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Abstract

We propose a probabilistic model for interpreting gene expression levels that are observed
through single-cell RNA sequencing. In the model, each cell has a low-dimensional latent
representation. Additional latent variables account for technical effects that may erroneously
set some observations of gene expression levels to zero. Conditional distributions are specified
by neural networks, giving the proposed model enough flexibility to fit the data well. We use
variational inference and stochastic optimization to approximate the posterior distribution.
The inference procedure scales to over one million cells, whereas competing algorithms do
not. Even for smaller datasets, for several tasks, the proposed procedure outperforms state-
of-the-art methods like ZIFA and ZINB-WaVE. We also extend our framework to account
for batch effects and other confounding factors, and propose a Bayesian hypothesis test for
differential expression that outperforms DESeq2 and MAST.
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Chapter 1

Single-cell RNA sequencing: from
experiments to data analysis

Single-cell RNA sequencing (scRNA-Seq) is a revolutionary technology, which allows study-
ing fundamental biological questions that were previously out of reach [1, 2]. It allows, for the
first time, to reveal a cell’s identity and characterize its molecular circuitry in an unbiased,
data-driven way.

Fig. 1.1: Gene expression through the lens of single-cell RNA sequencing - Shalek Lab

1.1 The technology and its ongoing breakthroughs

After micro-arrays and bulk RNA sequencing, it has always been the dream of biologists to
get gene expression profiling at the single-cell level. Seminal experiments in microfluidics
and biology [3] allows one to take cells from a tissue and put each of them into a droplet of
water. A droplet-specific barcode can be added to the mRNA to trace back which molecule
came from which cell. Finally, the mRNA can be translated in cDNA and sequenced.

After alignment procedures, we get a matrix Xn,g of counts for expression of gene g in
cell n. For the first time, biologists are able to observe effects of mutations, cell types and
diseases at the scale of a single-cell. With previous technologies, all cell types were mixed
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Fig. 1.2: A Platform for DNA Barcoding Thousands of Cells - Klein Lab [3]

together: it was technically impossible to decouple inter-sample variation (i.e individuals)
with intra-sample variation (i.e cell-types) and researchers had to dig at the single-cell level
to truly unravel relationships between individual genes and specific biological phenomena.
Therefore, single-cell experiments took gene expression understanding to the next level with
applications in immunology [4], oncology [5] and other subfields of biology [6].

This step of isolating cells was pretty hard at the early stage of single-cell. So first
experiments would have pretty low sample-size (tens to a few hundred cells) and researchers
designed ad-hoc algorithms to analyze the experimental data X. As the field evolved to
take experiments to the next step and sequence millions of cells [7], the renowned biotech
company 10x genomics calls for methods to analyze it:

Our Million Cell Dataset defines a new standard for scaling up single cell analysis
by orders of magnitude, opening up the possibility of tissue atlas studies that
seek to comprehensively describe cellular subtypes and ultimately accelerate the
characterization of all biological systems. To this end, we are making the dataset
available for download without restrictions. 10x genomics, 2017

1.2 Statistical challenges

As already underlined, careful computational analysis allows deriving from such data exciting
insights in diverse biomedical fields [8, 9]. However, as one sequences more and more cells,
technical limitations in the experimental protocol makes the gene expression matrix X more
sparse that it should be in ideal (e.g low mRNA capture efficiency). While it is typical to
observe thousands of gene products per cell, many transcripts are observed very infrequently,
and for technical reasons related to the method of sequencing these are particularly prone
to high variance.

Some of these zeros are believed to be part of the technical noise and not actually symp-
tomatic of the gene not being expressed, this is an essential problem of single-cell datasets.
We therefore say that entries of X are typically zero-inflated [10].
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1.3 Opportunities

The biologist’s pain landscape could be described as:

• Filtering — How to check whether there is a cell in a droplet and not just noise ?
How to filter the genes to know which ones have biological signal ?

• Clustering — What kind of cell types is present in the experiment ?

• Differential Expression — What genes are particularly expressed in those cell
types ?

• Disentanglement — How to separate the technical variance from the biological sig-
nal ?

• Imputation — How to establish whether a zero in the matrix is a technical or a
biological zero ?

• Multiple donor scenarios — How to understand the heterogeneity of samples when
we have multiple human donors ? Particularly when we have clinical phenotypes which
we want to study through the lens of cellular heterogeneity ?

The first question can be answered with standard noise model from statistics [3]. However,
each of the subsequent questions is essentially a hard machine learning problem. From that
ensemble of problems, the biologist can then answer biological questions like identifying new
cell types [11] or finding new regulators of autoimmunity [12].

This thesis will essentially propose a generative model whose inference is scalable to
modern dataset sizes and can be used for the downstream analyses mentioned above. We
will name the algorithm single-cell Variational Inference (scVI) after the method used for
fast and approximate inference. We will comment on the performance of scVI through the
lens of quantitative benchmarking for all the tasks mentioned above.

