
Towards a More Stable Network Infrastructure

Radhika Mittal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-103
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-103.html

August 7, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards a More Stable Network Infrastructure

By

Radhika Mittal

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Scott Shenker, Chair
Professor Sylvia Ratnasamy

Professor Dacher Keltner

Summer 2018

Towards a More Stable Network Infrastructure

Copyright 2018
by

Radhika Mittal

1

Abstract

Towards a More Stable Network Infrastructure

by

Radhika Mittal

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

There have been many recent proposals to change the network infrastructure in order to meet differ-
ent performance objectives. These changes are often difficult to deploy, either requiring specialized
network switching hardware or greatly complicating network management. Rather than continuing
to add new features to the network in an adhoc manner, we advocate a more principled approach
for meeting different performance objectives, that leads to a more stable network infrastructure.
This approach is based on the following two questions:

(1) Can we avoid making changes to the network infrastructure by finding solutions that only
change the end-points? Here, we focus on congestion control for both wide-area and datacenter
networks, showing how the end-points can be updated to achieve near-optimal performance using
commodity switches, and on redesigning RDMA NICs to eliminate their reliance on the in-network
mechanism for loss avoidance.

(2) When infrastructure changes are needed, can we make them universal in nature? Here, we
focus on packet scheduling, examining whether we can have a universal packet scheduling algo-
rithm that can mimic all others. We show, both theoretically and practically, that we can have an
almost-universal packet scheduling algorithm that can closely mimic other scheduling algorithms
and can achieve a variety of network-wide performance objectives.

i

To my father and my grandmother,
who are guiding me from beyond.

ii

Contents

Acknowledgments v

1 Introduction 1
1.1 Relevant Background . 2
1.2 Can we avoid network infrastructure changes? . 2
1.3 Can we have a universal packet scheduling algorithm? 4
1.4 Dissertation Plan . 4

2 Recursively Cautious Congestion Control 5
2.1 RC3 Design . 6

2.1.1 Overview . 6
2.1.2 Example . 8

2.2 Performance Model . 9
2.3 RC3 Linux Implementation . 10

2.3.1 Extending TCP/IP in the Linux Kernel . 10
2.3.2 Specific Implementation Features . 13

2.4 Experimental Evaluation . 15
2.4.1 Simulation Based Evaluation . 15
2.4.2 Evaluating RC3 Linux Implementation 23

2.5 Discussion . 25
2.6 Related Work . 26
2.7 Conclusion . 27

3 TIMELY:RTT-based Datacenter Congestion Control 28
3.1 Value of RTT as a congestion signal in datacenters 29
3.2 TIMELY Framework . 32

3.2.1 RTT Measurement Engine . 32
3.2.2 Rate Computation Engine . 34
3.2.3 Rate Control Engine . 34

3.3 TIMELY Congestion Control . 34
3.3.1 Metrics and Setting . 35
3.3.2 Delay Gradient Approach . 35

CONTENTS iii

3.3.3 The Main Algorithm . 37
3.3.4 Gradient versus Queue Size . 39

3.4 Implementation . 40
3.5 Evaluation . 42

3.5.1 Small-Scale Experiments . 42
3.5.2 Large-Scale Experiments . 47

3.6 Related Work . 49
3.7 Conclusion . 51

4 Revisiting Network Support for RDMA 52
4.1 Background . 53

4.1.1 Infiniband RDMA and RoCE . 53
4.1.2 Priority Flow Control . 54
4.1.3 iWARP vs RoCE . 54

4.2 IRN Design . 55
4.2.1 Improved Loss Recovery . 55
4.2.2 BDP-based Flow Control . 56

4.3 Evaluating IRN’s Transport Logic . 57
4.3.1 Experimental Settings . 57
4.3.2 Basic Results . 58
4.3.3 Factor Analysis of IRN . 61
4.3.4 Robustness of Basic Results . 62
4.3.5 Comparison with Resilient RoCE. 68
4.3.6 Comparison with iWARP. 69

4.4 Implementation Considerations . 69
4.4.1 Relevant Context . 70
4.4.2 Supporting RDMA Reads and Atomics 70
4.4.3 Supporting Out-of-order Packet Delivery 71
4.4.4 Other Considerations . 73

4.5 Evaluating Implementation Overheads . 74
4.5.1 NIC State Overhead . 74
4.5.2 Packet Processing Overhead . 75
4.5.3 Impact on End-to-End Performance . 78

4.6 Discussion and Related Work . 78
4.7 Conclusion . 79

5 Universal Packet Scheduling 81
5.1 Theory: Replaying Schedules . 82

5.1.1 Definitions and Overview . 83
5.1.2 Theoretical Results . 84
5.1.3 Empirical Results . 86

5.2 Practical: Achieving Various Objectives . 90

CONTENTS iv

5.2.1 Average Flow Completion Time . 91
5.2.2 Tail Packet Delays . 92
5.2.3 Fairness . 93
5.2.4 Limitations of LSTF: Policy-based objectives 98

5.3 Incorporating Network Feedback . 98
5.3.1 Emulating CoDel from Edge . 99
5.3.2 Emulating ECN for DCTCP from Edge 102

5.4 LSTF Implementation . 103
5.5 Related Work . 104
5.6 Conclusion . 104

6 Conclusion and Future Work 106

A Proofs for UPS’s Theoretical Results 116
A.1 Existence of a UPS under Omniscient Header Initialization 117
A.2 Nonexistence of a UPS under black-box initialization 118
A.3 Deriving the Slack Equation . 120
A.4 LSTF and EDF Equivalence . 121
A.5 Theoretical Limits for Replay using Simple Priorities 121
A.6 Theoretical Limits for Replay using LSTF . 123

A.6.1 LSTF can Replay up to Two Congestion Points per Packet 123
A.6.2 Proof for Necessary Condition for Replay Failure with LSTF 124
A.6.3 LSTF Replay Failure Example . 126

B Experience using Different Network Simulators 128

v

Acknowledgments

The six years of PhD have seen me grow tremendously,
And not just academically, but also personally.
In this, many people played an important role.
This barely rhyming poem attempts to thank them all.

The biggest thanks goes to Sylvia and Scott,
My wonderful advisors, who taught me a lot.
Experimenting, writing, presenting and avoiding haste,
But most importantly, developing a good taste.
I would run to them, for matters big or small,
With their deep wisdom, they could resolve them all.

I would like to thank my other collaborators too,
From each of whom, I learned something new.
Thanks to Justine, my co-author for RC3,
For keeping me calm during my initial state of worry.
Thanks to the team at Google, and Nandita especially,
For giving me the opportunity to work on TIMELY.
Thanks to Panda and Arvind, the most amazing collaborators,
And to Alex, Eitan, and Rachit, along with some others.
(While I only listed co-authors for the works in this thesis,
My thanks also extends to other collaborators beyond these.)

For all the fun, food, gossips along with technical debates,
My next set of thanks goes to my amazing lab-mates:
Colin, Kay, Panda, Shivaram, and Amin,
Aisha, Michael, Sangjin, Murphy, and Justine.
Silvery, Peter, Emmanuel, Wen, Ethan, and Gautam,
Wenting, Qifan, Chang, Anwar, Zafar, and Yotam.
A special thank you to Amin, Panda and Kay,
For the pep talks on work and life we had day-to-day.

ACKNOWLEDGMENTS vi

What I also very heavily exploited, I must acknowledge,
Are Amin’s technical depth and Panda’s breadth of knowledge.

For all the IT help and for being the nicest admin,
A big thank you respectively to Jon and Carlyn.

For making life outside work also enjoyable and cheerful,
To my many friends in Berkeley, I am very thankful:
Gautam, Bharath, Nikunj, Anurag, Shubham, TD, Sukanya,
Sreeta, Shromona, Neeraja, Vivek, Moitrayee, and Aishwarya.

Now for some people, thanks to whom I am here,
For their motivation, inspiration, guidance or steer.
My teachers in school, and IIT professors,
Arka and Gautam, my college predecessors.
Ranveer and Aman at MSR introduced research to me,
And thus paved a path for me to pursue a PhD.

My family’s support and their love ever-growing,
Their belief in me, is what keeps me going.
It wasn’t easy for them to send me so far away,
But they didn’t let their emotions get in the way.
To have such a family, I feel truly blessed,
My gratitude to them cannot be fully expressed.

For my best friend and husband, are these last few lines,
Who has stood by me through my laughter and whines.
I am thankful to Saurabh for joining me in this ride,
I couldn’t have done much without him by my side.

1

Chapter 1

Introduction

The vast majority of our day-to-day applications run over computer networks, both across wide-
area Internet and within datacenters, leading to an intense emphasis on network performance. This
performance not only affects user satisfaction, but also has a significant impact on the revenues
generated by online service providers such as Google, Microsoft and Facebook [129]. As a result,
there have been many proposals for adding sophisticated features in network switches to meet
different performance requirements. Such features include various scheduling policies [27, 111,
117, 30, 145, 11, 101], explicit rate signalling [34, 72], mechanisms to achieve losslessness [60],
among others.

While these features promise improved performance, they often come at a high cost, either
requiring specialized network switching hardware or greatly complicating network management.
Rather than continuing to add new features to the network in an adhoc manner, we argue for a
more principled approach: First of all, echoing the classical end-to-end principle [113], complexity
should be added into the network only when the required goals cannot be met solely from the end-
points. Secondly, in such cases where it is necessary to add network support, we should look
for universal solutions, where a single mechanism implemented in network switches can handle
a wide range of requirements. In many cases, the networking community has not explored the
former before adding new features to the network, while the notion of universality had not even
been formally defined. This dissertation, therefore, focuses on the following two questions:

(1) Can we avoid making changes to the network infrastructure? We explore this question in the
context of congestion control (for both wide area and datacenter networks) and in the context of
RDMA deployment in today’s datacenters.

(2) When infrastructure changes are needed, can we make them universal in nature? Here, we fo-
cus on packet scheduling, exploring whether we can have a universal packet scheduling algorithm.

We begin with providing some relevant background in §1.1, before elaborating more on these
questions in §1.2 and §1.3 respectively.

1.1. RELEVANT BACKGROUND 2

1.1 Relevant Background
The following is a very simplified view of how data is transferred across a computer network:

Computers, phones, datacenter-servers, and other such endhost devices are connected to one an-
other by a network of switches. The endhost’s operating system typically implements a software
network stack which transmits/receives data over a hardware device (called a network interface
card or NIC) that interfaces with the physical network links. The data to be transferred is split into
multiple packets. Packets belonging to the same connection make up a flow. The data payload in
the packet is encapsulated within packet headers that contain the meta-data needed by the network
to process and forward the packet. Switches in the network forward the packets along an appro-
priate route to the destination. Switches can only forward the packets at a finite rate determined
by the bandwidth of their outgoing links. Therefore, the packets that arrive at a switch while it
is busy forwarding another packet are queued in a switch buffer. When the buffer becomes full
a packet is dropped. Most network communication happens over reliable connections, where the
receiver acknowledges the data it receives and the sender needs to retransmit the dropped (or lost)
packets. The time interval between a sender sending a packet and then receiving the corresponding
acknowledgement is called a round-trip time or an RTT.

Network performance primarily depends on two main classes of algorithms:
(i) Congestion control algorithms that run at the endhosts and control the rate at which data packets
are injected into the network. Typical congestion control algorithms use a feedback loop based on
congestion signals such as packet loss, round trip times, or explicit signals set by the switches.
(ii) Scheduling algorithms that run inside the switches and determine the order in which the queued
up packets in the buffer are to be transmitted on the outgoing link. While many scheduling al-
gorithms have been proposed in the past [27, 111, 117, 30, 145, 11, 101], low-end commodity
switches today only support a fixed number (typically eight) of priority queues, with simple first-
in-first-out (FIFO) scheduling within each queue.

1.2 Can we avoid network infrastructure changes?
As mentioned before, we explore this question in the context of congestion control and RDMA

deployment, and propose the following end-point based solutions that eliminate the need for in-
frastructure changes.

RC3: Recursively cautious congestion control for wide-area networks. A good congestion
control algorithm needs to satisfy two conflicting goals (i) efficient use of network bandwidth, and
(ii) not harming other flows that are sharing the network. The former requires a more aggressive
behavior, while the latter requires a more cautious one. Conventional approaches aim to achieve
these two conflicting goals by using a single mechanism of finding the appropriate sending rate.
As a result, TCP [40], the most widely deployed congestion control algorithm, starts cautiously,
sending a very small amount of data at first and exponentially increasing its sending rate after
every round-trip, until the flow starts experiencing packet drops. This cautious ramp-up leads to

1.2. CAN WE AVOID NETWORK INFRASTRUCTURE CHANGES? 3

significant wastage of network capacity, especially in wide-area networks with large RTTs and
increasing bandwidths. To avoid this wasted capacity, prior proposals [34, 72] advocated explicit
rate signalling that required making significant changes to the switches. RC3 adopts a differ-
ent approach that leverages the priority queuing support present in almost all currently deployed
switches. It decouples the two conflicting goals by sending additional data aggressively (to use all
of the available network capacity), but at a lower priority than the regular traffic (so as not to harm
the other flows in the network). This reduces the average flow completion by 40% when compared
to regular TCP, while performing better than prior proposals that require explicit rate signaling.

TIMELY: RTT-based congestion control for the datacenter. The conventional use of packet
drops as the sole congestion signal results in high queuing delay, since the sending rate is reduced
only after the switch buffer gets full. This negatively impacts performance, particularly for short
interactive flows in datacenters with stringent latency requirements. It is, therefore, desirable to re-
act quickly to congestion as soon as switch buffer queues begin to grow. This makes RTT a natural
choice for a congestion signal, which provides fine-grained information about the queuing within
the network, without requiring any switch support. However, it was considered to be too noisy to
be used effectively in datacenters (where RTTs can be of the order of a few microseconds). As a
result, the datacenter community moved towards using explicit congestion notification (ECN) [8,
134, 146], which requires the switches to set a bit in the packet headers when the queuing ex-
ceeds a certain (carefully tuned) threshold. We, instead, show that accurate RTT measurements at
microsecond granularity are possible in today’s datacenters and develop TIMELY, one of the first
RTT-based congestion control algorithm for datacenters. TIMELY updates the sending rate based
on the RTT gradient, to achieve ultra-low latency while maintaining near-optimal throughput.

IRN: Improved RoCE NIC for deploying RDMA in datacenters. Current datacenter require-
ments of low latency, high throughput and negligible CPU utilization can no longer be met by
the software packet processing stack in the operating systems. Therefore, leading enterprises are
moving towards using RDMA, where packet processing is offloaded to specialized NICs. RoCE
(RDMA over Converged Ethernet) has emerged as the canonical means for deploying RDMA
over the Ethernet fabric in datacenters [146, 47]. To achieve good performance, RoCE requires a
lossless network which is, in turn, achieved by configuring the switches to enable Priority Flow
Control (PFC) [60] within the network. Deployment experiences with PFC have shown how it
greatly complicates network management and brings with it a host of problems such as head-of-
the-line blocking, congestion spreading, and occasional deadlocks. Rather than trying to fix these
issues, we take a step back and question the need for PFC in the first place. We show that the need
for PFC is merely an artifact of current RoCE NIC designs rather than a fundamental requirement.
We propose an improved RoCE NIC (IRN) design that makes a few incremental changes to the
RoCE NIC for better handling of packet losses. We show that IRN (without PFC) outperforms
RoCE (with PFC) by 6-83% for typical network scenarios. Thus, not only does IRN eliminate the
need for PFC, it improves performance in the process.

1.3. CAN WE HAVE A UNIVERSAL PACKET SCHEDULING ALGORITHM? 4

1.3 Can we have a universal packet scheduling algorithm?
The previous section briefly presented some examples on how network infrastructure changes

can be avoided. However, network performance depends on multiple factors, for some of which
infrastructure support is inevitable. Packet scheduling is one such factor.

Packet scheduling algorithms play a key role in achieving various performance goals. As a
result, there is a large and active research literature on novel packet scheduling algorithms. These
include mechanisms for achieving fairness [30, 117, 145, 101], reducing tail latency [27], meeting
deadlines [114], minimizing flow completion times [92, 11], among many others. Each of these
scheduling algorithms must be implemented in the switch hardware, making it difficult to support
different scheduling algorithms for different performance requirements. This led us to the follow-
ing question: do we really need different scheduling algorithms for different requirements, or can
we instead have a universal packet scheduling algorithm?

More precisely, we analyze (both theoretically and empirically) whether there is a single packet
scheduling algorithm that, at a network-wide level, can perfectly match the results of any given
scheduling algorithm. We find that in general the answer is “no”. However, we show theoretically
that the classical Least Slack Time First (LSTF) [77] scheduling algorithm comes closest to being
universal and demonstrate empirically that LSTF can closely mimic a wide range of scheduling
algorithms. We then evaluate whether LSTF can be used in practice to meet various network-wide
objectives by looking at popular performance metrics (such as average flow completion time, tail
packet delays, and fairness); we find that LSTF performs comparable to the state-of-the-art for each
of them. We also discuss how LSTF can be used in conjunction with active queue management
schemes (such as CoDel [96] and ECN [106]) without changing the core of the network.

1.4 Dissertation Plan
The rest of this dissertation is divided into five chapters: The following three chapters focus on

the three examples that explore the first question on avoiding changes to the network infrastructure
as discussed in §1.2: Chapter 2 presents RC3, our wide-area congestion control scheme (adapted
from [92]); Chapter 3 presents TIMELY, our RTT-based datacenter congestion control scheme
(adapted from [91]), and Chapter 4 presents IRN, our new NIC design for deploying RDMA
in datacenters (adapted from [93]). Then, in Chapter 5, we focus on the second question from
§1.3, detailing both the theoretical and practical aspects of universal packet scheduling (adapated
from [90]). Finally, we conclude and discuss some future work in Chapter 6.

5

Chapter 2

Recursively Cautious Congestion Control

In this chapter we present RC3 as the first example of how network infrastructure changes can
be avoided, in the context of congestion control for wide-area networks.

We begin by noting two facts about wide area networks. First, modern ISPs run their networks
at a relatively low utilization [42, 66, 94]. This is not because ISPs are incapable of achieving
higher utilization, but because their networks must be prepared for link failures which could, at
any time, reduce their available capacity by a significant fraction. Thus, most ISP networks are
engineered with substantial headroom, so that ISPs can continue to deliver high-quality service
even after failures.

Second, TCP congestion control is designed to be cautious, starting from a small window size
and then increasing every round-trip time until the flow starts experiencing packet drops [40]. The
need for fairness requires that all flows follow the same congestion-control behavior, rather than
letting some be cautious and others aggressive. Caution, rather than aggression, is the better choice
for a uniform behavior because it can more easily cope with a heavily overloaded network; if every
flow started out aggressively, the network could easily reach a congestion-collapsed state with a
persistently high packet-drop rate.

These decisions – underloaded networks and cautious congestion control – were arrived at in-
dependently, but interact counter-productively. When the network is underloaded, flows will rarely
hit congestion at lower speeds. However, the caution of today’s congestion control algorithms re-
quires that flows spend significant time ramping up rather than aggressively assuming that more
bandwidth is available, thus resulting in wastage of available network capacity.

In recent years there have been calls to increase TCP’s initial window size to alleviate this prob-
lem but, as we shall see later, this approach brings only limited benefits. Other proposals include
adding mechanisms for explicit rate signaling in the switches [72, 34], where switches compute the
appropriate sending rate and put this value in the packet headers. This allows the senders to start
sending at the appropriate rate and avoid wasting network capacity due to cautious probing. How-
ever, such schemes require major changes to the switches and therefore face significant deployment
hurdles.

In this chapter we propose a new approach called recursively cautious congestion control (RC3)
that retains the advantages of caution while enabling it to efficiently utilize the available bandwidth.

2.1. RC3 DESIGN 6

The idea builds on a perverse notion of quality-of-service, called WQoS, in which we assume
ISPs are willing to offer worse service if certain ToS bits are set in the packet header (and the
mechanisms for doing so – priority queues, are present in almost all currently deployed switches).
While traditional calls for QoS – in which better service is available at a higher price – have
foundered on worries about equity (should good Internet service only be available to those who
can pay the price?), pricing mechanisms (how do you extract payments for the better service?), and
peering (how do peering arrangements cope with these higher-priced classes of service?), in our
proposal we are only asking ISPs to make several worse classes of service available that would be
treated as regular traffic for the purposes of charging and peering. Thus, we see fewer institutional
barriers to deploying WQoS. Upgrading an operational network is a significant undertaking, and
we do not make this proposal lightly, but our point is that many of the fundamental sources of
resistance to traditional QoS do not apply to WQoS.

The RC3 approach is quite simple. RC3 runs, at the highest priority, the same basic conges-
tion control algorithm as normal TCP. However, it also runs congestion control algorithms at each
of the k worse levels of service; each of these levels sends only a fixed number of packets, with
exponentially larger numbers at lower priority levels. As a result, all RC3 flows compete fairly at
every priority level, and the fact that the highest priority level uses the traditional TCP algorithms
ensures that RC3 does not increase the chances of congestion collapse. Moreover, RC3 can imme-
diately “fill the pipe" with packets (assuming there are enough priority levels), so it can leverage
the bandwidth available in underutilized networks.

We implemented RC3 in the Linux kernel and in the NS-3 network simulator. We find through
experiments on both real and simulated networks that RC3 provides strong gains over traditional
TCP, averaging 40% reduction in flow completion times over all flows, with strongest gains – of
over 70% – seen in medium to large sized flows.

In the rest of this chapter, we explain RC3’s design (§2.1), provide an analytical model to un-
derstand its performance benefits (§2.2), detail its Linux kernel implementation (§2.3) and present
our evaluation using simulations as well as real test-bed (§2.4). We end with discussing RC3’s de-
ployability and future applicability (§2.5) and some related work (§2.6) before concluding (§2.7).

2.1 RC3 Design
We now discuss RC3’s design in detail, starting with an overview followed by presenting a

simple example of RC3 in action.

2.1.1 Overview
RC3 runs two parallel control loops: one transmitting at normal priority and obeying the cau-

tious transmission rate of traditional TCP, and a second “recursive low priority” (RLP) control loop
keeping the link saturated with low priority packets.

In the primary control loop, TCP proceeds as normal, sending packets in order from index 0
in the byte stream, starting with slow-start and then progressing to normal congestion-avoidance

2.1. RC3 DESIGN 7

0 1 32 N…..... N-40….N-440

Priority 1Priority 0 Priority 2Priority 3

TCP Control Loop RC3 Control Loop

Figure 2.1: Packet priority assignments.

BW

Line Rate

Rate decreases as TCP
claims more bandwidth

TCP achieves 100%
bottleneck link util. in
congestion avoidance

If bottleneck = edge, RLP traffic
is blocked once TCP reaches

congestion avoidance.

Figure 2.2: Congestion window and throughput with RC3.

behavior after the first packet loss. The packets sent by this default TCP are transmitted at ‘normal’
priority – priority 0 (with lower priorities denoted by higher numbers).

In the RLP control loop, the sender transmits additional traffic from the same buffer as TCP
to the NIC.1 To minimize the overlap between the data sent by the two control loops, the RLP
sender starts from the very last byte in the buffer rather than the first, and works its way towards
the beginning of the buffer, as illustrated in Figure 2.1. RLP packets are sent at low priorities
(priority 1 or greater): the first 40 packets (from right) are sent at priority 1; the next 400 are sent
at priority 2; the next 4000 at priority 3, and so on.2 The RLP traffic can only be transmitted when
the TCP loop is not transmitting, so its transmission rate is the NIC capacity minus the normal
TCP transmission rate.

RC3 enables TCP selective ACK (SACK) to keep track of which of low priority (and normal
priority) packets have been accepted at the receiver. When ACKs are received for low priority
packets, no new traffic is sent and no windows are adjusted. The RLP control loop transmits each
low priority packet once and once only; there are no retransmissions. The RLP loop starts sending
packets to the NIC as soon as the TCP send buffer is populated with new packets, terminating
when its ‘last byte sent’ crosses with the TCP loop’s ‘last byte sent’. Performance gains from RC3
are seen only during the slow-start phase; for long flows where TCP enters congestion avoidance,

1As end-hosts support priority queuing discipline, this traffic will never pre-empt the primary TCP traffic.
2RC3 requires the packets to be exponentially divided across the priority levels to accommodate large flows within

feasible number of priority bits. The exact number of packets in each priority level has little significance, as we shall
see in § 2.4.1.

2.1. RC3 DESIGN 8

0"0" 0"0" 2"2" 2"2" 2"2" …1" 1" 1"

0"0" 0"0" 0"0" 0"0" 2"2" 2"2" x"x" …

x"x" …

…

1st"RTT"

2nd"RTT"

3rd"RTT"

4th"RTT"(Complete)"

2"2" 2" 2"

Figure 2.3: Example RC3 transmission from §2.1.2.

TCP will keep the network maximally utilized with priority 0 traffic, assuming appropriately sized
buffers [14]. If the bottleneck link is the edge link, high priority packets will pre-empt any packets
sourced by the RLP directly at the end host NIC; otherwise the low priority packets will be dropped
elsewhere in the network. Figure 2.2 illustrates how the two loops interact: as the TCP sender
ramps up, the RLP traffic has less and less ‘free’ bandwidth to take advantage of, until it eventually
is fully blocked by the TCP traffic.

Since the RLP loop does not perform retransmissions, it can leave behind ‘holes’ of packets
which have been transmitted (at low priority) but never ACKed. Because RC3 enables SACK, the
sender knows exactly which segments are missing and the primary control loop retransmits only
those segments.3 Once the TCP ‘last byte sent’ crosses into traffic that has already been transmitted
by the RLP loop, it uses this information to retransmit the missing segments and ensure that all
packets have been received. We walk through transmission of a flow with such a ‘hole’ in the
following subsection.

2.1.2 Example
We now walk through a toy example of a flow with 66 packets transmitted over a link with an

edge-limited delay-bandwidth product of 50 packets. Figure 2.3 illustrates our example.
In the first RTT, TCP sends the first 4 packets at priority 0 (from left); after these high priority

packets are transmitted, the RLP loop sends the remaining 62 packets to the NIC – 40 packets at
priority 1 and 22 packets at priority 2 (from right), of which 46 packets are transmitted by the NIC
(filling up the entire delay-bandwidth product of 50 packets per RTT).

The 21st and 22nd packets from the left (marked as Xs), sent out at priority 2, are dropped.
Thus, in the second RTT, ACKs are received for all packets transmitted at priority 0 and for all but
packets 21 and 22 sent at lower priorities. The TCP control loop doubles its window and transmits
an additional 8 packets; the RLP sender ignores the lost packets and the remaining packets are
transmitted by the NIC at priority 2.

In the third RTT, the sender receives ACKs for all packets transmitted in the second RTT and
TCP continues to expand its window to 16 under slow start. At this point, the TCP loop sees that
all packets except 21st and 22nd have been ACKed. It, therefore, transmits only these two packets.

3Enabling SACK allows selective retransmission for dropped low priority packets. However, RC3 still provides
significant performance gains when SACK is disabled, despite some redundant retransmissions.

2.2. PERFORMANCE MODEL 9

Finally, in the fourth RTT the sender receives ACKs for the 21st and 22nd packets as well. As
all data acknowledgements have now been received by the sender, the connection completes.

2.2 Performance Model
Having described RC3 design in §2.1, we now model our expected reduction in Flow Com-

pletion Time (FCT) for a TCP flow using RC3 as compared to a basic TCP implementation. We
quantify gains as ((FCT with TCP) - (FCT with RC3)) / (FCT with TCP) – i.e. the percentage
reduction in FCT [34]. Our model is very loose and ignores issues of queuing, packet drops, or the
interaction between flows. Nonetheless, this model helps us understand some of the basic trends
in performance gains. We extensively validate these expected gains in §2.4 and see the effects of
interaction with other flows.

Basic Model: Let BW be the capacity of the bottleneck link a flow traverses, and u be the utilization
level of that link. We define A, the available capacity remaining in the bottleneck link as A =
(1− u)×BW . Since RC3 utilizes all of the available capacity, a simplified expectation for FCTs
under RC3 is RT T + N

A , where RT T is the round trip time and N is the flow size.
TCP does not utilize all available capacity during its slow start phase; it is only once the con-

gestion window grows to A×RT T , that the link is fully utilized. The slow start phase, during
which TCP leaves the link partially idle, lasts log(min(N,A×RT T)/i) RTTs, with i being the
initial congestion window of TCP. This is the interval during which RC3 can benefit TCP.

In Figure 2.4, the solid line shows our expected gains according to our model. Recall that i
denotes the initial congestion window under TCP. For flow sizes N < i, RC3 provides no gains
over a baseline TCP implementation, as in both scenarios the flow would complete in RT T + N

A .
For flow sizes i < N < A×RT T , the flow completes in 1 RTT with RC3, and log(N/i) RTTs with
basic TCP in slow start. Consequently, the reduction in FCT increases with N over this interval.

Once flow sizes reach N > A×RT T , basic TCP reaches a state where it can ensure 100%
link utilization after log(A× RT T/i) RTTs. Therefore, the improvements from RC3 become
a smaller fraction of overall FCT with increasingly large flows; this reduction roughly follows
log(A×RT T/i)×RT T×A

N (ignoring a few constants in the denominator).

Parameter Sensitivity: The above model illustrates that improvements in FCTs due to RC3 are
dependent primarily on three parameters: the flow size (N), the effective bandwidth-delay product
(A×RT T), and the choice of the initial congestion window (i). Peak improvements are observed
when N is close to A×RT T , because under these conditions the flow completes in 1 RTT with
RC3 and spends its entire life time in slow start without RC3. When the delay-bandwidth product
increases, both the optimal flow size (for performance improvement) increases, and the maximum
improvement increases.

Adjusting i: There are several proposals [12, 35] to adjust the default initial congestion window
in TCP to 10 or even more packets. Assume we adjusted a basic TCP implementation to use a
new value, some i′ as its initial congestion window. The dotted line in Figure 2.4 illustrates the

2.3. RC3 LINUX IMPLEMENTATION 10

Flow Size (N)
i A×RTT

%
 F

CT
 R

ed
uc

tio
n

i A×RTTi'

RC3
High InitCwnd

Figure 2.4: Performance gains as predicted by a simple model for RC3 and an increased initial congestion
window.

gains from such an i′. When i′ increases, the amount of time spent in slow start decreases to
log(min(N,A×RT T)/i′)×RT T . Flows of up to i′ packets complete in a single RTT, but unless
i′ = A×RT T (hundreds of packets for today’s WAN connections), adjusting the initial congestion
window will always under-perform when compared to RC3. However, there is good reason not to
adjust i′ to A×RT T : without the use of low priorities, as in RC3, sending a large amount of traffic
without cautious probing can lead to an increase in congestion and overall worse performance.
Our model does not capture the impact of queuing and drops, however, in §2.4.1 we show via
simulation how increasing the initial congestion window to 10 and 50 packets penalizes small
flows in the network.

2.3 RC3 Linux Implementation
We implemented RC3 as an extension to the Linux 3.2 kernel on a server with Intel 82599EB

10Gbps NICs. Our implementation cleanly sits within the TCP and IP layers and requires minimal
modifications to the kernel source code. Because our implementation does not touch the core TCP
congestion control code, different congestion control implementations can easily be ‘swapped out’
while still retaining compatibility with RC3. After describing our implementation in §2.3.1, we
discuss how RC3 interacts with other components of the networking stack in §2.3.2, including
application buffering, QoS support, hardware performance optimizations, and SACK extensions.

2.3.1 Extending TCP/IP in the Linux Kernel
We briefly provide high-level context for our implementation, describing the TCP/IP stack

under the Linux 3.2 kernel. We expect that RC3 can be easily ported to other implementations and
operating systems as well, but leave this task to future work.

Figure 2.5 illustrates the kernel TCP/IP architecture at a very high level, along with our RC3
extensions shaded in gray. The TCP/IP stack in the Linux kernel is implemented as follows. When

2.3. RC3 LINUX IMPLEMENTATION 11

send	
APPLICATION	

tcp_sendmsg	

tcp_transmit_skb	

TCP
Control 	

Loop	

TCP	

P0
transmitted as
per allowed

window 	

RLP
Control
Loop	
 Low

Priority
transmitted
all at once	

ip_queue_xmit	

Insert Priority in DSCP	
IP	

DEVICE	
 prio_enqueue	

P0	
 P1	
 P2	

prio_dequeue	

NIC Tx Ring Buffer	

recv	
APPLICATION	

tcp_rcv_established	

TCP	

ip_rcv	

Read Priority from DSCP	

IP	

DEVICE	
 net_rx_action	

NIC Rx Ring Buffer	

tcp_data_queue	

tcp_ack*	
tcp_ack_rc3	

In-sequence 	

P0 packets	

Fast Path	

Slow Path	

Out-of-order P0 	

and RC3 	

packets	

Low Priority ACK	

Update SACK 	

Process P0 ACK	

 Advance snd_nxt 	

on “ACK Bump”	

(a) Sending Data (b) Receiving Data and Acks

Figure 2.5: Modifications to Linux kernel TCP stack.

an application calls send(), the tcp_sendmsg function is invoked; this function segments the send
buffer into ‘packets’ represented by the socket buffer (skb) datastructure. By default, each skb
represents one packet to be sent on the wire. After the data to be transmitted has been segmented
in to skbs, it is passed to the core TCP logic, and then forwarded for transmission through the
network device queue to the NIC.

On the receiver side, packets arrive at the NIC and are forwarded up to a receive buffer at the
application layer. As packets are read in, they are represented once again as skb datatypes. Once
packets are copied to skbs, they are passed up the stack through the TCP layer. Data arriving in-
order is sent along the ‘fast-path’, directly to the application layer receive buffer. Data arriving out
of order is sent along a ‘slow path’ to an out of order receive queue, where it waits for the missing
packets to arrive, before being forwarded up in-order to the application layer.

We now describe how we extend these functions to support RC3.

Sending Data Packets. RC3 extends the send-side code in the networking stack with two simple
changes, inserting only 72LOC in the TCP stack and 2LOC in the IP stack. The first change, in the
TCP stack, is to invoke the RLP control loop once the data has been segmented in the tcp_sendmsg
function. We leave all of the segmentation and core TCP logic untouched – we merely add a
function call in tcp_sendmsg to invoke the RLP loop, as shown in Fig. 2.5.

2.3. RC3 LINUX IMPLEMENTATION 12

The RLP loop then reads the TCP write queue iteratively from the tail end, reading in the
packets one by one, marking the appropriate priority in the packet buffer, and then sending out the
packet. The field skb→priority is assigned according to the sequence number of the packet: the
RLP loop subtracts the packet’s sequence number from the tail sequence number and then divides
this value by the MSS. If this value is ≤ 40, the packet is assigned priority 1, if the value is ≤ 400
it is assigned priority 2, and so on. After the priority assignment, the skb packets are forwarded out
via the tcp_transmit_skb function.

Our second change comes in the IP layer as packets are attached to an IP header; where we
ensure that skb→priority is not overwritten by the fixed priority assigned to the socket, as in the
default case. Instead, the value of skb→priority is copied to the DSCP priority bits in the IP header.

Overall, our changes are lightweight and do not interfere with core congestion control logic.
Indeed, because the TCP logic is isolated from the RC3 code, we can easily enable TCP CUBIC,
TCP New Reno, or any other TCP congestion control algorithms to run alongside RC3.

Receiving Data Packets and ACKs. Extending the receive-side code with RC3 is similarly
lightweight and avoids modifications to the core TCP control flow. Our changes here comprise
only of 46 LOC in the TCP stack and 1 LOC in the IP stack.

Starting from bottom to top in Figure 2.5, our first change comes as packets are read in off the
wire and converted to skbs – here we ensure that the DSCP priority field in the IP header is copied
to the skb priority field; this change is a simple 1 LOC edit.

Our second set of changes which lie up the stack within TCP. These changes separate out low
priority packets from high priority in order to ensure that the high priority ACKing mechanism
(and therefore the sender’s congestion window) and other TCP variables remain unaffected by
the low priority packets. We identify the low priority packets and pass them to the out of order
‘slow path’ queue, using the unmodified function tcp_data_queue. We then call a new function,
tcp_send_ack_rc3, which sends an ACK packet for the new data at the same priority the data
arrived on, with the cumulative ACK as per the high priority traffic, but SACK tags indicating the
additional low priority packets received. The priority is assigned in the field skb→priority, and the
packets are sent out by calling tcp_transmit_skb.

The other modifications within the TCP receive code interpose on the handling of ACKs. We
invoke tcp_ack_rc3 on receiving a low priority ACK packet, which simply calls the function to
update the SACK scoreboard (which records the packets that have been SACKed), as per the
SACK tags carried by the ACK packet. We also relax the SACK validation criteria to update the
SACK “scoreboard” to accept SACKed packets beyond snd_nxt, the sequence number up to which
data has been sent out by the TCP control loop.

Typically when a new ACK is received, the stack double-checks that the received ACK is at
a value less than snd_nxt, discarding the ACKs that do not satisfy this constraint. We instead
tweak the ACK processing to update the snd_nxt value when a high-priority ACK is received for
a sequence number that is greater than snd_nxt: such an ACK signals that the TCP sender has
“crossed paths” with traffic transmitted by the RLP and is entering the cleanup phase. We advance
the send queue’s head and update snd_nxt to the new ACKed value and then allow TCP to continue
as usual; we call this jump an “ACK bump.”

2.3. RC3 LINUX IMPLEMENTATION 13

While these changes dig shallowly in to the core TCP code, they do not impact our compatibil-
ity with various congestion control schemes.

2.3.2 Specific Implementation Features
We now discuss how RC3 interacts with some key features at all layers of the networking stack,

from software to NIC hardware to switches and switches.

Socket Buffer Sizes. The default send and receive buffer sizes in Linux are very small - 16KB and
85KB respectively. Performance gains from RC3 are maximized when the entire flow is sent out
in the first RTT itself. This requires us to make the send and receive buffers as big as the maximum
flow size (up to a few MBs in most cases). Window scaling is turned on by default in Linux, and
hence we are not limited by the 64KB receive window carried by the TCP header.

RC3 is nonetheless compatible with smaller send buffer sizes: every call to tcp_sendmsg passes
a chunk of data to the RLP control loop, which treats that chunk, logically, as a new flow as far as
priority assignment is concerned. We include a check to break the RLP control loop to ensure that
the same packet is not transmitted twice by subsequent calls to tcp_sendmsg. Indeed, this behavior
can help flows which resume from an application-layer imposed idle period.

Using QoS Support. RC3 is only effective if priority queuing is supported at both endhosts and
the switches in the network.
Endhosts: We increase the Tx queue length at the software interface, to ensure that it can store all
the packets forwarded by the TCP stack. The in-built traffic control functionality of Linux is used
to set the queuing discipline (qdisc) as prio and map the packet priorities to queue ‘bands’. The
prio qdisc maintains priority queues in software, writing to a single NIC ring buffer as shown in
Figure 2.5. Thus, when the NIC is free to transmit, a packet from band N is dequeued only if all
bands from 0 to N− 1 are empty. Up to 16 such bands are supported by the Linux kernel, which
are more than enough for RC3.4

Switches: All modern switches today support QoS, where flow classes can be created and assigned
to a particular priority level. Incoming packets can then be mapped to one of these classes based on
the DSCP field. The exact mechanism of doing so may vary across different vendors. Although the
ISPs may use the DSCP field for some internal prioritization, all we require them to do is to read
the DSCP field of an incoming packet, assign a priority tag to the packet which can be recognized
by their switches, and then rewrite the priority in the DSCP field when the packet leaves their
network.

Compatibility with TSO/LRO. TCP Segmentation Offload (TSO) and Large Receiver Offload
(LRO) are two performance extensions within the Linux kernel that improve throughput through
batching. TSO allows the TCP/IP stack to send packets comprising of multiple MSSes to the NIC,
which then divides them into MSS sized segments before transmitting them on the link. LRO is the
receiver counterpart which amasses the incoming segments into larger packets at the driver, before

416 priority levels is sufficient to support RC3 flow sizes on the order of a petabyte!

