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Abstract

Method of Local Corrections Solver for Manycore Architectures

by

Brian Van Straalen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Phillip Colella, Chair

Microprocessor designs are now changing to reflect the ending of Dennard Scaling. This
leads to a reconsideration of design tradeoffs for designing discretization methods for PDEs
based on simplified performance models like Roofline.

In this work we carry out an end-to-end analysis and implementation study on a Cray
XC40 with Intel R©XeonTM E5-2698 v3 processors for the Method of Local Corrections
(MLC). MLC is a non-iterative method for solving Poisson’s Equation on locally rectan-
gular meshes. The Roofline model predicts that MLC should have faster time to solution
than traditional iterative methods such as Geometric Multigrid. We find that Roofline is a
useful guide for performance engineering and obtain performance within a factor of 3 the
Roofline performance upper bound. We determine that the algorithm is limited by identified
architectural features that are not captured in the Roofline model, are quantifiable, and can
be addressed in future implementations.
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operations share a common work array with inverse J-transform and so do not
count towards the total working set. 3. This would be the peak working set size
if we did not block and fuse the k-direction operations. . . . . . . . . . . . . . . 44

5.7 Experimentally-derived bandwidth measurements of 1 node (2 sockets, 32 cores)
experimental platform for 32 FLOP computational kernel using 4 MPI ranks,
each with 8 OpenMP threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



v

List of Tables

2.1 Steps for coarse-grained Hockney transforms. The column headings are a naming
convention used by the FFTW API and described in section 3.4. . . . . . . . . . 23

2.2 Steps for fine-grained threaded Hockney transforms. A new column now appears
that describes how threads are distributed across the operations within the trans-
form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Steps for compact fine-grained threaded Hockney transforms . . . . . . . . . . . 24

4.1 big O Complexity for a given p for GMG V-cycle, FMG, FFT and MLC. N grid
points, p processors. d refers to the amount of domain decomposition used in
MLC. FFT is done as a single large FFT operation, while MLC first decomposes
the domain into d compact disjoint regions. . . . . . . . . . . . . . . . . . . . . 31

4.2 Computational Complexity per finest level grid point for Method of Local Cor-
rections. Refinement ratio r, N grid points in BR, Γ: number of basis functions
for polynomial expansion. qn are the number of points in the Laplacian stencil.
* fh loaded in step 1 gets reused in step 2 and we assume that Ĝ can fit inside
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Chapter 1

Introduction

1.1 Hardware Trends

Microprocessor design in the past decade have been shaped by two dominant physical effects:
Our continued ability to reduce feature size as discussed in the ITRS: The international
technology roadmap for semiconductors [43] and the end of Dennard Scaling [30, 32]. Dennard
(1974) observed that voltage and current should be proportional to the linear dimensions
of a transistor. Thus, as transistors shrank, so did necessary voltage and current; power is
proportional to the area of the transistor. So smaller features were matched by lower power
trends and the product of the two, power density, remained stable. Dennard scaling ignored
the leakage current and threshold voltage, which establish a baseline of power per transistor.
Now, as transistors get smaller, power density increases. Thus we have the power wall that
has limited practical processor frequency to around 4 GHz since 2006. This kicked off our
current era of using more processing cores that distributed the thermal load, and fewer
transistors dedicated to mitigating memory latency, which have higher power density. These
changes were well documented in the National Academy Study The Future of Computing
Performance[37]. The general term for this architectural shift is manycore.

To capture this complicated architectural landscape it is helpful to reference more simpli-
fied computing abstractions and performance models. The Roofline model [67, 66] describes
the upper limits of attainable performance in terms of bandwidth and arithmetic operations.
The name Roofline is evocative of a ceiling on attainable performance for algorithms that
can be expressed as a streaming computation. For a given ratio of arithmetic operations
that need to be performed and bytes of memory that need to be accessed, and a data work-
ing set size, the Roofline predicts the maximum performance that can be obtained from an
optimal algorithm implementation. The trend can be seen in two successive generations of
Intel R©microprocessor-based supercomputer platforms from the Department of Energy Na-
tional Energy Research Supercomputer Center in figure 1.1. The vertical axis is in units of
GFLOP/s. The horizontal axis is the arithmetic intensity, specified as the number of FLOPs
performed per byte of memory accessed. The slanted bandwidth lines (L1, L2, L3, DRAM)
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all have a slope of 1/8 (8 being the number of bytes in a double-precision floating-point
data value). Each line represents the peak GFLOP/s acheivable for a streaming compute
kernel that is bandwidth-bound whose working set fits with the named level of the cache
hieararchy. Bandwidth-bound means that the processor is capable of executing floating-point
operations faster, but the memory subsystem is not capable of delivering bytes to and from
the functional units to keep them fully active. The processor will execute some number
of NOP instructions while waiting for outstanding load/store instructions to complete. The
horizontal lines represent the maximum GFLOP/s achievable set by the ability of the pro-
cessor to execute floating-point instructions. Multiply/Add shows the peak performance for
motifs that utilitze a Fused-Multiply-Add instruction. Add stands in for all other instruc-
tions that are the eqivalent of a single floating-point operation. Computional motifs that are
constrained by the horizontal red lines are said to be Compute-bound. The Roofline defines a
peak performance attainable. Many architectural complexities are elided here, but all other
features will only lower performance relative to this performance envelope.

Several classic HPC motifs are plotted in these Roofline plots in magenta: Algebraic
Multigrid/Sparse Matrix-Vector Multiply (AMG/SpMV), Geometric Multigrid (GMG), Ge-
ometric Multigrid with the more computationally dense GMG scheme where several core
computational phases have been manually fused and tuned (GMG (fused)), Fast Fourier
Transform, both small (FFT(1K)), and large (FFT (8K)) computed as 5N log2(N)/4 · 8 ·N ,
and Dense Double-Precision Matrix-Matrix Multiply (DGEMM, m·n = 128). In the Roofline
Model a computational motif is entirely characterized by its arithmetic intensity, to these
are shown as vertical lines. For example, we can make a prediction for a Sparse Matrix-
Vector multiply kernel on the Edison platform where the working set fits entirely in the L2
level of cache. We follow the AMG/SpMV line that defines the arithmetic intensity of this
algorithm (AI=0.125) upwards until we encounter the rate-limiting ceiling on performance,
which shows that these algorithm motifs are bandwidth-bound by the available L2 band-
width and the expected upper bound performance can be read from the intersection of with
the L2 bandwidth limit (in this case roughly 63 GFLOPS).

The Roofline model highlights the need to place less emphasis on algorithms that empha-
size minimum floating-point and towards algorithms that minimize data movement. This
concept has been well studied for dense and sparse communication-avoiding linear algebra
[29, 4, 28] and extended to what Demmel and Ballard refers to computations that “smell
like” triply-nested loops [11, 10]. For algorithms that have a SpMV-kernel at their core you
can see from the Roofline model that communication-avoiding should be the entire focus.

We will investigate the utility of a Roofline performance model in guiding the development
of a new fast Poisson solver algorithm.
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Figure 1.1: Single Socket Roofline plots for NERSC Hopper (Cray XE6) and Edison (Cray
XC30) platforms. Generating using the Empirical Roofline Toolkit [50]. The theoretical peak
performance from hardware specifications is given in green.

1.2 Poisson’s Equation

We are seeking to solve Poisson’s Equation in free space

∆(Φ) = f where supp(f) = D bounded domain in R3 (1.1)

Φ, f : R3 → R

Φ(x) =
Q

4π||x||
+ o

(
1

||x||

)
as ||x|| → ∞ (1.2)

Q =

∫
D

fdx

which can be expressed as convolution with the Green’s function

Φ(x) =

∫
D

G(x− y)f(y)dy ≡ (G ∗ f)(x) , G(x) =
1

4π||x||
. (1.3)

We seek solutions to these forms of equations on the emerging manycore computing
architectures.

A wide range of relevant scientific computing applications require the solution to Poisson’s
equation including gravity in cosmological and astrophysical models, electrostatic potential
in kinetic plasma physics and Coulomb potentials in molecular dynamics and projection
methods for solving viscous incompressible flows [21, 22, 51, 42].
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1.3 Fast Solvers for Poisson’s Equation

A simple and correct method for solving (1.3) would be to discretize space and compute the
integral with numerical quadrature. While correct this results in an O(N2) algorithm where
N is the number of grid points. Expressing the discretization of equation (1.3) by finite-
difference methods and constructing a linear system of equations to solve also works and
Krylov-based iterative methods like preconditioned conjugate gradient can solve these well-
conditioned systems of equations in O(Nk) for k only lightly larger than 1. Unfortunately
even a small increment in k above 1 leads to a large increment in cost when N becomes
large.

Solutions to (1.3) have the property that Φ is a smooth function away from the support
of the charge D. Differentiating (1.3) we see that

∇wΦ(x) = O

(
1

l||w||1+1

)
(1.4)

where w = [w1, w2, w3], wi are non-negative integers, ||w||1 = w1 +w2 +w3, and l = distance
between x and the support of f . The field induced by distant charges has derivatives that
decay like an inverse power law. Thus it should be possible to represent the the nonlocal
dependence of the field on the charge using less computational effort. This observation
underlies all fast Poisson solvers, and several algorithms have been developed that exploit
this property.

For a uniform rectangular grid discretization of Φ and f , the Fast Fourier Transform
(FFT) can be used to solve Poisson’s equation on a periodic domain, combined with one of
a number of techniques for correcting for the infinite-domain boundary conditions. The core
FFT solver takes 5Nlog2(N) floating-point operations. Distributed Fast Fourier Transform
Techniques [2, 5, 15] are efficient and fast.

Geometric Multigrid [63, 18] is an iterative method for solving grid-based discretizations
of Poisson’s equation. It uses local O(N) relaxation techniques to reduce high-wave-number
components of the error, and the effect of the smooth non-local coupling is efficiently com-
puted by solving the equations on a coarsened grid, with iteration between the coarse and
fine representations to obtain the solution. The approach is applied recursively in refinement
level. This leads to an O(N) method, where the constant depends on the specific discretiza-
tion of the Laplacian, but is at least 10x larger than the corresponding constant of 15 in
the FFT solver. However, geometric multigrid can be applied to a much broader range of
spatial discretizations, such as mapped grids and nested locally refined rectangular grids.
Multigrid has been shown to be scalable to O(100K) cores on homogeneous supercomputers
with O(109) unknowns[64].

The Fast Multipole Method (FMM)[39, 38, 33] and related tree-based fast Poisson solvers[12]
are numerical techniques that were developed to speed up the calculation of long-range forces
in the n-body problem. FMM does this by expanding the system Green’s function using a
multipole expansion. Recent implementations have shown good scaling on modern het-
erogeneous architectures [48]. The Generalized Fast Multipole Method [68] does exploit a
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uniform grid sampling and is not limited to problems that have an analytic Green’s function
but has several quadrature integrations at every step in the algorithm and has increasing
computational complexity and communication for higher degrees of accuracy.

In this work we will be investigating The Method of Local Corrections (MLC)
[46, 53] defined on structured hierarchically adaptive structured grids, commonly referred to
as Structured Adaptive Mesh Refinement (AMR) data layouts [3, 31, 60, 8, 24, 23]. MLC
breaks the integral form of equation (1.3) into near-field operations that are computed using
direct convolutions on small structured patches to neighbors, and a far-field contribution
that is solved on a coarser grid refinement. The coarser solve is handled with a similar
decomposition into near and far contributions on the next coarser grid.

MLC proceeds in three steps: (i) a loop over the fine disjoint patches and the computation
of local potentials induced by the charge restricted to those patches on sufficiently large
extensions of their support (downward pass); (ii) a global coarse-grid Poisson solve with a
right hand side computed by applying the coarse-grid Laplacian to the local potentials of
step (i) bottom solve; and (iii) a correction of the local solutions computed in step (i) on
the boundaries of the fine disjoint patches based on interpolating the global coarse solution
from which the contributions from the local solutions have been subtracted (upward pass).
These boundary conditions are propagated into the interior of the patches by performing
Dirichlet solves on each patch. This method is applied recursively to progressively coarser
grid refinements.

Structurally MLC is most closely related to Multigrid as it is deployed in AMR algorithms
[64]. There is a downward pass where a modified source term is generated, a bottom solve,
and an upward pass where corrections to the fine grid solution from the coarse-grid solutions
are interpolated. Parallel implementations are based on domain decomposition, and the
gridding structure is compatible with more general applications that use AMR grids and
require the solution to Poisson’s equation as a substep. MLC, unlike Multigrid, is not
iterative, and has as a compute kernel small batched FFTs to compute discrete convolutions,
rather than stencil operations.

Fast Multipole Methods are also similar to MLC in that they both directly utilize the
convolution form of Poisson’s Equation, and have a natural hierarchy of scales that leads to
a recursive traversal through the data structures. However, mapping the classic spherical
multipole basis onto AMR hierarchies adds many complexities of interpolation and quadra-
ture.

1.4 Thesis

At the core of MLC is the opportunity to trade-off more floating-point operations for less
data movement with the end result of faster time to solution with the coming hardware
trends. The near-field convolutions can be performed using the Fast-Fourier Transform us-
ing a variant of the Convolution Theorem and identities for turning linear convolutions into
circular convolutions. These convolution operations will be shown to dominate the compu-
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tation cost of the algorithm, and they can have highly efficient implementations on modern
manycore architectures. We want to assess to what extent we are capable of implementing
MLC up to its potential of a Roofline model. A look at figure 1.2 shows that for an algo-
rithm composed of collections of FFTs of roughly 2M elements should execute within the
floating-point dominated regime of a contemporary processor.

