cycle per receptive

field (the green color). C. Visualization of spectral receptive field (SRF) [12] model for

neuron 1. The SRF visualization emphasizes in red the frequency components of the

stimulus image selected by its regression model and therefore we use a different color-map

(red-blue) than that for the DeepTune PSD image (green-pink). The pattern selectivity

according to SRF is consistent with the stable parts of smooth DeepTune (highlighted in

red circle). D. Images from training set with the highest responses for neuron 1. Similar

curvature patterns to the smooth DeepTune visualization are visible in these images. E.

The measured and predicted spike rates in the test set from the four main models as

well as the SRF model for neuron 1. Images from the test set with the highest responses

are visualized on top of the corresponding spike rate. Similar curvature patterns are vis-

ible in these images. Correlation coefficient between the measured and predicted spike

rates is shown in the right panel. All of the four models outperform the SRF model. F.

The consensus smooth DeepTune image for neuron A. Both preferred and non-preferred
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patterns and the PSDs are shown. The preferred pattern exhibits the curvature contour

that is stable among four models in panel A. The non-preferred pattern consists of lines

orthogonal to the preferred curvature contour. The PSD confirms these observations. G.

The box-plots of correlation coefficient between consensus DeepTune and all of the 18

DeepTune images from each model is shown across 71 neurons. DeepTunes from AlexNet

layer 2 and GoogleNet layer 3 have the highest similarity to the consensus DeepTune.

The second regularizer RTV controls the total variation norm of an image, encouraging

the image to have piece-wise smooth parts and removing excessive and possibly spurious

detail. This regularization is inspired by previous work in image denoising [57]. The finite-

difference approximation of the 2-dimensional total variation norm on an image z ∈ Rs×s

is defined as:

RTV(z) =
∑

(i,j)∈{1,...,s−1}2

[
(zi,j+1 − zij)

2 + (zi+1,j − zij)
2]α

2 ,

with α = 1 in our analysis. Note that the smooth DeepTune optimization can also

be carried out without any regularization terms (See Appendix,). The regularization

effectively constrain the reconstruction space to the space of natural images.

Figure 3.3-A shows the smooth DeepTune images from four of our 18 models built

for neuron 1. We verify that these smooth DeepTune images share a visually stable

curvature pattern with edges forming an approximately 90 degree angle. While the rest

14 models exhibit slightly different smooth DeepTune images, the main curvature pattern

stays relatively stable (see Appendix, Fig. 3.D.3 ). To quantitatively characterize the

stable pattern, we compare the power spectral density (PSD) of these smooth DeepTune

images in Figure 3.3-B. All four DeepTune images share a strong and stable frequency

component in the range of 45 to 135 degrees with spatial frequency of 2 to 5 cycle per

receptive field (the green color). Note that the high frequency components in Model

4 DeepTune image and the low frequency components in Models 1 to 3 are not stable

across all models, therefore should not be interpreted. This stable characterization is

consistent with the traditional computational models for V4 neurons. In Figure 3.3-C,

we visualize the selectivity of frequency components for neuron 1 based on the spectral

receptive field (SRF) [12] model. The SRF visualization shows the frequency components

of the stimulus image selected by the regression model and therefore the color-map (red-

blue) is chosen to be different from the DeepTune Fourier transform (green-pink). Similar

to the interpretation from the stable smooth DeepTune, SRF confirms that neuron 1

exhibits a strong preference to the frequency component in the range of 45 to 135 degrees

with spatial frequency of 2 to 5 cycle per receptive field. Similar curvature patterns are
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visible in the images from training and test set with the highest responses for neuron 1

(Figure 3.3-D and E). Figure 3.3-E also illustrates the measured and predicted spike rates

in test set from the four models as well as predicted spike rates by the SRF model. Our

four models have similar and accurate prediction (correlation coefficient between 0.61 to

0.64), while the SRF model has difficulty in locating the peak spike rates (correlation

coefficient of 0.42).

In addition to visual investigation of the stable patterns across 18 smooth DeepTune

images generated from 18 models, we also introduce consensus smooth DeepTune image

to represent the stable part in one image. The consensus smooth DeepTune image is

obtained via similar optimization to original DeepTune with additional aggregating of

gradient information from all 18 models. The aggregated gradient keeps the stable parts

of gradients and averages out the unstable parts. (More details in Appendix,). The

consensus smooth DeepTune image for neuron A is shown in Figure 3.3-F. Both preferred

and non-preferred patterns as well as PSD of each image are illustrated in this figure.

The preferred pattern exhibits the curvature contour also visible across all four models in

Figure 3.3. The PSD confirms this observation by exhibiting strong frequency components

in the range of 45 to 135 degrees with spatial frequency of 2 to 5 cycle per receptive field.

On the other hand, the non-preferred pattern consists of lines orthogonal to the curvature

contour. Some blobs are also visible in the non-preferred consensus DeepTune which

suggests neuron A is suppressed by blob-like texture patterns. The corresponding PSD

has strong high frequency components which is consistent with these observations.

To quantify the similarity of consensus DeepTune with each of the 18 model’s Deep-

Tune, we compute the correlation between images. Figure 3.3-G visualizes the box-plots

of correlation coefficients across 71 neurons for each model. The median correlation for

all of the models are considerably high (the highest median correlation is 0.83 which is

achieved by AlexNet layer 2 and GoogleNet layer 3, both with ℓ2 regularization). Models

with ℓ1 regularization tend to have lower similarity to the consensus DeepTune which is

due to the sparsity of patterns in them. In the subsequent sections of this chapter and

due to limited space, we present by default the consensus smooth DeepTune image as a

stable representation of V4 neuron. Note that it is interesting to compare the 18 Deep-

Tune images (available in the Appendix, Figs. S9 ) to verify that the consensus smooth

DeepTune images keep the stable and interpretable part.



CHAPTER 3. COMPUTATIONAL MODELS FOR V4 NEURONS 37

A B

0

1
C D E F G H I

Neuron
1

Neuron
2

Neuron
3

Neuron
4

Preferred DeepTune Non-preferred DeepTune Preferred Stimulus Non-preferred Stimulus Preferred CNN Filters Non-preferred CNN Filters

Figure 3.4: A comparison of DeepTune images with average regression weight

maps, selected CNN features for four V4 neurons and preferred stimulus (neu-

rons 1, 2, 3, 4). A. Preferred Smooth DeepTune images from AlexNet Layer 2 Model.

B. Preferred consensus smooth DeepTune images based on all 18 models. Neuron 1 is

tuned to the curvature shapes with edges forming an approximately 90 degree angle.

Neuron 2 is selective for blob-like patterns and textures. DeepTune image for neuron 3

shows selectivity to curvature patterns with a strong diagonal line preference. Neuron

4 is tuned to corner-like shapes with edges forming 90 degree angles. The rest of the

17 models show consistent patterns as shown in these DeepTunes (See Appendix, Fig.

3.D.3 ). C. Average regression weight map based on AlexNet Layer 2 model. For each

neuron, the average regression weight map also exhibits stable patterns across models

and it highlights the receptive field of a neuron. D. Non-preferred Smooth DeepTune

images from AlexNet Layer 2 Model. E. Non-preferred Smooth DeepTune images from

AlexNet Layer 2 Model. F. Top two preferred image stimulus from ImageNet ILSVRC

test dataset based on AlexNet Layer 2 Model activation. To obtain the preferred image

stimulus, we feed 100, 000 images from ImageNet test dataset to the AlexNet Layer 2

Model and select the two images stimulus with highest model response. F. Top two non-

preferred image stimulus from ImageNet ILSVRC test dataset based on AlexNet Layer 2

Model activation. H. Top two preferred CNN filters based on the filter importance. To

visualize a convolutional filter from a CNN, we show the 9 top image patches from the

ImageNet training set that has the highest filter responses (See Appendix, Text for more

details). These 9 top image patches are representative of what this convolutional filter

is computing [74, 72]. The Top two selected CNN filters validate the findings based on

smooth DeepTune images. For example, Neuron 1 is tuned for curved-contour patterns

according to smooth DeepTune images and its top CNN filters are those which activate

on curvatures of similar shape. Neuron 2 is selective for blob patterns and the top CNN

filters activates respectively on blob pattern and on a quarter of a blob pattern. I. Top

two non-preferred CNN filters based on the filter importance.
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3.4 Interpreting V4 models via selected CNN

features

The stable smooth DeepTune images approach in the previous subsection treated our

CNN-based model as a black box and used optimization and stability based analysis to

directly characterize individual V4 neuron’s tuning. In this section, we show that opening

up the black box and interpreting the regression coefficients as well as CNN features

can provide further information about V4 neuron’s spatial receptive fields and pattern

selectivity. These findings allow us to connect with previous study on the receptive fields

of V4 neurons.