2.3. RC3 LINUX IMPLEMENTATION 14

TCP Send Buffer	

RLP Control Loop	

P1	

NIC	

Send buffer contains
large packet sizes of
multiple MSS.	

RLP Loop assigns same
priorities to large packets
based on start sequence	

Packets partitioned into
MSS-sized packets, each
with same priority,
before transmission.	

9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	

9	
 8	
 7	

9	
8	
7	

Figure 2.6: RC3 combined with TSO.

sending them higher up in the stack. TSO and LRO both improve performance by amortizing the
cost of packet processing across packets in batches. Batched packets reduce the average per-packet
processing CPU overhead, consequently improving throughput.

Figure 2.6 illustrates how RC3 behaves when TSO is enabled at the sender and a larger packet,
comprising of multiple MSSes is seen by the RLP control loop. At first glance, TSO stands in the
way of RC3: RC3 requires fine-grained control over individual packets to assign priorities, and the
over sized packets passing through under TSO hinder RC3’s ability to assign priorities correctly
when it includes data from packets that should be assigned different priority classes. Rather than
partitioning data within these extra large packets, we simply allow RC3 to label them according
to the lowest priority of any data in the segment. This means that we might not strictly follow the
RC3 design in §2.1 while assigning priorities for some large packets. However, such a situation
can arise only when the MSSes in a large packet overlap with the border at which priority levels
switch. Since the traffic is partitioned across priority level exponentially, such cases are infrequent.
Further, the largest TSO packet is comprised of at most 64KB. Therefore, no more than 43 packets
would be improperly labeled at the border between priority levels.

TSO batching leads to a second deviation from the RC3 specification, in that segments within
a large packet are sent in sequence, rather than in reverse order. For example, in Figure 2.6, the
segments in the packet are sent in order (7,8,9) instead of (9,8,7). Hence, although RC3 still
processes skb packets from tail to front, the physical packets sent on the wire will be sent in short
in-order bursts, each burst with a decreasing starting sequence number. Allowing the forward
sequencing of packets within a TSO batch turns out to be useful when LRO is enabled at the
receiver, where batching at the driver happens only if the packets arrive in order.

As we will show in §2.4.2, combining RC3 with TSO/LRO reduces the OS overhead of pro-
cessing RC3 packets by almost 50%, and consequently leads to net gains in FCTs.

SACK Enhancements. Although RC3 benefits when SACK is enabled, it is incompatible with
some SACK enhancements. Forward Acknowledgment (FACK) [83], is turned on by default in
Linux. It estimates the number of outstanding packets by looking at the SACKed bytes. RC3
SACKed packets may lead the FACK control loop to falsely believe that all packets between the
highest cumulative ACK received and the lowest SACK received are in flight. We therefore disable
FACK to avoid the RC3 SACKed bytes from affecting the default congestion control behavior. Do-

2.4. EXPERIMENTAL EVALUATION 15

ing so does not penalize the performance in most cases, as the Fast Recovery mechanism continues
transmitting unsent data after a loss event has occurred and partial ACKs are received, allowing
lost packets to be efficiently detected by duplicate ACKs. DSACK [37] is also disabled, to avoid
the TCP control loop from inferring incorrect information about the ordering of packets arriving at
the receiver based on RC3 SACKs.

2.4 Experimental Evaluation
We now evaluate RC3 across several dimensions. In §2.4.1, we evaluate RC3 extensively

using NS-3 simulations - comparing RC3’s FCT reductions with the model we described in §2.2;
evaluating RC’3 robustness and fairness, and comparing RC3’s FCT reductions relative to other
designs. We evaluate our Linux RC3 implementation in §2.4.2.

2.4.1 Simulation Based Evaluation
We implement RC3 using NS-3 network simulator [99] and evaluate it across a wide range

of simulation settings.5 Our primary simulation topology models a simplified Internet-2 network
topology [63] consisting of ten switches, each attached to ten end hosts, with 1Gbps bottleneck
bandwidth and 40ms RTT. It runs at 30% average link utilization [42, 66, 94]. The queue buffer
size is equal to the bandwidth-delay product (RTT×BW) in all cases, which is 5MB for our base-
line. The queues do priority dropping and priority scheduling. All senders transmit using RC3
unless otherwise noted. Flow sizes are drawn from an empirical traffic distribution [13]; with
Poisson inter-arrivals.

For most experiments we present RC3’s performance relative to a baseline TCP implementa-
tion. Our baseline TCP implementation is TCP New Reno [40] with SACK enabled [82, 17] and
an initial congestion window of 4 [12]; maximum segment size is set to 1460 bytes while slow
start threshold and advertised received window are set to infinity.

Baseline Simulation. We first investigate the baseline improvements using RC3 and compare
them to our modeled results from §2.2.

Validating the Model: Figure 2.7 compares the gains predicted by our model (§2.2) with the gains
observed in our simulation. The data displayed is for 1Gbps bottleneck capacity, 40ms average
RTT, and 30% load. Error bars plotting the standard deviation across 10 runs are shown; they sit
very close to the average. For large flows, the simulated gains are slightly lower than predicted; this
is the result of queuing delay which is not included in our model. For small flows – four packets
or fewer – we actually see better results than predicted by the model. This is due to large flows
completing sooner than with regular TCP, leaving the network queues more frequently vacant and
thus decreasing average queuing delay for short flows. Despite these variations, the simulated

5We have made our simulator code available at http://netsys.github.io/RC3/.

http://netsys.github.io/RC3/

2.4. EXPERIMENTAL EVALUATION 16

Figure 2.7: Reduction in FCT as predicted by model vs simulations. (RTT×BW = 5MB, 30% average link
utilization)

and modeled results track each other quite closely: for all but the smallest flows, we see gains of
40–75%.

Link Load: Figure 2.8(a) shows FCT performance gains comparing RC3 to the base TCP under
uniform link load of 10%, 30%, or 50%. RTT×BW is fixed at 5MB across all experiments. As
expected, performance improvements decrease for higher average link utilization. For large flows,
this follows from the fact that the available capacity (A = (1−u)×BW) reduces with increase in
utilization u. Thus, there is less spare capacity to be taken advantage of in scenarios with higher
link load. However, for smaller flows, we actually see the opposite trend. This is once again due to
reduced average queuing delays, as large flows complete sooner with most packets having lower
priorities than the packets from the smaller flows.

RTT×BW: Figure 2.8(b) shows the FCT reduction due to RC3 at varying RTT×BW. In this exper-
iment we adjusted the average RTTs and the bottleneck bandwidth capacities to achieve RTT×BW
of 500KB (40ms×100Mbps), 5MB (40ms×1Gbps and 400ms×100Mbps) and 50MB(400ms×1Gbps).
As discussed in §2.2, the performance improvement increases with increasing RTT×BW, as the
peak of the curve in Figure 2.4 shifts towards the right. The opposite trend for very short flows is
repeated here as well.

Summary: Overall, RC3 provides strong gains, reducing flow completion times by as much as 80%
depending on simulation parameters. These results closely track the results predicted by the model
presented in §2.2.

Robustness. In the previous section, we evaluated RC3 within a single context. We now demon-
strate that these results are robust, inspecting RC3 in numerous contexts and under different met-
rics. Many of the results in this section are summarized in Table 2.1.

Topology: We performed most of our experiments on a simulation topology based off a simplified
model of the Internet-2 network. To verify that our results were not somehow biased by this topol-
ogy, we repeated the experiment using simulation topologies derived from the Telstra network,

2.4. EXPERIMENTAL EVALUATION 17

Average
Over
Flows

Average
Over
Bytes

10%
Regular FCT (s) 0.125 0.423

RC3 FCT (s) 0.068 0.091
% Reduction 45.56 78.36

30%
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

50%
Regular FCT (s) 0.15 0.498

RC3 FCT (s) 0.088 0.176
% Reduction 41.44 64.88

Average
Over
Flows

Average
Over
Bytes

100Mbps
40ms

Regular FCT (s) 0.167 0.691
RC3 FCT (s) 0.11 0.442
% Reduction 33.98 36.05

100Mbps
400ms

Regular FCT (s) 0.948 3.501
RC3 FCT (s) 0.567 0.783
% Reduction 40.29 77.62

1Gbps
40ms

Regular FCT (s) 0.135 0.443
RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

1Gbps
400ms

Regular FCT (s) 0.971 3.59
RC3 FCT (s) 0.558 0.569
% Reduction 42.45 84.17

(a) Varying load, with RTT×BW fixed at 5MB (b) Varying RTT×BW with 30% load

Figure 2.8: Reduction in FCT as network load and RTT×BW is varied.

the Red Clara academic network, and the complete ESNet [84, 21], keeping the average delay as
40ms and the bottleneck bandwidth as 1Gbps. The second to fourth rows in Table 2.1 present these
results. All three topologies provided results similar to our initial Internet-2 experiments: average
FCTs for Telstra improved by 47.07%, for Red Clara, by 42.78%, and for ESNet by 33.91%.

Workload Distribution: Our baseline experiments use an empirical flow size distribution [13]. A
noticeable property of the flow size distribution in our experiments is the presence of of very large
flows (up to a few MBs) in the tail of the distribution. We repeated the Internet-2 experiment with
an empirical distribution from a 2000 [62] study, an era when average flow sizes were smaller
than today. The fifth row of Table 2.1 presents these results. Here we saw that the average FCT
improved by only 13.83% when averaged over all flows. When averaging FCT gains weighted by
bytes, however, we still observe strong gains for large flows resulting in a reduction of 66.73%.

Link Heterogeneity: We now break the assumption of uniform link utilization and capacity: in this
experiment we assigned core link bandwidths in the Internet-2 topology to a random value between
500Mbps and 2Gbps. The results are presented in the last row of Table 2.1. We observed that
FCTs in the heterogenous experiment were higher than in the uniform experiment, for both TCP
and RC3. Nevertheless, the penalty to TCP was worse, resulting in a stronger reduction in flow
completion times, when averaged across flows.

2.4. EXPERIMENTAL EVALUATION 18

Average Over
Flows

Average Over
Bytes

Default: Internet-2
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

Telstra Topology
Regular FCT (s) 0.159 0.510

RC3 FCT (s) 0.084 0.111
% Reduction 47.07 78.13

RedClara Topology
Regular FCT (s) 0.17 0.429

RC3 FCT (s) 0.097 0.098
% Reduction 42.78 77.16

ESNet Topology
Regular FCT (s) 0.207 0.478

RC3 FCT (s) 0.137 0.0976
% Reduction 33.91 79.58

2000 Workload
Regular FCT (s) 0.0871 0.238

RC3 FCT (s) 0.0704 0.079
% Reduction 13.83 66.73

Link Heterogeneity
Regular FCT (s) 0.159 0.541

RC3 FCT (s) 0.087 0.141
% Reduction 45.35 73.89

Table 2.1: RC3’s performance across different experimental scenarios.

Figure 2.9: Average FCTs with increasing arbitrary loss rate. (RTT×BW = 5MB, 30% network load)

Loss Rate: Until now all loss has been the result of queue overflows; we now introduce random
arbitrary loss and investigate the impact on RC3. Figure 2.9 shows flow completion times for TCP
and RC3 when arbitrary loss is introduced for 0.02-0.1% of packets. We see that loss strongly
penalizes TCP flows, but that RC3 flows do not suffer nearly so much as TCP. RC3 provides
even stronger gains in such high loss scenarios because each packet essentially has two chances
at transmission. Further, since the RLP loop ignores ACKs and losses, low priority losses do not
slow the sending rate.

Priority Assignment: Our design assigns packets across multiple priorities, bucketed exponentially
with 40 packets at priority 1, 400 at priority 2, and so on. We performed an experiment to investi-
gate the impact of these design choices by experimenting with an RC3 deployment when 1, 3, or
4 additional priority levels were enabled; the results of these experiments are plotted in Fig. 2.10.

2.4. EXPERIMENTAL EVALUATION 19

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.167 0.691

1 RC3 Priority Level
RC3 FCT (s) 0.126 0.496
% Reduction 24.55 28.22

3 RC3 Priority Levels RC3 FCT (s) 0.11 0.442
(40, 400, 4000) % Reduction 33.98 36.05

4 RC3 Priority Levels RC3 FCT (s) 0.112 0.434
(10, 100, 1000, 10000) % Reduction 32.94 37.19

Figure 2.10: Reduction in FCT with varying priority levels. (RTT×BW = 500KB, 30% network load)
We see that dividing traffic over multiple priority levels provides stronger gains than with only one
level of low priority traffic. The flows which benefit the most from extra priorities are the medium-
sized flows which, without RC3, require more than one RTT to complete during slow start. A very
slight difference is seen in performance gains when bucketing packets as (10, 100, 1000, 10000)
instead of (40, 400, 4000).

Application Pacing: Until now, our model application has been a file transfer where the entire con-
tents of the transfer are available for transmission from the beginning of the connection. However,
many modern applications ‘pace’ or ‘chunk’ their transfers. For example, after an initial buffer-
ing phase YouTube paces video transfers at the application layer, transmitting only a few KB of
data at a time proportional to the rate that the video data is consumed. To see the effect of RC3
on these type of flows, we emulated a YouTube transfer [107] with a 1.5MB buffer followed by
64KB chunks sent every 100ms. Ultimately, RC3 helped these video connections by decreasing
the amount of time spent in buffering by slightly over 70% in our experimental topology. This
means that the time between when a user loads the page and can begin video playback decreases
while using RC3. However, in the long run, large videos did not complete transferring the entire
file any faster with RC3 because their transfer rate is dominated by the 64KB pacing.

Performance at the Tails: Our previous results discuss reduction in the average flow completion
times; in Figures 2.11(a) and (b) we plot the full cumulative distribution of FCTs from our Internet-
2 experiments for two representative flow sizes, 7.3KB and 1.7MB.6 We see in these results that

6The ‘jumps’ or ‘banding’ in the CDF are due to the uniform link latencies in the simulation topologies. Paths of

2.4. EXPERIMENTAL EVALUATION 20

(a) Flow size 7.3KB (b) Flow size 1.7MB

Figure 2.11: Cumulative Distribution of FCTs. (RTT×BW = 5MB, 30% average link utilization)

Figure 2.12: Median Flow Throughput

performance improvements are provided across the board at all percentiles; even the 1st and 99th

percentiles improve by using RC3.

Summary: In this section, we examined RC3 in numerous contexts, changing our experimental
setup, looking at alternative application models, and investigating the tail distribution of FCTs
under RC3 and TCP. In all contexts, RC3 provides benefits over TCP, typically in the range of 30-
75%. Even in the worst case context we evaluated, when downlink rather than uplink capacities
bottlenecked transmission, RC3 still outperformed baseline TCP by 10%.

RC3 and Fairness. In this subsection we ask, is RC3 fair? We evaluate two forms of fairness:
how RC3 flows of different sizes interact with each other, and how RC3 interacts with concurrent
TCP flows.

RC3 with RC3: It is well-known that TCP in the long run is biased in that its bandwidth allocations

two hops had an RTT of 40, paths of three hops had an RTT of 60, and so on. A flow which completes in some k RTTs
while still under slow start thus completes in approximately k ∗RT T time. This created fixed steps in the CDF, as per
the RTTs.

2.4. EXPERIMENTAL EVALUATION 21

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

i = 10
FCT (s) 0.117 0.362

% Reduction 13.21 17.87

i = 50
FCT (s) 0.102 0.272

% Reduction 24.33 38.24

RC3
FCT (s) 0.076 0.114

% Reduction 43.54 74.35

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.126 0.435

QoS
FCT (s) 0.119 0.411

% Reduction 5.33 5.64

RC3
FCT (s) 0.078 0.12

% Reduction 38.31 72.43

(a) Increased InitCwnd (b) Traditional QoS

Figure 2.13: RC3 as compared to other alternatives that require no switch changes (RTT×BW = 5MB, 30%
average link utilization)

benefit longer flows over short ones. We calculated the effective throughput for flows using TCP
or RC3 in our baseline experiments (Figure 2.12). TCP achieves near-optimal throughput for flow
sizes less than 4 packets, but throughput is very low for medium-sized flows and only slightly
increases for the largest (multiple-MB) flows. RC3 maintains substantially high throughput for all
flow sizes, having a slight relative bias towards medium sized flows.

RC3 with TCP: To evaluate how RC3 behaves with concurrent TCP flows, we performed an exper-
iment with mixed RC3 and TCP flows running concurrently. We allowed 50% of end-hosts in our
simulations (say in set A) to use RC3, while the remaining 50% (set B) used regular TCP. Over-
all, FCTs for both RC3 and TCP were lower than in the same setup where all flows used regular
TCP. Thus, RC3 is not only fair to TCP, but in fact improves TCP FCTs by allowing RC3 flows to
complete quickly and ‘get out of the way’ of the TCP flows.

RC3 In Comparison. We now compare the performance gains of RC3 against some other pro-
posals to reduce TCP flow completion times.

Increasing Initial Congestion Window: Figure 2.13(a) compares the performance gains obtained
from RC3 with the performance gains from increasing the baseline TCP’s initial congestion win-
dow (InitCwnd) to 10 and 50. For most flow sizes, especially larger flows, RC3 provides stronger
improvements than simply increasing the initial congestion window. When averaging across all
flows, RC3 provides a 44% reduction in FCT whereas increasing the InitCwnd to 10 reduces the
FCT by only 13% and 50 reduces it by just 24%. Further, for small flow sizes (≤ 4 packets),
increasing the InitCwnd actually introduces a penalty due to increased queuing delays. RC3 never

2.4. EXPERIMENTAL EVALUATION 22

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

RCP
FCT (s) 0.088 0.117

% Reduction 33.86 73.58

RC3
FCT (s) 0.076 0.114

% Reduction 43.54 74.35

Figure 2.14: RC3 as compared to RCP, a scheme that requires explicit switch support (RTT×BW = 5MB,
30% average link utilization)

makes flows do worse than they would have under traditional TCP. These results confirm our ex-
pectations from §2.2.

Traditional QoS: An alternate technique to improve FCTs is to designate certain flows as ‘critical’
and send those flows using unmodified TCP, but at higher priority. We annotated 10% of flows
as ‘critical’; performance results for the critical flows alone are showed in Fig. 2.13(b). When
the ‘critical’ 10% of flows simply used higher priority, their average FCT reduces from 0.126
seconds to 0.119 seconds; while the non-critical flows suffered a very slight (<2%) penalty. When
we repeated the experiment, but used RC3 for the critical flows (leaving the rest to use TCP),
the average FCT reduced from 0.126 seconds to 0.078 seconds, as shown in Figure 2.13(b) .
Furthermore, non-critical flows showed a slight (<1%) improvement. This suggests that it is better
to be able to send an unrestricted amount of traffic, albeit at low priority, than to send at high
priority at a rate limited by TCP.

RCP: Finally, we compare against RCP, an alternative transport protocol to TCP. With RCP,
switches calculate average fair rate and signal this to flows; this allows flows to start transmit-
ting at an explicitly allocated rate from the first (post-handshake) RTT, overcoming TCP’s slow
start penalty. We show the performance improvement for RCP and RC3 in Fig. 2.14. While for
large flows, the two schemes are roughly neck-to-neck, RCP actually imposes a penalty for the
very smallest (1-4 packet) flows, in part because RCP’s explicit rate allocation enforces pacing of
packets according to the assigned rate, whereas with traditional TCP (and RC3), all packets are
transmitted back to back. These results show that RC3 can provide FCTs which are usually com-
parable or even better than those with RCP. Further, as RC3 can be deployed on legacy hardware

2.4. EXPERIMENTAL EVALUATION 23

(a) 20ms×10Gbps (b) 20ms×1Gbps

Figure 2.15: FCTs for implementation vs. simulation

and is friendly with existing TCP flows, it is a more deployable path to comparable performance
improvements.

Summary: RC3 outperforms traditional QoS and increasing the initial congestion windows; per-
formance with RC3 is on par with RCP without requiring substantial changes to switches.

2.4.2 Evaluating RC3 Linux Implementation
We now evaluate RC3 using our implementation in the Linux kernel. We extended the Linux

3.2 kernel as described in §2.3. We did our baseline experiments using both New Reno and CUBIC
congestion control mechanisms. We set the send and receive buffer sizes to 2GB, to ensure that an
entire flow fits in a single window. We keep the default initial congestion window of 10 [35] in
the kernel unchanged.

Our testbed consists of two servers each with two 10Gbps NICs connected to a 10Gbps Arista
datacenter switch. As the hosts were physically adjacent, we used netem to increase the observed
link latency to 10ms, which reflects a short WAN latency.

Baseline. Flows with varying sizes were sent from one machine to another. Figure 2.15(a) shows
FCTs with RC3 and baseline TCP implementation in Linux compared to RC3 and baseline TCP
NS-3 simulations (with the initial congestion windows set to 10), both running with 10Gbps band-
width and 20ms RTT. The figure reflects averages over 100 samples.

Overall, RC3 continues to provide strong gains over the baseline TCP design, however, our
results in implementation do not tightly match our simulated results from NS. The baseline TCP
implementation in Linux performs worse than in simulation because of delayed ACK behavior in
Linux: when more than two segments are ACKed together, it still only generates an increase in
congestion window proportional to two packets being ACKed. This slows down the rate at which
the congestion window can increase. The RC3 FCT is slightly higher in Linux than in simulation
for large flows because of the extra per-packet overhead in receiving RC3 packets: recall from §2.3
that RC3 packets are carried over the Linux ‘slow path’ and thus have slightly higher per-packet
overhead.

In Figure 2.15(b), we repeat the same experiment with only 1Gbps bandwidth set by the token
bucket filter queuing discipline (retaining 10ms latency through netem). In this experiment, results

2.4. EXPERIMENTAL EVALUATION 24

(a) Low Priority Starts after High Priority (b) High Priority Starts after Low Priority

Figure 2.16: Correctness of Priority Queuing in Linux

(a) Low Priority Starts after High Priority (b) High Priority Starts after Low Priority

Figure 2.17: Correctness of the Priority Queuing in the Switch

track our simulations more closely. TCP deviates little from the baseline because the arrival rate
of the packets ensures that at most two segments are ACKed by the receiver via delayed ACK,
and thus the congestion window increases at the correct rate. Overall, we observe that RC3 in
implementation continues to provide gains proportional to what we expect from simulation.

While these graphs show the result for New Reno, we repeated these experiments using TCP
CUBIC and the FCTs matched very closely to New Reno, since both have the same slow start
behavior.

Endhost Correctness. Priority queuing is widely deployed in the OS networking stack, NICs,
and switches, but is often unused. We now verify the correctness of the prio queuing discipline
in Linux. We performed our experiments with iPerf [65] using the default NIC buffer size of 512
packets and with segment offload enabled to achieve a high throughput of 9.5Gbps. All packets in
an iPerf flow were assigned the same priority level – this experiment does not use RC3 itself. All
flows being sent to a particular destination port were marked as priority 1 by changing the DSCP

2.5. DISCUSSION 25

(a) Comparing FCTs for Regular TCP with RC3 (b) Zooming in to observe trends for RC3 FCT

Figure 2.18: FCTs for Regular TCP and RC3 with TSO/LRO (20ms×10Gbps)

field in the IP header. We connected two endhosts directly, with one acting as the iPerf client
sending simultaneous flows to the connected iPerf server (a) with a low priority flow beginning
after a high priority flow has begun, and (b) with a high priority flow beginning after a low priority
flow has begun. Figure 2.16 shows that the priority queuing discipline behaves as expected.

Switch Correctness. We extended our topology to connect three endhosts to the switch, two of
which acted as iPerf clients, sending simultaneous flows as explained above to the third endhost
acting as the iPerf server. Since the two senders were on different machines, prioritization was
done by the switch. Figure 2.17 shows that priority queuing at the switch behaves as expected.

Segment and Receiver Offload. In §2.3.2 we discussed how RC3 interacts with segment and re-
ceiver offload; we now evaluate the performance of RC3 when combined with these optimizations.
For this experiment, we used the same set up, as our baseline and sent a 1000 packet flow without
TSO/LRO, with each enabled independently, and with both TSO and LRO enabled. Figure 2.18
plots the corresponding FCTs excluding the connection set-up time.

For baseline TCP, we see that TSO and LRO each cause a performance penalty in our test
scenario. TSO hurts TCP because the increased throughput also increases the number of segments
being ACKed with one single delayed ACK, thus slowing the rate at which the congestion window
increases. LRO aggravates the same problem by coalescing packets in the receive queue, once
again leading them to be ACKed as a batch.

In contrast, RC3’s FCTs improve when RC3 is combined with TSO and LRO. TSO and LRO
do little to change the performance of RC3, when enabled independently, but when combined
they allow chunks of packets to be processed together in batches at the receiver. This reduces the
overhead of packet processing by almost 50%, resulting in better overall FCTs.

2.5 Discussion

Deployment Incentives. For RC3 to be widely used requires ISPs to opt-in by enabling priority
queuing that already exists in their switches. As discussed in the introduction, we believe that giv-
ing worse service, rather than better service, for these low priority packets alleviates some of the
concerns that has made QoS so hard to offer (in the wide area) today. WQoS is safe and backwards

2.6. RELATED WORK 26

compatible because regular traffic will never be penalized and pricing remains unaffected. More-
over, since RC3 makes more efficient use of bandwidth, it allows providers to run their networks at
higher utilization, while still providing good performance, resulting in higher return in investment
for their network provisioning.

Partial Support. Our simulations assume that all switches support multiple priorities. If RC3 is
to be deployed, it must be usable even when the network is in a state of partial deployment, where
some providers but not all support WQoS. When traffic crosses from a network which supports
WQoS to a network which does not, a provider has two options: either drop all low priority packets
before they cross in to the single-priority domain (obviating the benefits of RC3), or allow the low
priority packets to pass through (allowing the packets to subsequently compete with normal TCP
traffic at high priority). Simulating this latter scenario, we saw that average FCTs still improved
for all flows, from using RC3 when 20% of switches did not support priorities; when 50% of
switches did not support priorities small flows experienced a 6-7% FCT penalty, medium-sized
flows saw slightly weaker FCT reductions (around 36%), and large flows saw slightly stronger
FCT reductions (76-70%).

Middleboxes. Middleboxes which keep tight account of in-flight packets and TCP state are a rare
but growing attribute of today’s networks. These devices directly challenge the deployment of
new protocols; resolving this challenge for proposals like RC3 and others remains an open area of
research [56, 36, 110, 97, 105].

Datacenters. As we’ve shown via model (§2.2) and simulation (§2.4), the benefits of RC3 are
strongest in networks with large bandwidth-delay product. Today’s datacenter networks typically
do not fit this description: with microsecond latencies, bandwidth-delay product is small and thus
flows today can very quickly reach 100% link utilization. Nevertheless, given increasing band-
width, bandwidth-delay product may not remain small forever. In simulations on a fat-tree data-
center topology with (futuristic) 100Gbps links, we observed average FCT improvements of 45%
when averaged over flows, and 66% when averaged over bytes. Thus, while RC3 is not a good fit
for datacenters today, it may be in the future.

Future. Outside of the datacenter, bandwidth-delay product is already large – and increasing.
While increasing TCP’s initial congestion window may mitigate the problem in the short term,
given the inevitable expansion of available bandwidth, the problem will return again and again with
any new choice of new initial congestion window. Our solution, while posing some deployment
hurdles, has the advantage of being able to handle future speeds without further modifications.

2.6 Related Work

Switch-assisted Congestion Control. Observing TCP’s sometimes poor ability to ensure high
link utilization, some have moved away from TCP entirely, designing protocols which use explicit
signaling for bandwidth allocation. RCP [34] and XCP [72] are effective protocols in this space.

2.7. CONCLUSION 27

Along similar lines, TCP QuickStart [39] uses an alternate slow-start behavior, which actively
requests available capacity from the switches using a new IP Option during the TCP handshake.
Using these explicitly supplied rates, a connection can skip slow start entirely and begin sending at
its allocated rate immediately following the TCP handshake. Unlike RC3, these algorithms require
new switch capabilities.

Alternate TCP Designs. There are numerous TCP designs that use alternative congestion avoid-
ance algorithms to TCP New Reno [20, 38, 143, 128, 49]. TCP CUBIC [49] and Compound
TCP [128] are deployed in Linux and Windows respectively. Nevertheless, their slow-start behav-
iors still leave substantial wasted capacity during the first few RTTs – consequently, they could just
as easily be used in RC3’s primary control loop as TCP New Reno. Indeed, in our implementation
we also evaluated TCP CUBIC in combination with RC3.

TCP FastStart [100] targets back-to-back connections, allowing a second connection to re-use
cached Cwnd and RTT data from a prior connection. TCP Remy [141] uses machine learning to
generate the congestion control algorithm to optimize a given objective function, based on prior
knowledge or assumptions about the network. RC3 improves flow completion time even from
cold start and without requiring any prior information about the network delay, bandwidth or other
parameters.

TCP-Nice [136] and TCP-LP [75] try to utilize the excess bandwidth in the network by using
more aggressive back-off algorithms for the low-priority background traffic. RC3 also makes use of
the excess bandwidth, but by explicitly using priority queues, with a very different aim of reducing
the flow completion time for all flows.

Use of Low Priorities. pFabric [11] is a contemporary proposal for datacenters that also uses many
layers of priorities and ensures high utilization. However, unlike RC3, pFabric’s flow scheduling
algorithm is targeted exclusively at the datacenter environment.

2.7 Conclusion
We presented recursively cautious congestion control (RC3), which uses multiple levels of pri-

ority to ensure safe, fair sharing of network resources while allowing flows to make full use of link
capacity from the first RTT, without probing. RC3 can be deployed using today’s infrastructure.
In common wide-area scenarios, RC3 results in over 40% reduction in average flow completion
times. The benefits of using RC3 are likely to increase in future, as the bandwidth-delay product
in the networks are pushed to larger values.

28

Chapter 3

TIMELY:RTT-based Datacenter
Congestion Control

In this chapter we present TIMELY, our second example that shows how we can avoid the need
for changing or configuring network switches; this time in the context of datacenter congestion
control.

Datacenter networks run tightly-coupled computing tasks that must be responsive to users,
e.g., thousands of back-end computers may exchange information to serve a user request, and all
of the transfers must complete quickly enough to let the complete response to be satisfied within
100 ms [46]. To meet these requirements, datacenter transports must simultaneously deliver high
bandwidth (�Gbps) and utilization at low latency (�msec), even though these aspects of perfor-
mance are at odds. Consistently low latency matters because even a small fraction of late opera-
tions can cause a ripple effect that degrades application performance [29]. As a result, datacenter
transports must strictly bound latency and packet loss.

Since traditional loss-based transports do not meet these strict requirements, new datacenter
transports [8, 9, 140, 57, 102, 68], take advantage of network switch support to signal the onset of
congestion (e.g., DCTCP [8] and its successors use ECN), introduce flow abstractions to minimize
completion latency, cede scheduling to a central controller, and more. However, in this work we
take a step back in search of a simpler, immediately deployable design.

The crux of our search is the congestion signal. An ideal signal would have several properties.
It would be fine-grained and timely to quickly inform senders about the extent of congestion. It
would be discriminative enough to work in complex environments with multiple traffic classes.
And, it would be easy to deploy.

Surprisingly, we find that a well-known signal, properly adapted, can meet all of our goals:
delay in the form of RTT measurements. RTT is a fine-grained measure of congestion that comes
with every acknowledgment. It effectively supports multiple traffic classes by providing an inflated
measure for lower-priority transfers that wait behind higher-priority ones. Further, it requires no
support from network switches.

Delay has been explored in the wide-area Internet since at least TCP Vegas [20], and some
modern TCP variants use delay estimates [127, 138]. But this use of delay has not been with-

3.1. VALUE OF RTT AS A CONGESTION SIGNAL IN DATACENTERS 29

out problems. Delay-based schemes tend to compete poorly with more aggressive, loss-based
schemes, and delay estimates may be wildly inaccurate due to host and network issues, e.g., de-
layed ACKs and different paths. For these reasons, delay is typically used in hybrid schemes with
other indicators such as loss.

Moreover, delay has not been used as a congestion signal in the datacenter because datacenter
RTTs are difficult to measure at microsecond granularity. This level of precision is easily over-
whelmed by host delays such as interrupt processing for acknowledgments. DCTCP eschews a
delay-based scheme saying “the accurate measurement of such small increases in queuing delay is
a daunting task.”[8]

Our insight is that recent NIC advances do allow datacenter RTTs to be measured with sufficient
precision, while the wide-area pitfalls of using delay as a congestion signal do not apply. Recent
NICs provide hardware support for high-quality timestamping of packet events [133, 139, 33,
23, 87], plus hardware-generated ACKs remove unpredictable host response delays. Meanwhile,
datacenter host software can be controlled to avoid competition with other transports, and multiple
paths have similar, small propagation delays.

In this chapter, we show that delay-based congestion control provides excellent performance in
the datacenter:
1. We experimentally demonstrate how multi-bit RTT signals measured with NIC hardware are

strongly correlated with network queuing (§3.1).
2. We present Transport Informed by MEasurement of LatencY (TIMELY): an RTT-based conges-

tion control scheme (§3.2 and §3.3). TIMELY uses rate control and is designed to work with
NIC offload of multi-packet segments for high performance. Unlike earlier schemes [138, 20],
we do not build the queue to a fixed RTT threshold. Instead, we use the rate of RTT variation, or
the gradient, to predict the onset of congestion and hence keep the delays low while delivering
high throughput.

3. We evaluate TIMELY with an OS-bypass messaging implementation using hundreds of ma-
chines on a Clos network topology (§3.4 and §3.5). Turning on TIMELY for RDMA transfers
on a fabric with PFC (Priority Flow Control) lowers 99 percentile tail latency by 9X . This tail
latency is 13X lower than that of DCTCP running in an optimized kernel.

3.1 Value of RTT as a congestion signal in datacenters
Existing datacenter transports use signals from network switches to detect the onset of conges-

tion and run with low levels of latency and loss [8, 134, 9]. We argue that network queuing delay
derived from RTT measurements, without the need for any switch support, is a superior congestion
signal.

RTT directly reflects latency. RTTs are valuable because they directly measure the quantity we
care about: end-to-end latency inflated by network queuing. Signals derived from queue occupancy
such as ECN fail to directly inform this metric. An ECN mark on a packet simply indicates that the
queue measure corresponding to the packet exceeds a threshold. Rich use of QoS in the datacenter

3.1. VALUE OF RTT AS A CONGESTION SIGNAL IN DATACENTERS 30

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250

C
D

F

RTT (µs)

Kernel TCP
HW Timestamp

Figure 3.1: RTTs measured by hardware timestamps have a much smaller random variance than that by
kernel TCP stack.

means it is not possible to convert this threshold into a single corresponding latency. Multiple
queues with different priorities share the same output link, but the ECN mark only provides in-
formation about those with occupancy exceeding a threshold. Low priority traffic can experience
large queuing delays without necessarily building up a large queue. In such circumstances, queu-
ing delay reflects the state of congestion in the network which is not reflected by queue occupancy
of low priority traffic. Further, an ECN mark describes behavior at a single switch. In a highly uti-
lized network, congestion occurs at multiple switches, and ECN signals cannot differentiate among
them. The RTT accumulates information about the end-to-end path. It includes the NIC, which
may also become congested but is ignored by most schemes.

RTT can be measured accurately in practice. A key practical hurdle is whether RTTs can be
measured accurately in datacenters where they are easily 1000X smaller than wide-area laten-
cies. Many factors have precluded accurate measurement in the past: variability due to kernel
scheduling; NIC performance techniques including offload (GSO/TSO, GRO/LRO); and protocol
processing such as TCP delayed acknowledgements. This problem is severe in datacenters where
each of these factors is large enough to overwhelm propagation and queuing delays.

Fortunately, recent NICs provide hardware support to solve these problems [133, 139, 33, 23,
87] and can accurately record the time of packet transmission and reception without being affected
by software-incurred delays. These methods must be used with care lest they overly tax the NIC.
We describe our use of NIC support later in this chapter. These NICs also provide hardware-based
acknowledgements for some protocols.

The combination of these features lets us take precise RTT measurements to accurately track
end-to-end network queues. The following experiment shows this behavior: we connect two hosts
to the same network via 10 Gbps links and send 16 KB ping-pong messages without any cross
traffic and on a quiescent network. Since there is no congestion, we expect the RTT measurements
to be low and stable. Figure 3.1 compares the CDF of RTTs measured using NIC hardware times-
tamps and RTTs measured via the OS TCP stack. The CDF for RTTs using NIC timestamps is
nearly a straight line, indicating small variance. In contrast, the RTTs measured by kernel TCP are
larger and much more variable.

RTT is a rapid, multi-bit signal. Network queuing delay can be calculated by subtracting known
propagation and serialization delays from an RTT. Therefore, assuming it is accurate, a single high

3.1. VALUE OF RTT AS A CONGESTION SIGNAL IN DATACENTERS 31

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000

C
D

F

RTT (µs)

Queue Length
Measured RTT

Figure 3.2: RTTs measured at end-system track closely the queue occupancy at congested link.

 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500

C
D

F

RTT (µs)

No reverse congestion
ACK prioritization

Reverse congestion

Figure 3.3: In the presence of reverse congestion, RTT measurements with ACK prioritization are indistin-
guishable from RTTs that do not experience any reverse path congestion.

RTT measurement immediately signals the extent of congestion. This RTT measurement works
even with packet bursts for a flow sent along a single network path: the RTT of the last packet
in the burst tracks the maximum RTT across packets since delays to earlier packets push out later
packets. To show how well RTT tracks network queuing delay, we set up an incast experiment with
100 flows on 10 client machines simultaneously transmitting to a single server. To incorporate NIC
offload, we send 64 KB messages and collect only a single RTT measurement per message on the
client side. The bottleneck link is a 10 Gbps link to the server. We sample the switch queue each
microsecond. Figure 3.2 shows the CDF of RTTs as measured at the end system compared to
the queue occupancy measured directly at the switch and shown in units of time computed for a
10 Gbps link. The two CDFs match extremely well.

Limitations of RTTs. While we have found the RTT signal valuable, an effective design must use
it carefully. RTT measurements lump queuing in both directions along the network path. This may
confuse reverse path congestion experienced by ACKs with forward path congestion experienced
by data packets. One simple fix is to send ACKs with higher priority, so that they do not incur
significant queuing delay. This method works in the common case of flows that predominantly
send data in one direction; we did not need more complicated methods.

We conducted an experiment to verify the efficacy of ACK prioritization: we started two incasts
(primary and secondary) such that the ACKs of the primary incast share the same congested queue
as the data segments of the secondary incast. Figure 3.3 shows the CDF of RTTs from the primary
incast for the following three cases: 1) no congestion in ACK path (no secondary incast); 2) in the
presence of congestion in ACK path; and 3) ACKs from primary incast are prioritized to higher

3.2. TIMELY FRAMEWORK 32

QoS queue in the presence of reverse congestion. We find that the reverse congestion creates noise
in RTT measurements of the primary incast and elongates the tail latencies. Throughput of the
primary incast is also impacted (and hence the smaller RTTs in the lower percentiles). With ACK
prioritization, the RTTs measured in the primary incast are indistinguishable from those measured
in the absence of reverse path congestion.

In future work, it would be straightforward to calculate variations in one-way delay between
two packets by embedding a timestamp in a packet (e.g., TCP timestamps). The change in queuing
delay is then the change in the arrival time minus send time of each packet. This method needs
only clocks that run at the same rate, which is a much less stringent requirement than synchronized
clocks.

The other classic shortcoming of RTTs is that changing network paths have disparate delays.
It is less of a problem in datacenters as all paths have small propagation delays.

