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Abstract

Extraction of Vehicle Trajectories from Online Video Streams

by

Xinhe Ren

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

To collect extensive data on realistic driving behavior for use in simulation, we propose a
framework that uses online public traffic cam video streams to extract data of driving behavior. To
tackle challenges like frame-skip, perspective, and low resolution, we implement a Traffic Camera
Pipeline (TCP). TCP leverages recent advances in deep learning for object detection and tracking
to extract trajectories from the video stream to corresponding locations in a bird’s eye view traffic
simulator. After collecting 2618 vehicle trajectories, we compare learned models from the extracted
data with those from a simulator and find that a held-out set of trajectories is more likely to occur
under the learned models at two levels of traffic behavior: high-level behaviors describing where
vehicles enter and exit the intersection, as well as the specific sequences of points traversed. The
learned models can be used to generate and simulate more plausible driving behaviors.
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Chapter 1

Introduction

Autonomous driving simulators offer the potential to rapidly prototype behavioral algorithms.
However, a significant concern with developing a simulation is how accurately it reflects the
physical world. Currently, autonomous driving companies collect real-world traffic data through
countless road trials and expensive sensor and telemetry equipment, a luxury possessed only by
a few. In recent years, live streaming has become a popular internet trend. The availability of
cheap, live traffic camera streams provides us an economical alternative method of studying traffic
interactions.

We examine how to leverage online video streams (e.g., a YouTube stream of a four-way traffic
intersection at 7 Ave and Main St in Canmore, Alberta†) to learn high-level driving behaviors and
trajectories capturing vehicle motions (Figure 6.1). Using online video streams for data collection
has the potential to capture a significant amount of driver demonstration data, however, we must
address the challenges of perspective, skipping, and low resolution.

We propose a Traffic Camera Pipeline (TCP), which applies recent deep learning advances in
object detection [21] to detect vehicles in the video stream. We then use homography to register
the located vehicles to the corresponding positions in the intersection. We also propose a filtering
algorithm to assign observations of vehicles to their respective trajectories by maximizing the
likelihood of an estimated distribution over observations. In addition, we explore deep learning
based tracking [8], and compare the result to that from our likelihood estimator based method. The
output of the system is a set of trajectories of vehicles.

We use the extracted trajectories from TCP to learn two levels of traffic behaviors. First,
we consider the high-level behaviors of vehicles, which describe where they enter and exit the
intersection. From this information, we can compute plausible distributions of where vehicles
appear and what general movement actions (i.e., turning or moving forward) they take based on
real data. For example, in the traffic feed, we detect a preference for Main St over 7 Ave. Next, we
consider the specific positional trajectories traversed by the agents. We train a generative model on
the trajectories extracted by TCP as a distribution over cubic-splines in the plane. We compare the
learned models of traffic behaviors against those used in a simulator, and we find that the learned
models better fit a held-out set of TCP-collected data, suggesting that TCP can produce models that
simulate more plausible driving behaviors.

†https://canmorealberta.com/webcams/main-street
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Chapter 2

Related Works

2.1 Automated Extraction of Traffic Data
Traffic data historically has been sourced from both traffic cameras and sensors as well as onboard
sensor arrays. Research on traffic detection using traffic cameras historically used classical machine
vision and digital signal processing techniques to produce real-time traffic scene analysis [14]. More
recent work has investigated improving static intersection vehicle detection methods with existing
video image vehicle detection systems [38] through improved sensor fusion with camera systems.

Current sources of traffic and vehicle detection data for autonomous vehicle research mostly
focus on using vehicle sensors, such as onboard cameras or LIDAR, to detect and identify nearby
objects [18]. Another approach is to equip vehicles with GPS sensors and then analyze the decision-
making data afterward to examine traffic congestion in urban settings [2]. With the rising popularity
of deep convolutional neural networks, it is interesting to explore collecting traffic behavior through
fixed traffic cameras without the need for sophisticated vehicle telemetry.

2.2 Simulating Driving Behavior
Driving Simulators
There exist several open-source driving simulation platforms that have been used extensively in
autonomous driving research. CARLA [6], an end-to-end simulation platform, provides photore-
alistic urban environments from a first-person perspective. These simulators leverage hand-tuned
controlled agents and both vehicles and pedestrians are designed to follow specific rules such
as staying in lanes and stopping at traffic lights. FLUIDS‡ is another open-source light-weight
Python-based traffic intersection simulator intended for easily customizable extensions. In our
experiments, we apply TCP to FLUIDS. However, our method could potentially be extended to
more complex simulators.

