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gNUFFTW: Auto-Tuning for High-Performance
GPU-Accelerated Non-Uniform Fast Fourier
Transforms

Teresa Ou

Abstract—Non-uniform sampling of the Fourier transform ap-
pears in many important applications such as magnetic resonance
imaging (MRI), optics, tomography and radio interferometry.
Computing the inverse often requires fast application of the
non-uniform discrete Fourier transform (NUDFT) and its adjoint
operation. Non-Uniform Fast Fourier Transform (NUFFT) meth-
ods, such as gridding/regridding, are approximate algorithms
which often leverage the highly-optimized Fast Fourier Transform
(FFT) and localized interpolations. These approaches require
selecting several parameters, such as interpolation and FFT grid
sizes, which affect both the accuracy and runtime. In addition,
different implementations lie on a spectrum of precomputation
levels, which can further speed up repeated computations, with
various trade-offs in planning time, execution time and memory
usage. Choosing the optimal parameters and implementations is
important for performance speed, but difficult to do manually
since the performance of NUFFT is not well-understood for
modern parallel processors. Inspired by the FFTW library, we
demonstrate an empirical auto-tuning approach for the NUFFT
on General Purpose Graphics Processors Units (GPGPU). We
demonstrate order-of-magnitude speed improvements with auto-
tuning compared to typical default choices. Our auto-tuning is
implemented in an easy to use proof-of-concept library called
gNUFFTW, which leverages existing open-source NUFFT pack-
ages, cuFFT and cuSPARSE libraries, as well as our own NUFFT
implementations for high performance.

Keywords—non-uniform, non-Cartesian, FFT, NUFFT, GPU,
auto-tuning, image processing.

I. INTRODUCTION

Non-uniform sampling of the Fourier transform appears
in many important applications such as magnetic resonance
imaging (MRI) [1]-[3], optics [4]-[6], tomography [7]-[9],
and radio interferometry [10]-[12]. When samples are acquired
on a non-uniform grid in the frequency domain, computing
the inverse non-uniform discrete Fourier transform (NUDFT)
is generally non-trivial. Exact solutions require inverting the
large NUDFT [13], [14] or repeatedly computing the NUDFT
and its adjoint operations in iterative minimization algorithms
[15]-[17]. Approximate solutions use the adjoint NUDFT
with sampling density correction functions [18], or attempt
to approximate the inverse NUDFT by other means [19].

The Fast Fourier Transform (FFT) exploits the regular
structure of computing the DFT between Cartesian grids in
both image and frequency domains to reduce computation.
Such structure is broken when the frequency domain is
not uniformly sampled. Non-Uniform Fast Fourier Transform
(NUFFT) methods are a set of fast approximate algorithms for
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Fig. 1. Overview of gridding- and regridding-based approaches for NUFFT,
which are fast approximate algorithms for computing NUDFT and its adjoint
operation. These approaches leverage the highly optimized FFT with additional
interpolation and weighting steps.

computing the NUDFT [15], [20]-[28]. Allowing for approx-
imation error helps to reduce the algorithmic complexity of
NUFFT. While several variants of NUFFT exist, the most com-
monly used are gridding/regridding-based approaches, shown
in Fig. 1, which leverage the highly optimized FFT with
additional interpolations and weighting steps [22], [26]-[29].
Gridding-based approaches require selecting parameters for
the Cartesian grid size and interpolation kernel width, which
affect both accuracy and runtime of the NUFFT. While the
accuracy of the NUFFT is well-understood, the implementa-
tion and performance on modern parallel processors is still
an active area of exploration. Here, we focus on Graphics
Processing Units (GPU), which are increasingly used for image
processing, due to their massively parallel architecture.

NUFFT implementations are less highly optimized than FFT
libraries such as FFTW [30] and CUFFT [31]. Due to the
complexity of modern processor architectures, FFTW uses
auto-tuning to optimize FFTs by empirically searching over
multiple decompositions, algorithms, and low-level optimiza-
tions, and measuring their execution times. Inspired by FFTW
[30], we propose to optimize NUFFT over the space of NUFFT
algorithm implementations and their associated parameters.

The main result of this work is that auto-tuning can ac-
celerate the computation of NUFFT operations by an order
of magnitude over default parameters for specific algorithms.
Auto-tuning is therefore an easy way to speed up any existing
NUFFT implementations. In addition, when memory restric-
tions exist, or when the same NUFFT is repeatedly executed,
significant gains in speed can be obtained by optimizing over
algorithms with different levels of precomputation. Finally, we



present a software library for computing NUFFTs on the GPU
with a prototype auto-tuning framework. Similar to FFTW,
our software library uses separate planning and execution
phases. Our library uses the concept of empirical performance
measurement during the planning phase to identify the pa-
rameter values and NUFFT implementations that result in the
fastest runtime [32]. We provide implementations of NUFFT
algorithms that span a range of levels of precomputation,
which trade off planning time, execution time, and memory
requirements. Additional data structures that facilitate execu-
tion may be precomputed during the planning phase and stored
in memory.

The proposed library is portable, easy to use, and fast
across various hardware architectures, and we leverage highly
optimized routines from the cuFFT and cuSPARSE libraries
[31], [33]. We analyze the performance of a range of NUFFT
problems, to understand how to choose the parameter values
and algorithms that will yield the fastest NUFFT computa-
tions.