3.2 TIMELY Framework
TIMELY provides a framework for rate control that is independent of the transport protocol

used for reliability. Figure 3.4 shows its three components: 1) RTT measurement to monitor the
network for congestion; 2) a computation engine that converts RTT signals into target sending
rates; and 3) a control engine that inserts delays between segments to achieve the target rate. We
implement TIMELY in host software with NIC hardware support, and run an independent instance
for each flow.

3.2.1 RTT Measurement Engine
We assume a traditional transport where the receiver explicitly ACKs new data so that we may

extract an RTT. We define the RTT in terms of Figure 3.5, which shows the timeline of a message:
a segment consisting of multiple packets is sent as a single burst and then ACKed as a unit by
the receiver. A completion event is generated upon receiving an ACK for a segment of data and
includes the ACK receive time. The time from when the first packet is sent (tsend) until the ACK
is received (tcompletion) is defined as the completion time. Unlike TCP, there is one RTT for the
set of packets rather than one RTT per 1-2 packets. There are several delay components: 1) the
serialization delay to transmit all packets in the segment, typically up to 64 KB; 2) the round-trip
wire delay for the segment and its ACK to propagate across the datacenter; 3) the turnaround time
at the receiver to generate the ACK; and 4) the queuing delay at switches experienced in both
directions.

We define the RTT to be the propagation and queuing delay components only. The first com-
ponent is a deterministic function of the segment size and the line rate of the NIC. We compute
and subtract it from the total elapsed time so that the RTTs input to TIMELY’s rate computation
engine are independent of segment size. The third component is sufficiently close to zero in our
setting with NIC-based ACKs that we can ignore it. Of the remaining components, the second is
the propagation delay including the packet-based store-and-forward behavior at switches. It is the

3.2. TIMELY FRAMEWORK 33

Figure 3.4: TIMELY overview.

Figure 3.5: Finding RTT from completion time.

minimum RTT and fixed for a given flow. Only the last component – the queuing delay – causes
variation in the RTT, and it is our focus for detecting congestion. In summary, TIMELY running
on Host A (shown in Figure 3.5) computes RTT as:

RT T = tcompletion− tsend−
seg. size

NIC line rate

For context, in a 10 Gbps network, serialization of 64 KB takes 51 µs, propagation may range
from 10-100 µs, and 1500 B of queuing takes 1.2 µs.

We rely on two forms of NIC support to precisely measure segment RTTs, described next.
ACK Timestamps. We require the NIC to supply the completion timestamp, tcompletion. As shown
in §3.1, OS timestamps suffer from variations such as scheduling and interrupts that can easily
obscure the congestion signal. tsend is the NIC hardware time that’s read by host software just
before posting the segment to NIC.
Prompt ACK generation. We require NIC-based ACK generation so that we can ignore the
turnaround time at the receiver. An alternative would be to use timestamps to measure the ACK
turnaround delay due to host processing delay. We have avoided this option because it would
require augmenting transport wire formats to include this difference explicitly.

Fortunately, some modern NICs [133, 139, 33, 23, 87] provide one or both features, and our
requirements are met naturally with a messaging implementation that timestamps segment ac-
knowledgement. A specific implementation of TIMELY in the context of RDMA is described in
§3.4. We believe our design is more generally applicable to TCP with some care to work with

3.3. TIMELY CONGESTION CONTROL 34

the batching behavior of the NIC, correctly associate an ACK with the reception of new data, and
compensate for ACK turnaround time.

3.2.2 Rate Computation Engine
This component implements our RTT-based congestion control algorithm as detailed in §3.3.

The interface to the rate computation engine is simple. Upon each completion event, the RTT
measurement engine provides the RTT in microseconds to the rate computation engine. While
this is the only required input, additional timing information could also be useful, e.g., the delay
incurred in the NIC. There is no requirement for packet-level operation; in normal operation we
expect a single completion event for a segment of size up to 64 KB due to NIC offload. The
rate computation engine runs the congestion control algorithm upon each completion event, and
outputs an updated target rate for the flow.

3.2.3 Rate Control Engine
When a message is ready to be sent, the rate control engine breaks it into segments for trans-

mission, and sends each segment to the scheduler in turn. For runtime efficiency, we implement a
single scheduler that handles all flows. The scheduler uses the segment size, flow rate (provided by
the rate computation engine), and time of last transmission to compute the send time for the current
segment with the appropriate pacing delay. The segment is then placed in a priority queue in the
scheduler. Segments with send times in the past are serviced in round-robin fashion; segments with
future send times are queued. After the pacing delay has elapsed, the rate control engine passes
the segment to the NIC for immediate transmission as a burst of packets. Data is first batched into
64 KB segments, following which the scheduler computes the pacing delay to insert between two
such batched segments. Note that 64 KB is the maximum batching size and is not a requirement,
e.g., the segment sizes for a flow that only has small messages to exchange at any given time will
be smaller than 64 KB. We later present results for segment sizes smaller than 64 KB as well.

TIMELY is rate-based rather than window-based because it gives better control over traffic
bursts given the widespread use of NIC offload. The bandwidth-delay product is only a small
number of packet bursts in datacenters, e.g., 51 µs at 10 Gbps is one 64 KB message. In this
regime, windows do not provide fine-grained control over packet transmissions. It is easier to
directly control the gap between bursts by specifying a target rate. As a safeguard, we limit the
volume of outstanding data to a static worst-case limit.

3.3 TIMELY Congestion Control
Our congestion control algorithm runs in the rate computation engine. In this section, we

describe our environment and key performance metrics, followed by our gradient-based approach
and algorithm.

3.3. TIMELY CONGESTION CONTROL 35

3.3.1 Metrics and Setting
The datacenter network environment is characterized by many bursty message workloads from

tightly-coupled forms of computing over high bandwidth, low-latency paths. It is the opposite of
the traditional wide-area Internet in many respects. Bandwidth is plentiful, and it is flow comple-
tion time (e.g., for a Remote Procedure Call (RPC)) that is the overriding concern. For short RPCs,
the minimum completion time is determined by the propagation and serialization delay. Hence,
we attempt to minimize any queuing delay to keep RTTs low. The latency tail matters because
application performance degrades when even a small fraction of the packets are late [29]. Consis-
tent low-latency implies low queuing delay and near zero packet loss, since recovery actions may
greatly increase message latency. Longer RPCs will have larger completion times because of the
time it takes to transmit more data across a shared network. To keep this added time small, we
must maintain high aggregate throughput to benefit all flows and maintain approximate fairness so
that no one flow is penalized.

Our primary metrics for evaluation are tail (99th percentile) RTT and aggregate throughput, as
they determine how quickly we complete short and long RPCs (assuming some fairness). When
there is a conflict between throughput and packet RTT, we prefer to keep RTT low at the cost
of sacrificing a small amount of bandwidth. This is because bandwidth is plentiful to start with,
and increased RTT directly impacts the completion times of short transfers. In effect, we seek to
ride the throughput/latency curve to the point where tail latency becomes unacceptable. Secondary
metrics are fairness and loss. We report both as a check rather than study them in detail. Finally,
we prefer a stable design over higher average, but oscillating rates for the sake of predictable
performance.

3.3.2 Delay Gradient Approach
Delay-based congestion control algorithms such as FAST TCP [138] and Compound TCP [127]

are inspired by the seminal work of TCP Vegas [20]. These interpret RTT increase above a baseline
as indicative of congestion: they reduce the sending rate if delay is further increased to try and
maintain buffer occupancy at the bottleneck queue around some predefined threshold. However,
Kelly et al. [74] argue that it is not possible to control the queue size when it is shorter in time
than the control loop delay. This is the case in datacenters where the control loop delay of a 64 KB
message over a 10 Gbps link is at least 51 µs, and possibly significantly higher due to competing
traffic, while one packet of queuing delay lasts 1 µs. The most any algorithm can do in these
circumstances is to control the distribution of the queue occupancy. Even if controlling the queue
size were possible, choosing a threshold for a datacenter network in which multiple queues can be
a bottleneck is a notoriously hard tuning problem.

TIMELY’s congestion controller achieves low latencies by reacting to the delay gradient or
derivative of the queuing with respect to time, instead of trying to maintain a standing queue.
This is possible because we can accurately measure differences in RTTs that indicate changes in
queuing delay. A positive delay gradient due to increasing RTTs indicates a rising queue, while a
negative gradient indicates a receding queue. By using the gradient, we can react to queue growth

3.3. TIMELY CONGESTION CONTROL 36

Algorithm 1 TIMELY congestion control.
Input: new_rtt
Result: Enforced rate
new_rtt_diff = new_rtt - prev_rtt
prev_rtt = new_rtt
rtt_diff = (1 - α) · rtt_diff + α · new_rtt_diff . α: EWMA weight parameter
normalized_gradient = rtt_diff / minRTT
if new_rtt < Tlow then

rate← rate + δ . δ : additive increment step
return;

end if
if new_rtt > Thigh then

rate← rate ·
(

1 - β ·
(

1 - Thigh
new_rtt

))
. β : multiplicative decrement factor

return;
end if
if normalized_gradient ≤ 0 then

rate← rate + N · δ
. N = 5 if gradient<0 for five completion events (HAI mode); otherwise N = 1

else
rate← rate · (1 - β · normalized_gradient)

end if

without waiting for a standing queue to form – a strategy that helps us achieve low latencies.
Delay gradient is a proxy for the rate mismatch at the bottleneck queue. We are inspired by

RCP, XCP, PI, and QCN [34, 72, 55, 68] that find explicit feedback on the rate mismatch has better
stability and convergence properties than explicit feedback based only on queue sizes; the latter
can even cause the queue to be less accurately controlled. The key difference is that all of these
prior controllers operate at point queues in the network, while TIMELY achieves similar benefits
by using the end-to-end delay gradient.

The model we assume is N end hosts all sending data at a total rate y(t) into a bottleneck
queue with drain rate C, i.e. the outgoing rate is ≤ C. We denote the queuing delay through
the bottleneck queue by q(t). If y(t) > C, the rate at which the queue builds up is (y(t)−C).
Since queued data drains at a rate C, the queuing delay gradient is given by dq(t)

dt = (y(t)−C)
C . The

gradient is dimensionless. It is positive for y(t)>C and signals how quickly the queue is building.
The negative gradient when y(t)<C, signals how quickly the queue is draining. Hence, the delay
gradient measured through RTT signals acts as an indicator for the rate mismatch at the bottleneck.
This reasoning holds as long as there is some non-zero queue in the network. When there is zero
queuing or queues are not changing in size, the measured gradient is also zero. TIMELY strives to
match the aggregate incoming rate y(t) to the drain rate, C, and so adapts its per-connection rate,
R(t), in proportion to the measured error of (y(t)−C)

C = dq(t)
dt = d(RT T)

dt .

3.3. TIMELY CONGESTION CONTROL 37

Figure 3.6: Gradient tracking zone with low and high RTT thresholds.

3.3.3 The Main Algorithm
Algorithm 1 shows pseudo-code for our congestion control algorithm. TIMELY maintains a

single rate R(t) for each connection and updates it on every completion event using RTT samples.
It employs gradient tracking, adjusting the rate using a smoothed delay gradient as the error signal
to keep throughput close to the available bandwidth. Additionally, we employ thresholds to detect
and respond to extreme cases of under utilization or overly high packet latencies. Figure 3.6 shows
the gradient zone along with the two thresholds. When the RTT is in the nominal operating range,
the gradient tracking algorithm computes the delay gradient from RTT samples and uses it to adjust
the sending rate.

Computing the delay gradient. We rely on accurate RTT measurements using NIC timestamps
(§3.2). To compute the delay gradient, TIMELY computes the difference between two consecutive
RTT samples. We normalize this difference by dividing it by the minimum RTT, obtaining a
dimensionless quantity. In practice, the exact value of the minimum RTT does not matter since
we only need to determine if the queue is growing or receding. We therefore use a fixed value
representing the wire propagation delay across the datacenter network, which is known ahead of
time. Finally, we pass the result through an EWMA filter. This filter allows us to detect the
overall trend in the rise and fall in the queue, while ignoring minor queue fluctuations that are not
indicative of congestion.

Computing the sending rate. Next, TIMELY uses the normalized gradient to update the target
rate for the connection. If the gradient is negative or equals zero, the network can keep up with the
aggregate incoming rate, and therefore there is room for a higher rate. In this case, TIMELY probes
for more bandwidth by performing an additive increment for the connection: R = R+δ , where δ is
the bandwidth additive increment constant. When the gradient is positive, the total sending rate is
greater than network capacity. Hence, TIMELY performs a multiplicative rate decrement β , scaled
by the gradient factor:

R = R
(

1−β
d(RT T (t))

dt

)
The delay gradient signal, which is based on the total incoming and outgoing rates, is common for
all connections along the same congested path. The well-known AIMD property ensures that our
algorithm achieves fairness across connections [24]. Connections sending at a higher rate observe
a stronger decrease in their rate, while the increase in rate remains same for all connections.

While the delay gradient is effective in normal operation, situations with significant under-

3.3. TIMELY CONGESTION CONTROL 38

utilization or high latency require a more aggressive response. Next we discuss how TIMELY
detects and responds to these situations.

Need for RTT low threshold Tlow. The ideal environment for our algorithm is one where packets
are perfectly paced. However, in practical settings, the TIMELY rate is enforced on a segment
granularity that can be as large as 64 KB. These large segments lead to packet bursts, which result
in transient queues in the network and hence RTT spikes when there is an occasional collision.
Without care, the core algorithm would detect a positive gradient due to a sudden RTT spike and
unnecessarily infer congestion and back-off. We avoid this behavior by using a low threshold Tlow
to filter RTT spikes; the adjustment based on delay gradient kicks in for RTT samples greater than
the threshold. Tlow is a (nonlinear) increasing function of the segment size used in the network,
since larger messages cause more bursty queue occupancy. We explore this effect in our evaluation,
as well as show how fine-grained pacing at the hosts can reduce burstiness and hence the need for
a low threshold.

Need for RTT high threshold Thigh. The core gradient algorithm maintains close to the bottleneck
link throughput while building very little queue. However, in theory, it is possible for the gradient
to stay at zero while the queue remains at a high, fixed level. To remove this concern, Thigh serves as
an upper bound on the tolerable end-to-end network queue delay, i.e., the tail latency. It provides
a way to reduce the rate independent of gradient value if the latency grows, a protection that
is possible because we operate in a datacenter environment with known characteristics. If the
measured RTT is greater than Thigh, we reduce the rate multiplicatively:

R = R
(

1−β

(
1−

Thigh

RT T

))
Note that we use the instantaneous rather than smoothed RTT. While this may seem unusual, we
can slow down in response to a single overly large RTT because we can be confident that it signals
congestion, and our priority is to maintain low packet latencies and avoid loss. We tried responding
to average RTT as a congestion indicator, and found that it hurts packet latency because of the extra
delay in the feedback loop. By the time the average rose, and congestion control reduces the rate,
queuing delay has already increased in the network. Our finding is inline with [54] which shows
through a control theoretic analysis that the averaged queue length is a failing of RED AQM. We
show in §3.5 how Thigh lets us ride to the right along the throughput-delay tradeoff curve.

Hyperactive increase (HAI) for faster convergence. Inspired by the max probing phase in TCP
BIC, CUBIC [49] congestion control, and QCN [68], we include an HAI option for faster conver-
gence as follows: if TIMELY does not reach the new fair share after a period of slow growth, i.e.,
the gradient is negative for several consecutive completion times, then HAI switches to a faster
additive increase in which the rate is incremented by Nδ instead of δ . This is useful when the new
fair share rate has dramatically increased due to reduced load in the network.

3.3. TIMELY CONGESTION CONTROL 39

 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
D

F

RTT (µs)

Gradient
Target RTT=500us
Target RTT=50us

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9

T
h
ru

p
u
t
(G

b
p
s
)

Time (s)

Gradient
Target RTT=500us
Target RTT=50us

Figure 3.7: Comparison of gradient (low and high thresholds of 50 µs and 500 µs) with target-based ap-
proach (Ttarget of 50 µs and 500 µs).

 0
 200
 400
 600
 800

 1000

 0 200 400 600 800 1000

R
a
te

 (
M

b
p
s
)

Time (ms)

Gradient approach
Fair share: 500 Mbps

 0
 200
 400
 600
 800

 1000

 0 200 400 600 800 1000

R
a
te

 (
M

b
p
s
)

Time (ms)

Queue size approach
Fair share: 500 Mbps

Figure 3.8: Per-connection rates in the gradient approach are smooth (top) while those in the queue-size
based approach (with Ttarget = 50µs) are more oscillatory (bottom).

3.3.4 Gradient versus Queue Size
We highlight through an experiment how the gradient approach differs from a queue size based

scheme. If we set the same value for Tlow and Thigh, then TIMELY congestion control reduces to
a queue size based approach (similar to TCP FAST algorithm; FAST in turn is a scaled, improved
version of Vegas). Denote Ttarget as the value of this single RTT threshold, i.e., Ttarget = Tlow =
Thigh. Then the rate is increased additively and decreased multiplicatively with the decrease factor
scaled by the queue size above Ttarget .

Figure 3.7 compares the RTT and throughput for the gradient and queue size based approach
for an incast traffic pattern. (See §3.5 for experimental details.) We use low and high thresholds
of 50 µs and 500 µs for gradient, versus Ttarget of 50 µs and 500 µs for the queue-sized approach.
We see that the queue size approach can maintain either low latency or high throughput, but finds
it hard to do both. By building up a standing queue up to a high Ttarget of 500 µs, throughput is
optimized, but at the cost of latency due to queuing. Alternatively, by keeping the standing queue
at a low Ttarget of 50 µs, latency is optimized, but throughput suffers as the queue is sometimes
empty. By operating on the rising and falling queue, the gradient approach predicts the onset of
congestion. This lets it deliver the high throughput of a high queue target while keeping the tail
latency close to that of a low target.

Furthermore, as shown in Figure 3.8, the connection rates oscillate more in the queue-size
approach, as it drives the RTT up and down towards the target queue size. The gradient approach
maintains a smoother rate around the fair share. Similar results are shown in control theory terms
for AQMs using the queue-size approach and gradient approach [55].

The main take-away is that Tlow and Thigh thresholds effectively bring the delay within a target
range and play a role similar to the target queue occupancy in many AQM schemes. Using the
delay gradient improves stability and helps keep the latency within the target range.

3.4. IMPLEMENTATION 40

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250

C
D

F

RTT (µs)

Software
Approximated Hardware

Direct Hardware

Figure 3.9: Comparison of the accuracy of NIC and SW timestamps.

3.4 Implementation
Our implementation is built on 10 Gbps NICs with OS-bypass capabilities. The NICs support

multi-packet segments with hardware-based ACKs and timestamps. We implemented TIMELY in
the context of RDMA (Remote Direct Memory Access) as a combination of NIC functionality and
host software. We use RDMA primitives to invoke NIC services and offload complete memory-
to-memory transfers to the NIC. In particular, we mainly use RDMA Write and Read to take a
message from local host memory and send it on the network as a burst of packets. On the remote
host, the NIC acknowledges receipt of the complete message and places it directly in the remote
memory for consumption by the remote application. The local host is notified of the acknowl-
edgement when the transfer is complete. We describe below some of the notable points of the
implementation.

Transport Interface. TIMELY is concerned with the congestion control portion of the transport
protocol; it is not concerned with reliability or the higher-level interface the transport exposes to
applications. This allows the interface to the rest of the transport to be simple: message send and
receive. When presented with a message at the sender, TIMELY breaks it into smaller segments
if it is large and sends the segments at the target rate. A message is simply an ordered sequence
of bytes. The segment is passed to the NIC and then sent over the network as a burst of packets.
On the remote host, the NIC acknowledges receipt of the complete segment. At the receiver, when
a segment is received it is passed to the rest of the transport for processing. This simple model
supports transports ranging from RPCs to bytestreams such as TCP.

Using NIC Completions for RTT Measurement. In practice, using NIC timestamps is challeng-
ing. Our NIC only records the absolute timestamp of when the multi-packet operation finishes and
therefore our userspace software needs to record a timestamp of when the operation was posted to
the NIC. This requires a scheme to map host clock to NIC clock, as well as calibration. We record
host (CPU) timestamps when posting work to the NIC and build a calibration mechanism to map
NIC timestamps to host timestamps. A simple linear mapping is sufficient. The mechanism works
well because the probability of being interrupted between recording the host send timestamp and
actually handing the message to the NIC is fairly low. Figure 3.9 compares RTTs obtained from
NIC HW timestamps, the calibration mechanism, and pure software only timestamps. Note that
TIMELY does not spin, so interrupts and wakeups are included in the software timestamp num-

3.4. IMPLEMENTATION 41

bers. It clearly demonstrates that the calibration mechanism is just as accurate as using only NIC
timestamps. Furthermore, the SW timestamps have a large variance, which increases as load on
the host increases.

We consider any NIC queuing occurring to be part of the RTT signal. This is important because
NIC queuing is also indicative of congestion and is handled by the same rate-based controls as
network queuing — even if the NIC were to give us an actual send timestamp, we would want the
ability to observe NIC queuing.

RDMA rate control. For RDMA Writes, TIMELY on the sender directly controls the segment
pacing rate. For RDMA Reads, the receiver issues read requests, in response to which the re-
mote host performs a DMA of the data segments. In this case, TIMELY cannot directly pace the
data segments, but instead achieves the same result by pacing the read requests: when computing
the pacing delay between read requests, the rate computation engine takes into account the data
segment bytes read from the remote host.

Application limited behavior. Applications do not always have enough data to transmit for their
flows to reach the target rate. When this happens, we do not want to inadvertently increase the
target rate without bound because the network appears to be uncongested. To prevent this problem,
we let the target rate increase only if the application is sending at more than 80% of the target rate,
and we also cap the maximum target rate at 10 Gbps. The purpose of allowing some headroom
is to let the application increase its rate without an unreasonable delay when it does have enough
data to send.

Rate update frequency. TIMELY’s rate update equation assumes that there is at most one com-
pletion event per RTT interval. The transmission delay of a 64 KB message on a 10 Gbps link
is 51 µs; with a minimum RTT of 20 µs, there can be at most one completion event in any given
minimum RTT interval. However, for small segment sizes, there can be multiple completion events
within a minimum RTT interval. In such a scenario, we want to update the rate based on the most
recent information. We do so by updating the rate for every completion event, taking care to scale
the updates by the number of completions per minimum RTT interval so that we do not overweigh
the new information.

For scheduler efficiency, the rate control engine enforces rate updates lazily. When the previ-
ously computed send time for a segment elapses, the scheduler checks the current rate. If the rate
has decreased, we recompute the send time, and re-queue the segment if appropriate. Otherwise,
the scheduler proceeds to send the segment to the NIC.

Additional pacing opportunities. By default, the NIC sends a segment as a burst of packets at
the link line rate. We explore another possibility: using NIC rate-limiters to transmit a burst of
packets at less than the line rate. The rationale is to supplement the pacing engine that spreads
packets of the flow over time with NIC-sized units of work. With hardware rate-limiters [112],
it is feasible to offload part of the responsibility for pacing to the NIC. However due to hardware
constraints, re-configuring pacing rate every few RTTs is not always feasible. Instead, we use a
hybrid approach: software pacing of large segments and hardware pacing at fixed rate below the

3.5. EVALUATION 42

link rate, e.g. 5 Gbps on a 10 Gbps link. At these high-rates, the purpose of NIC pacing is to
insert gaps in the burst so that multiple bursts mix at switches without causing latency spikes. In
this case, the rate control engine compensates for the NIC pacing delays by treating it as a lower
transmission line rate.

3.5 Evaluation
We evaluate a real host-based implementation of TIMELY at two scales. First, we examine

the basic properties of the congestion controller such as throughput, fairness, packet latency, and
timing accuracy in an incast setting. For these microbenchmarks, we use a small-scale testbed with
a rack of equipment. Second, we run TIMELY on a larger scale testbed of a few hundred machines
in a classic Clos network topology [5, 118]. Along with running the traffic workload, hosts collect
measurements of per-connection throughputs, RPC latencies, and RTTs (we established in §3.1
that host RTTs correspond well with queuing delays measured at the switches). All links are
10 Gbps unless mentioned otherwise. The OS used in all experiments is Linux.

To place our results in context, we compare TIMELY with two alternatives. First, we use
OS-bypass messaging over a fabric with Priority Flow Control (PFC) as commonly used for low
loss and latency in FCoE, e.g. DCB [28]. The RDMA transport is in the NIC and sensitive to
packet drops, so PFC is necessary because drops hurt performance badly. We add TIMELY to this
RDMA setting to observe its benefits; we check that pause message counts are low to verify that
there is sufficient switch buffering for TIMELY to work and PFC is not an inadvertent factor in
our experimental results. Second, we compare against an optimized kernel stack that implements
DCTCP [8] running on the same fabric without the use of PFC. We choose DCTCP as a point of
comparison because it is a well-known, modern datacenter transport that has been deployed and
proven at scale.

Henceforth we refer to: 1) DCTCP, for kernel DCTCP over a fabric without PFC; 2) PFC, for
OS-bypass messaging over a fabric with PFC; 3) TIMELY, for OS-bypass messaging with TIMELY
over a fabric with PFC.

Unless mentioned otherwise, we use the following parameters for TIMELY: segment size of
16 KB, Tlow of 50 µs, Thigh of 500 µs, additive increment of 10 Mbps, and a multiplicative decre-
ment factor (β) of 0.8.

3.5.1 Small-Scale Experiments
We use an incast traffic pattern for small-scale experiments (unless otherwise specified) since it

is a key congestion scenario for datacenter networks [135]. To create incast, 10 client machines on
a single rack send to a single server on the same rack. Each client runs 4 connections, i.e., 40 total
concurrent connections. Each connection sends 16 KB segments at a high enough aggregate rate
to saturate the server bandwidth of 2x10G link which is the bottleneck for the experiment. This is
a demanding workload for testing congestion control: while there are many connections present in
the datacenter, the number of connections limited by network capacity is normally small.

3.5. EVALUATION 43

 0

 5

 10

 15

 20

0 25 50 75 100

T
h
ru

p
u
t
(G

b
p
s
)

Average Added RTT Noise (µs)

Figure 3.10: Impact of RTT noise on TIMELY throughput.

Metric DCTCP PFC TIMELY

Total Throughput (Gbps) 19.5 19.5 19.4

Avg. RTT (us) 598 658 61

99-percentile RTT (us) 1490 1036 116

Table 3.1: Overall performance comparison with DCTCP and PFC

Required RTT measurement accuracy. To evaluate the accuracy of RTT samples required by
TIMELY, we add noise to the measured RTTs and observe the impact on throughput. We add
random noise uniformly distributed in the range of [0,x] µs to each RTT sample, where x is set to
0, 50, 100, 150, 200. Figure 3.10 shows the total throughput measured on the server at different
noise levels. Average noise of 50 µs causes visible throughput degradation, and higher noise leads
to more severe performance penalties. A Tlow value lower than 50 µs lowers the tolerance to RTT
noise even further. Note that this level of noise is easily reachable by software timestamping (due
to scheduling delays, coalescing, aggregation, etc.). Hence, accurate RTT measurement provided
by NIC support is the cornerstone of TIMELY.

Comparison with PFC. The last two columns in Table 3.1 compare TIMELY with OS-bypass
messaging over a fabric with conventional RDMA deployment over PFC. While the throughput
is slightly lower with TIMELY, the median and tail RTTs are lower by more than order of mag-
nitude and pauses are not triggered at all. To quantify the fairness of bandwidth allocation across
connections, we also compute a Jain fairness index [67] of 0.953 for TIMELY and 0.909 for PFC.
Our design is more fair, and has a high enough index to meet our fairness needs.

Comparison with DCTCP. We next compare TIMELY with DCTCP. To review briefly: with
DCTCP senders emit ECN capable packets; switches mark each packet queued beyond a fixed
threshold; receivers return all ECN marks to the sender; and senders adapt their rate based on
the fraction of packets with ECN marks in a window. Note that of necessity our comparison is
for two different host software stacks, as DCTCP runs in an optimized kernel without PFC support
whereas TIMELY is used with OS-bypass messaging. We did not implement DCTCP in OS-bypass
environment due to NIC firmware limitations on processing ECN feedback [146]. We set the

3.5. EVALUATION 44

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

RTT (µs)

TIMELY
DCTCP

Figure 3.11: CDF of RTT distribution

Figure 3.12: RTTs and sending rates of a sample of connections for TIMELY. The legend gives the mean
and standard deviation for each connection.

switch ECN marking threshold to K = 80 KB. This is less than the DCTCP author recommendation
of K = 65 packets for 10 Gbps operation as we are willing to sacrifice a small amount of throughput
to ensure consistently low latency. The second and the last columns in Table 3.1 summarizes the
results averaged across three runs of ten minutes, with the RTT distribution shown in Figure 3.11.
TIMELY keeps the average end-to-end RTT 10X lower than DCTCP (60 µs vs. 600 µs). More
significantly, the tail latency drops by almost 13X (116 µs vs. 1490 µs). No loss nor PFC packets
were observed. These latency reductions do not come at the cost of throughput.

Per-session Performance.Next, we break out connections to show that TIMELY also delivers
excellent performance for individual connections. Figure 3.12 shows a timeline of the observed
RTT and throughput for a sample for four individual connections using TIMELY. Each datapoint
represents a single completion event. The fair share for each connection is 500 Mbps. We see that
the throughput is close to the fair share and the RTT remains consistently low.

Varying Tlow. Our performance is influenced by algorithm parameters, which we explore starting
with the low threshold. Our purpose is to highlight factors that affect the thresholds, not to tune
parameters. By design no more than a default setting is necessary. The low threshold exists to
absorb the RTT variation during uncongested network use. The expected variation is related to the
maximum segment size, since as segments grow larger the effect on the RTT of occasional segment
collisions increases. Figure 3.13 shows how the bottleneck throughput and RTT times vary with
different values of Tlow for segments of size 16 KB, 32 KB and 64 KB.

We see that decreasing the low threshold reduces the network delay. This is because a lower
threshold allows the use of the RTT gradient more often to modulate the rate in response to queue
build-ups. But lower thresholds eventually have an adverse effect on throughput. This is best seen

3.5. EVALUATION 45

0
100
200
300
400
500

R
T
T
 (
µ
s)

16KB segments:
32KB segments:
64KB segments:

Avg RTT
Avg RTT
Avg RTT

99%ile RTT
99%ile RTT
99%ile RTT

Thruput
Thruput
Thruput

400 300 200 100 50 20 0
Tlow (µs)

0

5

10

15

20

T
h
ru

p
u
t

(G
b
p
s)

Figure 3.13: Throughput and RTT varying with Tlow and segment size.

with bursty traffic. For 16 KB segment size, when the burstiness is relatively low, a Tlow of just
50 µs gives us the highest throughput (19.4 Gbps), with the throughput being only slightly lower
(18.9 Gbps) without any Tlow. However, as we increase the segment size and hence the burstiness,
the throughput falls quickly when the threshold becomes too small. For 32 KB segments, the
tipping point is a Tlow of 100 µs. For the most demanding workload of 64 KB segments, the
transition is between 200–300 µs. Such large bursts make it difficult to obtain both high throughput
and low delay. This is unsurprising since each segment is sent as a long series of back-to-back
packets at wire speed, e.g., 64 KB is at least 40 packets.

Smoothing Bursts with Fine-Grained Pacers. The Rate Control Engine described in §3.2.3
introduces a pacing delay between segments. To further mitigate the burstiness with large segments
of 64 KB, while still enabling NIC offload, we explore fine-grained pacing. In this model, in
addition to the host software pacing segments, the NIC hardware uses pacing to send the packets in
each segment at a configurable rate lower than line rate. Pacing allows packets to mix more easily
in the network. Programmable NICs such as NetFPGA [130] allow a pacing implementation.
Prior work such as HULL [9] has also made use of NIC pacing, and fine-grained pacing queuing
disciplines such as FQ/pacing are in Linux kernels [132].

We repeat the incast experiment using 64 KB segments, this time with NIC pacing, with two
values of Tlow: 0 µs and 50 µs. We are not able to implement a dynamic fine-grained pacing rate
at this time and so use static rates. When computing RTTs from the completion times, we subtract
the serialization delay introduced by NIC pacers to allow for comparison, e.g., pacing a 64 KB
message at 1 Gbps introduces a serialization delay of 512 µs. Figure 3.14 shows the results for
different NIC pacing rates. As expected, the reduced burstiness due to pacing leads to increase in
throughput and decrease in delay, with larger throughput increases for greater pacing. The most
benefit is seen at 700 Mbps: 18.9 Gbps throughput for Tlow = 50 µs and 18.4 Gbps in the absence
of any Tlow (as opposed to 11.2 Gbps and 10.2 Gbps respectively without any pacing). Note that

3.5. EVALUATION 46

0
50

100
150
200
250

R
T
T
 (
µ
s)

50µs Tlow:
No Tlow:

Avg RTT
Avg RTT

99%ile RTT
99%ile RTT

Thruput
Thruput

No
Pacing

7000 5000 3000 1000 900 800 700 600 500

Pacing Rate (Mbps)

0

5

10

15

20

T
h
ru

p
u
t

(G
b
p
s)

Figure 3.14: Throughput and RTT varying with pacing rate for 64 KB segments.

this also means single flow performance is capped at 700 Mbps, unless the pacing rate is adjusted
dynamically. There is a slight dip in the throughput and rise in delay beyond this level, as pacing
approaches the fair share and has a throttling effect.

We note that NIC hardware pacing is not an absolute requirement in TIMELY design; but rather
helps navigate the tradeoff between lower network tail latency and higher CPU overhead that can
be caused by software pacing with smaller segments.

Varying Thigh. TIMELY employs a high threshold to react quickly to large RTTs. This threshold
matters less than the low threshold because it only comes into play for large RTTs, but it becomes
useful as the level of connection multiplexing grows and the likelihood of RTT spikes increase.

Figure 3.15 shows the effect on throughput as the high threshold is reduced for different
numbers of competing connections. In our earlier runs with four connections per client, the 99-
percentile RTTs are around 100 µs. This means that any Thigh > 100µs has little effect. As the
load climbs to 7 connections per client, the 99-percentile RTT settles close to 200 µs. Then there
is a drop in RTT as we reduce Thigh to 100 µs and below. For 10 connections per client, the 99-
percentile RTTs remain close to 500 µs for Thigh of 500 µs or more, and decrease as Thigh falls.
The throughput is quite good for Thigh down to 100 µs, but is significantly lower at 50 µs for all
three connection levels. These results show that a high threshold down to at most 200 µs helps to
reduce tail latency without degrading throughput.

Hyper active increment (HAI). HAI helps to acquire available bandwidth more quickly. To show
this, we perform an incast with a change in the offered load. The incast starts with 10 clients
and 10 connections per client. After an initial period for convergence, every client simultaneously
shuts down 9 of its 10 connections, thus increasing the fair share rate of the remaining connection
by 10X. Figure 3.16 shows how HAI ramps up connection throughput from an initial fair rate of
200 Mbps to 1.5 Gbps within 50 ms, and reaches the new fair share of 2 Gbps in 100 ms. In

3.5. EVALUATION 47

0
100
200
300
400
500
600

R
T
T
 (
µ
s)

4 sessions:
7 sessions:
10 sessions:

Avg RTT
Avg RTT
Avg RTT

99%ile RTT
99%ile RTT
99%ile RTT

Thruput
Thruput
Thruput

10000 1000 500 400 300 200 100 50
Thigh (µs)

0

5

10

15

20

T
h
ru

p
u
t

(G
b
p
s)

Figure 3.15: Total throughput and RTT varying with Thigh for different number of connections. Segment
Size = 16 KB, Tlow = 50 µs.

 0
 500

 1000
 1500
 2000
 2500

 0 20 40 60 80 100 120 140

R
a
te

 (
M

b
p
s
)

Time (ms)

HAI
No HAI

Figure 3.16: HAI quickly acquires available bandwidth.

contrast, a fixed additive increment only achieves 1.5 Gbps after 140 ms. We find that a HAI
threshold of five successive RTTs strikes a good balance between convergence and stability.

3.5.2 Large-Scale Experiments
We investigate TIMELY’s large-scale behavior with experiments run on a few hundred ma-

chines in a classic Clos topology [5, 118]. We show that TIMELY is able to maintain predictable
and low latency in large all-to-all and incast network congestion scenarios. The experiment gen-
erates RPCs between client server pairs. To stress TIMELY and create increased burstiness, we
used 64 KB RPCs and segment sizes.

Longest path uniform random. In this traffic pattern, a client picks a server from a set of servers
with the longest path through the network. Clients issue 64 KB requests. The server replies with
a payload of the same size. The benchmark collects goodput and RPC latency. RPC latency is
computed at the client from the time the request is sent to the server, to when it receives a response
from the server.

3.5. EVALUATION 48

 0.2

 0.4

 0.6

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
e
p
te

d
 L

o
a
d

(n
o
rm

a
liz

e
d
)

Offered Load (normalized)

PFC
TIMELY

Figure 3.17: Accepted versus offered load (64 KB messages).

 0
 100
 200
 300
 400
 500
 600
 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1M
e
d
ia

n
 R

T
T

 (
µ

s
)

Offered Load (normalized)

PFC
TIMELY

 0
 1000
 2000
 3000
 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 19
9
%

ile
 R

T
T

 (
µ

s
)

Offered Load (normalized)

PFC
TIMELY

Figure 3.18: Median and 99-percentile RTTs as measured by pingers under different offered load.

Figure 3.17 shows normalized throughput (to the maximum offered load used in the experi-
ment) as observed by the application for increasing offered loads on the x-axis. The saturation
point of the network (the point at which accepted load is less than the offered load) is higher for
TIMELY as it is able to send more traffic by minimizing queuing and thereby also pause frames
per second.

Figure 3.18 shows RTT versus load. TIMELY reduces the median and 99-percentile RTT by 2X
and 5X respectively compared to PFC. This results in a corresponding reduction of RPC median
latency of about 2X (shown in Figure 3.19). Without TIMELY, beyond saturation the network
queuing increases in an attempt to reach the offered load. With TIMELY, low network queuing is
maintained by moving queuing from the shared network to the end-host (where it is included in
RPC latency but not in the RTTs). Therefore, the 99-percentile of RPC latency reduction effect
diminishes as the offered load increases beyond the saturation point.

Network imbalance (incast). To stress TIMELY’s ability to mitigate congestion, we designed
an experiment with a background load of longest path uniform random traffic and then added an
incast load. We use three levels of background load: low (0.167 of the maximum offered load
in Figure 3.17), medium (0.3) and high (0.5). Figure 3.20 shows the normalized throughput and
99-percentile RTT for this experiment. We normalize throughput to that of the background load.
We know from Figure 3.17 that TIMELY and PFC throughput are the same for uniform random
traffic before network saturation. When we add an incast, without TIMELY, throughput falls by
13% to 54%, depending on the background network load, primarily due to head of line blocking
created by PFCs. This observation is confirmed with RTT measurements in Figure 3.20, which
show that TIMELY is able to keep queuing relatively low, preventing congestion spreading [144,
6], by rate limiting only the flows passing along the congested path. The overall throughput for
TIMELY remained the same during the incast.

3.6. RELATED WORK 49

 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
d
ia

n
 R

P
C

L
a
te

n
c
y
 (

µ
s
)

Offered Load (normalized)

PFC
TIMELY

 0
 2000
 4000
 6000
 8000

 10000
 12000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9
9
%

ile
 R

P
C

 L
a
te

n
c
y
 (

µ
s
)

Offered Load (normalized)

PFC
TIMELY

Figure 3.19: Median and 99-percentile RPC latencies.

