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Abstract

Optimal Differential Drag Control of Small Satellite Constellations

by

Andrew Blatner

Master of Science, Plan II in Electrical Engineering and Computer Sciences

University of California, Berkeley

We analyze and improve two existing techniques for differential drag control of large con-

stellations of small propulsion-less satellites. The system has two subproblems: determining

the desired relative ordering of the satellites, referred to as their slotting, and generating an

optimal sequence of control inputs to acquire the slotting. One technique, used in production

by Earth-imaging company Planet, approximately solves both subproblems with simulated

annealing with the objective of maximizing acquired imagery. The other technique, devel-

oped academically, ignores slot allocation and generates commands with linear programming,

aiming to maximize constellation lifetime. First, we reconcile the practical details of both

techniques. Then, we adapt the linear program to new models that better capture Planet’s

objective. Finally, we develop a fast method for slotting satellites deployed from a single

launch. Though we find only small improvements in slot allocation, we provide assurances

of optimality and significant improvements in solver time for command generation.
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Chapter 1

Introduction

As small satellites and low-Earth orbit launch capabilities are further commoditized, it is

becoming more economical to launch large numbers of satellites at once. Constellations

of many identical small satellites are well-suited for purposes such as communications and

imaging, and they are often propulsion-less due to cost and engineering constraints. Planet

Labs, Inc., an Earth-imaging company, has launched several constellations of such satellites,

including Flock 3p, a constellation of 88 satellites launched in February 2017 [1].

Satellites launched together have similar initial orbits, so they require actuation to change

their relative orbital phases. Differential drag utilizes the geometry and attitude control

systems of satellites to control their aerodynamics. By varying the cross-sectional areas of

the satellites, it controls the angular velocities and therefore the relative positions of the

satellites. Differential drag is already used successfully by Planet and other organizations

for satellite control.
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Constellation acquisition can be divided into two components: slot allocation and com-

mand generation. The slot allocator first generates the desired ordering of satellites in their

orbit by taking advantage of slight variations in initial trajectories, such as those produced

by the deployment mechanism. Then, the command generator determines the drag inputs

to optimally achieve the desired slotting. Most importantly, these two problems are tightly

coupled, and an arbitrary slotting can add weeks or months to the acquisition time.

In [1], Planet solves both optimization problems using simulated annealing, an iterative

method that probabilistically explores the search space of candidate slottings and inputs.

Planet’s command generator produces discrete high drag and low drag commands to mini-

mize the L2-norm of the separation error, the deviation from the desired relative positions.

Another paper [2] formulates command generation as a linear program with continuous

variables. As a result, instead of discrete commands, it uses any drag area between low and

high drag. The LP minimizes the drop in altitude over the acquisition phase to maximize

satellite lifetime. However, for the financial purpose of acquiring imagery, it may be more

desirable to minimize acquisition time and total separation error.

This report seeks to reconcile and improve these approaches. First, we compare the

discrete-time dynamics in [1] and [2] and verify that they are equivalent. We show that the

continuous range of drag inputs can effectively be approximated as low drag and high drag

inputs. Next, we define an ideal, though non-convex, objective function and approximate

it with two new optimization models using the notation developed for the LP. We use this

notation to formulate the L2-norm minimization as a quadratic program. Similarly, we
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formulate a new linear program to minimize the L1-norm of the separation errors, which more

closely approximates the ideal objective function. Finally, we compare these developments

with the system in [1] and develop a fast replacement for the slot allocator.
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Chapter 2

Dynamics

2.1 Continuous-Time Dynamics

The orbit of each satellite is approximated as planar motion in polar coordinates because

atmospheric drag predominately acts in-plane tangential to the orbit. The continuous-time

dynamics for a single satellite are derived in [2] and are reproduced below.

r̈ = rθ̇2 − µE

r2

θ̈ =
1

r

(
−2ṙθ̇ + (~aatmdrag)θ

) (2.1)

2.2 Discrete-Time Dynamics

The discrete-time angular dynamics in the command generators are nearly equal. Though

the LP formulation in [2] contains radial dynamics, they are not necessary with objective
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functions based on the angular dynamics. Both sets of dynamics use Euler’s method for

discretization, with the angular dynamics for each satellite given below in (2.2).

Parameters ρ and v are the atmospheric density and satellite velocity relative to the

atmosphere, and a is the semimajor axis of the satellite’s orbit. ρ̄, v̄, and ā denote the cor-

responding predicted mean values. This report uses a simplified Harris-Priester atmospheric

model [3], but it can easily be interchanged with Planet’s high-fidelity models.