As an example, we examine the regression coefficients from the second-stage of our

AlexNet Layer 2 model (See Appendix, Fig. 3.D.5 and 3.D.6 for the visualization of

other models). Coefficients with large magnitude indicate sensitivity of the neuron to

particular image features. The AlexNet Layer 2 features are of size 256× 13× 13. They

consist of 256 different variety of convolutional filters that are spatially located on a grid

of size 13× 13. The corresponding regression weights at one time lag is of the same size.

Formally, the regression weights at the first time lag β̂1 is of size 256 × 13 × 13. We

examine the regression weights by asking the following two questions: which location of

the image has the regression weights with large magnitude?; which type of convolutional

filters contributes the most to the prediction performance?

To answer the first question, we define average regression weight map as the ℓ2 pooling

of regression coefficient values for all features (across the different convolutional filters and

the lag delays) at each location of the 13 × 13 grid. Formally, if we denote β̂mijk as the

unflattened regression weights β̂k, then the average regression weight map Φ ∈ R13×13 is

defined as follows,

Φij =
256∑

m=1

k∑

k=1

β̂
2

mijk.

Figure 3.4-A and B show AlexNet Layer 2 Model’s smooth DeepTune images and the

consensus DeepTune images for four neurons. From AlexNet Layer 2 Model’s smooth

DeepTune images, neuron 1 is tuned to the curvature shapes with edges forming an ap-

proximately 90 degree angle. Neuron 2 is selective to blob-like patterns and textures.

DeepTune image for neuron 3 shows selectivity to curvature patterns with a strong di-

agonal line preference and Neuron 4 is tuned to corner-like shapes with edges forming
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90 degree angles. The rest of the 17 models show consistent patterns as shown in these

DeepTunes (See Appendix, Fig. 3.D.3 ). This is also reflected by observing the similarity

between the consensus DeepTune images and AlexNet Layer 2 Model’s smooth DeepTune

images. Figure 3.4-C shows the corresponding average regression weight maps for four

neurons. For each neuron, the average regression weight map also exhibits stable patterns

across models (See Appendix, Fig. 3.D.6 for comparison between all the 18 models). The

spatial receptive fields predicted by the average regression weight maps are consistent

with our experimental conditions: all images are presented at CRF of the macaques. The

spatial receptive fields are thus all close to the center of the image and they are roughly

the size of one third of the whole image. But at the same time these receptive fields in V4

also come in diverse shapes. In Figure 3.4-B, the receptive field for neuron 1 and 2 has a

circle-like shape, while neurons 3 and 4 form straight and curvature lines. The diversity

in size and shape of the receptive fields of V4 neurons also validates previous studies on

V4 neurons’ diverse behavior in spatial invariance [45].

To address the second question on the contribution of convolutional filters, we calculate

the filter importance of each of the 256 convolutional filters for each neuron by performing

ℓ2 pooling of the regression coefficients for a particular convolutional filter across spatial

locations. Formally, for each neuron, the filter importance Im of m-th convolutional filter

in second layer of AlexNet is defined as follows,

Im =
13∑

i=1

13∑

j=1

k∑

k=1

β̂
2

mijk.

To visualize a convolutional filter from a CNN, we use the CNN visualization technique

introduced by [74] and show the 9 top image patches from the ImageNet training set that

has the highest filter responses (See Appendix, Text for more details). These 9 top image

patches are representative of what this convolutional filter is computing [74, 72]. Taking

Neuron 1 as an example, Figure 3.4-C shows the top two filters among the 256 types of

Layer 2 AlexNet features ranked by the feature importance Im. Each selected feature

is represented by 9 image patches. By visualizing these 9 image patches, we conclude,

according to our model, that Neuron 1 is selective to curavture-type local patterns.

We also find that V4 neuron’s curvature selection [45] could arise either due to sys-

tematic variation in fine-scale orientation tuning across spatial locations (This is case of

Neuron 3), or due to local tuning heterogeneity (This is the case of Neuron 4). The latter

category of neurons are interesting that they respond to curvatures at a finer scale, while

respond to particular texture at a coarse scale. This is also consistent with earlier pro-

posals, in which neuronal responses in V4 to combinations of line elements are weighted

averages of the responses evoked by individual elements (Ghose and Maunsell, 2008; Lee
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Figure 3.5: Diversity of tuning among V4 neurons. A. Responses of models for 71
neurons to all of the 71 consensus smooth DeepTune images are shown in the identifica-
tion matrix. All models are based on AlexNet layer 2 with l2 regularization in regression.
A clear diagonal line is formed which demonstrates that for each neuron, the consensus
DeepTune image has the highest response to its own model compared to that of other
neurons’ models. B. Neurons are manually categorized into five categories based on their
smooth DeepTune images. More than 40% of the neurons are selective to texture pat-
terns, half of which prefer blob-like textures and the other half prefer corner-like textures.
About 30% of the neurons exhibit contour patterns, both curvature and straight lines.
Neurons selective to curvatures are twice as the ones selective to straight lines. The rest
of the neurons have selectivity to visually complex patterns. C. Examples of consensus
DeepTune images for three neurons from each of the five categories.

and Maunsell, 2010). Note that this type of results would be difficult to obtain via models

based on Fourier analysis such as spectral receptive field (SRF) [69, 12]. Because the 2D

Fourier transform is space-invariant, it is difficult to distinguish for example Neuron 3

and Neuron 4 via SRF analysis.

3.5 Diversity of tuning in V4 to both contour and

texture patterns

A number of studies have demonstrated that V4 neurons are selective for both visual

shape properties (e.g. contour or curvature features) and surface properties (e.g. color

or texture). However, the main functionality of V4 neurons as a population have been

debated. Early synthetic shape stimuli based studies have shown that V4 neurons are

tuned for orientation and spatial frequency of edges and linear sinusoidal gratings [16],
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non-Cartesian gratings [19, 20] as well as curvature of contours [51, 50]. On the other hand,

studies based on texture argue that shape properties might be seen as individual elements

of a textured surface [4] and V4 plays a major role in processing textural information [43,

47].

In agreement with these studies, we show via smooth DeepTune images that the two

types of neurons (more selective to shape properties or to texture properties) co-exist

among the population of 71 V4 neurons in our experiment. To demonstrate this diversity,

we first compute smooth DeepTune images for each neuron and then construct a response

identification matrix. For each smooth DeepTune image image, we compute the responses

from each of the 71 neuron models to it and plot them together in the identification matrix

in Figure 3.5-A. The smooth DeepTune image for each neuron has the highest response to

model of that neuron compared to other neurons in the population (diagonal line visible

in Figure 3.5-A). No pair of the columns looks exactly identical shows that the 71 neurons’

response properties are diverse.

We manually clustered these 71 neurons into five categories by looking at the smooth

DeepTune images. Figure 3.5-B shows the histogram of these five categories and Fig-

ure 3.5-C shows smooth DeepTune images for three example neurons in each category.

Both texture-tuned and contour-tuned neurons are present in area V4. In fact, from 71

neurons investigated in this study, about 40% of them are selective to textures and 30%

percent of them prefer contours. A finer categorization shows that among the ones se-

lective to textures, half of the neurons are tuned to blob-like patterns and the other half

prefer corner-like patterns. Contour-selective neurons show preference to either curva-

tures or straight lines. Neurons selective to curvatures are twice as the ones selective to

straight lines. We have also included in the last category the neurons tuned for complex

patterns that are hard to describe in language and do not fall into previous categories.

This observation agrees with previous studies [31, 56] that suggest V4’s tuning to more

complex shape properties.

3.6 V4 neurons’ tuning to a wide range of

separation angles

It is suggested [56] that curvature tuning in V4 helps provide an efficient way to encode

shape. However, it is not clear how different types of curvature tuning are distributed.

[51, 50] used stimuli constructed by joining two oriented line segments in a sharp corner

or curve to study the shape selectivity in area V4 and showed the presence of curvature

tuning at various orientations and separation angles.
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Figure 3.6: Categorization of V4 neurons based on their separation angles. A.

Neurons are manually categorized into six groups. The first four groups contains neurons

tuned to patterns with separation angles of 45◦, 90◦, 135◦, and 180◦. These patterns are

either contours or textures. About 20% out of 71 neurons are tuned to patterns with

separation angles of 90◦. Another 20% of the neurons are selective to blob-like textures

which does not correspond to any particular angle. The rest of neurons are not selective

to any clear angle or blob-like patterns. B. The consensus smooth DeepTune image for

two example neurons in each of the first four categories and C. the corresponding spectral

receptive field (SRF) (David et al [12]) visualization. The orientation tuning obtained via

SRFs and consensus DeepTune images are consistent. while SRF predicts a neuron has

tuning for a particular angle through Fourier analysis, the consensus DeepTune images

offer concrete visualization of these tunings. For example, for the bottom left neuron,

both our method and SRF show an orientation tunings of about 70% and 120%.
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The SRF based study in [12] also confirms this finding: the bimodal SRF is a consequence

of V4’s selectivity for sharp corners. Furthermore, Carson et al. [9] has shown via a sparse

coding that not all curvatures are equally represented: there is a stronger representation

of acute curvatures across the neural population.