 0
 0.2
 0.4
 0.6
 0.8

 1

PFC-low
TIMELY-low

PFC-med

TIMELY-med

PFC-high

TIMELY-high

T
h
ro

u
g
h
p
u
t

(n
o
rm

a
liz

e
d
) UR UR(w/ M-to-1)

10
0

10
1

10
2

10
3

10
4

10
5

PFC-low
TIMELY-low

PFC-med

TIMELY-med

PFC-high

TIMELY-high
9
9
%

ile
 R

T
T

 (
µ

s
)

UR UR(w/ M-to-1)

Figure 3.20: Adding one 40-to-1 pattern to longest path uniform random ((a) Normalized throughput (b)
99-percentile RTT).

Figure 3.21: Application-level benchmark.

Application level benchmark. Figure 3.21 shows RPC latency of a datacenter storage benchmark
(note that the y-axis is on a log-scale). Without TIMELY, the application is limited in the amount
of data it can push through the network while keeping the 99th percentile RTT low enough. With
TIMELY, the application is able to push at higher utilization levels without suffering negative
latency consequences. Therefore, the drop in application data unit latency (in seconds) is really a
reflection of the increased throughput that the application is able to sustain during query execution.

3.6 Related Work
Datacenter congestion control is a deeply studied topic [8, 9, 140, 57, 134, 11]. TIMELY

focuses on the same problem.

3.6. RELATED WORK 50

RED [41] and CoDel [96] drop packets early, prompting senders to reduce transmission rates
to avoid the large standing queues associated with tail drops. However, loss still drives up latencies
for the flows that experience packet drops. To avoid packet drops, many schemes rely on switch-
support in the form of ECN, in which packets are marked to indicate congestion [106]. ECN
marks are often combined across multiple packets [8, 134, 9] to provide fine-grained congestion
information, but our experiments in §3.1 show that ECN has inherent limitations. There have
also been other proposals that rely on switch support to mitigate congestion such as QCN [59]
(fine-grained queue occupancy information) and pFabric [11] (fine-grained prioritization).

TIMELY belongs to a different class of algorithms that use delay measurements to detect con-
gestion, which requires no switch-support. We take inspiration from TCP Vegas, FAST, and Com-
pound [20, 138, 127]. These proposals are window-based and maintain a queue close to the min-
imum RTT. In contrast, TIMELY is a rate-based algorithm that employs a gradient approach and
does not rely on measuring the minimum RTT. We show that it works well with NIC support,
despite infrequent RTT signals.

A recent scheme, DX [76], independently identified the benefits of using delay as congestion
signal for high throughput and low latency datacenter communications. DX implements accurate
latency measurements using a DPDK driver for the NIC and the congestion control algorithm is
within the Linux TCP stack. DX algorithm is similar to the conventional window-based proposals,
with an additive increase and a multiplicative decrease that’s proportional to the average queuing
delay.

CAIA Delay Gradient [50] (CDG) proposes a delay gradient algorithm for TCP congestion
control for wide-area networks. Its key goal is to figure out co-existence with loss based congestion
control. Hence the nature of its algorithms are different from those in TIMELY.

Link-layer flow control is used for low-latency messaging in Infiniband and Data Center Bridg-
ing (DCB) networks. However, problems with Priority Flow Control (PFC), including head of line
blocking and pause propagation or congestion spreading, are documented in literature [144, 6].
Some recent proposals aim to overcome these issues with PFC using ECN markings to maintain
low queue occupancy. TCP-Bolt [122] uses modified DCTCP algorithm within the kernel TCP
stack. DCQCN [146] uses a combination of ECN markings with a QCN-inspired rate-based con-
gestion control algorithm implemented in the NIC. Evaluations demonstrate that it addresses some
of the HoL blocking and unfairness problems with PFC, thus making RoCE more viable for large-
scale deployment. TIMELY uses RTT signal, is implemented in host software with support of
NIC timestamping, and is applicable to both OS-bypass and OS-based transports. Comparison of
TIMELY and DCQCN in terms of both congestion control and CPU utilization is an interesting
future work.

Congestion can also be avoided by scheduling transmissions using a distributed approach [140,
57] or even a centralized one [102]. However, such schemes are yet to be proven at scale, and are
more complex than a simple delay-based approach.

Finally, load-sensitive routing such as Conga [7] and FlowBender [69] can mitigate congestion
hotspots by spreading traffic around the network, thereby increasing throughput. However, host-
based congestion control is still required to match offered load to the network capacity.

3.7. CONCLUSION 51

3.7 Conclusion
Conventional wisdom considers delay to be an untrustworthy congestion signal in datacenters.

Our experience with TIMELY shows the opposite – when delay is properly adapted, RTT strongly
correlates with queue buildups in the network. We built TIMELY, which takes advantage of mod-
ern NIC support for timestamps and fast ACK turnaround to perform congestion control based on
precise RTT measurements. We found TIMELY can detect and respond to tens of microseconds
of queuing to deliver low packet latency and high throughput, even in the presence of infrequent
RTT signals and NIC offload. As datacenter speeds scale up by an order of magnitude, future work
should focus on how effective RTTs continue to be for congestion control, alongside rethinking
the nature of delay based algorithms.

52

Chapter 4

Revisiting Network Support for RDMA

In this chapter, we discuss our third and final example on how good end-point based solu-
tions can eliminate the need for complicated in-network mechanisms, this time in the context of
deploying RDMA in datacenters.

Datacenter networks offer higher bandwidth and lower latency than traditional wide-area net-
works. However, traditional endhost networking stacks, with their high latencies and substantial
CPU overhead, have limited the extent to which applications can make use of these characteristics.
As a result, several large datacenters have recently adopted RDMA, which bypasses the traditional
networking stacks in favor of direct memory accesses.

RDMA over Converged Ethernet (RoCE) has emerged as the canonical method for deploying
RDMA in Ethernet-based datacenters [146, 47]. The centerpiece of RoCE is a NIC that (i) provides
mechanisms for accessing host memory without CPU involvement and (ii) supports very basic
network transport functionality. Early experience revealed that RoCE NICs only achieve good end-
to-end performance when run over a lossless network, so operators turned to Ethernet’s Priority
Flow Control (PFC) mechanism to achieve minimal packet loss. The combination of RoCE and
PFC has enabled a wave of datacenter RDMA deployments.

However, the current solution is not without problems. In particular, PFC adds management
complexity and can lead to significant performance problems such as head-of-the-line blocking,
congestion spreading, and occasional deadlocks [146, 47, 122, 58, 115]. Rather than continue
down the current path and address the various problems with PFC, we take a step back and ask
whether it was needed in the first place. To be clear, current RoCE NICs require a lossless fabric
for good performance. However, the question we raise is: can the RoCE NIC design be altered so
that we no longer need a lossless network fabric?

We answer this question in the affirmative, proposing a new design called IRN (for Improved
RoCE NIC) that makes two incremental changes to current RoCE NICs (i) more efficient loss
recovery, and (ii) basic end-to-end flow control to bound the number of in-flight packets (§4.2).
We show, via extensive simulations on a RoCE simulator obtained from a commercial NIC vendor,
that IRN performs better than current RoCE NICs, and that IRN does not require PFC to achieve
high performance; in fact, IRN often performs better without PFC (§4.3). We detail the extensions
to the RDMA protocol that IRN requires (§4.4) and use comparative analysis and FPGA synthesis

4.1. BACKGROUND 53

to evaluate the overhead that IRN introduces in terms of NIC hardware resources (§4.5). Our
results suggest that adding IRN functionality to current RoCE NICs would add as little as 3-10%
overhead in resource consumption, with no deterioration in message rates.

A natural question that arises is how IRN compares to iWARP? iWARP [108] long ago pro-
posed a similar philosophy as IRN: handling packet losses efficiently in the NIC rather than making
the network lossless. What we show is that iWARP’s failing was in its design choices. The dif-
ferences between iWARP and IRN designs stem from their starting points: iWARP aimed for full
generality which led them to put the full TCP/IP stack on the NIC, requiring multiple layers of
translation between RDMA abstractions and traditional TCP bytestream abstractions. As a result,
iWARP NICs are typically far more complex than RoCE ones, with higher cost and lower per-
formance (§4.1). In contrast, IRN starts with the much simpler design of RoCE and asks what
minimal features can be added to eliminate the need for PFC.

More generally: while the merits of iWARP vs. RoCE has been a long-running debate in in-
dustry, there is no conclusive or rigorous evaluation that compares the two architectures. Instead,
RoCE has emerged as the de-facto winner in the marketplace, and brought with it the implicit (and
still lingering) assumption that a lossless fabric is necessary to achieve RoCE’s high performance.
Our results are the first to rigorously show that, counter to what market adoption might suggest,
iWARP in fact had the right architectural philosophy, although a needlessly complex design ap-
proach.

Hence, one might view IRN and our results in one of two ways: (i) a new design for RoCE
NICs which, at the cost of a few incremental modifications, eliminates the need for PFC and leads
to better performance, or, (ii) a new incarnation of the iWARP philosophy which is simpler in
implementation and faster in performance.

4.1 Background
We begin with reviewing some relevant background.

4.1.1 Infiniband RDMA and RoCE
RDMA has long been used by the HPC community in special-purpose Infiniband clusters that

use credit-based flow control to make the network lossless [61]. Because packet drops are rare in
such clusters, the RDMA Infiniband transport (as implemented on the NIC) was not designed to
efficiently recover from packet losses. When the receiver receives an out-of-order packet, it simply
discards it and sends a negative acknowledgement (NACK) to the sender. When the sender sees a
NACK, it retransmits all packets that were sent after the last acknowledged packet (i.e., it performs
a go-back-N retransmission).

To take advantage of the widespread use of Ethernet in datacenters, RoCE [125, 126] was in-
troduced to enable the use of RDMA over Ethernet.1 RoCE adopted the same Infiniband transport

1We use the term RoCE for both RoCE [125] and its successor RoCEv2 [126] that enables running RDMA, not
just over Ethernet, but also over IP-routed networks.

4.1. BACKGROUND 54

NIC Throughput Latency
Chelsio T-580-CR (iWARP) 3.24 Mpps 2.89 µs

Mellanox MCX416A-BCAT (RoCE) 14.7 Mpps 0.94 µs

Table 4.1: An iWARP and a RoCE NIC’s raw performance for 64B RDMA Writes on a single queue-pair.
design (including go-back-N loss recovery), and the network was made lossless using PFC.

4.1.2 Priority Flow Control
Priority Flow Control (PFC) [60] is Ethernet’s flow control mechanism, in which a switch sends

a pause (or X-OFF) frame to the upstream entity (a switch or a NIC), when the queue exceeds a
certain configured threshold. When the queue drains below this threshold, an X-ON frame is sent
to resume transmission. When configured correctly, PFC makes the network lossless (as long as
all network elements remain functioning). However, this coarse reaction to congestion is agnostic
to which flows are causing it and this results in various performance issues that have been docu-
mented in numerous papers in recent years [146, 47, 122, 58, 115]. These issues range from mild
(e.g.unfairness and head-of-line blocking) to severe, such as “pause spreading” as highlighted in
[47] and even network deadlocks [122, 58, 115]. In an attempt to mitigate these issues, congestion
control mechanisms have been proposed for RoCE (e.g.DCQCN [146] and TIMELY [91]) which
reduce the sending rate on detecting congestion, but are not enough to eradicate the need for PFC.
Hence, there is now a broad agreement that PFC makes networks harder to understand and manage,
and can lead to myriad performance problems that need to be dealt with.

4.1.3 iWARP vs RoCE
iWARP [108] was designed to support RDMA over a fully general (i.e., not loss-free) network.

iWARP implements the entire TCP stack in hardware along with multiple other layers that it needs
to translate TCP’s byte stream semantics to RDMA segments. Early in our work, we engaged with
multiple NIC vendors and datacenter operators in an attempt to understand why iWARP was not
more broadly adopted (since we believed the basic architectural premise underlying iWARP was
correct). The consistent response we heard was that iWARP is significantly more complex and
expensive than RoCE, with inferior performance [109].

We also looked for empirical datapoints to validate or refute these claims. We ran RDMA Write
benchmarks on two machines connected to one another, using Chelsio T-580-CR 40Gbps iWARP
NICs on both machines for one set of experiments, and Mellanox MCX416A-BCAT 56Gbps RoCE
NICs (with link speed set to 40Gbps) for another. Both NICs had similar specifications, and at
the time of purchase, the iWARP NIC cost $760, while the RoCE NIC cost $420. Raw NIC
performance values for 64 bytes batched Writes on a single queue-pair are reported in Table 4.1.
We find that iWARP has 3× higher latency and 4× lower throughput than RoCE.

These price and performance differences could be attributed to many factors other than trans-
port design complexity (such as differences in profit margins, supported features and engineering
effort) and hence should be viewed as anecdotal evidence as best. Nonetheless, they show that our

4.2. IRN DESIGN 55

conjecture (in favor of implementing loss recovery at the endhost NIC) was certainly not obvious
based on current iWARP NICs.

Our primary contribution is to show that iWARP, somewhat surprisingly, did in fact have the
right philosophy: explicitly handling packet losses in the NIC leads to better performance than
having a lossless network. However, efficiently handling packet loss does not require implementing
the entire TCP stack in hardware as iWARP did. Instead, we identify the incremental changes to
be made to current RoCE NICs, leading to a design which (i) does not require PFC yet achieves
better network-wide performance than both RoCE and iWARP (§4.3), and (ii) is much closer to
RoCE’s implementation with respect to both NIC performance and complexity (§4.5) and is thus
significantly less complex than iWARP.

4.2 IRN Design
We begin with describing the transport logic for IRN. For simplicity, we present it as a general

design independent of the specific RDMA operation types. We go into the details of handling
specific RDMA operations with IRN later in §4.4.

Changes to the RoCE transport design may introduce overheads in the form of new hardware
logic or additional per-flow state. With the goal of keeping such overheads as small as possible,
IRN strives to make minimal changes to the RoCE NIC design in order to eliminate its PFC re-
quirement, as opposed to squeezing out the best possible performance with a more sophisticated
design (we evaluate the small overhead introduced by IRN in §4.5).

IRN, therefore, makes two key changes to current RoCE NICs, as described in the following
subsections: (1) improving the loss recovery mechanism, and (2) basic end-to-end flow control
(termed BDP-FC) which bounds the number of in-flight packets by the bandwidth-delay product of
the network. We justify these changes by empirically evaluating their significance, and exploring
some alternative design choices in §4.3.3. Note that these changes are orthogonal to the use of
explicit congestion control mechanisms (such as DCQCN [146] and TIMELY [91]) that, as with
current RoCE NICs, can be optionally enabled with IRN.

4.2.1 Improved Loss Recovery
As discussed in §4.1, current RoCE NICs use a go-back-N loss recovery scheme. In the ab-

sence of PFC, redundant retransmissions caused by go-back-N loss recovery result in significant
performance penalties (as evaluated in §4.3). Therefore, the first change we make with IRN is a
more efficient loss recovery, based on selective retransmission (inspired by TCP’s loss recovery),
where the receiver does not discard out of order packets and the sender selectively retransmits the
lost packets, as detailed below.

Upon every out-of-order packet arrival, an IRN receiver sends a NACK, which carries both the
cumulative acknowledgment (indicating its expected sequence number) and the sequence number
of the packet that triggered the NACK (as a simplified form of selective acknowledgement or
SACK).

4.2. IRN DESIGN 56

An IRN sender enters loss recovery mode when a NACK is received or when a timeout oc-
curs. It also maintains a bitmap to track which packets have been cumulatively and selectively
acknowledged. When in the loss recovery mode, the sender selectively retransmits lost packets
as indicated by the bitmap, instead of sending new packets. The first packet that is retransmitted
on entering loss recovery corresponds to the cumulative acknowledgement value. Any subsequent
packet is considered lost only if another packet with a higher sequence number has been selectively
acked. When there are no more lost packets to be retransmitted, the sender continues to transmit
new packets (if allowed by BDP-FC). It exits loss recovery when a cumulative acknowledgement
greater than the recovery sequence is received, where the recovery sequence corresponds to the last
regular packet that was sent before the retransmission of a lost packet.

SACKs allow efficient loss recovery only when there are multiple packets in flight. For other
cases (e.g.for single packet messages), loss recovery gets triggered via timeouts. A high timeout
value can increase the tail latency of such short messages. However, keeping the timeout value
too small can result in too many spurious retransmissions, affecting the overall results. An IRN
sender, therefore, uses a low timeout value of RTOlow only when there are a small N number of
packets in flight (such that spurious retransmissions remains negligibly small), and a higher value
of RTOhigh otherwise. We discuss how the values of these parameters are set in §4.3, and how the
timeout feature in current RoCE NICs can be easily extended to support this in §4.5.

4.2.2 BDP-based Flow Control
The second change we make with IRN is introducing the notion of a basic end-to-end packet

level flow control, called BDP-FC, which bounds the number of outstanding packets in flight for a
flow by the bandwidth-delay product (BDP) of the network, as suggested in [11]. This is a static
cap that we compute by dividing the BDP of the longest path in the network (in bytes) 2 with
the packet MTU set by the RDMA queue-pair (typically 1KB in RoCE NICs). An IRN sender
transmits a new packet only if the number of packets in flight (computed as the difference between
current packet’s sequence number and last acknowledged sequence number) is less than this BDP
cap.

BDP-FC improves the performance by reducing unnecessary queuing in the network. Further-
more, by strictly upper bounding the number of out-of-order packet arrivals, it greatly reduces the
amount of state required for tracking packet losses in the NICs (discussed in more details in §4.5).

As mentioned before, IRN’s loss recovery has been inspired by TCP’s loss recovery. However,
rather than incorporating the entire TCP stack as is done by iWARP NICs, IRN: (1) decouples loss
recovery from congestion control and does not incorporate any notion of TCP congestion window
control involving slow start, AIMD or advanced fast recovery, (2) operates directly on RDMA
segments instead of using TCP’s byte stream abstraction, which not only avoids the complexity
introduced by multiple translation layers (as needed in iWARP), but also allows IRN to simplify

2As in [11], we expect this information to be available in a datacenter setting with known topology and routes. IRN
does not require a fully precise BDP computation and over-estimating the BDP value would still provide the required
benefits to a large extent without under-utilizing the network.

4.3. EVALUATING IRN’S TRANSPORT LOGIC 57

its selective acknowledgement and loss tracking schemes. We discuss how these changes effect
performance towards the end of §4.3.

4.3 Evaluating IRN’s Transport Logic
We now confront the central question of this chapter: Does RDMA require a lossless network?

If the answer is yes, then we must address the many difficulties of PFC. If the answer is no, then
we can greatly simplify network management by letting go of PFC. To answer this question, we
evaluate the network-wide performance of IRN’s transport logic via extensive simulations. Our
results show that IRN performs better than RoCE, without requiring PFC. We test this across a
wide variety of experimental scenarios and across different performance metrics. We end this
section with a simulation-based comparison of IRN with Resilient RoCE [116] and iWARP [108].

4.3.1 Experimental Settings

Simulator. Our simulator, obtained from a commercial NIC vendor, extends INET/OMNET++ [1,
2] to model the Mellanox ConnectX4 RoCE NIC [85]. RDMA queue-pairs (QPs) are modelled as
UDP applications with either RoCE or IRN transport layer logic, that generate flows (as described
later). We define a flow as a unit of data transfer comprising of one or more messages between the
same source-destination pair as in [91, 146]. When the sender QP is ready to transmit data packets,
it periodically polls the MAC layer until the link is available for transmission. The simulator
implements DCQCN as implemented in the Mellanox ConnectX-4 ROCE NIC [116], and we add
support for a NIC-based TIMELY implementation. All switches in our simulation are input-queued
with virtual output ports, that are scheduled using round-robin. The switches can be configured to
generate PFC frames by setting appropriate buffer thresholds.

Default Case Scenario. For our default case, we simulate a 54-server three-tiered fat-tree topol-
ogy, connected by a fabric with full bisection-bandwidth constructed from 45 6-port switches orga-
nized into 6 pods [10]. We consider 40Gbps links, each with a propagation delay of 2µs, resulting
in a bandwidth-delay product (BDP) of 120KB along the longest (6-hop) path. This corresponds
to ∼110 MTU-sized packets (assuming typical RDMA MTU of 1KB).

Each end host generates new flows with Poisson inter-arrival times [11, 92]. Each flow’s des-
tination is picked randomly and size is drawn from a realistic heavy-tailed distribution derived
from [15]. Most flows are small (50% of the flows are single packet messages with sizes ranging
between 32 bytes-1KB representing small RPCs such as those generated by RDMA based key-
value stores [32, 71]), and most of the bytes are in large flows (15% of the flows are between
200KB-3MB, representing background RDMA traffic such as storage). The network load is set
at 70% utilization for our default case. We use ECMP for load-balancing [47]. We vary different
aspects from our default scenario (including topology size, workload pattern and link utilization)
in §4.3.4.

4.3. EVALUATING IRN’S TRANSPORT LOGIC 58

RoCE IRN

0
5

10
15
20
25
30
35

Av
g

Slo
wd

ow
n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g

FC
T

(m
s)

0
10
20
30
40
50
60

99
%i

le
FC

T (
m

s)

Figure 4.1: Comparing IRN and RoCE’s performance.

Parameters. RTOhigh is set to an estimation of the maximum round trip time with one congested
link. We compute this as the sum of the propagation delay on the longest path and the maximum
queuing delay a packet would see if the switch buffer on a congested link is completely full. This
is approximately 320µs for our default case. For IRN, we set RTOlow to 100µs (representing the
desirable upper-bound on tail latency for short messages) with N set to a small value of 3. When
using RoCE without PFC, we use a fixed timeout value of RTOhigh. We disable timeouts when
PFC is enabled to prevent spurious retransmissions. We use buffers sized at twice the BDP of the
network (which is 240KB in our default case) for each input port [11, 14]. The PFC threshold at
the switches is set to the buffer size minus a headroom equal to the upstream link’s bandwidth-
delay product (needed to absorb all packets in flight along the link). This is 220KB for our default
case. We vary these parameters in §4.3.4 to show that our results are not very sensitive to these
specific choices. When using RoCE or IRN with TIMELY or DCQCN, we use the same congestion
control parameters as specified in [91] and [146] respectively. For fair comparison with PFC-based
proposals [146, 122], the flow starts at line-rate for all cases.

Metrics. We primarily look at three metrics: (i) average slowdown, where slowdown for a flow
is its completion time divided by the time it would have taken to traverse its path at line rate
in an empty network, (ii) average flow completion time (FCT), (iii) 99%ile or tail FCT. While the
average and tail FCTs are dominated by the performance of throughput-sensitive flows, the average
slowdown is dominated by the performance of latency-sensitive short flows.

4.3.2 Basic Results
We now present our basic results comparing IRN and RoCE for our default scenario. Unless

otherwise specified, IRN is always used without PFC, while RoCE is always used with PFC for
the results presented here.

IRN performs better than RoCE. We begin with comparing IRN’s performance with current
RoCE NIC’s. The results are shown in Figure 4.1. IRN’s performance is upto 2.8-3.7× better than
RoCE across the three metrics. This is due to the combination of two factors: (i) IRN’s BDP-
FC mechanism reduces unnecessary queuing and (ii) unlike RoCE, IRN does not experience any
congestion spreading issues, since it does not use PFC. (explained in more details below).

4.3. EVALUATING IRN’S TRANSPORT LOGIC 59

IRN with PFC IRN (without PFC)

0
2
4
6
8

10
12
14
16
18

Av
g

Slo
wd

ow
n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Av
g

FC
T

(m
s)

0
5

10
15
20
25

99
%i

le
FC

T (
m

s)

Figure 4.2: Impact of enabling PFC with IRN.

RoCE (with PFC) RoCE without PFC

0
10
20
30
40
50
60
70
80

Av
g.

 S
low

do
wn

0
1
2
3
4
5
6
7
8
9

Av
g.

FC
T (

ms
)

0
10
20
30
40
50
60
70
80
90

99
%i

le
FC

T (
m

s)

Figure 4.3: Impact of disabling PFC with RoCE.

IRN does not require PFC. We next study how IRN’s performance is impacted by enabling PFC.
If enabling PFC with IRN does not improve performance, we can conclude that IRN’s loss recovery
is sufficient to eliminate the requirement for PFC. However, if enabling PFC with IRN significantly
improves performance, we would have to conclude that PFC continues to be important, even with
IRN’s loss recovery. Figure 4.2 shows the results of this comparison. Remarkably, we find that
not only is PFC not required, but it significantly degrades IRN’s performance (increasing the value
of each metric by about 1.5-2×). This is because of the head-of-the-line blocking and congestion
spreading issues PFC is notorious for: pauses triggered by congestion at one link, cause queue
build up and pauses at other upstream entities, creating a cascading effect. Note that, without
PFC, IRN experiences significantly high packet drops (8.5%), which also have a negative impact
on performance, since it takes about one round trip time to detect a packet loss and another round
trip time to recover from it. However, the negative impact of a packet drop (given efficient loss
recovery), is restricted to the flow that faces congestion and does not spread to other flows, as in
the case of PFC. While these PFC issues have been observed before [47, 146, 91], we believe our
work is the first to show that a well-design loss-recovery mechanism outweighs a lossless network.

RoCE requires PFC. Given the above results, the next question one might have is whether RoCE
required PFC in the first place? Figure 4.3 shows the performance of RoCE with and without PFC.
We find that the use of PFC helps considerably here. Disabling PFC degrades performance by
1.5-3× across the three metrics. This is because of the go-back-N loss recovery used by current

4.3. EVALUATING IRN’S TRANSPORT LOGIC 60

RoCE IRN

+Timely +DCQCN0
2
4
6
8

10
12

Av
g

Sl
ow

do
wn

+Timely +DCQCN0.0

0.5

1.0

1.5

2.0

Av
g

FC
T

(m
s)

+Timely +DCQCN0
10
20
30
40
50

99
%

ile
 F

CT
 (m

s)

Figure 4.4: Comparing IRN and RoCE’s performance with explicit congestion control (TIMELY and
DCQCN).

IRN with PFC IRN (without PFC)

+Timely +DCQCN0
1
2
3
4
5
6

Av
g

Slo
wd

ow
n

+Timely +DCQCN0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Av
g

FC
T

(m
s)

+Timely +DCQCN0
5

10
15
20
25

99
%

ile
 F

CT
 (m

s)

Figure 4.5: Impact of enabling PFC with IRN, when explicit congestion control (TIMELY and DCQCN) is
used.

RoCE NICs, which penalizes performance due to (i) increased congestion caused by redundant re-
transmissions and (ii) the time and bandwidth wasted by flows in sending these redundant packets.

Effect of Explicit Congestion Control. The previous comparisons did not use any explicit con-
gestion control. However, as mentioned before, RoCE today is typically deployed in conjunction
with some explicit congestion control mechanism such as TIMELY or DCQCN. We now evaluate
whether using such explicit congestion control mechanisms affect the key trends described above.

Figure 4.4 compares IRN and RoCE’s performance when TIMELY or DCQCN is used. IRN
continues to perform better by up to 1.5-2.2× across the three metrics.

Figure 4.5 evaluates the impact of enabling PFC with IRN, when TIMELY or DCQCN is used.
We find that, IRN’s performance is largely unaffected by PFC, since explicit congestion control
reduces both the packet drop rate as well as the number of pause frames generated. The largest
performance improvement due to enabling PFC was less than 1%, while its largest negative impact
was about 3.4%.

Finally, Figure 4.6 compares RoCE’s performance with and without PFC, when TIMELY or
DCQCN is used.3 We find that, unlike IRN, RoCE (with its inefficient go-back-N loss recovery)

3RoCE + DCQCN without PFC presented in Figure 4.6 is equivalent to Resilient RoCE [116]. We provide a direct
comparison of IRN with Resilient RoCE later in this section.

4.3. EVALUATING IRN’S TRANSPORT LOGIC 61

RoCE (with PFC) RoCE without PFC

+Timely +DCQCN0
5

10
15
20
25
30

Av
g.

 S
lo

wd
ow

n

+Timely +DCQCN0
1
2
3
4
5
6

Av
g.

 FC
T

(m
s)

+Timely +DCQCN0
10
20
30
40
50
60
70
80

99
%

ile
 F

CT
 (m

s)

Figure 4.6: Impact of disabling PFC with RoCE, when explicit congestion control (TIMELY and DCQCN)
is used.

IRN IRN + Timely IRN + DCQCN0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g.

 F
CT

 (m
s) 7.1ms IRN

IRN with Go-Back-N
IRN without BDP-FC

Figure 4.7: The figure shows the effect of doing go-back-N loss recovery and disabling BDP-FC with IRN.
The y-axis is capped at 3ms to better highlight the trends.

requires PFC, even when explicit congestion control is used. Enabling PFC improves RoCE’s
performance by 1.35× to 3.5× across the three metrics.

Key Takeaways. The following are, therefore, the three takeaways from these results: (1) IRN
(without PFC) performs better than RoCE (with PFC), (2) IRN does not require PFC, and (3)
RoCE requires PFC.

4.3.3 Factor Analysis of IRN
We now perform a factor analaysis of IRN, to individually study the significance of the two

key changes IRN makes to RoCE, namely (1) efficient loss recovery and (2) BDP-FC. For this we
compare IRN’s performance (as evaluated in §4.3.2) with two different variations that highlight the
significance of each change: (1) enabling go-back-N loss recovery instead of using SACKs, and
(2) disabling BDP-FC. Figure 4.7 shows the resulting average FCTs (we saw similar trends with
other metrics). We discuss these results in greater details below.
Need for Efficient Loss Recovery. The first two bars in Figure 4.7 compare the average FCT of
default SACK-based IRN and IRN with go-back-N respectively. We find that the latter results in
significantly worse performance. This is because of the bandwidth wasted by go-back-N due to
redundant retransmissions, as described before.

4.3. EVALUATING IRN’S TRANSPORT LOGIC 62

Before converging to IRN’s current loss recovery mechanism, we experimented with alternative
designs. In particular we explored the following questions:
(1) Can go-back-N be made more efficient? Go-back-N does have the advantage of simplicity over
selective retransmission, since it allows the receiver to simply discard out-of-order packets. We,
therefore, tried to explore whether we can mitigate the negative effects of go-back-N. We found
that explicitly backing off on losses improved go-back-N performance for TIMELY (though, not
for DCQCN). Nonetheless, SACK-based loss recovery continued to perform significantly better
across different scenarios (with the difference in average FCT for TIMELY ranging from 20%-
50%).
(2) Do we need SACKs? We tried a selective retransmit scheme without SACKs (where the sender
does not maintain a bitmap to track selective acknowledgements). This performed better than go-
back-N. However, it fared poorly when there were multiple losses in a window, requiring multiple
round-trips to recover from them. The corresponding degradation in average FCT ranged from
<1% up to 75% across different scenarios when compared to SACK-based IRN.
(3) Can the timeout value be computed dynamically? As described in §4.2, IRN uses two static
(low and high) timeout values to allow faster recovery for short messages, while avoiding spurious
retransmissions for large ones. We also experimented with an alternative approach of using dy-
namically computed timeout values (as with TCP), which not only complicated the design, but did
not help since these effects were then be dominated by the initial timeout value.
Significance of BDP-FC. The first and the third bars in Figure 4.7 compare the average FCT of
IRN with and without BDP-FC respectively. We find that BDP-FC significantly improves perfor-
mance by reducing unnecessary queuing. Furthermore, it prevents a flow that is recovering from a
packet loss from sending additional new packets and increasing congestion, until the loss has been
recovered.
Efficient Loss Recovery vs BDP-FC. Comparing the second and third bars in Figure 4.7 shows
that the performance of IRN with go-back-N loss recovery is generally worse than the performance
of IRN without BDP-FC. This indicates that of the two changes IRN makes, efficient loss recovery
helps performance more than BDP-FC.

4.3.4 Robustness of Basic Results
We now evaluate the robustness of the basic results from §4.3.2 across different scenarios and

performance metrics.

Varying Experimental Scenario. We now evaluate the robustness of our results, as the experi-
mental scenario is varied from our default case. The results are presented in a tabular format, and
include for each the three metrics we consider (i.e. average slowdown, average FCT and tail FCT):
(i) the absolute value of the metric with IRN, (ii) the ratio of the metric for IRN over RoCE + PFC
(if this ratio is less than 1, then it shows that IRN without PFC performs better than RoCE with
PFC), and (iii) the ratio of the metric for IRN over IRN + PFC (if this ratio is smaller than 1 or
less than 1.1, i.e. close enough to 1, then it shows that IRN does not require PFC).

We present these set of results for all three cases that we consider: (a) no explicit CC, i.e. with-

4.3. EVALUATING IRN’S TRANSPORT LOGIC 63

Link Util.
No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

30%

IRN 1.85 0.0002 0.0024 1.70 0.0003 0.0059 1.69 0.0002 0.0029
IRN

RoCE+PFC 0.335 0.743 0.852 0.890 0.756 0.789 0.904 0.909 0.936
IRN

IRN+PFC 0.990 1.000 0.995 0.996 0.993 0.999 1.003 1.005 1.010

50%

IRN 3.38 0.0003 0.0046 2.55 0.0006 0.0101 2.65 0.0004 0.0057
IRN

RoCE+PFC 0.186 0.344 0.335 0.801 0.755 0.776 0.746 0.771 0.626
IRN

IRN+PFC 0.868 0.931 0.930 0.996 0.993 0.989 1.001 1.000 1.015

70%

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

90%

IRN 14.03 0.0019 0.0334 7.84 0.0019 0.0321 8.13 0.0019 0.0464
IRN

RoCE+PFC 0.359 0.475 0.468 0.501 0.518 0.487 0.534 0.592 0.697
IRN

IRN+PFC 0.483 0.572 0.484 0.930 0.868 0.761 1.004 0.990 0.964

Table 4.2: Robustness of IRN with varying average link utilization levels.

Bandwidth
No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

10Gbps

IRN 9.41 0.0035 0.0595 5.45 0.0039 0.0616 5.88 0.0040 0.0809
IRN

RoCE+PFC 0.170 0.309 0.274 0.720 0.637 0.620 0.695 0.681 0.688
IRN

IRN+PFC 0.371 0.523 0.458 0.967 0.924 0.903 0.973 0.929 0.954

40Gbps

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

100Gbps

IRN 7.92 0.0004 0.0064 4.84 0.0006 0.0091 5.44 0.0007 0.0187
IRN

RoCE+PFC 0.408 0.476 0.413 0.385 0.489 0.432 0.424 0.597 0.658
IRN

IRN+PFC 0.629 0.728 0.705 0.988 0.986 0.964 1.011 1.022 1.051

Table 4.3: Robustness of IRN with varying average link bandwidth.

out any explicit congestion control (b) with TIMELY, and (c) with DCQCN. For ease of viewing,
the results have been color coded: blue values indicate IRN performs better than IRN + PFC or
RoCE + PFC for that metric, while red values highlight cases where IRN’s performance is a bit
worse.

Varying link utilization levels. Table 4.2 shows the robustness of our basic results as the link
utilization level is varied from 30% to 90%. We find that as the link utilization increases, both the
ratios for each metric (i.e. IRN over IRN + PFC and IRN over RoCE + PFC) decrease, indicating
that IRN (without PFC) performs increasingly better than both IRN + PFC and RoCE + PFC.

4.3. EVALUATING IRN’S TRANSPORT LOGIC 64

Scale-out factor
(No. of servers)

No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

6 (54 servers)

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

8 (128 servers)

IRN 8.93 0.0011 0.0166 4.98 0.0013 0.0195 5.36 0.0011 0.0234
IRN

RoCE+PFC 0.250 0.335 0.292 0.613 0.642 0.609 0.479 0.503 0.481
IRN

IRN+PFC 0.497 0.601 0.515 1.000 0.993 0.985 1.010 0.998 0.992

10 (250 servers)

IRN 8.28 0.0010 0.0149 4.48 0.0012 0.0177 4.87 0.0010 0.0211
IRN

RoCE+PFC 0.258 0.322 0.272 0.651 0.664 0.631 0.477 0.491 0.445
IRN

IRN+PFC 0.486 0.601 0.547 1.000 0.996 0.994 1.015 1.010 1.012

Table 4.4: Robustness of IRN with varying fat-tree topology size (in terms of scale out factor or arity).

Workload
pattern

No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Heavy-tailed
(32B-3MB)

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

Uniform
(500KB-

5MB)

IRN 18.93 0.0116 0.0428 18.91 0.0123 0.0337 16.06 0.0109 0.0557
IRN

RoCE+PFC 0.213 0.231 0.156 0.584 0.576 0.496 0.600 0.553 0.647
IRN

IRN+PFC 0.313 0.334 0.170 0.955 0.957 0.919 0.993 0.988 0.974

Table 4.5: Robustness of IRN with varying workload pattern.

This follows from the fact that the drawbacks of using PFC increases at higher link utilization due
to increased congestion spreading.

Varying bandwidth Table 4.3 shows how our results vary as the bandwidth is changed from our
default of 40Gbps to a lower value of 10Gbps and a higher value of 100Gbps. Here we find that as
the bandwidth increases, the relative cost of a round trip required to react to packet drops without
PFC also increases, thus reducing the performance gap between IRN and the two PFC enabled
cases. However, even at 100Gbps, IRN (without PFC) continues to perform better than RoCE
(with PFC).

Varying the scale of topology. Table 4.4 shows the robustness of our basic results as the scale
of the topology is increased from our default of 6 port switches with 54 servers to 8 and 10 port
switches with 128 and 250 servers respectively. Our trends remain roughly similar as we scale up

4.3. EVALUATING IRN’S TRANSPORT LOGIC 65

Buffer Size
No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

60KB

IRN 9.58 0.0014 0.0225 5.75 0.0013 0.0213 6.81 0.0022 0.0464
IRN

RoCE+PFC 0.354 0.454 0.395 0.680 0.565 0.579 0.821 0.813 0.876
IRN

IRN+PFC 0.285 0.371 0.351 0.723 0.597 0.596 0.848 0.829 0.883

120KB

IRN 8.87 0.0012 0.0191 4.99 0.0012 0.0192 5.68 0.0014 0.0324
IRN

RoCE+PFC 0.320 0.411 0.353 0.603 0.578 0.562 0.689 0.697 0.692
IRN

IRN+PFC 0.343 0.410 0.340 0.863 0.821 0.794 0.951 0.945 0.932

240KB

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

480KB

IRN 8.63 0.0008 0.0127 4.66 0.0012 0.0185 4.99 0.0010 0.0206
IRN

RoCE+PFC 0.223 0.315 0.285 0.621 0.657 0.614 0.310 0.442 0.405
IRN

IRN+PFC 0.853 0.953 0.945 1.005 1.004 1.004 1.003 1.001 0.955

Table 4.6: Robustness of IRN with varying per-port buffer size.

the topology beyond our default set up.

Varying workload. Our default workload comprised of a heavy-tailed mix of short messages (e.g.
for key-value lookups) and large messages (for storage or background applications). We also
experimented with another workload pattern, comprising of medium to large sized flows with a
uniform distribution, representing a scenario where RDMA is used only for storage or background
tasks. Table 4.5 shows the results. We find that our key trends hold for this workload as well. Even
when considering individual flow sizes in the range captured by our default workload, we did not
observe any significant deviation from the key trends produced by the aggregated metrics. We also
present results with an incast workload later in this section.

Varying buffer size. Table 4.6 shows the robustness of our basic results as the buffer size is varied
from 60KB to 480KB. We find that as the buffer size is decreased, the drawbacks of using PFC
increases, due to more pauses and greater impact of congestion spreading. 4 In general, as the
buffer size is increased, the difference between PFC-enabled and PFC-disabled performance with
IRN reduces (due to fewer PFC frames and packet drops), while the benefits of using IRN over
RoCE+PFC increases (because of greater relative reduction in queuing delay with IRN due to
BDP-FC). We expect to see similar behaviour in shared buffer switches.

Varying parameters. We finally present the robustness of our results as we vary some of IRN’s
parameters from their default values. In particular, Table 4.7 captures the effect of over-estimating
the RTOhigh value to 2× and 4× the ideal, and Table 4.8 shows results with higher N values for

4Decreasing just the PFC threshold below its default value also has a similar effect.