In this thesis we will study the performance potential of MLC theoretically in Chapter 4,
then implement and analyze several progressively improved implemenatations in Chapter 5
using a current HPC platform Cori at the NERSC supercomputer center. Cori has compute
nodes with Two 2.3 GHz 16-core Haswell processors per node. Each core has its own L1 and
L2 caches, with 64 KB (32 KB instruction cache, 32 KB data) and 256 KB, respectively;
there is also a 40-MB shared L3 cache per socket. Nodes are connected for distributed
computing using a Cray Aries high speed ”dragonfly” topology interconnect. The target
Roofline model for this work is given in figure 1.2.

Outline for Thesis

First we will define our numerical scheme for representing the discrete problem definition
from the continuous operator, a description of Hockney’s discrete convolution algorithm,
introduce domain decomposition, and then the Method of Local Corrections. Second a
performance model is given for the overall MLC algorithm and its key discrete convolution
kernel. Third we present descriptions of four algorithm variants, their measured performance,
and further performance analysis and motivations for each implementation variant. Finally,
a deep analysis of the current best algorithm implemented and future directions.
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Figure 1.2: Single Socket Roofline plots for NERSC Cori (Cray XC40 Haswell nodes). Gen-
erated using the Empirical Roofline Toolkit [50]. The theoretical peak performance from
hardware specifications is given in green.
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Chapter 2

Algorithm

2.1 Discretization

Domain decomposition and Adaptive Structured Grids

We denote by Dh,Ωh · · · ⊂ Z3 grids with grid spacing h of discrete points in physical space:
{gh : g ∈ Dh}. Arrays of values defined over such sets will approximate functions on subsets
of R3, i.e. if ψ = ψ(x) is a function on D ⊂ R3, then ψh[g] ≈ ψ(gh). We denote operators
on arrays over grids of mesh spacing h by Lh,∆h, . . . ; Lh(φh) : Dh → R. Such operators
are also defined on functions of x ∈ R3, and on arrays defined on coarser grids φh

′
, h =

Nh′, N ∈ N+, by sampling: Lh(φ) ≡ Lh(Sh(φ)), Sh(φ)[g] ≡ φ(gh); Lh(φh
′
) ≡ Lh(Sh(φh′)),

Sh(φh′)[g] ≡ φh
′
[Ng].

For a rectangle D = [l,u], defined by its low and upper corners l,u ∈ Z3, we define the
operators

G(D, r) = [l− (r, r, r),u + (r, r, r)], r ∈ Z

C(D) =
[⌊ l

Nref

⌋
,
⌈ u

Nref

⌉]
Throughout this paper, we will use Nref = 4 for the refinement ratio between levels.

The discrete Laplacian operator Lh

We begin our discussion presenting the finite difference discretizations of (1.3) that we will
be using throughout this work and some of their properties that pertain to the Method of
Local Corrections.

We are employing Mehrstellen discretizations [25] (also referred to as compact finite
difference discretizations) of the 3D Laplace operator

(∆hφh)g =
∑

s∈[−s,s]3
asφ

h
g+s, as ∈ R. (2.1)
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The associated truncation error τh ≡ (∆h − ∆)(φ) = −∆h(φh − φ) for the Mehrstellen
discrete Laplace operator is of the form

τh(φ) = C2h
2∆(∆φ) +

q
2
−1∑

q′=2

h2q′L2q′(∆φ) + hqLq+2(φ) +O(hq+2), (2.2)

where q is even and L2q′ and Lq+2 are constant-coefficient differential operators that are
homogeneous, i.e. for which all terms are derivatives of order 2q′ and q+ 2, respectively. For
the 27-pt Laplacian operator considered here, C2 = 1

12
. In general, the truncation error is

O(h2). However, if ∆φ = 0 in a neighborhood of x,

τh(φ)(x) = ∆h(φ)(x) = hqLq+2(φ)(x) +O(hq+2). (2.3)

In our specific numerical test cases we make use 27-point (Lh27) Mehrstellen stencil [61] that
is described in the Appendix (Section B), for which q = 6. In general, it is possible to
define operators for which s = b q

4
c for any even q, using higher-order Taylor expansions and

repeated applications of the identity

∂2rφ

∂x2r
d

=
∂2r−2

∂x2r−2
d

(∆φ)−
∑
d′ 6=d

∂2r

∂x2r−2
d′ ∂x2

d

(φ).

The discrete Green’s Function

With a definition of the discrete Laplacian operator we can specify the discrete Green’s
Function Gh from the definition:

LhGh = 0 when i 6= 0 (2.4)

= 1 i = 0 (2.5)

Given such a Gh then the following property is true:

(Gh ∗ fh) = (∆h)−1(fh) ,(Gh ∗ fh)[g] ≡
∑
g′∈Z3

h3Gh[g − g′]f [g′]h (2.6)

In traditional Green’s function solvers the analytic form of the Green’s Function in fre-
quency space Ĝ(k) = 1

k20−k2 for the Laplacian operator is often used. The analytic Green’s

Function limits your overall algorithm accurac to just 2nd-order.
For simple operators, like the 2D 5- or 9-point Laplacian it is possible to use analytic

methods to compute the discrete Green’s function as done by Buneman [19]. While the
method can possibly be extended to higher-order schemes the procedure is cumbersome and
error prone. We need to compute an approximation to the discrete Green’s function Gh for
the 27-point operator, restricted to a domain of the form D = [−n, n]3. We do this by
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solving the following inhomogeneous Dirichlet problem on a larger domain Dζ = [−ζn, ζn]3

.

(Lh=1Gh=1)[g] =δ0[g] for g ∈ G(Dζ ,−1),

Gh=1[g] =G(g) for g ∈ Dζ − G(Dζ ,−1).

Then our approximation to Gh=1 on D is the solution computed on Dζ , restricted to D.
To compute this solution, we put the inhomogeneous boundary condition into residual-
correction form, and solve the resulting homogeneous Dirichlet problem using the discrete
sine transform. In the calculations presented here, we computed Gh=1 using n ≥ 128 and
ζ = 2, leading to at least 10 digits of accuracy for Gh=1.

2.2 The Two-Level Method of Local Corrections

We can describe the two-level algorithm here, but the analysis carries over to arbitrary
depth of hierarchy. Given ∆h, we define the discrete Green’s function Gh : Z3 → R by
∆hGh = h−3δ0, where δ0 is the 3D discrete delta function centered at 0. We have the
relationships

Gh = h−1Gh=1

∆h=1(Gh=1,e)i = O(||i||−q−3
2 )

⇒ Gh=1,e −Gh=1 = O
(
||z||−q2

)
.

To compute Gh on any bounded domain to any degree of accuracy, one computes and stores
Gh=1 to any precision using a fast Poisson solver with Dirichlet boundary conditions given
by Gh=1,e, or for sufficiently large ||i||2, uses the approximation Gh=1

i ≈ Gh=1,e
i .

Given these definitions, the two-level MLC computes

(Gh ∗ fh)i = h3
∑
j∈Z3

Gh
i−jf

h
j (2.7)

using a collection of local fields induced by the charge restricted to cubes of size BR ≡
[−R,R]3 combined with a single coarse-grid solution representing the global coupling. The
local solutions are represented by the convolution for points near to the support of the charge
(a box of size BαR, α > 1) combined with a reduced representation given by the convolution
of Gh with the low-order terms in the Legendre expansion of fh for points at intermediate
distances (a translate of the region BβR − BαR, β > α) from the support. The regions
are shown for the 2D case in Figure 2.1. The same representation is used to compute the
coarse-grid version of the charge whose field we use to represent the global coupling.

We denote by fh,k = fh|BR+2αR+2kR, and PL the projection operator onto the Legendre
polynomials of degree ≤ P − 1 defined on BR + 2kR (the method in [53] corresponds to the
case P = 1).
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Figure 2.1: Regions about the patch k.
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For H = rh, r > 1 is a positive integer, we define the coarse-grid right-hand side FH

FH,k =∆H(Gh ∗ fh,k) on BαR + 2kR (2.8)

=∆H(Gh,e ∗ (PLfh,k)) on (BβR + 2kR)−BαR (2.9)

=0 otherwise

FH =
∑
k

FH,k.

A solution is computed on grid resolution H

φH = GH ∗ FH . (2.10)

Then local corrections are computed as

∆h(φh) = fh in BR (2.11)

φh = φh +
h2

12
fh (2.12)

φhBR = φloc,ii + I(φH − φloc,i)i on ∂BR (2.13)

φloc,ii′ =
∑

k:S(i)⊂BαR

+(Gh ∗ fh,k)i′ (2.14)

+
∑

k:S(i)⊆BβR−BαR

(Gh,e ∗ (PLmfh,k))i′ . (2.15)

Here I is a qthI -order accurate interpolation operator from the H grid to the h grid with
stencil S(i) required to compute the interpolated value at i. In practice, it is most efficient
and accurate to construct φhi using the above construction only on the boundaries of each of
the fine-grid patches as described in Equation (2.13). Then solve the Dirichlet problem from
Equation (2.11) using a Discrete Sine Transform to compute the solution in the interior of
the patch. In that way, we can also add the Mehrstellen corrections to the right-hand side
to obtain high-order accuracy.

The error estimate of this scheme reduces to

εh = φh − (G ∗ f)h,e = O(hq0) (2.16a)

+O
(
hqP
( H
αR

)qα)
(2.16b)

+O(hI) (2.16c)

+O
( H
βR

)qα
. (2.16d)

In this error estimate, all the terms except the first are proportional to ||f ||∞. The
first term (2.16a) is the contribution from the truncation error from the local convolution
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G∗ fh,k and involves higher derivatives of f . Equation (2.16b) is the error contribution from
evaluating the convolution on the reduced Legendre basis. P higher than q has diminishing
gains from higher-order polynomial expansions. Equation (2.16c) is from the interpolation
of the coarse-grid solution to the finer-grid. Equation (2.16d) is the result of discarding the
contribution out past the limit β. As can be seen for a fixed ratio H

R
, you can control this

error term with either a wider region or a higher-order scheme. The high-order schemes q
cost very little in this framework, whereas computation effort grows with the cube of β.

2.3 Analogy with FAS

As an explanatory aid, the Method of Local Corrections can be described as a modification of
a Full Approximation Scheme Multigrid Method [17], where specific steps have been altered.

The two-level FAS scheme can be expressed as

relax: Lf (φf ) = F f (2.17)

restrict: F c = Lc(Icfφ
f ) + Icf [F

f − Lf (φf )] (2.18)

solve: Lc(φc) = F c (2.19)

prolong: φf = φf + Ifc [φc − Icfφf ] (2.20)

relax: Lf (φf ) = F f (2.21)

FAS and MLC are structurally similar, with the differences allowing MLC to obtain a solu-
tion in one iteration. The first step is replaced by computing a solve with infinite-domain
boundary conditions in MLC. In both cases, this step is the place where a fine-grid repre-
sentation of the local high-wavenumber contribution is captured. In FAS, this is done only
approximately, and with Dirichlet boundary conditions. The complete representation of
the local contributions to the solution, as well as the correct far-field boundary conditions,
are captured by iterating. In MLC this is done by computing a local convolution, which
represents correctly the effect of the far-field boundary conditions on the local solutions.

The second step almost identical in MLC and FAS, since the fine-grid residual for the
latter is identically zero in in the first step. The difference is that, in MLC the coarse-grid
RHS is computed on a set of overlapping patches, and summed. The degree of overlap
governs the accuracy of the final solution.

For both cases, the third step interpolates on the fine grid the coarse-grid representation
of the nonlocal part of the solution. In the MLC case, this is done only on the boundaries
of patches, with the solution in the interior computed by performing a final Dirichlet solve.

The final step computes a corrected version of the local solution using as inputs a version
of the solution corrected for the effect of the smooth far-field behavior from distant patches.
In the FAS case, this is again only done approximately, with iteration required to get a solu-
tion to the original discretized system. In the MLC case, the representation of the boundary
conditions using the combination of nearby local convolutions and the global coarse-grid
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solution is used to obtain an approximate solution to the original discrete equations without
iterating.

2.4 General Multilevel Algorithm

The complete algorithm description is now given. The pseudocode makes references to
mathematical descriptions of operations as well as software implementation details. The
implementation has been done as an extension to the Chombo C++ class library described
in section 3.3. Data structures from Chombo are called out using a Teletype font using a
“camel-case” naming convention.

Notation

• Box: C++ class representing a region of space in ZD. In math notation this corresponds
to a specific Ωl

k.

• NodeFArrayBox: C++ class representing scalar field over a Box

• LevelData<NodeFArrayBox>: C++ class representing a scalar field over a collection
of Boxs and meant to represent a field at a specific level of hierarchal grid refinement

• Ωl =
⋃
k

Ωl
k ,l = 0, . . . , lmax is a hierarchy of node-centered, nested grids with fixed-size

Boxes Ωl
k. The size of each Box is N3, N = 2M + 1. We assume a refinement ratio of

r = 4 between levels, and that the grids conform to an oct-tree structure. Ωl
k,0 denotes

the interior points of Ωl
k, ∂Ωl

k = Ωl
k − Ωl

k,0.

• Ωl;I
k for interval I is set of all points i such that ||i− i0||∞/2M−1 is in interval I, where

i0 is the center of Ωl
k.

• f lk : Ωl
k → R defines the charge distribution on level l. Since we are computing the

solution using linear superposition, can have different parts of the charge represented
on overlapping regions of space on different levels.