In this section, we demonstrate that our CNN based model can account for selectivity

for the curvature features and the smooth DeepTune Images provide concrete charac-

terization of the separation angles. First we identify, visually via the consensus smooth

DeepTune images, that V4 neurons have strong separation angles and corner shapes. Sec-

ond, we manually classify these V4 neurons into four categories (45◦, 90◦, 135◦, 180◦)

based on their separation angles [50, 12]. Figure 3.6-A shows a histogram of the V4 neu-

rons in these four categories. We find that there is a strong presence of neurons having

shape tuning at separation angles of about 90◦ (close to 20% of the 71 neurons). Another

20% of the neurons are selective to blob-like textures which does not correspond to any

particular angle. The rest of the neurons are not selective to any clear angle or blob-like

patterns.

To further demonstrate how consistent our smooth DeepTune images based classifica-

tion of V4 neurons, we compare these findings with SRF analysis. In Figure 3.6-B and

C, for each neuron, we display together the consensus smooth DeepTune image and the

SRF plot based on the analysis of David et al. [12]. The horizontal axes of the SRF show

the orientation tuning of each neuron, with excitatory component in red. We verify that

the orientation tuning range and spacing shown in SRF are consistent with our smooth

DeepTune images. For example, for the bottom left neuron, both our method and SRF

show an orientation tunings of about 70◦ and 120◦. The wide variability of preferred

curved-contour patterns, matches the previous neurophysiological observations in V4. As

in the SRF analysis [12] but on a different dataset, we find that V4 neurons have large

orientation and spatial frequency bandwidth and often bimodal orientation tuning. Our

smooth DeepTune images offer a concrete visualization of the bimodal orientation tuning

properties of many neurons. For example, for the two example neurons shown in the 90◦

column, consensus smooth DeepTune image illustrates the bimodal orientation tuning

concretely by showing its preferred pattern which looks like a corner.

3.7 Suppressive tuning in the cortical area V4

It is well known that V4 neurons have surround suppressive mechanisms [16, 59, 32]

just like many other visual cortical areas [27, 3]. Recent study [66] has also reported

evidences for the presence of strong suppressive tuning for half of the neurons in area
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V2, which is not caused merely by surround suppression. Willmore et al. [66] also dis-

covered that this type of suppression is not present in area V1. It is natural to question

whether such suppressive tuning is also present in the area V4. To study the suppressive

tuning in V4 area, we fit models of V4 neurons based on the Berkeley Wavelet Trans-

form (BWT) [66], adopt the same excitation index defined in the same paper to rank

the neurons in V4 and finally visually confirm the suppressive neurons via smooth Deep-

Tune images. The BWT-based model provides a nonlinear spatio-temporal receptive field

(STRF) for each neuron (More information in Appendix, Fig. 3.F.1 ). The excitation

index (EI) is defined as:

EI =
Σh+ − Σh−

Σh+ + Σh−

where h+ and h− are the excitatory and suppressive weights assigned to the wavelets in

each STRF, respectively.

The BWT-based model has an average prediction correlation coefficient of 0.33 for

the 71 V4 neurons in the hold-out test set. While this performance is 0.11 lower than

the best CNN-based model, it is high enough to study the suppression tuning in V4 (the

same model achieves an average correlation coefficient of 0.30 for V2 neurons [66]). Figure

3.7-A shows the histogram of excitation index for 71 V4 neurons. 41% of the neurons

show suppressive tuning. The median of excitation index for V4 neurons is 0.10. While,

the portion of neurons with suppressive tuning is 9% lower compared to V2 neurons, it is

29% higher compared to neurons in cortical area V1 [66].

The smooth DeepTune visualization enables us to validate the suppressive tuning in

the V4 area. Figure 3.7-B illustrates the excitatory and inhibitory smooth DeepTune

images for three neurons identified as the most suppressive neurons by the BWT model

and the corresponding excitation index. Here, the excitatory smooth DeepTune images are

obtained via maximizing the model response, while the suppressive ones are obtained via

minimizing the model response. The neuron excitation index and response of the model

to each smooth DeepTune image are shown in the same panel. The smooth DeepTune

images give a concrete visualization of the suppressive tuning. The neurons’ excitatory

DeepTune images are largely blurred, while their suppressive DeepTunes shows more clear

patterns. For neuron 43, while the excitatory DeepTune has unstable and relatively weak

patterns, the suppressive DeepTune exhibit a stable tuning to 90 degree corner shapes in

the right hand side of visual field. Neuron 43 model response to the excitatory DeepTune

image (r = 0.54) is relatively low compared to other neurons (Excitatory neurons have

responses as high as r = 31). Both neurons 27 and 26 have strong suppressive tuning to

complex shapes with mid range frequency, while their excitatory DeepTunes have weaker

patterns compared to the excitatory neurons.
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Figure 3.7: Neurons in cortical area V4 exhibit suppressive tuning. A. Histogram
of excitation index for 71 V4 neurons. 41% of the neurons show strong suppressive tuning.
The median of excitation index for V4 neurons is 0.10. B. The excitatory and inhibitory
smooth DeepTune images for three neurons identified as suppressive by the STRF model
and excitation index. The neuron excitation index and response of the model to each
smooth DeepTune image is illustrated in the same panel. The neurons with suppressive
tuning tends to have a clearer suppressive DeepTune visualization than those without.
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3.8 Discussion

In summary, we proposed state-of-the-art CNN-based models for V4 neurons in pre-

dicting neural spike rates in a hold-out validation set to natural image stimuli. Our

smooth DeepTune visualizations provide stable and concrete characterization of V4 neu-

rons. The population analysis shows that V4 area is tuned a huge variety of curvature

contour patterns as well as textures in different orientations. We also brought the analysis

of suppressive neurons proposed in [66] to a new level by providing concrete visualization

of how suppression function happens in suppressive neurons.

DeepTune visualization as a general basis for single-neuron tuning

visualization

The idea of computationally optimizing input stimulus to find one neuron’s tuning

pattern dates back to Carlson et al. [9], where the evolutionary sampling method was

used to optimize for the stimulus that causes the highest number of spikes. This approach

has largely expanded the search space of tuning patterns when compared to previous

work based on hand-crafted stimulus patterns. While the evolutionary sampling method

is constrained on concatenated Bezier splines, our DeepTune optimization has an even

larger search space and allows for more complicated tuning patterns. Provided that we

have a differentiable predictive model of single neuron, the DeepTune visualization serves

as a general approach for visualizing optimal tuning, which can also be applied to other

visual areas in future work.

DeepTune visualization could serve as input stimulus for future

neurophysiology experiments

We are able to provide more concrete visualization of V4 neuron’s receptive field than

previous studies. On one hand, studies based on hand-crafted stimuli [19, 20, 51] might

lack the expressive power to represent all V4 neurons’ receptive field. On the other hand,

predictive modeling approaches such as SRF [12] only provide summary statistics about

the receptive fields. It would be difficult to reconstruct the tuning patterns of V4 neurons

solely from its spatial frequency tuning and orientation tuning summary based on SRF.

The DeepTune images we provide for each V4 neuron are close enough to the space of

input image stimuli. It remains in future experiments to use these DeepTune images as

input image stimuli to verify the predicted V4’s tuning properties in this work.
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Possibility to obtain simple description for all V4 neurons’ tuning properties?

In this study, we have shown that V4 neurons are tuned to a huge variety of curvature

contour and texture patterns via DeepTune visualization. Looking through the DeepTune

visualization for all the V4 neurons, we observe that not all tuning patterns shown in

DeepTune images are simple: even the stable part of some V4 neurons’ smooth DeepTune

images are difficult to describe in natural language (e.g. See Figure 3.7). This suggests

that area V4’s tuning is much more complicated than that of V1 neurons as well as what

previous studies on V4 suggest via hand-crafted grating stimuli. Many of them might not

be stimulated via simple stimuli inputs. In future experiments, it would be interesting to

investigate this hypothesis by manually design stimuli as complicated as what we have

shown in this study.

Natural Stimuli

In this study, we have investigated V4 neurons’ behavior using natural stimuli. While

these stimuli present serious challenges both for neurophysiology experiments and statis-

tical analysis and modeling, they are essential for understanding how the brain represents

and processes visual input outside the laboratory. Natural stimuli probe a large portion

of the space of a neuron, while hand-crafted stimuli design is inherently human-biased.

Producing a model that can accurately describe the responses of the neuron throughout

this high-dimensional space is challenging.