1.4 Regular workflow

While there is often little prior knowledge of single-cell heterogeneity generating X, a rea-
sonably general assumption is that X has been generated from a low-dimensional manifold
of cellular states [1]. Therefore, even though some algorithms are trying to address one
particular question at a time (e.g clustering, imputation, removal of unwanted variation),
dimensionality reduction remains the major step of the problem. Computational biologists
are provided with a natural workflow when analyzing scRNA-Seq data and one description
would be:

1. Filter the cells by total number of transcripts

2. Filter the genes by variance or inverse-dispersion parameter
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3. Normalize the data (e.g apply a transformation by cell and by gene)

4. Apply a dimensionality reduction algorithm

5. Feed the output into a clustering and a visualization algorithm

6. Look at which genes are differentially expressed between pairs of clusters

7. Identify cell-subpopulations by pooling data from a database.

Our algorithm will assume the data is already filtered and that we have a procedure to
biologically name given clusters (first and last task of the pipeline).
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Chapter 2

Relevant work

Numerous dimensionality reduction techniques have been proposed for interpreting X (e.g.,
to facilitate clustering, visualization, and data imputation). Each technique has shortcom-
ings, however. Most are based on linear models of the data [10, 13, 14] though there is no
basis for assuming linearity. Most are optimized with batch algorithms, preventing them
from scaling beyond thousands of cells [10, 13, 15]. However, sequencing millions of cells is
becoming possible [7]. The best performing method to date [13] is particularly complicated
to train, involving numerous subroutines for alternating minimization. Recent articles apply
neural networks, but without an architecture based on biology [16, 17].

We present here in detail ZIFA [10] and ZINB-WaVE [13], state-of-the-art methods for
dimensionality reduction of single-cell data. We will also refer to them during the benchmark-
ing part. We do not present Principal Component Analysis and Factor Analysis but note
that by default it remains a key candidate for analyzing large datasets. We will also present
some common tools used in scRNA-seq data analysis for removal of unwanted variation and
differential expression.

2.1 Zero-Inflated Factor Analysis

First, let us note that for all the methods with an underlying Gaussian assumption, it is
common to apply the model after applying the transformation x 7→ log(1+x) that conserves
the zero but distort the counts to have a better fit with Gaussian conditionals. We now turn
to the description of the first generative model specially tailored for single-cell data [10], in
Fig 2.1.

We see that our count-matrix cannot be negative, even after the log-transformation so
the Gaussian conditional might not be suitable. Also, the parametric assumption of the zero
rate seems to be verified in practice but is not really flexible given our poor understanding of
what these zeros really are. This parametric assumption for the dropout is however central
to the inference since it allows us to derive EM updates in closed form. As we will see, this
is not enough to yield an expressive and scalable model.
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Require: constant for technical dropout λ
Require: fitted diagonal matrix W , dense matrix A and mean µ
1: for cell n in batch B do
2: Choose a low-dimensional vector zn ∼ N (0, I) describing the cell
3: Choose a gene expression vector yn ∼ N (Azn + µ,W )
4: for gene g in gene set G do
5: Choose a dropout event with hng ∼ Bernoulli(e−λy

2
ng)

6: Apply dropout to expression level yng and output xng
7: end for
8: end for

Fig. 2.1: Generative model for ZIFA

2.2 Zero-Inflated Negative Binomial Wanted Variation

Extraction

This recent research [13] does not involve a generative model. However, the assumption for
the what the conditional would have been under a generative model are really appealing.
Let N be the number of cells and K be the chosen dimension for the latent space.

Parameters : W ∈ MN,K , αµ ∈ MK,V , απ ∈ MK,V , Oµ ∈ RN , Oπ ∈ RN , ζ ∈ RV

Regression: 
log(µ) = Xβµ + (V γµ)T +Wαµ +Oµ

logit(π) = Xβµ + (V γµ)T +Wαπ +Oπ

log(θi,j) = ζj

xi ∼ ZINB(πi, µi, θi)

where ZINB(π, µ, θ) is a mixture with rate µ between a zero distribution and a negative
binomial with mean µ and dispersion θ parametrized by:

∀y ∈ N,P(y;µ, θ) =
Γ(y + θ)

Γ(y + 1)Γ(θ)

(
θ

θ + µ

)θ (
µ

µ+ θ

)y
we then penalize the likelihood of the data X given deterministic variables W . Here the

matrix W = rows(zi) could be a point estimate for the latent variable zi. Since there is
no latent variables, ZINB-WaVE can be seen as a matrix factorization algorithm where the
loss is specifically tailored for scRNA-seq experiments. It is now clear that ZINB-WaVE is
formulated as a regression problem with no prior on the latent variables.

Let us remark that ZINB-WaVE is also performing a general linear version of the two
way ANOVA where gene-level and sample-level confounding factors can be regressed out.

Inference is made with alternating minimization, which is a standard technique for solving
matrix completion problem. Each minimization is made with approximate second-order
methods on the full batch of data. That is the main reason explaining why ZINB-WaVE
does not scale well for modern size datasets.
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2.3 Two-way ANOVA

scRNA-seq analysis literature often uses this type of method to remove unwanted variation.
Take a data set for which an observed variable x is dependent on two others which are
therefore potential sources of variation. The first source of variation can be the biology z
(e.g cell-types) and the other one a unwanted variation r (e.g some quality metrics or batch
identifier).

A two-way ANOVA-type approach would use the following linear model:{
xi |µi, σ2 ∼ N (µi, σ

2)

µi = µ+ αT zi + βT ri

It is then easy to adapt this type of model to use more suitable conditional probabilities
(ZINB-WaVE) or enrich it with empirical Bayes as in Combat [18]. Let us note that when
the biology z is a latent variable to be estimated, putting a prior on the two-way ANOVA is
crucial in order to prevent the model from overfitting and removing biological information.