LP (Absolute Motion) [2] Planet (Relative Motion) [1]

θk+1

ωk+1

= θk + tsωk + 1/2t2sS̄
Ω
k Ak

= ωk + tsS̄
Ω
k Ak

[
θ

θ̇

]
k+1

=

[
1 ts
0 1

] [
θ

θ̇

]
k

+

[
0

Bk(uk)

]
(2.2)

S̄Ω(r, ω) :=
3

2

CD
m
ρ̄(r)v̄(r, ω)2 1

r
Bk(uk) := θ̈i,kui,k − θ̈ref,kuref,k

ui,k :=

{
0 if i is in low drag at time k
1 if i is in high drag at time k

=⇒ θ̈k = S̄Ω
k Ak =

3

2

CD
m
ρv2

1

r
Ak θ̈k :=

3

2

CD
m
ρv2

1

ā
(Amax − Amin) (2.3)

For absolute motion, θ̈k denotes absolute angular acceleration. For relative motion, B(u)

denotes angular acceleration relative to the reference satellite, and θ̈k represents the available

control authority. This is defined as the difference in angular acceleration between the

maximum and minimum drag configurations. For absolute motion, this is computed as

in (2.4). Because r ≈ ā for the nearly circular orbits of these satellites, the control authorities

in both formulations are identical.

θ̈max − θ̈min =
3

2

CD
m
ρv2 1

r
(Amax − Amin) (2.4)

However, there is a discrepancy in the dynamics obscured by these equations. In [1],
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initial conditions are calculated by fitting a line through a day of orbital data, effectively

approximating the mean motion of the orbits. Mean motion is the orbit’s mean angular

velocity, n = 2π
P

, and is equal for all elliptical orbits with the same period [4, p. 131]. Most

importantly, it determines the evolution of long-term relative angular separation. For exam-

ple, two satellites with the same period may have different instantaneous angular velocities,

but their average angular separation remains constant. In contrast, [2] assumes circular

orbits and uses the instantaneous state, so MPC simulation fails when initialized with non-

circular orbits. Even though the largest initial eccentricity for Planet’s Flock 3P is only

0.0012 [4, p. 132, 5], the optimization problem becomes infeasible after a small number of

time-steps.

Fortunately, S̄Ω is derived from the rate of change of an orbit’s mean motion [4, pp. 561,

566], so resolution of this discrepancy is simple: for all discrete-time calculations, including

simulation and command generation, use “circularized” orbits as the initial conditions. With

optimization based only on angular separations, this amounts to replacing the instantaneous

angular velocity ω with the mean motion n. Continuous-time simulations still use the original

eccentric orbits. From an instantaneous position r and (non-angular) velocity v, such as those

given in Planet’s orbital ephemerides [5], mean motion is calculated by finding the semimajor

axis with the vis-viva equation [4, pp. 109–110]:

n =

√
µ

a3
where a =

µr

2µ− v2r

Figure 2.1 shows that this change is necessary. In open-loop simulation without cir-
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cularization, the angular separations do not follow the model’s predictions. In closed-loop

MPC simulations, the problem quickly becomes infeasible without significantly extending

the horizon.

Figure 2.1: Impact of “circularizing” discrete-time orbits

2.3 Discretizing Input Commands

In practice, Planet uses binary control inputs of maximum and minimum drag areas, resulting

in an intractable binary integer programming problem. Their methods in [1] circumvent this
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with simulated annealing at the cost of sub-optimality, while the LP formulation in [2]

relaxes the control inputs to a continuous interval. In order to make the optimization-based

approach applicable, each control input Ades ∈ [Amin, Amax] must be approximated by binary

control inputs Amin and Amax.

Over a single time-step, Ades can be approximated by applying Amax for part of the

time-step, and Amin for the remainder of each time-step. The length of each time-step, ts,

is typically 1 day. The transition time, τ ∈ [0, ts], is chosen to impart an equal amount of

mechanical impulse as is imparted by applying Ades for the entire time-step. The imparted

force is linear in the drag area, so equivalently the amount of applied control is udes = Adests.