‡https://github.com/BerkeleyAutomation/Urban Driving Simulator
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Data-Driven Simulation Improvement
Cha et al. [3] built an interactive driving simulator in a data-driven approach: they collect control
inputs (steering, acceleration, braking) and dynamic motions (linear acceleration and angular
velocity) from real road-driving samples to build a database of primitives. The simulator is then able
to produce realistic motions in response to user inputs. Chu et al. [4] analyze traffic at a highway
using inductive loop detectors and use the observations to build a microscopic traffic flow model.
Ngan et al. [23] take traffic videos and use the data to develop a model for traffic behaviors such as
vehicle speeds and queue lengths. We aim to fine-tune a simulator that can exhibit more plausible
behavior using similar data-driven methods via video streams.

2.3 Trajectory Extraction
Object tracking and trajectory extraction are widely studied in the computer vision domain. Hu
et al. [12] conducted a survey in 2004 on video surveillance of object motion and behaviors.
Specifically, the survey examined region, active contour, feature, and model-based object tracking.
One of the earlier studies in 1994 by Koller et al. [14] examines traffic flow on a highway by
computing affine transformations of vehicles between sequential frames of the surveillance video.
However, the affine transformation assumption breaks down when vehicles execute angle shifting
motions such as turning. Vidal et al. [36] applied a Kalman filter to a feature based object tracking
algorithm, greatly improving the performance. More recently, Li et al. [19] developed a model
based pedestrian tracking system with human segmentation. The system applies a human model
prior as a seed for segmentation. In our experiment, we first apply a simple likelihood-based method
to classify time agnostic bounding boxes into different candidate trajectories.

Recently, we begin to see many deep learning based approaches to object tracking. In 2005,
MD-Net [22] became the first deep learning method to win The Visual Object Tracking challenge
(VOT) [15]. Leveraging large training datasets, many offline-trained neural networks can track
objects with very high inference speed. Held et al. [10] proposed a convolutional neural network
on tracking generic objects, which generalizes to novel objects and tracks at 100 fps. Bertinetto et
al. [1] use a Siamese CNN network architecture to detect differences between video frames to track
objects, also enabling the network to be trained offline. The Re3 (Real-Time Recurrent Regression
Networks) by Gordon et al. [9], in addition to a CNN for vision processing, employs a recurrent
neural network for temporal information handling. In our experiment, we test a pre-trained Re3
network§ as a potential deep learning based replacement for our likelihood estimator based tracking
method.

2.4 Learning from Online Videos
There have been many instances of learning from online videos, which can be noisy and ill-
constrained. Ulges et al. [35] utilized YouTube content for the autonomous training of a video
tagger. Prest et al. [26] trained an object detector from weakly annotated videos on the internet

§https://gitlab.cs.washington.edu/xkcd/re3-tensorflow
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using domain adaptation to improve the performance of the detector. In robotics, Yang et al. [39]
explored learning robot manipulation tasks (grasping) by processing videos from the World Wide
Web. The paper used a convolutional neural network for object recognition, and action grammar
parse tree to interpret the videos’ unconstrained semantic structures. Niebles et al. [24] developed
a system to learn human motions from YouTube videos. Srivastava et al. [31] use LSTM neural
networks to perform unsupervised learning on YouTube videos. Sorschag [30] conducted a survey
of video annotation techniques by examining how to collect large amounts of video for machine
learning algorithms. Another survey by Vishnu et al. [37] examined how the prevalence of web
videos has enabled large-scale learning.

In this study, we use websites such as earthcam.com and YouTube, which feature more than
hundreds of live traffic cam streams. We apply deep learning object detection networks to these
videos to extract driving behaviors that can be used in simulations.

earthcam.com
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Chapter 3

System Overview

Figure 3.1 shows the video processing procedure of TCP. The pipeline has four main steps:

1. Collect traffic video.

2. Detect vehicles via convolutional neural network.

3. Extract valid trajectories.

4. Learn high-level statistics about trajectories of vehicle motions.

3.1 Capturing Video
TCP uses OpenCV as the interfacing framework to video streams. As a result, TCP is able to read
common video file types (e.g. mp4, wmv, avi) and load online stream MIME types (e.g. ogg,
m3u8).

Using TCP, we have created a dataset of 234 annotated, minute-long videos with 2618 labeled
vehicle trajectories, and 8980 additional unannotated minute-long videos (6+ days).

3.2 Example Intersection
Figure 3.2 illustrates the four-way intersection in Canmore† in our experiment. It was chosen for its
unobstructed view of the intersection. We downloaded footage from the traffic cam video stream
for further processing. However, we also noticed frame skips in the collected videos.

3.3 Detection and Tracking Overview
The core of TCP is vehicle detection and tracking. We explore how we can leverage recent successes
in deep learning to accurately track vehicles. Chapter 4 explores many pre-trained object detection

†https://canmorealberta.com/webcams/main-street
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YouTube Video Stream Object Detector Human Labeling

?