Additionally, it has been observed in [66] that natural stimuli also have important

advantages for understanding the interaction between excitation and suppression. Simple

stimuli such as might not be able to to stimulate neurons to produce both excitation and

suppression.
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Appendix

3.A Data collection

In this paper, we have used extracellular recordings from well isolated neurons in

parafoveal areas V4 (71 neurons) of two awake, behaving male rhesus macaques (Macaca

mulatta). This dataset has been previously used to study the sparseness of neural codes

in the area V4 [67]. For the details of the data collection procedure refer to [67].

All procedures for the neurophysiology data collection are approved by the Animal

Care and Use Committee of the University of California, Berkeley. The procedures were

conducted in strict accordance with good practice as defined by the Office of Laboratory

Animal Care at UC Berkeley, the National Institutes of Health, the Society for Neuro-

science, and the American Association for Laboratory Animal Science.

The training dataset of a neuron consists of 4, 000 − 12, 000 natural images. Spike

count was measured at 60 Hz, resulting in two measurements per image. For the held-out

dataset, 300 images were shown for each neuron, distinct from the images shown for the

training dataset. The sequence of test images was repeated; on average, each image in

the test set was shown 9.3 times. The resulting spike counts were averaged to provide a

lower-variance estimate of the expected spike count; repeats also allowed for estimation

of the amount variance in the neuron explainable by the stimulus image (signal-to-noise).

3.B Modeling methodology and metrics

In this section, we discuss the methods we used to model neurons and the metrics to

characterize our models’ performance compared to measured neuron activity. As described

in the main text, we use transfer learning framework to analyze sinlge V4 Neuron input-

response data: We first extract convolutional neural networks (CNN) features and then

use as predictors in a linear regression method to predict spike-rates as the response. The

CNNs are pretrained on large scale image classification dataset ImageNet [58]. The linear

model learned by regularized linear regression is trained on our data.
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A B

Figure 3.A.1: Sample of Images from training and holdout datasets. A. 50 images
sampled from training dataset of 4000 images of one neuron. B. 25 images sampled from
holdout dataset of 300 images of one neuron.

As a measure of the prediction performance of our model, the correlation between the

expected spike count predicted by the model and the actual average spike count on the

holdout set is computed.

Explainable variance captured by the model is another relevant metric for predction

performance in the neuroscience litterature [55, 60]. This metric attempts to control

for differences in noise levels between experimental setups, individual neurons, and brain

regions. We estimate explainable variance using the repeat presentations of images in the

test set.

Convolutional Neural Networks (CNNs)

Deep convolutional neural networks are a successful tool to analyze big data problems

and are therefore are being actively studied for a vast variety of applications especially in

machine learning [34, 33, 61].

Convolutional networks are basically neural networks with several layers and a spe-

cialized connectivity structure. The purpose is to extract features of the scene in multiple

layers. It has been shown that higher layers compute more global features than lower

layers, so that the hierarchical structure provides a better overall quality of features [74].

The proposed architecture for several layers of network varies in different applications

but it usually consists of three general types: convolutional layers, pooling layers and

fully-connected layers.

Convolutional layers select a window of previous layers output and convolve it with

a set of filters. Dependencies are local in this structure. The coefficients of these filters
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are tunable weights of our network and their final value will be specified in the training

procedure. As an example, considering images as the input of our network, each filter is

a rectangular grid which will be convolved with specific patch of previous layer. A non-

linear function will be used to specify the output of the neuron as in traditional neural

networks. Equation 3.1 specifies this relationship between output of different layers for

two-dimensional configuration.

yli,j = f

(
M∑

m=0

M∑

n=0

wmny
l−1
i+m,j+n

)
(3.1)

where i and js indicates possible spatial location at layer l, yli,j is the output of each

neuron in layer l, wmn is the filter weights at location (m,n) of layer l − 1 and f is the

non-linear function.

Pooling layers could be utilized after each convolutional layer. It simply performs a

spatial pooling over patches of previous layer. These patches could be overlapping or non-

overlapping. The output of pooling layer for each patch is a single value which in most of

the cases is maximum value of the patch. Pooling could be useful to reduce the feature

dimension as well as increase the invariance of the features for small transformation. It

also helps to increase the size of receptive field for each feature value.

After several convolutional and pooling layers aimed at grasping the low-level and

high-level features, a few fully-connected layers are used as the final stages of the network.

These layers are essential for specific application of the network such as classification or

prediction.

Figure 3.B.1 shows the neural network architecture of the AlexNet model [33]. It

consists of five convolutional layers, three pooling layers inbetween and two fully connected

layers. Our analysis is carried out on all the seven layers shown in the figures. Layers

L2, L3 and L4 are of the main focus. In particular, the output feature at L2 is of size

256 × 13 × 13, where 256 indicates the number of types of filters applied at Layer L2,

13 × 13 indicates that the features are extracted on a spatially-equally-spaced 13 × 13

overlapping grid of the original image. Similarly the output features at layers L3 and L4

are of size 384× 13× 13 and 384× 13× 13.

We also used GoogLeNet [63] and VGG [62] in our analysis. The architectures and

the mechanism of these models are beyond the scope. We refer the readers to the original

paper for a detailed understanding. The CNN feature extraction pipeline is done using

the Caffe [29] package and the model files provided within.
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Figure 3.B.1: Architecture of the AlexNet model [33]. Red box indicates convo-
lutional layer, gray box indicates pooling layer and blue box indicates fully connected
layer.

Regularized linear regression methods

As described in the main text, our predictive model for a single neuron response takes

the following form

F : Rs×s×k → R

(zt, ..., zt−k+1) %→
k−1∑

j=0

β⊤
j+1h(zt−j),

where (β1, . . . ,βk) ∈ Rd×k are the regression parameters to be determined and h is the

fixed CNN feature transform.

To perform the regression analysis, we solve the following regularized linear regression

problem

(
β̂1, . . . , β̂k

)
=argmin

β1,...,βk

1

2

T∑

t=k

(
yt −

k−1∑

j=0

β⊤
j+1h(zt−j)

)2

+ λ1

k∑

j=1

∥∥βj

∥∥
1
+ λ2

k∑

j=1

∥∥βj

∥∥2

2
.

Taking the AlexNet Layer 2 model as an example, the Layer 2 feature is of dimension

d = 256× 13× 13. Taking into account the time lags, the weight matrix
(
β̂1, . . . , β̂k

)
is

of dimension 256 × 13 × 13 × 9. This feature dimension is much larger than the sample



CHAPTER 3. COMPUTATIONAL MODELS FOR V4 NEURONS 52

size T = 8000. Regularization methods are needed to both improve prediction accuracy

and provide better interpretation.

Either ridge regression (ℓ2 regularization) or LASSO [64] (ℓ1 regularization) will be

suitable for this high dimensional regression problem. While ridge regression is commonly

used in the neuroscience litterature, LASSO could provide better guarantees for feature

selection [75] in theory. We find that both regression methods produce consistent predic-

tion performance and smooth DeepTune images in our analysis. A detailed comparison

is discussed in Section 3.D.

3.C Visualization of CNN filters

In this subsection, we provide visualization of CNN filters. These visualizations show

that CNN features encode much richer patterns that Gabor wavelets do. They support our

finding that CNN based models perform better than simple Gabor wavelet based models

in modelling V4 neurons. Because of the pooling operations, normalization operations,

and non-linear activation functions in the CNNs, the CNN features are complex nonlinear

functions of the raw input image. These CNN features are the outcome of learning

from the large scale image dataset ImageNet, and are in general hard to explain via

mathematical formula.

Inspired by the recent advances in CNN visualization [74, 72], we visualize the filters

Layer 2, 3 and 4 of the AlexNet as follows: taking Layer 2 as an example, for each of the

256 types of filters, we exaustively search for nine image patches, from a dataset of one

million image patches generated from ImageNet, that has the maximal output responses

for the filter. The one million image patches are generated by randomly cropping images

in ImageNet.

Figure 3.C.1 shows a subset of 256 types of filters in Layer 2 of AlexNet. We have

manually clustered these filters in categories. We observe that other than encoding edge-

shape patterns, Layer 2 of AlexNet also encodes a rich set of curvature patterns, contour-

blob patterns as well as crossing patterns. These patterns could be very useful in building

a predictive model for V4 neurons, because similar shape tuning properties of V4 neurons

have been reported before [56].

Similarly, Figure 3.C.2 and Figure 3.C.3 shows a subset filters in Layer 3 and Layer

4 of AlexNet. We observe that these filters encode even richer shape patterns. Some

concrete patterns such as “dog head” and “birds” appear in Layer 3 filters. It has been

shown that higher layers compute more global complex features than lower layers [74].

Unfortunately, the higher layer features become more specific to the classification task

used to train AlexNet. It is not clear the higher layer features are as transferable as the
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lower layer features to other tasks [61].