• C is the coarsening operator, obtained for node-centered grids or data by sampling. PL
is the projection onto the space spanned by the Legendre polynomials up to degree P−
1. Ll is a Mehrstellen discretization of the Laplacian, at level l, Gl is the corresponding
discrete Green’s function, and Ll is the Mehrstellen correction operator applied to the
right-hand side. Note that the latter is applied only to f l,k, not f̃ l,k.

• Sd(i) is the set of all coarse grid points required to interpolate a value in dimension d
at fine grid point i. Define the interpolation radius b to be the minimum number such
that for all Λ ⊂ ZD, G(C(Λ), b) contains Sd(Λ).

Class ExpansionCoefficients is defined by a Box and an int number of components.
We use the following data holders:
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• Initial right-hand side for l = 0, . . . , lmax:
LevelData<NodeFArrayBox> f l where f l,k is on Ωl

k,
stored as cubic NodeFArrayBox of length N = 2M .

• Modified right-hand side for l = 1, . . . , lmax:
LevelData<NodeFArrayBox> f̃ l where f̃ l,k is on Ωl

k,
stored as cubic NodeFArrayBox of length N = 2M .

• Legendre polynomial coefficients for l = 1, . . . , lmax:
BoxLayoutData<ExpansionCoefficients> al where al,k is on Ωl

k,

stored as ExpansionCoefficients of length (P+1)(P+2)(P+3)
6

on Ω
l;[0,βl]
k .

• Difference with interpolated coarsened modified solution on faces d± for l = 1, . . . , lmax:
BoxLayoutData<FArrayBox> δld± where

δl,kd± is on Gd(∂±d Ωl
k, (αl − 1)2M−1),

stored as FArrayBox of size αl2
M × αl2M × 1.

• Modified coarsened right-hand side for l = 1, . . . , lmax:
BoxLayoutData<NodeFArrayBox> ρl where ρl,k is on G(Ω

l;[0,αl]
k ,−s),

stored as cubic NodeFArrayBox of length αl2
M/r − 2s.

• Solution for l = 0, . . . , lmax:
LevelData<NodeFArrayBox> φl where φl,k is on Ωl

k,
stored as cubic NodeFArrayBox of length N = 2M .

• Labels reference code instrumentation points used for performance measurement and
referenced in chapter 4.

procedure MLC
(Get f̃ at finest level, lmax:)
for each Box k at level lmax do

set f̃ lmax,k = χw
Ωlmax
k

(f lmax,k) on Ωlmax
k .

(Save f̃ lmax,k as cubic NodeFArrayBox of length N = 2M .)
end for

for l = lmax, . . . , 1 do . downwardPass

(Get a and φ̃ and ρ at this level, l:)
for each Box k at level l do

find coefficients al,k of f l,k;P = PL(f l,k).

(Save al,k as ExpansionCoefficients of length (P+1)(P+2)(P+3)
6 .)

set φ̃l,k = Gl ∗ f̃ l,k on G(Ω
l;[0,αl]
k , rb) . Hockney::transform

from f̃ l,k on Ωl
k.
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(Find φ̃l,k as cubic FArrayBox of length αl2
M + 2rb+ 1.)

set δl,kd± = φ̃l,k − Id(C(φ̃l,k)) on Gd(∂±d Ωl
k, (αl − 1)2M ) . InterpOnFace

from φ̃l,k on Gd(∂±d Ωl
k, (αl − 1)2M )

and C(φ̃l,k) on Gd(C(∂±d Ωl
k), (αl − 1)2M/r + b).

(Save δl,kd,± on Gd(∂±d Ωl
k, (αl − 1)2M ) . MLCFaces::setFaces

as FArrayBox of size αl2
M × αl2M × 1.)

set formally φ̃l,k;P = Gl ∗ f l,k;P.

(Coefficients al,k of basis functions Gl ∗Ql,kn .)

set ρl,k = Ll−1(C(φ̃l,k)) on G(C(Ωl;[0,αl]
k ),−s) . projectToCoarseT

from C(φ̃l,k) on C(Ωl;[0,αl]
k ).

(Save ρl,k as cubic NodeFArrayBox of length αl2
M/r − 2s.)

set formally ρl,k;P = Ll−1(C(φ̃l,k;P)) on . setLegendreCoeffs

G(C(Ωl;[0,βl]
k ),−s)− G(C(Ωl;[0,αl]

k ),−s).
(Coefficients al,k of basis functions Ll−1(C(Gl ∗Ql,kn )).)

end for

(Get f̃ at next coarser level, l − 1:)
for each Box k′ at level l − 1 do

initialize f̃ l−1,k′ = f l−1,k′ |Ωl−1
k′ −C(Ω

l) on Ωl−1
k′ .

(Save f̃ l−1,k′ as cubic NodeFArrayBox of length N = 2M .)
for each Box k at level l do

increment f̃ l−1,k′ +
= χw

Ωl−1
k′

(ρl,k) . generalCopyTo on a rho

on Ωl−1
k′ ∩ G(C(Ωl;[0,βl]

k ),−s).
from ρl,k on Ωl−1

k′ ∩ G(C(Ωl;[0,αl]
k ),−s).

increment f̃ l−1,k′ +
= χw

Ωl−1
k′

(ρl,k;P) . m legendreCoeffsSampled

on Ωl−1
k′ ∩

(
G(C(Ωl;[0,βl]

k ),−s)− G(C(Ωl;[0,αl]
k ),−s)

)
.

(Evaluate with coefficients al,k of basis functions

Ll−1(C(Gl ∗Ql,kn )).) . addPolyConvolutionCoarseLaplacianVect

end for

end for

end for

(Get φ at coarsest level, 0:)
set φ0 = G0 ∗ f̃0 on Ω0 . bottomSolve

from f̃0 on Ω0.

(Save φ0 as cubic NodeFArrayBox of length N = 2M .)

for l = 1, . . . , lmax do . upwardPass

(Get φ at this level, l:)

set formally φl,loc
i =

∑
k′:Sd(i)⊂C(Ωl;[0,α]

k′ )

φ̃l,k
′

i +
∑

k′:Sd(i)⊂C(Ωl;(α,β]
k′ )

φ̃l,k
′;P

i .

for each Box k at level l do

for each face ∂±d Ωl
k of ∂Ωl

k do
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initialize ψl,k,d± = Id(φl−1) on ∂±d Ωl
k,

from saved φl−1 on Sd(∂±d Ωl
k).

(Store ψl,k,d± as FArrayBox of size (N + 1)× (N + 1)× 1.)
for each Box k′ at level l do

increment ψl,k,d±
+
= φ̃l,k

′ − Id(C(φ̃l,k
′
)) on ∂±d Ωl

k ∩ Ω
l;[0,α]
k′ , .

m phiDeltaMLCFaces.apply

increment ψl,k,d±
+
= φ̃l,k

′;P − Id(C(φ̃l,k
′;P)) .

addPolyConvolutionFineInterpDiffMLCFacesVect and m legendreCoeffsAlphaBar

on ∂±d Ωl
k ∩ Ω

l;(α,β]
k′ .

(Evaluate with coefficients al,k
′

of basis functions

Gl ∗Ql,k
′

n − Id(C(Gl ∗Ql,k
′

n )).)
end for

end for

solve φl,k on Ωl
k: . solveInhomogeneousBCInPlace

Llφl,k =f̃ l,k on Ωl
k,0;

φl,k|∂±d Ωlk
=ψl,k,d± ,for each face ∂±d Ωl

k ⊂ ∂Ωl
k

(Save φl,k as cubic NodeFArrayBox of length N = 2M .)
end for

end for

for l = 0, . . . , lmax do . Mehrstellen

for each Box k at level l do

increment φl,k
+
=

h2lmax
12 f l,k on Ωl

k.

end for

end for

end procedure

Notes

1. Here 1 < α < β. In our current stage of testing, typical values are M = 5, α = 1.5
– 2, β = 3 – 6. The proper nesting conditions are that C(Ωl;[0,α]

k ) ⊆ Ωl−1, and that

C(Ω1;[0,β]
k ) ⊆ Ω0.

2. The convolutions Gl ∗ f̃ l,k, Gl ∗ f l,k′;P are computed once, and used multiple times:
once in computing the f̃ ’s, the second time in computing the φloc’s in the boundary
conditions for the final solves. In both cases, we only use a reduced subset of all of the
values.

3. Note that we have f l,k;P = PL(f l,k), not PL(f̃ l,k).

4. Note that interpolations are 2D, not 3D.
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5. For order higher than 4th, Mehrstellen correction must be done on the right-hand side
in the Dirichlet problem, not applied to the solution later. For 4th order, it works out
to be the same.

Use of Legendre polynomial expansions

For each l = 1, . . . , lmax, and for each patch k at level l, we take the projection of f l,k

onto the Legendre polynomial basis functions Ql,k
n :

f l,k;P = PL(f l,k).

The coefficients are al,k for Ωl
k, saved as ExpansionCoefficients of length (P + 1)(P +

2)(P + 3)/6.
We need to evaluate the following functions of the Legendre polynomials and multiply

them by the saved coefficients:

• For each l = 1, . . . , lmax, and for each patch k at level l, we need
Ll−1(C(Gl ∗Ql,k

n )) on G(C(Ωl;(αl,βl]
k ),−s).

These are used in forming the modified right-hand side in the downward pass.

• For each l = 1, . . . , lmax, and for each patch k at level l, for each dimension d and for
each ± we need
Gl ∗Ql,k

n −Id(C(Gl ∗Ql,k
n )) on Gd(∂±d Ωl

k, (βl− 1)2M−1) shifted by ±2M i in dimension d,
for 0 ≤ i ≤ b(β − 1)/2c. So in each dimension there are 2b(β + 1)/2c faces.
These are used in finding the boundary values on box faces in the upward pass.

Polynomial Ql,k
n is centered at the center of box Ωl

k. Take Qn(x, y, z) to be the nth

Legendre polynomial basis function centered at the origin. Then we evaluate functions of
Qn at the following points:

• L(C(G ∗Qn)) on [−β − s r
2M−1 , β + s r

2M−1 ]3 with grid spacing r
2M−1 ;

• G ∗ Qn − Id(C(G ∗ Qn)) for each dimension d, on the faces that are i in dimension d,
and [−β, β] in the other two dimensions, for each odd i such that |i| ≤ β, with grid
spacing 1

2M−1 .

2.5 Hockney’s Algorithm: The Heart of MLC

While the fully-defined MLC algorithm has many components, the dominant computational
kernel is the discrete free-space convolution operation

Gl+1 ∗ f̃ l+1,k′ (2.22)

which we compute using Hockney’s Algorithm [41]. For any discrete convolution of a compact
source term fh, we can compute a solution to the full space convolution with just a finite
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circular convolution on a domain that is double the size of the support of fh where fh set
to be identically zero on the extended domain.

Φh(j) = (Gh ∗ fh)(j) = (2n)3F−1

 ∑
k∈[−n+1,n]3

Ĝh
kf̂

h
kz

k·j

 . (2.23)

A detailed derivation of this fact is given in Appendix C. Ĝh can be precomputed and stored.
Additionally Ĝh has several symmetries, and hence we only calulate and load a 1

8
th octant.

The important observation in that this results in performing many small batch Fast
Fourier Transforms. The 3D FFT for a small patches N ≤ 643 has not received much
attention in the literature. Even Williams [67] only starts with 128 cubed. Similar results
are published for FFTW [36] and Spiral. At this small a size all Fast FFT schemes seem to
get the same performance [45].

While the derivation of Hockney’s Algorithm are expressed in what is called Domain
doubling, in practice you do not solve an 8 times larger complex DFT transform padded out
with zeros. First, the inputs f̂ and G are real-valued, and thus so are the outputs. Second,
there is no need to compute the DFT of a zero vector. With a suitable change in variables
the 2D free-space convolution can be diagrammed as in figure 2.2. The domain has been
sized to show the amount of storage needed.

1. Loading in this specific patch’s source term f .

2. The i-direction transforms are done on half the domain size since they are Real-to-
Complex. We do not need to transform the 2(ns +nd + 1) real-values in the i-direction
since the majority of them are zero-valued, only ns of them are non-trivial.

3. The j-direction Forward FFT transform is a full Complex-to-Complex transform. In
the 3D case this one is has a large trivial transform space in the k-direction that is
excluded.

4. Multiplication by the symbol. The algorithm can exploit two facts here. Since G is
real and symmetric about the origin, we know that Ĝ is also real-valued and symmetric
about the origin. We use this fact to reduced storage and load-store traffic.

5. Inverse FFT transform in the j-direction. As with step 3, there is a gain to be had
here, not because the transforms are trivial, but because we are only interested in
specific values on the output. In 2D this is not evident but in 3D we can forgo half the
transforms.