Let us remark that this approach is inherently discriminative, like ZINB-WaVE. There-
fore, it is not clear at this point how to make it generative.

2.4 Model-based Analysis of Single-cell Transcriptomics

In general, any Bayesian model with a tractable posterior will be able to perform hypothesis
testing. When looking at empirical Bayes models, building a statistics from a point estimate
of the model will also be possible. We describe here MAST [19], state-of-the-art model for
identifying differentially expressed genes and specifically tailored for scRNA-seq.

Define the indicator hng for gene g to be expressed in cell n, the log-normalized counts
xng and a cell-specific scaling factor yn.{

hng ∼ Bernouilli(sigmoid(ynαg))

xng|hng = 1 ∼ N (ynβg, σ
2
g))

After putting suitable prior on σg, it is possible to derive a statistical test for differential
expression by using a Z test on the coefficients αg and βg learned on two distinct sub-
populations. Let us remark that their method is not designed for counts, takes into account
zero-inflation and perform some normalization.
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Chapter 3

Probabilistic modeling for scRNA-seq
data

The task of building a generative model for scRNA-seq data might be deemed confusing at
first sight. There are lots of different experimental protocols, each with sensibly different
steps involved (UMIs, amplification etc...).

Therefore, we would not take down the road of analyzing one precise experiment and
trying to come up with an exact model. Instead, we analyze a simple model of stochastic
gene expression and come up with an adequate graphical model.

3.1 Kinetic models for stochastic gene expression

A simple model proposed in [20] propose to model the gene expression by a Markov jump
process with a latent variable that indicating whether the gene is promoted. What we observe
through the experiment is a draw from the time-collapsed probability distribution.

Fig. 3.1: A continuous time Markov Jump Process to model the kinetics of stochastic gene
expression. Letters indicate exponential waiting times.

It turns out that this time-integrated probability distribution is not writable in closed
form for continuous parameters. However, we can write it as a scaled-compound between
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a Beta and a Poisson. Most of the time however, we assume that koff � kd can approxi-
mate the hyper-geometric distribution by a negative binomial, which is a Gamma Poisson
compound [20].

We will then start with the statement that some conditional in the graphical model should
be a negative binomial. We will further refine that statement by introducing the graphical
model.

3.2 Technical effects

Due to the low transcript efficiency, we expect the mean of expression to be very small. We
partially try to correct the data from created side effects.

Dropout Also, there is a bias in the sampling (gene length, GC content, cell efficiency...)
that can be modeled as introducing additional zeros in the data. These events, called
”dropout” in computational biology, are completely different from the dropout regulariza-
tion used in neural networks. We will then add an additional point mass at zero that will
be treated as technical effects.

Library size We enforce the latent variable to encode directly the proportion of the mean
gene expression over the whole gene set. We can then decouple the number of transcripts
captured, called library-size (that is mainly technical for some applications) from the pro-
portion.

3.3 scVI: a generative approach

We present here our generative model, scVI that benefits from adequate probabilistic as-
sumptions and the flexibility of neural-nets. Our model explicitly models library-size, dropout
and can remove unwanted variations as well as batch effects. We recapitulates those features
and compare to other algorithms in Figure 3.2.

Figure 3.3 represents the probabilistic model graphically. The generative process is de-
fined in Figure 3.4.

lµ, lσ are set to be the empirical mean of log-library size. Constant γn are optional
covariates that can be passed to fw that account for confounding effects (eg. sample batch
and quality [21, 22]), to remove unwanted variation from the latent representation.

Neural network fw is constrained during the inference to encode the mean proportion
of transcripts expressed across all genes by using a softmax activation at the last layer.
Neural network fh encodes whether a particular entry has been “zeroed out” due to technical
effects [10, 13]. All neural networks use dropout regularization and batch normalization.
Batch normalization parameters can be batch-specific to remove batch-effects. Each network
has 1, 2, or 3 fully connected-layers, with 128 or 256 nodes each. The activation functions
are all ReLU, exponential, or linear. Weights for some layers are shared between fw and fh.
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Count Dropout Cell Scaling Metadata DE Scalability
FA - - - - - +
ZIFA - + - - - -
ZINB-WaVE + + + + - -
BASICS + - + - - -
BISCUIT - - + - - -
DESEQ2 + - + + + -
MAST - + + - + -
scVI + + + + + +

Fig. 3.2: Algorithms in scRNA-seq data analysis and their functionalities. Metadata indi-
cates whether the algorithm can handle metadata. DE refers to differential expression.

xng

hngyng

ln wng

zn
θ

lµ

lσ

G

N

Fig. 3.3: The scVI graphical model

scVI is designed to explicitly remove library size and confounding effects while keeping
the conditional distribution p(xng|zn, ln) to a zero-inflated negative binomial—a distribution
known to effectively model the kinetics of stochastic gene expression with some entries re-
placed by zeros [20]. In our experiments, we will focus on UMI-based data. This means we
can use the negative binomial distribution more confidently since we have a low amplification
bias.

3.4 Fast inference via stochastic optimization

The posterior distribution combines the prior knowledge with information acquired from
the data X. We cannot directly apply Bayes rule to determine the posterior because the
denominator (the marginal distribution) p(xn) is intractable.