Homography Trajectory Extraction

Figure 3.1: TCP system architecture (excluding learning and analysis). First, we capture a video
stream of a traffic intersection and use SSD, a deep object detection network, to identify and label
vehicles. Then, we manually label the first detection of each vehicle in the video stream. Finally, we
map the identified vehicles to a bird’s eye view using homography and run a probabilistic grouping
algorithm to extract trajectories.

Figure 3.2: TCP captures a four-way intersection in Canmore, Alberta at different times of day. It
features a variety of lighting conditions, weather, and road conditions. For the following experiments,
we only labeled a small subset of the daytime videos.

networks and their performance on detecting cars. Once we obtain the bounding boxes of cars in
each video frame, we assign these bounding boxes to trajectories of vehicles over time.

In this report, we explore two ways of tracking: likelihood estimator based and deep learning
based. The formal method requires a human supervisor to label the bounding boxes in which
vehicles first enter the scene. A likelihood-based estimator then assign any subsequent bounding
boxes to the most likely trajectory candidate. The deep learning method, Re3, uses the bounding
boxes output from the detection network as initial tracking labels and then outputs the tracked
bounding boxes in each subsequent frame. We will discuss this in more detail in chapter 5.
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Chapter 4

Vehicle Detection

Advances in deep learning over the last several years have significantly improved perception and
object detection in images. Recently, deep neural networks such as Single Shot Detector (SSD)
[21] and Faster-RCNN [27] have demonstrated surprising performance on many object detection
datasets, including PASCAL VOC [7] and COCO [20], in which the goal is to classify objects
and localize them using bounding boxes. These datasets include familiar objects, such as vehicles
and pedestrians. After benchmarking several deep networks on a hand-labeled held-out dataset
of collected images from TCP, we found that SSD has the highest performance. TCP utilizes the
pre-trained SSD network to label vehicles in the collected data with real-time performance.

4.1 Comparing Different Object Detection Networks
There are many deep neural networks architectures for object detection, often trading off between
speed and accuracy. Also, sharing pre-trained network weights has become increasingly common.
Many network models are available online for immediate, off-the-shelf inference. In TCP, we
are interested in building a fast pipeline for extracting trajectories of cars and people towards
real-time data analysis and learning. Thus, we examine using >30 fps networks such as SSD. SSD
has a simplified network architecture that combines a feature extractor with additional layers that
perform object detection at various scales. We compare several feature extractors: VGGNet [29],
InceptionNet [32], and MobileNet [11]. Google’s open-source TensorFlow Object Detection API‡‡
[13] provides implementations of Faster-RCNN, SSD-InceptionNet, and SSD-Mobilenet trained on
the COCO dataset. We also examine an implementation of SSD-VGGNet¶ trained on the PASCAL
VOC dataset.

To benchmark these object detection networks for TCP, we hand-labeled held-out datasets of
100 daytime images collected by TCP. We used the BBox-Label-Toolk to draw bounding boxes
around objects. To evaluate the networks, we use the following procedure:

‡‡https://github.com/tensorflow/models/tree/master/research/objectdetection
¶TensorFlow implementation of SSD-VGGNet: https://github.com/balancap/SSD-Tensorflow.
kBounding box labeling tool: https://github.com/puzzledqs/BBox-Label-Tool.

https://github.com/balancap/SSD-Tensorflow
https://github.com/puzzledqs/BBox-Label-Tool
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Class Network Precision Recall Average IoU
Car SSD-VGGNet 0.907 0.354 0.787

SSD-InceptionNet 0.427 0.273 0.706
SSD-MobileNet 0.431 0.258 0.702
Faster-RCNN 0.570 0.553 0.702

Table 4.1: Results of evaluating four object detection networks on the hand-labeled daytime dataset.
We report the precision, accuracy, and average bounding box quality (IoU) of true positive detections
for the car class labels. The dataset contains a total of 718 cars.

Class Network Precision Recall Average IoU
Car SSD-VGGNet 0.990 0.758 0.796

SSD-InceptionNet 0.854 0.320 0.718
SSD-MobileNet 0.625 0.313 0.689
Faster-RCNN 0.680 0.797 0.750

Table 4.2: Results of evaluating four object detection networks on the hand-labeled nighttime
dataset. We report the precision, accuracy, and average bounding box quality (IoU) of true positive
detections for the car class labels. The dataset contains a total of 128 cars.

• For a particular image, obtain the detection predictions from the network, which include a
class label, confidence score, and a bounding box.

• Discard any predictions with a confidence score lower than 0.5, the default threshold defined
in the balancap/SSD-Tensorflow repository.

• Compute the Intersection over Union (IoU) between each detected bounding box and each of
the ground truth bounding boxes in that same image. If the best IoU match is greater than 0.5
for detection, it is considered a true positive, and we record the bounding box quality. If there
are no matches of sufficiently high quality, the detection is considered a false positive.