6. Complex-to-Real FFT transform. In this case we are only interested in the transforms
in the range ns + nd + 1 > j > ns.
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f
1

ns nd + npad + 1

2(ns + nd + npad)

2

FFT R to C i-direction

3

FFT C to C j-direction

4

Ĝ symmetry plane

f̂xĜ

5

IFFT C to C j-direction

6

IFFT C to R i-direction

nd

Φ

Figure 2.2: 2D Convolution
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MLC exploits the specific zero-structure of the inputs (zero padding for free-space solver),
and subsampling of the outputs (sampling onto the coarser grid, and the MLCFaces on the
same level of refinement). These optimizations are generally referred to as pruning. In the
1D case there a modest gain on modern superscalar architectures from exploiting pruning, on
the order of 10-30% [34, 35]. For higher dimension transforms the reduction in floating-point
operations can be helpful, but the real wins are from the loads and stores you do not end up
having to perform. For small compact 3D Hockney transformations we replace the typical
5N log2(N) operation cost model with

Let ns = N
1
3 , nd = αns,M = ns + nd

5

2
[nsnsM log2(M) + nsMM log2(M) + 2MMM log2(M)

+ 2ndMM log2(M) + ndndM log2(M)]

= [10(α3 + 1) + 25(α2 + α)]N log2(M) (2.24)

where 5 is turned into 5
2

since these are all real, not complex transforms. As expected the
convolution is cubic in α for cost. This is quite a bit better than a full doubled-domain FFT
which would require 80M log2(8M) operations.

In this work there are several approaches to parallelism implemented and compared.
All are expressed in terms of hybrid parallelism using MPI as the mechanism for managing
computations in distributed memory domains and OpenMP for executing and coordinating
computations within shared memory domains.

In MPI each parallel execution unit is referred to as a rank. In distributed memory
computation the address space of each rank is private and data is transmitted to other ranks
by messages.

In OpenMP the unit of execution is a thread. In OpenMP programming the address
space of each thread is by default shared. OpenMP is a fork-join parallelism model based
on source-level code annotation and OpenMP-aware compilers and an OpenMP runtime.

Variant 1 and 2: Flat MPI and Coarse-grained threading

In the first hybrid variation of the MLC algorithm traditional patch-based parallelism design
of Chombo is preserved. In this execution-mode the outer patch-by-patch loop is first load
balanced across the MPI ranks. Within each MPI rank execution each for-loop over these
patches is assigned to indepedent threads of execution. This is the least disruptive code
modification to the Chombo framework. The code style looks like

DataIterator dit = level.dataIterator();

#omp parallel for

for(int i=0; i<dit.nlocalPatches(); i++)

{

const NodeFArrayBox& f = level[dit(i)]; //retrieve i’th patch on this rank
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operation howmany input stride input dist output stride output dist

R2C DFT i- n2
s 1 N 1 N/2+1

DFT j- ns(
N
2

+ 1) N
2

+ 1 1 N
2

+ 1 1
DFT k- N(N

2
+ 1) N(N

2
+ 1) 1 N(N

2
+ 1) 1

Multiply by Ĝ N(N
2

+ 1)
IDFT k- N(N

2
+ 1) N(N

2
+ 1) 1 N(N

2
+ 1) 1

IDFT j- nd(
N
2

+ 1) N
2

+ 1 1 N
2

+ 1 1
C2R i- n2

d 1 N
2

+ 1 1 N

Table 2.1: Steps for coarse-grained Hockney transforms. The column headings are a naming
convention used by the FFTW API and described in section 3.4.

expansionCoefficients[dit(i)].computeLegendreCoefficients(f);

.

hockney.transform(f, phi_alpha);

MLCFaces.addTo(phi_apha);

fCoarse.addto(coarsen(phi_alpha));

.

.

}

This source code can be compiled and executed with no change for a flat MPI execution,
where the user does not have or wish to use an OpenMP-aware compiler.

The Hockney Transform is executed in a sequence of 7 steps. All the FFT transforms are
rank=1 batched operations of size N = ns + nd + 1 + padding. Since the free-space circular
convolution is zero-padded we have a degree of flexiblity in picking a positive integer degree
of padding to achieve highly composite transforms.

Variant 3: Fine-grained threading

In variant 2 of the Hockney convolution the outer parallelism is managed by the MPI rank
in the usual SPMD parallel execution model. The difference now is that the transform itself
is performed cooperatively amongst the threads in shared memory. All steps are executed
as a single OpenMP parallel region. While the algorithm has 7 stages it is decomposed to
have only 3 fork-join thread regions statically scheduled with omp for directives.

Variant 4: Fine-grained compact threading

Variant 1 and 2 both have the same data layout and require a transient data container of
size (N

2
+ 1)xNxN complex values for f̂ . In this variant we perform the foward k-direction

transform, multiply by the real-valued symbol Ĝ, and perform the inverse k-direction trans-
form in succession in a temporary thread-private data buffer. In this case the working set
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omp for operation howmany input stride input dist out stride out dist

ns R2C DFT i- ns 1 N 1 N/2+1
DFT j- N

2
+ 1 N

2
+ 1 1 N

2
+ 1 1

N DFT k- N(N
2

+ 1) N(N
2

+ 1) 1 N(N
2

+ 1) 1

Multiply by Ĝ N(N
2

+ 1)
IDFT k- N(N

2
+ 1) N(N

2
+ 1) 1 N(N

2
+ 1) 1

nd IDFT j- N
2

+ 1 N
2

+ 1 1 N
2

+ 1 1
C2R i- nd 1 N

2
+ 1 1 N

Table 2.2: Steps for fine-grained threaded Hockney transforms. A new column now appears
that describes how threads are distributed across the operations within the transform.

omp for operation howmany input stride input dist out stride out dist

ns R2C DFT i- ns 1 N 1 N/2+1
DFT j- N

2
+ 1 N

2
+ 1 1 N

2
+ 1 1

N2

2nv
DFT k- nv N(N

2
+ 1) 1 N(N

2
+ 1) 1

Multiply by Ĝ nv
IDFT k- nv N(N

2
+ 1) 1 N(N

2
+ 1) 1

nd IDFT j- N
2

+ 1 N
2

+ 1 1 N
2

+ 1 1
C2R i- nd 1 N

2
+ 1 1 N

Table 2.3: Steps for compact fine-grained threaded Hockney transforms

is reduced to
(
N
2

+ 1
)
xNxnd+nthreadsxNxnv where nv is a tunable parameter. We call this

the k pencil and typically choose a size to be a multiple of the vector architecture size. The
scheduling is the same to variant 2 in term of fork-join structure. There is the added option
of how the threads are scheduled to execute the pencil transforms.

The final variant can be written as a more readable subroutine in Hockney outlined in
algorithm 1. below:
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Algorithm 1 Hockney Variant 4 expressed as pseudocode

procedure Hockney(Real f[ns,ns,ns],Real f̃[nf,nf,nf], Real fc, Real

Φf(faces), Real Ĝ)
Complex fc[N/2+1,N,nd]
Complex pencil[v,1,N] threadprivate
for k do=0 . . . ns over nthreads

fc[0:ns/2-1,0:ns/2-1,k] ← f[0:ns-1,0:ns-1,k]
fc[ns:N-1, 0:ns-1,k] ← 0
fftw execute dft r2c(multiR2C, fc[0,0,k])
fc[0:N/2+1,ns:N-1,k] ← 0
fftw execute dft(multiJ, fc[0,0,k])

end for
for j do=0 . . . N over nthreads

for i do=0 . . . N/2+1 increment v
Pencil[0:v,0,0:ns] ← fc[i:i+v,j,0:ns]
Pencil[0:v,0,ns+1:N] ← 0
fftw execute dft(vPencilK, Pencil[0,0,0])
Pencil ← Pencil*Ĝ[i:i+v,j,0:N]
fftw execute dft(vPencilKinv, Pencil[0,0,0])
fc[i:i+v,j,0:nd] ← Pencil[0:v,0,0:nd]

end for
end for
for k do=0 . . . nd over nthreads

fftw execute dft(multiJinv, fc[0,0,k])
fftw execute dft c2r(multiC2R, fc[0,0,k])
fc += L(sample(fc[0:nd,0:nd,k], 4)) . L/S fc
Φf (faces) += fc[0:nd,0:nd,k] . L/S Φf(faces)
f̃ += fc[0:nd,0:nd,k] . L/S f̃ (only used for 117-pt operator

end for
end procedure
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Chapter 3

Software and Tools

3.1 Block-Structured Adaptive Mesh Refinement

The Method of Local Corrections (MLC) is motivated by the need to solve Poisson’s equation
where the source function is defined on logically cartesian-structured grid points given on the
hierarchy of properly nested structured grids. This class of algorithms is generally referred
to as Block-Structured Adaptive Mesh Refinement (SAMR). This arrangement is motivated
by many high-performance computing simulation techniques applied to partial differential
equations. This was formally specified in section 2.1.

• Kernels executing on small, structured grid patches with arithmetic intensity in the
range of .1 to 1

• Patches have ghost cells which are local, user-mananaged caches of data from adjacent
patches. Ghost cells are filled in at specific user-controlled points in the calculation to
allow each patch to be processed independently in a SPMD compute model. The num-
ber ghost cells depends on support required for stencil evaluation. Typcially stencils
have a radius of 1 to 6 cells.

• Ghost cells are an application level technique to protect against read-after-write data
hazards.

• Ghost cells are initialized via a communication phase from either adjacent patches at
the same level of refinement or from interpolation of data on coarser refinement levels.

The performance of AMR algorithms can critically depend on the choice of how many ghost
cells to use. Choosing a small number of ghost cells (1 or 2) has the following advanges:
Fewer redundant calculations, smaller memory footprint, less data traffic, small communica-
tion volume, better utilization of cache. The disadvantages are the need for more frequent
communication phases which will usually result in loss of performance due to memory and
network latency and time managing the data choreography from data marshaling routines.
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For hyperbolic partial differential equations, the advantages of adaptive mesh refinement
outweigh disadvantages of added algorithm complexity and complex data management. For
elliptic systems like Poisson’s equation, the dominant technique for solving these equations is
geometric multigrid. The design space for optimizing geometric multigrid by manipulating
the tradeoff between ghost cell size and architecture latency is explored in [66, 14, 65].
Even with these communication-avoiding optimizations, multigrid remains a latency-bound
algorithm and will become increasingly so in exascale platforms.

Software for AMR is optimized around a design point where the patches have an ordinal
dimension between the 32 and the 64. Going much lower than 32 increases the relative cost
of adaptivity. Going much larger than 64 eliminates most of the benefits that adaptivity was
giving you. Given this design point, AMR software libraries are tuned for ghost cells in the
range from 2 to 8 in the extreme cases.

We will discuss augmentations to the Chombo block-structured adaptive mesh refinement
C++ package in section 3.3.

3.2 Modalities of Parallel Processing

Distributed Memory Computing

Chombo and HDF5 both help manage distributed parallel computing built on top of the
MPI message-passing interface [56]. Given a hierarchy of block-structured, properly nested,
logically rectangular patches, the Chombo load-balancing algorithms will assign patches to
MPI ranks. The communication between ranks is needed on the downsweep of MLC to
accumulate partial contributions on to neighboring patch faces as well as propagate the
coarsened charge on to the next coarser level of refinement. The upsweep phase can run fully
asynchronous.

At the distributed-memory level parallelism, MLC functions as an SPMD program. Com-
munication phases are handled as distinct epochs that are highlighted in the timing data as
the copyTo signifier.

Shared Memory Multithreading

Although contemporary multiprocessing cores can be treated as ranks in a valid distributed
computing execution, the slight overheads of SPMD programming model have reached the
point of diminishing returns. The clock speeds have not been increasing. The amount
of cache hierarchy available to the processing core and the amount of off socket network
interconnect relative to the core have all stalled out. Hence, MLC is implemented in a
hybrid parallel model where the threading is handled using OpenMP [57]. OpenMP is a
portable shared memory API for fork-join parallelism. Two styles of MPI plus Open MP
designs have been deployed in this thesis. The first I call coarse threading. This is the
simplest to implement. In this model, OpenMP threads emulate MPI ranks. This has
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several advantages. The strict semantics of distributed memory SPMD programming means
that it is very easy to write race-free hybrid programs. These fat MPI ranks can share their
per-rank metadata which at extreme levels of concurrency can limit the ability to utilize the
available random access memory.

MPI+OpenMP fine threading leaves the MPI-distributed software design as-is and im-
plements fork-joined fine-grained OpenMP threading within each of the sequentially invoked
kernels in the algorithm. This has the same advantages of the MPI fat node design in terms
of metadata usage. There is a more intrusive software rearchitecting. The advantages are
more flexibility in terms of using threads in a different scheduling design space and alters
the data reuse patterns. It has the potential for better cache utilization. These advantages
need to be weighed against the added penalties of OpenMP Library fork-join overheads.
Ultimately, hybrid designs are employed in the final configuration.

3.3 Chombo

Chombo is a C++ Class Library used for implementing solvers for partial differential equa-
tions on block-structured adaptive grids. It has been developed in the Applied Numerical
Algorithms Group at Lawrence Berkeley National Laboratory over the last 20 years with
myself as one of the primary authors [24].

Augmentations to Chombo for MLC

In contrast to traditional AMR discretizations, the intralevel communication in MLC is not
volumetric over the ghost region but over the surface of the ghost region. Additionally,
the ghost regions are defined by their parameters α and β (see figure 2.1) which can range
from 1.5 to 2.5 multiplying the ordinal dimension. Hence, ghost regions can range from
25 up to 100 ghost cells. This is well outside the classic design space for these software
packages. The existing code base uses an O(log2N) algorithm to compute nearest-neighbor
communication patterns based on patches having a lexicographic ordering. Lexicographic
ordering proved to have a large constant multiplier for extreme ghost-cell sizes. A new
algorithm was developed using a hashing function based on Morton ordering [55]. A fast
conversion from Box coordinates in physical space to a unique hash value was used from
the graphics community [9]. It uses a fast lookup table method and some bit-twiddling
operations.