Making inference over the whole graphical model is not needed. We can integrate out
the latent variables wng, hng and yng by making sure the conditional p(xng|zn, ln) has a
closed-form density.
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Require: constant prior for cell-specific scaling lµ, lσ
Require: optional covariates γn modeled as constant
Require: fitted gene-specific inverse dispersion parameter θ
Require: fitted neural networks fw, fh
1: for cell n do
2: Choose a low-dimensional vector zn ∼ N (0, I) describing the cell
3: Choose a cell-scaling factor ln ∼ LogN (lµ, l

2
σ)

4: for gene g in gene set G do
5: Choose a normalized expression mean wng ∼ Gamma(fw(zn, γn), θ).
6: Choose an expression level yng ∼ Poisson(lnwng).
7: Choose a dropout event with hng ∼ Bernoulli(fh(zn, γn))
8: Apply dropout to expression level yng and output xng
9: end for
10: end for

Fig. 3.4: Generative model for scVI

First, take r to be the gene-specific shape parameter of a Gamma variable w, p
1−p to be

its scale parameter, and use a scalar λ ∈ R+ then the count variable y|w ∼ Poisson(λw) has
a Negative Binomial marginal distribution with mean rλ p

1−p

p(y) =

∫
p(y|w)p(w)dw

=

∫
wr−1e−w( 1

p
−1)(1− p)r

prΓ(r)

e−λwλywy

Γ(y + 1)
dw

=
Γ(y + r)

Γ(y + 1)Γ(r)

(
1− p

1− p+ λp

)r (
pλ

1− p+ λp

)y (3.1)

Second, multiplication by zero to yng can be formally encoded as a mixture between a
point-mass at zero and the original distribution of yng.

Consequently, our conditional p(xng|zn, ln) is a zero-inflated Negative Binomial with prob-
ability mass function:


p(xj = 0|z, l) = fh(z)j + (1− fh(z)j)

(
θj

θ + lfw(z)j

)θ
p(xj = y|z, l) = (1− fh(z)j)

Γ(y + θj)

Γ(y + 1)Γ(θj)

(
θj

θ + lfw(z)j

)θ ( fw(z)j
θ + lfw(z)j

)y
, ∀y ∈ N∗

when fh(zmγ) is encoding the zero probability of h and fw(z, γ) the mean of w.
Having simplified our model, we use variational inference [23] to approximate the poste-

rior p(zn, ln|xn). Our variational distribution q(zn, ln|xn) is mean-field:
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q(zn, ln|xn) = q(zn|xn)q(ln|xn)

The variational distribution q(zn|xn) is chosen to be Gaussian with a diagonal covariance
matrix, mean and covariance are given by an encoder network applied to xn, as in [24].
The encoder network may, optionally, be given the constant covariates γn (along with xn) if
we wish to discourage zn from encoding batch effects and other unwanted variations. The
variational distribution q(ln|xn) is chosen to be log-Normal with scalar mean and variance
also given by an encoder network applied to xn.

The variational lower bound is

log p(x) ≥ Eq(z,l|x) log p(x|z, l)−KL(q(z|x)||p(z))−KL(q(l|x)||p(l)) (3.2)

To optimize the lower bound, we use the analytic expression for p(x|z, l) and use ana-
lytic expressions for the Kullback–Leibler divergences. We use the reparametrization trick
to compute low-variance Monte-Carlo estimates of the expectations’ gradients. Now, our ob-
jective function is continuous and end-to-end differentiable, which allows us to use automatic
differentiation operators.

Since our model assumes cells are identically independently distributed, we can also
benefit from stochastic optimization from sampling the training set. We then have an online
optimization procedure that can handle massive datasets.

Negative binomial PMF parametrization A choice of parametrization is crucial for
optimization consideration. We could follow [13] by using a mean µ and an inverse-dispersion
θ parameter:

pNB(n;µ, θ) =
Γ(n+ θ)

Γ(n+ 1)Γ(θ)

(
θ

θ + µ

)θ (
µ

θ + µ

)n
We also keep in mind a more gentle parametrization with nicer form even though still

non-convex:

pNB(n; p, r) =
Γ(n+ r)

Γ(n+ 1)Γ(r)
pn(1− p)r

with (p, r) = ( µ
θ+µ

, θ) or (µ, θ) = ( rp
1−p , r)

Because the first parametrization has a better behavior when scaling the Poisson mean
as we do with library size normalization, this is the one we retain.

Equivalence of parametrization Assume now one wants to simulate what would have
been the rate of the latent corresponding Poisson variable, one has to sample from a Gamma
of shape r and scale p

1−p or rate 1−p
p

Numerical considerations We transformed the expression to incorporate logits and use
Tensorflow numerically stable functions. Instead of writing explicitly a sigmoid non-linearity,
the probability of zero in the mixture is given by:

14



fπ(z) =
1

1 + e−F zπ

where F z
π is the output of the neural network without non-linearity. We then write the

log-likelihood as a function of F z
π .

r that can either be parametrized by a neural net or constant for each gene will be kept
noted r for simplicity. S denotes the softplus function x 7→ log(1 + ex).

log p(y|z) = 1y=0

[
S(−F z

π + f zθ log
f zθ

f zθ + f zµ
)− S(−F z

π )

