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Abstract

Low Dimensional Methods for High Dimensional Magnetic Resonance Imaging

by

Frank Ong

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Michael Lustig, Chair

Magnetic Resonance Imaging (MRI) is an amazing imaging modality in many aspects. It
o↵ers one of the best imaging contrast for visualizing soft issues. It has no ionizing radiation
at all. Its flexibility has also enabled many applications, including assessing blood flow,
imaging brain activity via oxygenation contrast, and measuring tissue sti↵ness. Since MRI
was invented, this imaging technology has saved numerous lives, and has been the frontier
of biomedical and engineering research.

On the other hand, imaging speed remains a main limitation of MRI. Inherently, MRI
takes time to collect measurements, and often requires minutes to complete a scan. In this
regard, MRI is quite similar to early cameras: Subjects have to be motionless for minutes to
obtain an image, which is uncomfortable to patients. This often leads to motion and motion
artifacts. When severe motion artifacts occur, scans have to be repeated.

This dissertation aims to change that by developing techniques to reconstruct three-
dimensional (3D) dynamic MRI from continuous acquisitions. An ideal 3D dynamic scan
would be able to resolve all dynamics at a high spatiotemporal resolution. Subjects would not
have to be motionless. The comprehensive information in the single scan would also greatly
simplify clinical workflow. While this dissertation has not achieved this ideal scan yet, it
proposes several innovations toward this goal. In particular, www.doi.org/10.6084/m9.
figshare.7464485 shows a 3D rendering of a reconstruction result from this dissertation.
Arbitrary slices at di↵erent orientation can be selected over time. Respiratory motion,
contrast enhancements, and even slight bulk motion can be seen.

The main challenge in high resolution 3D dynamic MRI is that the reconstruction problem
is inherently underdetermined and demanding of computation and memory. To overcome
these challenges, this dissertation builds on top of many fundamental methods, including
non-Cartesian imaging, parallel imaging and compressed sensing. In particular, this disser-
tation heavily relies on the compressed sensing framework, which has three components: 1)
the image of interest has a compressed signal representation. 2) MRI can acquire (pseudo)-
randomized samples in k-space, which provides incoherent encoding of the underlying image.

www.doi.org/10.6084/m9.figshare.7464485
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3) sparsity/compressibility can be e�ciently enforced in reconstruction to recover the com-
pressed representation from the undersampled measurements.

In this dissertation, I propose a multiscale low rank model that can compactly repre-
sent dynamic image sequences. The resulting representation can be applied beyond MRI,
and is useful for other applications, such as motion separation in surveillance video. With
the multiscale low rank representation, I propose a technique incorporating stochastic op-
timization to e�ciently reconstruct 3D dynamic MRI. This makes it feasible to run such
large-scale reconstructions on local workstations. To further speed up the reconstruction
time, I propose accelerating the convergence of non-Cartesian reconstruction using a spe-
cially designed preconditioner. Finally, I leverage external undersampled datasets to further
improve reconstruction quality using convolutional sparse coding.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is an amazing imaging modality in many aspects. It
o↵ers one of the best imaging contrast for visualizing soft issues. It has no ionizing radiation
at all. Its flexibility has also enabled many applications, including assessing blood flow,
imaging brain activity via oxygenation contrast, and measuring tissue sti↵ness. Since MRI
was invented, this imaging technology has saved numerous lives, and has been the frontier
of biomedical and engineering research.

On the other hand, imaging speed remains a main limitation of MRI. Inherently, MRI
takes time to collect measurements, and often requires minutes to complete a scan. In this
regard, MRI is quite similar to early cameras: Subjects have to be motionless for minutes to
obtain an image, which is uncomfortable to patients. This often leads to motion and motion
artifacts. When severe motion artifacts occur, scans have to be repeated.

This dissertation aims to change that by developing techniques to reconstruct three-
dimensional (3D) dynamic MRI from continuous acquisitions. An ideal 3D dynamic scan
would be able to resolve almost all dynamics at a high spatiotemporal resolution. Subjects
would not have to be motionless. The comprehensive information in the single scan would
also greatly simplify clinical workflow. While this dissertation has not achieved this ideal scan
yet, it proposes several innovations toward this goal. In particular, Figure 1.1 (full-length
video available at www.doi.org/10.6084/m9.figshare.7464485) shows a 3D rendering of a
reconstruction result from Chapter 4. Arbitrary slices at di↵erent orientation can be selected
over time. From the video, respiratory motion, contrast enhancements, and even slight bulk
motion can be seen.

The main challenge in high resolution 3D dynamic MRI is that the reconstruction problem
is inherently underdetermined and demanding of computation and memory. To overcome
these challenges, this dissertation builds on top of many fundamental methods, described in
Chapter 2, including non-Cartesian imaging, parallel imaging and compressed sensing. In
particular, this dissertation heavily relies on the compressed sensing framework, which has
three components: 1) the image of interest has a compressed signal representation. 2) MRI
can acquire (pseudo)-randomized samples in k-space, which provides incoherent encoding of
the underlying image. 3) sparsity/compressibility can be e�ciently enforced in reconstruction

www.doi.org/10.6084/m9.figshare.7464485
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Time

Figure 1.1: A 3D rendering of a result from Chapter 4 (full-length video available at www.doi.org/
10.6084/m9.figshare.7464485). Arbitrary slices at di↵erent orientation can be selected over
time. From the video, respiratory motion, contrast enhancements, and even slight bulk motion can
be seen.

to recover the compressed representation from the undersampled measurements.
In Chapter 3, I propose a multiscale low rank model that can compactly represent dy-

namic image sequences. The resulting representation can be applied beyond MRI, and is
useful for other applications, such as motion separation in surveillance video. With the mul-
tiscale low rank representation, in Chapter 4, I propose a technique incorporating stochastic
optimization to e�ciently reconstruct 3D dynamic MRI. This makes it feasible to run such
large-scale reconstructions on local workstations. To further speed up the reconstruction
time, in Chapter 5, I propose accelerating the convergence of non-Cartesian reconstruction
using a specially designed preconditioner. Finally, in Chapter 6, I leverage external un-
dersampled datasets to further improve reconstruction quality using convolutional sparse
coding.

1.1 Outline

The structure of this dissertation is as follows:

MRI Reconstruction Overview

In this chapter, I give an overview of MRI reconstruction to understand the following chapters
more completely. I start with the basic MRI signal equation and reconstruction. I then
describe two commonly used methods for dynamic MRI reconstructions: view sharing and
gating. Finally, I describe two essential techniques to reconstruct images from reduced
measurements: parallel imaging and compressed sensing.

www.doi.org/10.6084/m9.figshare.7464485
www.doi.org/10.6084/m9.figshare.7464485
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Multiscale Low Rank Matrix Model

In this chapter, I present a multi-scale low rank modeling that represents a data matrix as
a sum of block-wise low rank matrices with increasing scales of block sizes. I then consider
the inverse problem of decomposing the data matrix into its multiscale low rank components
and approach the problem via a convex formulation. I show that under various incoherence
conditions, the convex program recovers the multiscale low rank components either exactly
or approximately. I demonstrate its e↵ectiveness in four applications, including illumination
normalization for face images, motion separation for surveillance videos, multi-scale modeling
of DCE-MRI and collaborative filtering exploiting age information.

High Resolution Volumetric Dynamic MRI from Non-Gated Acquisitions

Leveraging the multiscale low rank model, I describe techniques to reconstruct high spa-
tiotemporal resolution volumetric dynamic images from continuous non-gated acquisition.
The problem considered is vastly underdetermined and computational demanding (trying to
reconstruct hundreds of gigabytes of an image from a few gigabytes of measurements). To
overcome these challenges, I propose three innovations: a compressed representation using
multi-scale low rank matrix model to regularize the reconstruction problem, an objective
function that directly optimize for the compressed representation to reduce memory usage,
and stochastic optimization to reduce computation. I evaluated the proposed method in
simulation, dynamic contrast enhanced imaging and lung imaging.

Accelerating Convergence for Non-Cartesian MRI Reconstructions

In this chapter, I propose a k-space preconditioning approach for accelerating the convergence
of iterative MRI reconstruction from non-Cartesian k-space data. Existing methods either
use sampling density compensation which sacrifices reconstruction accuracy, or circulant pre-
conditioners, which increase per-iteration computation. The proposed approach overcomes
both shortcomings. Through experiments, I show that in practice, the proposed method
does accelerate convergence for parallel imaging and/or compressed sensing reconstructions.

Learning a Sparse Representation from Many Undersampled Datasets

Learning from existing datasets has the potential to improve reconstruction quality. However,
existing machine learning based methods typically require many clean fully-sampled datasets
as ground truths. Such datasets can be hard to come by, especially in dynamic imaging
applications. In this chapter, I propose a method based on convolutional sparse coding that
can learn filters from under-sampled datasets to sparsely represent MR images. I show that
the filters learned from under-sampled datasets are similar to the filters learned from fully-
sampled datasets, and improves upon wavelet transform for `1-regularized reconstruction in
terms of mean-squared error.
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Summary and Future Work

Finally, I summarize the methods presented in this dissertation and outlines directions for
future work.
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Chapter 2

MRI Reconstruction Overview

In this chapter, I give an overview of MRI reconstruction to understand the following chapters
more completely. I start with the basic MRI signal equation and reconstruction. I then
describe two commonly used methods for dynamic MRI reconstructions: view sharing and
gating. Finally, I describe two essential techniques to reconstruct images from reduced
measurements: parallel imaging and compressed sensing.

For readers who are interested in how to arrive at the signal equation from the underly-
ing physics, I recommend Nishimura’s excellent book on Principles of Magnetic Resonance
Imaging [1] for more detail.

2.1 Basic MRI Signal Equation

Image k-spaceMRI = DFT

Figure 2.1: Throughout this dissertation, I consider the discrete Fourier approximate formulation
of the MRI acquisition process.
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Throughout this dissertation, I consider a discrete Fourier approximation of the MRI
acquisition process. In particular, under this formulation and given an underlying image
x 2 CN , an MRI scanner outputs the following measurements y:

yi =
NX

j=1

xje
�ı2⇡k>

i nj +wj for i = 1, . . . ,M (2.1)

where n 2 R3⇥N and k 2 R3⇥M represent a set of 3D spatial points and a set of 3D
frequency points respectively, and w 2 CM is a vector representing white Gaussian noise in
the acquisition. A pictorial illustration is shown in Figure 2.1.

Because the spatial frequency points are denoted as k, MRI acquisition is often described
as sampling in “k-space”. Due to physical constraints, these k-space points can only be
designed to sample along continuous lines. Each line is acquired one at a time and takes
milliseconds to acquire. This results in minutes of acquisition time for 3D imaging.

When acquired on a an equispaced grid, the k-space sampling is called a Cartesian tra-
jectory. Otherwise, it is referred to as non-Cartesian. In general, Cartesian trajectories
are easier to reconstruct, but non-Cartesian ones have flexibility in their design. Figure 2.2
shows three commonly used two-dimensional (2D) and three-dimensional (3D) trajectories.

3D Radial 3D Cones3D Cartesian

2D Radial 2D Spiral2D Cartesian

Figure 2.2: Common MRI sampling trajectories: 2D Cartesian, radial and spiral trajectories, and
3D Cartesian, radial, and cones trajectories.

In this dissertation, I often represent the signal equation in matrix form, which can be
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succinctly represented as:
y = Fx+w (2.2)

where F 2 CM⇥N is a discrete Fourier transform operator.

2.2 Basic MRI Reconstruction

The goal of reconstruction is to recover an image x̂, which is as close as possible to the
underlying image x, conssitent with the acquired measurements y. Without additional
information, the Fourier operator F needs to be critical or overdetermined to form a well-
posed reconstruction problem. For simplicity, in this section, I assume this is the case.

In particular, for fully-sampled or densely sampled Cartesian trajectory, the Fourier op-
erator F is unitary, that is F�1 = FH . An image can be recovered as

x̂ = FHy (2.3)

where FH performs the inverse discrete Fourier transform, and can be computed e�ciently
using the inverse Fast Fourier transform (FFT).

For non-Cartesian trajectories, the Fourier operator is no longer unitary. A general way
to reconstruct is to consider the following problem,

x̂ = argmin
x
kFx� yk22 = (FHF)�1FHy. (2.4)

which is optimal when the data is corrupted with white Gaussian noise.
A direct matrix inverse is computationally prohibitive as the matrix is dense and the

image size is on the order of at least tens of thousands. In practice, the minimization
problem is approximated using iterative algorithms, such as the conjugate gradient method.

In addition, the Fourier operator for non-Cartesian trajectories cannot be computed
directly using the FFT. Instead, it is approximately computed using the non-uniform Fast
Fourier transform (NUFFT) to further speedup reconstruction time. The NUFFT operation
is performed by multiplying with an apodization function, performing an oversampled FFT,
and interpolating the grid onto the non-Cartesian points using a local interpolation kernel.
Throughout this dissertation, I always use the NUFFT to approximately compute the Fourier
operator for non-Cartesian trajectories. It is worth noting that the approximation error can
be reduced to be arbitrarily small at the expense of additional computation.

However, even with the NUFFT, iterative methods may take many iterations to converge,
resulting in long reconstruction time. Hence, a gridding reconstruction is often used to
reconstruct an image in a single step, which performs the following operations:

x̂ = FHDy (2.5)

whereD is a diagonal matrix containing density compensation factors as diagonals, to reduce
image blurring caused by the variable density sampling in non-Cartesian trajectories. In
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some sense, the D operator is equivalent to filtering in filtered back projection. Because of
its e�ciency and simplicity, gridding reconstruction is often the method of choice for basic
non-Cartesian reconstructions, at the cost of reduced image quality and signal-to-noise-ratio.

2.3 View Sharing

k-space over time

...

...

View Sharing

Figure 2.3: View sharing is a technique that fills in the missing k-space using samples from nearby
time frames. In particular, this is often done in a sliding window manner.

Since each k-space line takes milliseconds to acquire, high resolution dynamic imaging
can only cover k-space partially for each frame. View sharing [2, 3, 4] is a technique that fills
in the missing k-space using samples from nearby time frames. In particular, this is often
done in a sliding window manner, as shown in Figure 2.3. When the underlying dynamics are
smooth, view sharing can often reduce undersampling artifacts, and results in reconstructions
with higher signal-to-noise ratio. On the other hand, view sharing inherently blends k-space
measurements along time and acts as a low pass filter, which reduces the temporal resolution.

For example, Figure 2.4 shows gridding reconstructions with various levels of view shar-
ing of a real-time 2D cardiac dataset acquired with a spiral trajectory. Compared to no
view sharing, view sharing with five interleaves reduce most of the undersampling artifacts.
Dynamics over time can be seen. However, when pushed to use 50 interleaves, view sharing
results in essentially static frames.
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Ti
m

e
View Sharing
(5 Interleaves)

...
No View Sharing

View Sharing
(50 Interleaves)

... ...
Figure 2.4: Gridding reconstructions with various levels of view sharing of a real-time 2D cardiac
dataset, acquired with a spiral trajectory. Compared to no view sharing, view sharing with five
interleaves greatly reduce the undersampling artifacts. Dynamics over time can be seen. However,
when pushed to use 50 interleaves, view sharing results in essentially static frames.

2.4 Gating and Data Binning

Another class of dynamic image reconstruction technique consists of gating and data binning.
These methods exploit the periodicity nature of the underlying dynamics, such as cardiac
and respiratory motion. In particular, k-space samples are acquired over many cycles. These
measurements are then sorted according to their corresponding phase in the cycle. If the
dynamics remain periodic with long enough scan time, the resulting gated k-space for each
phase can even be fully-sampled. Figure 2.5 shows an illustration.

Data sorting can be accomplished by leveraging external navigator signals, or navigators
derived from the MR data itself, which is often referred to as self-gating. In particular,
external navigators can be obtained from an electrocardiogram (ECG) for cardiac, and from
bellows for respiratory signals. Self gating navigator signals can be extracted from k-space



CHAPTER 2. MRI RECONSTRUCTION OVERVIEW 10

k-space over time

...

Ph
as

e 
w

ith
in

 a
 c

yc
le

Navigator Signal

Gated k-space

...

Figure 2.5: Gating and data binning exploit the periodicity nature of the underlying dynamics,
such as cardiac and respiratory motion. In particular, k-space samples are acquired over many
cycles. Then these measurements are sorted according to their corresponding phase in the cycle.
With long enough scan time, the resulting gated k-space for each phase can even be fullsampled.

centers over time, or from a low resolution reconstructed dynamic image sequence [5].
Multiple navigator signals can be used simultaneously for gating and data binning. In

particular, in XD-GRASP [6], measurements can be sorted according to both respiratory
and cardiac phases. This results in a two-dimensional parametrized space for the underlying
dynamics, resolving both cardiac and respiratory motion. Recently, MR multitasking [7]
further incorporates this idea and bins measurements in up to five dimensions. These meth-
ods are often combined with parallel imaging and compressed sensing, as described in the
following sections, to further reduce acquisition time.

The main drawback of gating and data binning methods is that when the periodic as-
sumption does not hold, the reconstruction can break down and exhibit severe artifacts. In-
compatible dynamics include bulk motion, coughing, and transient contrast enhancements.
For example, Figure 2.6 shows gated reconstructions of the real-time cardiac dataset over six
cardiac cycles, with and without simulated bulk motion. To simulate bulk motion, k-space
measurements for the first cardiac cycle were rotated 30 degrees counter clock-wise. Motion
artifacts can be seen for the motion corrupted image. To go beyond the periodicity assump-
tion, in Chapter 4, I present a reconstruction method for high resolution 3D dynamic MRI
from non-gated acquisitions.

2.5 Parallel Imaging

Parallel imaging is now routinely used to reduce scan time by acquiring less k-space data.
It utilizes additional spatial encodings provided by multichannel coil arrays to compensate
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Gating over 6 cycles
Gating over 6 cycles

with simulated bulk motion

Figure 2.6: Gated reconstructions of the real-time cardiac dataset over six cardiac cycles, with and
without simulated bulk motion. To simulate bulk motion, k-space measurements, and hence the
underlying image, for the first cardiac cycle were rotated 30 degrees counterclock-wise. Motion
artifacts can be seen for the corrupted image.

for undersampling. In particular, each coil element is sensitive to a local region of the
underlying object. This can be represented as the underlying image being multiplied with
spatially varying coil sensitivity maps. Figure 2.7 illustrates how multichannel coil arrays
change the imaging process.

Concretely, with multichannel coil arrays, the signal equation (2.1) becomes

yic =
NX

j=1

scjxje
�ı2⇡k>

i nj +wic for i = 1, . . . ,M, and c = 1, . . . , C (2.6)

where {sc 2 CN}C
c=1 represents the multichannel coil sensitivity maps.

In matrix form, this can be represented as:

y = FSx+w (2.7)

where S 2 CNC⇥N is a sensitivity map operator.
Many algorithms have been developed to reconstruct images from undersampled parallel

imaging data. Among them, SENSE [8, 9] is a general method that is compatible with
arbitrary k-space trajectories, and considers the following reconstruction problem,

x̂ = argmin
x
kFSx� yk22. (2.8)
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Image Images from Multichannel Coil Arrays

Multichannel Coil Sensitivity Maps

Figure 2.7: Parallel imaging utilizes additional spatial encodings provided by multichannel coil
arrays to compensate for undersampling. In particular, each coil element is sensitive to particular
region of the underlying object. This e↵ectively multiplies the underlying image with spatially
varying coil sensitivity maps.

For Cartesian parallel imaging with uniform sampling, the reconstruction can be decou-
pled for solving for a few pixels at a time. This can be e�ciently solved in a single step. For
non-Cartesian parallel imaging, iterative reconstruction is used in practice to reconstruct
images.

Similar to the basic non-Cartesian reconstruction, iterative methods for non-Cartesian
parallel imaging might take many iterations to converge. Unlike the basic non-Cartesian
reconstruction, there are no single step techniques to approximate non-Cartesian parallel
imaging reconstruction for arbitrary trajectories. Therefore, long reconstruction time is a
limitation to the clinical adoption of non-Cartesian parallel imaging. In Chapter 5, I propose
an e�cient method to speed up iteration convergence for non-Cartesian reconstruction.

2.6 Compressed Sensing

Compressed sensing o↵ers a separate direction to parallel imaging to accelerate acquisition
by exploiting properties of the underlying image. In particular, there are three components
for the application of compressed sensing MRI [10]: 1) the image of interest is compressible
using a signal transform. 2) MRI can acquire (pseudo)-randomized samples in k-space,
which provides incoherent encoding of the underlying image. 3) sparsity/compressibility can
be e�ciently enforced in reconstruction to recover the compressed representation from the
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Wavelet Coefficients
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Figure 2.8: Illustration of an example application of compressed sensing MRI. There are three
components: 1) The wavelet transform is used to sparsely represent the underlying brain image. 2)
Randomized k-space lines are acquired, which provides incoherent encoding of the underlying image.
3) `1 wavelet regularized reconstruction is used to e�ciently recover the compressed representation
from the undersampled measurements.

undersampled measurements.
Figure 2.8 illustrates an example compressed sensing MRI application. Here, the wavelet

transform is used to sparsely represent the underlying brain image. Randomized k-space
lines are acquired, which provide incoherent encoding of the underlying image. Finally, `1
wavelet regularized reconstruction is used to e�ciently recover the compressed representation
from the undersampled measurements. In particular, let  2 CN⇥N be a wavelet transform
operator, then the `1 wavelet regularized reconstruction considers the following optimization
problem

x̂ 2 argmin
x

1

2
kFSx� yk22 + �k xk1 (2.9)

which can be approximately solved using iterative algorithms, such as the Fast Iterative
Soft-Thresholding Algorithm (FISTA) [11].

Each of the three components in compressed sensing MRI can be designed and tailored
to specific applications. In Chapter 3, I focus on developing a compressed representation for
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dynamic images using the multiscale low rank matrix model. Using this representation, in
Chapter 4, I develop an e�cient algorithm for 3D dynamic MRI using stochastic optimiza-
tion. Finally, in Chapter 6, I leverage external undersampled datasets to learn a sparsifying
transform using convolutional sparse coding.
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Chapter 3

Multiscale Low Rank Matrix Model

3.1 Introduction

Signals and systems often exhibit di↵erent structures at di↵erent scales. Such multiscale
structure has inspired a wide variety of multiscale signal transforms, such as wavelets [12],
curvelets [13] and multiscale pyramids [14], that can represent natural signals compactly.
Moreover, their ability to compress signal information into a few significant coe�cients has
made multiscale signal transforms valuable beyond compression and are now commonly used
in signal reconstruction applications, including denoising [15], compressed sensing [16, 17],
and signal separation [18, 19, 20].

On the other hand, low rank methods are commonly used instead when the signal sub-
space needs to be estimated as well. In particular, low rank methods have seen great success
in applications, such as biomedical imaging [21], face recognition [22] and collaborative fil-
tering [23], to recover the signal subspace and compactly represent the signal at the same
time. Recent convex relaxation techniques [24] have further enabled low rank model to
be adaptable to various signal processing tasks, including matrix completion [25], system
identification [26] and phase retrieval [27].

Here I present a multiscale low rank matrix decomposition method that incorporates
multiscale structures with low rank methods. The additional multiscale structure allows me
to obtain a more accurate and compact signal representation than conventional low rank
methods whenever the signal exhibits multiscale structures (see Figure 3.1). To capture
data correlation at multiple scales, I model the data matrix as a sum of block-wise low rank
matrices with increasing scales of block sizes (more detail in Section 3.2) and consider the
inverse problem of decomposing the matrix into its multiscale components.

I propose a convex formulation to perform the multiscale low rank matrix decomposition,
and provide a theoretical analysis in Section 3.5 that extends the rank-sparsity incoherence
results in Chandrasekaran et al. [28]. I show that the proposed convex program decomposes
the data matrix into its multiscale components exactly under a deterministic incoherence
condition. In addition, in Section 3.6, I provide a theoretical analysis on approximate multi-



CHAPTER 3. MULTISCALE LOW RANK MATRIX MODEL 16

4x4 16x16 64x64Input Matrix 1x1

= + + + Multiscale
Low Rank

= Low Rank
+

Sparse

Input Matrix

= 

Input Matrix

+ + + Low Rank + ... 