A new class called MLCFaces was created in Chombo to represent the α and β faces and is
represented in the MLC pseudocode as δl,kd±. In the existing Chombo framework each + and
- face in each direction would require its own bulk synchronous communication phase. This
effect was swamping the communication gains over iterative methods. Rolling all directions
together in one pass required extending Chombo. In addtion, this communication phase is
fused with the destination in-place update logic to better utilize the memory caching.
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3.4 FFTW

The Fastest Fourier Transform In The West (FFTW) [35] is a software library for computing
discrete Fourier Transforms developed by Matteo Frigo and Steven Johnson at Massachusetts
Institute of Technology written in a combination of C and OCaml. FFTW utilizes a combina-
tion of symbolic simplification, code-generation and auto-tuning. This is given as a C library
with function definitions given in fftw.h and a static archive linked against libfftw.a. A
user defines DFT transforms using the Advanced Interface:

fftw_plan fftw_plan_many_dft_r2c(int rank, const int *n, int howmany,

double *in, const int *inembed, int istride, int idist, fftw_complex

*out, const int *onembed, int ostride, int odist, unsigned flags);

fftw_plan fftw_plan_many_dft_c2r(int rank, const int *n, int howmany,

fftw_complex *in, const int *inembed, int istride, int idist, double

*out, const int *onembed, int ostride, int odist, unsigned flags);

fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,

fftw_complex *in, const int *inembed, int istride, int idist,

fftw_complex *out, const int *onembed, int ostride, int odist, int

sign, unsigned flags);

These istride, idist, onembed, ostride, odist parameters are used in the descrip-
tions of the Hockney kernel variants.

Since advanced transform pruning options are not available in standard FFTW the au-
tomatic thread planning offered in “5.2 Usage of Multi-threaded FFTW” is not utilized.

3.5 HDF5

The Hierarchical Data Format Version 5 [62] is used as my parallel IO middleware. It
provides a cross-platform distributed computing parallel file system interface. This is used for
loading in pre-computed convolutions and Poisson Green’s Functions and writing solutions
in parallel. The HDF5 interface only currently supports an MPI parallel IO API at this
time. The discrete Green’s function Gh and the the Laplacian of the coarsened convolutions
for the n Legendre basis function Ll−1(C(Gl ∗Ql,k

n )) are precomputed values and are loaded
into memory at the start of execution. Doing this efficiently in parallel requires care and we
utilized the Cray Burst Buffer[16, 58] to preload these data structures from the hard disk
into faster non-volatile memory before the execution begins. Then HDF5 parallel IO is used
to bring this data into DRAM.
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Chapter 4

Performance Models

The key computational kernel in the algorithm is Hockney’s algorithm which is analyzed
here in more detail. It is stated as a Discrete Fourier Transform on a doubled domain. In
our case with domain decomposition we are interested in quite small 3D FFT computations.

The classic 3D FFT is built from computations of the 1D FFT and data movement.
So first we need the complexity of a 1D FFT: 5N log(N) flops. The original derivation
from Cooley-Tukey is from 1965 [26]. All fantastic modern versions of FFT can change the
constant by about 15% (often times higher) but arrange the flops in different ways that are
friendly to the processor and memory system. It is important to note that the log is base
2, not e or 10. That makes a difference of log10(2) = 0.69 which is a bigger effect in all the
analysis than the other factors. A 3D FFT over a rectangular domain is decomposed into a
sequence of batched 1D FFTs. N defined on a rectangular domain as N = n1n2n3. 3D FFT
is done as n1n25n3 log(n3)+n2n35n1 log(n1)+n1n35n2 log(n2) = 5N log(N). To use FFT for
convolutions G∗f you need three transforms: FFT(Gh) = Ĝh,FFT(fh) = f̂h,FFT−1(Ĝf̂) =
Gh ∗ fh. Ĝ = FFT(Gh) is precomputed in this algorithm.

Complexity Analysis in big O Notation

FFT, GMG V-cycle. Full Multigrid V-cycle and MLC are compared in overall complexity
analysis in table 4.1. It is hard to make any definitive statements about the relative merits
of each method with standard complexity analysis. In the long range it resembles GMG, but
the constants matter in these matrix-free methods and GMG is an iterative method.

It should be noted that this analysis ignores effects like local memory bandwidth and
bisection limitations on proposed exascale hardware. As noted in [27] the true limiting effect
for FFT seems to be a combination of link contention for transposes, and local memory
bandwidth for very large local transpose operations. MG and MLC both scale down their
number of messages and bandwidth with longer distance communication and saturate band-
width only in a nearest-neighbor fashion. In [15] there is a discussion of trading off more
messages of a smaller size while having the same total amount of communication. Chan
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Scheme Flops # Messages # Words

V-cycle GMG N log(N) O(p(Np )
2
3 (1 + 1

8 + 1
64 + ...) = p

1
3N

2
3 + p log(p)

FMG N log2(N) p
1
3N

2
3 + p log(p) log(N)

FFT N log(N) min(p2, N
2
3 ) N

MLC N log(N/d) log(N) p
1
3N

2
3

Table 4.1: big O Complexity for a given p for GMG V-cycle, FMG, FFT and MLC. N grid
points, p processors. d refers to the amount of domain decomposition used in MLC. FFT
is done as a single large FFT operation, while MLC first decomposes the domain into d
compact disjoint regions.

et al. [20] considered the use of 2D decompositions instead of 1D decompositions and get
different trade offs in messages which seems to approach the pencil limit case in [15].

Operation Flops/Gridpoint
PLfh 3Γ

∆H(Gh ∗ fh,k) [10(α3 + 1) + 25(α2 + α)] log2[(α + 1)N
1
3 ]

∆H(Gh ∗ (PLfh,k)) Γ(2β)3/r3 + 6bβcΓ/N 1
3

∆−1
(
fh + h2

12
∆h(fh)

)
5
2

log(N) + qn+ 1

Operation load store

PLfh 1 Γ/N

∆H(Gh ∗ fh,k) 0* 6bαc/N 1
3 + (2α)3/r3

∆H(Gh ∗ (PLfh,k)) (2β)3/r3 + 6bβc/N 1
3 6bβc/N 1

3 + (2β)3/r3

∆−1
(
fh + h2

12
∆h(fh)

)
6/N

1
3 + 2 1

Table 4.2: Computational Complexity per finest level grid point for Method of Local Correc-
tions. Refinement ratio r, N grid points in BR, Γ: number of basis functions for polynomial
expansion. qn are the number of points in the Laplacian stencil. * fh loaded in step 1 gets
reused in step 2 and we assume that Ĝ can fit inside the near-memory working set and does
not need to be reloaded across subsequent convolution operations.

4.1 Opportunities for Optimization

Algorithmic Choices

{N,α, β, q, p} all relate to the error of the scheme as well as how the problem is decomposed.
q can be raised for little true computational cost if r is large. Table 4.2 has cubic powers of
α and β in many places which can be made smaller at the cost of raising q with higher-order
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Operation Flops/gridpoint load store

relax: 2x φhn+1 = λ(fh −∆hφhn) 20qn 20 10
restrict r3 + 1 10 10/r3

prolong 2r3 + 1 10 + 10/r3 1
relax: 2x φhn+1 = λ(fh −∆hφhn) 20qn 20 10

Table 4.3: Computational Complexity per grid point for 2-level Geometric Multigrid (GMG).
Assume proper MG convergence rates and a standard 4 relaxations V-cycle for 10 iterations
to have comparable error tolerance as MLC. qn points in Laplacian stencil. Assumes a
communication-avoiding implementation with extra ghost cells. The relaxation steps have
been fused into a skewed loop (wavefront or diamond). Assumes no agglomeration, so not a
true V-cycle, just the finest level solver

due to finite difference localization[52]. N can be made larger or smaller to fit into a fast
local memory working set but at the cost of a larger value of k, the patch count. The working
set can be made smaller by applying domain decomposition to the Hockney Algorithm itself
at the cost of increased computation.

There is the question of what is precomputed and loaded versus computed as the calcu-
lation progresses. Table 4.2 made the assumption that Ĝ is precomputed and loaded for the
convolution. In the region BαR this cannot be avoided as computing the discrete Green’s
function for a high q operator is computationally prohibitive to be done redundantly on every
patch. We can, however, exploit the fact that Ĝ on BαR has rotation and mirror symme-
tries Ĝ(x, y, z) = Ĝ(−x, y, z) = Ĝ(z,−y, z) = Ĝ(x, y,−z) = Ĝ(x,−y,−z) = Ĝ(−x,−y, z) =
Ĝ(−x,−y,−z) = Ĝ(−x, y,−z) which mean we can just load 1/8th of the total values and
perform reversed indexing for the other quadrants. These are then all various flavors of
matrix-vector multiply with short and wide matrices. If fast local memory is really lim-
ited, there is one more level of symmetry that can be exploited since Ĝ(x, y, z) = Ĝ(y, x, z),
etc. To exploit this requires an irregular data access technique for packed symmetric blocks
similar to dense symmetric matrices.

Outside BαR we can use the linearity of both convolution and the Laplacian operator to
precompute ∆HĜ ∗ PLi for all i basis functions up to the order of our Legendre expansion.
For all the even Legendre basis functions the symmetries in Ĝ are preserved. Unfortunately
if any of the tensor product basis functions are odd, this symmetry is broken. Fortunately
these precomputed values are only needed on the coarser grid that is r3 times smaller in data
volume for computing FH .

On the faces of the k patches BR also requires the interpolation of the interpolation of
the convolution. Since convolution and interpolation are both linear operators, this can also
be expressed as a short-wide matrix multiplying a tall skinny-matrix.

Computing the Legendre polynomial coefficients can be done with Boole’s Rule integra-
tion to get sufficient accuracy which is expressed as a stencil computation into an accumula-
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tion variable. Additionally since Legendre polynomials can be constructed by a recurrence
relation, these loops can be chained together in a wave-front or tiled algorithm.

Algorithm Flops/Gridpoint load store AI
GMG 1210 61 21 1.8
MLC 60+4085+55+58=4625 5.375 6.02 50.7

Table 4.4: Multigrid vs MLC. α = 2.25, β = 3.25, N = 333, r = 4, qn = 27,Γ = 20. The
dominant compute kernel Hockney Transform is shown in red. You have fractional values
for MLC as Φ is subsampled on output to adjacent MLCFaces and the coarser grid

If we rewrite the information in Table 4.4 in terms of cycles for the Edison Cray XC30
HPC platform and assume best-case scenarios for latency, we can get a total cycle time
estimate. It is a bit tricky to turn both algorithms into a normalized system based on grid
points, but it can be done. The important thing to pick up is the trend. FMM, FFT, and
MG all have the pattern of stressing the network latency or DRAM access. Only MLC skews
the entire algorithm to the floating-point units.

Algorithm cycles/Gridpoint:FLOPS load store

GMG 302 1906 900
MLC 2048 291 164

Table 4.5: A restatement of Table 4.4 expressed in common units of cycles for the Edison
XC30 platform within a single node. FLOPS are turned into cycles using the peak FMA
performance. load/stores are turned into a common unit of cycles based on peak DRAM
bandwith.

Table 4.5 is an idealized estimate, but the order of the terms is consistent with observa-
tions. GMG is essentially limited by data movement as is expected for a stencil operator.
The trend for Multigrid is the exact opposite of what we would desire from an energy stand-
point. MLC stresses on-core flops. Multigrid stresses on-core loads from DRAM and network
latency even at the finest grid resolution.
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Chapter 5

Experiments

5.1 Correctness of implementation

These cases were originally defined in [53] for a previous simpler version of MLC published
in 2007. The first case is a simple smooth charge case defined on a simple nested hieararchy.
The second case considers several localized non-overlapping and highly oscillatory charge
sources.

A smooth charge test case

The first test case we are considering involves computing the potential induced by a smooth
charge. The charge density is given by:

f(x) =


(r − r2)4, r < 1

0, r ≥ 1
, r =

1

Ro

‖x− xo‖ (5.1)

and the support of the charge is a sphere of radius Ro = 1
4

, centered at point xo = 1
2
1. The

computational domain is the unit cube Ω = [0, 1]3 . For this problem the exact solution is
known and is given by:

φ(x) = R2
o


r6

42
− r7

14
+ r8

12
− 2r9

45
+ r10

110
− 1

1260
, r < 1

− 1
2310r

, r ≥ 1

Note that for r ≥ 1 the exact solution is a pure monopole. We are considering node centered
cubic patches of size 33 and a fixed refinement factor of value 4 among all levels.
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An oscillatory charge test case

We further consider a case of three oscillatory charges that has been previously studied in
[53]. Here we define a local charge density, whose support is a sphere of radius Ro centered
at point xo , by:

fxo(x) =


1
R3
o
(r − r2)2 sin2(β

2
r), r < 1

0, r ≥ 1

, r =
1

Ro

‖x− xo‖, β = 4µπ, µ ∈ N (5.2)

The exact solution associated with this charge density is given by:

φxo(x) =
1

Ro



− 1
120
− 6

β4 , r = 0

r6

84
− r5

30
+ r4

40
+ 60

β6 − 9
β4 − 1

120
+ 120

β6r

+
(
− 120
β6r
− 9

β4 + 300
β6 + 36r

β4 + r2

2β2 − 30r2

β4 − r3

β2 + r4

2β2

)
cos(βr)

+
(

12
β5r
− 360

β7r
− 96

β5 + 120r
β5 − 3r

β3 + 8r2

β3 − 5r3

β3

)
sin(βr) , r < 1

(
− 1

210
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and is a pure monopole for r ≥ 1 . For our test case we consider three charges of the form
(5.2), with radius Ro = 5

100
, centered at points c1 =

(
3
16
, 7

16
, 13

16

)
, c2 =

(
7
16
, 13

16
, 3

16

)
and

c3 =
(

13
16
, 3

16
, 7

16

)
. The computational domain is the unit cube Ω = [0, 1]3 and the total

charge and total potential are given via linear superposition by:

f(x) = fc1(x) + fc2(x) + fc3(x)

φ(x) = φc1(x) + φc2(x) + φc3(x)

It is noted that the layouts we are using are not the same with those in [53] leading to
different local projection errors and hence slightly different results.