]
+ 1y>0

[
−F z

π − S(−F z
π ) + f zθ log

f zθ
f zθ + f zµ

+ y log
f zµ

f zθ + f zµ
+ log

Γ(y + θ)

Γ(θ)Γ(y + 1)

]

3.5 Bayesian Differential Expression

Let A and B be two set of cells and g a fixed gene. Now take (a, b) ∈ A × B and say we
want to test the following:

Hg
0 : ρag < ρbg vs. Hg

1 : ρag ≥ ρbg

where ρ = fw(zn, γn) is the mean of the gene expression conditioned on a non-dropout
event. The posterior of these hypotheses can be approximated via the variational distribu-
tion:

p(Hg
0|x) ≈

∫∫
za,zb,wag ,wbg

p(ρag < ρbg)dq(za|xa)dq(zb|xb)

where all the measures are low-dimensional so we can use naive monte-carlo to compute
these integrals. We can then use a Bayes factor for the test.

Reject when log
p(Hg

0|x)

p(Hg
1|x)

is large

Our model assumes cells are i.i.d sampled from the generative model so simple arithmetic
shows we can average the Bayes Factors when we have clusters of cells.

Let us remark that our model would in theory allow to ask even more questions about
the data, pretty much anything that can have a tractable posterior. For instance, one could
think about robust differential expression where we would reject if only the mean is more
significant by a certain fraction or over a certain amount of the clusters population. We
leave this as future work in this manuscript.
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Chapter 4

Experiments

4.1 Software implementation

Our model is implemented in Python and TensorFlow. A functional code can be found at
https://github.com/YosefLab/scVI

4.2 Datasets and preprocessing

Mouse Cortex Cells The dataset from [11] contains 3005 mouse cortex cells and gold-
standard labels for seven distinct cell types. Each cell type corresponds to a cluster to
recover. We sample top 558 genes ordered by variance as in [15].

PBMCs We extract 12039 Peripheral blood mononuclear cells (PBMCs) from [25] with
10310 sampled genes and get biologically meaningful clusters with the software Seurat [26].
We first filter genes that we could not match with the bulk data used for differential expres-
sion to be left with g = 3346. This is the dataset we will use for the differential expression
analysis. For the clustering, imputation, likelihood and normalization analysis, we further
filter the genes so that the other algorithms can be run (ZIFA and ZINB-WaVE did not
complete after 3 hours for g = 3346). We therefore keep only the top 800 genes by variance.

Brain cells We also use a dataset that contains 1.3 million brain cells from 10x Ge-
nomics [7]. We randomly shuffle the data to get a 1M subset of cells and order genes by
variance to retain 720 sampled variable genes.

Bipolar cells of mouse retina We use a dataset of bipolar cells from [27] and follow
their recommended pipeline for genes and cells filtering. We obtain 27,499 cells and 13,166
genes coming from two batches. We also use their DE verified clusters as labels. We also
extract their normalized data with Combat and use it for benchmarking.
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4.3 Algorithms used for benchmarking

Factor Analysis We used the Factor Analysis method from the scikit-learn python pack-
age .FA is always applied to log-data.

ZIFA We used the zero-inflated factor analysis method (ZIFA) from https://github.

com/epierson9/ZIFA with default parameters. We always apply ZIFA to log-data.

ZINB-WaVE We applied the ZINB-WaVE procedure from the R package zinbwave with
the gene-level covariate to be a column of one and the cell-level covariate to be a column of
ones. We always apply ZINB-WaVE to count-data.

PCA We used the Principal Component Analysis method from the scikit-learn python
package. We always apply PCA to log-data.

Normalization We used the package SCONE to normalize the data. In particular, we
relied on the package to perform QC matrix removal and rank hundreds of normalization
strategies on the PBMCs dataset.

MAST We used the R package MAST on log-counts to provide our differential expression
analysis.

DESeq2 We used the R package DESeq2 on raw counts to provide our differential expres-
sion analysis.
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Chapter 5

Results

5.1 Scaling up scRNA-seq data analyses

Only scVI and Factor Analysis scale to the larger benchmark datasets—a key advantage
relative to ZIFA and ZINB-WaVE. ZIFA and ZINB-WaVE are based on batch1 optimization
algorithms. Their runtimes for each iteration of their numerical optimization routines scale
linearly in the number of samples and linearly in the number of genes—both potentially very
large. scVI relies on stochastic optimization and its complexity per iteration is not dependent
on the dataset size. Furthermore, it is a low memory footprint algorithm compared to ZINB-
WaVE which — having its number of parameters linear in the number of cells — quickly
runs out of memory or could overfit.

For reference, we investigate running time on our sample of the 1.3 million cells dataset.
For 10,000 cells, each of these methods requires more than 20 minutes of computation. For
5,000 cells, both methods run out of memory on a machine with 32 GB RAM. scVI trains on
the entire 1.3 million cell dataset in less than two hours on a single GPU, using off-the-shelf
neural network software. More precise results are mentioned in Figure 5.1.

5.2 Fit on real data

For real datasets, we provide a multi-variate metric of goodness of fit on the data. We fit
the desired algorithm using a training set and evaluate the log-likelihood on a held-out set.
This common method of evaluation for generative models is robust to over-fitting because it
evaluates the model on data it has never seen and is also detached from clustering.