+ 

Sparse Low
 Rank+ + 

Figure 3.1: An example of the proposed multiscale low rank decomposition compared with other
low rank methods. Each blob in the input matrix is a rank-1 matrix constructed from an outer
product of hanning windows. Only the multiscale low rank decomposition exactly separates the
blobs to their corresponding scales and represents each blob as compactly as possible.

scale low rank matrix decomposition in the presence of additive noise that extends the work
of Agarwal et al. [29].

I also investigate the practical performance and applications of the proposed multiscale
low rank decomposition. I provide practical guidance on choosing regularization parameters
for the convex method in Section 3.4 and describe heuristics to perform cycle spinning [30]
to reduce blocking artifacts in Section 3.9. In addition, I applied the multiscale low rank
decomposition on real datasets and considered four applications of the multiscale low rank
decomposition: illumination normalization for face images, motion separation for surveillance
videos, compact modeling of the dynamic contrast enhanced magnetic resonance imaging
and collaborative filtering exploiting age information. (See Section 3.10 for more detail).
The results show that the proposed multiscale low rank decomposition provides intuitive
multiscale decomposition and compact signal representation for a wide range of applications.

Related work

The proposed multiscale low rank matrix decomposition draws many inspirations from recent
developments in rank minimization [24, 29, 31, 32, 25, 33, 34]. In particular, the multiscale
low rank matrix decomposition is a generalization of the low rank + sparse decomposition
proposed by Chandrasekaran et al. [28] and Candès et al. [35]. The multiscale low rank convex
formulation also fits into the convex demixing framework proposed by McCoy et al. [36, 37,
38], who studied the problem of demixing components via convex optimization. The proposed
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multiscale low rank decomposition can be viewed as a concrete and practical example of the
convex demixing problem. However, their theoretical analysis assumes that each component
is randomly oriented with respect to each other, and does not apply to the considered
setting, where the direct summation of the components is observed. Bakshi et al. [39]
proposed a multiscale principal component analysis by applying principal component analysis
on wavelet transformed signals, but such method implicitly constrains the signal to lie on
a predefined wavelet subspace. Various multi-resolution matrix factorization techniques [40,
41] were proposed to greedily peel o↵ components of each scale by recursively applying
matrix factorization. One disadvantage of these factorization methods is that it is not
straightforward to incorporate them with other reconstruction problems as models. Similar
multiscale modeling using demographic information was also used in collaborative filtering
described in Vozalis and Margaritis [42].

3.2 Multiscale Low Rank Matrix Modeling
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+ + . . . + +Input
Matrix =

Low Rank Low Rank

Low RankLow Rank
Low Rank

Low Rank

Low Rank

Low Rank

Low Rank

Low Rank Low RankLow Rank

Low Rank

Low Rank

Low Rank

Low RankLow RankLow Rank

Low Rank

Low Rank

Low Rank
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Multi-scale Matrix Partition

Multi-scale Low Rank Modeling

Figure 3.2: Illustration of a multiscale matrix partition and its associated multiscale low rank
modeling. Since the zero matrix is a matrix with the least rank, the multiscale modeling naturally
extends to sparse matrices as 1⇥ 1 low rank matrices.

In this section, I describe the proposed multiscale low rank matrix modeling in detail.
I assume that the data matrix of interest Y can be partitioned into di↵erent scales.

Specifically, I assume that I am given a multiscale partition {Pi}Ji=1 of the indices of an
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M ⇥ N matrix, where each block b in Pi is an order magnitude larger than the blocks
in the previous scale Pi�1. Such multiscale partition can be naturally obtained in many
applications. Figures 3.2 and 3.4 provide two examples of a multiscale partition, the first
one with decimation along two dimensions and the second one with decimation along one
dimension.

To easily transform between the data matrix and the block matrices, I also consider a
block reshape operator Bb(X) that extracts a block b from the full matrix X and reshapes
the block into an mi ⇥ ni matrix (Figure 3.3), where mi ⇥ ni is the ith scale block matrix
size determined by the user.

Block reshape operator

Figure 3.3: Illustration of the block reshape operator Bb. Bb extracts block b from the full matrix
and reshapes it into an mi⇥ni matrix. Its adjoint operator BH

b
takes an mi⇥ni matrix and embeds

it into a full-size zero matrix.

Given an M ⇥ N input matrix Y and its corresponding multiscale partition and block
reshape operators, the multiscale low rank modeling models the M ⇥ N input matrix Y
as a sum of matrices

P
J

i=1 Xi, in which each Xi is block-wise low rank with respect to its
partition Pi, that is,

Y =
JX

i=1

Xi

Xi =
X

b2Pi

BH

b
(UbSbV

>
b
),

where Ub, Sb, and Vb are matrices with sizes mi ⇥ rankb, rankb⇥ rankb and ni ⇥ rankb
respectively and form the rankb reduced SVD of Bb(Xi). Note that when the rank of the
block matrix Bb(Xi) is zero, I have {Ub,Sb,Vb} as empty matrices, which do not contribute
to Xi. Figure 3.2 and 3.4 provide illustrations of two kinds of modeling with their associated
partitions.

By constraining each block matrices to be of low rank, the multiscale low rank modeling
captures the notion that some nearby entries are more similar to each other than global
entries in the data matrix. I note that the multiscale low rank modeling is a generalization
of the low rank + sparse modeling proposed by Chandrasekaren et al. [28] and Candès et
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Figure 3.4: Illustration of another multiscale matrix partition and its associated multiscale low rank
modeling. Here, only the vertical dimension of the matrix is decimated. Since a 1⇥N matrix is low
rank if and only if it is zero, the multiscale modeling naturally extends to group sparse matrices.

al. [35]. In particular, the low rank + sparse modeling can be viewed as a 2-scale low rank
modeling, in which the first scale has block size 1 ⇥ 1 and the second scale has block size
M ⇥N . By adding additional scales between the sparse and globally low rank matrices, the
multiscale low rank modeling can capture locally low rank components that would otherwise
need many coe�cients to represent for low rank + sparse.

Given a data matrix Y that fits the multiscale low rank model, the goal is to decom-
pose the data matrix Y to its multiscale components {Xi}Ji=1. The ability to recover these
multiscale components is beneficial for many applications and enables, for example, motion
extraction at multiple scales in surveillance videos (Section 3.10). Since there are many
more parameters to be estimated than the number of observations, it is necessary to impose
conditions on Xi. In particular, I will exploit the fact that each block matrix is low rank via
a convex program, which will be described in detail in Section 3.3.

Multiscale low rank + noise

Before moving to the convex formulation, I note that the multiscale matrix modeling can
easily account for data matrices that are corrupted by additive white Gaussian noise. Under
the multiscale low rank modeling, the additive noise matrix can be thought as the largest
scale signal component and is unstructured in any local scales. Specifically, if I observe
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instead

Y =
JX

i=1

Xi +XZ

where XZ is an independent and identically distributed Gaussian noise matrix, then I can
define a reshape operator BZ that reshapes the entire matrix into an MN ⇥1 vector and the
resulting matrix fits exactly to the multiscale low rank model with J + 1 scales. This incor-
poration of noise makes the model flexible in that it automatically provides a corresponding
convex relaxation, a regularization parameter for the noise matrix and allows me to utilize
the same iterative algorithm to solve for the noise matrix. Figure 3.5 provides an example
of the noisy multiscale low rank matrix decomposition.

4x4 16x16 64x64Input Matrix 1x1

= + + + Ground
Truth

+ 

Noise

Multiscale
Low Rank = + + + + 

Figure 3.5: An example of the multiscale low rank decomposition in the presence of additive
Gaussian noise by solving the convex program (3.1).

3.3 Problem Formulation and Convex Relaxation

Given a data matrix Y that fits the multiscale low rank model, my goal is to recover the
underlying multiscale components {Xi}Ji=1 using the fact that Xi is block-wise low rank.
Ideally, I would like to obtain a multiscale decomposition with the minimal block matrix
rank and solve a problem similar to the following form:

minimize
X1,...,XJ

JX

i=1

X

b2Pi

rank(Bb(Xi))

subject to Y =
JX

i=1

Xi

However, each rank minimization for each block is combinatorial in nature. In addition,
it is not obvious whether the direct summation of ranks is a correct formulation as a 1-sparse
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matrix and a rank-1 matrix should intuitively not carry the same cost. Hence, the above
non-convex problem is not a practical formulation to obtain the multiscale decomposition.

Recent development in convex relaxations suggests that rank minimization problems
can often be relaxed to a convex program via nuclear norm relaxation [24, 33], while still
recovering the optimal solution to the original problem. In particular, Chandrasekaren et
al. [28] and Candès et al., [35] showed that a low rank + sparse decomposition can be relaxed
to a convex program by minimizing a nuclear norm + `1-norm objective as long as the signal
constituents are incoherent with respect to each other. In addition, Candès et al., [35] showed
that the regularization parameters for sparsity and low rank should be related by the square
root of the matrix size. Hence, there is hope that, along the same line, I can perform the
multiscale low rank decomposition exactly via a convex formulation.

Concretely, let me define k · knuc to be the nuclear norm, the sum of singular values, and
k · kmsv be the maximum singular value norm. For each scale i, I consider the block-wise
nuclear norm to be the convex surrogate for the block-wise ranks and define k · k(i) the
block-wise nuclear norm for the ith scale as

k · k(i) =
X

b2Pi

kBb(·)knuc.

Its associated dual norm k · k⇤(i) is then given by

k · k⇤(i) = max
b2Pi

kBb(·)kmsv,

which is the maximum of all block-wise maximum singular values.
I then consider the following convex relaxation:

minimize
X1,...,XJ

JX

i=1

�ikXik(i)

subject to Y =
JX

i=1

Xi,

(3.1)

where {�i}Ji=1 are the regularization parameters and their selection will be described in detail
in Section 3.4.

The proposed convex formulation is a natural generalization of the low rank + sparse
convex formulation [28, 35]. With the two-sided matrix partition (Fig. 3.2), the nuclear norm
applied to the 1⇥ 1 blocks becomes the element-wise `1-norm and the norm for the largest
scale is the nuclear norm. With the one-sided matrix partition (Fig. 3.4), the nuclear norm
applied to 1⇥N blocks becomes the group-sparse norm and can be seen as a generalization
of the group sparse + low rank decomposition [31]. If I incorporate additive Gaussian noise
in the model as described in Section 3.2, then I have a nuclear norm applied to an MN ⇥ 1
vector, which is equivalent to the Frobenius norm.
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One would hope that the theoretical conditions from low rank + sparse can be generalized
rather seamlessly to the multiscale counterpart. Indeed, in Section 3.5, I show that the core
theoretical guarantees in the work of Chandrasekaren et al. [28] on exact low rank + sparse
decomposition can be generalized to the multiscale setting. In section 3.6, I show that the
core theoretical guarantees in the work of Agarwal et al. [29] on noisy matrix decomposition
can be generalized to the multiscale setting as well to provide approximate decomposition
guarantees.

3.4 Guidance on Choosing Regularization Parameters

In this section, I provide practical guidance on selecting the regularization parameters
{�i}Ji=1. Selecting the regularization parameters {�i}Ji=1 is crucial for the convex decom-
position to succeed, both theoretically and practically. While theoretically, I can establish
criteria on selecting the regularization parameters (see Section 3.5 and 3.6), such parame-
ters are not straightforward to calculate in practice as it requires properties of the signal
components {Xi}Ji=1 before the decomposition.

To select the regularization parameters {�i}Ji=1 in practice, I follow the suggestions from
Wright et al. [43] and Fogel et al. [44], and set each regularization parameter �i to be the
Gaussian complexity of each norm k · k(i), which is defined as the expectation of the dual
norm of random Gaussian matrix:

�i ⇠ E[kGk⇤(i)] (3.2)

where ⇠ denotes equality up to some constant and G is a unit-variance independent and
identically distributed random Gaussian matrix.

The resulting expression for the Gaussian complexity is the maximum singular value of
a random Gaussian matrix, which has been studied extensively Bandeira and Handel [45].
The recommended regularization parameter for scale i is given by

�i ⇠
p
mi +

p
ni +

p
log (min(mi, ni)|Pi|) (3.3)

For the sparse matrix scale with 1⇥ 1 block size, �i ⇠
p
log(MN) and for the globally low

rank scale with M ⇥ N block size, �i ⇠
p
M +

p
N . Hence this regularization parameter

selection is consistent with the ones recommended for low rank + sparse decomposition by
Candès et al. [35], up to a log factor. In addition, for the noise matrix with MN ⇥ 1 block
size, �i ⇠

p
MN , which has similar scaling as in square root LASSO [46]. In practice, I found

that the suggested regularization parameter selection allows exact multiscale decomposition
when the signal model is matched (for example Figure 3.1) and provides visually intuitive
decomposition for real datasets.

For approximate multiscale low rank decomposition in the presence of additive noise,
some form of theoretical guarantees for the regularization selection can be found in my
analysis in Section 3.6. In particular, I show that if the regularization parameters �i is larger
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than the Gaussian complexity of k · k⇤(i) in addition to some “spikiness” parameters, then

the error between recovered decomposition and the ground truth {Xi}Ji=1 is bounded by the
block-wise matrix rank.

3.5 Theoretical Analysis for Exact Decomposition

In this section, I provide a theoretical analysis of the proposed convex formulation and show
that if {Xi}Ji=1 satisfies a deterministic incoherence condition, then the proposed convex
formulation (3.1) recovers {Xi}Ji=1 from Y exactly.

My analysis follows similar arguments taken by Chandrasekaren et al. [28] on low rank +
sparse decomposition and generalizes them to the proposed multiscale low rank decomposi-
tion. Before showing the main result (Theorem 3.5.1), I first describe the subgradients of the
objective function (Section 3.5) and define a coherence parameter in terms of the block-wise
row and column spaces (Section 3.5).

Subdi↵erentials of the block-wise nuclear norms

To characterize the optimality of the convex problem, I first look at the subgradients of
the objective function. I recall that for any matrix X with {U,S,V} as its reduced SVD
representation, the subdi↵erential of k · knuc at X is given by [33, 47],

@kXknuc =
�
UVH +W : W and X have orthogonal row/column spaces, kWkmsv  1

 
.

Now recall that I define the block-wise nuclear norm to be k · k(i) =
P

b2Pi
kBb(·)knuc. Then

using the chain rule and the fact that Bb(Xi) = UbSbVH

b
, I obtain an expression for the

subdi↵erential of k · k(i) at Xi as follows:

@kXik(i) =
⇢ P

b2Pi
BH

b
(UbVH

b
+Wb) :

Wb and Bb(Xi) have orthogonal row/column spaces, kWbkmsv  1

�

To simplify the notation, I define Ei =
P

b2Pi
BH

b
(UbVH

b
) and Ti to be a vector space

that contains matrices with the same block-wise row spaces or column spaces as Xi, that is,

Ti =

(
X

b2Pi

BH

b
(UbX

H

b
+YbV

H

b
) : Xb 2 Cni⇥rankb ,Yb 2 Cmi⇥rankb

)

where mi ⇥ ni is the size of the block matrices for scale i and rankb is the matrix rank for
block b.

Then, the subdi↵erential of each k · k(i) at Xi can be compactly represented as,

@kXik(i) =
�
Ei +Wi : Wi 2 T

?
i

and kWik⇤(i)  1
 
.



CHAPTER 3. MULTISCALE LOW RANK MATRIX MODEL 24

I note that Ei can be thought of as the “sign” of the matrix Xi, pointing toward the principal
components, and, in the case of the sparse scale, is exactly the sign of the entries.

In the rest of the section, I will be interested in projecting a matrix X onto Ti, which
can be performed with the following operation:

PTi(X) =
X

b2Pi

BH

b

�
UbU

H

b
Bb(X) + Bb(X)VbV

H

b
�UbU

H

b
Bb(X)VbV

H

b

�
.

Similarly, to project a matrix X onto the orthogonal complement of Ti, I can apply the
following operation:

P
T

?
i
(X) =

X

b2Pi

BH

b

�
(I�UbU

H

b
)Bb(X)(I�VbV

H

b
)
�

where I is an appropriately sized identity matrix.

Incoherence

Following Chandrasekaren et al. [28], I consider a deterministic measure of incoherence
through the block-wise column and row spaces of Xi. Concretely, I define the coherence
parameter for the jth scale signal component Xj with respect to the ith scale to be the
following:

µij = max
Nj2Tj , kNjk⇤(j)1

kNjk⇤(i)

Using µij as a measure of incoherence, I can quantitatively say that the jth scale signal
component is incoherent with respect to the ith scale if µij is small. In the case of low rank
+ sparse, Chandrasekaren et al. [28] provides an excellent description of the concepts behind
the coherence parameters. I refer the reader to their paper for more detail.

Main Result

Given the above definition of incoherence, the following theorem states the main result for
exact multiscale low rank decomposition:

Theorem 3.5.1. If I can choose regularization parameters {�i}Ji=1 such that

X

j 6=i

µij

�j

�i
<

1

2
, for i = 1, . . . , J

then {Xi}Ji=1 is the unique optimizer of the proposed convex problem (3.1).
In particular when the number of scales J = 2, the condition on {µ12, µ21} reduces to

µ12µ21 < 1/4 and the condition on {�1,�2} reduces to 2µ12 < �1/�2 < 1/(2µ21), which is in
similar form as Theorem 2 in Chandrasekaren et al. [28].

The proof for the above theorem is given in Section 3.12.
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3.6 Theoretical Analysis for Approximate
Decomposition

In this section, I provide a theoretical analysis for approximate multiscale low rank decom-
position when the measurement is corrupted by additive noise as described in Section 3.2.
The result follows arguments from Agarwal et al. [29] on noisy 2-scale matrix decomposition
and extends it to the multiscale setting.

Instead of using the incoherence parameter µij defined for the exact decomposition anal-
ysis in Section 3.5, I opt for a weaker characterization of incoherence between scales for
approximate decomposition, studied in Agarwal et al. [29]. Concretely, I consider spikiness
parameters ↵ij between the jth signal component Xj and ith scale norm k · k(i) such that,

↵ij = kXjk⇤(i)
for each j 6= i. Hence, if ↵ij is small, I say Xj is not spiky with respect to the ith norm.

For analysis purpose, I also impose the constraints kXjk⇤(i)  ↵ij in the convex program.
That is, I consider the solution from the following convex program:

minimize
X1,...,XJ ,XZ

JX

i=1

�ikXik(i) + �ZkXZkfro

subject to Y =
JX

i=1

Xi +XZ

kXjk⇤(i)  ↵ij for j 6= i

(3.4)

I emphasize that the additional constraints kXjk⇤(i)  ↵ij are imposed only for the purpose
of theoretical analysis and are not imposed in the experimental results. In particular, for
the simulation example in Figure 3.5, the minimizer of the convex program (3.1), using the
recommended regularization parameters in Section 3.4, satisfied the constraints even when
the constraints were not imposed.

Let me define {�i}Ji=1 and �Z to be the errors between the ground truth components
{Xi}Ji=1 and XZ and the minimizers of convex program (3.4). Then, equivalently, I can
denote {Xi +�i}Ji=1 and XZ +�Z as the minimizers of the convex program (3.4). The
following theorem states the main result for approximate decomposition.

Theorem 3.6.1. If I choose {�i}Ji=1 such that

�i � 2�Z
kXZk⇤(i)
kXZkfro

+
X

j 6=i

2↵ij

and �Z such that

�Z �

vuut64
JX

i=1

�2
i

X

b2Pi

rankb,
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then the error is bounded by

JX

i=1

k�ikfro .
kXZkfro
�Z

JX

i=1

�i

sX

b2Pi

rankb

where . denotes inequality up to a universal constant.

Hence, when the spikiness parameters are negligible and XZ = �G, where G is an
independent, identically distributed Gaussian noise matrix with unit variance and � is the
noise standard deviation, choosing �Z ⇠ E[kGkfro] ⇠

p
MN and �i ⇠ E[kGk⇤(i)] ⇠

p
mi +p

ni +
p
log(min(mi, ni)|Pi|) ensures the condition is satisfied with high probability. This

motivates the recommended regularization selection in Section 3.4.
The proof for the above theorem is given in Section 3.13 and follows arguments from

Agarwal et al. [29] on noisy matrix decomposition and Belloni et al. [46] on square root
LASSO.

3.7 An Iterative Algorithm for Solving the Multiscale
Low Rank Decomposition

In the following, I derive an iterative algorithm that solves for the multiscale low rank
decomposition via the Alternating Direction of Multiple Multipliers (ADMM) [48]. While the
proposed convex formulation (3.1) can be formulated into a semi-definite program, first-order
iterative methods are commonly used when solving for large datasets for their computational
e�ciency and scalability. A conceptual illustration of the algorithm is shown in Figure 3.6.

To formally obtain update steps using ADMM, I first formulate the problem into the
standard ADMM form with two separable objectives connected by an equality constraint,

minimize
Xi, Zi

I

(
Y =

JX

i=1

Xi

)
+

JX

i=1

�ikZik(i)

subject to Xi = Zi

(3.5)

where I{·} is the indicator function.
To proceed, I then need to obtain the proximal operators [49] for the two objective

functions I{Y =
P

J

i=1 Xi} and
P

J

i=1 �ikZik(i). For the data consistency objective I{Y =P
J

i=1 Xi}, the proximal operator is simply the projection operator to the set. To obtain
the proximal operator for the multiscale nuclear norm objective

P
J

i=1 �ikXik(i), I first recall
that the proximal operator for the nuclear norm kXknuc with parameter � is given by the
singular value soft-threshold operator [33],

SVT�(X) = Umax(⌃� �I,0)VH (3.6)
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Figure 3.6: A conceptual illustration of how to obtain a multiscale low rank decomposition. First,
I extract each block from the input matrix and perform a thresholding operation on its singular
value to recover the significant components. Then, I subtract these significant components from
the input matrix, thereby enabling the recovery of weaker, previously submerged components.

Since I defined the block-wise nuclear norm for each scale i as
P

b2Pi
kBb(·)knuc, the norm

is separable with respect to each block and its proximal function with parameter �i is given
by the block-wise singular value soft-threshold operator,

BlockSVT�i(X) =
X

b2Pi

BH

b
(SVT�i(Bb(X))) (3.7)

which simply extracts every blocks in the matrix, performs singular value thresholding and
puts the blocks back to the matrix. I note that for 1⇥1 blocks, the block-wise singular value
soft-threshold operator reduces to the element-wise soft-threshold operator and for 1 ⇥ N

blocks, the block-wise singular soft-threshold operator reduces to the joint soft-threshold
operator.

Putting everything together and invoking the ADMM recipe [48], I have the following
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algorithm to solve the convex multiscale low rank decomposition (3.1):

Xi  (Zi �Ui) +
1

L

 
Y �

JX

i=1

(Zi �Ui)

!

Zi  BlockSVT�i/⇢ (Xi +Ui)

Ui  Ui � (Zi �Xi)

(3.8)

where ⇢ is the ADMM parameter that only a↵ects the convergence rate of the algorithm.
The resulting ADMM update steps are similar in essence to the intuitive update steps in

Figure 3.6, and alternates between data consistency and enforcing multiscale low rank. The
major di↵erence of ADMM is that it adds a dual update step with Ui, which bridges the
two objectives and ensures the convergence to the optimal solution. Under the guarantees
of ADMM, in the limit of iterations, Xi and Zi converge to the optimal solution of the
convex program (3.1) and Ui converges to a scaled version of the dual variable. In practice,
I found that ⇠ 1000 iterations are su�cient without any visible change for imaging applica-
tions. Finally, I note that because the proximal operator for the multiscale nuclear norm is
computationally simple, other proximal operator based algorithms [49] can also be used.

3.8 Computational Complexity

Given the iterative algorithm (3.8), one concern about the multiscale low rank decomposition
might be that it is significantly more computationally intensive than other low rank methods
as I have many more SVD’s and variables to compute for. In this section, I show that because
I decimate the matrices at each scale geometrically, the theoretical computational complexity
of the multiscale low rank decomposition is similar to other low rank decomposition methods,
such as the low rank + sparse decomposition.

For concreteness, let me consider the multiscale partition with two-sided decimation
shown in Figure 3.2 and have block sizes mi = 2i�1 and ni = 2i�1. Similar to other low
rank methods, the SVD’s dominate the per iteration complexity for the multiscale low rank
decomposition. For an M ⇥ N matrix, each SVD costs #flops(M ⇥ N SVD) = O(MN

2).
The per iteration complexity for the multiscale low rank decomposition is dominated by the
summation of all the SVD’s performed for each scale, which is given by,

#flops (M ⇥N SVD) + 4 #flops (M/2⇥N/2 SVD) + . . .