Dense diagonal patterns

Diagonal patterns

Dense vertical patterns

Dense anti-diagonal patterns

Anti-diagonal patterns

Vertical patterns

Dense textures

Blob patterns

Crosses

Horizontal patterns

Curvature patterns

Filters in layer 2 of AlexNet

Figure 3.C.1: Visualization of subset of filters in Layer 2 of AlexNet. To visualize
each filter, we have fed one million image to the CNN and visualized top nine image
patches that activate that has the maximal output responses for the filter [74]. We have
manually clustered filters into categories.
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Diagonal patterns

Circles and ellipses

Anti-diagonal patterns

Vertical patterns

Dense lines

Blob patterns

Dog heads

Horizontal patterns

Curvature patterns

Filters in layer 3 of AlexNet

Figure 3.C.2: Visualization of subset of filters in Layer 3 of AlexNet. To visualize
each filter, we have fed one million image to the CNN and visualized top nine image
patches that activate that has the maximal output responses for the filter [74]. We have
manually clustered filters into categories.
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Circles and ellipses

Human heads

Diagonal and anti-diagonal patterns

Dense patterns

Blob patterns

Dog heads

Animals

Curvature patterns

Filters in layer 4 of AlexNet

Birds

Landscapes

Figure 3.C.3: Visualization of subset of filters in Layer 4 of AlexNet. To visualize
each filter, we have fed one million image to the CNN and visualized top nine image
patches that activate that has the maximal output responses for the filter [74]. We have
manually clustered filters into categories.
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3.D Stability Analysis

In this section, we discuss the stability of our analysis for smooth DeepTune images

and model selected features.

Stability of smooth DeepTune images

Our main analysis is based on smooth DeepTune Images. The CNN-based approach

for interpretation is potentially biased because of the specific choice of architecture,

parametrization and methods.

Convergence

To visualize the smooth DeepTune image optimization process, we use SuperHeat vi-

sualization package to plot the heatmap of the CNN feature activation map throughout

the optimization process in Figure 3.D.1. There is a transition of the CNN feature acti-

vation map at about smooth DeepTune iteration 8. After this iteration, the CNN feature

activation map stabilizes. The inactive columns correspond to the color-selective features

in AlexNet. Our stimulus is gray-scale, therefore, it is expected to observe weak selection

for these filters.

Superheat visualization of 
smooth DeepTune convergence process

Model
response

0        100 256

  I
te

ra
tio

n

CNN filter index
128

Figure 3.D.1: The smooth DeepTune image optimization process. We use Su-
perHeat visualization package to plot the heatmap of the CNN feature activation map
throughout the optimization process.
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Stability across different initialization

A DeepTune image is the final result of an optimization process on an initial random

image. To study the effect of random initialization on the final DeepTune image, we run

the optimization process on 10 different random starting image for each neuron. Figure

3.D.2 shows 10 DeepTune images from these different initializations for five neurons. The

patterns from 10 DeepTune images are visually similar. The average pair-wise correlation

coefficient between 10 images is 0.95 for neuron 1. For other neurons, this value is not

less than 0.91.

Neuron 2

Neuron 3 Neuron 4

Neuron 5

Neuron 1

Figure 3.D.2: Stability of smooth DeepTune images with 10 different random
initializations for five neurons.
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Stability across 18 models

The smooth DeepTune images from all of the 18 models studies in this paper has

stable patterns for each neuron. To construct the 18 models, we have used 3 pre-trained

convolutional neural networks (AlexNet, VGG, and GoogleNet). From each network,

we use either two, three, or four layers to extract features from images in neuroscience

experiments. These features predict the spike rates of each neurons using a regularized

linear regression. We use both l2 (ridge regression) and l1 (LASSO) regularizations. This

results in 18 models for each neuron (3 networks, 3 layers, and 2 regression model). Figure

3.D.3 shows smooth DeepTune images from each of these 18 models for two neurons.

The stable pattern among these 18 DeepTune should be interpreted as the pattern that

activates neuron.

Neuron 2

Neuron 1
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Figure 3.D.3: Stability of the interpretable patterns in smooth DeepTune mages
for neurons 1 and 2 across 18 models.
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Identification matrix across models 1, 2, and 3

To demonstrate this diversity, we first compute smooth DeepTune images for each

neuron and then construct a response identification matrix. For each smooth DeepTune

image image, we compute the responses from each of the 71 neuron models to it and plot

them together in the identification matrix in the top heatmap plot in Figure 3.D.4. The

smooth DeepTune image for each neuron has the highest response to model of that neuron

compared to other neurons in the population (diagonal line visible in Figure 3.D.4). No

pairs of columns looks exactly identical which is an evidence that the 71 neurons’ response

properties are diverse. We also study the stability of this observation by feeding Deeptune

images generated from VGG and GoogleNet models to AlexNet-based model.

Figure 3.D.4 the middle and bottom heatmap plots illustrates the responses of neuron

models from AlexNet layer 2 to DeepTune images generated by VGG and GoogleNet layer

2 models. Ridge regression have been used in all of the models. The heatmaps in Figure

3.D.4 contain clear diagonal patterns, showing the smooth DeepTune images are stable

across models. This observation, quantitatively confirms the visually observed stability

of smooth DeepTune images.

Stability of selected features and weight-maps

In this section, we investigate the stability of CNN features selected by each neuron

across different models. First, we visualize the top selected features and show that these

features have stable visualization across models. Then, we use the regression coefficients

in models to identify the model-inspired receptive field for each neuron. This is achieved

by visualizing heatmaps of average regression coefficients across all features corresponding

to each location in image.

Stability of top selected features across four main models for four neurons

Our model for each neuron consists of a CNN-based feature selection module and a

linear regression model to predict the neuron spike rate from those features. Figure 3.D.5

shows that these features have stable visualization across models. For neurons 2, 3, 4, and

5, we visualize the filters representing top two selected features. Each box with 9 image

patches visualizes a filter in the CNN. To visualize the filter, we feed a million random

natural images (from AlexNet dataset) to the network and show the top 9 image patches

that activate the filter. For each model the left box corresponds to the top filter and the

right box corresponds to the second top filter selected by neuron. The patterns are stable

across all four models.
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Figure 3.D.4: Stability of model responses to smooth DeepTune images gen-
erated from AlexNet, Vgg, and GoogleNet based models. Smooth DeepTune
images from layer 2 of AlexNet, VGG and GoogleNet are generated for each neuron.
These images are fed into our prediction model based layer 2 feature of AlexNet. All
three heatmaps contain clear diagonal pattern, showing the smooth DeepTune images
are stable across models. This observation, quantitatively confirms the visually observed
stability of smooth DeepTune images.
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For neuron 2, both top and second top filters for four models are selective to blob-like

patterns. CNN filters selected by Neuron 3 like both curvatures and diagonal edges with

45 deg patterns. Neuron 3 prefers filters selective to corners and edges in both diagonals,

however, no curvature filter is selected by this neuron. Neuron 5 is consistently selecting

filters responsive to diagonal patterns in 45 deg. Similar observation holds for other V4

neurons on the population.

Model 1 Model 2 Model 3 Model 4

Neuron
2

Neuron
3

Neuron
4

Neuron
5

Figure 3.D.5: Stability of top selected CNN features selected by each neuron
across four main models. Each box visualizes a filter representing the feature in the
CNN. To visualize the filter, we feed a million random natural images (from AlexNet
dataset) to the network and show the top 9 image patches that activate the filter.

Stability of average weight-maps across four main models

In this section, we study the stability of model-inspired spatial receptive fields for each

neuron. The CNN features extracted from images have spatial structure due to nature

of convolution operation. That is, each feature corresponds to a location on the image.

Consequently, the regression coefficients mapping these features to neuron spike rates have

similar spatial structure. After fitting the predictive models for each neuron, we estimate

a model-inspired receptive field for each neuron, by averaging the regression coefficients

in each location across different filters. The heatmap of average regression coefficients for

each location on the image represents the importance of that location for the neuron.
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3
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4
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5

Figure 3.D.6: Stability of average model weight-maps across four main models.
These weight-maps estimates the model-inspired receptive filed. After fitting the predic-
tive models for each neuron, we estimate a model-inspired receptive field for each neuron,
by averaging the regression coefficients in each location across different filters. Each row
corresponds to one neuron. Each column corresponds to a model. The weight-maps are
stable across models for each neuron.

Figure 3.D.6 shows these weight-maps for four neurons and four models. The weight-

maps are stable across models. For neuron 2, the features in the center leaning to right

side of the image are selected by the neuron. Neuron 3 and 5 are selective to features in

a diagonal location. Neuron 4 prefers features in a cross-like location.