Accuracy Results

Detailed and exhaustive convergence tests for this algorithm are beyond the scope of this
thesis write-up but the first comprehensive error analysis has been performed in [47]. The
algorithm and implementation hve been altered since then so it is good to verify that the
accuracy has not been altered.
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Figure 5.1: Adaptive mesh hierarchy for oscillatory problem. 3 level of refinement. Factor
of 4 refinement ratio. Each outlined patch is a 33x33x33 set of structured grid points. The
base grid dimensions are varied through the course of a convergence study while the grid
geometries and ratios are preserved.

Experimental Platform

These experiments were performed using the Cori supercomputer and the National Energy
Research Scientific Computing Center (NERSC). The analysis and experimental results have
been focused on the Haswell partition. This is a Cray XC40 supercomputer.

• icpc (ICC) 18.0.1 20171018 Copyright (C) 1985-2017 Intel R©Corporation.

• Cray-tuned FFTW3 libraries Version 3.3.6.3

• Each node has

– Two sockets, each socket is populated with a 16-core Intel R©XeonTM Processor
E5-2698 v3 (”Haswell”) at 2.3 GHz

– 128 GB DDR4 2133 MHz memory (four 16 GB DIMMs per socket)

– 2 x 40-MB shared L3 cache

• Each core has

– 32KB L1 data cache
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(a) Uniform charge problem convergence results (b) Oscillatory adaptive grid convergence results

Figure 5.2: + 27-pt operator N = 323, α = 2.25, β = 3.25, 5 27-pt operator N = 643, α =
1.625, β = 2.125, � 27-pt operator N = 643, α = 2.25, β = 3.25, ∗ 117-pt operator N =
323, α = 2.25, β = 3.25, © 117-pt operator N = 643, α = 2.25, β = 3.25. X-axis is 1

h
of the

base grid. Max norm error. 4th-order slope drawn as dashed line.
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(a) Strong scaling. 109 unknowns. (b) Weak scaling. 109 unknowns base case.
5.1x1011 unknowns at 32K cores and effective uni-
form grid resolution of 64K3=2.8x1014 unkowns.

Figure 5.3: Scaling results for Cori Haswell XC40 supercomputer. N=333, 27-point operator,
3rd-order Legendre Polynomial expansions, α=2.25, β=3.25. Vertical axis is time, in seconds.
Horizontal axis is total number of cores.

– 256 KB L2 unified cache

• Cray R©Aries Interconnect with Dragonfly topology and 5.625 TB/s global bandwidth

Scaling Performance

For an HPC implementation of a Poisson solver effective utilization of distributed memory
is as important as maximizing utilization of the target CPU architecture. As discussed in
Chapter 2, the algorithm was implemented as a hybrid MPI+OpenMP parallel algorithm. It
is necessary to show that this approach has been implemented in a scalable fashion. Figure
5.3 shows the performance for the case of the N=333, 27-point operator, 3rd-order Legendre
Polynomial expansions, α=2.25, β=3.25. While there are a dozen other configurations of
discrete operators and barrier error targets, all these variations have little impact on the
quality of these scaling results. The largest effect on both strong and weak scaling is increas-
ing α or β. The runtime is completely unaffected by the choice of a 27-point operator, the
117-point operator, or the application of Mehrstellen correction.

As a point of comparison we also benchmark the HPGMG benchmark [1] for a comparable
configuration. Since HPGMG does not have an adaptive-refinement implementation we
compare problems with similar number of degrees-of-freedom. For 1E9 grid points and
boxes of dimension N=323 at 256 cores HPGMG solves to a comparable truncation error
in 9.0 seconds. MLC solves this same scale of problem in 9.9 seconds. The effective grid
resolution for the MLC solver is 8 times finer in each dimension.



CHAPTER 5. EXPERIMENTS 39

downwardPass 12.63

setPhiDeltaAndRho 11.94

HockneyFFTWserial::solve 11.35

subtractInterpolantLocal 0.22

MLCFaces::incrementFaces 0.05

projectToCoarse on FArrayBox 0.04

evalOperator on phiCoarseFab 0.01

setRhsModCoarser 0.40

generalCopyTo on a_rho 0.27

MPI_Waitall 0.27

generalCopyTo on rhsSampled 0.10

MPI_Waitall 0.10

generalCopyTo on m_legendreCoeffsSampled 0.017

MPI_Waitall 0.017

upwardPass 3.20

addPolyConvolutionFineInterpDiffMLCFacesVect 2.45

PoissonDirichletFFTW::solveInhomogeneousBCInPlace 0.32

m_phiDeltaMLCFaces.exchange() 0.21 generalCopyTo on

m_legendreCoeffsAlphaBar 0.11

Table 5.1: Extracted performance call-graph for Variant 1. Flat MPI execution

Performance Breakdown for Hockney Variant 1

This version of the algorithm would be considered the base implementation case. This
baseline already includes many optimizations for an efficient implementation. For instance
messages between ranks are aggregated during communication phases and local data manip-
ulation is overlapped with communication. It also uses manually pruned DFT transforms
as discussed in Chapter 4, exploits the symmetries of the operations, and the real-valued
properties of the inputs, outputs, and Ĝ.

Performance Breakdown for Hockney Variant 2

In code variant 2, threads are introducted as computational peers to ranks. At the in-
struction, execution, and scheduling level, this is the same as the variant 1 computation.
The main benefits are realized through utilization of shared memory. Thread peers that
share an address space can perform communication between SPMD domains with load store
instructions and bypass the networking layer. This shared memory bypass can then be over-
lapped with the distributed communication messaging phase where modern interconnects
like Aries can perform true messaging offloading. Thread peers can also share a single copy
of the pre computed data structures. This includes Ĝ and the pre-convolved Legendre ex-
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pansions. Each thread execution is manipulating its independent f to φ calculations. While
the domain is naturally decomposed into patches, at this level of granularity each thread’s
individual working set combined easily exceeds the L3 cache capacity for this architecture.
It is also noted at this variant that it is necessary to restrict the hybrid parallel execution
to each rank occupying a unified memory accessible domain. When threads cross NUMA
boundaries, performance degrades below that of a flat MPI implementation.

The effect of sharing Ĝ had little impact on the time to solution. Variant 2 does not have
a performance breakdown table presented as it is the same as variant 1. The main victory
with coarse-grained parallelism was the fact that the code could execute across the entire
scaling ranges needed for this study. The flat MPI code will often crash the system with
Out-Of-Memory errors. Partly this is from sharing meta data like Legendre expansions and
frequency-space Green’s function Ĝ. There is less asynchronous buffering needed in Chombo,
more data is transmitted via shared memoryload/store operation, but there are buffers that
Cray MPI maintains in the background that consumes roughly 200MB per MPI rank. We
do control the degree of asynchronous buffering with the MPICH GNI NDREG MAXSIZE
environment variable (the amount of outstanding synchronous communication that can be
outstanding before MPI switches to a rendezvous protocol). Experiments with smaller buffer
sizes degrades communication speed.

Measurements with the Intel VTune tools indicate a large amount of DRAM traffic in this
variant. To see the benefits of a memory caching subsystem, a finer level of decomposition
is necessary.

Performance Breakdown for Hockney Variant 3

In Variant 3, threads collaboratively execute the kernels in the downward-pass of the algo-
rithm. The hypothesis is that on a per-rank-basis each kernel would have access to a larger
effective memory cache. In addition, as the threads execute different directions of the FFT
algorithm they will encounter memory previously loaded into memory by another thread
during a previous phase of the computation (ie. temporal locality). A filtered output from
the instrumented code is shown in table 5.2.

Performance Breakdown for Hockney Variant 4

In Hockney variant 4 we fuse the forward k-direction FFT transform with the multiplication
by the symbol Ĝ and the inverse FFT transform. This operation is done using a thread-
private buffer called pencilBox which is a tiling in the i-j plane and the full transform size in
the k-direction. The gains here are impressive. It is now instructive to assess the performance
of the Hockney kernel with respect to a performance model to assess how effective the
implementation has become. The next section is a presentation of an augmented Roofline
Model [67] for the convolution operation.
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downwardPass 6.54

setPhiDeltaAndRho 6.09

HockneyCompact::transform 5.49

MLCFaces::setFaces 0.09

projectToCoarseT on NodeFArrayBox 0.07

evalOperator on phiCoarseFab T 0.06

setLegendreCoeffs 0.25

setRhsModCoarser 0.19

generalCopyTo on rhsSampled 0.07

MPI_Waitall 0.06

addPolyConvolutionCoarseLaplacianVect 0.06

generalCopyTo on a_rho 0.028

generalCopyTo on m_legendreCoeffsSampled 0.02

MPI_Waitall 0.02

upwardPass 3.09

addPolyConvolutionFineInterpDiffMLCFacesVect 1.21

PoissonDirichletFFTW::solveInhomogeneousBCInPlace 0.31

m_phiDeltaMLCFaces.exchange() 1.05

generalCopyTo on m_legendreCoeffsAlphaBar 0.12

Table 5.2: Performance breakdown for Variant 3 of MLC

Arithmetic Intensity Analysis for Modified Hockney’s Algorithm

The classic Roofline model is meant for streaming computation kernels. A key factor in
utilizing a streaming model is to determine what level of the memory hierarchy your kernel
exhibits streaming behavior.

Using the Experimental Roofline Toolkit (ERT) [50] you can measure the effective Roofline
performance of the target architecture. You can refer back to figure 1.2 for the Roofline plot
for this architecture. The different bandwidth lines are generated based on different working
set sizes: How much memory do you access before touching a part of the memory again and
getting temporal data re-use.

Under the hood, ERT can also show a user more detailed performance characteristics.
Figures 5.4 and 5.5 show the effect of varying how parallelism is expressed. The ERT code
is embarrassingly parallel, with each thread executing on its own working set.

The X-axis shows the working set size and the Y-axis shows the available bandwidth
that can be achieved. For very small working sets that easily fit into L1 the performance is
actually limited by factors that are not tied to load/store performance. Once the working
set reaches 10KB you see the effective L1 bandwidth. For the higher number of OpenMP
threads you can see that the effective cache capacity tails off well before you reach the total
combined L1 cache capacity ( 500KB out of a total of 1024KB) the performance transitions
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Figure 5.4: Experimentally-derived bandwidth measurements of 1 node (2 sockets, 32 cores)
experimental platform for 2 FLOP computational kernel using 4 MPI ranks, each with 8
OpenMP threads
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Figure 5.5: Experimentally-derived bandwidth measurements of 1 node (2 sockets, 32 cores)
experimental platform for 2 FLOP computational kernel using 16 MPI ranks, each with 2
OpenMP threads
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to the speed of the L2 cache. The 1024KB L1 capacity is more clearly visible in the flatter
MPI execution model. The effective L2 capacity and bandwidth are similarly impacted
by the interference from the threading behavior. What is the most similar between all the
execution models is the L2 and L3 cache capacity (the place where each performance plateau
rolls off). The processor is spec’d from the manufacturer to have 8MB L2 cache and both
sweep plots show a roll off in this area. Both sweeps also have an obvious roll off to DRAM
bandwidth just before the capacity of the 80MB L3 shared cache.

Critical observations here are that Roofline is not a good performance model in regimes
where data bandwidth effects are not dominant, like in the build-up phase with very small
working sets. There is a terrible penalty for falling out of the L3 data cache working set size.

When analyzing the Hockney convolution we will track the effective working set size as
well as load/store traffic and floating-point operations. This worksheet is presented in table
5.6.

Phase flops ld/st (MB) working set (MB)
33x33 1D FFT r2c 1

2
x33x33xT 333x8=.27 (332x 130x8=1.0)2

33x66 1D FFT c2c 33x66xT (33x66x130x2x8=4.3)2

f̂ =66x130 1D FFT c2c 66x130xT (66x130x130x2x8=17)3

f̂ ∗= Ĝ 66x130x130x2 (1303

8
x8=2.1)1

66x130 1D IFFT c2c 66x130xT
66x97 1D IFFT c2c 66x97xT 66x97x130x2x8=12.7
97x97 1D IFFT c2r 1

2
x97x97xT (97x97x130x8=9.3)2

BαR = 973x8=7∑
i Φc

2
64B

αR∑
i Φf(faces)

22
97B

αR

B=load+store
T=5x130xlog2(130) F=143.7e6 B=2.21e6 ws=12.8MB

Figure 5.6: Hockney Convolution Worksheet DRAM Arithmetic Intensity AI=F
B

=61: 27-
point Laplacian operator, zero structure exploited, steps 3-5 (k-pencils) operations fused,
ns=33, nd=97. 1. Assumes that a single MPI rank will perform many Hockney convolutions
and the load of Ĝ is ammortized away. 2. These operations share a common work array
with inverse J-transform and so do not count towards the total working set. 3. This would
be the peak working set size if we did not block and fuse the k-direction operations.