= O(MN
2) +O(MN

2)/2 +O(MN
2)/4 + . . .

 2O(MN
2) ⇡ #flops(M ⇥N SVD)

(3.9)

Hence, the per-iteration computational complexity of the multiscale low rank with two-
sided decimated partition is on the order of a M ⇥N matrix SVD. In general, one can show
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that the per-iteration complexity for arbitrary multiscale partition is at most log(N) times
the full matrix SVD.

While theoretically, the computation cost for small block sizes should be less than bigger
block sizes, I found that in practice the computation cost for computing the small SVD’s
can dominate the per-iteration computation. This is due to the overhead of copying small
block matrices and calling library functions repeatedly to compute the SVD’s.

Since I am interested in thresholding the singular values and in practice many of the small
block matrices are zero as shown in Section 3.10, one trick of reducing the computation time
is to quickly compute an upper bound on the maximum singular value for block matrices
before the SVD’s. Then if the upper bound for the maximum singular value is less than
the threshold, I know the thresholded matrix will be zero and can avoid computing the
SVD. Since for any matrix X, its maximum singular value is bounded by the square root of
any matrix norm on X

H
X [50], there are many di↵erent upper bounds that I can use. In

particular, I choose the maximum row norm and consider the following upper bound,

�max(X) 
s
max

i

X

j

|XikXjk| (3.10)

Using this upper bound, I can identify many below-the-threshold matrices before com-
puting the SVD’s at all. In practice, I found that the above trick provides a modest speedup
of 3 ⇠ 5⇥.

3.9 Heuristics for translation invariant decomposition

Similar to wavelet transforms, one drawback of the multiscale low rank decomposition is
that it is not translation invariant, that is, shifting the input changes the resulting decom-
position. In practice, this translation variant nature often creates blocking artifacts near
the block boundaries, which can be visually jarring for image or video applications. One
solution to remove these artifacts is to introduce overlapping partitions of the matrix so that
the overall algorithm is translation invariant. However, this vastly increases both memory
and computation, especially for large block sizes. In the following, I describe a cycle spin-
ning approach to reduce the blocking artifacts with an only slight increase in per-iteration
computation.

Cycle spinning [30] is commonly used in wavelet denoising to reduce the blocking artifacts
due to the translation variant nature of the wavelet transform. To minimize artifacts, cycle
spinning averages the denoised results from all possible shifted copies of the input, thereby
making the entire process translation invariant. Concretely, let S be the set of all shifts
possible in the target application, Shifts denote the shifting operator by s, and Denoise
be the denoising operator of interest. Then the cycle spinned denoising of the input X is
given by:

1

|S|
X

s2S

Shift�s(Denoise(Shifts(X))) (3.11)
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Figure 3.7: An example of the multiscale low rank decomposition with and without random cycle
spinning. Each blob in the input matrix Y is a rank-1 matrix constructed from an outer product
of Hanning windows and is placed at random positions. Blocking artifacts can be seen in the
decomposition without random cycle spinning while vastly diminished in the random cycle spinned
decomposition.

In the context of multiscale low rank decomposition, I can make the iterative algorithm
translation invariant by replacing the block-wise singular value thresholding operation in
each iteration with its cycle spinning counterpart. In particular, for the ADMM update
steps, I can replace the Zi step to:

Zi  
1

|S|
X

s2S

Shift�s(BlockSVT�i/⇢(Shifts(Xi +Ui))) (3.12)

To further reduce computation, I perform random cycle spinning in each iteration as
described in Figueiredo et al. [51], in which I randomly shift the input, perform block-wise
singular value thresholding and then unshift back:

Zi  Shift�s(BlockSVT�i/⇢(Shifts(Xi +Ui))) (3.13)

where s is randomly chosen from the set S.
Using random cycle spinning, blocking artifacts caused by thresholding are averaged

over iterations. Figure 3.7 shows an example of the multiscale low rank decomposition with
and without random cycle spinning applied on a simulated data that does not fall on the
partitioned grid. The decomposition with random cycle spinning vastly reduces blocking
artifacts that appeared in the one without random cycle spinning.
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3.10 Applications

In the spirit of reproducible research, I provide a software package (in C and partially in
MATLAB) to reproduce most of the results described in this chapter. The software package
can be downloaded from:

https://github.com/frankong/multi_scale_low_rank.git

To test for practical performance, I applied the multiscale low rank decomposition on
four di↵erent real datasets that are conventionally used in low rank modeling: illumination
normalization for face images (Section 3.10), motion separation for surveillance videos (Sec-
tion 3.10), multiscale modeling of dynamic contrast enhanced magnetic resonance imaging
(Section 3.10) and collaborative filtering exploiting age information (Section 3.10). I com-
pared the proposed multiscale low rank decomposition with low rank + sparse decomposition
for the first three applications and with low rank matrix completion for the last application.
Randomly cycle spinning was used for multiscale low rank decomposition for all experiments.
Regularization parameters �i were chosen exactly as

p
mi+

p
ni+

p
log(min(mi, ni)|Pi|) for

multiscale low rank and max(mi, ni) for low rank + sparse decomposition. The simula-
tions were implemented using the C programming language and run on a 20-core Intel Xeon
workstation.

Multiscale Illumination Normalization for Face Recognition

Face recognition algorithms are sensitive to shadows or occlusions on faces. In order to
obtain the best possible performance for these algorithms, it is desired to remove illumination
variations and shadows on the face images. Low rank modeling is often used to model faces
and is justified by approximating faces as convex Lambertian surfaces [22].

Low rank + sparse decomposition [35] was recently proposed to capture uneven illumina-
tion as sparse errors and was shown to remove small shadows while capturing the underlying
faces as the low rank component. However, most shadows are not sparse and contain struc-
ture over di↵erent lighting conditions. Here, I propose modeling shadows and illumination
changes in di↵erent face images as block-low rank as illumination variations are spatially
correlated in multiple scales.

I considered face images from the Yale B face database [52]. Each face image was of
size 192 ⇥ 168 with 64 di↵erent lighting conditions. The images were then reshaped into a
32, 256⇥64 matrix and both multiscale low rank and low rank + sparse decomposition were
applied on the data matrix. For low rank + sparse decomposition, I found that the best
separation result was obtained when each face image was normalized to the maximum value.
For multiscale low rank decomposition, the original unscaled image was used. Only the
space dimension was decimated as I assumed there was no ordering in di↵erent illumination
conditions. The multiscale matrix partition can be visualized as in Figure 3.4.

Figure 3.8 shows one of the comparison results. Multiscale low rank decomposition
recovered almost shadow-free faces. In particular, the sparkles in the eyes were represented

https://github.com/frankong/multi_scale_low_rank.git
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Figure 3.8: Multiscale low rank versus low rank + sparse on faces with uneven illumination. Mul-
tiscale low rank decomposition recovers almost shadow-free faces, whereas low rank + sparse de-
composition can only remove some shadows.

in the 1⇥ 1 block size and the larger illumination changes were represented in bigger blocks,
thus capturing most of the uneven illumination changes. In contrast, low rank + sparse
decomposition could only recover from small illumination changes and still contained the
larger shadows in the globally low rank component.

Multiscale Motion Separation for Surveillance Videos

In surveillance video processing, it is desired to extract foreground objects from the video.
To be able to extract foreground objects, both the background and the foreground dynamics
have to be modeled. Low rank modeling has been shown to be suitable for slowly varying
videos, such as background illumination changes. In particular, if the video background only
changes its brightness over time, then it can be represented as a rank-1 matrix.

Low rank + sparse decomposition [35] was proposed to foreground objects as sparse
components and was shown to separate dynamics from background components. However,
sparsity alone cannot capture motion compactly and often results in ghosting artifacts oc-
curring around the foreground objects as shown in Figure 3.9. Since video dynamics are
correlated locally at multiple scales in space and time, I propose using the multiscale low
rank modeling with two sided decimation to capture di↵erent scales of video dynamics over
space and time.
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Figure 3.9: Multiscale low rank versus low rank + sparse decomposition on a surveillance video.
For the multiscale low rank, body motion is mostly captured in the 16 ⇥ 16 ⇥ 16 scale while fine-
scale motion is captured in 4 ⇥ 4 ⇥ 4 scale. The background video component is captured in the
globally low rank component and is almost artifact-free. Low rank + sparse decomposition exhibits
ghosting artifacts as pointed by the red arrow because they are neither globally low rank or sparse.

I considered a surveillance video from Li et al. [53]. Each video frame was of size 144⇥176
and the first 200 frames were used. The video frames were then reshaped into a 25, 344⇥200
matrix and both multiscale low rank and low rank + sparse decomposition were applied on
the data matrix.

Figure 3.9 shows one of the results. Multiscale low rank decomposition recovered a mostly
artifact free background video in the globally low rank component whereas low rank + sparse
decomposition exhibits ghosting artifact in certain segments of the video. For the multiscale
low rank decomposition, body motion was mostly captured in the 16 ⇥ 16 ⇥ 16 scale while
the fine-scale motion was captured in 4⇥ 4⇥ 4 scale.

Multiscale Low Rank Modeling for Dynamic Contrast Enhanced
Magnetic Resonance Imaging

In dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), a series of images
over time is acquired after a T1 contrast agent was injected into the patient. Di↵erent tissues
then exhibit di↵erent contrast dynamics over time, thereby allowing radiologists to charac-
terize and examine lesions. Compressed sensing Magnetic Resonance Imaging [10] is now
a popular research approach used in three dimensional DCE-MRI to speed up the acquisi-
tion. Since the more compact I can represent the image series, the better the compressed
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Figure 3.10: Multiscale low rank versus low rank + sparse decomposition on a dynamic contrast
enhanced magnetic resonance image series. For the multiscale result, small contrast dynamics in
vessels are captured in 4 ⇥ 4 blocks while contrast dynamics in the liver are captured in 16 ⇥ 16
blocks. The biggest block size captures the static tissues and interestingly the respiratory motion.
In contrast, the low rank + sparse modeling could only provide a coarse separation of dynamics
and static tissue, which result in neither truly sparse nor truly low rank components.

reconstruction result becomes, an accurate modeling of the dynamic image series is desired
to improve the compressed sensing reconstruction results for DCE-MRI.

When a region contains only one type of tissue, then the block matrix constructed by
stacking each frame as columns will have rank one. Hence, low rank modeling [21], and
locally low rank modeling [54] have been popular models for DCE-MRI. Recently, low rank
+ sparse modeling [55] has also been proposed to model the static background and dynamics
as low rank and sparse matrices respectively. However, dynamics in DCE-MRI are almost
never sparse and often exhibit correlation across di↵erent scales. Hence, I propose using a
multiscale low rank modeling to capture contrast dynamics over multiple scales.

I considered a fully sampled dynamic contrast enhanced image data. The data was
acquired in a pediatric patient with 20 contrast phases, 1 ⇥ 1.4 ⇥ 2 mm3 resolution, and 8
s temporal resolution. The acquisition was performed on a 3T GE MR750 scanner with a
32-channel cardiac array using an RF-spoiled gradient-echo sequence. I considered a 2D slice
of size 154 ⇥ 112 were then reshaped into a 17248 ⇥ 20 matrix. Both multiscale low rank
and low rank + sparse decomposition were applied to the data matrix.

Figure 3.10 shows one of the results. In the multiscale low rank decomposition result,
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small contrast dynamics in vessels were captured in 4⇥ 4 blocks while contrast dynamics in
the liver were captured in 16⇥ 16 blocks. The biggest block size captured the static tissues
and interestingly the respiratory motion. Hence, di↵erent types of contrast dynamics were
captured compactly in their suitable scales. In contrast, the low rank + sparse modeling
could only provide a coarse separation of dynamics and static tissue, which resulted in neither
truly sparse nor truly low rank components.

Multiscale Age Grouping for Collaborative Filtering
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Figure 3.11: Multiscale low rank reconstructed matrix of the 100K MovieLens dataset. The ex-
tracted signal scale component captures the tendency that younger users rated Star Wars higher
whereas the more senior users rated Gone with the Wind higher.

Collaborative filtering is the task of making predictions about the interests of a user
using available information from all users. Since users often have a similar taste for the same
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item, low rank modeling is commonly used to exploit the data similarity to complete the
rating matrix [32, 25, 33]. On the other hand, low rank matrix completion does not exploit
the fact that users with similar demographic backgrounds have a similar taste for similar
items. In particular, users of similar age should have similar taste. Hence, I incorporated
the proposed multiscale low rank modeling with matrix completion by partitioning users
according to their age and compared it with the conventional low rank matrix completion.
The proposed method belongs to the general class of collaborative filtering methods that
utilize demographic information [42].

To incorporate multiscale low rank modeling into matrix completion, I change the data
consistency constraint in problem (3.1) to [Y]jk = [

P
J

i=1 Xi]jk for observed jk entries, and
correspondingly, the update step for {Xi}Ji=1 in equation (3.8) is changed to [Xi]jk  [(Zi�
Ui)+

1
J
(Y�

P
J

i=1(Zi�Ui))]jk for observed jk entries and [Xi]jk  [Zi�Ui]jk for unobserved
jk entries. I emphasize that my theoretical analysis does not cover matrix completion and
the presented collaborative filtering application is mainly of empirical interest.

To compare the methods, I considered the 100K MovieLens dataset, in which 943 users
rated 1682 movies. The resulting matrix was of size 1682 ⇥ 943, where the first dimension
represented movies and the second dimension represented users. The entire matrix had
93.7% missing entries. Test data was further generated by randomly undersampling the
rating matrix by 5. The algorithms were then run on the test data and root mean squared
errors were calculated over all available entries. To obtain a multiscale partition of the
matrix, I sorted the users according to their age along the second dimension and partitioned
them evenly into age groups.

Figure 3.11 shows a multiscale low rank reconstructed user rating matrix. Using multiple
scales of block-wise low rank matrices, correlations in di↵erent age groups were captured. For
example, one of the scales shown in Figure 3.11 captures the tendency that younger users
rated Star Wars higher whereas the more senior users rated Gone with the Wind higher.
The multiscale low rank reconstructed matrix achieved a root mean-squared-error of 0.9385
compared to a root mean-squared-error of 0.9552 for the low rank reconstructed matrix.

3.11 Conclusion

I have presented a multiscale low rank matrix decomposition method that combines both
multiscale modeling and low rank matrix decomposition. Using a convex formulation, I can
solve for the decomposition e�ciently and exactly, provided that the multiscale signal com-
ponents are incoherent. I provided a theoretical analysis of the convex relaxation for exact
decomposition, which extends the analysis in Chandrasekaren et al. [28], and an analysis
for approximate decomposition in the presence of additive noise, which extends the anal-
ysis in Agarwal et al. [29]. I also provided empirical results that the multiscale low rank
decomposition performs well on real datasets.

I would also like to emphasize that the proposed decomposition empirically perform well
even with the addition of noise, and hence in practice does not require manual tuning.
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While some form of theoretical guarantees for the regularization parameters is provided in
the approximate decomposition analysis, complete theoretical guarantees are not provided,
especially for noiseless situations, and would be valuable for future work.

My experiments show that the multiscale low rank decomposition improves upon the low
rank + sparse decomposition in a variety of applications. I believe that more improvement
can be achieved if domain knowledge for each application is incorporated with the multiscale
low rank decomposition. For example, for face shadow removal, prior knowledge of the
illumination angle might be able to provide a better multiscale partition. For movie rating
collaborative filtering, general demographic information and movie types can be used to
construct multiscale partitions in addition to age information.

3.12 Proof of Theorem 3.5.1

In this section, I provide a proof of Theorem 3.5.1 and show that if {Xi}Ji=1 satisfies a
deterministic incoherence condition, then the proposed convex formulation (3.1) recovers
{Xi}Ji=1 from Y exactly. The proof makes use of the dual certificate common in such proofs.
I will begin by proving a technical lemma collecting three inequalities.

Lemma 3.12.1. For i = 1, . . . , J , the following three inequalities hold,

kPTi(X)k⇤(i)  kXk⇤(i) for any matrix X (3.14)

kP
T

?
i
(X)k⇤(i)  kXk⇤(i) for any matrix X (3.15)

kNjk⇤(i)  µijkNjk⇤(j) for j 6= i and Nj 2 Tj (3.16)

Proof. To show the first inequality (3.14), I recall that kXk⇤(i) = maxb2Pi kBb(X)kmsv. Then,
using the variational representation of the maximum singular value norm, I obtain,

kPTi(X)k⇤(i) = max
b2Pi

max
u,v

uHBb(PTi(X))v

= max
b2Pi

max
u2col(Bb(Xi)) or
v2row(Bb(Xi))

uHBb(X)v

 max
b2Pi

max
u,v

uHBb(X)v = kXk⇤(i)

where col and row denote the column and row spaces respectively.
Similarly, I obtain the second inequality (3.15):

kP
T

?
i
(X)k⇤(i) = max

b2Pi

max
u2col?(Bb(Xi)) and

v2row?(Bb(Xi))

uHBb(X)v

 max
b2Pi

max
u,v

uHBb(X)v = kXk⇤(i)
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The third inequality (3.16) follows from the incoherence definition that µij � kNjk⇤(i)/kNjk⇤(j)
for any non-zero Nj.

Next, I will show that if I can choose some parameters to “balance” the coherence between
the scales, then the block-wise row/column spaces {Ti}Ji=1 are independent, that is

P
J

i=1 Ti is
a direct sum. Consequently, each matrix N in the span of {Ti}Ji=1 has a unique decomposition
N =

P
J

i=1 Ni, where Ni 2 Ti.

Proposition 3.12.2. If I can choose some positive parameters {�i}Ji=1 such that

X

j 6=i

µij

�j

�i
< 1, for i = 1, . . . , J (3.17)

then I have
Ti \

X

j 6=i

Tj = {0}, for i = 1, . . . , J (3.18)

In particular when J = 2, the condition on {µ12, µ21} reduces to µ12µ21 < 1, which coincides
with Proposition 1 in Chandrasekaren et al. [28]. I also note that given µij, I can obtain
{�i}Ji=1 that satisfies the condition

P
j 6=i

µij�j < �i by solving a linear program.

Proof. Suppose by contradiction that there exists {�i}Ji=1 such that
P

j 6=i
µij�j/�i < 1, but

Ti \
P

j 6=i
Tj 6= {0}. Then there exists {Ni 2 Ti}Ji=1 such that

P
J

i=1 �iNi = 0 and not all Ni

are zero. But this leads to a contradiction because for i = 1, . . . , J ,

kNik⇤(i) = k �
X

j 6=i

�j

�i
Njk⇤(i)


X

j 6=i

�j

�i
µijkNjk⇤(j)

 (
X

j 6=i

�j

�i
µij)max

j 6=i

kNjk⇤(j)

< max
j 6=i

kNjk⇤(j),

where I have used equation (3.16) for the first inequality, Holder’s inequality for second
inequality and

P
j 6=i

µij�j/�i < 1 for the last inequality. Hence, none of {kNik⇤(i)}Ji=1 is the
largest of the set, which is a contradiction.

The next theorem shows an optimality condition of the convex program (3.1) in terms of
its dual solution.
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Theorem 3.12.3 (Lemma 4.2 [43]). {Xi}Ji=1 is the unique minimizer of the convex program
(3.1) if there exists a matrix Q such that for i = 1, . . . , J ,

1. PTi(Q) = �iEi

2. kP
T

?
i
(Q)k⇤(i) < �i

Proof. Consider any non-zero perturbation {�i}Ji=1 to {Xi}Ji=1 such that {Xi + �i}Ji=1

stays in the feasible set, that is
P

J

i=1�i = 0. I will show that
P

J

i=1 �ikXi + �ik(i) >P
J

i=1 �ikXik(i).
I first decompose �i into orthogonal parts with respect to Ti, that is, �i = PTi(�i) +

P
T

?
i
(�i). I also consider a specific subgradient G = [G1 · · ·GJ ]> of

P
J

i=1 �ik ·k(i) at {Xi}Ji=1

such that kP
T

?
i
(Gi)k⇤(i)  �, and hP

T
?
i
(�i) ,PT

?
i
(Gi)i = �ikPT

?
i
(�i)k(i). Then, from the

definition of subgradient and the fact that
P

J

i=1�i = 0, I have,

JX

i=1

�ikXi +�ik(i) �
JX

i=1

�ikXik(i) + h�i ,Gii

=
JX

i=1

�ikXik(i) + h�i ,Gii � h�i ,Qi.

Applying the orthogonal decomposition with respect to Ti and using PTi(Gi) = PTi(Q) =
�iEi, I have

JX

i=1

�ikXi +�ik(i) �
JX

i=1

�ikXik(i) + hPT
?
i
(�i) ,PT

?
i
(Gi)i

� hP
T

?
i
(�i) ,PT

?
i
(Q)i.

Using Holder’s inequality and the assumption for the subgradient Gi, I obtain

JX

i=1

�ikXi +�ik(i) �
JX

i=1

�ikXik(i) + �ikPT
?
i
(�i)k(i)

� kP
T

?
i
(Q)k⇤(i)kPT

?
i
(�i)k(i)

>

JX

i=1

�ikXik(i).

With Proposition 3.12.2 and Theorem 3.12.3, I am ready to prove Theorem 3.5.1.
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Proof of Theorem 3.5.1. Since
P

j 6=i
µij�j/�i < 1/2, by Proposition 3.12.2, Ti \

P
j 6=i

Tj =

{0} for all i. Thus, there is a unique matrix Q in
P

J

i=1 Ti such that PTi(Q) = �iEi. In
addition, Q can be uniquely expressed as a sum of elements in Ti. That is, Q =

P
J

i=1 Qi

with Qi 2 Ti. I now have a matrix Q that satisfies the first optimality condition. In the
following, I will show that it also satisfies the second optimality condition kP

T
?
i
Qk⇤(i) < �i.

If the vector spaces {Ti}Ji=1 are orthogonal, then Qi is exactly �iEi. Because they are not
necessarily orthogonal, I express Qi as �iEi plus a correction term �i✏i. That is, I express
Qi = �i(Ei + ✏i). Putting Qi’s back to Q, I have

Q =
JX

i=1

�i(Ei + ✏i).

Combining the above equation with the first optimality condition (3.12.3), PTi(Q) =
�iEi, I have

P
J

j=1 �jPTi(Ej + ✏j) = �iEi. Since PTi(Ei + ✏i) = Ei + ✏i, rearranging the
equation, I obtain the following recursive expression for ✏i:

✏i = �PTi

 
X

j 6=i

�j

�i
(Ej + ✏j)

!
. (3.19)

I now obtain a bound on kP
T

?
i
(Q)k⇤(i) in terms of ✏i.

kP
T

?
i
(Q)k⇤(i) = kPT

?
i
(
X

j 6=i

�j(Ej + ✏j))k⇤(i)

 k
X

j 6=i

�j(Ej + ✏j)k⇤(i)


X

j 6=i

µij�j(1 + k✏jk⇤(j))

 (
X

j 6=i

µij�j)max
j 6=i

(1 + k✏jk⇤(j))

(3.20)

where I obtain the first inequality from equation (3.14), second inequality from equation
(3.15) and the last inequality from Holder’s inequality.
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Similarly, I obtain a recursive expression for 1 + k✏ik⇤(i) using equation (3.19)

1 + k✏ik⇤(i) = 1 + kPTi(
X

j 6=i

�j

�i
(Ej + ✏j))k⇤(i)

 1 + k
X

j 6=i

�j

�i
(Ej + ✏j)k⇤(i)

 1 +
X

j 6=i

µij

�j

�i
(1 + k✏jk⇤(j))

 1 + (
X

j 6=i

µij

�j

�i
)max

j 6=i

(1 + k✏jk⇤(j))

where I obtain first inequality from equation (3.14), second inequality from equation (3.16)
and the last inequality from Holder’s inequality.

Taking the maximum over i on both sides and rearranging, I have

max
i

(1 + k✏ik⇤(i)) 
1

1�maxi
P

j 6=i
µij

�j

�i

Putting the bound back to equation (3.20) , I obtain

kP
T

?
i
(Q)k⇤(i)  �i

P
j 6=i

µij

�j

�i

1�maxi
P

j 6=i
µij

�j

�i

< �i

(3.21)

where I used
P

j 6=i
µij�j/�i < 1/2 in the last inequality.

Thus, I have constructed a dual certificate Q that satisfies the optimality conditions
(3.12.3) and {Xi}Ji=1 is the unique optimizer of the convex problem (3.1).