4.3. EVALUATING IRN’S TRANSPORT LOGIC 66

RTOhigh
No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

320µs

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

640µs

IRN 8.38 0.0010 0.0162 4.77 0.0012 0.0188 5.23 0.0010 0.0206

IRN
RoCE+PFC 0.274 0.369 0.319 0.631 0.631 0.605 0.488 0.503 0.452

IRN
IRN+PFC 0.522 0.675 0.649 1.003 0.987 0.987 1.018 0.995 0.964

1280µs

IRN 8.74 0.0011 0.0194 4.79 0.0012 0.0194 5.24 0.0010 0.0207
IRN

RoCE+PFC 0.285 0.426 0.382 0.634 0.644 0.623 0.489 0.510 0.453
IRN

IRN+PFC 0.544 0.779 0.776 1.008 1.007 1.016 1.020 1.007 0.968

Table 4.7: Robustness of IRN to higher RTOhigh value.

N for using
RTOlow

No explicit CC With TIMELY With DCQCN

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

Avg
Slow-
down

Avg
FCT

99%ile
FCT

3

IRN 8.24 0.0009 0.0153 4.73 0.0012 0.0185 5.19 0.0010 0.0207
IRN

RoCE+PFC 0.269 0.350 0.301 0.626 0.625 0.594 0.484 0.509 0.453
IRN

IRN+PFC 0.513 0.640 0.612 0.995 0.976 0.968 1.009 1.005 0.966

10

IRN 8.26 0.0010 0.0157 4.75 0.0012 0.0187 5.13 0.0010 0.0208

IRN
RoCE+PFC 0.270 0.356 0.310 0.628 0.629 0.600 0.478 0.500 0.456

IRN
IRN+PFC 0.515 0.651 0.629 0.999 0.983 0.979 0.997 0.989 0.974

15

IRN 8.25 0.0010 0.0154 4.72 0.0012 0.0187 5.22 0.0010 0.0218
IRN

RoCE+PFC 0.270 0.357 0.303 0.624 0.628 0.602 0.487 0.516 0.477
IRN

IRN+PFC 0.514 0.653 0.616 0.992 0.981 0.981 1.015 1.019 1.019

Table 4.8: Robustness of IRN to higher N value for using RTOlow.

using RTOlow. We find that changing these parameters produces very small differences over our
default case results, showing that IRN is fairly robust to how its parameters are set.

Summarizing Overall Results: Across all of these experimental scenarios, we find that:
(a) IRN (without PFC) always performs better than RoCE (with PFC), with the performance im-
provement ranging from 6% to 83% across different cases.
(b) When used without any congestion control, enabling PFC with IRN always degrades perfor-

4.3. EVALUATING IRN’S TRANSPORT LOGIC 67

0 1 2 3 4 5
Latency (ms)

90
92
94
96
98

100

CD
F

RoCE (with PFC)
IRN with PFC
IRN (without PFC)

0.0 0.2 0.4 0.6 0.8 1.0
Latency (ms)

90
92
94
96
98

100

CD
F

RoCE (with PFC)
IRN with PFC
IRN (without PFC)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (ms)

90
92
94
96
98

100

CD
F

RoCE (with PFC)
IRN with PFC
IRN (without PFC)

(a) No CC (b) TIMELY (c) DCQCN

Figure 4.8: The figures compare the tail latency for single-packet messages for IRN, IRN with PFC, and
RoCE (with PFC), across different congestion control algorithms.

10 15 20 25 30 35 40 45 50
Number of senders (M)

0.92
0.94
0.96
0.98
1.00
1.02

RC
T

Ra
tio

 (I

RN
 /

Ro
CE

)

NoCC DCQCN Timely

Figure 4.9: The figure shows the ratio of request completion time of incast with IRN (without PFC) over
RoCE (with PFC) for varying degree of fan-ins across congestion control algorithms.

mance, with the maximum degradation across different scenarios being as high as 2.4×.
(c) Even when used with TIMELY and DCQCN, enabling PFC with IRN often degrades per-
formance (with the maximum degradation being 39% for TIMELY and 20% for DCQCN). Any
improvement in performance due to enabling PFC with IRN stays within 1.6% for TIMELY and
5% for DCQCN.

Tail latency for small messages. We now look at the tail latency (or tail FCT) of the single-packet
messages from our default scenario, which is another relevant metric in datacenters [91]. Figure 4.8
shows the CDF of this tail latency (from 90%ile to 99.9%ile), across different congestion control
algorithms. Our key trends from §4.3.2 hold even for this metric. This is because IRN (without
PFC) is able to recover from single-packet message losses quickly due to the low RTOlow timeout
value. With PFC, these messages end up waiting in the queues for similar (or greater) duration due
to pauses and congestion spreading. For all cases, IRN performs significantly better than RoCE.

Incast. We now evaluate incast scenarios, both with and without cross-traffic. The incast workload
without any cross traffic can be identified as the best case for PFC, since only valid congestion-
causing flows are paused without unnecessary head-of-the-line blocking.
Incast without cross-traffic. We simulate the incast workload on our default topology by striping
150MB of data across M randomly chosen sender nodes that send it to a fixed destination node [11].
We vary M from 10 to 50. We consider the request completion time (RCT) as the metric for incast

4.3. EVALUATING IRN’S TRANSPORT LOGIC 68

Resilient RoCE IRN

0
2
4
6
8

10
12
14
16

Av
g

Slo
wd

ow
n

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Av
g

FC
T

(m
s)

0
10
20
30
40
50
60
70

99
%i

le
FC

T (
m

s)

Figure 4.10: The figures compares resilient RoCE (RoCE+DCQCN without PFC) with IRN.

performance, which is when the last flow completes. For each M, we repeat the experiment 100
times and report the average RCT. Figure 4.9 shows the results, comparing IRN with RoCE. We
find that the two have comparable performance: any increase in the RCT due to disabling PFC
with IRN remained within 2.5%. The results comparing IRN’s performance with and without
PFC looked very similar. We also varied our default incast setup by changing the bandwidths to
10Gbps and 100Gbps, and increasing the number of connections per machine. Any degradation in
performance due to disabling PFC with IRN stayed within 9%.
Incast with cross traffic. In practice we expect incast to occur with other cross traffic in the net-
work [91, 47]. We started an incast as described above with M = 30, along with our default case
workload running at 50% link utilization level. The incast RCT for IRN (without PFC) was al-
ways lower than RoCE (with PFC) by 4%-30% across the three congestion control schemes. For
the background workload, the performance of IRN was better than RoCE by 32%-87% across the
three congestion control schemes and the three metrics (i.e.the average slowdown, the average FCT
and the tail FCT). Enabling PFC with IRN generally degraded performance for both the incast and
the cross-traffic by 1-75% across the three schemes and metrics, and improved performance only
for one case (incast workload with DCQCN by 1.13%).

Window-based congestion control. We also implemented conventional window-based conges-
tion control schemes such as TCP’s AIMD and DCTCP [8] with IRN and observed similar trends
as discussed in §4.3.2. In fact, when IRN is used with TCP’s AIMD, the benefits of disabling PFC
were even stronger, because it exploits packet drops as a congestion signal, which is lost when PFC
is enabled.

Summary. Our key results i.e. (1) IRN (without PFC) performs better than RoCE (with PFC), and
(2) IRN does not require PFC, hold across varying realistic scenarios, congestion control schemes
and performance metrics.

4.3.5 Comparison with Resilient RoCE.
A recent proposal on Resilient RoCE [116] explores the use of DCQCN to avoid packet losses

in specific scenarios, and thus eliminate the requirement for PFC. However, as observed previously
in Figure 4.6, DCQCN may not always be successful in avoiding packet losses across all realistic

4.4. IMPLEMENTATION CONSIDERATIONS 69

iWARP IRN

0
2
4
6
8

10
12

Av
g

Slo
wd

ow
n

0.0
0.2
0.4
0.6
0.8
1.0

Av
g

FC
T

(m
s)

0
2
4
6
8

10
12
14
16

99
%i

le
FC

T (
m

s)

Figure 4.11: The figures compares iWARP’s transport (TCP stack) with IRN.
scenarios with more dynamic traffic patterns and hence PFC (with its accompanying problems)
remains necessary. Figure 4.10 provides a direct comparison of IRN with Resilient RoCE. We find
that IRN, even without any explicit congestion control, performs significantly better than Resilient
RoCE, due to better loss recovery and BDP-FC.

4.3.6 Comparison with iWARP.
We finally explore whether IRN’s simplicity over the TCP stack implemented in iWARP im-

pacts performance. We compare IRN’s performance (without any explicit congestion control) with
full-blown TCP stack’s, using INET simulator’s in-built TCP implementation for the latter. Fig-
ure 4.11 shows the results for our default scenario. We find that absence of slow-start (with use
of BDP-FC instead) results in 21% smaller slowdowns with IRN and comparable average and tail
FCTs. These results show that in spite of a simpler design, IRN’s performance is better than full-
blown TCP stack’s, even without any explicit congestion control. Augmenting IRN with TCP’s
AIMD logic further improves its performance, resulting in 44% smaller average slowdown and
11% smaller average FCT as compared to iWARP. Furthermore, IRN’s simple design allows it to
achieve message rates comparable to current RoCE NICs with very little overheads (as evaluated
in §4.5). An iWARP NIC, on the other hand, can have up to 4× smaller message rate than a RoCE
NIC (§4.1). Therefore, IRN provides a simpler and more performant solution than iWARP for
eliminating RDMA’s requirement for a lossless network.

4.4 Implementation Considerations
We now discuss how one can incrementally update RoCE NICs to support IRN’s trans-

port logic, while maintaining the correctness of RDMA semantics as defined by the Infiniband
RDMA specification [61]. Our implementation relies on extensions to RDMA’s packet format,
e.g.introducing new fields and packet types. These extensions are encapsulated within IP and UDP
headers (as in RoCEv2) so they only effect the endhost behavior and not the network behavior (i.e.
no changes are required at the switches). We begin with providing some relevant context about
different RDMA operations before describing how IRN supports them.

4.4. IMPLEMENTATION CONSIDERATIONS 70

4.4.1 Relevant Context
The two remote endpoints associated with an RDMA message transfer are called a requester

and a responder. The interface between the user application and the RDMA NIC is provided by
Work Queue Elements or WQEs (pronounced as wookies). The application posts a WQE for each
RDMA message transfer, which contains the application-specified metadata for the transfer. It gets
stored in the NIC while the message is being processed, and is expired upon message completion.
The WQEs posted at the requester and at the responder NIC are called Request WQEs and Receive
WQEs respectively. Expiration of a WQE upon message completion is followed by the creation
of a Completion Queue Element or a CQE (pronounced as cookie), which signals the message
completion to the user application. There are four types of message transfers supported by RDMA
NICs:
Write. The requester writes data to responder’s memory. The data length, source and sink loca-
tions are specified in the Request WQE, and typically, no Receive WQE is required. However,
Write-with-Immediate operation requires the user application to post a Receive WQE that expires
upon completion to generate a CQE (thus signaling Write completion at the responder as well).
Read. The requester reads data from responder’s memory. The data length, source and sink
locations are specified in the Request WQE, and no Receive WQE is required.
Send. The requester sends data to the responder. The data length and source location is specified
in the Request WQE, while the sink location is specified in the Receive WQE.
Atomic. The requester reads and atomically updates the data at a location in the responder’s
memory, which is specified in the Request WQE. No Receive WQE is required. Atomic operations
are restricted to single-packet messages.

4.4.2 Supporting RDMA Reads and Atomics
IRN relies on per-packet ACKs for BDP-FC and loss recovery. RoCE NICs already support

per-packet ACKs for Writes and Sends. However, when doing Reads, the requester (which is the
data sink) does not explicitly acknowledge the Read response packets. IRN, therefore, introduces
packets for read (N)ACKs that are sent by a requester for each Read response packet. RoCE cur-
rently has eight unused opcode values available for the reliable connected QPs, and we use one of
these for read (N)ACKs. IRN also requires the Read responder (which is the data source) to imple-
ment timeouts. New timer-driven actions have been added to the NIC hardware implementation in
the past [116]. Hence, this is not an issue.

RDMA Atomic operations are treated similar to a single-packet RDMA Read messages.
Our simulations from §4.3 did not use ACKs for the RoCE (with PFC) baseline, modelling

the extreme case of all Reads. Therefore, our results take into account the overhead of per-packet
ACKs in IRN.

4.4. IMPLEMENTATION CONSIDERATIONS 71

4.4.3 Supporting Out-of-order Packet Delivery
One of the key challenges for implementing IRN is supporting out-of-order (OOO) packet

delivery at the receiver – current RoCE NICs simply discard OOO packets. A naive approach for
handling OOO packet would be to store all of them in the NIC memory. The total number of
OOO packets with IRN is bounded by the BDP cap (which is about 110 MTU-sized packets for
our default scenario as described in §4.3.1) 5. Therefore to support a thousand flows, a NIC would
need to buffer 110MB of packets, which exceeds the memory capacity on most commodity RDMA
NICs.

We therefore explore an alternate implementation strategy, where the NIC DMAs OOO packets
directly to the final address in the application memory and keeps track of them using bitmaps
(which are sized at BDP cap). This reduces NIC memory requirements from 1KB per OOO packet
to only a couple of bits, but introduces some additional challenges that we address here. Note
that partial support for OOO packet delivery was introduced in the Mellanox ConnectX-5 NICs to
enable adaptive routing [86]. However, it is restricted to Write and Read operations. We improve
and extend this design to support all RDMA operations with IRN.

We classify the issues due to out-of-order packet delivery into the following categories.

First packet issues. For some RDMA operations, critical information is carried in the first packet
of a message, which is required to process other packets in the message. Enabling OOO delivery,
therefore, requires that some of the information in the first packet be carried by all packets.

In particular, the RETH header (containing the remote memory location) is carried only by the
first packet of a Write message. IRN requires adding it to every packet.

WQE matching issues. Some operations require every packet that arrives to be matched with its
corresponding WQE at the responder. This is done implicitly for in-order packet arrivals. How-
ever, this implicit matching breaks with OOO packet arrivals. A work-around for this is assigning
explicit WQE sequence numbers, that get carried in the packet headers and can be used to iden-
tify the corresponding WQE for each packet. IRN uses this workaround for the following RDMA
operations:
Send and Write-with-Immediate: It is required that Receive WQEs be consumed by Send and
Write-with-Immediate requests in the same order in which they are posted. Therefore, with IRN
every Receive WQE, and every Request WQE for these operations, maintains a recv_WQE_SN
that indicates the order in which they are posted. This value is carried in all Send packets and in
the last Write-with-Immediate packet, 6 and is used to identify the appropriate Receive WQE. IRN
also requires the Send packets to carry the relative offset in the packet sequence number, which is
used to identify the precise address when placing data.
Read/Atomic: The responder cannot begin processing a Read/Atomic request R, until all packets

5For QPs that only send single packet messages less than one MTU in size, the number of outstanding packets is
limited to the maximum number of outstanding requests, which is typically smaller than the BDP cap [70, 71].

6A Receive WQE is consumed only by the last packet of a Write-with-immediate message, and is required to
process all packets for a Send message.

4.4. IMPLEMENTATION CONSIDERATIONS 72

expected to arrive before R have been received. Therefore, an OOO Read/Atomic Request packet
needs to be placed in a Read WQE buffer at the responder (which is already maintained by current
RoCE NICs). With IRN, every Read/Atomic Request WQE maintains a read_WQE_SN, that is
carried by all Read/Atomic request packets and allows identification of the correct index in this
Read WQE buffer.

Last packet issues. For many RDMA operations, critical information is carried in last packet,
which is required to complete message processing. Enabling OOO delivery, therefore, requires
keeping track of such last packet arrivals and storing this information at the endpoint (either on
NIC or main memory), until all other packets of that message have arrived. We explain this in
more details below.

A RoCE responder maintains a message sequence number (MSN) which gets incremented when
the last packet of a Write/Send message is received or when a Read/Atomic request is received.
This MSN value is sent back to the requester in the ACK packets and is used to expire the corre-
sponding Request WQEs. The responder also expires its Receive WQE when the last packet of a
Send or a Write-With-Immediate message is received and generates a CQE. The CQE is populated
with certain meta-data about the transfer, which is carried by the last packet. IRN, therefore, needs
to ensure that the completion signalling mechanism works correctly even when the last packet of a
message arrives before others. For this, an IRN responder maintains a 2-bitmap, which in addition
to tracking whether or not a packet p has arrived, also tracks whether it is the last packet of a mes-
sage that will trigger (1) an MSN update and (2) in certain cases, a Receive WQE expiration that is
followed by a CQE generation. These actions are triggered only after all packets up to p have been
received. For the second case, the recv_WQE_SN carried by p (as discussed before) can identify
the Receive WQE with which the meta-data in p needs to be associated, thus enabling a premature
CQE creation. The premature CQE can be stored in the main memory, until it gets delivered to the
application after all packets up to p have arrived.

Application-level Issues. Certain applications (for example FaRM [32]) rely on polling the last
packet of a Write message to detect completion, which is incompatible with OOO data placement.
This polling based approach violates the RDMA specification and is more expensive than officially
supported methods (FaRM [32] mentions moving on to using the officially supported Write-with-
Immediate method in the future for better scalability). IRN’s design provides all of the Write
completion guarantees as per the RDMA specification.

More precisely, the RDMA specification (Sec o9-20 [61]) clearly states that an application shall
not depend on the contents of an RDMA Write buffer at the responder, until one of the following
has occurred: (1) arrival and completion of the last RDMA Write request packet when used with
Immediate data; (2) arrival and completion of a subsequent Send message; (3) update of a memory
element by a subsequent Atomic operation. IRN design guarantees that meeting any of these
conditions would automatically imply that previous Writes have completed. As discussed before,
it supports Write-with-Immediate, where a CQE for the request is not released to the responder’s
application until all packets up until the last packet of the request have been received. Likewise,
the CQE for a subsequent send will not be released to the application until all previous packets

4.4. IMPLEMENTATION CONSIDERATIONS 73

have arrived. The Atomic request packet will wait in the Read/Atomic WQE buffer without being
processed until all previous packets have arrived.

OOO data placement can also result in a situation where data written to a particular memory
location is overwritten by a restransmitted packet from an older message. Typically, applications
using distributed memory frameworks assume relaxed memory ordering and use application layer
fences whenever strong memory consistency is required [4, 121]. Therefore, both iWARP and
Mellanox ConnectX-5, in supporting OOO data placement, expect the application to deal with the
potential memory over-writing issue and do not handle it in the NIC or the driver. IRN can adopt
the same strategy. Another alternative is to deal with this issue in the driver, by enabling the fence
indicator for a newly posted request that could potentially overwrite an older one.

4.4.4 Other Considerations

Simultaneously Tracking Reads and Writes. Currently, the packets that are sent and received by
a requester use the same packet sequence number (PSN) space. This interferes with loss tracking
and BDP-FC. IRN, therefore, splits the PSN space into two different ones (1) sPSN to track the
request packets sent by the requester, and (2) rPSN to track the response packets received by
the requester. This decoupling remains transparent to the application and is compatible with the
current RoCE packet format.

Support for Shared Receive Queues. IRN can be extended to support Shared Receive Queues
(SRQ) as follows.
For Send. As mentioned previously, with IRN, a Responder QP allots recv_WQE_SN to the Re-
ceive WQEs in the order they get posted. When the QP uses SRQ, the recv_WQE_SN can be
allotted as and when new Receive WQEs are dequeued from the SRQ by the QP. Suppose we start
with recv_WQE_SN of 0. The first send packet arrives in order with recv_WQE_SN of 0. IRN will
dequeue one Receive WQE from SRQ and allot it recv_WQE_SN of 0. Suppose after this some
intermediate send requests are lost and a Send packet with recv_WQE_SN of 4 arrives. IRN will
then dequeue four Receive WQEs from SRQ, allot them recv_WQE_SN of 1,2,3 and 4 and will
use the fourth Receive WQE to process the packet.
For Write-with-Immediate: Write-with-Immediate do not require the Receive WQE to process
incoming packets. The Receive WQE just needs to be expired when the entire message is received.
If there are no outstanding Sends (or already dequeued Receive WQEs waiting at the QP), then the
first available Receive WQE is dequeued from the SRQ and expired to generate a completion event,
when all packets of the Write-with-Immediate request have been received. If there are outstanding
Receive WQEs at the QP, the first Receive WQE that is outstanding is expired. The fact that IRN
checks for message completion using the bitmap in order guarantees that the first Receive WQE is
the correct WQE that needs to be expired.

Support for End-to-End Credits. For messages that need a Receive WQE, an end-to-end credit
scheme is used, where the acks piggy-back the information about the number of Receive WQEs
(or credits) remaining. When the responder runs out of credits, it can still send the first packet

4.5. EVALUATING IMPLEMENTATION OVERHEADS 74

of a Send message or all packets of a Write-with-Immediate message as a probe. If the receiver
has new WQEs the operation executes successfully and the new credit is communicated via the
acknowledgement packet. Otherwise, an RNR (receiver not ready) NACK is sent which results in
go-back-N.

This can be supported with IRN as well. Although when an out-of-sequence probe packet is
received without credits (with no Receive WQE), it should be dropped at the receiver. For example,
if there is only one Receive WQE at the responder and the requester sends two Send messages (the
first as a valid message, the second as a probe). If the first message is lost, the second message
should be dropped instead of placing it in first message’s memory address (which would be wrong
to do) or sending an RNR NACK (which would be ill-timed). The first message will be sent again
due to loss recovery and credit update process will get back on track.

NACKs due to Other Errors. This is a generalization of the case described above. Current
RoCE NICs generate a NACK for out-of-sequence packets, the requester treats them as errors and
does a go-back-n on receiving them. With IRN, we consider out-of-sequence NACKs as normal
behaviour and treat them differently (as described in §4.2). But NACKs can still be generated for
other reasons such as RNR. IRN will do a go-back-N on receiving such a NACK. If an out-of-
sequence packet will result in generation of such an error NACK at the responder, IRN will discard
that packet at the responder, without processing it and without sending a NACK.

Supporting Send with Invalidate. This operation is used to invalidate the use of a remote memory
region. If this packet arrives and is executed before previous Writes on the invalidated region, the
Write operation would die. To avoid this, IRN can enforce a fence before the Send with Invalidate
operations.

4.5 Evaluating Implementation Overheads
We now evaluate IRN’s implementation overheads over current RoCE NICs along the follow-

ing three dimensions: in §4.5.1, we do a comparative analysis of IRN’s memory requirements; in
§4.5.2, we evaluate the overhead for implementing IRN’s packet processing logic by synthesizing
it on an FPGA; and in §4.5.3, we evaluate, via simulations, how IRN’s implementation choices
impact end-to-end performance.

4.5.1 NIC State Overhead
Mellanox RoCE NICs support several MBs of cache to store various metadata including per-QP
and per-WQE contexts. The additional state that IRN introduces consumes a total of only 3-10%
of the current NIC cache for a couple of thousands of QPs and tens of thousands of WQEs, even
when considering large 100Gbps links. We present a breakdown this additional state below.

4.5. EVALUATING IMPLEMENTATION OVERHEADS 75

Additional Per-QP Context.
State variables: IRN needs 52 bits of additional state for its transport logic: 24 bits each to track
the packet sequence to be retransmitted and the recovery sequence, and 4 bits for various flags.
Other per-flow state variables needed for IRN’s transport logic (e.g., expected sequence number)
are already maintained by current RoCE NICs. Hence, the per-QP overhead is 104 bits (52 bits
each at the requester and the responder). Maintaining a timer at the responder for Read timeouts
and a variable to track in-progress Read requests in the Read WQE buffer adds another 56 bits to
the responder leading to a total of 160 bits of additional per-QP state with IRN. For context, RoCE
NICs currently maintain a few thousands of bits per QP for various state variables.
Bitmaps: IRN requires five BDP-sized bitmaps: two at the responder for the 2-bitmap to track
received packets, one at the requester to track the Read responses, one each at the requester and
responder for tracking selective acks. Assuming each bitmap to be 128 bits (i.e.sized to fit the
BDP cap for a network with bandwidth 40Gbps and a two-way propagation delay of up to 24µs,
typical in today’s datacenter topologies [91]), IRN would require a total of 640 bits per QP for
bitmaps. This is much less than the total size of bitmaps maintained by a QP for the OOO support
in Mellanox ConnectX-5 NICs.
Others: Other per-QP meta-data that is needed by an IRN driver when a WQE is posted (e.g
counters for assigning WQE sequence numbers) or expired (e.g. premature CQEs) can be stored
directly in the main memory and do not add to the NIC memory overhead.

Additional Per-WQE Context. As described in §4.4, IRN maintains sequence numbers for certain
types of WQEs. This adds 3 bytes to the per-WQE context which is currently sized at 64 bytes.

Additional Shared State. IRN also maintains some additional variables (or parameters) that are
shared across QPs. This includes the BDP cap value, the RTOlow value, and N for RTOlow, which
adds up to a total of only 10 bytes.

4.5.2 Packet Processing Overhead
We evaluate the implementation overhead due to IRN’s per-packet processing logic, which

requires various bitmap manipulations. The logic for other changes that IRN makes – e.g., adding
header extensions to packets, premature CQE generation, etc. – are already implemented in RoCE
NICs and can be easily extended for IRN.

We use Xilinx Vivado Design Suite 2017.2 [142] to do a high-level synthesis of the four key
packet processing modules (as described below), targeting the Kintex Ultrascale XCKU060 FPGA
which is supported as a bump-on-the-wire on the Mellanox Innova Flex 4 10/40Gbps NICs [88]. 7

Synthesis Process. To focus on the additional packet processing complexity due to IRN, our
implementation for the four modules is stripped-down. More specifically, each module receives
the relevant packet metadata and the QP context as streamed inputs, relying on a RoCE NIC’s
existing implementation to parse the packet headers and retrieve the QP context from the NIC

7We have made our synthesis code available at https://netsys.github.io/irn-vivado-hls/.

https://netsys.github.io/irn-vivado-hls/

4.5. EVALUATING IMPLEMENTATION OVERHEADS 76

cache (or the system memory, in case of a cache miss). The updated QP context is passed as
streamed output from the module, along with other relevant module-specific outputs as described
below.
(1) receiveData: Triggered on a packet arrival, it outputs the relevant information required to
generate an ACK/NACK packet and the number of Receive WQEs to be expired, along with the
updated QP context (e.g. bitmaps, expected sequence number, MSN).
(2) txFree: Triggered when the link’s Tx is free for the QP to transmit, it outputs the sequence
number of the packet to be (re-)transmitted and the updated QP context (e.g. next sequence to
transmit). During loss-recovery, it also performs a look ahead by searching the SACK bitmap for
the next packet sequence to be retransmitted.
(3) receiveAck: Triggered when an ACK/NACK packet arrives, it outputs the updated QP context
(e.g. SACK bitmap, last acknowledged sequence).
(4) timeout: If triggered when the timer expires using RTOlow value (indicated by a flag in the QP
context), it checks if the condition for using RTOlow holds. If not, it does not take any action and
sets an output flag to extend the timeout to RTOhigh. In other cases, it executes the timeout action
and returns the updated QP context. Our implementation relies on existing RoCE NIC’s support
for setting timers, with the RTOlow value being used by default, unless explicitly extended.

The bitmap manipulations in the first three modules account for most of the complexity in our
synthesis. Each bitmap was implemented as a ring buffer, using an arbitrary precision variable
of 128 bits, with the head corresponding to the expected sequence number at the receiver (or the
cumulative acknowledgement number at the sender). The key bitmap manipulations required by
IRN can be reduced to the following three categories of known operations: (i) finding first zero,
to find the next expected sequence number in receiveData and the next packet to retransmit in
txFree (ii) popcount to compute the increment in MSN and the number of Receive WQEs to be
expired in receiveData, (iii) bit shifts to advance the bitmap heads in receiveData and receiveAck.
We optimized the first two operations by dividing the bitmap variables into chunks of 32 bits and
operating on these chunks in parallel.

We validated the correctness of our implementation by generating input event traces for each
synthesized module from the simulations described in §4.3 and passing them as input in the test
bench used for RTL verification by the Vivado Design Suite. The output traces, thus, generated
were then matched with the corresponding output traces obtained from the simulator. We also used
the Vivado HLS tool to export our RTL design to create IP blocks for our modules.

Synthesis Results. Our FPGA synthesis report has been summarized in Table 4.9 and discussed
below.
Resource Usage: The second and third columns in Table 4.9 report the percentage of flip-flops
(FF) and look-up tables (LUT) used for the four modules (no BRAM or DSP48E units were con-
sumed). We find that each of IRN’s packet processing modules consume less than 1% FFs and 2%
LUTs (with a total of 1.35% FFs and 4% LUTs consumed). Increasing the bitmap size to support
100Gbps links consumed a total of 2.66% of FFs and 9.5% of LUTs on the same device (though
we expect the relative resource usage to be smaller on a higher-scale device designed for 100Gbps
links).

4.5. EVALUATING IMPLEMENTATION OVERHEADS 77

Module
Name

Resource Usage Max Min

FF LUT Latency Throughput

receiveData 0.62% 1.93% 16.5 ns 45.45 Mpps

txFree 0.32% 0.95% 15.9 ns 47.17 Mpps

receiveAck 0.4% 1.05% 15.96 ns 46.99 Mpps

timeout 0.01% 0.08% <6.3 ns 318.47 Mpps

Total Resource Usage: 1.35% FF and 4.01% LUTs

Min Bottleneck Tpt: 45.45Mpps

Table 4.9: Performance and resource usage for different packet processing modules on Xilinx Kintex Ultra-
scale KU060 FPGA.

RoCE (with PFC) IRN (no overheads) IRN (worst-case overheads)

RoCE or IRN +Timely +DCQCN0
5

10
15
20
25
30
35

Av
g.

 S
lo

wd
ow

n

RoCE or IRN +Timely +DCQCN0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g.

 F
CT

 (m
s)

RoCE or IRN +Timely +DCQCN0
10
20
30
40
50
60

99
%

ile
 F

CT
 (m

s)

Figure 4.12: The figures show the performance of IRN with worse case overheads, comparing it with IRN
without any overheads and with RoCE for our default case scenario.

Performance: The third and fourth column in Table 4.9 report the worst-case latency and through-
put respectively for each module. 8 The latency added by each module is at most only 16.5ns.
The receiveData module (requiring more complex bitmap operations) had the lowest throughput
of 45.45Mpps. This is high enough to sustain a rate of 372Gbps for MTU-sized packets. It is
also higher than the maximum rate of 39.5Mpps that we observed on Mellanox MCX416A-BCAT
RoCE NIC across different message sizes (2 bytes - 1KB), after applying various optimizations
such as batching and using multiple queue-pairs. A similar message rate was observed in prior
work [71]. Note that we did not use pipelining within our modules, which can further improve
throughput.

While we expect IRN to be implemented on the ASIC integrated with the existing RoCE imple-
mentation, we believe that the modest resources used on an FPGA board supported as an add-on
in recent RDMA-enabled NICs, provides some intuition about the feasibility of the changes re-
quired by IRN. Also, note that the results reported here are far from the optimal results that can
be achieved on an ASIC implementation due to two sources of sub-optimality: (i) using HLS for
FPGA synthesis has been found to be up to 2× less optimal than directly using Verilog [78] and
(ii) FPGAs, in general, are known to be less optimal than ASICs.

8The worst-case throughput was computed by dividing the clock frequency with the maximum initiation interval,
as reported by the Vivado HLS synthesis tool [137].

4.6. DISCUSSION AND RELATED WORK 78

4.5.3 Impact on End-to-End Performance
We now evaluate how IRN’s implementation overheads impact the end-to-end performance.

We identify the following two implementation aspects that could potentially impact end-to-end
performance and model these in our simulations.

Delay in Fetching Retransmissions. While the regular packets sent by a RoCE NIC are typically
pre-fetched, we assume that the DMA request for retransmissions is sent only after the packet is
identified as lost (i.e. when loss recovery is triggered or when a look-ahead is performed). The
time taken to fetch a packet over PCIe is typically between a few hundred nanoseconds to <2µs [3,
112]. We set a worst-case retransmission delay of 2µs for every retransmitted packet i.e. the sender
QP is allowed to retransmit a packet only after 2µs have elapsed since the packet was detected as
lost.

Additional Headers. As discussed in §4.4, some additional headers are needed in order to DMA
the packets directly to the application memory, of which, the most extreme case is the 16 bytes
of RETH header added to every Write packet. Send data packets have an extra header of 6 bytes,
while Read responses do not require additional headers. We simulate the worst-case scenario of
all Writes with every packet carrying 16 bytes additional header.

Results. Figure 4.12 shows the results for our default scenario after modeling these two sources of
worst-case overheads. We find that they make little difference to the end-to-end performance (de-
grading the performance by 4-7% when compared to IRN without overheads). The performance
remains 35%-63% better than our baseline of RoCE (with PFC). We also verified that the retrans-
mission delay of 2µs had a much smaller impact on end-to-end performance (2µs is very small
compared to the network round-trip time taken to detect a packet loss and to recover from it, which
could be of the order of a few hundred microseconds). The slight degradation in performance
observed here can almost entirely by attributed to the additional 16 bytes header in every packet.
Therefore, we would expect the performance impact to be even smaller when there is a mix of
Write and Read workloads.

Summary. Our analysis shows that IRN is well within the limits of feasibility, with small chip
area and NIC memory requirements and minor bandwidth overhead. We also validated our anal-
ysis through extensive discussions with two commercial NIC vendors (including Mellanox); both
vendors confirmed that the IRN design can be easily implemented on their hardware NICs. Inspired
by our results, Mellanox is considering implementing a version of IRN in their next release.

4.6 Discussion and Related Work

Backwards Compatibility. We briefly sketch one possible path to incrementally deploying IRN.
We envision that NIC vendors will manufacture NICs that support dual RoCE/IRN modes. The

4.7. CONCLUSION 79

use of IRN can be negotiated between two endpoints via the RDMA connection manager, with the
NIC falling back to RoCE mode if the remote endpoint does not support IRN. (This is similar to
what was used in moving from RoCEv1 to RoCEv2.) Network operators can continue to run PFC
until all their endpoints have been upgraded to support IRN at which point PFC can be permanently
disabled.

Reordering due to load-balancing. Datacenters today use ECMP for load balancing [47], that
maintains ordering within a flow. IRN’s OOO packet delivery support also allows for other load
balancing schemes that may cause packet reordering within a flow [43, 31]. IRN’s loss recovery
mechanism can be made more robust to reordering by triggering loss recovery only after a certain
threshold of NACKs are received.

Other hardware-based loss recovery. MELO [81], a recent scheme developed in parallel to
IRN, proposes an alternative design for hardware-based selective retransmission, where out-of-
order packets are buffered in an off-chip memory. Unlike IRN, MELO only targets PFC-enabled
environments with the aim of greater robustness to random losses caused by failures. As such,
MELO is orthogonal to our main focus which is showing that PFC is unnecessary. Nonetheless, the
existence of alternate designs such as MELO’s further corroborates the feasibility of implementing
better loss recovery on NICs.

HPC workloads. The HPC community has long been a strong supporter of losslessness. This is
primarily because HPC clusters are smaller with more controlled traffic patterns, and hence the
negative effects of providing losslessness (such as congestion spreading and deadlocks) are rarer.
PFC’s issues are exacerbated on larger scale clusters [47, 146, 91, 58, 115].

Credit-based Flow Control. Since the focus of our work was RDMA deployment over Ethernet,
our experiments used PFC. Another approach to losslessness, used by Infiniband, is credit-based
flow control, where the downlink sends credits to the uplink when it has sufficient buffer capac-
ity. Credit-based flow control suffers from the same performance issues as PFC: head-of-the-line
blocking, congestion spreading, the potential for deadlocks, etc. We, therefore, believe that our
observations from §4.3 can be applied to credit-based flow control as well.

4.7 Conclusion
As discussed earlier, the use of RDMA in datacenters has gone through several stages of evolu-

tion. First, RDMA was deployed over Infiniband, which provides a lossless fabric. As the interest
in RDMA grew, there was a need to deploy it over commodity Ethernet. One approach was em-
bodied in iWARP, which embedded a full TCP stack on the NIC and did not require a lossless
network. The other approach, RoCE, started with a simpler NIC (based largely on what was used
for Infiniband), and needed a lossless network for good performance. Operators started enabling
PFC to achieve very low loss networks, and the RoCE+PFC approach is now the dominant one
for deploying RDMA over commodity Ethernet. As the usage of RoCE+PFC increased, operators

4.7. CONCLUSION 80

began noticing various problems and failure modes for PFC. These problems have been described
at length in several papers [146, 122, 47, 58, 115], and there is now little doubt that the use of PFC
has significant drawbacks.

At this point, the ecosystem (and the relevant components of the research community) faces
a critical choice. It could attempt to fix the problems with PFC which, judging by the recent
literature, is the path most are pursuing. However, this path would require both new insight (while
there has been some progress in addressing some of PFC’s problems, they still pose significant
management and operational difficulties) and requiring changes to the core of most datacenter
networks.

Our work is a call to take another path, one that revisits the assumption (that largely reflects
the history of how RDMA initially got deployed, rather than a sound scientific investigation) that
RDMA over Ethernet requires a lossless network. We believe our results suggest that we should
turn to an architecture closer to iWARP (where the NIC implements efficient loss recovery), but
with an implementation closer to RoCE (incrementally updating it as needed, rather than embody-
ing an entirely different, and presumably, more complex transport stack). This approach offers the
prospect of relatively cheap yet high performance NICs, while not requiring any changes to the
network infrastructure or operation.

81

Chapter 5

Universal Packet Scheduling

There is a large and active research literature on novel packet scheduling algorithms, from
simple schemes such as priority scheduling [111], to more complicated mechanisms for achieving
fairness [117, 30, 101], to schemes that help reduce tail latency [27] or flow completion time [11],
and this short list barely scratches the surface of past and current work. These scheduling algo-
rithms must be implemented in the switch hardware to keep up with high bandwidth requirements,
making it difficult to support different scheduling algorithms for different performance require-
ments.

In this chapter, we therefore ask if there is a single universal packet scheduling algorithm that
can mimic existing scheduling algorithms, and obviate the need for new ones. In this context,
we consider a packet scheduling algorithm to be both how packets are served inside the network
(based on their arrival times and their packet headers) and how packet header fields are initialized
and updated; this definition includes all the classical scheduling algorithms (FIFO, LIFO, priority,
round-robin) as well as algorithms that incorporate dynamic packet state [124, 123, 27].

We can define a universal packet scheduling algorithm (hereafter UPS) in two ways, depending
on our viewpoint on the problem. From a theoretical perspective, we call a packet scheduling
algorithm universal if it can replay any schedule (the set of times at which packets arrive to and exit
from the network) produced by any other scheduling algorithm. This is not of practical interest,
since such schedules are not typically known in advance, but it offers a theoretically rigorous
definition of universality that (as we shall see) helps illuminate its fundamental limits (i.e., which
scheduling algorithms have the flexibility to serve as a UPS, and why).

From a more practical perspective, we say a packet scheduling algorithm is universal if it
can achieve different desired performance objectives (such as fairness, reducing tail latencies and
minimizing flow completion times). In particular, we require that the UPS should match the per-
formance of the best known scheduling algorithm for a given performance objective. 1

The notion of universality for packet scheduling might seem esoteric, but we think it helps clar-
ify some basic questions. If there exists no UPS then we should expect to design new scheduling

1For this definition of universality, we allow the header initialization to depend on the objective being optimized.
That is, while the basic scheduling operations must remain constant, the header initialization can depend on whether
you are seeking fairness or minimal flow completion time.

5.1. THEORY: REPLAYING SCHEDULES 82

algorithms as performance objectives evolve. Moreover, this would make a strong argument for
switches being equipped with programmable packet schedulers so that such algorithms could be
more easily deployed (as argued in [120]; in fact, it was the eloquent argument in this paper that
caused us to initially ask the question about universality).