• After processing all detections, any ground truth detection that was not matched by a predicted
detection is a false negative.

We complete this procedure for each of the four networks on both hand-labeled datasets. We
evaluate both detections of cars and people. Table 4.1 lists the resulting precision, accuracy, and
average bounding box quality for the two object classes. We also show examples of the detections
outputted by the four networks on an example image in Figure 4.1. We note that the recall values are
quite low due to the difficulty of the hand-labeled test dataset. The images are of a busy intersection
with many cars that are close together, often partially occluding each other. Also, there may be cars
at a farther distance that are difficult for any network to detect.

Although we observe higher recall values with Faster-RCNN, we use SSD-VGGNet because of
its higher precision and better bounding box quality on our dataset.
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Figure 4.1: Example detections from each of the four networks on a sample daytime image: SSD-
VGGNet (top left), SSD-InceptionNet (top right), SSD-MobileNet (bottom left), and Faster-RCNN
(bottom right). Detections of cars are shown with blue bounding boxes, and detections of people are
shown with green bounding boxes.
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Chapter 5

Trajectory Extraction

5.1 Homography: From Camera to Bird’s Eye Perspective
The bounding boxes generated by SSD gives the location of vehicles within the RGB image taken
from the traffic camera perspective. To obtain the locations of the agents in the simulator, we utilize
homography [33] to rotate the camera to a bird’s eye viewpoint.

Homography works by estimating a projective transformation matrix that morphs pixel locations
from a source domain into a target domain. In this study, we are transforming pixel positions in the
camera view domain to locations in the bird’s eye view of the intersection. We estimated the matrix
on four pairs of corresponding points between the camera and the top-down views. The points
were selected such that the corners of the intersection in the traffic camera matched the corners of a
square centered in the top-down view.

After homography, we still need to specify a point from the bounding box that corresponds to
where the vehicle is centered on the road. To determine a point on the road, we use the midpoint of
the bottom edge of the bounding box. However, this selected point may not correspond the vehicle’s
true point on the road, so we learn a linear mapping from the selected point to a corrected point to
adjust for the inaccuracy using a hand-labeled dataset of corrections to apply.

5.2 Likelihood Estimation of Trajectory
Given the bounding boxes in each frame, we need to assign each bounding box to a trajectory over
time. We convert the bounding boxes into points in the top-down view space with homography as
described in section 5.1. Each extracted point denotes an observation yt 2 R2 in the bird’s eye view.
A filtered trajectory ⌧ , is a sequence of observations (i.e., ⌧ = {yt}T ). Our filtering algorithm works
by first having a human manually label the initial state of each vehicle (i.e., decide when a vehicle
enters the scene), which creates a list of trajectories, each with a single initial observation. This
manual step is required even in recently developed tracking methods of objects in videos [9], but
we discuss potential ways to automate this step in section 5.3.

Given existing trajectories, ⌧ , we can define the probability of a new observation as p(yt+1|⌧).
The probability of a new observation on a trajectory, p(yt+1|⌧), is specified as a Gaussian over
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four features �(yt+1, ⌧) = [xt+1, yt+1, t+1,�t+1]. (xt+1, yt+1) = yt+1 indicates the position of the
vehicle,  t+1 indicates the angle giving the orientation of the vehicle, and �t+1 is an indicator if the
evaluated state violates the traffic laws with respect to the rest of the trajectory. Let ys be the latest
observation added to ⌧ . We define  t+1 and �t+1.

 t+1 = arctan2(yt+1 � ys, xt+1 � xs)

�t+1 = f(yt+1, ys)

f is an indicator function for violation of traffic laws (e.g., merging into lanes with oncoming traffic)
based on the new observation and the most recent observation in ⌧ from which we can infer if
there is a violation. Then, p(yt+1|⌧) is a Gaussian N (µ,⌃) with µ = �(ys, ⌧). We manually set
the parameters of the covariance matrix, ⌃, to be diag([6.0, 6.0, 2.0, 100.0]), a diagonal matrix with
the given entries along the diagonal. These values represent a preference for choosing points that
are close together in position, and then using the similarity of angles of the two points as a second
criteria. Finally, a substantial weight is placed on the violation of a traffic law if it occurs. The
algorithm works by iteratively assigning each new observation to the existing trajectories with the
highest probability.

Due to noise in object detection and dropped frames, once we have a filtered trajectory, ⌧ =
{yt}T consisting of a sequence of T observations, we still want a smooth representation of the
trajectory using two dimensional cubic polynomials, a good low-approximation of the vehicle’s
path. We consider a function f : R⇥ R8 ! R2, which corresponds to a parameterized polynomial
with 8 parameters, which we denote as '. See [5] for more details.