3.13 Proof of Theorem 3.6

In this section, I provide a proof of Theorem 3.6, showing that as long as I can choose the
regularization parameters accordingly, I obtain a solution from the convex program (3.4)
that is close to the ground truth {Xi}Ji=1.

I will begin by proving a technical lemma collecting three inequalities. Throughout the
section, I will assume XZ is non-zero for simplicity, so that the subgradient of kXZkfro is
exactly XZ/kXZkfro.

Lemma 3.13.1. For i = 1, . . . , J , the following three inequalities hold,

kXik(i) � kXi +�ik(i)  kPTi(�i)k(i) � kPT
?
i
(�i)k(i) (3.22)
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JX

i=1

�ikPT
?
i
(�i)k(i)  3

JX

i=1

�ikPTi(�i)k(i) (3.23)

kPTi(�i)k(i) 
s

2
X

b2Pi

rankbk�ikfro (3.24)

Proof. I will prove the inequalities in order.
Let me choose a subgradient Gi = Ei +Wi of kXik(i) at Xi such that hWi ,PT

?
i
(�i)i =

kP
T

?
i
(�i)k(i). Then, from the definition of the subgradient, I have,

kXi +�ik(i) � kXik(i) + hGi ,�ii
= kXik(i) + hEi ,PTi(�i)i+ kPT

?
i
(�i)k(i)

� kXik(i) � kPTi(�i)k(i) + kPT
?
i
(�i)k(i)

where I used Holder’s inequality in the end. Re-arranging, I obtain the first inequality.
For the second inequality, I note that since

P
J

i=1 Xi + �i + XZ + �Z = Y, I have
�Z = �

P
J

i=1�i. From the definition of subgradient, I obtain,

�ZkXZ +�Zkfro � �ZkXZkfro + �Zh
XZ

kXZkfro
,�Zi

= �ZkXZkfro �
JX

i=1

�Zh
XZ

kXZkfro
,�ii

� �ZkXZkfro �
JX

i=1

�Z
kXZk⇤(i)
kXZkfro

k�ik(i)

� �ZkXZkfro �
JX

i=1

�i

2
k�ik(i)

� �ZkXZkfro �
JX

i=1

�i

2
kPTi(�i)k(i) �

�i

2
kP

T
?
i
(�i)k(i)

where I obtain the second inequality from Holder’s inequality, the third inequality from the
condition of �i and the last inequality from the triangle inequality.

Since {Xi +�i}Ji=1 and XZ +�Z achieves the minimum objective function, I have

�ZkXZkfro +
JX

i=1

�ikXik(i) � �ZkXZ +�Zkfro +
JX

i=1

�ikXi +�ik(i).
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Substituting back, I obtain,

�ZkXZkfro +
JX

i=1

�ikXik(i) � �ZkXZkfro �
JX

i=1

�i

2
kPTi(�i)k(i) �

�i

2
kP

T
?
i
(�i)k(i)

+
JX

i=1

�ikXik(i) � �ikPTi(�i)k(i) + �ikPT
?
i
(�i)k(i)

Cancelling and re-arranging, I obtain the desired inequality (3.23) ,

JX

i=1

�ikPT
?
i
(�i)k(i)  3

JX

i=1

�ikPTi(�i)k(i)

For the third inequality, recall that for any rank-r matrix X, its nuclear norm kXknuc
is upper bounded by

p
rkXkfro. Moreover, the projection of any matrix Y to the column

and row space T of a rank r matrix is at most rank-2r, that is rank(PT (Y))  2r. Hence, I
obtain,

kPTi(�i)k(i) =
X

b2Pi

kBb(PTi(�i))knuc


X

b2Pi

p
2rankbkBb(�i)kfro


sX

b2Pi

2rankbk�ikfro

where the last inequality follows from Cauchy-Schwatz inequality and the fact that
P

b2Pi
kBb(�i)k2fro =

k�ik2fro.

With these three inequalities, I now proceed to prove Theorem 3.6.

Proof of Theorem 3.6. From the optimality of {Xi+�i}Ji=1, I have the following inequality,

�ZkXZ +�Zkfro +
JX

i=1

�ikXi +�ik(i)

 �ZkXZkfro +
JX

i=1

�ikXik(i)

Re-arranging, I obtain,

kXZ +�Zkfro � kXZkfro

 1

�Z

JX

i=1

�i

�
kXik(i) � kXi +�ik(i)

�
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For convenience, let me define⇤T =
P

J

i=1 �ikPTi(�i)k(i) and⇤T? =
P

J

i=1 �ikPT
?
i
(�i)k(i).

Then, from Lemma 3.13.1 equation (3.22), I obtain,

kXZ +�Zkfro � kXZkfro 
1

�Z
(⇤T �⇤T?) (3.25)

I would like to keep only �Z on the left hand side and cancel XZ . To do this, I multiply
both sides of equation (3.25) with kXZ+�Zkfro+kXZkfro. Then, using (a+b)(a�b) = a

2�b2,
I expand the left hand side as:

L.H.S. = kXZ +�Zk2fro � kXZk2fro
= k�Zk2fro + 2hXZ ,�Zi

Recall that �Z = �
P

J

i=1�i, I obtain the following lower bound for the left hand side:

L.H.S. = k�Zk2fro � 2hXZ ,

JX

i=1

�ii

� k�Zk2fro � 2
JX

i=1

kXZk⇤(i)k�ik(i)

� k�Zk2fro �
kXZkfro
�Z

JX

i=1

�ik�ik(i)

� k�Zk2fro �
kXZkfro
�Z

(⇤T +⇤T?)

where I used Holder’s inequality for the first inequality, the condition for �i for the second
inequality, and the triangle inequality for the last inequality.

I now turn to upper bound the right hand side. I know kXZ +�Zkfro  kXZkfro+(⇤T �
⇤T?)/�Z from equation (3.25). Hence, I obtain,

R.H.S. = (kXZ +�Zkfro + kXZkfro)
1

�Z
(⇤T �⇤T?)

 (2kXZkfro +
1

�Z
(⇤T �⇤T?))

1

�Z
(⇤T �⇤T?)

Using Lemma 3.13.1 equation (3.23), I have,

R.H.S.  2
kXZkfro
�Z

(⇤T �⇤T?) +
1

�2Z
(⇤T �⇤T?)2

 2
kXZkfro
�Z

(⇤T �⇤T?) + 16
1

�2Z
⇤2

T

(3.26)

Combining and simplifying the lower bound and the upper bound, I obtain,

k�Zk2fro  3
kXZkfro
�Z

⇤T + 16
1

�2Z
⇤2

T
(3.27)
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I now lower bound k�Zk2fro = k
P

J

i=1�ik2fro by individual terms:

k
JX

i=1

�ik2fro =
JX

i=1

k�ik2fro + h�i ,

X

j 6=i

�ji

�
JX

i=1

k�ik2fro � k�ik(i)
X

j 6=i

k�jk⇤(i)

where I used Holder’s inequality for the last inequality.
Now, using the assumption that both kXjk⇤(i) and kXj +�jk⇤(i) are bounded by ↵ij. I

have,

k
JX

i=1

�ik2fro �
JX

i=1

k�ik2fro � k�ik(i)
X

j 6=i

2↵ij

�
JX

i=1

k�ik2fro � �ik�ik(i)

�
JX

i=1

k�ik2fro �⇤T �⇤T?

�
JX

i=1

k�ik2fro � 4⇤T

where I used the triangle inequality for the second inequality and Lemma 3.13.1 for the last
inequality.

Substituting the lower bound back to equation (3.27), I have

JX

i=1

k�ik2fro  (3
kXZkfro
�Z

+ 4)⇤T + 16
1

�2Z
⇤2

T
(3.28)

I now turn to upper bound the equation. From Lemma 3.13.1, I know that ⇤T P
J

i=1 �i

q
2
P

b2Pi
rankbk�ikfro. Hence, I have,

16⇤2
T
 16

0

@
JX

i=1

�i

s
2
X

b2Pi

rankbk�ikfro

1

A
2

 16

 
JX

i=1

�
2
i
2
X

b2Pi

rankb

!
JX

i=1
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 1

2
�
2
Z

JX

i=1

k�ik2fro
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where I used Cauchy-Schwartz’s inequality for the second inequality and the condition for
�Z for the third inequality. Hence, substituting back to equation (3.28), rearranging and
ignoring constants, I have,

JX

i=1

k�ik2fro .
kXZkfro
�Z

JX

i=1

�i

sX

b2Pi

rankbk�ikfro

Completing the squares with respect to k�ikfro gives us,

JX

i=1

0
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kXZkfro
�Z

�i

sX

b2Pi

rankb

1

A
2

.
JX

i=1

0

@kXZkfro
�Z

�i

sX

b2Pi

rankb

1

A
2

Using the triangle inequality to lower bound the left-hand side, I obtain

JX

i=1

k�ikfro �
kXZkfro
�Z

�i

sX

b2Pi

rankb

.

vuuut
JX

i=1

0

@kXZkfro
�Z

�i

sX

b2Pi

rankb

1

A
2

Using the fact that `1-norm is larger than the `2-norm, and re-arranging give the desired
result,

JX

i=1

k�ikfro .
kXZkfro
�Z

JX

i=1

�i

sX

b2Pi

rankb
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Chapter 4

High Resolution Volumetric Dynamic
MRI from Non-Gated Acquisitions

4.1 Introduction

Three-dimensional (3D) dynamic MRI has become a core technology in a wide variety of
applications, including dynamic contrast enhanced (DCE) imaging [56, 54], pulmonary imag-
ing [57, 5], and flow imaging [58, 59]. A high spatiotemporal resolution realization can pro-
vide comprehensive information in a single scan, greatly simplifying clinical workflow and
reducing overall scan time. By providing volumetric information at a high spatiotemporal
resolution, 3D dynamic MRI can also provide additional information about the underlying
anatomy and physiology, compared to 2D scans.

On the other hand, reconstructing high resolution 3D dynamic MRI is inherently un-
derdetermined and demanding of computation and memory. To mitigate the reconstruction
di�culty, most existing methods rely on view sharing and/or gating. These techniques have
demonstrated their e↵ectiveness in capturing smooth or periodic dynamics, but inherently
fail to represent the full dynamics, including transient contrast injection, irregular breath-
ing, and bulk motion. As described in Chapter 2, view sharing techniques [2, 3, 4] aggregate
k-space data in a sliding window, but have the limitation of smoothing the underlying dy-
namics. Another approach is to impose periodicity assumptions of the underlying dynamics
using gating or data binning [6, 60, 5, 7]. Data sorting can be accomplished by leveraging
external navigator signals or navigators derived from the MR data itself. The drawback
is that when the underlying periodic assumption does not hold, the reconstruction breaks
down and can exhibit severe artifacts.

In this chapter, I focus on reconstructing high resolution 3D dynamic MRI from contin-
uous non-gated acquisitions. Such reconstruction can go beyond the restrictive periodicity
assumption of gating/binning and potentially achieve higher temporal resolution than view
sharing. The main challenge here is that the reconstruction problem is vastly underdeter-
mined, and computationally and memory demanding. In particular, the problem I consider
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requires recovering hundreds of gigabytes of an image from a few gigabytes of measurements.
I propose three innovations to overcome these challenges: 1) a compressed representation

using the multi-scale low rank matrix model (MSLR) described in Chapter 3 to regularize
the problem 2) an objective function formulation that directly solves for the compressed
representation to reduce memory usage, and 3) an algorithm using stochastic optimization
to reduce computation and memory burden.

MSLR was previously studied in Chapter 3 and generalizes low rank (LR), locally low rank
(LLR) [61], and low rank + sparse (L+S) [55] matrix models. The proposed representation
can capture all scales of dynamics, not just local, global, or sparse. Hence, it can obtain a
more accurate and compact signal representation than other LR methods. In Section 4.2, I
will combine the compact MSLR representation with the MRI acquisition model.

A consequence of using this compressed representation is that the underlying dynamic
sequence of images, which requires hundreds of gigabytes of storage, can be represented in
mere few gigabytes. I propose an objective function that directly solves for the compressed
representation. Such an approach makes it feasible to implement the reconstruction on local
workstations. In the context of LR modeling, this is often referred to as the Burer-Monteiro
heuristic, which will be explained in Section 4.3.

Finally, to further reduce computation, I develop a reconstruction algorithm incorporat-
ing stochastic optimization. This reduces the number of Fourier transforms from hundreds
per iteration to a single one per iteration. The idea of using stochastic optimization to
accelerate reconstruction is not new in medical imaging. Examples include the ordered sub-
set algorithms for positron emission tomography reconstruction [62, 63], and the algebraic
reconstruction technique for computed tomography [64]. A recent work [65] also proposed
to use stochastic optimization to accelerate MRI reconstruction. Incorporating stochastic
optimization for the proposed method reduces the reconstruction time from days to hours,
and will be described in more detail in Section 4.4.

I will show that the proposed method, reconstructed at near millimeter spatial resolution
and subsecond temporal resolution, can visualize certain transient contrast dynamics that
are lost in low frame-rate reconstructions. In particular, to compare the proposed method
quantitatively with existing techniques, I evaluate it on simulated dynamic datasets. Then
using in vivo scans, I demonstrate its feasibility in DCE imaging acquired with the 3D
cones trajectory [66] and lung imaging acquired with 3D ultra short time echo (UTE) radial
trajectory [57].

4.2 Forward Model with MSLR

In this section, I will formalize the image acquisition model, and incorporate the MSLR
representation directly into the reconstruction such that it can compactly represent the
underlying volumetric image sequence.

I begin by considering the multi-channel MRI acquisition forward model and divide the
overall scan time into T frames. An approximation that I make here is that for fine enough
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temporal resolution, the underlying image for each frame is static. In particular, given the
dynamic images {xt 2 CN}T

t=1, the following k-space measurements {yt}Tt=1 are acquired,

yt = FtSxt +wt for t = 1, . . . , T (4.1)

where Ft 2 CMC⇥NC is a Fourier sampling operator, S 2 CNC⇥N is a sensitivity map
operator, and wt 2 CMC represents the white Gaussian noise of the acquisition.

Since the number of measurements is much smaller than the total dynamic image size, it
is necessary to impose additional constraints in the reconstruction. As described in Chap-
ter 2, compressed sensing MRI [10] has shown that with an incoherent sampling acquisition,
the underlying signal can be recovered with an e�cient algorithm if it can be represented
compactly using a sparsifying transform. In this chapter, I will use MSLR for compactly
representing 3D dynamic images.

Multiscale Low Rank Matrix Model

= + +

Spatiotemporal Matrix Representation
Time

= + +

Time

Figure 4.1: Illustration of the multi-scale low rank matrix model.

LR modeling [21, 67] is e↵ective at representing static tissues, global contrast changes or
smooth dynamics, and has shown to be e↵ective in many dynamic imaging applications [68,
69, 70, 71]. A rarely used advantage is that explicit LR factorization can drastically reduce
memory usage by representing dynamic images with a few basis vectors. This memory
saving property was also explored in the work of Christodoulou et al. [7], and is crucial in
my application as detailed in Section 4.3.
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On the other hand, LR representation does not capture the spatiotemporal locality of
the underlying components. Even if most dynamics are concentrated locally in space, such
as contrast dynamics in the blood vessels, LR still requires many basis vectors, each of which
has the size of the full image. To mitigate this, LLR was proposed by Trazasko et al. [61] to
better capture spatial locality, and has been shown to represent dynamics more accurately
in DCE imaging [54]. Another direction to enhance LR is the L+S representation [55].
L+S separately represents static background dynamics as a LR matrix and fast transient
dynamics as a sparse matrix.

Here I adopt the MSLR representation that generalizes the above mentioned LR models,
to capture dynamics at multiple scales. In MSLR, the spatiotemporal matrix is represented
as a sum of block-wise low rank matrices with increasing scales of block sizes, as illustrated
in Figure 4.1.

Concretely, for scale i = 1, . . . , J , I consider a multiscale partition {Pi}Ji=1, and let
{{Lb 2 CNi⇥rankb}b2Pi}Ji=1 be the block-wise spatial bases, and {{Rb 2 CTi⇥rankb}b2Pi}Ji=1

be the block-wise temporal bases. The volumetric image sequence is then represented as

xt =
JX

i=1

X

b2Pi

BH

b
Lb[Rb]

H

t
, (4.2)

where the operator BH

b
2 CN⇥Ni embeds the bth block matrix in the ith scale into the full

image, and [Rb]t extracts the block temporal bases corresponding to time t. Here, I note
that Lb and Rb are not orthonormal matrices because they incorporate the singular values
in them.

The overall forward model is then given by,

yt = FtS

 
JX

i=1

X

b2Pi

BH

b
Lb[Rb]

H

t

!
+wt. (4.3)

4.3 Objective function using the Burer-Monteiro
Heuristic

Given the forward model, one way to impose low rank constraints is through convex relax-
ation minimizing the nuclear norm [24, 33, 25], or equivalently the sum of singular values.
In particular, let k k⇤ denote the nuclear norm, one possible formulation is to consider the
following nuclear norm regularized problem,

minimize
{Xb}b

TX

t=1

�����FtS

 
JX

i=1

X

b2Pi

BH

b
[Xb]t

!
� yt

�����

2

2

+
JX

i=1

X

b2Pi

�ikXbk⇤ (4.4)

where �i is the regularization parameter for scale i. Nuclear norm formulations enjoy rich
theoretical guarantees, and in particular can recover the underlying low rank matrix when the
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sensing model is incoherent [24, 33, 25]. In addition, MSLR using nuclear norm minimization
was previously studied in Chapter 3, and has been shown that the decomposition can be
recovered when {�i}i are chosen proportional to:

�i /
p
Ni +

p
Ti +

p
min(Ni, Ti) log |Pi|. (4.5)

On the other hand, a significant downside of the convex formulation is that it uses
tremendously more memory since the explicit matrices are stored in all scales even if they
are extremely low rank. In particular, for image size 320⇥ 320⇥ 320 and 500 frames, merely
storing the image using complex single precision floats requires 125 GBs. Applying itera-
tive algorithms would require a few times more memory as workspace, which can approach
terabytes. Local workstations simply cannot handle such memory demand.

Rather than minimizing the convex problem (4.4), I consider the Burer-Monteiro heuris-
tic [72, 33] to directly solve for the compressed representation using the following objective
function:

minimize
{Lb,Rb}b

TX

t=1

�����FtS

 
JX

i=1

X

b2Pi

BH

b
Lb[Rb]

H

t

!
� yt

�����

2

2

+
JX

i=1

X

b2Pi

�i

�
kLbk2F + kRbk2F

�
(4.6)

The primary benefit of this formulation is that it uses much less memory, and, for a
typical 3D volum, can even fit the variables in GPUs. Existing works [72, 33] have shown
that the global minimum of this non-convex problem is equivalent to the global minimum
of the convex problem using nuclear norm, as long as the matrix rank prescribed is larger
than the underlying rank. More surprisingly, recent theoretical results [73, 74] have shown
that under the usual compressed sensing incoherence condition (such as restricted isometry
property), alternating minimization can reach the global minimum even when solving the
non-convex formulation of the low rank factorization.

4.4 Stochastic Alternating Minimization

Since the objective function (4.6) is reduced to a linear least squares problem when either L
or R is fixed, a natural way of optimizing it is through alternating minimization:

{R̂b}b = argmin
{Rb}b

TX

t=1

�����FtS
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{L̂b}b = argmin
{Lb}b

TX

t=1

�����FtS

 
JX

i=1

X

b2Pi

BH

b
Lb[R̂b]

H

t

!
� yt

�����

2

2

+
JX

i=1

X

b2Pi

�ikLbk2F

(4.7)

However, the above alternating minimization iteration still requires performing many
non-uniform fast Fourier transforms per iteration, one for each time frame. To address this,
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I propose to apply stochastic optimization techniques to accelerate the reconstruction, which
updates the bases using a random subset of the measurements.

Concretely, in each iteration, I randomly pick a time index t, and perform alternating
minimization stochastically as follows:

{[R̂b]t}b = argmin
{[Rb]t}b

�����FtS
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b
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+
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�ik[Rb]tk2F (4.8)

{L̂b}b = argmin
{Lb}b
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kLb � L̂bk2F

◆

(4.9)
where ↵ is a step-size parameter to control how much to update L̂b. The L̂b update step is
generally referred to as an implicit update or stochastic proximal update [75]. It is known
to converge to an approximate stationary point in expectation, and more robust to the
step-size choice ↵ than stochastic gradient methods [76]. Each of the sub-problems in (4.8)
and (4.9) can be approximated using the conjugate gradient algorithm. Figure 4.2 shows an
illustration of the proposed algorithm.

Compute Temporal
Bases                 for time t

Update Spatial
Bases       

k-space over time

Random Select

Figure 4.2: Illustration of the algorithm. Alternating minimization is performed stochastically
using a random subset of the measurements.
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4.5 Methods

The proposed reconstruction was implemented in Python using the package SigPy [77] on
a workstation with two Intel Xeon Gold CPUs and four Titan Xp GPUs. All operations,
except loading the data and splitting into frames, were performed using a GPU. Here, I
note that the proof-of-concept implementation only used one GPU for each reconstruction
instance, and can be sped up using multiple GPUs.

The number of scales in MSLR was determined by the GPU memory constraint. In
particular, I used three scales for the experiments. The first scale used a block size in which
the spatial bases {L̂b}b cover the entire sptial dimension and the temporal bases {R̂b}b cover
all frames. The second halved the block size in each dimension, including time, by two,
and the last further halved it each dimension by two. To prevent blocking artifacts, the
second and the third scales had overlapping blocks, with each block overlapping by half the
block size in all spatial dimensions. In addition, the overlapped parts are weighted by the
Hann window to provide a smooth transition between blocks. Each voxel in the end was
represented by eight basis vectors in each scale, including the overlapped bases.

The spatial bases {L̂b}b were initialized as white Gaussian noise, and the temporal bases
{R̂b}b were initialized as zeros. Each sub-problem in the alternating minimization was
approximated using the conjugated gradient algorithm with 10 iterations, and initialized
with the previous iterate solution.

I evaluated the proposed method on simulated dynamic datasets to compare the proposed
method quantitatively with existing reconstruction methods. I also demonstrated the feasi-
bility of the proposed method in DCE datasets acquired with the 3D cones trajectory [66]
and lung datasets acquired with the 3D UTE radial trajectory [57].

Simulation

I applied the proposed method on a simulated data to compare it with three other low rank
reconstructions: LR, LLR, and L+S. In particular, MR-XCAT [78], a realistic numerical 2D
dynamic phantom simulating DCE and respiratory motion, was used for the simulation. A
perfusion phantom was generated with 50 frames, 224⇥192 matrix size, 8 coils, and TR=2ms,
and sampled in k-space using a golden-angle radial trajectory. Each frame contains 30 spokes.
Each spoke has 224 readout points. Complex white Gaussian noise was added in k-space
with standard deviation equal to 0.001 of the maximum k-space magnitude. Peak-signal-
to-noise-ratio (PSNR) was used as the evaluation metric. The regularization parameters for
all methods were chosen between 0.001 to 0.1 with step 0.01 to maximize the PSNR. The
locally low rank implementation used a spatial block size of 32 ⇥ 32 and a temporal block
size of 50, which covered all frames.
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Dynamic Contrast Enhanced Imaging Acquired with the 3D
Cones Trajectory

I applied the proposed reconstruction on two DCE datasets from pediatric patients to quali-
tatively evaluate its performance. The first dataset has regular respiratory motion and little
bulk motion. The second dataset has repeated large bulk motion throughout the scan. I
selected this dataset in order to stress test the reconstruction limits. The patient scans used
a field-of-view (FOV) that is smaller than the patient body to reduce the gridding recon-
struction complexity. For iterative reconstruction, the actual FOV was required to prevent
artifacts from model mismatch. The reconstruction matrix size was estimated by setting a
threshold of 0.01 of the maximum amplitude of a single-frame low resolution gridding re-
construction with a resolution of about 4 mm3. To evaluate how di↵erent a high frame-rate
reconstruction is from a standard low frame-rate one, I also reconstructed the datasets with
one tenth the frame-rate.

In particular, the first DCE dataset was acquired on a GE 3T scanner using a spoiled
gradient echo (SPGR) sequence with a 3D golden-angle cones trajectory, 16-channel coil
array, an overall scan time of 4 minutes 40 seconds, TE=0.1 ms, TR=5.8 ms, flip angle=14
degrees, and bandwidth=125 kHz. The number of readout points is 624, and the number of
interleaves is 48129. The spatial resolution was reconstructed at 1 ⇥ 1 ⇥ 2.8 mm3, and the
matrix size was reconstructed at 392⇥318⇥165. The high frame-rate result was reconstructed
with 580 ms temporal resolution, and the low frame-rate result was reconstructed with 5.8
s temporal resolution.