All models relying on a probabilistic model can be mapped with a likelihood score that can
be compared across models to perform model selection. We then add some code to ZIFA and
ZINB-WaVE to make them perform these operations. Finally, we classically compare lower
bounds on likelihood provided by EM algorithms, variational inference or pure optimization.

1Here batch is referring to the optimization terminology. a batch optimization algorithm uses the whole
dataset at once for the procedure and cannot handle new data coming in. It has always a high memory
footprint compared to an online algorithm.
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Fig. 5.1: Running time of scVI compared to other main choices for dimensionality reduction
in scRNA-seq

5.2.1 Comparing likelihoods for log-data and non-log data

Since some models are meant to be fitted on log-data and other non non-log data, we take
into account this by looking at the densities. Let X be a positive random variable and let us
note Y = log(1 + X) and suppose we have a model for Y written PY . The likelihood score
on the raw data is given by evaluating the density PX which is:

∀x = (x1, ..., xd) ∈ Rd, dPX(x) = dPY (log(1 + x))
d∏
i=1

1

1 + xi

so this yield for the likelihood scores:

logPX(X = x) = logPY (Y = log(1 + x))−
d∑
i=1

log(1 + xi)

5.2.2 Log-likelihood for ZINB-WAVE

The function to be optimized for ZINB-WAVE is essentially penalized likelihood. One can
thus run once the full optimization function on a training set as follow:

max
β,γ,W,α,ζ

Ltrain(β, γ,W, α, ζ)− Pen(β, γ,W, α, ζ)

This optimization is performed by alternating minimization. By fixing the variables
β, α, ζ learned from the training set, we can compute a likelihood on a validation set by
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performing inference over the latent variables γ,W which is a simple Ridge that can be
solved in parallel by a simple modification of their code.

max
γ,W
Lval(β

∗, γ,W, α∗, ζ∗)− Pen(β∗, γ,W, α∗, ζ∗)

5.2.3 Log-likelihood for ZIFA

The EM algorithm naively provide a lower bound on the log-likelihood:

log p(Y |Θ) ≥ Ep(Z,X,H|Y,Θ) log p(Z,X,H, Y |Θ)

The complete log-likelihood has a simple expression:

log p(zi, xi, hi, yi|Θ) = −1

2
zTi zi −

∑
j

log(σj)

+
∑

j|yi,j=0

−
(xi,j − (Azi)j − µj)2

wσ2
j

− λjx2
i,j

+
∑

j|yi,j>0

−
(yi,j − (Azi)j − µj)2

wσ2
j

+ log(1− e−λjy2i,j)

and the prior distribution is close to Gaussian so we can modify ZIFA code and use a E
step to compute the desired value. E-step gives us the following values:

E(xi � xi)
∆
= EX2

E(ziz
T
i )

∆
= EZZT

E(xi)
∆
= EX

E(zi)
∆
= EZ

(5.1)

Then we have:

LL = −1

2
tr(EZZT )− d

2
log(2π)−

∑
j

[
log(2πσ2

j )

2
+

µ2
j

2σ2
j

+
(AEZZTAT )j,j

2σ2
j

+
(AEZ� µ)j

σ2
j

]

+
∑

j|yi,j=0

1

2σ2
j

[−EX2
j + 2(EXZAT )j,j + 2(EX� µ)j]− λEX2

j

+
∑

j|yi,j>0

1

2σ2
j

[−y2
i,j + 2(yi � AEZ)j,j + 2(yi � µ)j] + log(1− e−λy2i,j)

where � denotes the Hadamard product.
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5.2.4 Log-likelihood for scVI

Our variational inference procedure provides us with a lower bound on the log-likelihood of
held-out data:

log p(x) ≥ Eq(z,l|x) log p(x|z, l)−KL(q(z|x)||p(z))−KL(q(l|x)||p(l)) (5.2)

To compare fairly with ZINB-WaVE who is using a deterministic design and therefore
still optimizing at test-time, we relax the Gaussian prior and allows to optimize our inference
network at test-time. That is essentially equivalent to assess the marginal likelihood of held-
out data, conditioned on a latent representation learned for the held-out data.

5.2.5 Results

For each method, we learn a mapping from the 10-dimensional latent space to a reconstruc-
tion of training set X. Table 5.1 shows that scVI best compresses the held-out data, even
for our smallest dataset. scVI’s lead over the other methods grows as the dataset size grows.

cells 4k 10k 15k 50k 100k
FA -1175.36 -1177.35 -1177.27 -1171.93 -1169.86
ZIFA -1250.44 -1250.77 -1250.59 NA NA
ZINB-WaVE -1166.39 -1163.91 -1163.39 NA NA
scVI -1150.96 -1146.59 -1144.88 -1136.57 -1133.94

Table 5.1: Marginal log likelihood for a held-out subset of the brain cells dataset. NA means
we could not run the given algorithm for this sample size.

5.3 Data imputation

We fit the ZIFA model to each dataset to assess a parametric model of dropout (ie pij ∼
e−λy

2
ij). Based on that model, we generate a corrupted training set by masking out non-zero

entries by probability pij. Because we have introduced these zeros synthetically, we know
1) each entry’s true value, and 2) that each entry is zero because of a technical effect, not
because the true expression level is nearly zero. We then fit this perturbed dataset with the
desired algorithm and we evaluate it by looking how the zero are imputed. We also compare
for this task to a state-of-the-art method MAGIC [28] based on diffusion in the cell k-nearest
neighbors graph.