Stability of LASSO vs. Ridge

Inspecting raw coefficients from models learned by Lasso is problematic, however, due

to the instability of the Lasso selected features. Particularly in cases where regressors

are highly correlated (as is the case with features extracted from a CNNs), the model

selection performed by Lasso may be inconsistent [75]. To overcome this issue and focus

on the truly salient features for a particular neuron, we performed a stability analysis

using 10-fold cross validation: the model was refit on each of the 10 perturbed datasets,

and then the sets of selected variables were intersected. Model coefficients on this set

were then averaged and used as a basis for our analysis. This is similar to the method

introduced in [5], except we use cross validation instead of bootstrap resampling.
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Figure 3.D.7: Comparison of Lasso and Ridge feature selection. Ridge and Lasso
give similar prediction performance. Lasso in general selects a smaller number of fea-
tures (751 features in average) included in the set of features that Ridge selected (total
377,000 features). The top CNN filters that Lasso selected are similar to that of the Ridge
regression.

3.E DeepTune visualization of all V4 neurons in the

population

In this section, the preferred and non-preferred DeepTune images are visualized for all

of the 71 V4 neurons in the population.

Preferred smooth DeepTune images for all 71 V4 neurons

Figure 3.E.1 shows the preferred DeepTune images for all of the 71 neurons under

study in visual area V4. The model used here is AlexNet layer 2 with ridge regression.

Refer to the main text for a discussion on the diversity of the patterns preferred by V4

neurons.

Non-preferred smooth DeepTune images for all 71 V4 neurons

Figure 3.E.2 illustrates the non-preferred DeepTune images for all of the 71 neurons.

The model used here is AlexNet layer 2 with ridge regression. Most of the neurons have

weak patterns in their non-preferred DeepTune image. For some of the neurons, the

pattern is stronger. In the main text of chapter 3, we present a detailed discussion on the

interpretation of patterns in non-preferred DeepTune images.
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Smooth DeepTune images for all neurons

Neuron 1 5432 6

Neuron 7 111098 12

Neuron 13 17161514 18

Neuron 19 23222120 24

Neuron 25 29282726 30

Neuron 31 35343332 36

Neuron 37 41403938 42

Neuron 43 47464544 48

Neuron 49 53525150 54

Neuron 55 59585756 60

Neuron 61 65646362 66

Neuron 67 71706968

Figure 3.E.1: Preferred smooth DeepTune images generated by AlexNet-based model for
all 71 V4 neurons.
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Inhibitory smooth DeepTune images for all neurons
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Figure 3.E.2: Non-preferred smooth DeepTune images generated by AlexNet-based model
for all 71 V4 neurons.
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3.F Spectral Receptive Field (SRF) model

It has been shown in [12] that many V4 neurons have more than one excitatory orien-

tation tuning peak. Bimodal orientation tuning explains previous observations of selectiv-

ity for sharp corners [51]. Curvature or corner patterns will result in Bimodal orientation

tuning in V4. We show via smooth DeepTune that a large part of V4 neurons share this

property and the result is consistent with that obtained by the spectral receptive field

(SRF) [12]. Details of the SRF model are discussed in the main text.
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Figure 3.F.1: Consistency of the average weight map and smooth DeepTune
images with spectral receptive field (SRF) [12]. Details of the SRF model are
discussed in the main text.
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3.G Principle component analysis

Each V4 neuron model corresponds to a point in p-dimensional coefficient space; we

can investigate the population of V4 neurons by examining their relative positions in this

space. However, because p is very large (in the case of models based on N2 of AlexNet,

p = 389, 376) direct analysis of the coefficient vectors is impossible due to the curse of

dimensionality. First, we perform ℓ2 pooling of coefficient values across space and time

delays to yield a single impact value for each of the filters in layer N2 of AlexNet. This

gives a 256-dimensional representation, where each dimension corresponds to a single

filter. Next, we perform principal components analysis (PCA) of the 71 points (each

corresponding to a single V4 neuron) in this 256-dimensional space. PCA finds a set

of linear transformations that capture a large proportion of the variance of the vectors.

An examination of the coefficients of the loading vectors reveals that the first several

principal components delineate several recognizable image features. The first principal

component specifies whether neuron is selective to horizontal and vertical patterns. The

second principal component delineates low-frequency patterns vs. dense blobs. The third

principal component delineates diagonal vs non-diagonal smooth features.

Figure 3.G.1.A shows the plot of the 71 V4 neurons according to their values in the

first two principal components. Each neuron is shown via its smooth DeepTune image.

The color of DeepTune image borders is proportional to the third principle component

with red being the highest PC value and blue the lowest. The neurons with highest

values in PC 1 are selective to Figure 3.G.1.B illustrates the 71 V4 neurons according to

other principal components. The coefficients of the loading vectors for first three principal

components are shown in Figure 3.G.1.C. For the top coefficients, the corresponding filter

is visualized by top 6 image patch that activate that filter. These image patches are found

by feeding one million random image to the CNN and selecting the patches with highest

filter response.
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Figure 3.G.1: Principle components analysis of V4 neuron’s population. A. 71

V4 neurons according to their values in the first two principal components. To compute

the principle components, we perform `2 pooling of coe�cient values across space and time

delays to yield a single impact value for each of the filters in layer N2 of AlexNet. This



CHAPTER 3. COMPUTATIONAL MODELS FOR V4 NEURONS 69

gives a 256-dimensional representation, where each dimension corresponds to a single

filter. Then, we perform principal components analysis (PCA) of the 71 points (each

corresponding to a single V4 neuron) in this 256-dimensional space. Each neuron is shown

via its smooth DeepTune image. The color of DeepTune image borders is proportional to

the third principle component with red being the highest PC value and blue the lowest.

B. 71 V4 neurons according to other pairs of principal components. C. Coefficients of the

loading vectors for the top three principal components. For the coefficients with highest

values, the corresponding filter is visualized by top 6 image patch that activate that filter.

These image patches are found by feeding one million random image to the CNN and

selecting the patches with highest filter response.

3.H Predicted responses of V4 models to

hand-crafted stimuli

In this section, we investigate the response of our CNN-based neuron models to polar,

hyperbolic, and Cartesian gratings. We manually create images in each category based on

the equations give in [19]. The response of the V4 models based on second layer of AlexNet

with Ridge regression are computed for each of these hand crafted images. Figures 3.H.1,

3.H.2, 3.H.3, and 3.H.4 show the responses of three neurons to these images. The smooth

DeepTune image is also shown in each figure. The hand crafted images selected by the

model are consistent with the patterns visible in the DeepTune image.
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Smooth DeepTune

Model responses to hand-crafted gratings
Neuron 1

B

A

Figure 3.H.1: Neuron 1 model responses to polar, hyperbolic, and Cartesian
gratings are consistent with smooth DeepTune patterns. A. Responses of neuron
1 model to polar, hyperbolic, and Cartesian gratings. The gratings in red and blue
correspond to excitatory and inhibitory stimulus, respectively. B. Smooth DeepTune of
neuron 1
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Smooth DeepTune

Model responses to hand-crafted gratings
Neuron 2

B

A

Figure 3.H.2: Neuron 2 model responses to polar, hyperbolic, and Cartesian
gratings are consistent with smooth DeepTune patterns. A. Responses of neuron
2 model to polar, hyperbolic, and Cartesian gratings. The gratings in red and blue
correspond to excitatory and inhibitory stimulus, respectively. B. Smooth DeepTune of
neuron 2
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Smooth DeepTune

Model responses to hand-crafted gratings
Neuron 5

B

A

Figure 3.H.3: Neuron 5 model responses to polar, hyperbolic, and Cartesian
gratings are consistent with smooth DeepTune patterns. A. Responses of neuron
5 model to polar, hyperbolic, and Cartesian gratings. The gratings in red and blue
correspond to excitatory and inhibitory stimulus, respectively. B. Smooth DeepTune of
neuron 5
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Smooth DeepTune

Model responses to hand-crafted gratings
Neuron 6

B

A

Figure 3.H.4: Neuron 6 model responses to polar, hyperbolic, and Cartesian
gratings are consistent with smooth DeepTune patterns. A. Responses of neuron
6 model to polar, hyperbolic, and Cartesian gratings. The gratings in red and blue
correspond to excitatory and inhibitory stimulus, respectively. B. Smooth DeepTune of
neuron 6
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Chapter 4

Compressed models of V4 neurons

4.1 Introduction

An important question in neuroscience is to describe the simplest, accurate model for

a neuron. Producing simple representations has been challenging for CNN-based models,

introduced in Chapter 3, but the number of filters used by a CNN provides a useful

starting point in considering model simplicity. That is, a CNN with fewer filters is easier

to interpret and visualize.

In Chapter 2, we provide a compression framework for convolutional neural networks

based on pruning filters. In this chapter, we borrow similar ideas to build compressed

models of neurons in visual area V4. Particularly, two importance indices is employed to

perform compression: one is based on Classification Accuracy Reduction (CAR) and the

other is based on Regression Accuracy Reduction (RAR). To prune CNNs using the CAR

index, we employ our greedy compression algorithm introduced in Chapter 2. The CAR

algorithm prunes filters in CNN based on their contribution to the classification accuracy.