The second DCE dataset was acquired on a GE 3T scanner, using a SPGR sequence with
a 3D golden-angle cones trajectory, 12-channel coil array, an overall scan time of 5 minutes 11
seconds, TE=0.1 ms, TR=9.6 ms, flip angle 15 degrees, bandwidth=125 kHz. The number of
readout points was 711, and the number of interleaves was 41861. The spatial resolution was
reconstructed at 1⇥ 1⇥ 1.8 mm3, and the matrix size was reconstructed at 370⇥ 163⇥ 126.
The high frame-rate result was reconstructed with 622ms temporal resolution, and the low
frame-rate result was reconstructed with 6.2 s temporal resolution.

Pulmonary Imaging Acquired with the 3D UTE Radial Trajectory

I applied the proposed reconstruction on two lung datasets from adult patients to evaluate
its performance qualitatively. Similar to the DCE experiments, the first dataset has variable
rate respiratory motion and little bulk motion. The second dataset has sudden motion such
as coughing throughout the scan and is meant to stress test the reconstruction limits. Similar
to the DCE datasets, the patient scans have a small prescribed FOV. The reconstruction
matrix size was estimated the same as the DCE experiments.

In particular, the first lung dataset was acquired on a GE 3T Discovery MR750 clinical
scanner (GE Healthcare, Waukesha, WI) using an optimized UTE sequence [57] with a 3D
bit-reversed radial trajectory, 8-channel coil array, an overall scan time of 4 minutes 18
seconds, TE=80 µs, TR=3.4 ms, flip angle 4 degrees, and sampling bandwidth=250 kHz.
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The number of readout points was 654, and the number of interleaves was 75768. The spatial
resolution was reconstructed at 1.25⇥1.25⇥1.25 mm3, and the matrix size was reconstructed
at 353⇥ 197⇥ 332. The temporal resolution was reconstructed at 515 ms.

The second lung dataset was acquired on a GE 3T Discovery MR750 clinical scanner (GE
Healthcare, Waukesha, WI) using an optimized UTE sequence [57] with a 3D bit-reversed
radial trajectory, 8-channel coil array, an overall scan time of 4 minutes 18 seconds, TE=80
µs, TR=3.4 ms, flip angle 4 degrees, and sampling bandwidth=250 kHz. The number of
readout points was 654, and the number of interleaves was 75768. The spatial resolution
was reconstructed at 1.25 ⇥ 1.25 ⇥ 1.25 mm3, and the matrix size was reconstructed at
327⇥ 183⇥ 396. The temporal resolution was reconstructed at 515 ms.

4.6 Results

In the spirit of reproducible research, I provide a software package in Python to reproduce
the results described in this chapter. The software package can be downloaded from:

https://github.com/mikgroup/low_rank_recon.git

Simulation

Figures 4.3 and 4.4 show the reconstructions of the MRXCAT phantom using LR, LLR,
L+S and the proposed MSLR representations (full-length video at: https://doi.org/10.
6084/m9.figshare.7466579). The proposed MSLR showed the least amount of streaking
artifacts, compared to other methods. These artifacts are more apparent during contrast
enhancement as pointed out by the red arrows in Figure 4.3.

All methods display certain temporal artifacts, but overall LLR and MSLR show more
accurate dynamics. In particular, in Figure 4.4, the red arrows point to ghosting artifacts
from other frames in all methods except the proposed MSLR. The yellow arrows point to
contrast mismatch compared to the ground truth in all methods except LLR. These artifacts
are common in LR methods when the underlying dynamics cannot be represented with the
few number of bases. Both LR and L+S also display blurring artifacts in the temporal
profiles. PSNRs for LR, LLR, L+S, and MSLR were respectively 35.99 dB, 34.80 dB, 36.04
dB, and 36.76 dB, which match with the visual assessment.

Dynamic Contrast Enhanced Imaging Acquired with the 3D
Cones Trajectory

Figure 4.5 shows the high frame-rate and low frame-rate reconstructions of the first DCE
dataset (full-length video at: https://doi.org/10.6084/m9.figshare.7453178). In the
high frame-rate reconstruction, contrast injection dynamics faster than respiration are nicely
shown, such as those in the heart and in the blood vessels. From the video, slight bulk motion,

https://github.com/mikgroup/low_rank_recon.git
https://doi.org/10.6084/m9.figshare.7466579
https://doi.org/10.6084/m9.figshare.7466579
https://doi.org/10.6084/m9.figshare.7453178
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Ground Truth LR LLR L+S Proposed: MSLR

Figure 4.3: Reconstructions of the MRXCAT phantom using LR, LLR, L+S and the proposed
MSLR representations (full-length video at: https://doi.org/10.6084/m9.figshare.7466579).
Frames during contrast injection are shown. The proposed method with MSLR shows the least
amount of streaking artifacts, compared to other methods as pointed out by the red arrows. Overall,
it also achieves the highest PSNR.

pointed out by the white arrows, was observed when the contrast was injected. Respiratory
motion was also observed throughout the scan. For the low frame-rate reconstruction, the
contrast injection dynamics are all combined into one frame. Because of the averaging e↵ect
over time, the contrast amplitude is also much less than the one in the high frame-rate
reconstruction. More artifacts can also be seen in the images, even in the post-contrast
image, which might be due to the respiratory motion.

Figure 4.6 shows the corresponding MSLR decomposition of the high frame-rate recon-
struction (full-length video at: https://doi.org/10.6084/m9.figshare.7453232). The
global scale mainly captures the respiratory motion, whereas the finer scales mainly cap-
ture localized dynamics such as contrast injection dynamics in the heart and blood vessels.
This matches the modelling assumption that the local block-wise bases can capture localized
dynamics more compactly than the global block-wise bases.

Figure 4.7 shows the high frame-rate and low frame-rate reconstructions of the second
DCE dataset (full-length video at: https://doi.org/10.6084/m9.figshare.7453175). In
the high frame-rate reconstruction, the contrast injection dynamic from the left arm blood
vessel can be visualized nicely. From the video, the contrast injection also caused an ex-
treme bulk motion, creating severe artifacts afterwards. As soon as the body returned to
the original position, the image quality improved, which is also seen in the post-contrast
image. In the low frame-rate reconstruction, all frames with contrast injection dynamics
were corrupted by the bulk motion. More artifacts can also be seen in the images, which
might be due to the respiratory motion.

https://doi.org/10.6084/m9.figshare.7466579
https://doi.org/10.6084/m9.figshare.7453232
https://doi.org/10.6084/m9.figshare.7453175
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Figure 4.4: Reconstructions of the MRXCAT phantom using LR, LLR, L+S and the proposed
MSLR representations (full-length video at: https://doi.org/10.6084/m9.figshare.7466579).
Frames after contrast injection are shown, along with the temporal profiles indicated by the blue
dashed lines. All methods display certain temporal artifacts, but overall LLR and MSLR show more
accurate dynamics. The red arrows point to ghosting artifacts from other frames in all methods
except the proposed MSLR. The yellow arrows point to contrast mismatch compared to the ground
truth in all methods except LLR. Both LR and L+S also display blurring artifacts in the temporal
profiles.

Pulmonary Imaging Acquired with the 3D UTE Radial Trajectory

Figure 4.8 shows a respiratory cycle excerpt of the first lung dataset (full length video at:
https://doi.org/10.6084/m9.figshare.7453229). From the video, irregular breathing
with variable rates can be observed. Despite this, the pulmonary structures, such as blood
vessels, can be visualized clearly each cycle as seen in the figure. The result matches the
modeling assumption that global and recurrent dynamics can be well represented with LR
models. At the same time, the proposed reconstruction does not require an explicit estimate
of the respiratory signal that is needed in gating reconstruction, and hence is robust to errors
associated with it.

Figure 4.9 shows a respiratory cycle excerpt of the second lung dataset (full length video
at: https://doi.org/10.6084/m9.figshare.7453226). From the video, coughing can be
observed throughout the scan, resulting in poor image quality whenever it occurs. However,
when the subject returns to a more regular breathing pattern, image quality also improves
significantly. This shows that MSLR is able to localize the artifacts in time. Thus, the
extracted images from a single respiratory cycle shown in the figure are able to show certain

https://doi.org/10.6084/m9.figshare.7466579
https://doi.org/10.6084/m9.figshare.7453229
https://doi.org/10.6084/m9.figshare.7453226
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Figure 4.5: High frame-rate and low frame-rate reconstructions of the first DCE dataset (full-length
video at: https://doi.org/10.6084/m9.figshare.7453178). In the high frame-rate reconstruc-
tion, contrast injection dynamics faster than respiration are nicely shown, such as those in the heart
and in the blood vessels. From the video, slight bulk motion, pointed out by the white arrows,
was observed when the contrast was injected. Respirator motion was also observed throughout the
scan. In the low frame-rate reconstruction, the contrast injection dynamics were all combined into
one frame. Because of he averaging e↵ect over time, the contrast amplitude was also much less
than the one in the high frame-rate reconstruction. More artifacts can also be seen in the images,
even in the post-contrast image, which might be due to the trespiratory motion.

detailed pulmonary structures, such as blood vessels.

https://doi.org/10.6084/m9.figshare.7453178
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Figure 4.6: The MSLR decomposition of the DCE reconstruction shown in Figure 4.5 (full-length
video at: https://doi.org/10.6084/m9.figshare.7453232). The global scale mainly captures
the respiratory motion, whereas finer scales mainly capture localized dynamics such as contrast
injection dynamics in the heart and blood vessels. This matches the expectation that the local
block-wise bases can capture localized dynamics more compactly than the global block-wise bases.

4.7 Discussion

I have developed a method to reconstruct high spatiotemporal resolution 3D dynamic images
from non-gated continuous acquisitions. The reconstruction problem considered is vastly
underdetermined, and computationally and memory demanding. Using MSLR, the proposed
method can greatly compress dynamic images on the order of 100 gigabytes to only a few
gigabytes, as shown in Figure 4.6. Using the Burer-Monteiro heuristic, the reconstruction
can directly optimize for the compressed representation, thereby allowing it to fit on GPU

https://doi.org/10.6084/m9.figshare.7453232
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Figure 4.7: High frame-rate and low frame-rate reconstructions of the second DCE dataset (full-
length video at: https://doi.org/10.6084/m9.figshare.7453175). In the high frame-rate re-
construction, the contrast injection dynamic from the left arm blood vessel can be visualized nicely.
From the video, the contrast injection also caused a global shift of the subject body, creating se-
vere artifacts afterwards. As soon as the body returned to the original position, the image quality
improved, which is also seen in the post-contrast image in the figure. In the low frame-rate recon-
struction, all frames with contrast injection dynamics were corrupted by the bulk motion. More
artifacts can also be seen in the images, which might be due to the respiratory motion.

memory. Finally incorporating stochastic optimization, the runtime for the resulting method
was further reduced.

In the simulation experiment comparing against LR, LLR and L+S, the proposed MSLR
representation results in the highest PSNR, the least streaking artifacts, and in general more
accurate dynamics. LLR also provides accurate dynamics, but su↵ers from low reconstruc-
tion PSNR, and higher level of streaking artifacts. This is because LLR does not leverage
the global nature of the background tissues. L+S performs slightly better than LR in terms
of PSNR, but both of them have more temporal blurring. Since MSLR incorporates LR,
LLR, and L+S, it is able to combine the strengths of each method.

The experimental results show that localized dynamics faster than respiration can be
visualized with the proposed reconstruction method. For example, Figures 4.5 and 4.7 and
the associated videos show contrast dynamics in the heart and blood vessels that are faster
than respiration in the high frame-rate reconstructions, whereas most of them are lost in the
low frame-rate reconstructions. The MSLR decomposition in Figure 4.6 shows that these
localized dynamics are mostly captured using the finer scales. Global and recurrent dynamics
can also be visualized well with the proposed reconstruction. Figure 4.8 and the associated

https://doi.org/10.6084/m9.figshare.7453175
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Figure 4.8: A respiratory cycle excerpt of the first lung dataset (full length video at: https:

//doi.org/10.6084/m9.figshare.7453229). From the video, irregular breathing with variable
rates can be observed. Despite this, the pulmonary structures, such as blood vessels, can be
visualized clearly when a cycle is extracted, as seen in the figure. The result matches the modeling
assumption that global and recurrent dynamics can be well represented with LR models. At the
same time, the proposed reconstruction does not require an explicit estimate of the respiratory
signal that is needed in gating reconstruction, and hence is robust to errors associated with it.

Inhalation Exhalation

Figure 4.9: A respiratory cycle excerpt of the second lung dataset (full length video at: https://
doi.org/10.6084/m9.figshare.7453226). From the video, coughing can be observed throughout
the scan, resulting in poor image quality whenever it occurs. However, when the subject returns
to a more regular breathing pattern, image quality also improves significantly. This shows that
MSLR, though not able to resolve sudden motion like coughing, is able to localize the artifacts in
time. Thus, the extracted images from a single respiratory cycle shown in the figure are able to
show certain detailed pulmonary structures, such as blood vessels.

video shows detailed pulmonary structures despite of the irregular breathing rates. These
types of motion are represented by the global LR component in the MSLR decomposition as
demonstrated in Figure 4.6. Although gating methods might be able to handle variable rate
breathing, the proposed reconstruction does not require an explicit estimate of the respiratory
signal. Thus, it can be robust to errors associated with respiratory signal estimation.

However, bulk motion still poses a challenge for MSLR and results in artifacts in the
reconstructions. In particular, the video for Figure 4.7 shows severe artifacts when the
subject’s body shifted entirely, and the video for Figure 4.9 displays noise-like artifacts

https://doi.org/10.6084/m9.figshare.7453229
https://doi.org/10.6084/m9.figshare.7453229
https://doi.org/10.6084/m9.figshare.7453226
https://doi.org/10.6084/m9.figshare.7453226
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when the subject coughed. This is because MSLR inherently does not incorporate motion
explicitly, and bulk motion is LR neither globally or locally. On the other hand, in Figure 4.7
and in the corresponding video, as soon as the body returns to the regular position, the image
quality improves. Since MSLR exploits the time locality of the dynamics, even though the
bulk motion cannot be fully resolved, it only a↵ects nearby frames in the reconstruction.
In comparison, with gating reconstruction, bulk motion can corrupt the entire respiratory
phase, and even a↵ect all phases with joint temporal reconstructions.

One might ask what is the finest temporal resolution one can get using the proposed
method. In the experiments, 500 frames were used to provide a temporal resolution of about
0.5 seconds in order to visualize respiratory motion. I have tried 1000 frames, but the recon-
struction quality remains similar, which indicates the temporal resolution for the proposed
reconstruction has not been stress-tested yet. Fundamentally, the number of measurements
has to be greater than the number of variables in the compressed representation. This sets
a theoretical limit, which prevents reconstructing, for example, only one frame per one TR.
However, such lower bound is also quite loose. Practically, like other compressed sensing
reconstruction methods, the signal-to-noise ratio is the dominant factor that limits the tem-
poral resolution. Of course, higher temporal resolution can be achieved if a lower spatial
resolution can be tolerated.

4.8 Conclusion

I presented a method to reconstruct high spatiotemporal resolution 3D dynamic MRI data
from continuous non-gated acquisitions. Transient dynamics, such as localized contrast
dynamics, that are lost in low frame-rate reconstructions can be seen in my results. The
proposed method also shows detailed pulmonary structures for respiratory motion at variable
rates. Finally, the proposed reconstruction is robust to bulk motion by localizing the artifacts
in time.
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Chapter 5

Accelerating Convergence for
Non-Cartesian MRI Reconstructions

5.1 Introduction

Non-Cartesian trajectories can o↵er many benefits based on the properties of each trajec-
tory. Spiral [79, 80] and cones trajectories [66], for example, can be designed to traverse
k-space very e�ciently. Such rapid k-space coverage is suitable for fast imaging applications,
including coronary imaging [80], and arterial spin labeled perfusion imaging [81]. Also, many
non-Cartesian trajectories, such as radial [82] and projection reconstruction [83], naturally
sample low-frequency regions densely. This can provide auto-calibration regions for parallel
imaging (PI), and robustness to motion for dynamic applications. Finally, variable den-
sity sampling [84] property is more adapted to signal energy than uniform sampling. This
can result in less coherent undersampling artifacts in the wavelet transform domain. Hence,
variable density non-Cartesian trajectories are often used with compressed sensing (CS) [10].

On the other hand, reconstructions from non-Cartesian trajectories, especially with PI,
are more complex and time-consuming than from Cartesian trajectories. The long recon-
struction time is one reason that has limited the clinical adoption of non-Cartesian tra-
jectories. In particular, because samples from non-Cartesian trajectories do not fall on a
uniform grid, an inverse fast Fourier transform (FFT) cannot be used directly. The inverse
discrete Fourier transform is often approximated using the gridding reconstruction, which
involves a multiplication with a density compensation factor [85, 80, 86, 87] followed by
the adjoint non-uniform fast Fourier transform (NUFFT). Other approximations include the
BURS method [88]. However, these single-step techniques cannot be extended to leverage
the additional multi-coil array encoding for arbitrary trajectories. Instead, iterative recon-
structions, such as CG-SENSE [9], have to be used in general, which can often take many
iterations to converge. In comparison, the Cartesian SENSE method [8] has an analytic
solution that can be e�ciently solved in a single step.

One way to make non-Cartesian imaging more e�cient is reducing the number of iter-
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ations in iterative reconstructions. In general, the slow convergence of iterative methods is
due to the ill-conditioning of the reconstruction problem. For non-Cartesian imaging, such
ill-conditioning comes from the variable density sampling distribution in k-space. This often
shows up in images as blurring artifacts when the reconstruction has not yet converged. Slow
convergence is even more significant for 3D acquisitions and CS reconstructions. For instance,
Figure 5.1 shows the iteration progression for a `1-wavelet regularized reconstruction of a
3D ultra-short echo-time (UTE) radial acquisition using the Fast Iterative Soft-Thresholding
Algorithm (FISTA) [11], and primal dual hybrid gradient method (PDHG) [89] (also known
as the Chambolle-Pock method). Even after 100 iterations, the reconstructed image still
displays significant blurring due to slow convergence.

To compensate for slow convergence in non-Cartesian iterative reconstruction, a heuristic
which uses density compensation during iterations is often used. Density compensation [85,
80, 86, 87] was originally developed for gridding reconstruction, and was mostly designed for
Nyquist-sampled trajectories. The use of density compensation in iterative PI reconstruction
was first introduced by Pruessmann et al. [9]. While their work showed that in practice
density compensation can speed up convergence, reconstruction error is also increased. This
is because the data consistency for densely sampled regions is weighted down in the objective
function (more detail in Section 5.2).

An alternative to density compensation is preconditioning. Preconditioning has the ad-
vantage of preserving the original objective function and hence does not a↵ect the recon-
struction accuracy. However, a drawback of existing methods is that they increase the
per-iteration computation. In particular, the use of preconditioning in MRI reconstruction
was first described by Sutton et al. [90] for single-channel non-Cartesian imaging in the
presence of field inhomogeneities. It was further explored by Ramani et al. [91] for PI-CS
reconstructions. Their method leveraged a circulant preconditioner developed by Yagle [92]
for Toeplitz systems. Weller et al. [93] considered the non-Cartesian `1-SPIRiT [94] method,
using an `2-optimal circulant preconditioner developed by Chan [95]. Muckley et al. [96]
considered FISTA [11] iterations and designed a circulant preconditioner that majorizes the
sensing matrix motivated by the convergence criterion of FISTA. Koolstra et al. [97] consid-
ered the split-Bregman method for Cartesian PI-CS reconstructions and presented a circulant
preconditioner that incorporates multi-channel sensitivity maps in the construction of their
proposed preconditioner. All of the above preconditioners have circulant structures, and
require at least two additional FFTs per iteration. Moreover, they all require inner loops in
their algorithms for non-Cartesian reconstructions, which further lengthen the reconstruction
time. Recently, a work of Trzasko et al. [98] showed that through an algebraic manipulation,
a diagonal preconditioner can be applied in k-space for the least squares sub-problem of the
alternating direction method of multiplier (ADMM) [48] method. This enables a di↵erent
mechanism for preconditioning. In particular, they show that it is possible to use e�cient
operations in k-space for preconditioning. However, the formulation still required inner loops
to solve for the sub-problem. Moreover, an o↵-the-shelf density compensation factor, which
was not designed for preconditioning, was used as the preconditioner.

In this chapter, I present a method for speeding up convergence that combines the com-
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Figure 5.1: Iteration progression for `1 wavelet regularized reconstruction of a 3D UTE lung dataset.
Both FISTA and PDHG exhibit extreme blurring even after 100 iterations. In contrast, PDHG with
the proposed preconditioner converges in about ten iterations, both visually and quantitatively in
terms of minimizing the objective value.

putational e�ciency of density compensation, and the objective preserving property of pre-
conditioning. Similar to the work of Trzakso et al. [98], I consider using e�cient operations
in k-space for preconditioning. My contribution is to recognize that a diagonal precondi-
tioner can be applied in k-space more generally by viewing the objective function in the dual
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formulation. In particular, the algebraic manipulation considered by Trzasko et al. [98] is
found as a special case. Using PDHG [89], the resulting method with preconditioning does
not have inner loops, so it has a similar computational complexity as the vanilla proximal
gradient method. Moreover, instead of using o↵-the-shelf density compensation factors, I
derive an `2-optimized diagonal preconditioner for the multi-channel MRI forward model.
I demonstrate through experiments that the proposed diagonal preconditioner speeds up
iterative reconstruction for non-Cartesian imaging, with `2-, `1-wavelet, and total variation
regularizations.

5.2 Problem Setup

I begin by formalizing the problem setup and illustrating the advantages and disadvantages
of iterative reconstruction with density compensation and with existing preconditioning for-
mulation.

Throughout this chapter, I consider the following discrete multi-channel MRI forward
model, in which I am given an N -size image x 2 CN , a C-channel sensitivity maps s 2 CNC ,
a white Gaussian noise vector w 2 CMC , and k-space measurements y 2 CMC with {fi}Mi=1

k-space sampling points such that

yic =
1p
N

N�1X

n=0

scnxne
�ı2⇡fin/N +wic (5.1)

for i 2 {1, . . . ,M}, and c 2 {1, . . . , C}. For simplicity, the mathematical notations will
focus on one-dimensional signals. The above model can be succinctly represented as a linear
model:

y = Ax+w (5.2)

Given the acquired k-space measurements y, I consider the following regularized least
squares problem to reconstruct the image:

min
x

1

2
kAx� yk22 + g(x) (5.3)

where g(x) is the regularization function.
Since the size of the image x is on the order of tens of thousands of pixels or more, the

above reconstruction problem is in practice only solved approximately using first-order gra-
dient methods. In the following of this section, I will focus on the proximal gradient method
as an example to illustrate the advantages and disadvantages of using density compensation
and preconditioners to accelerate convergence. I note that the concepts and issues shown
here apply to other first-order methods, such as FISTA [11], and ADMM [48].
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Concretely, the proximal gradient method when applied to objective function (5.3) gives
the following update for the kth iteration:

xk+1 = prox
↵g
(xk � ↵AH(Axk � y)) (5.4)

where prox
↵g
(z) = argminx

1
2↵kx� zk22 + g(x).

The convergence rate depends only on AHA. More concretely, when A is not singular,
then the step-size ↵ can be chosen so that the convergence rate is inversely proportional
to the condition number of AHA. When A is singular, then the step-size can be chosen
so that the convergence rate is inversely proportional to the maximum eigenvalue of AHA.
For variable density sampling, the condition number or the maximum eigenvalue of AHA is
much higher than for uniform density sampling and hence results in slow convergence.

Density Compensation

One e↵ective heuristic to accelerate convergence for non-Cartesian imaging is incorporating
density compensation factors during iterations. Given a diagonal matrix D 2 CMC⇥MC

with density compensation factor as diagonals, the heuristic modifies the proximal gradient
method as follows:

xk+1 = prox
↵g
(xk � ↵AHD(Axk � y)) (5.5)

Computationally, incorporating density compensation in each iteration costs an addi-
tional O(MC) multiplications, adding very little overhead to the overall iteration. However,
the main drawback is that such k-space weighting is known to increase reconstruction errors,
as implicitly it is solving for a weighted objective function:

min
x

1

2
kD1/2(Ax� y)k22 + g(x) (5.6)

Note that data consistency is weighed down in densely sampled regions, so measurements
are essentially thrown away for convergence, resulting in increased reconstruction error, and
noise coloring.