We can fit this function to a trajectory via the following optimization problem

'⇤ = argmin
'2R8

T�1X

t=0

kyt � f

✓
t

T � 1
,'

◆
k22

to get the parameters to fit the curve. Using this fitted curve, we extract two high-level features of
the trajectory: the starting location of the trajectory, and the high-level action taken (left turn, right
turn, forward, or stopped). Finally, a Gaussian filter is applied to further smooth the curve.

5.3 Deep Learning Based Tracking
Section 5.2 relies on the deep neural network, SSD, to extract vehicle bounding boxes, and then
estimates trajectories under human supervision and probabilistic estimations. In this section, we
explore end-to-end deep learning methods for object tracking, in particular, Re3 [8]. Re3 is a deep
neural network that combines the image processing advantages of a CNN with the temporal data
processing power of an RNN. In this study, we use a pre-trained version of Re3§ released by its
paper’s authors.

Re3 can be trained offline. This means that the network’s tracking ability can generalize to
arbitrary objects, and does not need to be trained on samples of specific target objects. The inputs

§https://gitlab.cs.washington.edu/xkcd/re3-tensorflow
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to the Re3 network during tracking are the sequence of images and an initial bounding box of the
object of interest. The network also supports the tracking of multiple objects in the same frame,
which helps us track multiple vehicles in the same video clip.

We use SSD to generate and supply potential initial bounding boxes and Re3 to accomplish the
tracking. Algorithm 1 illustrates how we combine these two networks. We define T to be a list of
trajectories being tracked by Re3, f to be a frame of a video as an image, BRe3 to be a list of tracked
bounding boxes from querying Re3, and BSSD to be a list of bounding boxes from object detector
SSD. When discussing if two bounding boxes “match”, we consider the metric: intersection over
union (IoU). If two bounding boxes have an IoU greater than 0.7, an empirically chosen threshold,
then we consider the two bounding boxes “matching”.

T  []
while has next frame, f do

BRe3 Re3.getBBox(f ,T )
BSSD  SSD.getBBox(f )
for b in BRe3 do

if b does not match any in BSSD then
T .add(Re3.track(f , b))

end
if b outside intersection then

T .remove(Re3.track(f , b))
end

end
end

Algorithm 1: Tracking with SSD and Re3
With Re3, we eliminate the need for a human supervisor who tediously labels all the initial

appearances of vehicles. With the 0.7 IoU metric, we essentially reduce SSD’s task to only
generating initial labels, and reassigned the tracking job to Re3. By eliminating the inefficient
human-in-the-loop, TCP is now able to operate in real time, taking advantage of the high fps
performance of SSD and Re3.

Figure 5.1 illustrates the comparison between SSD and Re3 outputs. Note that SSD is time and
trajectory agnostic, and does not assign bounding boxes to trajectories. Contrarily, Re3 assigns each
detected object to a trajectory. For example, “7 1” is the first vehicle trajectory in the video, and
“15 2” is the second pedestrian trajectory in the video. Note that SSD failed to detect the car in
trajectory “7 2” nor the person in trajectory “15 3” in this video frame. The failure causes frame
skip in the likelihood based method. Re3, however, is guaranteed to output a bounding box for each
trajectory in each frame.
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Figure 5.1: SSD and Re3 output bounding boxes with class and trajectory labels. Green represents
cars (class 7) and pink represents humans (class 15). Dark green and pink rectangles show bounding
boxes from SSD; light green and pink rectangles show bounding boxes from Re3. Both pre-trained
neural networks produce consistent and robust bounding boxes for vehicles and pedestrians. In this
image, we also show a failure mode of SSD, where the further objects are not successfully detected.
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Chapter 6

Learning Driving Behaviors for Simulation

We learn traffic behaviors at a four-way intersection, which can later be used in simulation, by using
the trajectories collected by TCP. We consider behaviors on two levels, as shown in Figure 6.1.

6.1 High-Level Behaviors
High-level behaviors describe where a vehicle begins and ends at the four-way intersection. We
use two types of distributions to capture these behaviors: distributions over the starting lanes of the
vehicles, and distributions over the actions taken (left, right, forward, or stopped) by vehicles given
the starting location. We want to learn realistic distributions based on observed trajectories at a
real-world intersection.

The high-level behaviors are given by multinomial discrete probability distributions over a set S
containing k elements. In the case of the start state distribution for vehicles, we have k = 4 for the
four lanes. In the case of the action taken by the vehicle given the starting location, we also have
k = 4 types of actions. Let D' = {'i 2 R8}N�1

i=0 be a set of cubic spline parameters determined by
TCP (as described in Section 5.2) for a set of N extracted trajectories from TCP. We choose to use
the spline representation of a trajectory due to its smoothness, which allows us to more accurately
infer the trajectory’s starting state and action. Then, if we have a function g : R8 ! S that maps a
cubic spline parameterization to element in S, we can estimate a distribution over S, such that for
s 2 S,

p(s) =
|{' 2 D' : g(') = s}|

N
.