We use two metrics for that task that we detail here.
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5.3.1 Accuracy of modeling zeros

For each class of models we want to compare, we use the fitted model to output a probability
of zero and compute a binary cross-entropy:

− 1

nJ

∑
ij

1Yij=0 log pij + 1Yij>0 log(1− pij)

where the zeros probability is defined according to the model:

• For ZIFA, take a E-step on the corrupted data and use E(X) as an approximation of

x in the dropout probability pij = e−λx
2
ij that will be exactly the zero probability.

• For ZINB-Wave or scVI, the zero probability is given by pij = πij +(1−πij)
(

θj
θj+µij

)θj
.

5.3.2 Accuracy of imputing missing data

As imputation tantamount to replace missing data by its mean conditioned on being ob-
served, we use the median L1 distance between the original dataset and the mean of the
generative distribution (conditioned on a non-zero event) for corrupted entries only.

5.3.3 Results

We report on the PBMCs, the brain cells and the mouse cortex cells in Figure 5.2.

5.4 scVI yields biologically meaningful clusters

To further assess the models, we compare how each clusters cells of known types (e.g., muscle
cells, blood cells) in latent space. For this task, we make a slight modification to our model:
we treat each zn as an unknown parameter to estimate rather than a latent variable with a
distribution. This way, our procedure maximizes mutual information between zn and xn [29].
That measure will prevent the clusters to be well separated since the KL regularization term
would tend to have the clusters sticked together.

We will use several clustering metrics throughout the paper.

Silhouette width The silhouette width requires either a similarity matrix or a latent
space. We can define a silhouette score for each sample i with:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
where a(i) is the average distance of i to all data points in the same cluster ci. b(i) is the
lowest average distance of i to all data points in the same cluster c among all clusters c.

The following metrics requires a clustering and not simply a similarity matrix. For these
ones, we will use a k-means clustering on the given latent space and report the best score in
T = 10 runs.
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Fig. 5.2: Absolute errors for imputing zeroed entries (column 1), mean cross entropy for
predicting which entries were zeroed-out entries (column 2). Mouse cortex cells (row 1),
Brain cells (row 2), PBMCs (row 3). MAGIC does not predict dropout probabilities.
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Adjusted Rand Index This index requires a clustering. Most

ARI =

∑
ij

(
nij
2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
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i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
where nij, ai, bj are values from the contingency table.

Normalized Mutual Information

NMI =
I(P ;T )√
H(P )H(T )

where P, T designates empirical categorical distributions for the predicted and real clustering.
I is the mutual entropy and H is the Shannon entropy.

5.4.1 Results

We will later investigate more flavors of clustering situations. For now, we can focus on the
mouse cortex dataset whose labels are trusted and compare scVI to its concurrents. Results
are reported in Figure 5.3.

Fig. 5.3: Silhouette score (column 1), adjusted rand index (column 2), normalized mutual
information (column 3) on the mouse cortex dataset.

5.5 Separation of biological information from technical

noise

We will now investigate more nuanced flavors of clustering by a study case on quality control
metrics for the PBMCs data and removal of batch-effect.

5.5.1 Removal of QC matrix on PBMCs data

Any flavor of variational auto-encoding Bayes — even the simplest like a Factor analysis or
PCA — has a limitation of using the data to explicitly compute the latent space. This causes
the latent variables to be correlated with the data and probably also by technical noise. On
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the opposite, by optimizing the pseudo-latent space, ZINB-WaVE circumvents the risk of
embedding technical noise at the price of computations.

We use this problem as a study case for the PBMCs data. We use SCONE [30] to select
most important factors of unwanted variation to be incorporated into downstream models.

In addition to batch and biological condition, SCONE scores the extent to which covari-
ation across “positive” or “negative” control genes is preserved by normalization. Positive
controls (n=202) were derived from a list of the 500 most common genes from the C7 collec-
tion of the msigDB [31]. Negative control lists (n=202) were matched in average expression
and were derived from a list of housekeeping genes expressed across a compendium of 47
human tissues [32]. Nine quality control metrics were defined from molecular level read
information:

1. Number of UMIs per cell

2. Number of reads per cell

3. Mean read per UMI per gene

4. Standard deviation of reads per UMI per gene

5. Number of mapped reads

6. Number of mapped reads

7. Number of genomic reads

8. Number of unmapped reads

9. Number of corrected UMIs

10. Number of corrected cell barcodes

These metrics were similarly probed for their association with the normalized latent space.
The normalization model that performed best by SCONE metrics involves a full-quantile

normalization, followed by an RUV-like normalization accounting for the first PC of QC vari-
ation. The normalized matrix was defined as the residual of the regression of log-expression
on all this factor.

We also normalized the data to perform the RUV-like normalization for 3 PCs of QC and
8 PCs of QC. Because the normalization operation is not Bayesian, adding more QC might
make the regression overfitting and thus remove biological information. We explicitly show
this trade-off in Table 5.2 by reporting a correlation score (coefficient of determination) and
clustering metrics.