Image-domain Preconditioning

An alternative is to use preconditioning, which only a↵ects the convergence, but not the
objective function. Since the objective function is not changed, there is no error penalty for
using preconditioners. However, most existing preconditioning methods are applied on the
variable directly, and hence in the image domain. Given a preconditioner P 2 CN⇥N , the
preconditioned proximal gradient method applies:

xk+1 = prox
↵g,P(x

k � ↵PAH(Axk � y)) (5.7)
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The preconditioner P should be designed to approximate the (pseudo) inverse of AHA such
that the condition number or maximum eigenvalue of PAHA is much lower than that of
AHA. However, in order to compensate ill conditioning from variable density in k-space,
existing preconditioners have to go to the Fourier domain, and use circulant operators,
which cost two additional Fast Fourier transforms (FFT) per iteration. That is, existing
preconditioners are of the form,

P = Fdiag(p)FH (5.8)

where p 2 CN is a Fourier weighting vector, and F 2 CN⇥N is the unitary discrete Fourier
transform operator.

A more subtle issue is that the proximal operator has to be modified to incorporate
the preconditioner, which often requires inner iterations to solve even when the proximal
operator is simple. In particular, the proximal operator becomes:

prox
↵g,P(z) = argminx

1

2↵
kP�1/2x� zk22 + g(x) (5.9)

which amounts to another optimization problem that in general is not simple to solve (for
example when g is the `1-norm).

In summary, although existing preconditioners have shown that they can accelerated
convergence, their shortcoming lies in the per-iteration increase in complexity.

5.3 k-space Preconditioning

Ideally, I would like to develop a preconditioning method that can achieve the computational
e�ciency of density compensation without changing the objective function. Here I show that
this is achievable by looking at the convex dual problem.

In particular, since the reconstruction problem (5.3) is unconstrained, it must satisfy
strong duality. Its corresponding dual problem (see Appendix 5.8 for a derivation using the
augmented Lagrangian) is given by:

max
u
�
✓
1

2
kuk22 � hu,yi+ g

⇤(�AHu)

◆

where u 2 Cm is the dual variable. Note that the dual variable resides in k-space, which
now enables performing preconditioning in k-space.

Of course, solving for the dual problem does not automatically solve the primal problem.
Instead, the primal and dual variables x and u are connected with the following relationship:

�AHu 2 @g(x)
Ax = u+ y

(5.10)

In general, the above relationship does not find a primal solution automatically using the
dual solution, and one requires primal-dual methods that can solve for the primal and dual
problems at the same time. However, it turns out that `2-regularized reconstruction is a
special case that can e�ciently recover the primal variable from the dual.
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`2-regularized Reconstruction

Let me consider g(x) = �

2kxk
2
2, then the dual problem is given by,

max
u
�
✓
1

2
kuk22 � hu,yi+

1

2�
kAHuk22

◆

which has the optimality condition:

(AAH + �I)u = �y

Hence, I can precondition k-space by preconditioning the dual variable by solving:

P(AAH + �I)u = �Py

Since @g(x) = {�x}, from the primal dual relationship (5.10) I can recover the primal
variable by performing,

x =
1

�
AHu

The above method is precisely what Trzasko et al. [98] proposed for the `2-regularized
sub-problem within ADMM. Here I rederive it through convex duality. While still requiring
inner loops for general regularization functions other than `2-regularization, this formulation
allows me to precondition using density compensation like operations.

General case: Primal-Dual Hybrid Gradient Method

For the general case, to derive a method for solving for the primal and dual problem simulta-
neously without inner loops, I opt for the PDHG [89] method. I note that other primal-dual
reconstruction methods, such as those described in the work of Komodakis et al. [99], can
also be used.

Following [89] and [100], for each iteration k, the preconditioned version of PDHG for
simple proximal operators is given by,

uk+1 = (I+ �
kP)�1(uk +P�k(Ax̄k � y))

xk+1 = (I+ ⌧
k
@g)�1(xk � ⌧ kAHuk+1)

x̄k+1 = xk+1 + ✓
k(xk+1 � xk)

where x̄k and ✓k are the extrapolated primal variable and extrapolation parameter to provide
acceleration. ⌧ k and �k are the primal and dual step-size respectively such that

�
k
⌧
k
�max(PAAH) < 1

Since the data consistency function is smooth, acceleration can be obtained by choosing
step-sizes appropriately, following [89].
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For total variation regularization, which has the form:

min
x

1

2
kAx� yk22 + g(Gx)

The PDHG can be modified to perform:

uk+1 = (I+ �
kP)�1(uk +P�k(Ax̄k � y))

vk+1 = (I+ �
k
@g)�1(vk + �

kGx̄k)

xk+1 = xk � ⌧ k(AHuk+1 +GHvk+1)

x̄k+1 = xk+1 + ✓
k(xk+1 � xk)

where ⌧ k and �k are the primal and dual step-size respectively such that

�
k
⌧
k
�Ax(PAAH +GGH) < 1

5.4 L2 optimized diagonal k-space preconditioner

Now that I know how to precondition in k-space, it becomes clear from the convergence
criterion that the preconditioner should be designed to precondition the matrix AAH . In
this chapter, I consider a diagonal preconditioner to approximate the inverse of the normal
operator AAH in the least squares sense. The diagonal structure is desired because I want to
be able to apply the preconditioner e�ciently in k-space, similarly to density compensation.
The least squares design, on the other hand, is used here for e�ciently computing the
preconditioner.

Concretely, I consider a Fourier preconditioner P = diag(v),v 2 CMC such that,

v = argminv

��diag(v)AAH � I
��2
F

Let ai 2 CN denote the ith row vector of A. As shown in Appendix 5.9, the general
expression for the inverse of the diagonal preconditioner is given by:

vi
�1 =

P
M

j=1 |aH

i
aj|2

kaik22

Note that this diagonal preconditioner and its inverse are always defined, under the reason-
able assumption that none of the row vectors ai are zeros.

To further look into the preconditioner, I first consider the single-channel case. In this
case, ain = 1p

N
e
�ı2⇡fin/N , and kaik22 = 1. Then the diagonal preconditioner at k-space
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position i, is given by:

v�1
i

=
1

N

MX

j=1

�����

N�1X

n=0

e
�ı2⇡(fi�fj)n/N

�����

2

=
1

N

MX

j=1

����
sin(⇡(fi � fj))

sin(⇡(fi � fj)/N)

����
2

For Cartesian trajectories, the frequency spacing fi � fj are all integers, and hence v =
1, which matches our expectation that single channel Cartesian reconstruction does not
require preconditioning. For non-Cartesian trajectories, the diagonal preconditioner can be

interpreted as calculating density from the sinc squared kernel 1
N

��� sin(⇡f)
sin(⇡f/N)

���
2

.

Moving on to multi-channel, for k-space position i and coil c, the row vector is given by
aicn = 1p

N
scne�ı2⇡fin/N . Hence, I obtain,

v�1
ic

=
1

ksck22N

MX

j=1

CX

c0=1

�����

N�1X

n=0

scns
⇤
c0ne

�ı2⇡(fi�fj)n/N

�����

2

Incorporating coil sensitivity maps allows me to precondition the problem more e↵ectively
than without them, as I address the forward model directly. On the other hand, I also note
that one downside is that the proposed preconditioner has to be recalculated whenever the
coil sensitivity maps change. For many clinical applications, the coil sensitivity maps are
calculated from the pre-scan or estimated from the first scan and used multiple times for
a sequence of scans. In this case, the overhead of computing the preconditioner becomes
small. This is the case I consider here. For applications in which this overhead matters, the
single-channel preconditioner may be used instead, which can be pre-computed. However, I
will not explore this in this work.

Since the preconditioner has to be computed whenever the coil sensitivity maps change,
its computation time matters. A direct summation implementation takes O(M2

NC
2) com-

putation. In the following, I show that using Fourier transform properties, I can reduce the
computational complexity to O(C2

N logN + CM), which makes it comparable to common
calibration methods, such as ESPIRiT [101]. Figure 5.2 provides a high-level diagram of the
overall process.

E�cient computation of the proposed preconditioner

First, I note that I can express the squared terms with cross-correlations, which can be
computed in O(C2

N logN) using FFTs. Let me define,

rcc0 [k] =
X

n,n
0:

n�n
0=k

(scns
⇤
c0n)

⇤(scn0s⇤
c0n0)
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Then
�����

N�1X

n=0

scns
⇤
c0ne

�ı2⇡(fi�fj)n/N

�����

2

=
N�1X

k=�N+1

rcc0 [k]e
�ı2⇡(fi�fj)k/N

Next, I note that the preconditioner can be expressed in terms of convolution with the
point spread function, which can be computed approximately using NUFFT withO(N logN+
M) computational complexity. Let me define

h[k] =
1p
N

MX

j=1

e
ı2⇡fjk/N

Then

v�1
ic

=
1

ksck22N

MX

j=1

N�1X

k=�N+1

CX

c0=1

rcc0ke
�ı2⇡(fi�fj)k/N

=
1

ksck22
p
N

N�1X

k=�N+1

CX

c0=1

rcc0k

 
1p
N

MX

j=1

e
ı2⇡fjk/N

!
e
�ı2⇡fik/N

=
1

ksck22
p
N

N�1X

k=�N+1

CX

c0=1

rcc0kh[k]e
�ı2⇡fik/N

The final step involves C NUFFTs on the pointwise multiplication of r, and h. Hence the
overall computational complexity is O(C2

N logN + CM).

Sampling Mask

(NU)FFT
Adjoint

(NU)FFTAuto
Correlate

Auto
Correlate

Auto
Correlate

Figure 5.2: Diagram of computing the proposed diagonal k-space preconditioner for the first chan-
nel.
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5.5 Experiments

In the spirit of reproducible research, I provide a software package in Python to reproduce
the results described in this chapter. The software package can be downloaded from:

https://github.com/mikgroup/kspace_precond.git

I evaluated the proposed method with three regularization functions: `2-norm, `1-wavelet,
and total variation. For each regularization, I evaluated on three 2D non-Cartesian datasets:
a liver dataset acquired with stack-of-stars trajectory, a brain dataset acquired with ramp-
sampled UTE radial trajectory, and a cardiac dataset with variable density spiral trajectory.
I also applied on one 3D UTE dataset to illustrate the additional benefit of using precondi-
tioners on 3D datasets. These datasets are described in more detail in Section 5.5.

For `2-regularized reconstruction, conjugate gradient (CG) with and without precondi-
tioner from Koostra et al., and PDHG with and without the proposed preconditioner were
applied and compared with � = 0.01. I note that Koostra et al. originally proposed their
method for Cartesian imaging, and I extended it to the non-Cartesian case by going through
the same derivation.

For `1-wavelet regularized reconstruction, FISTA and PDHG with and without the pro-
posed preconditioner were applied and compared with � = 0.001.

For total variation regularized reconstruction, PDHG with and without the proposed
preconditioner were applied and compared � = 0.001.

All methods were implemented in Python using the software packages NumPy [102], and
CuPy [103], on a workstation with four Nvidia Titan Xp GPUs. All operations, except the
wavelet transform, were run on a single GPU. All methods were run for 1000 iterations, and
the objective values were computed for each iteration. Also for `2 regularized reconstruc-
tion, per iteration computation time for all methods was recorded and averaged over 1000
iterations. The computation time for constructing the Koostra et al.’s preconditioner and
the proposed preconditioner was also recorded.

Dataset Details

The liver dataset was acquired with a stack-of-stars trajectory using a 3D T1-FFE sequence
(TR/TE 4.35 ms 1.20ms, resolution 1 ⇥ 1 ⇥ 1.5 mm3, field-of-view 40 ⇥ 40 ⇥ 12.5 cm3).
The sequence was implemented on a 3T MR system (Philips Healthcare) equipped with a
16-channel torso coil. The center slice was extracted after taking an inverse FFT along the
slice direction for the experiments.

The cardiac dataset was acquired with a variable density spiral trajectory on a 1.5 T GE
scanner (GE Healthcare, Waukesha, WI) with an 8-channel cardiac coil and the HeartVista
RTHawk platform (HeartVista, Los Altos, CA). The trajectory consists of 3 interleaves. It
has a matrix size of 360⇥ 360 and TR of 25.8 ms.

The brain dataset was acquired with a centered-out radial trajectory on a 7.0 T GE
clinical scanner (GE Healthcare, Waukesha, WI) with 8-channel head coil. The following

https://github.com/mikgroup/kspace_precond.git
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prescribed parameters were used: flip angle of 5 degree, field-of-view 20 ⇥ 20 cm2, in-plane
resolution 1⇥ 1 mm2, and TE/TR = 3.4 ms/2 seconds.

The 3D UTE dataset was acquired with a bit reversed ordered radial trajectory. [5]. The
following prescribed parameters were used: FOV of 32⇥ 32⇥ 32 cm3, flip angle of 4 degrees,
1.25 mm isotropic resolution, sampling bandwidth of 62.5 kHz, and readout duration of 1
ms. 75,800 spokes were acquired.

Results

Figure 5.3 shows the iteration progression for the `2 regularized reconstruction of the liver
dataset, comparing CG with and without Koolstra et al.’s preconditioning, and PDHG with
and without the proposed preconditioning. Both visually and quantitatively in terms of
objective value, methods with preconditioning converge faster than the non-preconditioned
counterparts, in less than ten iterations. Although in this case, the proposed method con-
verges faster than CG with Koolstra et al.’s preconditioner, there are other cases shown
in Figures 5.4 and 5.5, showing the opposite way. In general, the proposed preconditioner
perform similarly to Koolstra et al.’s preconditioner, while consistently improving the con-
vergence of non-preconditioned methods.

Table 5.1 shows the per-iteration computation time for `2-regularized reconstruction
experiments. CG with Koolstra et al.’s preconditioner is consistently the slowest, as it
requires two additional FFT’s per iteration. The computation time for PDHG with the
proposed preconditioner is comparable to CG and PDHG. Table 5.2 shows the computation
time for constructing the preconditioners. The construction of the proposed preconditioner is
about twice as slow as constructing Koostra et al. ’s preconditioner, as theirs grows linearly
proportional to the number of coils. However, I emphasize that I am considering applications
in which the coil sensitivity maps are calculated from the pre-scan or estimated from the
first scan and used multiple times for a sequence of scans.

Table 5.1: Per-iteration computation time

Liver Cardiac Brain
CG 0.0792 s 0.0223 s 0.0308 s
CG with Koostra et al.’s precond. 0.0917 s 0.0314 s 0.0368 s
PDHG 0.0814 s 0.0210 s 0.0311 s
PDHG with proposed precond. 0.0810 s 0.0228 s 0.0313 s

Table 5.2: Computation time for constructing preconditioners

Liver Cardiac Brain
Koostra et al.’s precond. 0.0974 s 0.0502 s 0.0147 s
Proposed precond. 0.231 s 0.117 s 0.0334 s
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Figure 5.3: Iteration progression for `2 regularized reconstruction of the liver dataset, comparing
CG with and without Koolstra et al.’s preconditioning, and PDHG with and without the proposed
preconditioning. Both visually and quantitatively in terms of objective value, methods with precon-
ditioning converge faster than the non-preconditioned counterparts. Both preconditioned methods
converge in less than ten iterations.

Figure 5.6 shows the iteration progression for `1-wavelet regularized reconstruction of
the cardiac dataset, comparing FISTA and PDHG with and without the proposed precon-
ditioning. Again, both visually and quantitatively in terms of objective value, the proposed
method converges the fastest in about ten iterations. Other experiments shown in Figures 5.7
and 5.8 support this as well.

Figure 5.9 shows the iteration progression for total variation regularized reconstruction of
the brain dataset, comparing PDHG with and without the proposed preconditioning. Both
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Figure 5.4: Iteration progression for `2-regularized reconstruction of the brain dataset, comparing
CG with and without Koolstra et al.s preconditioning, and PDHG with and without the proposed
preconditioning
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Figure 5.5: Iteration progression for `2-regularized reconstruction of the cardiac dataset, comparing
CG with and without Koolstra et al.s preconditioning, and PDHG with and without the proposed
preconditioning

methods converged slower compared to the two other reconstruction experiments. Both
visually and quantitatively in terms of objective value, the proposed method converges the
fastest in about 30 iterations. Other experiments shown in Figures 5.10 and 5.11 support
this as well.

Finally, the iteration progression for the 3D UTE dataset was shown earlier in Figure 5.1.
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Figure 5.6: Iteration progression for `1 wavelet regularized reconstruction of the cardiac dataset,
comparing FISTA and PDHG with and without the proposed preconditioning. Again, both visually
and quantitatively in terms of objective value, the proposed method converges the fastest in about
ten iterations.

Both FISTA and PDHG exhibit extreme blurring even after 100 iterations. In contrast,
PDHG with the proposed preconditioner converges in about ten iterations, both visually
and quantitatively in terms of minimizing the objective value. This shows that the proposed
method can o↵er an order magnitude speedup in 3D than in 2D.
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Figure 5.7: Iteration progression for `1 wavelet regularized reconstruction of the brain dataset,
comparing FISTA and PDHG with and without the proposed preconditioning.
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Figure 5.8: Iteration progression for `1 wavelet regularized reconstruction of the liver dataset,
comparing FISTA and PDHG with and without the proposed preconditioning.

5.6 Discussion

In this chapter, I presented a preconditioning method through the convex dual formulation.
This enables the use of e�cient k-space operations as preconditioners and does not modify
the objective function. Through experiments, I have demonstrated that in practice the
proposed technique accelerates convergence of non-Cartesian reconstruction.

In particular, I compared the performance of the proposed preconditioning to that of
Koostra et al. for `2-regularized reconstructions. In terms of convergence, the proposed
preconditioning performs similarly to Koolstra’s et al.’s method: In some datasets, such as
the one shown in Figure 5.3, the proposed method converged faster. For others, Koostra
et al.’s converged faster. Both preconditioning techniques improved the convergence for CG
and PDHG. The main advantage of the proposed preconditioning lies in the per-iteration
computation time shown in Table 5.1. The proposed method is much faster than Koostra et
al.’s preconditioning, and performs similarly as CG in terms of per-iteration time. This is ex-
pected as the circulant preconditioning requires two additional FFT’s per iteration, whereas
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Figure 5.9: Iteration progression for total variation regularized reconstruction of the brain dataset,
comparing PDHG with and without the proposed preconditioning. Both methods converged slower
compared to the two other reconstruction experiments. Both visually and quantitatively in terms
of objective value, the proposed method converges the fastest in about 30 iterations.

the proposed k-space diagonal preconditioning requires only element-wise multiplications.
For `1-wavelet regularized reconstruction, the proposed preconditioning consistently ac-

celerates the convergence compared to FISTA and PDHG. The experiments show that the
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Figure 5.10: Iteration progression for total variation regularized reconstruction of the cardiac
dataset, comparing PDHG with and without the proposed preconditioning.

proposed method can reach convergence in about ten iterations, without inner loops. For
total variation reconstruction, the proposed preconditioning also accelerates the convergence
compared to PDHG, but slower than the `1-wavelet regularized reconstruction. This is be-
cause the total variation regularization function consists of a non-unitary operator in the
non-linear function, and requires introducing auxiliary variables.

Finally, the experiment with the 3D UTE dataset in Figure 5.1 shows that the method
o↵ers orders of magnitude speedup for 3D datasets. This is expected because 3D trajectories
have a higher variation in k-space density than 2D trajectories. In particular, the proposed
method converged in about ten iterations, whereas other methods did not even after a few
hundreds of iterations.
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Figure 5.11: Iteration progression for total variation regularized reconstruction of the liver dataset,
PDHG with and without the proposed preconditioning.

5.7 Conclusion

I have shown a method to speed up non-Cartesian iterative reconstruction that retains the
per-iteration computational e�ciency of density compensation and reconstruction accuracy
of preconditioning methods. In contrast to most existing preconditioning methods, the
proposed technique does not increase the per-iteration computation time much compared
to vanilla iterative methods, such as the conjugate gradient method. With the proposed
preconditioning, iterative reconstruction can often reach convergence in about ten iterations.

5.8 Derivation for the Dual Problem

Here I will derive the dual problem through augmented Lagrangian. Let me first introduce
a variable z to make the objective function (5.3) a constrained optimization problem:

min
x,z

1

2
kz� yk22 + g(x)

subject to: z = Ax
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Introducing a Lagrangian variable u gives me,

min
x,z

max
u

1

2
kz� yk22 + g(x) + hu, (z�Ax)i

Switching the min and the max, gives me the following dual problem:

max
u

min
x,z

1

2
kz� yk22 + g(x) + hu, (z�Ax)i

Minimizing over z gives me z = y � u. Substituting, and re-arranging, I obtain:

max
u
�1

2
kuk22 + hu,yi+min

x
g(x)� hAHu,xi

Uing the definition of a conjugate function g
⇤(x⇤) = maxx⇤hx⇤

,xi � g(x), I have,

max
u
�1

2
kuk22 + uHy � g

⇤(�AHu)

5.9 Derivation for L2 optimized diagonal
preconditioner

I am interested in solving the following minimization problem:

min
p

1

2

��diag(p)AAH � I
��2
F

Expanding the objective function element-by-element, I obtain,

min
p

1

2

MX

i=1

MX

j=1

��pia
H

i
aj � �ij

��2

where � is the Dirac delta function.
Taking the gradient with respect to pi and setting it to zero, I obtain,

pi

MX

j=1

|aH

i
aj|2 � kaik22 = 0

Using the fact that aH

i
ai is non-negative and re-arranging, I have,

pi
�1 =

P
M

j=1 |aH

i
aj|2

kaik22
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Chapter 6

Learning a Sparse Representation
from Many Undersampled Datasets

6.1 Introduction

Compressed sensing [10] is now part of several commercial products [104, 105, 106] for ac-
celerated scans. It has also been integrated into many advanced applications, including
4D flow [59], dynamic contrast enhanced (DCE) imaging [54], and lung imaging [5]. As
shown in Chapter 2, there are three components for the application of compressed sensing
MRI: 1) the image of interest is compressible using a signal transform. 2) MRI can acquire
(pseudo)-randomized samples in k-space, which provides incoherent encoding of the underly-
ing image. 3) sparsity/compressibility can be e�ciently enforced in reconstruction to recover
the compressed representation from the undersampled measurements.

While compressed sensing has delivered impressive results, it inherently treats each recon-
struction as an independent optimization problem. Correlations between scans are not being
used. The commonly used sparsifying transforms, such as the wavelet transform and total
variation, are designed for general natural images, and not for a specific MR application.
On the other hand, in clinics and hospitals, the same imaging protocol is often prescribed
numerous times daily. These images exhibit very similar contrasts and statistics. Hence,
a natural question is: Given many datasets of the same application, can a reconstruction
leverage them to improve upon compressed sensing?

Recent deep learning based methods [107, 108, 109, 110] have shown that with a database
of fully-sampled datasets, a learned reconstruction can improve reconstruction quality com-
pared to compressed sensing reconstruction. In particular, in the training phase, these
techniques often fit a deep neural network to map retrospectively undersampled datasets
to corresponding fully-sampled datasets. Then, with enough training datasets, the network
can capture implicitly the features unique to that particular application. Comparing to
compressed sensing, learned reconstructions often results in improved image quality.

On the other hand, collecting a large number of fully-sampled datasets becomes im-
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mensely di�cult for 3D volumes, and impossible for most dynamic applications, such as dy-
namic contrast enhanced (DCE) MRI. The result is that often machine learning algorithms
are trained on: 1) Natural images databases, which do not exploit the types of structures and
features unique to MRI applications 2) “Fully sampled” DICOM magnitude images, which
are often low-resolution, magnitude only, and may exhibit artifacts. 3) Parallel imaging and
compressed sensing reconstruction as the gold standard, which puts a limit on the achievable
image quality to be only as good as parallel imaging and compressed sensing.