Then, for a cubic spline parameterization ' corresponding to a held-out trajectory from TCP, we
can compute the negative log-likelihood of observing g(') by computing � log[p(g('))].

We will estimate several functions g. The first is gL, which maps a cubic spline parameterization
of a trajectory to one of the four starting lanes: “East, “North, “West, or “South. We also estimate
gA,E , which maps a cubic spline parameterization of a trajectory starting in the east lane to one of
the four action primitives: “left turn”, “right turn”, “forward”, or “stopped”. Similarly, we estimate
gA,N , gA,W , and gA,S , the distributions of action primitives of trajectories starting in the north, west,
and south lanes, respectively.
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 High-level Behavior Trajectory Generator

Figure 6.1: We can simulate vehicles at a four-way intersection by specifying traffic behaviors in
two steps. (Left) First, we choose a starting lane for a vehicle (the west lane in the figure), and
an ending lane (north lane). (Right) After the starting and end lanes are chosen, we can specify a
trajectory consisting of a sequence of points for the vehicle to traverse.

6.2 Trajectories
An agent’s motion at the traffic intersection can be specified by a sequence of Cartesian coordinates
in the bird’s eye view perspective. Using trajectories collected by TCP, we learn a data-driven
trajectory generator model.

We partition the collected trajectories from TCP into 12 sets: one for each combination of
starting lane and the action (left, forward, or right). Let D' = {'i}Ni=0 be the set of cubic spline
parameters determined by TCP in Section 5.2 corresponding to the trajectories in one of these sets.
We fit a multivariate Gaussian distribution N (µTCP ,⌃TCP ) to the D' by using the following [28]:

µTCP =
1

N

NX

i=0

'i

⌃TCP =
1

N

NX

i=0

('i � µTCP )('i � µTCP )
T

Then, for a cubic spline parameterization ' corresponding to a held-out trajectory from TCP
corresponding to the same starting lane and action, we can evaluate the negative log-likelihood of
observing ' from the learned distributions by computing �LL(µTCP ,⌃TCP |'). Note we repeat
these processes for each of the 12 sets. We choose to learn distributions over the cubic spline fit
parameters because they are low dimensional approximations of the trajectories.
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Chapter 7

Experiments

We explore three questions.

1. How good is TCP in terms of collecting trajectories?

2. How well can we learn high level behaviors?

3. How well can we generate trajectories?

We perform all timing experiments on a 6-core 12-thread Intel Core i7-6850K CPU @ 3.60GHz.
We use a traffic cam stream from an intersection in Alberta, Canada†.

For context, Figure 7.1 shows the map of Canmore, a small tourist town surrounded by mountains.
Trans-Canada Highway (Hwy 1) connects the town with the rest of the nation, and Main St, featured
in the intersection, joins Canmore with Hwy 1. Additionally, Main Street is in the heart of a busy
commercial district.

We labeled four hours of videos from our complete dataset to generate training data. This
labeled subset of data correspond to 234 minute-long videos, and 2618 vehicle trajectories.

7.1 Evaluating Traffic Cam Pipeline
Trajectory Yield
The trajectory filtering method sometimes fails when TCP initially detects vehicles in the center
of the intersection, where traffic rules are not rigid or well-defined. Hence, we discard filtered
trajectories that do not have a clear starting location, action primitive, or contain insufficient (less
than 20) data points. With 30 fps input videos, this means that this candidate has less than 0.6
seconds of screen time. Most trajectory rejections are due to object detection failures. Unusually
shaped vehicles like delivery trucks are often only detected when they are closer to the camera.

Out of a total of 2618 candidate vehicle trajectories, 13.98% are discarded for having an
undefined primitive, and 14.51% are rejected for insufficient data.

†https://canmorealberta.com/webcams/main-street
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Pipeline Component Mean Time (s) Std. Dev. (s)
SSD Detection (Nvidia Titan Xp) 26.11 4.54

SSD Detection (Nvidia Tesla K40) 99.82 18.22
Manual Initial State Labeling 90.36 27.72

Homography & Trajectory Extraction 1.01 0.45

Table 7.1: Average time for a pipeline component to process a one minute clip video (30 FPS),
averaged over a total of 100 videos.

Time Efficiency
Table 7.1 contains the average time it takes at each stage of TCP to process a minute-long video
clip. SSD [21], or Single Shot MultiBox Detector, is a real-time deep convolutional neural network
running in TensorFlow. It omits the need for region proposal, and can achieve fast and accurate
detection results that are comparable to that of the state-of-the-art Faster-RCNN [27]. SSD inference
performance is heavily dependent on the computing hardware. Table 7.1 shows that a Nvidia
Titan Xp GPU can accomplish the object detection task in real-time, but a Nvidia Tesla K40 GPU
struggles.