This can be partitioned as in (2.5), and by solving, we find the required transition time τ as

given in (2.6).

udes = Adests = Amaxτ + Amin(ts − τ) (2.5)

=⇒ τ =
Ades − Amin

Amax − Amin

ts (2.6)

Evaluating the response of a satellite to this adapted input over a single time-step:

ω(τ) = ω(0) + τ S̄ΩAmax θ(τ) = θ(0) + τω(0) +
1

2
τ 2S̄ΩAmax

ω(ts) = ω(τ) + (ts − τ)S̄ΩAmin θ(ts) = θ(τ) + (ts − τ)ω(τ) +
1

2
(ts − τ)2S̄ΩAmin
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Making the appropriate substitutions:

ω(ts) = ω(0) + tsS̄
ΩAdes θ(ts) = θ(0) + tsω(0) +

1

2
t2sS̄

ΩAeff (2.7)

where Aeff =
−(Ades − Amin)2

Amax − Amin

+ 2(Ades − Amin) + Amin

The nominal response to Ades is simply:

ω̄(ts) = ω(0) + tsS̄
ΩAdes θ̄(ts) = θ(0) + tsω(0) +

1

2
t2sS̄

ΩAdes (2.8)

Comparing (2.7) with (2.8), the angular velocity is identical because an equal impulse is

applied to the satellite. The angular position response of the approximate input is equivalent

to a constant input of Aeff , plotted in Figure 2.2a as a function of Ades.

Pulse-width modulating the input better approximates the desired input by dividing each

time-step into p periods of length ts
p

. Then, high-drag is applied each period for a duration

of τ
p
. The reduction of the effective input error with this method is shown in Figure 2.2b.

Figure 2.3 illustrates that this approximation is accurate using two sets of initial conditions.
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(a)

(b)

Figure 2.2: Approximating a desired area by modulating high-drag and low-drag
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Figure 2.3: Simulated closed-loop performance with input approximation
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Chapter 3

Optimization Models for Command

Generation

The two methods for command generation have different objectives. For-profit compa-

nies, such as Planet, may be interested in maximizing the amount of imagery available

for customer-facing services by minimizing acquisition time as in [1]. In contrast, the linear

program in [2] maximizes the lifetime of the constellation by minimizing altitude loss during

acquisition. While this could increase the amount of imagery a few years after deployment,

acquiring full coverage of the Earth as quickly as possible may be more practically desirable.

In both formulations, there is a notion of desired angular separations between satellites.

In [2], angular separations are measured between sequentially numbered satellites, while

[1] computes separations relative to a single reference satellite, the choice of which is part

of the slot allocation problem. Defining the angular position vector as θ = [θ1, . . . , θN ]>,
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angular separations can be expressed as ∆ = D · θ, and the angular separation error is

∆ − ∆des = D · θ − ∆des. The definitions for the separation matrices D and the desired

angular separations ∆des are given in (3.1), though [1] does not use this notation. The row

of zeros in the relative separation matrix serves to keep the dimensions of D the same. The

LP in [2] constrains the angular separation error to be near 0 at the final time-step T , while

[1] minimizes its L2-norm over a horizon of T days.

Sequential Separations Relative Separations

D :=


1 −1

. . . . . .

1 −1
−1 1

 ∈ RN×N D :=


0 · · · · · · 0
−1 1
...

. . .

−1 1

 ∈ RN×N (3.1a)

∆des :=[
2π

N
, . . . ,

2π

N
,−2π

N
(N − 1)] ∆des :=[0,

2π

N
, 2 · 2π

N
. . . , (N − 1) · 2π

N
] (3.1b)

First, we define an ideal objective function and formulate the L2-norm minimization

as a quadratic program. Afterwards, we formulate a new linear program to approximate

the ideal objective function. We experimentally show that using a single reference satellite

performs better than calculating angular separations between sequential satellites, and lastly

we explain some implementation details.

3.1 Primary Objective Function

A measure for the instantaneous quality of a constellation is the total angle spanned by

(usually overlapping) intervals of width 2π
N

, centered on each of N satellites. While N
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satellites may not be able to image the entire Earth without gaps, this measure is beneficial

in that it is optimal for evenly spaced satellites and can be calculated quickly without

simulation. With the angular position of satellite i at time-step k ∈ 0 . . . T denoted by θi(k),

we can define the instantaneous coverage error as in (3.2a). We get an overall cost function

by summing over time as in (3.2b). Assuming that a perfectly spaced constellation is capable

of imaging the Earth once per day, we can interpret this as “total Earth surfaces not imaged.”

While this objective function can be quickly algorithmically calculated, it is non-convex in

θi(k) and does not lend itself to optimization models such as linear or quadratic programs.