In this chapter, I consider the problem of using many undersampled datasets to improve
reconstruction of accelerated scans. In particular, I propose a machine learning based method
for training convolutional sparse coding (CSC) [111] from undersampled data to improve
reconstruction quality. CSC is a method that learns filters to sparsely represent images from
a training database. Since images for each application exhibit similar contrast and statistics,
filters learned on many instances of the same application will be more tailored to that
application than generic filters (such as wavelets) do. As described in Chapter 2, compressed
sensing reconstruction quality is directly correlated to sparsity in the transform domain.
Hence, I can use filters learned with CSC as a sparse representation for CS reconstruction
to improve image quality.

A closely related line of work is blind compressed sensing [112, 113], in which both
the sparse representation and the sparse representation are optimized during compressed
sensing reconstruction. While able to go beyond compressed sensing in certain applications,
one limitation of these techniques is that the sparsifying transforms are only learned from
single undersampled datasets. This is limiting because image features can be obscured by
aliasing artifacts in one dataset, but be prominent in many others. The signal-to-noise of a
single dataset also restricts the quality of the learned transform.

The proposed method can be thought of a blind compressed sensing method but applied
on all undersampled datasets in a database at the same time. Since the sampling pattern is
often di↵erent for each dataset, this provides diversity in the aliasing artifacts. Also, similar
structures appear in di↵erent datasets, which averages noise. Of course, the optimization
problem becomes much bigger than conventional blind compressed sensing problems. In
Section 6.3, I will present a stochastic algorithm that can train on large-scale undersampled
datasets e�ciently.

6.2 Problem statement and Objective function

In this section, I will extend the conventional CSC formulation to learn a sparse representa-
tion from many undersampled datasets.

Let me begin by looking at the wavelet transform as the sparse representation, which is
often used for compressed sensing. In particular, given an image x, it is represented as,

x =
JX

j=1

 j ⇤ cj (6.1)
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where  j represents the jth wavelet filter, and cj is represents the sparse coe�cients for the
jth wavelet filter.

While the wavelet transform is known to sparsely represent natural images, including
MRI, one might be able to design filters to produce sparser coe�cients when many instances
of similar images are given. CSC leverages the convolutional sparse structure of the wavelet
transform. But instead of using the fixed wavelet filters, it finds filters  j to sparsify images
from a training database.

In particular, given many images {xi}Ii=1 from a database, CSC considers the following
problem:

minimize
{cij , j :k jk1}i,j

1

2

IX

i=1

�����

JX

j=1

 j ⇤ cij � xi

�����

2

2

+ �

JX

j=1

kcijk1 (6.2)

where cij represents the sparse coe�cients for the ith image and jth filter and  j represents
the jth filter. The `1-norm is used to enforce sparsity on the coe�cients. To prevent the
filters scaling arbitrarily to infinity, the filters  j are enforced to have `2 norm less than one.

Since both the filters and the coe�cients are being optimized, CSC can adapt the filters
to the given images to produce sparse coe�cients. Note that the CSC objective function is
non-convex, so the global minimum may not be attainable e�ciently. In practice, alternating
minimization is often applied on the objective function to converge to a stationary point.

To extend the CSC formulation to undersampled datasets, I propose to incorporate the
multichannel MR acquisition model. In particular, I consider many k-space datasets {yi 2
CMi}I

i=1 from a database. Each k-space data yi may be undersampled and corresponds to
an underlying image xi 2 CN , which is related by,

yi = FiSxi +wi (6.3)

where Fi 2 CMiC⇥NC is a Fourier sampling operator, S 2 CNC⇥N is a sensitivity map
operator, and wi 2 CMiC is a vector representing white Gaussian noise. Note that the
Fourier sampling operator can be di↵erent for each dataset with di↵erent sampling patterns.

Convolutional Sparse Model

= + +

Datasets

+ ...

Figure 6.1: Illustration of the convolutional sparse model for images.
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Then, combining with the convolutional sparse model, the overall forward model is given
by,

yi = FiS

 
JX

j=1

 j ⇤ cij

!
+wi. (6.4)

Extending the CSC objective function (6.2), I consider the following objective function
to learn sparsifying filters from undersampled datasets:

minimize
{cij , j :k jk1}i,j

1

2

IX

i=1

�����FiS

 
JX

j=1

 j ⇤ cij � yi

!�����

2

2

+ �

JX

j=1

kcijk1 (6.5)

6.3 Training using Stochastic Alternating
Minimization

The above objective function (6.5) is convex when either {ĉij}ij or { ̂j}j is fixed. Hence,
a natural way of optimizing it is through alternating minimization. However, applying al-
ternating minimization directly on the objective function (6.5) would require immense com-
putation and memory costs. In particular, all datasets and their corresponding coe�cients
have to be loaded into memory. Fourier transforms must also be performed to all datasets
even for a single gradient evaluation.

Instead, similar to existing machine learning training pipeline, I propose to apply stochas-
tic optimization techniques to e�ciently optimize the objective function. Concretely, in each
iteration, I randomly pick a data index i in {1, . . . , I}, and perform alternating minimization
stochastically as follows:

{ĉij}Jj=1 2 argmin
{cij}j

1

2

�����FiS

 
JX

j=1

 ̂j ⇤ cij

!
� yi

�����

2

2

+ �

JX

j=1

kcijk1 (6.6)

{ ̂j}Jj=1 2 argmin
{ j :k jk21}j

1

2

�����FiS

 
JX

j=1

 j ⇤ ĉij

!
� yi

�����

2

2

+
JX

j=1

1

2↵
k j �  ̂jk2F (6.7)

where ↵ is a step-size to control how much to update the filters. This algorithm is similar to
that in Chapter 4. Again, the  ̂jj

update step is generally referred to as an implicit update or
stochastic proximal update [75]. It is known to converge to an approximate stationary point
in expectation, and more robust to the step-size choice ↵ than stochastic gradient methods.
Each subproblem is convex and can be approximately solved using the Fast Iterative Soft-
Thresholding Algorithm (FISTA) [11].

Finally, I note that a feature of the proposed algorithm is that only coe�cients for one
dataset {↵ij}j needs to be stored in each iteration. This is in contrast to the stochastic
gradient method, which needs to store the coe�cients for all datasets during training.
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Figure 6.2: Illustration of the training algorithm. In each iteration, a data index i is randomly
picked in {1, . . . , I}, and alternating minimization performed.

6.4 Reconstruction using the learned filters

When reconstructing new scans, the filters are fixed and only the coe�cients are computed.
The final image is reconstructed by convolving the coe�cients with the filters. Concretely,
given a new k-space dataset y, the reconstructed image x̂ is computed as follows:

{ĉj}Jj=1 2 argmin
{cj}j

1

2

�����FS
 

JX

j=1

 ̂j ⇤ cj

!
� y

�����

2

2

+ �

JX

j=1

kcjk1

x̂ =
JX

j=1

 ̂j ⇤ ĉj

(6.8)

The subproblem can again can be approximated using FISTA. Hence, the resulting recon-
struction has similar computational complexity as conventional compressed sensing recon-
structions.

6.5 Methods

Twenty fully sampled-3D knee datasets [114] were downloaded from mridata.org [77] and
used for training and evaluation. The k-space datasets were acquired on a 3T GE Discovery
MR 750, with a fast spin-echo sequence (CUBE), and an 8-channel HD knee coil. Scan
parameters include a matrix size of 320 ⇥ 320 ⇥ 256, a field of view of 16 ⇥ 16 ⇥ 15.3 cm3,

mridata.org
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Compute Sparse

Coefficients Convolve

Reconstruction

Figure 6.3: Illustration of the reconstruction pipeline. When reconstructing new scans, the filters
are fixed and only the coe�cients are computed. The final image is reconstructed by convolving
the coe�cients with the filters.

receiver bandwidth of 50 kHz, and TE/TR of 25ms/1550ms. The proposed method was
implemented in Tensorflow, and run on an Nvidia Titan Xp GPU.

To obtain more training datasets, I consider 2D slices extracted from the 3D volumes,
instead of using the 3D volumes directly. A total of 5120 slices from 16 cases were used for
training, 640 slices from 2 cases were used for validation, and 640 slices from the remaining
2 cases were used for testing. The datasets were normalized with respect to the maximum
value of each 3D volume.

The filters { ̂j}j were initialized as unit norm white Gaussian noise, and the coe�cients
{ĉij}i,j were initialized as zeros. Each sub-problem in the alternating minimization was
approximated using FISTA with 100 iterations. The { ̂j}j sub-problem was initialized
with the previous iterate solution. The {ĉij}i,j sub-problem was initialized with zeros to be
consistent with the actual reconstruction, which would not have a previous iterate solution.

Using the proposed method, I first trained a set of filters from the fully-sampled training
datasets, with 256 11⇥11 filters. I then under-sampled each 3D dataset with 8x Poisson-disk
sampling masks with 24x24 calibration region. The sampling masks for each volume were
di↵erent. Using sensitivity maps estimated with ESPIRiT [101], I trained another set of
filters from under-sampled datasets. Regularization parameters were selected to minimize
mean squared error in the validation datasets. `1-wavelet regularized reconstruction was also
implemented, and compared. The regularization parameters were also selected to minimize
mean squared error in the validation datasets.

6.6 Results

In the spirit of reproducible research, I provide a software package in Python to reproduce
the results described in this chapter. The software package can be downloaded from:

https://github.com/mikgroup/csc_mri.git

https://github.com/mikgroup/csc_mri.git
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Figure 6.4 shows the filters learned from the fully-sampled datasets. Compared to the
wavelet filters, these filters display edge-like features with various orientations, instead of
just horizontal and vertical. This can provide a more edge aware reconstruction as shown
below in Figure 6.6. On the other hand, the filters notably lack smooth filters. Even those
that display mostly constant amplitude show impulse-like and noise-like structures. Finally,
I note that the phase of the filters is largely constant, with most variations coming from
zero-crossings. This is because the datasets are acquired using a fast spin-echo sequence,
which removes the image phase.

The filters learned from the under-sampled datasets are shown in Figure 6.5. These filters
show similar structures as the ones learned from fullysampled datasets, with edge-like and
impulse-like features. One di↵erence is that the filters seem less noisy the the ones learned
from fully-sampled datasets. This can also be seen in the phase of the filters.

Filters Trained on Fully-sampled Datasets
Magnitude Phase

Figure 6.4: Filters learned from fully-sampled datasets. Compared to wavelet filters, these filters
display edge-like features with various orientations, instead of just horizontal and vertical. On the
other hand, the filters notably lack smooth filters.

Figure 6.6 shows a representative `1 regularized reconstructions with the wavelet trans-
form, and the learned filters. In general, reconstructions with the learned filters show sharper
edges. As mentioned, this may be due to the prevalent edge structures in the filters. How-
ever, increased noise-like artifacts are also observed in the reconstructed image with learned
filters, compared to that with the wavelet transform. This may be due to the lack of smooth
filters in the learned transform. Such behavior is prevalent in the testing datasets.

Figure 6.7 shows a box-plot of PSNR di↵erence between the learned reconstructions
versus `1 wavelet reconstruction over the 640 test slices. Reconstruction with the filters
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Filters Trained on Under-sampled Datasets
Magnitude Phase

Figure 6.5: Filters learned from under-sampled datasets. These filters show similar structures as the
ones learned from fullysampled datasets, with edge-like and impulse-like features. One di↵erence
is that the filters seem less noisy the the ones learned from fully-sampled datasets. This can also
be seen in the phase of the filters.

Ground Truth L1 Wavelet Recon
Recon w/ Filters  Trained

on Fully-sampled
8x Poisson Disk

Sampling Pattern
Recon w/ Filters trained

on Under-sampled

Figure 6.6: A representative `1-regularized reconstructions with wavelet transform, and the learned
filters. In general, reconstructions with the dictionaries showed sharper edges, but increased noise
artifacts as well.

learned from fully-sampled datasets increases the average PSNR by 0.168 dB compared with
l1-wavelet reconstruction, and reconstruction with the filters learned from under-sampled
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datasets increases the average PSNR by 0.322 dB. One surprising observation is that the
filters learned from under-sampled datasets result in reconstruction with higher average
PSNR. Since only slices from two 3D volumes were used for testing, it is not clear whether
this is due to small sample size.

Recon w/ Filters  Trained
on Fully-sampled

Recon w/ Filters trained
on Under-sampled

Figure 6.7: A box-plot of PSNR di↵erence between the learned reconstructions versus `1-wavelet
reconstruction over the 640 test slices.

6.7 Discussion

I have presented a machine learning method based on CSC to learn a sparse representation
from undersampled datasets. In the experiments, I have shown that filters learned with CSC
result in improved reconstruction quality in terms of PSNR. What is surprising is that an
extended CSC formulation incorporating undersampling also improves reconstruction qual-
ity. This shows that undersampled datasets can be leveraged for improving reconstruction
quality. As shown in Figure 6.6, the resulting images display sharper features compared to
`1-wavelet reconstruction.

On the other hand, the reconstructions using the learned filters exhibit noise-like artifacts
on smooth regions. This may be because the learned filters in Figures 6.4 and 6.5 mostly
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contain edges and impulses, rather than smooth patches. Interestingly, the filters learned
from undersampled datasets contain less noise and result in slightly higher average PSNR in
Figure 6.7. One potential reason for this di↵erence is that, for the undersampled datasets,
variable density sampling patterns were used. Hence, the CSC data consistency empha-
sizes low frequencies when trained on undersampled datasets. It is possible a formulation
with emphasis on the low-frequency representation can further learn an improved sparsity
representation.

Another potential reason for the increase noise amplification in Figure 6.6 is that a
sparsity enforcing formulation may not encourage smooth filters. An observation supporting
this is that the wavelet coarse scale produces non-sparse coe�cients. Hence, compressed
sensing reconstruction often do not impose sparsity on the coarse scale. In this case, other
structural constraints might be needed rather than sparsity.

Finally, a main contribution of this chapter is the stochastic alternating minimization al-
gorithm for the objective function (6.5). The algorithm only requires storing one coe�cient
at each iteration. It also converges to a stationary point in expectation. However, unlike
alternating minimization for non-convex low rank factorization [115, 74], alternating mini-
mization on CSC does not have theoretical guarantees on its convergence to global minimum.
In my experience, I have found that CSC training is quite sensitive to the hyper-parameters,
such the step-size, the number of iterations for the sub-problem and the regularization pa-
rameter. For example, too high of a regularization parameter can set most coe�cients to
zero in early iterations. This causes only a few filters get updated afterwards. A change in
the algorithm might mitigate this. It is also possible that the `1 norm is too “harsh”, and a
smoothed version can lead to improved convergence.

6.8 Conclusion

I have shown a method based on CSC to learn a sparse representation from many under-
sampled datasets. I have presented an e�cient algorithm to achieve this. The resulting
technique can be useful a wide range of applications, especially for dynamic MRI.
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Chapter 7

Summary and Future Work

In this dissertation, I have presented techniques to reconstruct high resolution 3D dynamic
MRI. Below are a summary of contributions and future directions.

7.1 Summary of Contributions

Multiscale Low rank Matrix Model

I have presented a multiscale low rank matrix decomposition method that combines both
multiscale modeling and low rank matrix decomposition. Using a convex formulation, I
can solve for the decomposition e�ciently and exactly, provided that the multiscale signal
components are incoherent. I demonstrate its e↵ectiveness in four applications, including
illumination normalization for face images, motion separation for surveillance videos, multi-
scale modeling of DCE-MRI and collaborative filtering exploiting age information.

High Resolution Volumetric Dynamic MRI from Non-Gated Acquisitions

I have presented a method to reconstruct high spatiotemporal resolution 3D dynamic MRI
data from continuous non-gated acquisitions. The results showed transient dynamics, such
as localized contrast dynamics, that are inherently lost in low frame-rate reconstructions.
The proposed method can also resolve detailed pulmonary structures for respiratory motion
at variable rates. Finally, the proposed reconstruction is robust to bulk motion even without
explicitly modeling it because the artifacts are localized in time.

Accelerating Convergence for Non-Cartesian MRI Reconstruction

I have shown a method to speed up non-Cartesian iterative reconstruction that retains the
per-iteration computational e�ciency of density compensation and reconstruction accuracy
of preconditioning methods. In contrast to most existing preconditioning methods, the
proposed technique does not increase the per-iteration computation time much compared



CHAPTER 7. SUMMARY AND FUTURE WORK 96

to vanilla iterative methods, such as the conjugate gradient method. With the proposed
preconditioning, iterative reconstruction can often reach convergence in about ten iterations.

Learning a Sparse Representation from Many Undersampled Datasets

I have shown a method based on CSC to learn a sparse representation from many under-
sampled datasets. I have presented an e�cient algorithm to achieve this. The resulting
technique can be useful a wide range of applications, especially for dynamic MRI.

7.2 Future work

While this dissertation has made progress toward the ideal scan – a 3D dynamic MR scan
that can resolve all dynamics at a high spatiotemporal resolution – it has not achieved this
goal yet. Below are a few directions I find promising:

Low rank models incorporating motion

Low rank models in dynamic imaging have di�culties in representing large motion over time.
This can be seen in Chapter 4, when bulk motions result in severe artifacts. Integrating
motion, even only simple translation motion, with low rank models might greatly improve
reconstruction quality.

Cloud computing

All reconstructions in this dissertation were performed on shared memory workstations.
However, as Moore’s law is approaching its end, cloud computing is becoming an attractive
alternative for high performance computing. Besides implementation, several aspects can be
explored for the algorithm: asynchronous iterations, privacy preserving reconstructions, and
communication avoiding updates.

Beyond diagonal k-space preconditioners

This dissertation explored the use of diagonal k-space preconditioners. An obvious extension
is to use non-diagonal ones. How to e�ciently compute them and whether these provide
additional speedup will be interesting to explore.

Improved convolutional sparse coding

Finally, I believe the formulation for convolutional sparse coding has a lot of room for
improvement. Innovations in its formulation and algorithm can potentially make a huge
di↵erence in reconstruction quality.



97

Bibliography

[1] D. G. Nishimura. Principles of magnetic resonance imaging. Stanford Univ., 1996.

[2] J. Hennig, K. Sche✏er, J. Laubenberger, and R. Strecker. “Time-resolved projec-
tion angiography after bolus injection of contrast agent”. In: Magnetic resonance in
medicine 37.3 (1997), pp. 341–345.

[3] F. R. Korosec, R. Frayne, T. M. Grist, and C. A. Mistretta. “Time-resolved contrast-
enhanced 3D MR angiography”. In: Magnetic Resonance in Medicine 36.3 (1996),
pp. 345–351.

[4] M. Saranathan, D. W. Rettmann, B. A. Hargreaves, S. E. Clarke, and S. S. Vasanawala.
“DI↵erential subsampling with cartesian ordering (DISCO): A high spatio-temporal
resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imag-
ing”. In: Journal of Magnetic Resonance Imaging 35.6 (2012), pp. 1484–1492.

[5] W. Jiang, F. Ong, K. M. Johnson, S. K. Nagle, T. A. Hope, M. Lustig, and P. Larson.
“Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D
image self-navigator”. In: Magnetic Resonance in Medicine 79 (), pp. 2954–2967. doi:
10.1002/mrm.26958.

[6] L. Feng, L. Axel, H. Chandarana, K. T. Block, D. K. Sodickson, and R. Otazo.
“XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state di-
mensions using compressed sensing”. In: Magnetic resonance in medicine 75.2 (2016),
pp. 775–788.

[7] A. G. Christodoulou, J. L. Shaw, C. Nguyen, Q. Yang, Y. Xie, N. Wang, and D.
Li. “Magnetic resonance multitasking for motion-resolved quantitative cardiovascular
imaging”. In: Nature Biomedical Engineering 2.4 (2018), p. 215.

[8] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger. “SENSE: sensitiv-
ity encoding for fast MRI”. In: Magnetic resonance in medicine 42.5 (1999), pp. 952–
962.

[9] K. P. Pruessmann, M. Weiger, P. Bornert, and P. Boesiger. “Advances in sensitivity
encoding with arbitrary k-space trajectories”. In: Magnetic Resonance in Medicine
46 (2001), pp. 638–651. doi: 10.1002/mrm.1241.

http://dx.doi.org/10.1002/mrm.26958
http://dx.doi.org/10.1002/mrm.1241


BIBLIOGRAPHY 98

[10] M. Lustig, D. Donoho, and J. M. Pauly. “Sparse MRI: The application of compressed
sensing for rapid MR imaging”. In: Magnetic Resonance in Medicine 58.6 (2007),
pp. 1182–1195. doi: 10.1002/mrm.21391.

[11] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM Journal on Imaging Sciences 2 (2009), pp. 183–
202. doi: 10.1137/080716542.

[12] S. G. Mallat. “A theory for multiresolution signal decomposition: the wavelet rep-
resentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(1989). doi: 10.1515/9781400827268.494.

[13] E. Candes, L. Demanet, D. Donoho, and L. Ying. “Fast discrete curvelet transforms”.
In: Multiscale Modeling & Simulation (2006). doi: 10.1109/iadcc.2014.6779451.

[14] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. “Shiftable multi-
scale transforms”. In: IEEE Transactions on Information Theory 38.2 (1992), pp. 587–
607. doi: 10.1109/18.119725.

[15] D. L. Donoho and I. M. Johnstone. “Ideal spatial adaptation by wavelet shrinkage”.
In: Biometrika 81.3 (2006), pp. 1–31. doi: 10.2307/2337118.

[16] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information Theory
52.4 (2006), pp. 1289–1306. doi: 10.1109/TIT.2006.871582.

[17] E. J. Candes, J. Romberg, and T. Tao. “Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information”. In: IEEE Transactions
on Information Theory 52.2 (2006), pp. 489–509. doi: 10.1109/TIT.2005.862083.

[18] D. L. Donoho and X. Huo. “Uncertainty principles and ideal atomic decomposition”.
In: IEEE Transactions on Information Theory 47.7 (2001), pp. 2845–2862. doi: 10.
1109/18.959265.

[19] J. L. Starck, Y. Moudden, J. Bobin, M. Elad, and D. L. Donoho. “Morphological
component analysis”. In: Optics & Photonics 2005 5914 (2005), 59140Q–59140Q–15.
doi: 10.1117/12.615237.

[20] S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic decomposition by basis
pursuit”. In: SIAM Journal on Scientific Computing 20.1 (1998), pp. 33–61. doi:
10.1137/s1064827596304010.

[21] Z. P. Liang. “Spatiotemporal imaging with partially separable functions”. In: The
Proceedings of the International Symposium of Biomedical Imaging: From Nano to
Macro. IEEE, 2007, pp. 988–991. isbn: 1-4244-0671-4. doi: 10.1109/isbi.2007.
357020.

[22] R. Basri and D. W. Jacobs. “Lambertian reflectance and linear subspaces”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 25.2 (2003), pp. 218–233.
doi: 10.1109/TPAMI.2003.1177153.

http://dx.doi.org/10.1002/mrm.21391
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1515/9781400827268.494
http://dx.doi.org/10.1109/iadcc.2014.6779451
http://dx.doi.org/10.1109/18.119725
http://dx.doi.org/10.2307/2337118
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1117/12.615237
http://dx.doi.org/10.1137/s1064827596304010
http://dx.doi.org/10.1109/isbi.2007.357020
http://dx.doi.org/10.1109/isbi.2007.357020
http://dx.doi.org/10.1109/TPAMI.2003.1177153


BIBLIOGRAPHY 99

[23] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. “Eigentaste: A Constant Time
Collaborative Filtering Algorithm”. In: Information Retrieval 4.2 (2001), pp. 133–
151. doi: 10.1023/A:1011419012209.

[24] M. Fazel. “Matrix rank minimization with applications”. PhD thesis. Stanford Uni-
versity, 2002.

[25] E. J. Candes and B. Recht. “Exact Matrix Completion via Convex Optimization”. In:
Foundations of Computational Mathematics 9.6 (2009), pp. 717–772. doi: 10.1007/
s10208-009-9045-5.

[26] M. Fazel, T. K. Pong, D. Sun, and P. Tseng. “Hankel Matrix Rank Minimization with
Applications to System Identification and Realization”. In: SIAM Journal on Matrix
Analysis and Applications 34.3 (2013), pp. 946–977. doi: 10.1137/110853996.

[27] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski. “Phase Retrieval via
Matrix Completion”. In: SIAM Journal on Imaging Sciences 6.1 (2013), pp. 199–225.
doi: 10.1137/110848074.

[28] V. Chandrasekaran, S. Sanghavi, and P. A. Parrilo. “Rank-sparsity incoherence for
matrix decomposition”. In: SIAM Journal on Optimization 21.2 (2011), pp. 572–596.
doi: 10.1137/090761793.