Manual labeling of initial state bounding boxes is the most expensive and labor-intensive step,
where a human manually labels which bounding box contains a vehicle never seen before. It is
typical in tracking to hand label the initial appearance of an object, and redetect it in subsequent
frames[25, 26]. This stage not nessassary with the Re3 tracking. In comparison, homography
transformation and trajectory extraction are very efficient.

7.2 Learning High-level Behaviors
Start Location
We use TCP to estimate the vehicle start location distribution. As a comparison, we use FLUIDS
(First-Order Local Urban Intersection Driving Simulator), which uses uniform lane sampling for
the vehicle start location distribution, in which vehicles randomly appear at one of the four lanes of
the intersection.

Figure 7.2 shows frequencies at which vehicles appear from each of the four cardinal directions.
The data shows that significantly more vehicles come from the north of the intersection. The dashed
line in Figure 7.2 represents the uniform distribution in the baseline.

For a quantitative analysis of the learned distributions of start states for vehicles, we use a
held-out set of trajectories collected by TCP, each of which have a corresponding start state. We
compare the negative log-likelihoods of learned model and the default model in the baseline given
the held-out observations, and we find that the held-out set is more likely under the learned model,
as shown in the first row of Table 7.2.
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Trajectory Primitive
We classified each vehicle’s trajectory into sets of primitives given the starting lane: “forward”,
“right turn”, “left turn”, or “stopped”.

Figure 7.3 illustrates the frequency of each primitive executed by vehicles coming from each
of the four directions. For comparison, we examine the distribution used in the FLUIDS, which
chooses each of the four actions uniformly at random.

We examine the vehicle primitives. With the exception of the east, all other directions have more
vehicles driving forward. East has more vehicles making right turns toward north instead. Figures 7.1
and 7.2 explain that the north direction is more popular due to the abundance of businesses and
connectivity to a major national highway. This knowledge extracted by TCP is currently not
reflected by the baseline, which samples from a uniform distribution over the trajectory primitives.
The vehicle trajectory primitive information in Figure 7.3 can be used in driving simulators to
capture behaviors in a real-world intersection: in this case, to go forward more, and turn more onto
the major route.

Similar to the start locations, we also examine the quality of the learned distribution of primitive
behaviors by examining the negative log-likelihood of the held-out samples under the learned
distributions and the default distributions. Again, we find that the learned distributions perform
better than the default distributions, shown in Table 7.2.

Distribution

Baseline
Negative

Log-
Likelihood

TCP
Negative-

Log
Likelihood

Vehicle Start State 1.39± 0.0 1.34± 0.04
Vehicle Primitives (East) 1.39± 0.0 1.19± 0.09

Vehicle Primitives (North) 1.39± 0.0 1.14± 0.10
Vehicle Primitives (West) 1.39± 0.0 1.30± 0.07
Vehicle Primitives (South) 1.39± 0.0 1.17± 0.16

Table 7.2: We examine several distributions and compare the confidence intervals for the negative
log-likelihood of observing the samples in the held-out set under the default distributions and the
learned distributions using TCP (lower is better). We find that the learned model better approximates
the held-out distribution in all cases. Note that the confidence intervals for the baseline consist of a
single point due to the uniformly random distributions.

Vehicle Arrival
We analyze when vehicles appear in the intersection. Figure 7.4 shows the probability of a new
vehicle appearing in the next video frame given the number of vehicles in the current frame. A
scene containing many vehicles means that the road is busy. Hence, it is more likely for another
vehicle to appear in the next frame. The vehicle arrival distribution can be applied to simulators,
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which should decide if a new vehicle should be added according to the current number of vehicles
in the scene.

7.3 Trajectory Generator
We use RRT* [16] as the baseline trajectory generator for comparison, the implementation in
FLUIDS: given a start and end position in the intersection, the RRT* algorithm attempts to minimize
distance traveled, while obeying traffic rule restrictions such as lane directions and road boundaries.

Using a similar process to learn the generative model from TCP trajectories, we learn the
parameters of a similar model on a set of 277 trajectories from the baseline: a multivariate Gaussian
distribution models the parameters of a cubic-spline fit for trajectories from each combination
of starting lane and primitive action. Then, we evaluate the models by computing the negative
log-likelihood given samples in the held-out set. The results are shown in Table 7.3. We observe
that the negative log-likelihood of the generator trained on TCP data is significantly lower than that
of the baseline model for 10 of the 12 combinations of vehicle behavior.