The pruned filters are transfered to predict spike rates of V4 neurons. In this chapter, we

introduce the RAR greedy compression based on RAR importance index. In the RAR

algorithm, the filters are pruned based on their contribution to the regression accuracy

in predicting spike rates of V4 neurons. The CAR compression identifies the redundant

filters in CNN structure and therefore, pruning based on CAR compression gives rise to

fewer filters with diverse functionality. The RAR compression, however, is able to find

the set of important CNN filters selected by each neuron because the regression accuracy

is based on real neural activity.

This chapter employs both CAR and RAR compression in a transfer learning setting.

Transfer learning is one of the most important techniques driving the massive success of

deep learning [48]. In our setting, transfer learning consists of training a network on one
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task and then transferring the weights and parameters of the trained network to perform a

second target task. Our framework to build models of V4 neuron’s spike rate in Chapter 3

is one example of transfer learning. We trained a CNN to classify color natural images into

1000 classes and then used the trained network to extract features from gray-scale images

in neuroscience experiment and predict activity of V4 neurons. In this chapter, similar to

Chapter 3, we will study transfer learning in the context of predictive models of neurons in

the visual cortex [7]. First, we consider the ability of CAR-compressed networks to predict

V4 neuron’s activity. In these CAR-compressed CNNs, the pre-trained CNN filters are

pruned based on their contributions to the classification accuracy. Then, we consider the

RAR-compressed CNN-based models of V4 neurons. In these models, we first transfer the

full uncompressed pre-trained network to extract features from the experiment images.

Then, we prune filters based on the the regression accuracy of V4 neuron’s spike rate.

Similar to Chapter 3, we study the models for neurons in visual area V4 which is

poorly understood [56]. Processing of visual information by the brain is known to have

hierarchical organization [54]. The input signal from retina flows from early visual cortex

areas such as the V1 to intermediate layers such as the V4 and then ends with higher

level visual processing in areas such as the IT area. The future research includes to

extend similar modeling approach (based on compressed networks) to other visual layers.

Finding the simplest accurate model for neurons in other layers uncovers an interpretable

functionality for these areas. Recent lines of research in computational neuroscience have

focused on building predictive models of V1 and IT areas. Building compressed and simple

accurate models could further improve the current understanding of the functionality of

neurons in these regions.

4.2 CAR-compressed predictive models of single

neurons

CAR compression is a powerful tool to prune the redundant filters from CNNs. We

employ CAR-compressed CNNs and a linear regression model to build predictive models

for V4 neurons. Similar to the pipeline described in Chapter 3, transfer learning is used to

build the models. We use the pre-trained AlexNet network trained for image classification

task on the ImageNet dataset. We limit our study in this chapter to the second layer of

AlexNet. The reason for this choice has been discussed in Chapter 3. The models for V4

neurons from second layer of AlexNet has one the highest average accuracies across 71 V4

neurons among all other structures (Average Correlation Coefficient of 0.53). Additionally,

it has the most similar DeepTune images to the consensus DeepTune (Chapter 3). We

study the CAR-compressed AlexNet in layer 2 with 9 different compression rates of 10%,
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20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. Similar to Chapter 3, the first two layers

of the network are used to extract features from images in neuroscience experiment. A

ridge linear regression is used to predict V4 neuron spike rates from the extracted features.

Figure 4.1.A compares the prediction performance of the full AlexNet to the com-

pressed networks with 9 different compression ratios. To evaluate the prediction perfor-

mance, correlation coefficient between measured neural response and predicted response

using CNN features are computed for the held-out test set. The test set has never been

used in the training stage. The red dashed line in Figure 4.1 shows the average correlation

coefficient over 71 neurons. To study effect of compression on this transfer learning task,

we have pruned filters in second layer of AlexNet using greedy filter-based compression

and predicted the response of neurons using compressed network. The first layer of the

network is not compressed. The average correlation coefficient for networks with vari-

ous compression ratios are shown in Figure 4.1.A. Comparing the average correlation of

coefficients, we observe that removing half of the filters in AlexNet does not affect the

prediction performance of the V4 neurons’ models. Removing 90% of the filters causes a

2% reduction in the average correlation coefficient (relative 5% to uncompressed network

accuracy). Figure 4.1.B illustrates scatterplots of correlation coefficients for compressed

against uncompressed networks. Each point in these scatterplots corresponds to one V4

neuron. Five scatterplots for compression ratios of 10%, 30%, 50%, 70%, and 90% are

shown. The reduction in prediction accuracy is negligible for the first four plots. For the

90% compression ratio plot, the accuracy is slightly lower for almost all of the neurons (68

out of 71 neurons), however, models with the 90% compression rate have only 25 filters

in the second layer. Therefore, these models are much simpler compared to the original

uncompressed ones with 256 filters in the second layer. It is worth noting that these 25

CAR-selected filters are universally predictive of all 71 neurons in the population of V4

neurons. In Section 4.4 we study these 25 filters in more detail and show that they are

selective to a diverse set of patterns in images. This property allows the corresponding

neuron models to highly accurately predict the spike rates in V4 neurons.

4.3 DeepTune analysis of CAR-compressed models

For each of the accurate CAR-compressed models of V4 neurons, the smooth DeepTune

visualization sheds light on the pattern selectivity of that neuron. Studying the DeepTune

images of the compressed models has two advantages: First, the compressed model has

a fewer number of filters and therefore it is easier to interpret the patterns. Second,

studying the set of DeepTune images from the compressed V4 models facilitates tools

to study stability of visualization. That is, similar to the arguments in Chapter 3, the
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Figure 4.1: Performance of CAR-compressed models in predicting spike rates
of neurons in visal area V4. A. Average correlation coefficient over 71 neurons for
compressed network with various compression ratios. The model is based AlexNet layer
2 with Ridge regression. The red dashed line shows the average correlation coefficient
for the uncompressed network. B. Scatterplots of correlation coefficients for compressed
against uncompressed networks. Each point in these scatterplots corresponds to one V4
neuron. Five scatterplots for compression ratios of 10%, 30%, 50%, 70%, and 90% are
shown.
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Figure 4.2: DeepTune visualization of pattern selectivity for CAR-compressed
models. The DeepTune images for four neurons and 9 different compression rates are
shown. The compressed models have stable patterns compared to uncompressed models
up to a 90% compression rate.

stable patterns among Deeptune images of the compressed models with high predictive

accuracy should be interpreted as V4 neuron’s tuning. Here, the uncompressed model

achieves a correlation coefficient of 0.53 between measured and predicted spike rates. The

compressed models up to 90% compression rate achieve no less than 5% lower accuracy

compared to the uncompressed model. Therefore, we limit the compression rate to to

90% in the DeepTune analysis.

Figure 4.2 illustrates the DeepTune images from compressed models with different

compression rates for four neurons. For Neuron 1, the blob-like patterns appears in all

compression levels up to 90%. Similarly, all compressed models for Neuron 2 lead into

corner-like textures. For higher compression rates, the corners has finer edges. This

happens because fewer filters (25 filters when compression rate is 90%) are involved in

the modeling and visualization. The fewer filters involved in visualization reduces the

redundant and irrelevant filters and therefore the DeepTune converges to sharper and finer

patterns. The curvature contours and the diagonal lines are consistent among compressed

models for Neurons 3 and 4, respectively. The compressed models have stable patterns
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compared to uncompressed models for all of the neurons in the population and up to 90%

compression rate. However, compressing the CNN with higher compression rates reduces

the accuracy and therefore the corresponding DeepTune image is not reliable.

4.4 Visualization of CAR-important filters

In Section 4.2, if we remove 90% of filters in the second layer of AlexNet based on the

CAR importance index, the prediction accuracy for V4 neurons drops from a correlation

of 0.53 to 0.51, a reduction of only 0.02. This compressed CNN uses only the 25 remaining

filters to predict the activities of V4 neurons. These 25 filters are visualized in Figure 4.3.

Similar to Chapters 2 and 3, we show the 9 top image patches from the ImageNet training

set with the highest filter responses to visualize a convolutional filter from a CNN. These

9 top image patches are representative of what this convolutional filter is computing [74,

72]. The filters are ordered based on their CAR importance index, with filter 1 being

the most important filter identified by the CAR algorithm. Inspecting the visualization

of these filters, we observe that the filters span a diverse set of visual patterns. The

patterns include edges in different directions (filters number 5, 10, 11, 18, 22), curvatures

with different orientations (filters number 12, 13, 16, 20, 24), blob-like patterns (filter

number 9), textures (filters number 1, 6, 8, 23), corner-like textures (Filter number 3),

and complex patterns (rest of the filters). This is consistent with our findings in Chapter

2. The diversity of the patterns in compressed network similar to uncompressed one

allows the CNN-based models for V4 neurons to maintain their high accuracy even with

the compression rate of 90%.