However, if there is indeed a UPS, then it changes the lens through which we view the de-
sign and evaluation of scheduling algorithms: e.g., rather than asking whether a new scheduling
algorithm meets a performance objective, we should ask whether it is easier/cheaper to imple-
ment/configure than the UPS (which could also meet that performance objective). Taken to the
extreme, one might even argue that the existence of a (practical) UPS greatly diminishes the need
for programmable scheduling hardware.2 Thus, while the rest of the paper occasionally descends
into scheduling minutiae, the question we are asking has important practical (and intriguing theo-
retical) implications.

This paper starts from the theoretical perspective, defining a formal model of packet scheduling
and our notion of replayability in §5.1. We first prove that there is no UPS, but then show that Least
Slack Time First (LSTF) [77] comes as close as any scheduling algorithm to achieving universality.
We also demonstrate empirically (via simulation) that LSTF can closely approximate the schedules
of many scheduling algorithms. Thus, while not a perfect UPS in terms of replayability, LSTF
comes very close to functioning as one.

We then take a more practical perspective in §5.2, showing (via simulation) that LSTF is com-
parable to the state of the art in achieving various objectives relevant to an application’s perfor-
mance. We investigate in detail LSTF’s ability to minimize average flow completion times, min-
imize tail latencies, and achieve per-flow fairness. We also consider how LSTF can be used in
multitenant situations to achieve multiple objectives simultaneously, while highlighting some of
its key limitations.

In §5.3, we look at how network feedback for active queue management (AQM) can be incor-
porated using LSTF. Rather than augmenting the basic LSTF logic (which is restricted to packet
scheduling) with a queue management algorithm, we show that LSTF can, instead, be used to im-
plement AQM at the edge of the network. This novel approach to AQM is a contribution in itself,
as it allows the algorithm to be upgraded without changing internal switches.

We then discuss the feasibility of implementing LSTF (§5.4) and provide an overview of related
work (§5.5) before concluding with a discussion of open questions in §5.6.

5.1 Theory: Replaying Schedules
This section delves into the theoretical viewpoint of a UPS, in terms of its ability to replay a

given schedule.

2Note that the case for programmable hardware as made in recent work on P4 and the RMT switch [19, 18] remains:
these systems target programmability in header parsing and in how a packet’s processing pipeline is defined (i.e., how
forwarding ‘actions’ are applied to a packet). The P4 language does not currently offer primitives for scheduling and,
perhaps more importantly, the RMT switch does not implement a programmable packet scheduler; we hope our results
can inform the discussion on whether and how P4/RMT might be extended to support programmable scheduling.

5.1. THEORY: REPLAYING SCHEDULES 83

5.1.1 Definitions and Overview
Network Model. We consider a network of store-and-forward output-queued switches connected
by links. The input load to the network is a fixed set of packets {p ∈ P}, their arrival times i(p)
(i.e.when they reach the ingress switch), and the path path(p) each packet takes from its ingress to
its egress switch. We assume no packet drops, so all packets eventually exit. Every switch executes
a non-preemptive scheduling algorithm which need not be work-conserving or deterministic and
may even involve oracles that know about future packet arrivals. Different switches in the network
may use different scheduling logic. For each incoming load {(p, i(p),path(p))}, a collection
of scheduling algorithms {Aα} (switch α implements algorithm Aα) will produce a set of packet
output times {o(p)} (the time a packet p exits the network). We call the set {(path(p), i(p),o(p))}
a schedule.

Replaying a Schedule. Applying a different collection of scheduling algorithms {A′α} to the same
set of packets {(p, i(p),path(p))} (with the packets taking the same path in the replay as in the
original schedule), produces a new set of output times {o′(p)}. We say that {A′α} replays {Aα} on
this input if and only if ∀p ∈ P, o′(p)≤ o(p).3

Universal Packet Scheduling Algorithm. We say a schedule {(path(p), i(p),o(p))} is viable
if there is at least one collection of scheduling algorithms that produces that schedule. We say
that a scheduling algorithm is universal if it can replay all viable schedules. While we allowed
significant generality in defining the scheduling algorithms that a UPS seeks to replay (demanding
only that they be non-preemptive), we insist that the UPS itself obey several practical constraints
(although we allow it to be preemptive for theoretical analysis, but then quantitatively analyze the
non-preemptive version in §5.1.3).4 The three practical constraints we impose on a UPS are:
(1) Uniformity and Determinism: A UPS must use the same deterministic scheduling logic at every
switch.
(2) Limited state used in scheduling decisions: We restrict a UPS to using only (i) packet headers,
and (ii) static information about the network topology, link bandwidths, and propagation delays. It
cannot rely on oracles or other external information. However, it can modify the header of a packet
before forwarding it (resulting in dynamic packet state [124]).
(3) Limited state used in header initialization: We assume that the header for a packet p is initial-
ized at its ingress node. The additional information available to the ingress for this initialization
is limited to: (i) o(p) from the original schedule5 and (ii) path(p). Later, we extend the kinds

3We allow the inequality because, if o′(p) < o(p), one can delay the packet upon arrival at the egress node to
ensure o′(p) = o(p).

4The issue of preemption is somewhat complicated. Allowing the original scheduling algorithms to be preemptive
allows packets to be fragmented, which then makes replay extremely difficult even in simple networks (with store-
and-forward switches). However, disallowing preemption in the candidate UPS overly limits the flexibility and would
again make replay impossible even in simple networks. Thus, we take the seemingly hypocritical but only theoretically
tractable approach and disallow preemption in the original scheduling algorithms but allow preemption in the candidate
UPS. In practice, when we care only about approximately replaying schedules, the distinction is of less importance,
and we simulate LSTF in the non-preemptive form.

5Note that this ingress switch can directly observe i(p) as the time the packet arrives.

5.1. THEORY: REPLAYING SCHEDULES 84

of information the header initialization process can use, and find that this is a key determinant in
whether one can find a UPS.

We make three observations about the above model. First, our model assumes greater capability
at the edge than in the core, in keeping with common assumptions that the network edge is capable
of greater processing complexity, exploited by many architectural proposals[123, 104, 22]. Second,
when initializing a packet p’s header, a UPS can only use the input time, output time and the path
information for p itself, and must be oblivious [48] to the corresponding attributes for other packets
in the network. Finally, the key source of impracticality in our model is the assumption that the
output times o(p) are known at the ingress. However, a different interpretation of o(p) suggests a
more practical application of replayability (and thus our results): if we assign o(p) as the “desired”
output time for each packet in the network, then the existence of a UPS tells us that if these goals
are viable then the UPS will be able to meet them.

5.1.2 Theoretical Results
In this section we only summarize our key theoretical results. The detailed proofs are in Ap-

pendix A.

Existence of a UPS under omniscient initialization. Suppose we give the header-initialization
process extensive information in the form of times o(p,α) which represent when p was scheduled
by switch α in the original schedule. We can then insert an n-dimensional vector in the header of
every packet p, where the ith element contains o(p,αi) with αi being the ith hop in path(p). Every
time a packet arrives at a switch, the switch can pop the value at the head of this vector and use
that as its priority (earlier values of output times get higher priority). This can perfectly replay
any viable schedule (proof in Appendix A.1), which is not surprising, as having such detailed
knowledge of the internal scheduling of the network is tantamount to knowing all the scheduling
decisions made by the original algorithm. For reasons discussed previously, our definition limited
the information available to the output time from the network as a whole, and not from each
individual switch; we call this black-box initialization.

Nonexistence of a UPS under black-box initialization. We can prove by counter-example (de-
scribed in Appendix A.2) that there is no UPS under the conditions stated in §5.1.1. We provide
some intuition for the counter-example later in this section. Given this impossibility result, we now
ask how close can we get to a UPS?

Natural candidates for a near-UPS. Simple priority scheduling 6 can reproduce all viable sched-
ules on a single switch, so it would seem to be a natural candidate for a near-UPS. However, for
multihop networks it may be important to make the scheduling of a packet dependent on what has
happened to it earlier in its path. For this, we consider Least Slack Time First (LSTF) [77].

In LSTF, each packet p carries its slack value in the packet header, which is initialized to

6By simple priority scheduling, we mean that the ingress assigns priority values to the packets and the switches
simply schedule packets based on these static priority values.

5.1. THEORY: REPLAYING SCHEDULES 85

slack(p) = (o(p)− i(p)− tmin(p,src(p),dest(p))) at the ingress; where src(p) is the ingress of p,
dest(p) is the egress of p and tmin(p,α,β) is the time p takes to go from switch α to switch β in
an uncongested network. Therefore, the slack of a packet indicates the maximum queueing time
(excluding the transmission time at any switch) that the packet could tolerate without violating the
replay condition. Each switch, then, schedules the packet which has the least remaining slack at
the time when its last bit is transmitted. Before forwarding the packet, the switch overwrites the
slack value in the packet’s header with its remaining slack (i.e.the previous slack time minus the
duration for which it waited in the queue before being transmitted).

An alternate way to implement this algorithm is having a static packet header as in Earliest
Deadline First (EDF) and using additional state in the switches (reflecting the value of tmin) to
compute the priority for a packet at each switch, but here we chose to use an approach with dynamic
packet state. We provide more details about EDF and prove its equivalence to LSTF in Appendix
A.4.

Key Results. Our analysis shows that the difficulty of replay is determined by the number of
congestion points, where a congestion point is defined as a node where a packet is forced to “wait”
during a given schedule. 7 Our theorems show the following key results:
1. Priority scheduling can replay all viable schedules with no more than one congestion point per
packet, and there are viable schedules with no more than two congestion points per packet that it
cannot replay. (Proof in Appendix A.5.)
2. LSTF can replay all viable schedules with no more than two congestion points per packet,
and there are viable schedules with no more than three congestion points per packet that it cannot
replay. (Proof in Appendix A.6.)
3. There is no scheduling algorithm (obeying the aforementioned constraints on UPSs) that can
replay all viable schedules with no more than three congestion points per packet, and the same
holds for larger numbers of congestion points. (Proof in Appendix A.2.)
Main Takeaway. LSTF is closer to being a UPS than simple priority scheduling, and no other
candidate UPS can do better in terms of handling more congestion points.

Intuition. It is clear why LSTF is superior to priority scheduling: by carrying information about
previous delays in the packet header (in the form of the remaining slack value), LSTF can “make up
for lost time” at later congestion points, whereas for priority scheduling packets with low priority
might repeatedly get delayed (and thus miss their target output times).

We now provide some intuition for why LSTF works for two congestion points and not for
three, by presenting an outline of the proof detailed in Appendix A.6. We define the local deadline
of a packet p at a switch α as the time when p is scheduled by α in the original schedule. The
global deadline of p at α is defined as the time by when p must leave α in order to meet its target

7For our theoretical results, we adopt a pessimistic definition of a congestion point, where a switch that falls in
the path of more than one flow is a congestion point (along with switches having output link capacity less than input
link capacity or non work-conserving original schedules that make a packet wait explicitly). Since this definition is
independent of per-packet dynamics, the set of congestion points remains the same in the original schedule and in
the replay. This pessimistic definition is not required in practice, where the difficulty of replay would depend on the
number of switches in a packet’s path which see significant queuing.

5.1. THEORY: REPLAYING SCHEDULES 86

output time, assuming that it sees no queuing delay after α . Hence, global deadline is the time
when p’s slack at α becomes zero. We can prove that as long as all packets arrive at a switch at
or before their local deadlines during the LSTF replay, no packet can miss its global deadline at α

(i.e. no packet can have a negative slack at α). The proof for this follows from the fact that if all
packets arrive at or before their local deadline at α , there exists a feasible schedule where no packet
misses its global deadline at α (this feasible schedule is the same as the original schedule at α). We
can now apply the standard LSTF (or EDF) optimality proof technique for a single processor [80],
to show that this feasible schedule can be iteratively transformed to a feasible LSTF schedule at
switch α .

When there are only two congestion points per packet, it is guaranteed that every packet arrives
at or before its local deadline at each congestion point during the LSTF replay. A packet can
never arrive after its local deadline at its first congestion point, because it sees no queuing before
that. Moreover, the local deadline is the same as the global deadline at the last congestion point.
Therefore, if a packet arrives after its local deadline at its second (and last) congestion point, it
means that it must have already missed its global deadline earlier, which, again, is not possible.

However, when there are three congestion points per packet, there is no guarantee that every
packet arrives at or before its local deadline at each congestion point during the LSTF replay (due
to the presence of a “middle” congestion point). One can, therefore, create counterexamples
where unless LSTF (or, in fact, any other scheduling algorithm) makes precisely the right choice at
the first congestion point of a packet p, at least one packet will miss its target output time, due to p
arriving after its local deadline at its middle congestion point. We present such a counter-example
in Appendix A.2, where we illustrate two ways of scheduling the same set of packets (having the
same input times and paths) on a given topology with three congestion points per packet, resulting
in two cases. The output times for two of the packets (named a and x), which compete with each
other at the first congestion point (α0), remains the same in both cases. However, one case requires
scheduling a before x at α0 and the second case requires scheduling x before a at α0, else a packet
will end up missing its target output time at the second (or middle) congestion points of a and x
respectively. Since the information available for header initialization for the two packets is the
same in both cases, no deterministic scheduling algorithm with blackbox header initialization can
make the correct choice at the first congestion point in both cases.

5.1.3 Empirical Results
The previous section clarified the theoretical limits on a perfect replay. Here we investigate, via

ns-2 simulations [98], how well (a non-preemptable version of) LSTF can approximately replay
schedules in realistic networks. 8

Experiment Setup.

Default scenario. We use a simplified Internet-2 topology [63], identical to the one used in [92]
(consisting of 10 core switches connected by 16 links). We connect each core switch to 10 edge

8We have made our simulator code available at http://netsys.github.io/ups/.

http://netsys.github.io/ups/

5.1. THEORY: REPLAYING SCHEDULES 87

switches using 1Gbps links and each edge switch is attached to an end host via a 10Gbps link.
The number of hops per packet is in the range of 4 to 7, excluding the end hosts. We refer to this
topology as I2 1Gbps-10Gbps. Each end host generates UDP flows using a Poisson inter-arrival
model, with the destination picked randomly for each flow. Our default scenario runs at 70%
utilization. The flow sizes are picked from a heavy-tailed distribution [13, 15]. Since our focus
is on packet scheduling, not dropping policies, we use large buffer sizes that ensure no packet
drops. Note that we use higher than usual access bandwidths for our default scenario to increase
the stress on the schedulers in the core switches, where the number of congestion points seen by
most packets is two, three or four for 22%, 44% and 24% packets respectively. 9 We also present
results for smaller (and more realistic) access bandwidths, where most packets see smaller number
of congestion points (one, two or three for 18%, 46% and 26% packets respectively), resulting in
better replay performance.

Varying parameters. We tested a wide range of experimental scenarios by varying different pa-
rameters from their default values. We present results for a small subset of these scenarios here:
(1) the default scenario with network utilization varied from 10-90% (2) the default scenario but
with 1Gbps link between the endhosts and the edge switches (I2 1Gbps-1Gbps), with 10Gbps links
between the edge switches and the core (I2 10Gbps-10Gbps) and with all link capacities in the I2
1Gbps-1Gbps topology reduced by a factor of 10 (I2 / 10) and (3) the default scenario applied to
two different topologies, a bigger Rocketfuel topology [84] (with 83 core switches connected by
131 links) and a full bisection bandwidth datacenter (fat-tree) topology from [11] (with 10Gbps
links). Note that our other results were generally consistent with those presented here.

Scheduling algorithms. Our default case, which we expected to be hard to replay, uses completely
arbitrary schedules produced by a random scheduler (which picks the packet to be scheduled ran-
domly from the set of queued up packets). We also present results for more traditional packet
scheduling algorithms: FIFO, LIFO, fair queuing [30], and SJF (shortest job first using priorities).
We also looked at two scenarios with a mixture of scheduling algorithms: one where half of the
switches run FIFO+ [27] and the other half run fair queuing, and one where fair queueing is used
to isolate two classes of traffic, with one class being scheduled with SJF and the other class being
scheduled with FIFO.

Evaluation Metrics. We consider two metrics. First, we measure the fraction of packets that are
overdue (i.e., which do not meet the original schedule’s target). Second, to capture the extent to
which packets fail to meet their targets, we measure the fraction of packets that are overdue by
more than a threshold value T , where T is one transmission time on the bottleneck link (≈ 12µs
for 1Gbps). We pick this value of T both because it is sufficiently small that we can assume being
overdue by this small amount is of negligible practical importance, and also because this is the
order of violation we should expect given that our implementation of LSTF is non-preemptive.
While we may have many small violations of replay (because of non-preemption), one would hope

9To compute this, we record the number of non-empty queues (excluding the endhost queues) encountered by each
packet.

5.1. THEORY: REPLAYING SCHEDULES 88

Topology Avg. Link
Utilization

Scheduling
Algorithm

Fraction of packets overdue

Total > T

I2 1Gbps-10Gbps 70% Random 0.0021 0.0002

I2 1Gbps-10Gbps
10%

Random
0.0007 0.0

30% 0.0281 0.0017
50% 0.0221 0.0002
90% 0.0008 4×10−6

I2 1Gbps-1Gbps 70% Random 0.0204 8×10−6

I2 10Gbps-10Gbps 0.0631 0.0448
I2 / 10 0.0127 0.00001

Rocketfuel 70% Random 0.0246 0.0063
Datacenter 0.0164 0.0154

I2 1Gbps-10Gbps 70%

FIFO 0.0143 0.0006
FQ 0.0271 0.0002
SJF 0.1833 0.0019

LIFO 0.1477 0.0067
FQ/FIFO+ 0.0152 0.0004

FQ: SJF/FIFO 0.0297 0.0003

Table 5.1: LSTF replay performance across various scenarios. T represents the transmission time at the
bottleneck link.

that most such violations are less than T .

Results. Table 5.1 shows the simulation results for LSTF replay for various scenarios, which we
now discuss.

(1) Replayability. Consider the column showing the fraction of packets overdue. In all but three
cases (we examine these shortly) over 97% of packets meet their target output times. In addition,
the fraction of packets that did not arrive within T of their target output times is much smaller;
even in the worst case of SJF scheduling (where 18.33% of packets failed to arrive by their target
output times), only 0.19% of packets are overdue by more than T . Most scenarios perform sub-
stantially better: e.g., in our default scenario with Random scheduling, only 0.21% of packets miss
their targets and only 0.02% are overdue by more than T . Hence, we conclude that even without
preemption LSTF achieves good (but not perfect) replayability under a wide range of scenarios.

(2) Effect of varying network utilization. The second row in Table 5.1 shows the effect of varying
network utilization. We see that at low utilization (10%), LSTF achieves exceptionally good re-
playability with a total of only 0.07% of packets overdue. Replayability deteriorates as utilization
is increased to 30% but then (somewhat surprisingly) improves again as utilization increases. This
improvement occurs because with increasing utilization, the amount of queuing (and thus the av-
erage slack across packets) in the original schedule also increases. This provides more room for

5.1. THEORY: REPLAYING SCHEDULES 89

slack re-adjustments when packets wait longer at queues seen early in their paths during the replay.
We observed this trend in all our experiments though the exact location of the “low point” varied
across settings.

(3) Effect of varying link bandwidths. The third row shows the effect of changing the relative values
of access/edge vs. core links. We see that while decreasing access link bandwidth (I2 1Gbps-
1Gbps) resulted in a much smaller fraction of packets being overdue by more than T (0.0008%),
increasing the edge-to-core link bandwidth (I2 10Gbps-10Gbps) resulted in a significantly higher
fraction (4.48%). For I2 1Gbps-1Gbps, packets are paced by the endhost link, resulting in few
congestion points thus improving LSTF’s replayability. In contrast, with I2 10Gbps-10Gbps, both
the access and edge links have a higher bandwidth than most core links; hence packets (that are no
longer paced at the endhosts or the edges) arrive at the core switches very close to one another and
hence the effect of one packet being overdue cascades over to the following packets. Decreasing
the absolute bandwidths in I2 / 10, while keeping the ratio between access and edge links the same
as that in I2 1Gbps-1Gbps, did not produce significantly different results compared to I2 1Gbps-
1Gbps, indicating that the relative link capacities have a greater impact on the replay performance
than the absolute link capacities.

(4) Effect of varying topology. The fourth row in Table 5.1 shows our results using different topolo-
gies. LSTF performs well in both cases: only 2.46% (Rocketfuel) and 1.64% (datacenter) of pack-
ets fail replay. These numbers are still somewhat higher than our default case. The reason for this
is similar to that for the I2 10Gbps-10Gbps topology – all links in the datacenter fat-tree topology
are set to 10Gbps, while in our simulations, we set half of the core links in the Rocketfuel topology
to have bandwidths smaller than the access links.

(5) Varying Scheduling Algorithms. Row five in Table 5.1 shows LSTF’s ability to replay different
scheduling algorithms. We see that LSTF performs well for FIFO, FQ, and the combination cases
(a mixture of FQ/FIFO+ and having FQ share between FIFO and SJF); e.g., with FIFO, fewer
than 0.06% of packets are overdue by more than T . However, there are two problematic cases: SJF
and LIFO fare worse with 18.33% and 14.77% of packets failing replay (although only 0.19% and
0.67% of packets are overdue by more than T respectively). The reason stems from a combination
of two factors: (1) for these algorithms a larger fraction of packets have a very small slack value (as
one might expect from the scheduling logic which produces a larger skew in the slack distribution),
and (2) for these packets with small slack values, LSTF without preemption is often unable to
“compensate” for misspent slack that occurred earlier in the path. To verify this intuition, we
extended our simulator to support preemption and repeated our experiments: with preemption, the
fraction of packets that failed replay dropped to 0.24% (from 18.33%) for SJF and to 0.25% (from
14.77%) for LIFO.

(6) End-to-end (Queuing) Delay. Our results so far evaluate LSTF in terms of measures that we
introduced to test universality. We now evaluate LSTF using the more traditional metric of packet
delay, focusing on the queueing delay a packet experiences. Figure 5.1 shows the CDF of the
ratios of the queuing delay that a packet sees with LSTF to the queuing delay that it sees in the

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 90

0.0 0.5 1.0 1.5 2.0
Ratio of queuing delay (LSTF : Original Schedule)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Random
FIFO
FQ
SJF
LIFO
FQ & FIFO+
SJF-FQ-FIFO

Figure 5.1: Ratio of queuing delay with varying packet scheduling algorithms, on I2 1Gbps-10Gbps topol-
ogy at 70% utilization.

original schedule, for varying packet scheduling algorithms. We were surprised to see that most of
the packets actually have a smaller queuing delay in the LSTF replay than in the original schedule.
This is because LSTF eliminates “wasted waiting”, in that it never makes packet A wait behind
packet B if packet B is going to have significantly more waiting later in its path.

(7) Comparison with Priorities. To provide a point of comparison, we also did a replay using
simple priorities for our default scenario, where the priority for a packet p is set to o(p) (which
seemed most intuitive to us). As expected, the resulting replay performance is much worse than
LSTF: 21% packets are overdue in total, with 20.69% being overdue by more than T . For the same
scenario, LSTF has only 0.21% packets overdue in total, with merely 0.02% packets overdue by
more than T.

Summary. We observe that, in almost all cases, less than 1% of the packets are overdue with
LSTF by more than T . The replay performance initially degrades and then starts improving as the
network utilization increases. The distribution of link speeds has a bigger influence on the replay
results than the scale of the topology. Replay performance is better for scheduling algorithms that
produce a smaller skew in the slack distribution. LSTF replay performance is significantly better
than simple priorities replay performance, with the most intuitive priority assignment.

5.2 Practical: Achieving Various Objectives
While replayability demonstrates the theoretical flexibility of LSTF, it does not provide evi-

dence that it would be practically useful. In this section we look at how LSTF can be used in
practice to meet the following performance objectives: minimizing average flow completion times,
minimizing tail latencies, and achieving per-flow fairness.

Since the knowledge of a previous schedule is unavailable in practice, instead of using a given
set of output times (as done in §5.1.3), we now use heuristics to assign the slacks in an effort to
achieve these objectives. Our goal here is not to outperform the state-of-the-art for each objective
in all scenarios, but instead we aim to be competitive with the state-of-the-art in most common
cases.

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 91

1460
2920 4380 7300

10220
58400

105120
200020

389820
1733020

3076220

Flow Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
vg

 F
C

T
(s

ec
s) FIFO: 0.288s

SRPT: 0.208s
SJF: 0.194s
LSTF: 0.195s

Expt. Setup Avg FCT (s)
FIFO SRPT SJF LSTF

I2 1Gbps-10Gbps at 30% util. 0.189 0.183 0.182 0.182
I2 1Gbps-10Gbps at 50% util. 0.212 0.189 0.185 0.185
I2 1Gbps-10Gbps at 70% util. 0.288 0.208 0.194 0.195
I2 1Gbps-1Gbps at 70% util. 0.252 0.209 0.202 0.202

I2 / 10 at 70% util. 0.899 0.658 0.620 0.621
Rocketfuel at 70% util. 0.305 0.240 0.228 0.228
Datacenter at 70% util. 0.058 0.018 0.016 0.015

Figure 5.2: The graph shows the average FCT bucketed by flow size obtained with FIFO, SRPT and SJF
(using priorities and LSTF) for I2 1Gbps-10Gbps at 70% utilization. The legend indicates the average FCT
across all flows. The table indicates the average FCTs for varying settings.

In presenting our results for each objective, we first describe the slack initialization heuristic
we use and then present some ns-2 [98] simulation results on (i) how LSTF performs relative to
the state-of-the-art scheduling algorithm and (ii) how they both compare to FIFO scheduling (as a
baseline to indicate the overall impact of specialized scheduling for this objective). As our default
case, we use the I2 1Gbps-10Gbps topology using the same workload as in the previous section
(running at 70% average utilization). We also present aggregate results at different utilization
levels and for variations in the default topology (I2 1Gbps-1Gbps and I2 / 10), for the bigger
Rocketfuel topology, and for the datacenter topology (for selected objectives). The switches use
non-preemptive scheduling (including for LSTF) and have finite buffers (packets with the highest
slack are dropped when the buffer is full). Unless otherwise specified, our experiments use TCP
flows with switch buffer sizes of 5MB for the WAN simulations (equal to the average bandwidth-
delay product for our default topology) and 500KB for the datacenter simulations.

5.2.1 Average Flow Completion Time
While there have been several proposals on how to minimize flow completion time (FCT) via

the transport protocol [34, 92], here we focus on scheduling’s impact on FCT, while using standard
TCP New Reno at the endhosts. In [11] it is shown that (i) Shortest Remaining Processing Time
(SRPT) is close to optimal for minimizing the mean FCT and (ii) Shortest Job First (SJF) produces
results similar to SRPT for realistic heavy-tailed distribution. Thus, these are the two algorithms
we use as benchmarks.

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 92

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Packet Delay (s)

10-6

10-5

10-4

10-3

10-2

10-1

100

C
om

pl
em

en
ta

ry
 C

D
F

FIFO: Avg = 0.0780s,
99%ile = 0.2142s

LSTF: Avg = 0.0786s,
99%ile = 0.1958s

Expt. Setup Avg Delay (s) 99%ile Delay (s)
FIFO LSTF FIFO LSTF

I2 1Gbps-10Gbps at 30% util. 0.0411 0.0411 0.0911 0.0868
I2 1Gbps-10Gbps at 50% util. 0.0516 0.0517 0.1288 0.1195
I2 1Gbps-10Gbps at 70% util. 0.0780 0.0786 0.2142 0.1958
I2 1Gbps-1Gbps at 70% util. 0.0771 0.0771 0.2163 0.216

I2 / 10 at 70% util. 0.5762 0.5765 1.9393 1.9367
Rocketfuel at 70% util. 0.1891 0.1883 3.8139 3.7199
Datacenter at 70% util. 0.0250 0.0240 0.1352 0.1100

Figure 5.3: Tail packet delays for LSTF compared to FIFO. The graph shows the complementary CDF of
packet delays for the I2 1Gbps-10Gbps topology at 70% utilization with the average and 99%ile packet
delay values indicated in the legend. The table shows the corresponding results for varying settings.

Slack Initialization. We make LSTF emulate SJF by initializing the slack for a packet p as
slack(p) = fs(p)∗D, where fs(p) is the size of the flow to which p belongs (in terms of the number
of MSS-sized packets in the flow) and D is a value much larger than the queuing delay seen by any
packet in the network. We use a value of D = 1 sec for our simulations.

Evaluation. Figure 5.2 compares LSTF with three other scheduling algorithms – FIFO, SJF and
SRPT with starvation prevention as in [11]. Both SJF and SRPT have significantly lower mean
FCT than FIFO. The LSTF based execution of SJF produces nearly the same results as the strict
priorities based execution.

5.2.2 Tail Packet Delays
Clark et. al. [27] proposed the FIFO+ algorithm, where packets are prioritized at a switch

based on the amount of queuing delay they have seen at their previous hops, for minimizing the
tail packet delays in multi-hop networks. FIFO+ is identical to LSTF scheduling where all packets
are initialized with the same slack value.

Slack Initialization. All incoming packets are initialized with the same slack value (we use an
initial slack value of 1 second in our simulations). With the slack update taking place at every
switch, the packets that have waited longer in the network queues are naturally given preference
over those that have waited for a smaller duration.

Evaluation. We compare LSTF (which, with the above slack initialization, is identical to FIFO+)

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 93

with FIFO, the primary metric being the 99%ile end-to-end one way delay seen by the packets.
Figure 5.3 shows our results. To better understand the impact of the two scheduling policies on the
packet delays, our evaluation uses an open-loop setting with UDP flows. With LSTF, packets that
have traversed through more number of hops, and have therefore spent more slack in the network,
get preference over shorter-RTT packets that have traversed through fewer hops. While this might
produce a slight increase in the average packet delay, it reduces the tail. This is in-line with the
observations made in [27].

5.2.3 Fairness
Fairness is a common scheduling goal, which involves two different aspects: asymptotic band-

width allocation (eventual convergence to the fair-share rate) and instantaneous bandwidth allo-
cation (enforcing this fairness on small time-scales, so every flow experiences the equivalent of a
per-flow pipe). The former can be measured by looking at long-term throughput measures, while
the latter is best measured in terms of the flow completion times of relatively short flows (which
measures bandwidth allocation on short time scales). We now show how LSTF can be used to
achieve both of these goals, but more effectively the former than the latter. Our slack assignment
heuristic can also be easily extended to achieve weighted fair queuing, but we do not present those
results here.

Slack Initialization. The slack assignment for fairness works on the assumption that we have
some ballpark notion of the fair-share rate for each flow and that it does not fluctuate wildly with
time. Our approach to assigning slacks is inspired from [145]. We assign slack = 0 to the first
packet of the flow and the slack of any subsequent packet pi is then initialized as:

slack(pi) = max
(

0, slack(pi−1)+
size(pi)

rest
−
(
i(pi)− i(pi−1)

))
where i(p) is the arrival time of a packet p at the ingress, size(p) is its size in bits, and rest is
an estimate of the fair-share rate r∗ in bps. We show that the above heuristic leads to asymptotic
fairness, for any value of rest that is less than r∗, as long as all flows use the same value. The same
heuristic can also be used to provide instantaneous fairness, when we have a complex mix of short-
lived flows, where the rest value that performs the best depends on the link bandwidths and their
utilization levels. A reasonable value of rest can be estimated using knowledge about the network
topology and traffic matrices, though we leave a detailed exploration of this to future work.

Evaluation: Asymptotic Fairness. We evaluate the asymptotic fairness property by running our
simulation on the Internet2 topology with 10Gbps edges, such that all the congestion happens at
the core. However, we reduce the propagation delay to 10µs for each link, to make the experiment
more scalable, while the buffer size is kept large (50MB) so that fairness is dominated by the
scheduling policy and not by how TCP reacts to packet drops. We start 90 long-lived TCP flows
with a random jitter in the start times ranging from 0-5ms. The topology is such that the fair share
rate of each flow on each link in the core network (which is shared by up to 13 flows) is around
1Gbps. We use different values for rest ≤ 1Gbps for computing the initial slacks and compare

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 94

0 5 10 15 20
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s FIFO

FQ
LSTF@1Gbps
LSTF@0.5Gbps

LSTF@0.1Gbps
LSTF@0.05Gbps
LSTF@0.01Gbps

Figure 5.4: Fairness for long-lived flows on Internet2 topology. The legend indicates the value of rest used
for LSTF slack initialization.

0
50

100
150
200
250

O
ld

 F
lo

w
's

 R
at

e
(M

bp
s) FQ

LSTF@50Mbps (fair share)
LSTF@20Mbps
LSTF@10Mbps

0 2 4 6 8 10 12 14 16
Time (ms)

0
50

100
150
200
250

N
ew

 F
lo

w
's

 R
at

e
(M

bp
s)

Figure 5.5: Control experiment: 20 flows share a single bottleneck link of 1Gbps and a 21st flow is added
after 5ms. The graph shows the rate allocations for an old flow and the new flow with Fair Queuing and for
LSTF with varying rest .

our results with fair queuing (FQ). Figure 5.4 shows the fairness computed using Jain’s Fairness
Index [67], from the throughput each flow receives per millisecond. Since we use the throughput
received by each of the 90 flows to compute the fairness index, it reaches 1 with FQ only at 5ms,
after all the flows have started. We see that LSTF is able to converge to perfect fairness, even
when rest is 100X smaller than r∗. It converges slightly sooner when rest is closer to r∗, though the
subsequent differences in the time to convergence decrease with decreasing values of rest .

Intuition for why it works. The reason behind why any slack assignment with rest < r∗ leads to
convergence to fairness is quite straight-forward and is explained by the control experiment shown
in Figure 5.5. 20 long-lived TCP flows share a single bottleneck link of 1Gbps (giving a fair share
rate of 50Mbps) and a 21st flow is added after 5ms. Since the first 20 flows have started early, the
queue at the bottleneck link already contains packets belonging to these flows.

When rest = 50Mbps, the actual queuing delay experienced by a packet is almost equal to the

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 95

SA	

SB	

SC	

DA	 DC	

DB	
8Gbps

10Gbps 10Gbps

10Gbps

10Gbps 10Gbps

10Gbps 5Gbps 1Gbps

rest value (Mbps) Expected
Throughput

(Mbps)

Achieved
Throughput

(Mbps)

A B C A B C A B C

2000 100 100 4761 238 762 4762 238 763

900 100 100 4500 500 500 4499 501 500

500 100 100 4167 500 500 4166 501 500

200 100 100 3333 500 500 3333 501 500

100 100 100 2500 500 500 2500 500 501

100 100 500 2500 167 833 2500 167 834

Figure 5.6: Weighted Fairness on a multi-bottleneck topology (drawn above). The link capacities and the
source/destination of each flow are indicated in the figure. Flows A and B share a 5Gbps link and then Flows
B and C share a 1Gbps link.

slack value assigned to it. Therefore, at any given point of time, the first packet of each flow
present in the queue will have a slack value which is approximately equal to zero. The next packet
of each flow will have a higher slack value (around 1500bytes/50Mbps = 0.24ms). By the time the
corresponding first packets of every flow in the queue have been transmitted, the slack values of the
next packet would also have been reduced to zero and so on. It therefore produces a round-robin
pattern for scheduling packets across flows, as is done by FQ. Therefore, when the 21st flow starts
at 5ms, with the first packet coming in with zero slack, the next one with 0.24ms slack and so on,
it immediately starts following the round-robin pattern as well.

However, when rest is smaller than 50Mbps, then the packets of the old flows already present
in the queue have a higher slack value than what they actually experience in the network. The
first packet of every flow in the queue therefore has a slack which is more than 0 when the 21st
flow comes in at 5ms. The earlier packets of the new flow therefore get precedence over any of
the existing packets of the old flows, resulting in the spike in the rate allocated to the new flow as
shown in Figure 5.5. Nonetheless, with the slack of every newly arriving packet of the 21st flow
being higher than the previous one and with the slack of the already queued up packet decreasing
with time, the slack value of the first packet in the queue for new flow and the old flows soon catch
up with each other and the schedule starts following a round robin pattern again. The closer rest is
to the fair-share rate, the sooner the slack values of the old flows and the new flow catch up with
each other. The duration for which a packet ends up waiting in the queue is upper-bounded by the
time it would have waited, had all the flows arrived at the same time and were being serviced at
their fair share rate.

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 96

2-5 2-4 2-3 2-2 2-1 20 21

Flow Completion Time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

FQ
FIFO

LSTF@500Mbps
LSTF@200Mbps

LSTF@100Mbps
LSTF@10Mbps

0.6 0.8 1.0 1.2 1.4 1.6
Flow Completion Time (sec)

0.95
0.96
0.97
0.98
0.99
1.00

C
D

F

Focussing on the tail

Figure 5.7: CDF of FCTs for the I2 1Gbps-10Gbps topology at 70% utilization.

Weighted Fairness with multiple-bottlenecks. One can see how the above logic can be extended for
achieving weighted fairness. Moreover, when a packet sees multiple bottlenecks, the slack update
(subtraction of the duration for which the packet waits) at the first bottleneck ensures that the next
bottleneck takes into account the rate-limiting happening at the first one and the packets are given
precedence accordingly.

We did a control experiment to evaluate weighted fairness with LSTF on a multi-bottleneck
topology. We started three UDP flows with a start-time jitter between 0 and 1ms, on the topology
as shown in Figure 5.6. We ran the simulation for 30ms and computed the throughput each flow
received for the last 15ms. We varied the values of rest used for assigning slacks to each flow,
relative to one another, to assign different weights to different flows. For example, rest assignment
{A : 900Mbps,B : 100Mbps,C : 100Mbps} results in Flow A getting 9 times more share on the
5Gbps link than Flow B, with Flows B and C sharing the 1Gbps link equally. We compute the ex-
pected throughput based on the assigned rest values and find that the throughput actually achieved
is almost the same, as shown in the table.

Evaluation: Instantaneous Fairness. As one might expect, the choice of rest has a bigger impact
on instantaneous fairness than on asymptotic fairness. A very high rest value would not provide
sufficient isolation across flows. On the other hand, a very small rest value can starve the long flows.
This is because the assigned slack values for the later packets of long flows with high sequence
numbers would be much higher than the actual slack they experience. As a result, they will end
up waiting longer in the queues, while the initial packets of newer flows with smaller slack values
would end up getting a higher precedence.

5.2. PRACTICAL: ACHIEVING VARIOUS OBJECTIVES 97

Expt. Setup Avg FCT across bytes (s) Best rest Reasonable rest
Range

FIFO FQ LSTF (Mbps) (Mbps)
I2 1Gbps-10Gbps at 30% util. 0.563 0.537 0.538 300 10-900
I2 1Gbps-10Gbps at 50% util. 0.626 0.549 0.555 200 10-800
I2 1Gbps-10Gbps at 70% util. 0.811 0.622 0.632 100 50-200
I2 1Gbps-1Gbps at 70% util. 0.766 0.630 0.652 100 50-400

I2 / 10 at 70% util. 4.838 2.295 2.759 10 10-20
Rocketfuel at 70% util. 0.964 0.796 0.824 100 50-300

Table 5.2: FCT averaged across bytes for FIFO, FQ and LSTF (with best rest value) across varying settings.
The last column indicates the range of rest values that produce results within 10% of the best rest result.

To verify this intuition, we evaluated our LSTF slack assignment scheme by running our stan-
dard workload with a mix of TCP flows ranging from sizes 1.5KB - 3MB on our default I2 1Gbps-
10Gbps topology at 70% utilization, with 50MB buffer size. Note that the traffic pattern is now
bursty and the instantaneous utilization of a link is often lower or higher than the assigned average
utilization level. The CDF of the FCTs thus obtained is shown in Figure 5.7. As expected, the
distribution of FCTs looks very different between FQ and FIFO. FQ isolates the flows from each-
other, significantly reducing the FCT seen by short to medium size flows, compared to FIFO. The
long flows are also helped a little by FQ, again due to the isolation provided from one-another.