4x8x130x2x8=.06

Table 5.6 shows that for one Hockney convolution we need to manipulate a 12.8MB
working set. Given an 80MB L3 cache capacity it would suggest that we can work on 4
convolutions concurrently and avoid DRAM access. This a bit optimistic since we elided
the copy of Ĝ that all ranks are accessing. Since Ĝ is a read-only data structure and will
be stored in L3 is a shared state of the Modified-Exclusive-Shared-Invalid-Forward MESIF
cacheline finite-state machine policy used in Intel Xeon ccNUMA [40, 54, 44]. We will end



CHAPTER 5. EXPERIMENTS 45

downwardPass 4.92640

setPhiDeltaAndRho 4.20626

HockneyCompact::transform 3.63739

InterpOnFace::interpolate 0.32554

MLCFaces::setFaces 0.08553

setLegendreCoeffs 0.22360

projectToCoarseT on NodeFArrayBox 0.06523

evalOperator on phiCoarseFab T 0.05755

setRhsModCoarser 0.49412

generalCopyTo on a_rho 0.24737

MPI_Waitall 0.22376

generalCopyTo on m_legendreCoeffsSampled 0.10679

MPI_Waitall 0.10235

generalCopyTo on rhsSampled 0.06421

MPI_Waitall 0.05899

addPolyConvolutionCoarseLaplacianVect 0.06356

upwardPass 3.02574

addPolyConvolutionFineInterpDiffMLCFacesVect 1.25917

PoissonDirichletFFTW::solveInhomogeneousBCInPlace 0.31140

m_phiDeltaMLCFaces.exchange() 0.97926

generalCopyTo on m_legendreCoeffsAlphaBar 0.13527

Table 5.3: Performance breakdown for Variant 4 of MLC

up with two copies of Ĝ, 2.1MB resident on each socket. It does suggest the optimal level of
shared memory parallelism is 4 simultaneous transforms can be supported by this platform.
Variant 4 was run using 4 MPI ranks per node and 8 threads collectively performing the
Hockney transform. The results of this experiment are shown in table 5.3. We refer to this
variant as the fine compact variant where the k-direction transforms have been fused with
multiplication against Ĝ in a thread-local buffer.

For comparison to geometric multigrid we set up the HPGMG HPC benchmark [1] to
run the same number of degrees of freedom problem.

cc -Ofast -xAVX2 -fopenmp level.c operators.27pt.c \

mg.c solvers.c hpgmg-fv.c timers.c -DUSE_MPI -DUSE_SUBCOMM \

-DUSE_VCYCLES -DUSE_GSRB -DUSE_BICGSTAB -o run.haswell

srun --ntasks=16 --nodes=8 --ntasks-per-node=2 --cpus-per-task=16 \

--cpu_bind=verbose,threads ../run.haswell 5 2048

This solver converges in 9 iterations. The performance breakdown is shown in table 5.4
We can note that the solver is competitive even in a uniform-grid head-to-head compar-

ison against what is considered a well-written geometric multigrid solver.
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===== Timing Breakdown ===============================

level 0 1

level dimension 1024^3 512^3

box dimension 32^3 16^3 total

------------------ ------------ ------------ -- ------------

smooth 4.383103 0.667028 5.176560

residual 0.824394 0.064869 0.899360

applyOp 0.000000 0.000000 0.000011

BLAS1 0.189618 0.031581 0.226203

Boundary Conditions 0.116326 0.027812 0.157308

Restriction 0.123759 0.020223 0.147309

local restriction 0.123739 0.020208 0.146710

unpack MPI buffers 0.000000 0.000000 0.000068

MPI_Waitall 0.000000 0.000000 0.000383

Interpolation 0.216392 0.030635 0.251998

local interpolation 0.216376 0.030622 0.251383

MPI_Isend 0.000000 0.000000 0.000157

MPI_Waitall 0.000000 0.000000 0.000243

Ghost Zone Exchange 1.639090 0.468217 2.312578

local exchange 1.312621 0.348386 1.784754

pack MPI buffers 0.054460 0.017689 0.084142

unpack MPI buffers 0.064791 0.018500 0.091890

MPI_Isend 0.002670 0.002578 0.010909

MPI_Irecv 0.000642 0.000648 0.002551

MPI_Waitall 0.203557 0.080027 0.336246

MPI_collectives 0.028289 0.000000 0.028338

------------------ ------------ ------------ -- ------------

Total by level 7.507876 1.252272 9.108185

Total time in MGBuild 0.864459 seconds

Total time in MGSolve 9.177287 seconds

Table 5.4: HPGMG Performance on uniform grid with domain decomposition and hybrid
MPI+OpenMP execution
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The Hockney kernel achieves a final aggregate performance of 155 GFLOPS on the Cori
Haswell compute node. This can be compared with the peak experimentally achieved per-
formance on this node of 844 GFLOPS from the ERT tool. This requires some explanation,
as looking at the AI worksheet for this kernel we have an AI of 10.7. At an AI of 10 we
should witness full processing capacity.

First we can configure ERT to run a kernel that has an arithmetic intensity closer to our
kernel, the results are shown in figure 5.7. At this level of compute intensity you can see that
all the levels of cache disappear as the processor can amortize cache latency until DRAM
access. The other thing to note is that at this higher FLOP rate the peak acheivable perfor-
mance has dropped slightly. With some simple algebra you end up with a peak performance
of 700 GFLOPS. So, higher arithmetic kernels can fall away from the global maximum.

Next, the ERT kernel is specifically written to utilize Fused-Multiply-Add (FMA) instruc-
tions on every clock cycle. While HPGMG relax, restrict, prolong all are dominated
by FMA, the FFT codelets are not. In pure Cooley-Tukey FFT every stage is expressed
as FMA, many of these operations are done against trivial twiddle factors. FFTW uses
symbolic processing in OCAML to group common subexpressions and eliminate trivial mul-
tiplications. For the 130-sized transform FFTW selects a 10-by-13 split-radix implementa-
tion. Each codelet variant is chosen by an autotuning preprocessing step. In this case our
transforms make use of 4 FFTW codelets

• n1bv 13 no-twiddle, variant 1, backward transform, size 13, vectorized 31 additions, 6
multiplications, 57 fused multiply/add

• t1fuv 10 twiddle, unpacked, forward transform, size 10, vectorized 33 additions, 22
multiplications, 18 fused multiply/add

• t2bv 10 twiddle form 2, backward vectorized 33 additions, 22 multiplications, 18 fused
multiply/add

• n1fv 13 no twiddle forward transform vectorized 31 additions, 6 multiplications, 57
fused multiply/add

Using these figures, and profiling for the exact number of times each of these codelets is
called, we can compute that only 36.8% of the floating-point instructions being executed are
FMA. The remaining floating-point operations are multiplication and addition. For highly-
tuned FFT transform kernels the realistic peak performance based on optimal instruction
issue would be 485 GFLOPS.

Using the Intel VTune tools it is verified that the kernel does indeed hold the working

set entirely in L3 cache. Data from the hardware counters in a typical run produce some

more interesting results:



CHAPTER 5. EXPERIMENTS 48

1e+01

1e+02

1e+03

1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Graph 3 (Results.cori1.nersc.gov.05/Run.002/FLOPS.032/MPI.0004/OpenMP.0008)

Figure 5.7: Experimentally-derived bandwidth measurements of 1 node (2 sockets, 32 cores)
experimental platform for 32 FLOP computational kernel using 4 MPI ranks, each with 8
OpenMP threads



CHAPTER 5. EXPERIMENTS 49

CYCLE_ACTIVITY.CYCLES_NO_EXECUTE 40670061005

RESOURCE_STALLS.SB 25298037947

MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM_PS 61601848

MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM_PS 0

MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_HITM_PS 0

As intended, there are no DRAM accesses to a remote DRAM address. The code is not
crossing Unified Memory domains. The number of L3 misses is a minute fraction of the
total micro-ops the processor is executing. The dominant factor in processor stalls is not
bandwidth itself, but an exhaustion of the Store Buffer. The Haswell processor has 72 entries
in its Load Buffer, and 42 entries in its Store Buffer. So, more than half of the processor stalls
are the result of waiting on space in the store buffer. Running the Hockney kernel through
the Intel Software Development Emulator produces a clearer picture of how this behavior
manifests (shown in table 5.5). First, we can verify that the majority of the floating-point
operations are indeed done as 4-way SIMD instructions, but a non-trivial number of 2-way
SIMD instructions are part of the mix. The Haswell processor does not have an 8-way SIMD
instruction.
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elements-fp-double-1 223500125
elements-fp-double-2 4626104600
elements-fp-double-4 17559860530
elements-fp-double-8 0
Total single-precision FLOPs 0
Total double-precision FLOPs 79715151445
mem-read-1 39409184
mem-read-2 10812
mem-read-4 402017620
mem-read-8 8963523874
mem-read-16 5788181617
mem-read-32 6580397550
mem-write-1 2199321767
mem-write-2 4368
mem-write-4 69478325
mem-write-8 3254986928
mem-write-16 4540548184
mem-write-32 1453802572

Table 5.5: SDE Output from Variant 4 Kernel Benchmark

So, the first thing to note is that the generated FFTW codelets still make use of some
scalar operations and short vector operations. 28% of the floating-point operations are done
on smaller units. This makes sense as our codelets and our FFT batch operations are not
nice multiples of the built-in vector length.

What is not well vectorized in FFTW are the load and store operations. Essentially,
the store buffer is overwhelmed with small read and write instructions. This is hard to
avoid in FFT, as Complex double is not a native type in modern processors. While the
loads are moderately well vectorized, the stores are overwhelmingly a single complex-valued
double (mem-write-16) or single double (mem-write-8). Native complex values in C99 are
interleaved. Since most of the writes here are subject to later reads in the next phase of
the kernel there is little to be gained by using write-through techniques. There are several
instructions needed to load and store complex values into vector registers to make them
suitable for AVX instructions. Most of the time the processor spends stalled is due to
exhaustion of the store buffer.

We attempted to remedy this poor load/store vectorization by switching to a non-
interleaved representation of complex-valued data. The is referred to in the FFTW manual
as split layout where the real and the imaginary values remain in their own disjoint data
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holders. This experiment did not result in any performance gains. With a closer look it turns
out that FFTW passes the split representation through a data transform phase to land in the
expected interleaved codelets. To take this approach further would require dismantling the
symbolic engine and back-end code generation of FFTW to respect a split layout end-to-end.
That is left for future work.

With those major factors now accounted for this implementation is as close to optimal
as we can likely attain without a significant rewrite of the code generation for FFT. It is
also clear that the Hockney kernel itself is not the only target for further optimization of the
overall MLC algorithm.

Another important observation from both HPGMG and MLC is the communication costs
across the disctributed memory system. Our models from Chapter 4 suggested that there
should be a clear advantage to the non-iterative approach for minimizing time-to-solution
by reducing the amount of communication, but looking at tables 5.3 and 5.4 we can see that
neither application is really limited by the communication library calls. MLC spends 0.35
seconds in communication, and HPGMG spends 0.45 seconds in the MPI operations. What
both algorithms suffer from is the work the CPU and local memory system must do handle
what we refer to as the data choreography involved in the distributed memory aspects of the
algorithm. Both algorithms utilize space-filling curve methods to minimize surface-to-volume
effects and thus maximize on-node memory movement and minimize off-node data traffic.
Inter-node communication stress the ability for the CPU to marshal data movement on Box

surfaces. This ends up stressing the processor’s ability to use mem-write-8 instructions.
ie. the compiled codelets make poor use of the vectorized load/store instructions. This
exhaustion of the store buffer effect ends up dominating the communication phases.
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Chapter 6

Conclusions

The Roofline model predicts that MLC can be an effective solver for Poisson’s equation for
emerging computer architectures. The reduced memory access gains can be realized at an
acceptable cost in additional floating-point operations. In this work, we implemented several
progressively improved variants of the MLC algorithm guided by the Roofline performance
model focusing on the Hockney convolution and the Intel R©Haswell processor.

Key factors in moving the algorithm upwards in the Roofline plot was managing the
working set size and eliminating OpenMP and MPI overheads. The instruction-level paral-
lelism and vector-level parallelism were provided by the code generation technology in the
FFTW package. This was verified through hardware performance measurements.

For the instruction mix in a modern FFT algorithm, the best we could hope to achieve
on the target platform is 485 GFLOPS. And yet the arithmetic intensity calculation for the
Hockney convolution, 10.7, should be able to achieve peak performance, and yet we stop at
155 GFLOPS. While this surpasses all of the FFT-based HPC algorithms currently running
at the NERSC supercomputer center, it still requires an explanation. This is where the lim-
itations of the simplified Roofline performance model need to be investigated. If you recall,
the Roofline performance model assumes a simple processing unit and memory hierarchy.
The critical architectural feature not captured in the Roofline performance model was the
exhaustion of the store buffer. While FFTW code generation makes adequate use of vector-
ized load instructions, it make significantly poor use of vectorized store instructions. Overall
there are an equivalent number of loads and stores in FFT. Perversely the Intel R©Haswell
processor is biased with more load buffer capacity (72 slots) than store buffer capacity (42
slots). In the end, 62% of the processor stall cycles are caused by an exhaustion of available
slots in the store buffer. This is not a fundamental limitation of FFT but a deficiency in the
current code generation technology as discussed below.