[29] A. Agarwal, S. Negahban, and M. J. Wainwright. “Noisy matrix decomposition via
convex relaxation: Optimal rates in high dimensions”. In: The Annals of Statistics
40.2 (2012), pp. 1171–1197.

[30] R. R. Coifman and D. L. Donoho. “Translation-Invariant De-Noising”. In: Wavelets
and Statistics. New York, NY: Springer New York, 1995, pp. 125–150. isbn: 978-0-
387-94564-4. doi: 10.1007/978-1-4612-2544-7_9.

[31] H. Xu, C. Caramanis, and S. Sanghavi. “Robust PCA via outlier pursuit”. In: Ad-
vances in Neural Information Processing Systems 23 (2010), pp. 2496–2504.

[32] E. J. Candes and T. Tao. “The Power of Convex Relaxation: Near-Optimal Matrix
Completion”. In: IEEE Transactions on Information Theory 56.5 (2010), pp. 2053–
2080. doi: 10.1109/TIT.2010.2044061.

[33] B. Recht, M. Fazel, and P. A. Parrilo. “Guaranteed minimum-rank solutions of lin-
ear matrix equations via nuclear norm minimization”. In: SIAM review 52.3 (2010),
pp. 471–501.

[34] D. Hsu, S. M. Kakade, and T. Zhang. “Robust Matrix Decomposition With Sparse
Corruptions”. In: IEEE Transactions on Information Theory 57.11 (2011), pp. 7221–
7234. doi: 10.1109/TIT.2011.2158250.

[35] E. J. Candes, X. Li, Y. Ma, and J. Wright. “Robust principal component analysis?”
In: Journal of the ACM 58.3 (2011), pp. 1–37. doi: 10.1145/1970392.1970395.

[36] M. B. McCoy and J. A. Tropp. “The achievable performance of convex demixing”.
In: arXiv preprint. arXiv:1309.7478v1 (2013). arXiv: 1309.7478v1 [cs.IT].

http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1137/110853996
http://dx.doi.org/10.1137/110848074
http://dx.doi.org/10.1137/090761793
http://dx.doi.org/10.1007/978-1-4612-2544-7_9
http://dx.doi.org/10.1109/TIT.2010.2044061
http://dx.doi.org/10.1109/TIT.2011.2158250
http://dx.doi.org/10.1145/1970392.1970395
http://arxiv.org/abs/1309.7478v1


BIBLIOGRAPHY 100

[37] M. B. McCoy and J. A. Tropp. “Sharp recovery bounds for convex demixing, with
applications”. In: Foundations of Computational Mathematics 14.3 (2014), pp. 1–51.
doi: 10.1007/s10208-014-9191-2.

[38] M. B. McCoy, V. Cevher, Q. T. Dinh, and A. Asaei. “Convexity in source separation:
Models, geometry, and algorithms”. In: IEEE Signal Processing Magazine 31.3 (2014),
pp. 87–95. doi: 10.1109/msp.2013.2296605.

[39] B. R. Bakshi. “Multiscale PCA with application to multivariate statistical process
monitoring”. In: AIChE Journal 44.7 (1998), pp. 1596–1610. doi: 10.1002/aic.
690440712.

[40] R. Kondor, N. Teneva, and V. Garg. “Multiresolution Matrix Factorization”. In: The
31st International Conference on Machine Learning. 2014, pp. 1620–1628.

[41] R. Kakarala and P. O. Ogunbona. “Signal analysis using a multiresolution form of
the singular value decomposition”. In: Image Processing (2001). doi: 10.1109/83.
918566.

[42] M. Vozalis and K. Margaritis. “Using SVD and demographic data for the enhance-
ment of generalized Collaborative Filtering”. In: Information Sciences 177.15 (2007),
pp. 3017–3037. doi: 10.1016/j.ins.2007.02.036.

[43] J. Wright, A. Ganesh, K. Min, and Y. Ma. “Compressive principal component pur-
suit”. In: Information and Inference: A Journal of the IMA (2013). doi: 10.1093/
imaiai/iat002.

[44] R. Foygel and L. Mackey. “Corrupted sensing: Novel guarantees for separating struc-
tured signals”. In: IEEE Transaction on Information Theory 60.2 (2014), pp. 1223–
1247. doi: 10.1109/tit.2013.2293654.

[45] A. S. Bandeira and R. van Handel. “Sharp nonasymptotic bounds on the norm of
random matrices with independent entries”. In: Ann. Probab. 44.4 (2016), pp. 2479–
2506. doi: 10.1214/15-AOP1025.

[46] A. Belloni, V. Chernozhukov, and L. Wang. “Square-root lasso: pivotal recovery of
sparse signals via conic programming”. In: Biometrika (2011).

[47] G. A. Watson. “Characterization of the subdi↵erential of some matrix norms”. In:
Linear Algebra and Its Applications (1992). doi: 10.1016/0024-3795(92)90407-2.

[48] S. Boyd. “Distributed Optimization and Statistical Learning via the Alternating Di-
rection Method of Multipliers”. In: Foundations and Trends in Machine Learning 3.1
(2010), pp. 1–122. doi: 10.1561/2200000016.

[49] N. Parikh and S. Boyd. “Proximal algorithms”. In: Foundations and Trends in opti-
mization (2013).

[50] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012.
isbn: 0521839408.

http://dx.doi.org/10.1007/s10208-014-9191-2
http://dx.doi.org/10.1109/msp.2013.2296605
http://dx.doi.org/10.1002/aic.690440712
http://dx.doi.org/10.1002/aic.690440712
http://dx.doi.org/10.1109/83.918566
http://dx.doi.org/10.1109/83.918566
http://dx.doi.org/10.1016/j.ins.2007.02.036
http://dx.doi.org/10.1093/imaiai/iat002
http://dx.doi.org/10.1093/imaiai/iat002
http://dx.doi.org/10.1109/tit.2013.2293654
http://dx.doi.org/10.1214/15-AOP1025
http://dx.doi.org/10.1016/0024-3795(92)90407-2
http://dx.doi.org/10.1561/2200000016


BIBLIOGRAPHY 101

[51] M. A. T. Figueiredo and R. D. Nowak. “An EM algorithm for wavelet-based image
restoration”. In: IEEE Transactions on Image Processing 12.8 (2003), pp. 906–916.
doi: 10.1109/TIP.2003.814255.

[52] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. “From few to many: illumi-
nation cone models for face recognition under variable lighting and pose”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 23.6 (2001), pp. 643–660.
doi: 10.1109/34.927464.

[53] L. Li, W. Huang, I. Y. H. Gu, and Q. Tian. “Statistical Modeling of Complex Back-
grounds for Foreground Object Detection”. In: IEEE Transactions on Image Process-
ing 13.11 (2004), pp. 1459–1472. doi: 10.1109/TIP.2004.836169.

[54] T. Zhang, J. Y. Cheng, A. G. Potnick, R. A. Barth, M. T. Alley, M. Uecker, M. Lustig,
J. M. Pauly, and S. S. Vasanawala. “Fast pediatric 3D free-breathing abdominal
dynamic contrast enhanced MRI with high spatiotemporal resolution.” In: Journal of
Magnetic Resonance Imaging 41.2 (2015), pp. 460–473. doi: 10.1002/jmri.24551.

[55] R. Otazo, E. Candes, and D. K. Sodickson. “Low-rank plus sparse matrix decom-
position for accelerated dynamic MRI with separation of background and dynamic
components.” In: Magnetic Resonance in Medicine 73.3 (2015), pp. 1125–1136. doi:
10.1002/mrm.25240.

[56] M. Gri�n, T. M. Grist, and C. J. Francois. “Dynamic four-dimensional MR angiog-
raphy of the chest and abdomen”. In: Magnetic resonance imaging clinics of North
America 17.1 (2009), pp. 77–90.

[57] K. M. Johnson, S. B. Fain, M. L. Schiebler, and S. Nagle. “Optimized 3D ultra-
short echo time pulmonary MRI”. In: Magnetic resonance in medicine 70.5 (2013),
pp. 1241–1250.

[58] M. Markl, A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. “4D flow MRI”.
In: Journal of Magnetic Resonance Imaging 36.5 (2012), pp. 1015–1036.

[59] J. Y. Cheng, K. Hanneman, T. Zhang, M. T. Alley, P. Lai, J. I. Tamir, M. Uecker,
J. M. Pauly, M. Lustig, and S. S. Vasanawala. “Comprehensive motion-compensated
highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congeni-
tal heart disease”. In: Journal of Magnetic Resonance Imaging 43.6 (2016), pp. 1355–
1368.

[60] F. Han, Z. Zhou, M. Cao, Y. Yang, K. Sheng, and P. Hu. “Respiratory motion-
resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK)”. In: Medical
physics 44.4 (2017), pp. 1359–1368.

[61] J. D. Trzasko, A. Manduca, and E. Borisch. “Local versus global low-rank promotion
in dynamic MRI series reconstruction”. In: Proc Intl Soc Mag Reson Med 19. 2011.
doi: 10.5296/jsss.v1i2.5769.s851.

http://dx.doi.org/10.1109/TIP.2003.814255
http://dx.doi.org/10.1109/34.927464
http://dx.doi.org/10.1109/TIP.2004.836169
http://dx.doi.org/10.1002/jmri.24551
http://dx.doi.org/10.1002/mrm.25240
http://dx.doi.org/10.5296/jsss.v1i2.5769.s851


BIBLIOGRAPHY 102

[62] H. M. Hudson and R. S. Larkin. “Accelerated image reconstruction using ordered
subsets of projection data”. In: IEEE transactions on medical imaging 13.4 (1994),
pp. 601–609.

[63] H. Erdogan and J. A. Fessler. “Ordered subsets algorithms for transmission tomog-
raphy”. In: Physics in Medicine & Biology 44.11 (1999), p. 2835.

[64] R. Gordon, R. Bender, and G. T. Herman. “Algebraic reconstruction techniques
(ART) for three-dimensional electron microscopy and X-ray photography”. In: Jour-
nal of theoretical Biology 29.3 (1970), pp. 471–481.

[65] M. Mardani, G. B. Giannakis, and K. Ugurbil. “Tracking tensor subspaces with infor-
mative random sampling for real-time mr imaging”. In: arXiv preprint arXiv:1609.04104
(2016).

[66] P. T. Gurney, B. A. Hargreaves, and D. G. Nishimura. “Design and analysis of a
practical 3D cones trajectory”. In: Magnetic Resonance in Medicine 55.3 (2006),
pp. 575–582.

[67] H. Pedersen, S. Kozerke, S. Ringgaard, K. Nehrke, and W. Y. Kim. “k-t PCA: tem-
porally constrained k-t BLAST reconstruction using principal component analysis”.
In: Magnetic resonance in medicine 62.3 (2009), pp. 706–716.

[68] B. Zhao, J. P. Haldar, C. Brinegar, and Z.-P. Liang. “Low rank matrix recovery for
real-time cardiac MRI”. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE
International Symposium on. IEEE. 2010, pp. 996–999.

[69] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob. “Accelerated dynamic MRI exploiting
sparsity and low-rank structure: kt SLR”. In: IEEE transactions on medical imaging
30.5 (2011), pp. 1042–1054.

[70] M. Chiew, S. M. Smith, P. J. Koopmans, N. N. Graedel, T. Blumensath, and K. L.
Miller. “k-t FASTER: acceleration of functional MRI data acquisition using low rank
constraints”. In: Magnetic resonance in medicine 74.2 (2015), pp. 353–364.

[71] S. Goud, Y. Hu, and M. Jacob. “Real-time cardiac MRI using low-rank and sparsity
penalties”. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE International
Symposium on. IEEE. 2010, pp. 988–991.

[72] S. Burer and R. D. Monteiro. “A nonlinear programming algorithm for solving semidef-
inite programs via low-rank factorization”. In:Mathematical Programming 95.2 (2003),
pp. 329–357.

[73] P. Jain, P. Netrapalli, and S. Sanghavi. “Low-rank matrix completion using alter-
nating minimization”. In: Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. ACM. 2013, pp. 665–674.

[74] M. Hardt. “Understanding alternating minimization for matrix completion”. In: Foun-
dations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on. IEEE.
2014, pp. 651–660.



BIBLIOGRAPHY 103

[75] E. K. Ryu and S. Boyd. “Stochastic proximal iteration: a non-asymptotic improve-
ment upon stochastic gradient descent”. In: Author website: http: // www. math.
ucla. edu/ ~ eryu/ papers/ spi. pdf (2014).

[76] H. Robbins and S. Monro. “A stochastic approximation method”. In: Herbert Robbins
Selected Papers. Springer, 1985, pp. 102–109.

[77] F. Ong, S. Amin, and M. Lustig. “mridata.org: An Open Archive for Sharing MRI
Raw Data”. In: Proc Intl Soc Mag Reson Med 26. 2018.

[78] L. Wissmann, C. Santelli, W. P. Segars, and S. Kozerke. “MRXCAT: Realistic numer-
ical phantoms for cardiovascular magnetic resonance”. In: Journal of Cardiovascular
Magnetic Resonance 16.1 (2014), p. 63.

[79] C. Ahn, J. Kim, and Z. Cho. “High-speed spiral-scan echo planar NMR imaging-I”.
In: IEEE transactions on medical imaging 5.1 (1986), pp. 2–7.

[80] C. H. Meyer, B. S. Hu, D. G. Nishimura, and A. Macovski. “Fast spiral coronary
artery imaging”. In: Magnetic resonance in medicine 28.2 (1992), pp. 202–213.

[81] D. C. Alsop, J. A. Detre, X. Golay, M. Gunther, J. Hendrikse, L. Hernandez-Garcia, H.
Lu, B. J. MacIntosh, L. M. Parkes, M. Smits, et al. “Recommended implementation
of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the
ISMRM perfusion study group and the European consortium for ASL in dementia”.
In: Magnetic resonance in medicine 73.1 (2015), pp. 102–116.

[82] P. Lauterbur. “Image Formation by Induced Local Interactions: Examples Employing
Nuclear Magnetic Resonance”. In: Nature 242.5394 (1973), p. 190.

[83] G. H. Glover and J. M. Pauly. “Projection reconstruction techniques for reduction of
motion e↵ects in MRI”. In: Magnetic resonance in medicine 28.2 (1992), pp. 275–289.

[84] C.-M. Tsai and D. G. Nishimura. “Reduced aliasing artifacts using variable-density k-
space sampling trajectories”. In: Magnetic Resonance in Medicine 43 (2000), pp. 452–
458.

[85] J. Jackson, C. Meyer, D. Nishimura, and A. Macovski. “Selection of a convolution
function for Fourier inversion using gridding (computerised tomography application)”.
In: IEEE Transactions on Medical Imaging 10 (1991), pp. 473–478. doi: 10.1109/
42.97598.

[86] R. D. Hoge, R. K. Kwan, and B. G. Pike. “Density compensation functions for spiral
MRI”. In: Magnetic Resonance in Medicine 38 (1997), pp. 117–128. doi: 10.1002/
mrm.1910380117.

[87] J. G. Pipe and P. Menon. “Sampling density compensation in MRI: Rationale and an
iterative numerical solution”. In:Magnetic Resonance in Medicine 41 (1999), pp. 179–
186.

http://www.math.ucla.edu/~eryu/papers/spi.pdf
http://www.math.ucla.edu/~eryu/papers/spi.pdf
http://dx.doi.org/10.1109/42.97598
http://dx.doi.org/10.1109/42.97598
http://dx.doi.org/10.1002/mrm.1910380117
http://dx.doi.org/10.1002/mrm.1910380117


BIBLIOGRAPHY 104

[88] H. Moriguchi and J. L. Duerk. “Modified block uniform resampling (BURS) algorithm
using truncated singular value decomposition: fast accurate gridding with noise and
artifact reduction”. In: Magnetic resonance in medicine 46.6 (2001), pp. 1189–1201.

[89] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm for Convex Prob-
lems with Applications to Imaging”. In: Journal of Mathematical Imaging and Vision
40 (2011), pp. 120–145. doi: 10.1007/s10851-010-0251-1.

[90] B. P. Sutton, D. C. Noll, and J. A. Fessler. “Fast, Iterative Image Reconstruction for
MRI in the Presence of Field Inhomogeneities”. In: IEEE Transactions on Medical
Imaging 22 (2003), pp. 178–188. doi: 10.1109/TMI.2002.808360.

[91] S. Ramani and J. A. Fessler. “Parallel MR Image Reconstruction Using Augmented
Lagrangian Methods”. In: IEEE Transactions on Medical Imaging 30 (2011), pp. 694–
706. doi: 10.1109/TMI.2010.2093536.

[92] A. E. Yagle. “New Fast Preconditioners for Toeplitz-Like Linear Systems”. In: IEEE
2 (2002). doi: 10.1109/ICASSP.2002.5744057.

[93] D. S. Weller, S. Ramani, and J. A. Fessler. “Augmented Lagrangian with Variable
Splitting for Faster Non-Cartesian L1-SPIRiT MR Image Reconstruction”. In: IEEE
Transactions on Medical Imaging 33 (2014), pp. 351–361. doi: 10.1109/tmi.2013.
2285046.

[94] M. Lustig and J. M. Pauly. “SPIRiT: Iterative self-consistent parallel imaging recon-
struction from arbitrary k-space”. In: Magnetic Resonance in Medicine 64 (2010),
pp. 457–471. doi: 10.1002/mrm.22428.

[95] T. F. Chan. “An optimal circulant preconditioner for Toeplitz systems”. In: SIAM
journal on scientific and statistical computing 9 (1988), pp. 766–771.

[96] M. J. Muckley, D. C, and J. A. Fessler. “Fast, Iterative Subsampled Spiral Recon-
struction via Circulant Majorizers”. In: Proc Intl Soc Mag Reson Med 26. 2018.

[97] K. Koolstra, J. v. Gemert, P. Bornert, A. Webb, and R. Remis. “Accelerating com-
pressed sensing in parallel imaging reconstructions using an e�cient circulant precon-
ditioner for cartesian trajectories”. In: Magnetic Resonance in Medicine (2018). doi:
10.1002/mrm.27371.

[98] J. D. Trzasko, A. Manduca, Y. Shu, J. H. III, and M. A. Bernstein. “A Preconditioned
ADMM Strategy for Field-Corrected Non-Cartesian MRI Reconstruction”. In: Proc
Intl Soc Mag Reson Med 22. 2014.

[99] N. Komodakis and J.-C. Pesquet. “Playing with Duality: An overview of recent
primal-dual approaches for solving large-scale optimization problems”. In: IEEE Sig-
nal Processing Magazine 32 (2015), pp. 31–54. doi: 10.1109/MSP.2014.2377273.

[100] T. Pock and A. Chambolle. “Diagonal preconditioning for first order primal-dual
algorithms in convex optimization”. In: 2011 International Conference on Computer
Vision. 2011, pp. 1762–1769. doi: 10.1109/ICCV.2011.6126441.

http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1109/TMI.2002.808360
http://dx.doi.org/10.1109/TMI.2010.2093536
http://dx.doi.org/10.1109/ICASSP.2002.5744057
http://dx.doi.org/10.1109/tmi.2013.2285046
http://dx.doi.org/10.1109/tmi.2013.2285046
http://dx.doi.org/10.1002/mrm.22428
http://dx.doi.org/10.1002/mrm.27371
http://dx.doi.org/10.1109/MSP.2014.2377273
http://dx.doi.org/10.1109/ICCV.2011.6126441


BIBLIOGRAPHY 105

[101] M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala,
and M. Lustig. “ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI:
Where SENSE meets GRAPPA”. In: Magnetic Resonance in Medicine 71 (), pp. 990–
1001. doi: 10.1002/mrm.24751.

[102] S. v. d. Walt, S. C. Colbert, and G. Varoquaux. “The NumPy array: a structure
for e�cient numerical computation”. In: Computing in Science & Engineering 13.2
(2011), pp. 22–30.

[103] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis. “CuPy: A NumPy-Compatible
Library for NVIDIA GPU Calculations”. In: Proceedings of Workshop on Machine
Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural
Information Processing Systems (NIPS). 2017.

[104] K. King. “HyperSense Enables Shorter Scan Times Without Compromising Image
Quality”. In: GE SIGNA Pulse of MR 22 (2016), pp. 48–51.

[105] L. Geerts-Ossevoort, E. d. Weerdt, A. Duijndam, G. v. IJperen, H. Peeters, M.
Doneva, M. Nijenhuis, and A. Huang. “Compressed SENSE: Speed done right. Every
time.” In: Philips FieldStrength Magazine (2018), p. 6619.

[106] C. Forman, J. Wetzl, C. Hayes, and S. M. “Compressed Sensing: a Paradigm Shift in
MRI”. In: MAGNETOM Flash (2016), p. 6619.

[107] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F.
Knoll. “Learning a variational network for reconstruction of accelerated MRI data”.
In: Magnetic resonance in medicine 79.6 (2018), pp. 3055–3071.

[108] S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang. “Acceler-
ating magnetic resonance imaging via deep learning”. In: Biomedical Imaging (ISBI),
2016 IEEE 13th International Symposium on. IEEE. 2016, pp. 514–517.

[109] J. Sun, H. Li, and Z. Xu. “Deep ADMM-Net for compressive sensing MRI”. In:
Advances in Neural Information Processing Systems. 2016, pp. 10–18.

[110] D. Lee, J. Yoo, and J. C. Ye. “Deep artifact learning for compressed sensing and
parallel MRI”. In: arXiv preprint arXiv:1703.01120 (2017).

[111] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. “Deconvolutional networks”.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. 2010, pp. 2528–2535. doi: 10.1109/CVPR.2010.5539957.

[112] S. Ravishankar and Y. Bresler. “E�cient blind compressed sensing using sparsify-
ing transforms with convergence guarantees and application to magnetic resonance
imaging”. In: SIAM Journal on Imaging Sciences 8.4 (2015), pp. 2519–2557.

[113] S. G. Lingala and M. Jacob. “Blind compressed sensing with sparse dictionaries for
accelerated dynamic MRI”. In: Biomedical Imaging (ISBI), 2013 IEEE 10th Interna-
tional Symposium on. IEEE. 2013, pp. 5–8.

http://dx.doi.org/10.1002/mrm.24751
http://dx.doi.org/10.1109/CVPR.2010.5539957


BIBLIOGRAPHY 106

[114] K. Epperson, A. M. Sawyer, M. Lustig, M. Alley, M. Uecker, P. Virtue, P. Lai, and S.
Vasanawala. “Creation of fully sampled MR data repository for compressed sensing
of the knee”. In: Section for Magnetic Resonance Technologists. 2013.

[115] R. Ge, J. D. Lee, and T. Ma. “Matrix completion has no spurious local minimum”.
In: Advances in Neural Information Processing Systems. 2016, pp. 2973–2981.


	Contents
	List of Figures
	List of Tables
	Introduction
	Outline

	MRI Reconstruction Overview
	Basic MRI Signal Equation
	Basic MRI Reconstruction
	View Sharing
	Gating and Data Binning
	Parallel Imaging
	Compressed Sensing

	Multiscale Low Rank Matrix Model
	Introduction
	Multiscale Low Rank Matrix Modeling
	Problem Formulation and Convex Relaxation
	Guidance on Choosing Regularization Parameters 
	Theoretical Analysis for Exact Decomposition
	Theoretical Analysis for Approximate Decomposition
	An Iterative Algorithm for Solving the Multiscale Low Rank Decomposition
	 Computational Complexity 
	Heuristics for translation invariant decomposition
	Applications
	Conclusion
	Proof of Theorem 3.5.1
	Proof of Theorem 3.6

	High Resolution Volumetric Dynamic MRI from Non-Gated Acquisitions
	Introduction
	Forward Model with MSLR
	Objective function using the Burer-Monteiro Heuristic
	Stochastic Alternating Minimization
	Methods
	Results
	Discussion
	Conclusion

	Accelerating Convergence for Non-Cartesian MRI Reconstructions
	Introduction
	Problem Setup
	k-space Preconditioning
	L2 optimized diagonal k-space preconditioner
	Experiments
	Discussion
	Conclusion
	Derivation for the Dual Problem
	Derivation for L2 optimized diagonal preconditioner

	Learning a Sparse Representation from Many Undersampled Datasets
	Introduction
	Problem statement and Objective function
	Training using Stochastic Alternating Minimization
	Reconstruction using the learned filters
	Methods
	Results
	Discussion
	Conclusion

	Summary and Future Work
	Summary of Contributions
	Future work

	Bibliography