LSTF performance varies somewhere in between FIFO and FQ, as we vary rest values between
500Mbps to 10Mbps. A high value of rest = 500Mbps does not provide sufficient isolation and
the performance is close to FIFO. As we reduce the value of rest , the “isolation-effect” increases.
However, for very small rest values (e.g. 10Mbps), the tail FCT (for the long flows) is much higher
than FQ, due to the starvation effect explained before.

We try to capture this trade-off between isolation for short and medium sized flows and starva-
tion for long flows, by using average FCT across bytes (in other words, the average FCT weighted
by flow size) as our key metric. We term the rest value that achieves the sweetest spot in this
trade-off as the “best” rest value. The rest values that produce average FCT which is within 10% of
the value produced by the best rest are termed as “reasonable” rest values. Table 5.2 presents our
results across different settings. We find that (1) LSTF produces significantly lower average FCT
than FIFO, performing only slightly worse than FQ (2) As expected, the best rest value decreases
with increasing utilization and with decreasing bandwidths (as in the case of I2 / 10 topology),
while the range of reasonable rest values gets narrower with increasing utilization and with de-
creasing bandwidths.

Thus, for instantaneous fairness, LSTF would require some estimate of the per-flow rate. We
believe that this can be obtained from the knowledge of the network topology (in particular, the
link bandwidths), which is available to the ISPs, and on-line measurement of traffic matrices and
link utilization levels, which can be done using various tools [26, 103, 18]. However, this does
impose a higher burden on deploying LSTF than on FQ or other such scheduling algorithms.

5.3. INCORPORATING NETWORK FEEDBACK 98

5.2.4 Limitations of LSTF: Policy-based objectives
So far we showed how LSTF achieves various performance objectives. We now describe certain

policy-based objectives that are hard to achieve with LSTF.

Multi-tenancy. As network virtualization becomes more popular, networks are often called upon
to support multiple tenants or traffic classes, with each having their own networking objectives.
Network providers can enforce isolation across such tenants (or classes of traffic) through static
bandwidth provisioning, which can be implemented via dedicated hard-wired links [45, 89] or
through multiqueue scheduling algorithms such as fair queuing or round robin [30]. LSTF can
work in conjunction with both of these isolation mechanisms to meet different desired performance
objectives for each tenant (or class of traffic).

However, without such multiqueue support it cannot provide such isolation or fairness on a per-
class or per-tenant basis. This is because for class-based fairness (which also includes hierarchical
fairness) the appropriate slack assignment for a packet at a particular ingress depends on the input
from other ingresses (since these packets can belong to the same class). Note, however, that if
two or more classes/tenants are separated by strict prioritization, LSTF can be used to enforce the
appropriate precedence order, along with meeting the individual performance objective for each
class.

Traffic Shaping. Shaping or rate limiting flows at a particular switch requires non-work-
conserving algorithms such as Token Bucket Filters [131]. LSTF itself is a work-conserving algo-
rithm and cannot shape or rate limit the traffic on its own. We believe that shaping the traffic only at
the edge, with the core remaining work-conserving, would also produce the desired network-wide
behavior, though this requires further exploration.

5.3 Incorporating Network Feedback
Up until now we have considered packet scheduling in isolation, whereas in the Internet today

switches send implicit feedback to hosts via packet drops [41, 96] (or marking, as in ECN [106]).
This is often called Active Queue Management (AQM), and its goal is to reduce the per-packet
delays while keeping throughput high. We now consider how we might generalize our LSTF
approach to incorporate such network feedback as embodied in AQM schemes.

LSTF is just a scheduling algorithm and cannot perform AQM on its own. Thus, at first glance,
one might think that incorporating AQM into LSTF would require implementing the AQM scheme
in each switch, which would then require us to find a universal AQM scheme in order to fulfill our
pursuit of universality. On the contrary, LSTF enables a novel edge-based approach to AQM based
on the following insights: (1) As long as appropriate packets are chosen, it does not matter where
they are being dropped (or marked) – whether it is inside the core switches or at the edge. (2) In
addition to scheduling packets LSTF produces a very useful by-product, carried by the slack values
in the packets, which gives us a precise measure of the one-way queuing delay seen by the packet
and can be used for AQM. For obtaining this by-product, an extra field is added to the packet

5.3. INCORPORATING NETWORK FEEDBACK 99

header at the ingress which stores the assigned slack value (called the initial slack field), which
remains untouched as the packet traverses the network. The other field where the ingress stores the
assigned slack value is updated as per the LSTF algorithm; we call this the current slack field. The
precise amount of queuing delay seen by the packet within the network (or the used slack value)
can be computed at the edge by simply comparing the initial slack field and the current slack field.

We evaluate our edge-based approach to AQM in the context of (1) CoDel [96], the state-of-the-
art AQM scheme for wide area networks and (2) ECN used with DCTCP [8], the state-of-the-art
AQM scheme for datacenters.

5.3.1 Emulating CoDel from Edge
Background. In CoDel, the amount of time a packet has spent in a queue is recorded as the sojourn
time. A packet is dropped if its sojourn time exceeds a fixed target (set to 5ms [95]), and if the
last packet drop happened beyond a certain interval (initialized to 100ms [95]). When a packet is
dropped, the interval value is reduced using a control law, which divides the initial interval value
by the square root of the number of packets dropped. The interval is refreshed (re-initialized to
100ms) when the queue becomes empty, or when a packet sees a sojourn time less than the target.10

An extension to CoDel is FQ-CoDel [53], where the scheduler round-robins across flows and the
CoDel control loop is applied to each flow individually. The interval for a flow is refreshed when
there are no more packets belonging to that flow in the queue. FQ-CoDel is considered to be better
than CoDel in all regards , even by one of the co-developers of CoDel [73].

Edge-CoDel. We aim to approximate FQ-CoDel from the edge by using LSTF to implement per-
flow fairness in switches (as in §5.2.3). We then compute the used slack value at the egress switch
for every packet, as described above, and run the FQ-CoDel logic for when to drop packets for each
flow, keeping the control law and the parameters (the target value and the initial interval value) the
same as in FQ-CoDel. We call this approach Edge-CoDel.

There are only two things that change in Edge-CoDel as compared to FQ-CoDel. First, instead
of looking at the sojourn time of each queue individually, Edge-CoDel looks at the total queuing
time of the packet across the entire network. The second change is with respect to how the CoDel
interval is refreshed. As mentioned before, in traditional FQ-CoDel, there are two events that
trigger a refresh in the interval (i) when a packet’s sojourn time is less than the target and (ii) when
all the queued-up packets for a given flow have been transmitted. While Edge-CoDel can react to
the former, it has no explicit way of knowing the latter. To address this, we refresh the interval
if the difference in the send time of two consecutive packets (found using TCP timestamps that
are enabled by default) is more than a certain threshold. Clearly, this refresh threshold must be
greater than CoDel’s target queuing delay value. We find that a refresh threshold of 2-4 times the
target value (10-20ms) works reasonably well.

Evaluation. In our experiments, we compare four different schemes: (1) FIFO without AQM

10CoDel is a little more complicated than this, and while our implementation follows the CoDel specification [95],
our explanation has been simplified, highlighting only the relevant points for brevity.

5.3. INCORPORATING NETWORK FEEDBACK 100

1.5KB 2-10KB 50-500KB 1-2MB 3MB
Flow Size (bytes)

2-3
2-2
2-1
20
21
22
23
24
25
26

A
vg

 F
C

T
(s

ec
s)

FIFO
FQ

FQ-CoDel
FQ w/ Edge-CoDel

LSTF w/ Edge-CoDel

Expt. Setup rest Avg FCT across bytes (s)
(Mbps) FIFO FQ FQ-CoDel FQ w/

Edge-CoDel
LSTF w/

Edge-CoDel
I2 1Gbps-10Gbps at 70% util. 100 0.811 0.622 0.642 0.633 0.641
I2 1Gbps-1Gbps at 70% util. 100 0.766 0.630 0.642 0.637 0.658

I2 / 10 at 30% util. 40 0.918 0.836 0.897 0.887 0.907
I2 / 10 at 50% util. 30 1.706 1.214 1.430 1.369 1.427
I2 / 10 at 70% util. 10 4.837 2.295 3.687 3.738 3.739

I2 / 10, half RTTs at 70% util. 10 4.569 2.023 3.196 3.245 3.405
I2 / 10, double RTTs at 70% util. 10 5.098 2.769 4.243 4.125 4.389

Rocketfuel at 70% util. 100 0.964 0.796 0.840 0.813 0.835

Figure 5.8: The figure shows the average FCT values for I2 / 10 at 70% utilization (LSTF uses fairness
slack assignment with rest = 10Mbps). The error bars indicate the 10th and the 99th percentile values and
the y-axis is in log-scale. The table indicates the average FCT (across bytes) for varying settings.

(to set a baseline), (2) FQ without AQM (to see the effects of FQ on its own), (3) FQ-CoDel (to
provide the state-of-the-art comparison) (4) LSTF scheduling (with slacks assigned to meet the
fairness objective using appropriate rest values) in conjunction with Edge-CoDel. As we move
from (3) to (4), we make two transitions – first is with respect to the scheduling done inside the
network (perfect isolation with FQ vs approximate isolation with LSTF) and the second is the shift
of AQM logic from inside the network to the edge. Therefore, as an incremental step in between
the two transitions, we also provide results for FQ with Edge-CoDel, where switches do FQ across
flows (with the slack values maintained only for book-keeping) and AQM is done by Edge-CoDel.
This allows us see how well Edge-CoDel works with perfect per-switch isolation. The refresh
threshold we use for Edge-CoDel in both cases is 20ms (4 times the CoDel target value). The
buffer size is increased to 50MB so that AQM kicks in before a natural packet drop occurs.

The main metrics we use for evaluation are the FCTs and the per-packet RTTs, since the goal
of an AQM scheme is to maintain high throughput (or small FCTs) while keeping the RTTs small.
Figure 5.8 and Figure 5.9 show our results, for FCTs and RTTs respectively, for varying settings
and schemes. The two graphs show the average FCT and the average RTT across flows bucketed
by their size for the I2 / 10 topology at 70% utilization (where AQM produces a bigger impact
compared to our default case). As expected, we find that while FQ helps in reducing the FCT

5.3. INCORPORATING NETWORK FEEDBACK 101

1.5KB 2-10KB 50-500KB 1-2MB 3MB
Flow Size (bytes)

2-4

2-3

2-2

2-1

20

21
A

vg
 R

TT
 (s

ec
s)

FIFO
FQ

FQ-CoDel
FQ w/ Edge-CoDel

LSTF w/ Edge-CoDel

Expt. Setup rest Avg RTT across bytes (s)
(Mbps) FIFO FQ FQ-CoDel FQ w/

Edge-CoDel
LSTF w/

Edge-CoDel
I2 1Gbps-10Gbps at 70% util. 100 0.0756 0.0733 0.0642 0.0646 0.0661
I2 1Gbps-1Gbps at 70% util. 100 0.0716 0.0702 0.0639 0.0643 0.0666

I2 / 10 at 30% util. 40 0.0998 0.1085 0.0792 0.0798 0.0826
I2 / 10 at 50% util. 30 0.1384 0.1752 0.0901 0.0918 0.1001
I2 / 10 at 70% util. 10 0.2779 0.3752 0.1182 0.1281 0.1388

I2 / 10, half RTTs at 70% util. 10 0.2555 0.3607 0.0995 0.1131 0.1165
I2 / 10, double RTTs at 70% util. 10 0.325 0.4172 0.1591 0.1640 0.1843

Rocketfuel at 70% util. 100 0.0922 0.0991 0.0794 0.0788 0.0836

Figure 5.9: The figure shows the average RTT values for I2 / 10 at 70% utilization (LSTF uses fairness
slack assignment with rest = 10Mbps). The error bars indicate the 10th and the 99th percentile values and
the y-axis is in log-scale. The table indicates the average RTTs (across bytes) for varying settings.

values as compared to FIFO, it results in significantly higher RTTs than FIFO for long flows.
FQ-CoDel reduces the RTT seen by long flows compared to FQ (with the short flows having RTT
smaller than FIFO and comparable to FQ). What is new is that, shifting the CoDel logic to the edge
through Edge-CoDel while doing FQ in the switch makes very little difference as compared to FQ-
CoDel. As we experiment with varying settings, we find that in some cases, FQ with Edge-CoDel
results in slightly smaller FCTs at the cost of slightly higher RTTs than FQ-CoDel. We believe
that this is due to the difference in how the CoDel interval is refreshed with Edge-CoDel and
with in-switch FQ-CoDel. Replacing the scheduling algorithm with LSTF again produces minor
differences in the results compared to FQ-CoDel. Both the FCT and the RTT are slightly higher
than FQ-CoDel for almost all cases, and we attribute the differences to LSTF’s approximation of
round-robin service across flows. Nonetheless, the average FCTs obtained are significantly lower
than FIFO and the average RTTs are significantly lower than both FIFO and FQ for all cases.

We next evaluate the sensitivity of Edge-CoDel to the refresh threshold. Table 5.3 shows the
average FCT and RTT values for varying refresh thresholds. We find that there are very minor
differences in the results as we vary this threshold, because the dominating cause for refreshing
the interval is when a packet sees a queuing delay less than the CoDel target. However, the gen-
eral trend is that increasing the refresh threshold increases the FCT and decreases the RTT. This

5.3. INCORPORATING NETWORK FEEDBACK 102

Refresh Threshold (ms) Avg FCT across bytes (s) Avg RTT across bytes (s)
10 3.578 0.143
20 3.739 0.139
30 3.954 0.135
40 4.079 0.132

Table 5.3: Effect of varying refresh threshold on I2/10 topology at 70% utilization running LSTF (rest =
10Mbps) with Edge-CoDel.

Util. Avg FCT (s) Avg RTT (ms)
FIFO w/ No

ECN
FIFO w/

ECN
LSTF w/

Edge-ECN
FIFO w/ No

ECN
FIFO w/

ECN
LSTF w/

Edge-ECN
30% 0.0020 0.0011 0.0011 0.2069 0.1123 0.1077
50% 0.0219 0.0086 0.0079 0.3425 0.1601 0.1477
70% 0.0501 0.0241 0.0240 0.4497 0.2616 0.2494

Table 5.4: DCTCP performance with no ECN, ECN (in-switch) and Edge-ECN for the datacenter topology
at varying utilizations.

is because with increasing refresh threshold, the interval is reset to the larger 100ms value less
frequently. This results in more packet drops for the long flows, causing an increase in FCTs, but
a decrease in the RTT values.

5.3.2 Emulating ECN for DCTCP from Edge
Background. DCTCP [8] is a congestion control scheme for datacenters that uses ECN marks as a
congestion signal to control the queue size before a packet drop occurs. It requires the switches to
mark the packets whenever the instantaneous queue size goes beyond a certain threshold K. These
markings are echoed back to the sender with the acknowledgments and the sender decreases its
sending rate in proportion to the ECN marked packets.

Edge-ECN. The marking process can be moved to the edge (or the receiving endhost) by simply
marking a packet if its queuing delay (computed, as in §5.3.1, by subtracting the initial slack value
from the current slack value) is greater than the transmission time of K packets. This transmission
time is easy to compute in datacenters where the link capacities are known.

Evaluation. The results for varying utilization levels are shown in Table 5.4. We compare Edge-
ECN running LSTF in the switches (with all packets initialized to the same slack value) with
in-switch ECN running FIFO in the switches, both using the same unmodified DCTCP algorithm
at the endhosts. We use the DCTCP default value of K = 15 packets as the marking threshold. We
also present results for DCTCP with no ECN marks (which reduces to TCP) and FIFO scheduling,
as a comparison point. We see that both in-switch ECN and Edge-ECN DCTCP have comparable
performance, with significantly lower average FCTs and RTTs than no ECN TCP.

Summary. The used slack information available as a by-product from LSTF can be effectively
used to emulate an AQM scheme from the edge of the network.

5.4. LSTF IMPLEMENTATION 103

5.4 LSTF Implementation
In this section, we study the feasibility of implementing LSTF in the switches. We start with

showing that given a switch that supports fine-grained priority scheduling, it is trivial to implement
LSTF on it using programmable header processing mechanisms [18, 19]. We then explore two
different proposals for implementing fine-grained priorities in hardware.

Using fine-grained priorities to implement LSTF. Consider a packet p that arrives at a switch
α at time i(p,α), with slack slack(p,α). As mentioned in §5.1, LSTF prioritizes packets based
on their remaining slack value at the time when their last bit is transmitted. This term is given
by (slack(p,α)− (t − i(p,α))+ T (p,α)) at any time t while p is waiting at α . T (p,α) is the
transmission time of p at α , which is added to account for the remaining slack of p, relative to other
packets, when its last bit is transmitted. Since t is same for all packets at any given point of time
when the packets are being compared at α , the deciding term is (slack(p,α)+ i(p,α)+T (p,α)).
With slack(p,α) being available in the packet header and the values of i(p,α) and T (p,α) being
available at α when the packet arrives at the switch, this term can be easily computed and attached
to the packet as its priority value. Right before a packet p is transmitted by the switch, its slack
can be overwritten by the remaining slack value, computed by subtracting the stored priority value
(slack(p,α)+ i(p,α)+T (p,α)) with the sum of the current time and T (p,α). We verified that
these steps can be easily executed using P4 [18].

Implementing fine-grained priorities in hardware. Fine-grained priorities can be implemented
by using specialized data-structures such as pipelined heap (p-heap) [16, 64], which can scale to
very large buffers (>100MB), because the pipeline stage time is not affected by the queue size.
However, p-heaps are difficult to implement and verify due to their intricate design and large chip
area, thus resulting in higher costs. The p-heap implemented by Ioannou et. al. [64] using a 130nm
technology node has a per-port area overhead of 10% (over a typical switching chip with minimum
area of 200mm2 [44]) 11.

Leveraging the advancement in hardware technology over the years, Sivaraman et. al. [119]
propose a simpler solution, based on bucket-sort algorithm. The area overhead reduces to only
1.65% (over a baseline single-chip shared-memory switch such as the Broadcom Trident [52]),
when implemented using a 16nm technology node. While this approach is much cheaper to imple-
ment, it cannot scale to very large buffer sizes (beyond a few tens of MBs).

Thus, given these choices, it does not appear a significant challenge to implement LSTF at
linespeed, though the key trade-offs between cost, simplicity and buffer limits need to be taken into
consideration. To support a scale-out infrastructure, most datacenters today use a large number
of inexpensive single chip shared memory switches [118], which have shallow buffers (around
10MB). The low overhead bucket-sort based approach [119] towards implementing LSTF would
be ideal in such a setup. Core switches in wide area, on the other hand, have deep buffers (a few
hundred MBs) and would require the more expensive p-heap based implementation [16, 64]. While

11130nm technology node was developed in 2001; the overheads would be lower for an implementation using the
latest technology (14nm).

5.5. RELATED WORK 104

they are fewer in number [79], they may cost up to millions of dollars. Supporting the slightly
more expensive, but flexible LSTF implementation would, to a large extent, obviate the need for
replacing these expensive switches with changing demands, resulting in long-term savings. We are
also optimistic that advancements in hardware technology would further reduce the cost overheads
of implementing LSTF.

5.5 Related Work
The literature on packet scheduling is vast. Here we only touch on a few topics most relevant

to our work.
The real-time scheduling literature has studied the optimality of scheduling algorithms12 (in

particular EDF and LSTF) for single and multiple processors [80, 77]. Liu and Layland [80] proved
the optimality of EDF for a single processor in hard real-time systems. LSTF was then shown to be
optimal for single-processor scheduling, while being more effective than EDF (though not optimal)
for multi-processor scheduling [77]. In the context of networking, [25] provides theoretical results
on emulating the schedules produced by a single output-queued switch using a combined input-
output queued switch with a smaller speed-up of at most two. To the best of our knowledge, the
optimality or universality of a scheduling algorithm for a network of inter-connected resources (in
our case, switches) has never been studied before.

The authors of [120] propose the use of programmable hardware in the dataplane for packet
scheduling and queue management, in order to achieve various objectives. The proposal shows that
there is no “silver bullet” solution, by simulating three schemes (FQ, CoDel+FQ, CoDel+FIFO)
competing on three different metrics. As mentioned earlier, our work is inspired by the questions
the authors raise; we adopt a broader view of scheduling in which packets can carry dynamic state
leading to the results presented here. A recent proposal for programmable packet scheduling [119],
developed in parallel to UPS, uses an hierarchy of priority and calendar queues to express different
scheduling algorithms on a single switch hardware. The proposed solution is able to achieve better
expressiveness than LSTF by allowing packet headers to be re-initialized at every switch. UPS
assumes a stronger model, where the header initialization is restricted to the ingress switches,
while the core switches remain untouched. Moreover, we provide theoretical results which shed
light on the effectiveness of both of these models.

5.6 Conclusion
This chapter started with a theoretical perspective by analyzing whether there exists a single

universal packet scheduling algorithm that can perfectly replay all viable schedules. We proved
that while such an algorithm cannot exist, LSTF comes closest to being one (in terms of the num-
ber of congestion points it can handle). We then empirically demonstrated the ability of LSTF

12A scheduling algorithm is said to be optimal if it can (feasibly) schedule a set of tasks that can be scheduled by
any other algorithm.

5.6. CONCLUSION 105

to approximately replay a wide range of scheduling algorithms under varying network settings.
Replaying a given schedule, while of theoretical interest, requires the knowledge of viable output
times, which is not available in practice.

Hence, we next considered if LSTF can be used in practice to achieve various performance
objectives. We showed via simulation how LSTF, combined with heuristics to set the slack values
at the ingress, can do a reasonable job of minimizing average flow completion time, minimizing
tail latencies, and achieving per-flow fairness. We also discussed some limitations of LSTF (with
respect to achieving class-based fairness and traffic shaping).

Noting that scheduling is often used along with AQM to prevent queue build up, we then
showed how LSTF can be used to implement versions of AQM from the network edge, with per-
formance comparable to FQ-CoDel and to DCTCP with ECN (the state-of-the art AQM schemes
for wide-area and datacenters respectively).

While an initial step towards understanding the notion of a Universal Packet Scheduling algo-
rithm, our work leaves several theoretical questions unanswered, three of which we mention here.
First, we showed existence of a UPS with omniscient header initialization, and nonexistence with
limited-information initialization. What is the least information we can use for header initializa-
tion in order to achieve universality? Second, we showed that, in practice, the fraction of overdue
packets is small, and most are only overdue by a small amount. Are there tractable bounds on both
the number of overdue packets and/or their degree of lateness? Third, while we have a formal
characterization for the scope of LSTF with respect to replaying a given schedule, and we have
simulation evidence of LSTF’s ability to meet several performance objectives, we do not yet have
any formal model for the scope of LSTF in meeting these objectives. Can one describe the class of
performance objectives that LSTF can meet? Also, are there any new objectives that LSTF allows
us to achieve?

106

Chapter 6

Conclusion and Future Work

In this dissertation, we argued that whenever we are looking for solutions to meet different net-
work performance requirements, we should ask ourselves the following two questions for enabling
a more stable network infrastructure: (1) Can we avoid making changes to the network infrastruc-
ture (can an end-point based solution meet the desired performance requirements)?, and (2) When
infrastructure changes are needed, can we make them universal in nature?

We presented examples of how network infrastructure changes can be avoided in the context of
congestion control for wide-area and datacenters. We then developed a framework for universality,
and analyzed it in the context of packet scheduling. However, we believe that these are just the
first steps towards a more stable network infrastructure, and that our line of reasoning is applicable
more broadly, beyond just congestion control and packet scheduling.

For example, can we use our framework of universality to end the age-old debate about where
to place the intelligence needed for a network functionality: should it go only in the network edge
or should it be deployed more widely in the network core? This debate has mostly been infor-
mal (though often heated). Our work on UPS has led to a clean theoretical formulation whose
fundamental question can be more generally stated as: for which kinds of functionality can intelli-
gence in the edge effectively simulate a set of specialized mechanisms deployed in the core? Our
results show that we can effectively simulate packet scheduling and AQM policies. But there are
many other functionalities where we do not yet have a clear answer, such as network monitoring,
load-balancing, specialized routing and support for information-centric networking, among others.

Furthermore, beyond just the network edge vs core argument, we believe our two questions
can be used more generally for other scenarios as well. For example, they can potentially be used
to determine what network stack functionality at an endhost should get offloaded to hardware.
The popularly used RDMA seems to be an extreme solution where all networking functionality is
offloaded. While hardware may give us more speed, it often entails compromising on flexibility
and the amount of resources (such as memory). The analogous questions in this context could be:
(1) Can we avoid offloading a functionality to hardware (can a software solution meet the desired
performance requirements)?, and (2) When hardware offload is needed, can we design universal
primitives that can handle different requirements of different higher layer applications?

107

Bibliography

[1] http://omnetpp.org/.

[2] https://inet.omnetpp.org.

[3] http://www.xilinx.com/support/documentation/white_papers/wp350.pdf,
2014.

[4] S. V. Adve and H.-J. Boehm. Memory models: a case for rethinking parallel languages and
hardware. Communications of the ACM, 2010.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center Network
Architecture. In Proc. ACM SIGCOMM, 2008.

[6] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. P. B. Prabhakar, and M.
Seaman. Data Center Transport Mechanisms: Congestion Control Theory and IEEE Stan-
dardization. In Annual Allerton Conference, 2008.

[7] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T.
Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed Congestion aware
Load Balancing for Datacenters. In Proc. ACM SIGCOMM, 2014.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. Data Center TCP (DCTCP). In Proc. ACM SIGCOMM, 2010.

[9] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less Is More:
Trading a Little Bandwidth for Ultra-Low Latency in the Data Center. In Proc. USENIX
NSDI, 2012.

[10] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. Deconstruct-
ing Datacenter Packet Transport. In Proc. ACM Workshop on Hot Topics in Networks (Hot-
Nets), 2012.

[11] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
pFabric: Minimal Near-optimal Datacenter Transport. In Proc. ACM SIGCOMM, 2013.

[12] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window. RFC 3390.

[13] M. Allman. Comments on bufferbloat. ACM SIGCOMM Computer Communication Re-
view, 2013.

[14] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In Proc. ACM SIG-
COMM, 2004.

http://omnetpp.org/
https://inet.omnetpp.org
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf

BIBLIOGRAPHY 108

[15] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of Data Centers in the
Wild. In Proc. ACM Internet Measurement Conference (IMC), 2012.

[16] R. Bhagwan and B. Lin. Fast and Scalable Priority Queue Architecture for High-Speed
Network Switches. In Proc. IEEE Infocom, 2000.

[17] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP. RFC 3517.

[18] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D.
Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming Protocol-independent
Packet Processors. ACM SIGCOMM Computer Communication Review, 2014.

[19] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding Metamorphosis: Fast Programmable Match-action Processing
in Hardware for SDN. In Proc. ACM SIGCOMM, 2013.

[20] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Techniques for Con-
gestion Detection and Avoidance. ACM SIGCOMM Computer Communication Review,
1994.

[21] CAIDA Internet Topology Data Kit. http://goo.gl/QAbecc.

[22] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A Retrospective on
Evolving SDN. In Proc. ACM HotSDN, 2012.

[23] Chelsio T5 Packet Rate Performance Report. http://goo.gl/3jJL6p, Pg 2.

[24] D.-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for Congestion
Avoidance in Computer Networks. Comput. Netw. ISDN Syst., 1989.

[25] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing with
a combined input/output-queued switch. IEEE Journal on Selected Areas in Communica-
tions, 1999.

[26] B. Claise. Cisco systems NetFlow services export version 9. RFC 3954, 2004.

[27] D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-time Applications in an Integrated
Services Packet Network: Architecture and Mechanism. In Proc. ACM SIGCOMM, 1992.

[28] Data Center Bridging Task Group. http://www.ieee802.org/1/pages/dcbridges.html.

[29] J. Dean and L. A. Barroso. The Tail at Scale. Communications of the ACM, 2013.

[30] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algo-
rithm. In Proc. ACM SIGCOMM, 1989.

[31] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact of packet spraying in
data center networks. In Proc. IEEE INFOCOM, 2013.

[32] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast Remote Memory. In
Proc. USENIX NSDI, 2014.

[33] Dual Port 10 Gigabit Server Adapter with Precision Time Stamping. http://goo.gl/VtL5oO.

http://goo.gl/QAbecc

BIBLIOGRAPHY 109

[34] N. Dukkipati and N. McKeown. Why Flow-Completion Time is the Right Metric for Con-
gestion Control. ACM SIGCOMM Computer Communication Review, 2006.

[35] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and N. Sutin. An
Argument for Increasing TCP’s Initial Congestion Window. ACM SIGCOMM Computer
Communication Review, 2010.

[36] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, A. Jain, S. Hao, E.
Katz-Bassett, and R. Govindan. Reducing Web Latency: the Virtue of Gentle Aggression.
In Proc. SIGCOMM, 2013.

[37] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective Ac-
knowledgement (SACK) Option for TCP. RFC 2883.

[38] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, 2003.

[39] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for TCP and IP. RFC 4782.

[40] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery Algo-
rithm. RFC 2582.

[41] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance.
IEEE/ACM Trans. Netw., 1993.

[42] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and
C. Diot. Packet-Level Traffic Measurements from the Sprint IP Backbone. IEEE Network,
2003.

[43] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian. DRILL: Micro
Load Balancing for Low-latency Data Center Networks. In Proc. ACM SIGCOMM, 2017.

[44] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown. Design principles for packet
parsers. In ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 2013.

[45] Global Consortium to Construct New Cable System Linking US and Japan to Meet Increas-
ing Bandwidth Demands. http://googlepress.blogspot.com/2008/02/global-
consortium-to-construct-new_26.html.

[46] I. Grigorik. Optimizing the Critical Rendering Path. http://goo.gl/DvFfGo, Velocity Con-
ference 2013.

[47] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. RDMA over Com-
modity Ethernet at Scale. In Proc. ACM SIGCOMM, 2016.

[48] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Oblivious Network Design. In Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, 2006.

[49] S. Ha, I. Rhee, and L. Xu. CUBIC: a New TCP-friendly High-Speed TCP Variant. ACM
SIGOPS Operating System Review, 2008.

[50] D. A. Hayes and G. Armitage. Revisiting TCP Congestion Control using Delay Gradients.
In Networking IFIP, 2011.

http://googlepress.blogspot.com/2008/02/global-consortium-to-construct-new_26.html
http://googlepress.blogspot.com/2008/02/global-consortium-to-construct-new_26.html

BIBLIOGRAPHY 110

[51] D. A. Hayes and D. Ros. Delay-based Congestion Control for Low Latency. In ISOC Work-
shop on Reducing Internet Latency, Sep, 2013.

[52] High Capacity StrataXGS Trident II Ethernet Switch Series. http://www.broadcom.
com/products/Switching/Data-Center/BCM56850-Series.

[53] T Hoeiland-Joergensen, P McKenney, D Taht, J Gettys, and E Dumazet. FlowQueue-
Codel. IETF Informational, 2013.

[54] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A control theoretic analysis of RED. In
Proc. IEEE Infocom, 2001.

[55] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On designing improved controllers for
AQM routers supporting TCP flows. In Proc. IEEE Infocom, 2001.

[56] M. Honda, Y. Nishida, C. Raiciu, A. Greengalgh, M. Handley, and H. Tokuda. In Proc.
IMC, 2011.

[57] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive
Scheduling. In Proc. ACM SIGCOMM, 2012.

[58] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen. Deadlocks in Datacenter
Networks: Why Do They Form, and How to Avoid Them. In Proc. ACM HotNets, 2016.

[59] IEEE. 802.1Qau - Congestion Notification. http://www.ieee802.org/1/pages/802.1au.html.

[60] IEEE. 802.11Qbb. Priority based flow control, 2011.

[61] InfiniBand architecture volume 1, general specifications, release 1.2.1. www .
infinibandta.org/specs, 2008.

[62] Internet Traffic Flow Size Analysis. http://net.doit.wisc.edu/data/flow/size/.

[63] Internet2. http://www.internet2.edu/.

[64] A. Ioannou and M. G. H. Katevenis. Pipelined Heap (Priority Queue) Management for
Advanced Scheduling in High-speed Networks. IEEE/ACM Trans. Netw., 2007.

[65] iPerf. http://iperf.sourceforge.net/.

[66] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An Approach to Alleviate Link Overload
as Observed on an IP Backbone. In Proc. IEEE INFOCOM, 2003.

[67] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and Discrimination
for Resource Allocation in Shared Computer Systems. In DEC Research Report TR-301,
1984.

[68] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar. AF-QCN: Approximate
Fairness with Quantized Congestion Notification for Multi tenanted Data Centers. In Proc.
Hot Interconnects, 2010.

[69] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene. FlowBender: Flow-level Adaptive
Routing for Improved Latency and Throughput in Datacenter Networks. In Proc. ACM
CoNEXT, 2014.

http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
www.infinibandta.org/specs
www.infinibandta.org/specs
http://net.doit.wisc.edu/data/flow/size/
http://www.internet2.edu/
http://iperf.sourceforge.net/

BIBLIOGRAPHY 111

[70] A. Kalia, M. Kaminsky, and D. G. Andersen. Design Guidelines for High Performance
RDMA Systems. In Proc. USENIX ATC, 2016.

[71] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently for Key-value
Services. In Proc. ACM SIGCOMM, 2014.

[72] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High Bandwidth-Delay Prod-
uct Networks. In Proc. ACM SIGCOMM, 2002.

[73] Kathie Nichol’s CoDel presented by Van Jacobson. http : / / www . ietf . org /
proceedings/84/slides/slides-84-tsvarea-4.pdf.

[74] F. P. Kelly, G. Raina, and T. Voice. Stability and fairness of explicit congestion control with
small buffers. ACM SIGCOMM Computer Communication Review, 2008.

[75] A. Kuzmanovic and E. W. Knightly. TCP-LP: Low-priority service via end-Point conges-
tion Control. In IEEE/ACM ToN, 2006.

[76] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. Accurate Latency-based Congestion Feed-
back for Datacenters. In Proc. USENIX ATC, 2015.

[77] J. Y.-T. Leung. A new algorithm for scheduling periodic, real-time tasks. Algorithmica,
1989.

[78] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and E. Chen.
ClickNP: Highly Flexible and High Performance Network Processing with Reconfigurable
Hardware. In Proc. ACM SIGCOMM, 2016.

[79] L. Li, D. Alderson, W. Willinger, and J. Doyle. A First-principles Approach to Understand-
ing the Internet’s Router-level Topology. In Proc. ACM SIGCOMM, 2004.

[80] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM (JACM), 1973.

[81] Y. Lu, G. Chen, Z. Ruan, W. Xiao, B. Li, J. Zhang, Y. Xiong, P. Cheng, and E. Chen.
Memory Efficient Loss Recovery for Hardware-based Transport in Datacenter. In Proc.
First Asia-Pacific Workshop on Networking (APNet), 2017.

[82] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment Op-
tions. RFC 2018.

[83] M. Mathis and J. Mahdavi. Forward acknowledgement: refining tcp congestion control.
ACM SIGCOMM Computer Communication Review, 1996.

[84] Measuring ISP Topologies with Rocketfuel. In Proc. ACM SIGCOMM, 2002.

[85] Mellanox ConnectX-4 Product Brief. https://goo.gl/HBw9f9, 2016.

[86] Mellanox ConnectX-5 Product Brief. https://goo.gl/ODlqMl, 2016.

[87] Mellanox for Linux. http://goo.gl/u44Xea.

[88] Mellanox Innova Flex 4 Product Brief. http://goo.gl/Lh7VN4, 2016.

http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
https://goo.gl/HBw9f9
https://goo.gl/ODlqMl
http://goo.gl/Lh7VN4

BIBLIOGRAPHY 112

[89] Microsoft Invests in Subsea Cables to Connect Datacenters Globally. http://goo.gl/
GoXfxH.

[90] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker. Universal Packet Scheduling. In
Proc. USENIX NSDI, 2016.

[91] R. Mittal, V Lam, N Dukkipati, E Blem, H Wassel, M Ghobadi, A Vahdat, Y Wang, D
Wetherall, and D Zats. TIMELY: RTT-based Congestion Control for the Datacenter. In
Proc. ACM SIGCOMM, 2015.

[92] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recursively Cautious Congestion Con-
trol. In Proc. USENIX NSDI, 2014.

[93] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Ratnasamy, and S.
Shenker. Revisiting Network Support for RDMA. In Proc. ACM SIGCOMM, 2018.

[94] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall. Reducing network
energy consumption via sleeping and rate-adaptation. In Proc. USENIX NSDI, 2008.

[95] K Nichols and V Jacobson. Controlled delay active queue management: draft-nichols-
tsvwg-codel-02. Internet Requests for Comments-Work in Progress, Tech. Rep, 2014.

[96] K. Nichols and V. Jacobson. Controlling Queue Delay. Queue, 2012.

[97] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Aminy, and B. Fordy. Fitting Square Pegs
Through Round Pipes: Unordered Delivery Wire-compatible with TCP and TLS. In Proc.
USENIX NSDI, 2012.

[98] NS-2. http://www.isi.edu/nsnam/ns/.

[99] NS-3. http://www.nsnam.org.

[100] V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Technique for Speeding Up Web
Transfers. In Proc. IEEE Global Internet Conference (GLOBECOM), 1998.

[101] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-node Case. IEEE/ACM Trans. Netw.,
1993.

[102] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: a centralized
zero-queue datacenter network. In Proc. ACM SIGCOMM, 2014.

[103] P. Phaal, S. Panchen, and N. McKee. InMon corporation’s sFlow: A method for monitoring
traffic in switched and routed networks. RFC 3176, 2001.

[104] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and S. Shenker. Software-
defined Internet Architecture: Decoupling Architecture from Infrastructure. In Proc. ACM
HotNets, 2012.

[105] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and M.
Handley. How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP.
In Proc. USENIX NSDI, 2012.

http://goo.gl/GoXfxH
http://goo.gl/GoXfxH
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org

BIBLIOGRAPHY 113

[106] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notifica-
tion (ECN) to IP, 2001.

[107] A. Rao, A. Legout, Y. s. Lim, D. Towlsley, C. Barakat, and W. Dabbous. Network Charac-
teristics of Video Streaming Traffic. In Proc. ACM CoNeXT, 2011.

[108] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A Remote Direct Memory Ac-
cess Protocol Specification. RFC 5040, 2007.

[109] RoCE vs. iWARP Competitive Analysis. http://www.mellanox.com/related-docs/
whitepapers/WP_RoCE_vs_iWARP.pdf, 2015.

[110] C. Rotsos, H. Howard, D. Sheets, R. Mortier, A. Madhavapeddy, A. Chaudhry, and J.
Crowcroft. Lost In the Edge: Finding Your Way With Signposts. In Proc. USENIX FOCI,
2013.

[111] S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang and W. Weiss. An
Architecture for Differentiated Services. RFC 2475, 1998.

[112] S. Radhakrishnan et al. SENIC: scalable NIC for end-host rate limiting. In Proc. USENIX
NSDI, 2014.

[113] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM
Trans. Comput. Syst., 1984.

[114] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Sced: a generalized scheduling policy for
guaranteeing quality-of-service. IEEE/ACM Trans. Netw., 1999.

[115] A. Shpiner, E. Zahavi, V. Zdornov, T. Anker, and M. Kadosh. Unlocking Credit Loop
Deadlocks. In Proc. ACM HotNets, 2016.

[116] A. Shpiner, E. Zahavi, O. Dahley, A. Barnea, R. Damsker, G. Yekelis, M. Zus, E. Kuta,
and D. Baram. RoCE Rocks Without PFC: Detailed Evaluation. In Proc. ACM Workshop
on Kernel-Bypass Networks (KBNets), 2017.