In the case of scVI, we can disentangle these two sources of variation in a generative way
by modifying slightly our generative model to add a latent variable p which will influence
partly the expression level w but will also be forced to reconstruct the QC, treated as an
observed variable. For the inference model, we force z to depend only on the expression data
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silhouette ARI NMI QC correlation
QC1 0.37 0.69 0.78 0.24
QC3 0.31 0.63 0.73 0.11
QC8 0.27 0.62 0.72 0.10

Table 5.2: The effect of over-removal of quality metrics. Each row designates a normalization
scheme with full quantile normalization and qc removal by regression. The number of qc
principal components removed out is mentioned as row index.

x and p to depend only on the QC. Something less principled we also have to do is to — as
in PCA — input in the variational distribution q(z|x) the residual of a regression of the QC
on x2.

We report results on Figure 5.4
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ZINB-WaVE
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Fig. 5.4: Unwanted variation metric on the PBMCs dataset.

5.5.2 Removal of batch effects on bipolar cells

We now turn to a discrete model of unwanted variation: batch effects. The crucial choice is
whether we want to think about batches as random or not. In the regimes of low number of
batches (≤ 10), it makes sense to treat them as ”stamps” written on the data that we want
to remove via a normalization style technique or more generally via domain-adaptation.
In a whole different regime where we see hundred of batches (which could happen when
integrating data from large databases such as GEO), we might want to think about them as
random and model their contribution.

In the following, we describe how to deal with the first situation and illustrate it with
the bipolar dataset. As for the QC discussion, there might be a trade-off between removing
information and clustering. This depends much on the composition of the experiment across
batches. If all the batches are the same proportion of cell-types, we could technically perform
a calibration to align perfectly the datasets. If not, there a fundamental trade-off. We will

2Without that step, we do not have clearly better results for now. We are still making some work on this.
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for the following put ourselves in the situation where batches are biological replicates and
should share significant properties.

We then investigate our batch effect removal strategy for scVI with state-of-the art
method Combat on the bipolar data. Combat relies on empirical Bayes to regularize the
two-way ANOVA described earlier and is claimed to do a better job than a one-way ANOVA
(removing mean and scaling by genes) since the second one might distort biological informa-
tion.

Removing batch effects with scVI Our way of removing batch-effect is a simple location-
scaling strategy that happens in the hidden layers of the inference network. scVI uses
batch-normalization between hidden layers to improve the performance of the generative
model. This statistics normalization is learned with minibatches of data, during the training
and is a simple location-scaling in reasonable dimension. We therefore perform this batch-
normalization uniquely for each biological replicates to add only 128 parameters per batch
to the inference network. That decreases the risk of overfitting.

We also feed the generative model network with the batch ”stamp” so that it can re-
generates well the data with the bath effects. Then, since the model learned to reproduce all
the different batches, we could regenerate the data for only one batch and perform unbiased
differential expression.

Entropy of batch mixing Fix a similarity matrix for the cells and take U to be a uniform
random variable on the population of cells. Take BU the empirical frequencies for the 100
neighrest neighbors of cell U being a in batch b. Report the entropy of this categorical
variable and average over T = 100 values of U .

We evaluate the entropy of batch mixing as well as clustering performance and report
the results of our experiment in Figure 5.5.

5.6 Selecting differentially expressed genes

A significant application of our generative model and of main interest in the field is to go
from a clustering to a procedure for identifying gene differentially expressed between two
cell-types. Our model relies on Bayesian statistics and can thus benefit from uncertainty
evaluation to provide a hypothesis testing framework for differential expression.

We use again the PBMC dataset from [25] and the Seurat-based cell classification to
understand how differential expression is captured by our testing method compared to tradi-
tional DESeq2 [33] and MAST. We defined a reference from a publicly-available bulk array
expression profiling data for human B cells (n=10) and Dendritic cells (n=10) at baseline
of vaccination GSE29618 which we use to test the association of each gene’s expression
with biological class, defining a 2-sided t-test p-value per gene. We also look at the same
expression data for CD4 T cells (n=12) and CD8 T cells (n=12) GSE8835.

On the g = 3346 genes that we could match from these files, we choose for each case the
top 300 by p-values and report an area under the ROC curve for the ranking provided by
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Fig. 5.5: Unwanted variation metric on the bipolar dataset.

the differential expression on the single-cell data. Because defining a threshold is ambiguous
we also look at reproducibility between the microarray experiment and the family of tests
used on the scRNA-Seq sequencing experiment. To quantify this, we model the relationship
between significance ranks using the Irreproducible Discovery Rate model for matched rank
lists [34]. It fits a copula mixture model to understand which p-values are reproducible across
experiments and which one are not. The mixture weight then quantifies the proportion
of genes whose rank is reproducible. We report this mixture weight of the reproducible
components as well as the AUC in Figure 5.6. We used for each point 100 cells from each
cluster. In scVI, we draw 200 samples from the variational posterior.
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Fig. 5.6: Results on the Differential expression task. (a) Mixture weight of the reproducible
components on CD4 against CD8 cells. (b) Area under the curve on CD4 against CD8 cells.
(c) Mixture weight of the reproducible components on CD4 against CD8 cells. (d) Area
under the curve on B cells against DC cells.
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Discussion

We have presented scVI, a complex and extensive framework for modeling single-cell RNA
sequencing experimental data.

This project is a milestone towards the real objective whose question would be: how
can we integrate knowledge about individual observations of cells to build understanding of
global biological phenomena across a heterogeneous population of individuals ?
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