4.5 RAR compression

Similar to the CAR (Classification Accuracy Reduction) index introduced in Chapter

2, we define a new index based on Regression Accuracy Reduction or RAR. The RAR

index quantifies the reduction in regression accuracy, when the filter in the convolutional

network is pruned. In this chapter, the accuracy of regression is defined as the Pearson

correlation coefficient between predicted and measured neural activity. The main reason

for this choice of accuracy, as opposed to other measures such as mean squared error

(MSE), is that we study RAR in the context of spike rates of neurons. Correlation

coefficient is often used to evaluate accuracy in neuroscience domain because the activity

of neurons in the rest state differs, and therefore the mean value and the raw magnitude

should not affect the accuracy [11]. Mathematically, the regression accuracy in this work

is defined as:
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Figure 4.3: Visualization of filters in the second layer of AlexNet with the
highest CAR index. To visualize a convolutional filter from a CNN, we show the 9 top
image patches from the ImageNet training set that has the highest filter responses. The
filters are ordered based on their CAR importance index.

Accreg =

∑N
i=1(x

i
pred − x̄pred)(xi

measured − x̄measured)√∑N
i=1(x

i
pred − x̄pred)2

√∑N
i=1(x

i
measured − x̄measured)2

The RAR index for the ith filter in layer L of the network is defined as:

RAR(i, L) = Accreg(N )− Accreg(N (−i, L)),
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Algorithm 2 RAR compression
Input: Weights in CNN, target layer L with nL filters, target compression ratio rtarget

Set niter = nL and riter = 1
while riter < rtarget do
for i = 1 to nL do
Compute RAR(i, L), importance index for filter i in layer L

end for
Remove the least important filter, argmini RAR(i, L)
Update compression rate, riter = nL/niter

end while

where similar to notation in Chapter 2, network N (−i, L) is network N except that filter

i from layer L, together with all of its connections to the next layer, are removed from

the network.

4.6 Greedy pruning algorithm based on RAR

importance index

The compression of a convolutional neural network based on RAR index is similar

to the CAR-based compression except that the classification accuracy is replaced with

regression accuracy or correlation coefficient. In our RAR structural (or filter pruning)

compression algorithm, the filter with the smallest effect on the regression accuracy gets

pruned in each iteration. Similar to Chapter 2, the network can be retrained in each

iteration and after pruning a filter. This process is regarded as fine tuning in this chapter.

Algorithm 2 shows the pseudo code of our RAR greedy structural compression algorithm.

In this pseudo code, niter and riter are, respectively, the number of remaining filters and

compression ratio in the current iteration.

Note that unlike CAR compression, RAR compression is specific for each V4 neuron.

Different redundant filters get pruned for different V4 neurons. Each neuron tends to

keep the filters that are more relevant to its pattern selectivity. This is not the case for

the CAR compression where the pruning is based on classification accuracy on ImageNet

dataset and therefore, the order of pruning does not depend to the V4 neuron under study.

Similar to CAR, one can also compress based on the variants of the RAR algorithm.

One possibility is to avoid greedy process and remove several filters with lowest importance

indices in one pass. This compression is faster, but the performance of the compressed

network is worse than Algorithm 1 in the examples we tried. The greedy process with
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fine-tuning at each iteration seems to allow for a better data and network adaptation

and improves compression performance. In each iteration of the greedy process, we first

compute the RAR index for each filter. Then, the least important filter gets pruned. In the

next iteration, we update all the importance indices using the new structure. This allows

the algorithm to adapt to the new structure gradually and improves the classification

accuracy.

4.7 RAR-compressed predictive models of single

neurons

In this Section, we study the RAR-compressed CNN-based models for V4 neurons. For

each neuron among the 71 V4 neurons, we first build a CNN-based model using second

layer of AlexNet. Then we perform the RAR compression each individual model. That

is, we remove filters in CNN based on contribution of that filter to the final regression

accuracy. The filters with the lowest contribution are pruned in each iteration of RAR

for each V4 neuron. Note that unlike the CAR algorithm, the RAR compression should

be performed for each V4 neuron, individually. Therefore, for each neuron, a different set

of filters are maintained in the network after compression.

Figure 4.4.A shows the average correlation coefficient between predicted and measured

neuron spike rate across 71 neurons. The dashed line specifies the average correlation co-

efficient for the full uncompressed network (AlexNet layer 2 and ridge regression). The

bar plots illustrates the average correlation coefficients for the RAR-compressed networks

with 9 different compression rates. All the correlation coefficients are computed on the

held-out test set. Similar to CAR compression, the accuracy for compressed networks

up to 50% compression rate is similar to the original network. However, contrary to

CAR compression, the average accuracy for compressed networks between 50% and 90%

compression rates are slightly higher compared to the full network. The highest aver-

age correlation coefficient is achieved by the 80% compressed models with 0.03 higher

correlation coefficient compared to the original network, though the accuracy drops for

higher than 90% compression rates. The 90% RAR-compressed model contains 25 filters

from the second layer of AlexNet, providing a simple accurate, CNN-inspired model of

V4 neurons.

To further study the models for V4 neurons, we investigated the visualization of pat-

tern selectivity of V4 neurons for these compressed models. The smooth DeepTune images

from RAR-compressed models with 9 different compression rates are illustrated in Figure

4.4.B. Similar to CAR DeepTune images, the RAR compressed models for Neuron 1 have

blob-like patterns. These patterns are consistent for the compression rates up to 90%. The
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Figure 4.4: Performance of RAR-compressed networks in predicting spike rates
of neurons in visual area V4. A. Average correlation coefficient over 71 neurons for
RAR compressed networks with various compression rates. The model is based on AlexNet
layer 2 with Ridge regresion. The red dashed line shows the average correlation coefficient
for the uncompressed network. B. DeepTune visualization of pattern selectivity for RAR-
compressed models. The DeepTune images for four neurons and 9 different compression
rate are shown. The compressed models have stable patterns compared to uncompressed
models up to 90% compression rate. For Neuron 3, the pattern is enhanced in higher
compression rates.
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DeepTune images for models with higher compression rates are not visualized due to their

low accuracy (for the compression rate of 95%, the accuracy drops to 0.35). Therefore

the models are not reliable. For Neuron 2, the compressed models with higher than 60%

compression rate tend to have highly sparse patterns. This is also true for Neurons 3 and

4. For the rest of the neurons in the population, this observation remains true for close to

75% of the neurons. Having sparser patterns in DeepTune images is preferable because

the patterns are easier to interpret. This is consistent with our original motivation for

removing filters from CNN to have simpler models. Additionally, the RAR-compressed

models enhance the visualization for some of the neurons. For Neuron 3, the DeepTune

image from 90% compressed model has weaker diagonal patterns in 45 deg orientation.

The prediction accuracy for the compressed model is 0.55 which is a relative 6% higher

accuracy compared to uncompressed model for this neuron. Therefore, the enhanced vi-

sualization for this neuron has stronger anti-diagonal patterns (with −45 deg orientation)

and weaker diagonal patterns (with 45 deg orientation).

Our results show that the RAR-compressed computational models for V4 models have

the following advantages over the uncompressed models. First, the models identified by

the RAR compression have simpler structure with far fewer filters compared to uncom-

pressed models. These models have higher predictive accuracy of the spike rates for V4

neurons (up to 90% compressed rate for V4 neurons). Finally, the visualization of the

pattern selectivity of neurons based on compressed models are stable, showing similar

patterns to the uncompressed models.

4.8 Discussion

Both CAR and RAR compressions provide powerful tools to remove filters from CNNs.

We employ these compressed CNNs to build predictive models of V4 neurons in primate’s

visual cortex. CAR compression identifies a universal subset of filters in CNN with diverse

functionalities. These filters are basis of the models for V4 neurons. RAR compression,

however, selects the subset of filters according to each V4 neuron.

Interestingly, the average prediction accuracy of RAR-compressed V4 models are

higher compared to uncompressed models (up to 90% compression rate). For 95% of the

neurons in the visual area V4, the accuracy of RAR-compressed models with compression

ratio 80% is higher compared to the original models. However, the RAR compression re-

quires higher computational cost compared to CAR. The greedy filter selection operation

for each neuron should be repeated for each of the V4 neuron. In our case, the number of

neurons (and therefore the number of repeating operation) is not high and therefore the

computation is feasible. In some other applications, the computational cost might be a
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more serious limitation. For example, performing RAR compression to find a sub-optimal

model for predicting voxels in fMRI study is not immediately feasible because the num-

ber of voxels under study are often in the order of thousands. Future work on decreasing

the computational cost of RAR compression will make them more accessible in higher

dimensional problems. Parallelizing the computations in addition to employing methods

to identify a subset of filters instead of one filter in each iteration are some solutions to

reduce the computational cost.
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