Jideal(k) = 1− 1

2π
measure

{ N⋃
i=1

[
θi(k)− π

N
, θi(k) +

π

N

]
mod 2π

}
(3.2a)

Jideal =
T∑
k=0

J(k) · ts (3.2b)

3.2 Quadratic Program Formulation

The L2-norm minimization in [1] naturally lends itself to formulation as a quadratic program

after relaxing the inputs from binary to continuous variables. The angular positions at time

k are given in (3.3) using the formulas and notation developed in [2]. Row vectors S̄αi (1 : k)

represent the effect of the inputs on satellite i through time-step k, and the notation ◦ in
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(3.5) is the element-wise (Hadamard) product.

θ(k) = θ(0) + tskω(0) + t2sS̄
α(1 : k) · U (3.3)

where S̄α(1 : k) =

S̄
α
1 (1 : k)

. . .

S̄αN(1 : k)

 ∈ RN×NT (3.4)

S̄αi (1 : k) =
{

(k − 1
2
) · 11×k − [0, . . . , (k − 1)],01×T−k} ◦ S̄Ω

i ∈ R1×T (3.5)

Then the angular separation errors at time k are:

∆(k)−∆des

Qk

Rk

= D · θ(k)−∆des = QkU +Rk

= D · t2sS̄α(1 : k) ∈ RN×NT

= D · (θ(0) + tskω(0))−∆des ∈ RN×1

(3.6)

The L2-norm objective function in [1] can then be formulated as:

JQP(U) =
T∑
k=1

‖D · θ(k)−∆des‖2
2

=
T∑
k=1

1

2
U>(2Q>kQk)U + 2R>kQkU +R>k Rk

(3.7)
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Then, with Qk, Rk as given in (3.6), the quadratic program can be expressed in standard

form as in (3.8). The inequality constraints in (3.8c) are the same as the constraints in the

LP formulation from [2] with the radius constraints and slack variables removed.

minimize
U∈RNT×1

JQP(U)

subject to AQP · U

=
1

2
U>HU + f>U + C

≤ bQP

(3.8a)

H =
T∑
k=1

2Q>kQk f> =
T∑
k=1

2R>kQk C =
T∑
k=1

R>k Rk (3.8b)

AQP =


QT

-QT

D · tsS̄Ω

-D · tsS̄Ω

INT×NT
-INT×NT

 bQP =


εθ · 1N×1 −RT

εθ · 1N×1 +RT

εω · 1N×1 −D · ω(0)
εω · 1N×1 +D · ω(0)
Amax1

NT×1

-Amin1
NT×1

 (3.8c)

Quadratic Program Implementation

Formulation of the QP using the definitions in (3.8b) is notably slow due to constructing

H with T large matrix additions and multiplications. Testing an implementation with a

horizon of 160 days and time-step of 4 days (T = 40), the formulation time is typically

over twice the solver runtime, with respective averages of 5.2 seconds and 2.4 seconds. The

formulation time drastically decreases to only 0.5 seconds by constructing each of H and f

with a single matrix multiplication as in equation (3.9), reducing the overall time from 7.6



CHAPTER 3. OPTIMIZATION MODELS FOR COMMAND GENERATION 17

to 2.9 seconds.

H = 2Q>Q

f> = 2R>Q

Q =

Q1
...
QT

 R =

R1
...
RT

 (3.9)

The simulations used for this report are constructed using units of kilometers. Though

convenient in some ways, this choice results in scaling and numerical issues illustrated in

table 3.1. Some elements of H are greater than 1015, yet the decision variables are only

on the order of 10−7. Additionally, while H should be symmetric and positive-semidefinite,

some of the zero-eigenvalues become negative due to numerical inaccuracies. The negative

eigenvalues are significant enough for quadprog to determine the QP to be non-convex.

These issues are resolved by scaling U and its bounds by 220(≈ 106) and inversely scaling

S̄Ω by 106, thereby scaling H by 10−12 via Qk and S̄α and converting the units to meters.