Figure 7.5 shows the qualitative results. It includes examples of real-world held-out trajectories,
trajectories sampled from the baseline generative model, and trajectories sampled from the learned
TCP generative model for 3 of the 12 primitive behaviors. We observe that the trajectories generated
by the baseline generally have less variance than the real-world held-out trajectories due to the many
possible trajectories that can be executed by real drivers: many drivers like to cut into the opposing
lane for a left turn if they observe no opposing traffic. Similarly, drivers waiting for opposing traffic
before a left turn like to pull forward far into the intersection before stopping and yielding. We
also observe that the learned TCP model can better match this variability in extracted held-out
trajectories.
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Lane Action
Baseline

Negative Log-
Likelihood

TCP
Generator
Negative

Log-
Likelihood

East Forward 2, 537.1 44.7
Left 2, 559.8 356.6

Right 6, 161.5 41.1
North Forward 9, 238.8 44.3

Left 3, 174.4 50.0
Right 2, 952.5 48.0

West Forward 18, 717.5 47.8
Left 7, 707.6 59.4

Right 703.4 42.1
South Forward 18, 340.8 56.3

Left 2, 727.0 857.3
Right 3, 652.9 52.0

Table 7.3: We compare trajectories from the learned generator model and the baseline generator
model by computing the negative log-likelihood of observing the held-out trajectories given the
model (lower is better, bold indicates statistical significance with 95% confidence intervals). We
find that the learned generator model is more likely to produce the trajectories in the held-out set
than the baseline model for 10 of the 12 primitive behaviors.
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Figure 7.1: Google Map view of the intersection in TCP. Top image shows the street names of the
intersection. Bottom image shows the surrounding area of the intersection, and the dropped pin
shows the location of the intersection.
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Figure 7.2: Distribution of vehicles by starting lane. The cleaned up data contains 1872 vehicle
trajectories. The dotted lines show the baseline uniform distributions.
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Figure 7.3: Distribution of vehicle trajectory primitives at each cardinal direction. The dotted lines
show the default uniform distribution.
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Figure 7.4: Probability of new vehicle appearing given the number of vehicles in current frame.
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Figure 7.5: Examples of held-out trajectories, trajectories sampled from the baseline trajectory
generator, and trajectories sampled from the learned TCP generative model. We show five examples
each for three primitive behaviors: left turn from the north, right turn from the north, and left turn
from the west. We see that the real-world held-out trajectories exhibit greater variance in paths, and
the learned generator better matches this behavior. However, the difference is not as apparent in the
bottom row.
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Chapter 8

Discussion and Future Works

TCP can extract vehicle data from readily available, yet often unstructured, online public video
streams. By learning probability distributions over driving behaviors inferred from the data, we can
generate new samples of plausible driving behavior that can be used in driving simulators.

8.1 Evaluation
One challenge with measuring the performance of TCP in learning real-world driving behavior is
the lack of ground-truth data to evaluate against. In future work, we will develop better methods to
evaluate the learned models by using other metrics, examining intersections with accurate sensors
to record ground-truth measurements, or using human annotations as ground-truth.

8.2 3D Reconstruction of Vehicle Orientations
Currently, TCP uses the midpoint of the bottom edge of bounding boxes as an approximation of
the of the vehicle’s position. To compensate for the inaccuracy in this heuristic if the vehicle is not
sideways towards the camera, we trained a linear offset based on the vehicle’s position in the scene.
A more robust way to represent a vehicle as a point is to reconstruct the 3D model orientation of the
car, and then project the centroid of that model onto the camera image plane.

This is a single-view 3D reconstruction task. Tulsiani et al. [34] improved existing techniques by
enforcing consistency between 3D model and 2D observation with the introduction of a differentiable
ray consistency (DRC) term. Although, in this study, we only wish to identify the orientation and
approximate centroid of a vehicle. We do not need our 3D models to accurately match those of cars
in the scene. Leotta et al. [17] tracked vehicles by fitting a deformable, generic model of a vehicle
to segments of a vehicle in a scene. Improving the projection and homography step of TCP can
yield bird’s eye view trajectories that better match the ground truth.
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Figure 8.1: Distribution of pedestrians by crosswalk location. The cleaned up data contains 209
pedestrian trajectories. The dotted lines show the default uniform distribution.

8.3 Pedestrians
We hope to expand our pipeline experiment to include pedestrians in the next version: TCP-IP
(Traffic Camera Pipeline - Including Pedestrians).

We have conducted some preliminary experiments with pedestrians to extract their start state
distribution, shown in Figure 8.1. We speculate that the skew in data is because the camera is
mounted in the southeast corner of the intersection. Since pedestrians are much smaller than
vehicles, pedestrians in the north and west of the intersection are much harder for SSD to robustly
detect and track. Identifying individual pedestrians in groups is also difficult. As a result, 63.81%
of the 1213 pedestrian trajectories are rejected due to insufficient data points.

For more details and to download our dataset, see: https://berkeleyautomation.

github.io/Traffic_Camera_Pipeline/.

https://berkeleyautomation.github.io/Traffic_Camera_Pipeline/
https://berkeleyautomation.github.io/Traffic_Camera_Pipeline/
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