In a similar way, the ability of the processor to maximize the potential of the inter-
node communication library is limited by the processor’s ability to marshal data movement
effectively between distributed memory systems. A similar exhaustion of the load and store
buffers prevent the CPU from realizing the benefits of our existing fast interconnect hardware.
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Future Work

We have only just begun to map out the performance space for the MLC algorithm. The
error estimate for MLC given in(2.16a)-(2.16d) suggests that raising the order of the discrete
operator can allow us to reduce the necessary overlap regions like α for the same effective
accuracy. The dominant computational kernel (Hockney) is already a complete discrete
convolution and the computational costs are fixed. {N,α, β, qα, qp} can be tuned for the
architecture and accuracy and this space requires greater exploration. Preliminary work
using a 10th-order 117-point operator look promising.

The split representation of FFTW should have allowed the codelets to use fully-vectorized
load/store instructions and achieved full peak performance, but the current design is biased
to the interleaved representation. split inputs are still manipulated into interleaved codelets
in the interest of simplified software design. Perhaps there is an assumption that since
C/C++/Fortran have adopted complex as a fundamental data type that hardware will
follow suit and vendors will provide vectorized complex operation. We do not think this
will be happening. For FFT applications that target convolutions the split representation is
more natural and effort needs to be expended to make this path through the code generation
mechanism preserve the vector-friendly data layout that the applications are already using.

For applications that operate on complex-valued inputs/outputs it is possible to retrofit
the FFTW package itself to perform a minor increase of number of register-to-register oper-
ations to assemble larger contiguous memory regions for which vectorized store operations
can be performed. This would relieve the burden on the over-taxed store buffer. The Xeon
family of processors can do this operation effectively since we have not exhausted the reg-
ister file or the reorder buffer. “Minor” in this case is actually an understatement. The
change would have to be effected not in the simple vectorizing macros for FFTW but in
the symbolic engine written in the OCaml language[49] that underlies FFTW genfft, as
these operations would need to be scheduled correctly within the superscaler optimization
engine that is also inside of the symbolic processor. Every code variant that the FFTW
code generator currently produces suffers from this deficiency. Therefore, there is no way
to auto-tune our way out of this problem. Furthermore, this will not be the last critical
architectural feature that will need to be factored into the code generation technology in the
coming years. We are seeing an increase in diversity in the HPC hardware architecture space,
and FFT based kernels are only going to become more prevalent. As a near-term example
of this problem, a GPU doesn’t use a store buffer as the Xeon does. It has a completely
different memory technology called memory coalescing which is not optimized by vectorizing
your store operations. FFTW itself no longer has its original development team involved in
the project. It receives minor updates but nothing on the scale that is required.

For the communication-phase of MLC (and GMG, and likely all HPC motifs) there is
the perverse and pervasive problem of asking a modern vectorized microprocessor to manage
the data choreography for inter-node communication. One approach being explored just
this year is to move to units of data communication that are vectorized by a code generator
[69], where halo cells are represented as lists of bricks that are naturally sized to fit the
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native hardware cacheline size. As outlined in Attack of the Killer Microsecond[13], there
is an entirely different argument that asks “How to Waste a Fast Datacenter Processor?”.
We need to stop using general-purpose processor like a XeonTM to manage these kinds of
operations and instead invoke the next-generation Remote Direct Memory Access (RDMA)
offload capabilities of modern interconnects and assign low-power ASICS to offload these
transfer operations. It has been the case that the host CPU is the rate-limiting factor in
HPC inter-node communication for some time already[59]. UPC++ [70, 7, 6] is the kind of
library where asynchronous strided rput/rget would disintermediate the CPU from these
data transfer operations.

The bigger picture: We should not expect HPC developers to undertake the protocols
demonstrated in this thesis for each application domain and discipline that use FFT-based
kernels. While the store buffer limitation can be overcome within FFTW, we would not have
hit this performance wall without the manipulations we made to schedule and fuse the entire
convolution. A new spectral code generation infrastructure to handle FFT-like transforms
with plans that span different sizes, ranks, pruning, and convolution kernels is needed. In
general, FFT and BLAS needed a unified code generation mechanism to achieve the kind of
performance people are expecting from future architectures. These generated plans need to
also schedule threading and communication phases.
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Appendix A

Notation

For reference in this thesis this is a handy table for notation

ZD Integer space of dimension D
RD Real space over dimension D
BR Ball of radius R in the space ZD
BαR Ball of radius αR for some α > 1
BβR Ball or radius βR for some β > α
L Linear Operator. In this document L will always be the Laplacian
∆ Continuous Laplacian Operator
Φ Scalar value field defined over space RD

i, j Points in ZD
x,y Real vector in RD used to represent a position
z displacement in RD away from BR

∗ Convolution operator, both in continuous and discrete space
w Mixed partial derivative order. Vector valued
f Scalar field defined RD, used to represent the input charge distribution
O Order of limiting behavior
q degree of first truncation error term
qP degree of Legendre Polynomial
qI degree of coarse-fine Interpolation
qα degree of first trunction error term of discrete Laplacian in α region
h Two uses: 1. mesh spacing on the fine grid in R

2. operations/fields that are referenced/sampled to the fine grid spacing
H Two uses: 1. mesh spacing on the coarse grid in R

2. operations/fields that are referenced/sampled to the coarse grid spacing
r Integer refinement ratio between grid levels
I reference to interpolation operations
G Green’s Function
F Fourier Transform
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Gh Discrete Green’s Function of the Laplacian operator on the fine grid
GH Discrete Green’s Function of the Laplacian operator in the coarse grid
N Number of grid points

T̂ The Fourier Transform of T . It is used on f̂ , f̂h, Ĝh, etc.
LATEX hat means Fourier Transform.

PL Projection onto the Lengendre Polynomial Basis functions
Pm,n The n’th Lengendre basis function of order m
am,n The coefficient of Pmn
Γ number of coefficients in PLfh
qn number of points in a qth order stencil
p Processors

Table A.1: Notation
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Appendix B

Lh19 and Lh27 Mehrstellen
Discretizations of the Laplacian

The stencil coefficients for the Lh19 and Lh27 Mehrstellen Laplacians are aj = 1
h2
b|j|, where

|j| is the number of non-zero components of j and bk are defined as:

b0 = −4, b1 =
1

3
, b2 =

1

6
, b3 = 0, 19-point stencil

b0 = −64

15
, b1 =

7

15
, b2 =

1

10
, b3 =

1

30
, 27-point stencil

The corresponding expressions for the truncation errors τh19, τh27 for Lh19 , Lh27 , are given
by:

τh19(φ) =
h2

12
(∆(∆φ)) + h4L(6)(φ) +O(h6)

and

τh27(φ) =
h2

12
(∆(∆φ)) +

h4

360

((
∆2 + 2

(
∂4

∂x2∂y2
+

∂4

∂y2∂z2
+

∂4

∂z2∂x2

))
(∆φ)

)
+h6L(8)(φ) +O(h8) (B.1)

where the L(q)’s are homogeneous constant–coefficient qth-order differential operators.
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Appendix C

Deriving Hockney’s Algorithm

A key building block of the MLC algorithm is computing free-space convolutions quickly
using the Fast Fourier Transform, Hockney’s Algorithm. When Hockney first presented this
algorithm it took several puzzling years for people to accept the idea that a suitably padded
DFT operation would generate the free-space solution of a compact source term.

For any discrete convolution of a compact source term f we can compute a solution to
the full space convolution with just a finite convolution on a domain that is at double the
size of the support of f .

Φ(j) = (G ∗ f)(j) =
∑
l∈ZD

G(j − l)f(l) (C.1)

j ∈ [0...n− 1]D (C.2)

f(l) ≡ 0 l /∈ [0...n− 1]D (C.3)

(C.4)

define l̃ = j − l, l = j − l̃

Φ(j) = (G ∗ f)(j) =
∑
l̃∈ZD

G(l̃)f(j − l̃) (C.5)

f(j − l̃) ≡ 0 j − l̃ /∈ [0...n− 1]D or rewritten as (C.6)

l̃ /∈ [−n+ 1...n− 1]D (C.7)

which can be rewritten as

Φ(j) =
n−1∑

l̃=−n+1

G(l̃)f(j − l̃). (C.8)
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Over the finite discrete space [−n+ 1..n−1]D we can define the Discrete Fourier Transforms

f(j) =
n−1∑

k=−n+1

f̂kz
kj and f̂k =

1

2n

n−1∑
j−n+1

f(j)z−kj (C.9)

G(l̃) =
n−1∑

k=−n+1

Ĝkz
kl̃ and Ĝk =

1

2n

n−1∑
l̃=−n+1

G(l̃)z−kl̃ (C.10)

So, f(j − l̃) =
n∑

k=−n+1

f̂kz
k(j−l̃). (C.11)

Now (C.8) becomes ∑
l̃

G(l̃)f(j − l̃) =
∑
l̃

∑
k

G(l̃)z−kl̃f̂kz
kj (C.12)

∑
k

∑
l̃

G(l̃)z−kl̃f̂kz
kj (C.13)

2n
∑
k

Ĝkf̂kz
kj (C.14)

This diagonalizes the problem and allows for more efficient computation techniques to
be applied. In particular, ((C.14)) is the Fast Fourier Transform (FFT). That is, can use
the Circular Convolution Theorem. Hockney’s algorithm can be generalized to handle the
solution at any (n)D destination region j by evaluating shifting the domain of G.
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Appendix D

Computing PL(fh)

In the shell region between αR and βR We perform a projection onto the Lengendre Poly-
nomial basis. In 3D the Legendre basis are the tensor products of the 1D polynomials. In
1D you have the generator Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
((x2 − 1)n) (D.1)

A short tabulation of the 2D tensor products shows how higher-order polynomials are
built

1

x y

1

2
(3x2 − 1) xy

1

2
(3y2 − 1)

1

2
(5x3 − 3x)

1

2
y(3x2 − 1)

1

2
x(3y2 − 1)

1

2
(5y3 − 3y)

and for 3D we have

Pm,n(x, y, z) =
∏

P r(x)P s(y)P t(z) such that n = r + s+ t, 0 ≤ m <
n(n+ 1)

2
(D.2)

For an arbitrary f we can express it’s value as the sum of weighted Legendre basis
functions

let x = [x, y, z] (D.3)

f(x) ≈ f ;P =

m,n∑
0

am,nPm,n(x). (D.4)

where n is the order of the polynomial and m is the m’th polynomial of that order.



APPENDIX D. COMPUTING PL(fh) 61

We assume we can treat a region Ωk as being normalized to the region [−1, 1]. Multiplying
both sides of (D.4) by Pn(x) and using the fact that P is an orthogonal basis and the identity∫ 1

−1

Pm,n(x)Pm,n(x) =
∏ 2

2r + 1

2

2s+ 1

2

2t+ 1
:= gm,n (D.5)

we can compute the polynomial coefficients as

am,n =
1

gm,n

∫ 1

−1

f(x)Pm,n(x)dx. (D.6)

For a 4-th order accurate truncation error we need the set of polynomials up to n = 3, which
for 3D requires 20 coefficients. For n = 4 there would be 35 coefficients to compute. To
compute the integral in (D.6) we can perform numerical integration to sufficient accuracy
using a uniform sampling of Pm,n(x)f(x) on the grid Ωk. The 1D Trapezoidal Rule given ni
points normalized to the region from [−1, 1] for a sampled function b is

Tni =
2

ni

[
ni−1∑
j=1

bj +
1

2
(b0 + bni)

]
(D.7)

The higher-dimension Trapezoid integrals are tensor products of the 1D integrals. In 3D
that give the corners a weighting of 1/8, the edge points a weight of 1/4 and the face
points a weight of 1/2 to generate TN . TN/2 is the same integral with sampling every other
point. Simpson’s Rule can then be generated by the extrapolation of the Trapezoid rule,
SN = 4

3
TN − 1

3
TN/2. Extrapolation using Simpson’s Rule generates Boole’s Rule, BN =

16
15
SN − 1

15
SN/2. Boole integration has an error that is O(h6), which is adequate for the order

of polynomial integration we require for computing our coefficients for n = [3, 4]. To perform
Boole integration we will use tensor products of the composite Boole Integration

h =
1− (−1)

4m
xk = kh− 1

I =
2h

45

m−1∑
k=0

[(7a(x4k) + 32a(x4k+1) + 12a(x4k+2) + 32a(x4k+3) + 7a(x4k+4)]

The coefficients am,n are communicated to neighboring patches in the ᾱ region at both
the same level l to compute φl,loc,i as well as to the coarser level where it only evaluated at
the coarse sample node points.

Once the projection P (f) is computed then the Hockney Algorithm is executed again.
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The ocaml system release 4.02, Institut National de Recherche en Informatique et en
Automatique, 54 (2014).

[50] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J.
Wright, M. W. Hall, and L. Oliker, Roofline model toolkit: A practical tool for
architectural and program analysis, in International Workshop on Performance Model-
ing, Benchmarking and Simulation of High Performance Computer Systems, Springer,
2014, pp. 129–148.

[51] D. F. Martin and P. Colella, A cell-centered adaptive projection method for the
incompressible euler equations, Journal of computational Physics, 163 (2000), pp. 271–
312.

[52] A. Mayo, The fast solution of poisson’s and the biharmonic equations on irregular
regions, SIAM Journal on Numerical Analysis, 21 (1984), pp. 285–299.

[53] P. McCorquodale, P. Colella, G. Balls, and S. Baden, A local corrections al-
gorithm for solving Poisson’s equation in three dimensions, Communications in Applied
Mathematics and Computational Science, 2 (2007), pp. 57–81.

[54] D. Molka, D. Hackenberg, and R. Schöne, Main memory and cache performance
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