U max(|Hi,j|) min(eig(H)) max(eig(H))

Without scaling 1e−7 1e17 −293 1e18

With scaling 1e−1 1e5 −1e−10 ≈ 0 1e6

Table 3.1: Magnitudes of values in the quadratic programs

3.3 New Linear Program Formulation

Another potential optimization model is a new linear program to minimize the L1-norm of

the angular separation error, now considered for a few reasons. First, in the expression for

coverage error in (3.2), the cost of overlapping intervals is linear in the amount of overlap, just

as the L1-norm is linear in the error. Additionally, L2-norm minimization harshly penalizes
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a constellation for a single satellite far out of position, even if all the other satellites are in the

correct position. L1-norm minimization properly penalizes this the same as a constellation

with each satellite slightly out of position. Lastly, a linear program may be faster to solve

in practice. The initial objective function is:

JLP(U) =
T∑
k=1

‖∆(k)−∆des‖1 =
T∑
k=1

‖QkU +Rk‖1

We can bound the L1-norm with slack variables to convert it to an LP:

0 ≤ ‖QkU +Rk‖1 ≤ tk ∈ RN×1 ⇐⇒ QkU − IN tk ≤ -Rk

-QkU − IN tk ≤ Rk

=⇒ JLP(U) = min
t
JLP(U, t) =

T∑
k=1

tk such that
QU − INT t ≤ -R

-QU − INT t ≤ R
(3.10)

Then, we can formulate the LP in standard form by augmenting the inequality constraints

of the QP in (3.8c) with the new constraints in (3.10).

minimize
U,t∈RNT×1

JLP(U, t)

subject to ALP · x

= 11×NT t

≤ bLP, x =

[
U
t

]
∈ R2NT×1

(3.11a)

ALP =

 AQP 04N×NT

Q -INT
-Q -INT

 bLP =

bQP

-R
R

 (3.11b)
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3.4 Simulation Details

Horizon Length

Before formulating either the new LP or QP, we must choose a horizon length. The feasi-

bility of a given horizon length can be quickly determined using linprog and the minimal

constraints (AQPU ≤ bQP) without an objective function. Then the minimum horizon can

be found with a binary search, assuming that the problem is feasible for all horizons greater

than the minimum. This may not usefully compare slottings of similar minimum horizons,

but in general horizon length correlates with total coverage error.

Time-Step

These optimization models must be quick to solve for the purposes of experimentation and

simulation. Solver time is closely correlated with problem size, which is primarily determined

by the number of satellites and the number of time-steps. The number of satellites is fixed,

so the primary way to decrease the problem size is by increasing the time-step. The control

period is mainly an issue in the closed-loop performance as the satellites approach the desired

separations and overshoot is a possibility. However, this is not an issue because slotting is

concerned with open-loop performance and MPC control is used in practice. Instead, the

primary constraint is the maximum control authority for most of the acquisition maneuver

when the satellites are still separating from each other.
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3.5 Evaluation

Next, we compare each of the four combinations of optimization models and separation

matrices using initial conditions similar to those of Flock 3p [5]. Figure 3.1 illustrates that

computing separations from a reference satellite has significantly lower coverage error than

sequentially computing separations. Coverage errors are expressed relative to reference-based

slotting with the QP. The QP and new LP usually perform similarly for optimized slottings,

but in some instances the coverage error with the new LP is 10% lower. For unoptimized

slottings, the LP significantly outperforms the QP. Figure 3.2 clearly shows that the new LP

is much faster to solve.

Figure 3.1: Coverage errors of each optimization model.
Plotted relative to the model most similar to [1]: the QP with reference-based separations.
Slottings optimized using method in section 4.2
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Figure 3.2: Runtimes of each solver
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Chapter 4

Comparison with Planet’s Methods

Planet publicly provides orbital data of their satellites each day. Throughout this chapter,

simulations and evaluations of slot allocation and command generation are initialized using

the states of Planet’s 88 Flock 3p the day after their launch, February 15th, 2017 [5].

4.1 Planet’s Slot Allocator

The slot allocator in [1] uses simulated annealing to iteratively minimize the phasing time

of the constellation. At each iteration, the optimizer swaps the slots of two satellites and

evaluates a heuristic for the phasing time. This heuristic calculates the maximum pairwise

phasing time, notated ∆t = maxi ∆ti of a reference satellite and satellites i = 1 . . . N − 1.

Assuming time-invariant control authority, ∆ti can be analytically computed with simple

kinematics.
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While this heuristic has low complexity and computational cost, it does not capture the

likely conflict between pairwise-optimal inputs. For example, given satellites 1, 2, and 3,

satellites 1 and 2 may phase optimally if 1 high-drags first, but satellites 1 and 3 may phase

optimally if 1 high-drags second. Due to these conflicts, the true optimal global phasing

time must be longer, perhaps significantly so, than the ∆t returned by the slot allocator. It

may seem that this heuristic is too restrictive, but it has the benefit of maximizing available

time, beyond the maximum ∆t, for resolving the control conflicts.