[117] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round Robin. In
Proc. ACM SIGCOMM, 1995.

[118] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network. In Proc. ACM SIGCOMM, 2015.

[119] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T. Chuang, T. Edsall, M. Al-
izadeh, S. Katti, N. McKeown, and H. Balakrishnan. Towards Programmable Packet
Scheduling. In Proc. ACM HotNets, 2015.

[120] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan. No Silver Bullet: Ex-
tending SDN to the Data Plane. In Proc. ACM HotNets, 2013.

[121] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011. ISBN: 1608455645,
9781608455645.

http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf

BIBLIOGRAPHY 114

[122] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter. Practical DCB for
improved data center networks. In Proc. IEEE Infocom, 2014.

[123] I. Stoica, S. Shenker, and H. Zhang. Core-stateless Fair Queueing: A Scalable Architecture
to Approximate Fair Bandwidth Allocations in High-speed Networks. IEEE/ACM Trans.
Netw., 2003.

[124] I. Stoica and H. Zhang. Providing Guaranteed Services Without Per Flow Management. In
Proc. ACM SIGCOMM, 1999.

[125] Supplement to InfiniBand architecture specification volume 1 release 1.2.2 annex A16:
RDMA over Converged Ethernet (RoCE). www.infinibandta.org/specs, 2010.

[126] Supplement to InfiniBand architecture specification volume 1 release 1.2.2 annex A17:
RoCEv2 (IP routable RoCE), www.infinibandta.org/specs, 2014.

[127] K. Tan and J. Song. A compound TCP approach for high-speed and long distance networks.
In IEEE INFOCOM, 2006.

[128] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for High-Speed
and Long Distance Networks. In Proc. IEEE INFOCOM, 2006.

[129] The Cost of Latency. http://perspectives.mvdirona.com/2009/10/the-cost-of-
latency/.

[130] The NetFPGA Project. http://netfpga.org/.

[131] Token Bucket Filters. http://lartc.org/manpages/tc-tbf.html.

[132] TSO Sizing and the FQ Scheduler. http://lwn.net/Articles/564978/.

[133] Using Hardware Timestamps with PF RING. http://goo.gl/oJtHCe, 2011.

[134] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware Datacenter TCP (D2TCP). In
Proc. ACM SIGCOMM, 2012.

[135] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A.
Gibson, and B. Mueller. Safe and effective fine-grained TCP retransmissions for datacenter
communication. In Proc. ACM SIGCOMM, 2009.

[136] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp nice: a mechanism for background trans-
fers. In Proc. USENIX OSDI, 2002.

[137] Vivado Design Suite User Guide. https://goo.gl/akRdXC, 2013.

[138] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: Motivation, Architecture, Algo-
rithms, Performance. IEEE/ACM Trans. Netw., 2006.

[139] Who (Really) Needs Sub-microsecond Packet Timestamps? http://goo.gl/TI3r1u, 2013.

[140] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better Never Than Late: Meeting
Deadlines in Datacenter Networks. In Proc. ACM SIGCOMM, 2011.

[141] K. Winstein and H. Balakrishnan. TCP Ex Machina: Computer-generated Congestion Con-
trol. In Proc. ACM SIGCOMM, 2013.

www.infinibandta.org/specs
www.infinibandta.org/specs
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://lartc.org/manpages/tc-tbf.html
https://goo.gl/akRdXC

BIBLIOGRAPHY 115

[142] Xilinx Vivado Design Suite. https://www.xilinx.com/products/design-tools/
vivado.html.

[143] L Xu, K Harfoush, and I Rhee. Binary Increase Congestion Control (BIC) for Fast Long-
Distance Networks. In INFOCOM 2004, 2004.

[144] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail: reducing the flow completion
time tail in datacenter networks. In Proc. ACM SIGCOMM, 2012.

[145] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet Switching Networks.
In Proc. ACM SIGCOMM, 1990.

[146] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel, M. H.
Yahia, and M. Zhang. Congestion Control for Large-Scale RDMA Deployments. In Proc.
ACM SIGCOMM, 2015.

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

116

Appendix A

Proofs for UPS’s Theoretical Results

We now provide detailed proofs for the theoretical results presented in Chapter 5. We use the
following notations:

Relevant nodes:
src(p): Ingress of a packet p.
dest(p): Egress of a packet p.

Relevant time notations:
T (p,α): Transmission time of a packet p at node α .
o(p,α): Time when the first bit of p is scheduled by node α in the original schedule.
o(p) = o(p,dest(p))+T (p,dest(p)): Time when the last bit of p exits the network in the original
schedule (which is non-preemptive).
o′(p): Time when the last bit of p exits the network in the replay (which may be preemptive in our
theoretical arguments).
i(p,α) and i′(p,α): Time when p arrives at node α in the original schedule and in the replay
respectively.
i(p) = i(p,src(p)) = i′(p): Arrival time of p at its ingress. This remains the same for both the
original schedule and the replay.
tmin(p,α,β): Minimum time p takes to start from node α and exit from node β in an uncon-
gested network. It therefore includes the propagation delays and the store-and-forward delays of
all links in the path from α to β and the transmission delays at α and β . Handling the edge case:
tmin(p,α,α) = T (p,α)
slack(p) = o(p)− i(p)− tmin(p,src(p),dest(p)): Total slack of p that gets assigned at its ingress.
It denotes the amount of time p can wait in the network (excluding the time when any of its bits
are getting serviced) without missing its target output time.
slack(p,α, t) = o(p)− t − tmin(p,α,dest(p))+ T (p,α): Remaining slack of the last bit of p at
time t when it is at node α . We derive this expression later in §A.3 of this appendix.

A.1. EXISTENCE OF A UPS UNDER OMNISCIENT HEADER INITIALIZATION 117

Other miscellaneous notations:
path(p,α,β): The ordered set of nodes and links in the path taken by p to go from α to β . The set
also includes α and β as the first and the last nodes.
path(p) = path(p,src(p),dest(p))
pass(α): Set of packets that pass through node α .

A.1 Existence of a UPS under Omniscient Header Initializa-
tion

Algorithm: At the ingress, insert an n-dimensional vector in the packet header, where the ith

element contains o(p,αi), αi being the ith hop in path(p). Every time a packet p arrives at the
switch, the switch pops the value at the head of the vector in p’s header and uses that as the priority
for p (earlier values of output times get higher priority). This can perfectly replay any schedule.

Proof: We can prove that the above algorithm will result in no overdue packets (which do not
meet their original schedule’s target) using the following two theorems:
Theorem 1. If for any node α , ∃p′ ∈ pass(α), such that using the above algorithm, the last bit
of p′ exits α at time (t ′ > (o(p′,α)+T (p′,α))), then (∃p ∈ pass(α) | i′(p,α)≤ t ′ and i′(p,α)>
o(p,α)).
Proof by contradiction: Consider the first such p∗ ∈ pass(α) that gets late at α (i.e. its last bit
exits α at time t∗ > (o(p∗,α)+ T (p∗,α))). Suppose the above condition is not true i.e. (∀p ∈
pass(α) | i′(p,α) ≤ o(p,α) or i′(p,α) > t∗). In other words, if p arrives at or before time t∗, it
also arrives at or before time o(p,α). Given that all bits of p∗ arrive at or before time t∗, they
also arrive at or before time o(p∗,α). The only reason why the last bit of p∗ would wait until
time (t∗ > o(p∗,α)+T (p∗,α)) in our work-conserving replay is if some other bits (belonging to
higher priority packets) were being scheduled after time o(p∗,α), resulting in p∗ not being able
to complete its transmission by time (o(p∗,α)+T (p∗,α)). However, as per our algorithm, any
packet phigh having a higher priority than p∗ at α must have been scheduled before p∗ in the
original schedule, implying that (o(phigh,α)+T (phigh,α))≤ o(p∗,α). 1 Therefore, some bits of
phigh being scheduled after time o(p∗,α), implies them being scheduled after time (o(phigh,α)+
T (phigh,α)). This means that phigh is already late and contradicts our assumption that p∗ is the
first packet to get late. . Hence, Theorem 1 is proved by contradiction.
Theorem 2. ∀α,(∀p ∈ pass(α) | i′(p,α)≤ i(p,α)).
Proof by contradiction: Consider the first time when some packet p∗ arrives late at some node
α∗ (i.e. i′(p∗,α∗) > i(p∗,α∗)). In other words, α∗ is the first node in the network to see a late
packet arrival, and p∗ is the first late arriving packet. Let αprev be the node visited by p∗ just before
arriving at α∗. p∗ can arrive at a time later than i(p∗,α∗) at α∗ only if the last bit of p∗ exits
αprev at time tprev > o(p∗,αprev)+T (p∗,αprev). As per Theorem 1 above, this is possible only if

1Given that the original schedule is non-preemptible, the next packet gets scheduled only after the previous one
has completed its transmission.

A.2. NONEXISTENCE OF A UPS UNDER BLACK-BOX INITIALIZATION 118

some packet p′ (which may or may not be the same as p∗) arrives at αprev at time i′(p′,αprev) >
o(p′,αprev)≥ i(p′,αprev) and i′(p′,αprev)≤ tprev < i′(p∗,α∗). This contradicts our assumption that
α∗ is the first node to see a late arriving packet. Therefore, ∀α,(∀p∈ pass(α) | i′(p,α)≤ i(p,α)).

Combining the two theorems above: Since ∀α(∀p ∈ pass(α) | i′(p,α) ≤ i(p,α)), with the
above algorithm, ∀α(∀p∈ pass(α)), all bits of p exit α before (o(p,α)+T (p,α)). Therefore, the
algorithm can perfectly replay any viable schedule.

A.2 Nonexistence of a UPS under black-box initialization
Proof by counter-example. Consider the example shown in Figure A.1. For simplicity, assume all
the propagation delays are zero, the transmission time for each congestion point (shaded in gray)
is 1 unit and the uncongested (white) switches have zero transmission time. 2 All packets are of
the same size.

The table illustrates two cases. For each case, a packet’s arrival and scheduling time (the
time when the packet is scheduled by the switch) at each node through which it passes are
listed. A packet represented by p belongs to flow P, with ingress SP and egress DP, where
P ∈ {A,B,C,X ,Y,Z}. The packets have the same path in both cases. For example, a belongs
to Flow A, starts at ingress SA, exits at egress DA and passes through three congestion points in its
path α0, α1 and α2; x belongs to Flow X, starts at ingress SX , exits at egress DX and passes through
three congestion points in its path α0, α3 and α4; and so on.

The two critical packets we care about in this example are a and x, which interact with each-
other at their first congestion point α0, being scheduled by α0 at different times in the two cases (a
before x in Case 1 and x before a in Case 2). But, notice that for both cases,
1. a enters the network from its ingress SA at congestion point α0 at time 0, and passes through

two other congestion points α1 and α2 before exiting the network at time (4+1) 3.
2. x enters the network from its ingress SX at congestion point α0 at time 0, and passes through

two other congestion points α3 and α4 before exiting the network at time (3+1).
a interacts with packets from Flow C at its third congestion point α2, while x interacts with a

packet from Flow Z at its third congestion point α4. For both cases,
1. Two packets of Flow C (c1,c2) enter the network at times 2 and 3 at α2 before they exit the

network at time (2+1) and (3+1) respectively.
2. z enters the network at time 2 at α4 before exiting at time 2+1.

The difference between the two cases comes from how a interacts with packets from Flow
B at its second congestion point α1 and how x interacts with packets from Flow Y at its second
congestion points α3. Note that α1 and α3 are the last congestion points for Flow B and Flow Y
packets respectively and their exit times from these congestion points directly determine their exit
times from the network.

2These assignments are made for simplicity of understanding. The example will hold for any reasonable value of
propagation and transmission delays.

3+1 is added to indicate transmission time at the last congestion point. As mentioned before, we assume the
propagation delay to the egress and the transmission time at the egress are both 0.

A.2. NONEXISTENCE OF A UPS UNDER BLACK-BOX INITIALIZATION 119

SX	

SA	
 DA	

DX	

SB	

DB	

SC	

DC	

SY	

SZ	
 DY	

DZ	

α0	
 α1	
 α2	

α3	

α4	

Node Packet(arrival time, scheduling time)
Case 1

α0 a(000,0); x(000,1)
α1 a(1,1), b1(2,2), b2(3,3),b3(4,4)
α2 c1(2,2), c2(3,3); a(2,444)
α3 x(2,2), y1(2,3), y2(3,4)
α4 z(2,2), x(3,333)

Case 2
α0 x(000,0); a(000,1)
α1 a(2,2), b1(2,3), b2(3,4),b3(4,5)
α2 c1(2,2), c2(3,3), a(3,444)
α3 x(1,1), y1(2,2), y2(3,3)
α4 z(2,2), x(2,333)

Figure A.1: Example showing non-existence of a UPS with Blackbox Initialization. A packet represented
by p belongs to flow P, with ingress SP and egress DP, where P ∈ {A,B,C,X ,Y,Z}. For simplicity assume
all packets are of the same size and all links have a propagation delay of zero. All uncongested switches
(white), ingresses and egresses have a transmission time of zero. The congestion points (shaded gray) have
transmission times of T = 1 unit.

1. Three packets of Flow B (b1,b2,b3) enter the network at times 2, 3 and 4 respectively at α1. In
Case 1, they leave α1 at times (2+ 1),(3+ 1),(4+ 1) respectively. This provides no lee-way
for a at α0, which leaves α1 at time (1+ 1), since it is required that α1 must schedule a by at
most time 3 in order for it to exit the network at its target output time. In Case 2, (b1,b2,b3)
leave at times (3+1),(4+1),(5+1) respectively, providing lee-way for a at α0, which leaves
α1 at time (2+1).

2. Two packets of Flow Y (y1,y2) enter the network at times 2 and 3 respectively at α3. In Case 1,
they leave at times (3+ 1),(4+ 1) respectively, providing a lee-way for x at α0, which leaves
α3 at time (2+1). In Case 2, (y1,y2) exit at times (2+1),(3+1), providing no lee-way for x
at α0, which leaves α3 at time (1+1).
Note that the interaction of a and x with Flow C and Flow Z at their third congestion points

respectively, is what ensures that their eventual exit time remains the same across the two cases

A.3. DERIVING THE SLACK EQUATION 120

inspite of the differences in how a and x are scheduled in their previous two hops.
Thus, we can see that i(a), o(a), i(x), o(x) are the same in both cases (also indicated in bold

blue). Yet, Case 1 requires a to be scheduled before x at α0, else packets will get delayed at α1,
since it is required that α1 schedules a at a time no more than 3 units if it is to meet its target output
time. Case 2 requires x to be scheduled before a at α0, else packets will be delayed at α3, where
it is required to schedule x at a time no more than 2 units if it is to meet its target output time.
Since the attributes (i(·),o(·),path(·)) for both a and x are exactly the same in both cases, any
deterministic UPS with Blackbox Initialization will produce the same order for the two packets at
α0, which contradicts the situation where we want a before x in one case and x before a in another.

A.3 Deriving the Slack Equation
We now prove that for any packet p waiting at any node α at time tnow, the remaining slack of

the last bit of p is given by slack(p,α, tnow) = o(p)− tnow− tmin(p,α,dest(p))+T (p,α).
Let twait(p,α, tnow) denote the total time spent by p on waiting behind other packets at the nodes

in its path from src(p) to α (including these two nodes) until time tnow. We define twait(p,α, tnow),
such that it excludes the transmission times at previous nodes which gets captured in tmin, but
includes the local service time received by the packet so far at α itself.

slack(p,α, tnow) =slack(p)− twait(p,α, tnow)+T (p,α) (A.1a)

=o(p)− i(p)− tmin(p,src(p),dest(p))

− twait(p,α, tnow)+T (p,α) (A.1b)

=o(p)− i(p)− (tmin(p,src(p),α)

+ tmin(p,α,dest(p))−T (p,α))

− twait(p,α, tnow)+T (p,α) (A.1c)

=o(p)− tmin(p,α,dest(p))+T (p,α)

− (i(p)+ tmin(p,src(p),α)

−T (p,α)+ twait(p,α, tnow)) (A.1d)

=o(p)− tmin(p,α,dest(p))+T (p,α)− tnow (A.1e)

(A.1a) is straightforward from our definition of LSTF and how the slack gets updated at ev-
ery time slice. T (p,α) is added since α needs to locally consider the slack of the last bit of
the packet in a store-and-forward network. (A.1c) then uses the fact that for any α in path(p),
(tmin(p,src(p),dest(p)) = tmin(p,src(p),α)+ tmin(p,α,dest(p))−T (p,α)). T (p,α) is subtracted
here as it is accounted for twice when we break up the equation for tmin(p,src(p),dest(p)).
(A.1e) then follows from the fact that the difference between tnow and i(p) is equal to the to-
tal amount of time the packet has spent in the network until time tnow i.e. (tnow − i(p) =
(tmin(p,src(p),α)−T (p,α))+ twait(p,α, tnow)). We need to subtract T (p,α), since by our defini-
tion, tmin(p,src(p),α) includes transmission time of the packet at α .

A.4. LSTF AND EDF EQUIVALENCE 121

A.4 LSTF and EDF Equivalence
In our network-wide extension of EDF scheduling, every switch computes a deadline (or prior-

ity) for a packet p based on the static header value o(p) and additional state information about the
minimum time the packet would take to reach its destination from the switch. More precisely, each
switch (say α), uses priority(p) = (o(p)− tmin(p,α,dest(p))+T (p,α)) to do priority scheduling,
with o(p) being the value carried by the packet header, initialized at the ingress and remaining
unchanged throughout. EDF is equivalent to LSTF, in that for a given original schedule, the two
produce exactly the same replay schedule.

Proof. Consider a node α and let P(α, tnow) be the set of packets waiting at the output queue of α

at time tnow. A packet will then be scheduled by α as follows:

With EDF: Schedule packet ped f (α, tnow), where

ped f (α, tnow) = argmin
p∈P(α,tnow)

(priority(p,α))

priority(p,α) =o(p)− tmin(p,α,dest(p))+T (p,α)

With LSTF: Schedule packet plst f (α, tnow), where

plst f (α, tnow) = argmin
p∈P(α,tnow)

(slack(p,α, tnow))

slack(p,α, tnow) =o(p)− tmin(p,α,dest(p))+T (p,α)− tnow

The above expression for slack(p,α, tnow) has been derived before (§A.3). Thus,
slack(p,α, tnow) = priority(p,α)− tnow. Since tnow is the same for all packets, we can conclude
that:

argmin
p∈P(α,tnow)

(slack(p,α, tnow)) = argmin
p∈P(α,tnow)

(priority(p,α))

=⇒ plst f (α, tnow) = ped f (α, tnow)

Therefore, at any given point of time, all nodes will schedule the same packet with both EDF
and LSTF (assuming ties are broken in the same way for both EDF and LSTF, such as by using
FCFS). Hence, EDF and LSTF are equivalent.

A.5 Theoretical Limits for Replay using Simple Priorities
In Figure A.2, we present an example which shows that simple priorities can fail in replay when

there are two congestion points per packet, no matter what information is used to assign priorities.
At α1, we need to have priority(a) < priority(b), at α2 we need to have priority(b) < priority(c)

A.5. THEORETICAL LIMITS FOR REPLAY USING SIMPLE PRIORITIES 122

SA	
 DA	

SC	

SB	

α1 (T = 1) 	

DB	

DC	

α3 (T = 0.2) 	

α2 (T = 0.5) 	

L	

Node Packet(arrival time, scheduling time)
α1 a(0,0),b(0,1)
α2 b(2,2),c(2,2.5)
α3 c(3,3),a(3,3.2)

Figure A.2: Example showing replay failure with simple priorities for a schedule with two congestion points
per packet. A packet represented by p belongs to flow P, with ingress SP and egress DP, where P∈ {A,B,C}.
All packets are of the same size. For simplicity assume all links (except L) have a propagation delay of zero.
L has a propagation delay of 2. All uncongested switches (white circles), ingresses and egresses have a
transmission time of zero. The three congestion points – α1,α2,α3 have transmission times of T = 1 unit,
T = 0.5 units and T = 0.2 units respectively.

and at α3 we need to have priority(c) < priority(a). This creates a priority cycle where we need
priority(a)< priority(b)< priority(c)< priority(a), which can never be possible to achieve with
simple priorities.

We would also like to point out here that priority assignment for perfect replay in networks with
single congestion point per packet requires detailed knowledge about the topology and the input
load. More precisely, if a packet p passes through congestion point αp, then its priority needs
to be assigned as priority(p) = o(p)− tmin(p,αp,dest(p))+T (p,αp). The proof that this would
always replay schedules with at most one congestion point per packet follows from the fact that
the only scheduling decision made in a packet p’s path is at the single congestion point αp. This
decision, at the single congestion point in a packet’s path, is the same as what will be made with
the network-wide extension of EDF, which we proved is equivalent to LSTF in §A.4. LSTF, in
turn, can always replay schedules with one (or to be more precise, at most two) congestion points
per packet, as we shall prove in §A.6.

Hence, in order to replay schedules with at most one congestion per packet using simple prior-
ities, we need to know where the congestion point occurs in a packet’s path, along with the final
output times, to assign the priorities. In the absence of this knowledge, priorities cannot replay
even a single congestion point.

A.6. THEORETICAL LIMITS FOR REPLAY USING LSTF 123

A.6 Theoretical Limits for Replay using LSTF
We now prove that LSTF can replay all schedules with at most two congestion points per

packet. We first present the high-level proof in §A.6.1 that uses a key condition, the proof for
which is then presented in §A.6.2.

Note that we work with bits in our proof, since we assume a preemptive version of LSTF. Due
to store-and-forward switches, the remaining slack of a packet at a particular switch is represented
by the slack of the last bit of the packet (with all other bits of the packet having the same slack as
the last bit).

A.6.1 LSTF can Replay up to Two Congestion Points per Packet
In order for a replay failure to occur, there must be at least one overdue packet, where a packet

p is said to be overdue if o′(p) > o(p). This implies that p must have spent all of its slack while
waiting behind other packets at a queue in some node α at say time t, such that slack(p,α, t)< 0.
Obviously, α must be a congestion point.

Necessary Condition for Replay Failure with LSTF. If a packet p∗ sees negative slack at a
congestion point α when its last bit exits α at time t∗ in the replay (i.e. slack(p∗,α, t∗)< 0), then
(∃p ∈ pass(α) | i′(p,α)≤ t∗ and i′(p,α)> o(p,α)). We prove this later in §A.6.2.

We use the term “local deadline of p at α” for o(p,α), which is the time at which α schedules
p in the original schedule.

Key Observation: When there are at most two congestion points per packet, then no packet p can
arrive at any congestion point α in the replay, after its local deadline at α (.i.e. i′(p,α)> o(p,α)
is not possible). Therefore, by the necessary condition above, no packet can see a negative slack at
any congestion point.

Proof by contradiction: Suppose that there exists α∗, which is the first congestion point (in time)
that sees a packet which arrives after its local deadline at α∗. Let p∗ be this first packet that arrives
after its local deadline at α∗ (i′(p∗,α∗)> o(p∗,α∗)). Since there are at most two congestion points
per packet, either α∗ is the first congestion point seen by p∗ or the last (or both).
(1) If α∗ is the first congestion point seen by p∗, then clearly, i′(p∗,α∗) = i(p∗,α∗) ≤ o(p∗,α∗).
This contradicts our assumption that i′(p∗,α∗)> o(p∗,α∗).
(2) If α∗ is not the first congestion point seen by p∗, then it is the last congestion point seen by
p∗. If i′(p∗,α∗) > o(p∗,α∗), then it would imply that p∗ saw a negative slack before arriving
at α∗. Suppose p∗ saw a negative slack at a congestion point αprev, before arriving at α∗ when
its last bit exited αprev at time tprev. Clearly, tprev < i′(p∗,α∗). As per our necessary condition,
this would imply that there must be another packet p′, such that i′(p′,αprev) > o(p′,αprev) and
i′(p′,αprev) ≤ tprev < i′(p∗,α∗). This contradicts our assumption that α∗ is the first congestion
point (in time) that sees a packet which arrives after its corresponding scheduling time in the
original schedule.

A.6. THEORETICAL LIMITS FOR REPLAY USING LSTF 124

Hence, no congestion point can see a packet that arrives after its local deadline at that conges-
tion point (and therefore no packet can get overdue) when there are at most two congestion points
per packet.

A.6.2 Proof for Necessary Condition for Replay Failure with LSTF
We start this proof with the following observation:

Observation 1: If all bits of a packet p exit a switch α by time o(p,α)+T (p,α), then p cannot
see a negative slack at α .

Proof for Observation 1: As shown previously in §A.3,

slack(p,α, t) = o(p)− tmin(p,α,dest(p))+T (p,α)− t

Therefore,

slack(p,α,o(p,α)+T (p,α))

= o(p)− tmin(p,α,dest(p))+T (p,α)− (o(p,α)+T (p,α))

But, o(p) = o(p,α)+ tmin(p,α,dest(p))+wait(p,α,dest(p))

=⇒ slack(p,α,o(p,α)+T (p,α)) = wait(p,α,dest(p))

=⇒ slack(p,α,o(p,α)+T (p,α))≥ 0

where wait(p,α,dest(p)) is the time spent by p in waiting behind other packets in the original
schedule, after it left α , which is clearly non-negative.

We now move to the main proof for the necessary condition.

Necessary Condition for Replay Failure: If a packet p∗ sees negative slack at a congestion point
α when its last bit exits α at time t∗ in the replay (i.e. slack(p∗,α, t∗) < 0), then (∃p ∈ pass(α) |
i′(p,α)≤ t∗ and i′(p,α)> o(p,α)).

Proof by Contradiction: Suppose this is not the case .i.e. there exists p∗ whose last bit exits α at
time t∗, such that slack(p∗,α, t∗)< 0 and (∀p ∈ pass(α) | i′(p,α)> t∗ or i′(p,α)≤ o(p,α)). We
can show that if the latter condition holds, then p∗ cannot see a negative slack at α , thus violating
our assumption.

We take the set of all bits which exit α at or before time t∗ in the LSTF replay schedule. We
denote this set as Sbits(α, t∗). As per our assumption, (∀b ∈ Sbits(α, t∗) | i′(pb,α) ≤ o(pb,α)),
where pb denotes the packet to which bit b belongs. Note that Sbits(α, t∗) also includes all bits of
p∗, since they all arrive before time t∗.

We now prove that no bit in Sbits(α, t∗) can see a negative slack (and therefore p∗ cannot see a
negative slack at α), leading to a contradiction. The proof comprises of two steps:

A.6. THEORETICAL LIMITS FOR REPLAY USING LSTF 125

Step 1: Using the same input arrival times of each packet at α as in the replay schedule, we first
construct a feasible schedule at α up until time t∗, denoted by FS(α, t∗), where by feasibility we
mean that no bit in Sbits(α, t∗) sees a negative slack.
Step 2: We then do an iterative transformation of FS(α, t∗) such that the bits in Sbits(α, t∗) are
scheduled in the order of their least remaining slack times. This reproduces the LSTF replay
schedule from which FS(α, t∗) was constructed in the first place. However, while doing the trans-
formation we show how the schedule remains feasible at every iteration, proving that the LSTF
schedule finally obtained is also feasible up until time t∗. In other words, no packet sees a negative
slack at α in the resulting LSTF replay schedule up until time t∗, contradicting our assumption that
p∗ sees a negative slack when it exits α at time t∗ in the replay.

We now discuss these two steps in details.

Step 1:. Construct a feasible schedule at α up until time t∗ (denoted as FS(α, t∗)) for which no bit
in Sbits(α, t∗) sees a negative slack.
(i) Algorithm for constructing FS(α, t∗): Use priorities to schedule each bit in Sbits(α, t∗), where
∀b ∈ Sbits(α, t∗) | priority(b) = o(pb,α). (Note that since both FS(α, t∗) and LSTF are work-
conserving, FS(α, t∗) is just a shuffle of the LSTF schedule up until t∗. The set of time slices at
which a bit is scheduled in FS(α, t∗) and in the LSTF schedule up until t∗ remains the same, but
which bit gets scheduled at a given time slice is different.)
(ii) In FS(α, t∗), all bits b in Sbits(α, t∗) exit α by time o(pb,α)+T (pb,α).
Proof by contradiction: Suppose the statement is not true and consider the first bit b∗ that exits after
time (o(pb∗,α)+T (pb∗,α)). We term this as b∗ got late at α due to FS(α, t∗). Remember that, as
per our assumption, (∀b ∈ Sbits(α, t∗) | i′(pb,α)≤ o(pb,α)). Thus, given that all bits of pb∗ arrive
at or before time o(pb∗ ,α), the only reason why the delay can happen in our work-conserving
FS(α, t∗) is if some other higher priority bits were being scheduled after time o(pb∗,α), resulting
in pb∗ not being able to complete its transmission by time (o(pb∗ ,α) + T (pb∗,α)). However,
as per our priority assignment algorithm, any bit b′ having a higher priority than b∗ at α must
have been scheduled before the first bit of pb∗ in the non-preemptible original schedule, implying
that (o(pb′,α)+T (pb′,α)) ≤ o(pb∗ ,α). Therefore, a bit b′ being scheduled after time o(pb∗,α),
implies it being scheduled after time (o(pb′,α)+T (pb′ ,α)). This contradicts our assumption that
b∗ is the first bit to get late at α due to FS(α, t∗). Therefore, all bits b in Sbits(α, t∗) exit α by time
o(pb,α)+T (pb,α) as per the schedule FS(α, t∗).
(iii) Since all bits in Sbits(α, t∗) exit by time o(pb,α) + T (pb,α) due to FS(α, t∗), no bit in
Sbits(α, t∗) sees a negative slack at α (from Observation 1).

Step 2:. Transform FS(α, t∗) into a feasible LSTF schedule for the single switch α up until time
t∗.

(Note: The following proof is inspired from the standard LSTF optimality proof that shows that
for a single switch, any feasible schedule can be transformed to an LSTF (or EDF) schedule [80]).

Let fs(b,α, t∗) be the scheduling time slice for bit b in FS(α, t∗). The transformation to LSTF
is carried out by the following pseudo-code:

A.6. THEORETICAL LIMITS FOR REPLAY USING LSTF 126

1: while true do
2: Find two bits, b1 and b2, such that:

(fs(b1,α, t∗)< fs(b2,α, t∗)) and
(slack(b2,α, fs(b1,α, t∗))
< slack(b1,α, fs(b1,α, t∗))) and
(i′(b2,α, t∗)≤ fs(b1,α, t∗))

3: if no such b1 and b2 exist then
4: FS(α, t∗) is an LSTF schedule
5: break
6: else
7: swap(fs(b1,α, t∗), fs(b2,α, t∗)) . swap the scheduling times of the two bits. 4

8: end if
9: end while

10: Shuffle the scheduling time of the bits belonging to the same packet, to ensure that they are in
order.

11: Shuffle the scheduling time of the same-slack bits such that they are in FIFO order

Line 7 above will not cause b1 to have a negative slack, when it gets scheduled at fs(b2,α, t∗)
instead of fs(b1,α, t∗). This is because the difference in slack(b2,α, t) and slack(b1,α, t) is inde-
pendent of t and so:

slack(b2,α, fs(b1,α, t∗))< slack(b1,α, fs(b1,α, t∗))

=⇒ slack(b2,α, fs(b2,α, t∗))< slack(b1,α, fs(b2,α, t∗))

Since FS(α, t∗) is feasible before the swap, slack(b2,α, fs(b2,α, t∗)) ≥ 0. Therefore,
slack(b1,α, fs(b2,α, t∗))> 0 and the resulting FS(α, t∗) after the swap remains feasible.

Lines 10 and 11 will also not result in any bit getting a negative slack, because all bits partici-
pating in the shuffle have the same slack at any fixed point of time in α .

Therefore, no bit in Sbits(α, t∗) has a negative slack at α after any iteration.
Since no bit in Sbits(α, t∗) has a negative slack at α in the swapped LSTF schedule, it contra-

dicts our statement that p∗ sees a negative slack when its last bit exits α at time t∗. Hence proved
that if a packet p∗ sees a negative slack at congestion point α when its last bit exits α at time t∗ in
the replay, then there must be at least one packet that arrives at α in the replay at or before time t∗

and later than the time at which it is scheduled by α in the original schedule.

A.6.3 LSTF Replay Failure Example
In Figure A.3, we present an example where a flow passes through three congestion points and

a replay failure occurs with LSTF. When packet a arrives at α0, it has a slack of 2 (since it waits
behind d1 and d2 at α2), while at the same time, packet b has a slack of 1 (since it waits behind a at
α0). As a result, b gets scheduled before a in the LSTF replay. a therefore arrives at α1 with slack

4Note that we are working with bits here for easy expressibility. In practice, such a swap is possible under the
preemptive LSTF model.

A.6. THEORETICAL LIMITS FOR REPLAY USING LSTF 127

SB	

SA	
 DA	

DB	

SC	

DC	

SD	

DD	

α0	
 α1	
 α2	

Original Schedule
Node Packet(arrival time, scheduling time)

α0 a(0,0),b(0,1)
α1 a(1,1),c1(2,2),c2(3,3)
α2 d1(2,2),d2(3,3),a(2,4)

LSTF Replay
Node Packet(arrival time, scheduling time)

α0 b(0,0),a(0,1)
α1 c1(2,2),a(2,3), c2(3,4)
α2 d1(2,2),d2(3,3),a(4,4)

Figure A.3: Example showing replay failure with LSTF when there is a flow with three congestion points.
A packet represented by p belongs to flow P, with ingress SP and egress DP, where P ∈ {A,B,C,D}. For
simplicity assume all links have a propagation delay of zero. All uncongested switches (white), ingresses
and egresses have a transmission time of zero. The three congestion points (shaded gray) have transmission
times of T = 1 unit.

1 at time 2. c1 with a zero slack is prioritized over a. This reduces a’s slack to zero at time 3, when
c2 is also present at α1 with zero slack. Scheduling a before c2, will result in c2 being overdue (as
shown). Likewise, scheduling c2 before a would have resulted in a getting overdue. Note that in
this failure case, a arrives at α1 at time 2, which is greater than o(a,α1) = 1.

128

Appendix B

Experience using Different Network
Simulators

I have extensively used different network simulators and have often been asked about their
relative pros and cons. I decided to list them here, in case anyone else finds them useful. Note
that this pros and cons list is based entirely on my experience using them for evaluating congestion
control, queue management and scheduling algorithms, and might not reflect how they compare
with one-another for other types of use-cases.

NS-2.
Pros:
1. The primary advantage of ns-2 is that since it has been around for a while, a large number of

congestion control, queue management and scheduling algorithms have been implemented in
ns-2. This makes it simpler to perform comparative analysis.

2. More extensive usage also implies that ns-2 is relatively bug-free and quite stable.
3. Extending ns-2 for specific use cases (more congestion control, scheduling, and queuing mech-

anisms) is fairly straight forward.
Cons:
1. The ns-2 documentation is not very good.
2. It requires knowing some Tcl for specifying the simulation set-up.
A tip: Logging results via the Tcl interface, which seems to be the recommended way, can in-
crease the simulation completion time. The simulation will complete significantly faster if logs are
captured by directly changing the C++ code-base.

NS-3.
Pros:
1. It has very good documentation.
2. Knowledge of C++ is enough to use ns-3. It also supports Python bindings, but I never used

them.
Cons:

129

1. The ns-3 code-base is overly structured, making it somewhat cumbersome to add new exten-
sions (such as a new transport protocol, or even a new packet header field).

2. Since ns-3 is relatively new, there are fewer transport schemes implemented in ns-3 (especially
when compared to ns-2). So when extensive comparison with other algorithms is needed, it
would require re-implementing them in ns-3, which can be non-trivial.

Common myth: ns-3 is not just another newer version of ns-2. It is completely different and has no
backwards compatibility with ns-2.

OMNeT++/INeT.
Pros:
1. As opposed to ns-2 and ns-3, OMNeT++ provides a more primitive message-driven framework,

which can be extended to experiment with radical communication schemes that do not comply
with the structure of other network simulators.

2. OMNeT++/INeT ran significantly faster than NS-2 for some of the experiment scenarios I tried
on both.

Cons:
1. It took me a while to figure out my way around the simulator. But this might just be because I

was habituated to other simulators when I started with OMNeT++/INeT.
2. OMNeT++/INeT uses its own domain-specific language called NED for specifying the simu-

lation set up. It seemingly does not support file operations, and so the topology and workload
files cannot be simply passed as inputs. I ended up writing a series scripts to translate a text file
containing an arbitrary topology and workload into the corresponding NED file. 1

3. Like NS-3, OMNeT++/INeT also suffers from the disadvantage of having fewer schemes im-
plemented in it, which makes comparative analysis more time consuming.

Overall. I believe that once enough time has been spent with any simulator, one becomes very
efficient at using it and the above differences matter less. So it might just be best to start with
a simulator that has the least ramp up time. For example, if the project requires some special
features that are implemented in a particular simulator, it might make sense to use that. If it
requires comparisons with particular schemes, it might be better to use a simulator in which those
schemes are implemented, and so on.

1These scripts can be made available upon request.

	Acknowledgments
	Introduction
	Relevant Background
	Can we avoid network infrastructure changes?
	Can we have a universal packet scheduling algorithm?
	Dissertation Plan

	Recursively Cautious Congestion Control
	RC3 Design
	Overview
	Example

	Performance Model
	RC3 Linux Implementation
	Extending TCP/IP in the Linux Kernel
	Specific Implementation Features

	Experimental Evaluation
	Simulation Based Evaluation
	Evaluating RC3 Linux Implementation

	Discussion
	Related Work
	Conclusion

	TIMELY:RTT-based Datacenter Congestion Control
	Value of RTT as a congestion signal in datacenters
	TIMELY Framework
	RTT Measurement Engine
	Rate Computation Engine
	Rate Control Engine

	TIMELY Congestion Control
	Metrics and Setting
	Delay Gradient Approach
	The Main Algorithm
	Gradient versus Queue Size

	Implementation
	Evaluation
	Small-Scale Experiments
	Large-Scale Experiments

	Related Work
	Conclusion

	Revisiting Network Support for RDMA
	Background
	Infiniband RDMA and RoCE
	Priority Flow Control
	iWARP vs RoCE

	IRN Design
	Improved Loss Recovery
	BDP-based Flow Control

	Evaluating IRN's Transport Logic
	Experimental Settings
	Basic Results
	Factor Analysis of IRN
	Robustness of Basic Results
	Comparison with Resilient RoCE.
	Comparison with iWARP.

	Implementation Considerations
	Relevant Context
	Supporting RDMA Reads and Atomics
	Supporting Out-of-order Packet Delivery
	Other Considerations

	Evaluating Implementation Overheads
	NIC State Overhead
	Packet Processing Overhead
	Impact on End-to-End Performance

	Discussion and Related Work
	Conclusion

	Universal Packet Scheduling
	Theory: Replaying Schedules
	Definitions and Overview
	Theoretical Results
	Empirical Results

	Practical: Achieving Various Objectives
	Average Flow Completion Time
	Tail Packet Delays
	Fairness
	Limitations of LSTF: Policy-based objectives

	Incorporating Network Feedback
	Emulating CoDel from Edge
	Emulating ECN for DCTCP from Edge

	LSTF Implementation
	Related Work
	Conclusion

	Conclusion and Future Work
	Proofs for UPS's Theoretical Results
	Existence of a UPS under Omniscient Header Initialization
	Nonexistence of a UPS under black-box initialization
	Deriving the Slack Equation
	LSTF and EDF Equivalence
	Theoretical Limits for Replay using Simple Priorities
	Theoretical Limits for Replay using LSTF
	LSTF can Replay up to Two Congestion Points per Packet
	Proof for Necessary Condition for Replay Failure with LSTF
	LSTF Replay Failure Example

	Experience using Different Network Simulators