Table 4.1 shows the results of multiple trials of this slot allocator using a single initial

condition and different random seeds. The results of each trial are nearly identical, indicating

that a similar local minimum is reached with each run. As described in section 3.1, “coverage

error” can be interpreted as Earth surface areas not imaged over the course of constellation

acquisition.

∆t QP Coverage LP Coverage Min Horizon

[days] Error Error [days]

96.576 50.38 48.777 116

96.576 49.505 48.338 116

96.576 49.058 48.308 116

96.576 50.097 48.078 116

96.576 49.234 48.208 116

Table 4.1: Multiple trials of Planet’s Slot Allocator. For each returned slotting: final ∆t,
coverage errors from the QP and new LP, and minimum horizon length
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Figure 4.1 depicts the iterative performance of the slot allocator in the first trial. Notably,

almost all of the progress is made in the first 2% of the 1e6 iterations, and none is made in

the hatched area. This implies that slot allocation can be done with far fewer iterations and

may be a simpler problem than is posed.

Figure 4.1: Iterative performance of Planet’s slot allocator

4.2 Optimal Slotting for Single-Launch Constellations

Now we develop a quick method for computing the optimal slotting of satellites clustered

from a single launch. Using the notion of pairwise phasing times, we can convert the two-

dimensional state of angular position and mean motion into a one-dimensional measure of

along-orbit forward progress.

There is a one-to-one mapping between semimajor axis length and mean motion so they

are used interchangeably. Lower altitude satellites orbit more quickly, so given two satellites
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with the same angular position, the lower satellite is conceptually considered farther along

the orbit. Comparisons are more complex for satellites with different angular positions: with

an infinite horizon, the lower altitude satellite eventually passes the other, but in this context

we have a limited horizon. Ultimately, this effect will be negligible for satellites from the

same launch, such as Flock 3P.

Consider an imaginary reference satellite some angle (e.g. half an orbit) ahead of the

initial cluster, with mean motion equal to the greatest mean motion of the constellation.

First, this ensures consistency in control because each satellite must, counter-intuitively, high

drag first to reach the reference moving forwards. This is due to the drag paradox, where

drag forces increase angular velocity as the satellite decreases in altitude, essentially trading

gravitational potential energy for kinetic energy. Additionally, this reference convention

ensures the satellites will not naturally pass the reference.

For each satellite, compute ∆ti for each satellite with the imaginary reference. Consider

only the cases where the satellite high drags first (and accelerates forwards) because we want

to use each ∆ti as a measure of forward progress. Then sort the satellites ascendingly by ∆ti,

and assign each satellite rank ri ∈ 0 . . . N − 1. Assign satellite 0 as the reference satellite for

calculating separations, and calculate the desired separation for satellite i as ∆des,i = −ri 2π
N

.

Table 4.2 compares this slotting with the simulated annealing slotting. A lower bound

on the coverage error for the methods in [1] is 49.6, computed by generating commands with

the QP instead of simulated annealing. The slotting itself is only slightly improved when

considered on its own, but using the newly developed methods, the coverage error improves
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≈ 9% to 45.2. The simulated annealing command generator in [1] is not guaranteed to

be optimal, so it’s possible the improvement is even better. This development does not

completely preclude the use of simulated annealing for slot generation, as it may be preferable

for more extreme initial conditions.

Max ∆t QP Coverage LP Coverage Min Horizon

Slotting [days] Error Error [days]

Planet 96.576 49.655 48.342 116

∆t 105.890 47.004 45.219 116

Table 4.2: Comparison of Planet’s simulated annealing slotting and the new ∆t slotting.
Coverage error computed as in section 3.1
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Chapter 5

Conclusion

We compared an existing in-orbit differential drag controller with another of academic focus.

We established equivalences in their dynamics and control methods, and we showed that the

academic linear programming methods can be applied to the more practical considerations of

the other. Specifically, we optimally generate commands by reformulating Planet’s objective

function as a quadratic program, and we further improve it with a new linear program.

Then, we evaluate Planet’s slot allocator, and by developing a faster and marginally better

slot allocator, we suggest that Planet’s is already close to optimal. Together, these results

form a differential drag controller with a faster runtime and strong assurances of optimality.
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