II. RELATED WORK

The computation and accuracy of NUFFT have been well-
studied in prior work [26], [27], [29], [34]. Jackson et al.
[34] compare different interpolation kernels and evaluate the
amount of aliased energy produced in NUFFT. Beatty et al.
[29] develop a method to select oversampling ratios below the
conventional value of two and use presampled interpolation
kernels to reduce memory requirements and runtime. The
notion of maximum aliasing amplitude is introduced as a way
to estimate the NUFFT approximation error and choose the
appropriate combination of parameters that achieve the desired
accuracy. We draw from their techniques in our implementation
of NUFFT.

Prior work on the implementation of NUFFT in software
includes the acceleration of NUFFT on the GPU [35]-[38],
methods for partial precomputation [36], [39], [40], and
Toeplitz-based approaches [41]-[44]. Several software libraries
for computing the NUFFT exist. NFFT [45], [46] and PNFFT
[47] are software libraries for computing NUFFT on the
CPU, with serial, multi-core and distributed implementations.
NFFT allows the user to choose different interpolation kernel
functions, levels of precomputation, and parameter values.
gpuNUFFT [38] is a GPU-based library that implements partial
precomputation with load balancing. PowerGrid [48] is a
highly accessible library written in OpenACC, which allows
it to be used on various accelerators, including GPUs, multi-
core CPUs, and distributed systems, although this flexibility
comes at the cost of decreased performance. IMPATIENT
[44], [49] is a GPU-based library for accelerating iterative
image reconstruction using a Toeplitz-based approach [41]-
[44]. Section IV further discusses related work with respect to
the spectrum of precomputation levels.

In all of these existing libraries, however, the user must
manually choose parameter values for the oversampling ratio
and kernel width. We propose a framework to automatically
select these parameter values for the user to improve both
performance and ease of use. NFFT and PNFFT libraries

for the CPU are well-developed and relatively complete in
comparison to the existing libraries for GPU. However, GPUs
can offer inexpensive significant speedup alternatives over
multi-core CPU implementations. Therefore we focus here
solely on GPU implementations of the NUFFT.

III. NUFFT ALGORITHMS AND PARAMETERS

Several algorithms for computing the NUFFT exist. The
most commonly used are gridding-based methods which lever-
age the FFT, local interpolations, and weighting operations. In
iterative algorithms, successive operations of the NUFFT and
its adjoint are often needed. In that case, there is an interesting
alternative often referred to as the Toeplitz approach, for
computing both operations simultaneously. This method was
first proposed by Wajer and Pruessman [41] and also appears
in [42]-[44], and only uses FFTs and weighting operations
without interpolations. Each of these mentioned algorithms
has a different set of parameters and implementations, which
comprise the optimization space for auto-tuning.

The runtime of NUFFT is a complex function of hardware
parameters and the space of implementations and algorithm
parameter values. Modern parallel processors are difficult to
model, and hardware architectures can change significantly
between machines and also over time. For example, GPUs
may have different numbers of multiprocessors, memory band-
width, available registers, shared memory, etc. Therefore, we
propose to use auto-tuning to determine the implementations
and algorithm parameters that would result in the fastest
executions for each hardware architecture.

What the user would specify are the non-uniform sampling
pattern, the desired accuracy level of the NUFFT, and amount
of planning allowed. The auto-tuning library will automatically
choose the implementations that meet the specified constraints
and determine the optimal parameter values for each method to
achieve the best performance. Auto-tuning may be performed
over the space of algorithm parameters and implementations,
or over a smaller search space of the algorithm parameters for
a particular implementation. For different data sets with the
same non-uniform sampling patterns, the same NUFFT plan
can be reused (for example, in iterative reconstructions [1],
[43], [44], [50]) and the cost of planning is amortized over
each time the plan is reused.

As a proof of concept, we focus on a few algorithms to
demonstrate auto-tuning of the NUFFT on the GPU. Addi-
tional algorithms may be included in the auto-tuning search
space in the future. In this section, we describe the NUFFT
problem in 1D for clarity; the equations can be extended to
higher dimensions using separable functions.

A. Non-Uniform Discrete Fourier Transform

Several NUDFT problem types exist [51], where the image
and/or Fourier domains have non-Cartesian sampling patterns.
For simplicity, we focus on the case where the image domain
is uniform and the Fourier domain is non-uniform, which
occurs in applications where data are obtained in the frequency
domain and a Cartesian image is desired for analysis and
display purposes. Examples include non-Cartesian sampling



Fig. 2.
samples are convolved with an interpolation kernel H (k) and resampled onto
an oversampled Cartesian grid with Ak = —i-, where N is the desired
image size. In the image domain, this corresponds to multiplying the image
with h(z), the inverse Fouerier transform of the kernel, and replicating the
image with a spacing of aN between copies. The overlapping of the image
replications, or aliasing, results in the approximation error of the NUFFT.

In the gridding algorithm, or adjoint NUFFT, the non-uniform

trajectories in MRI, tomography and radio-astronomy. The
opposite case, where the image domain is non-uniform and
the Fourier domain is uniform, is a trivial extension and will
not be discussed here.

Suppose we have a signal sampled at grid points {z,}.
Then, the NUDFT of the signal evaluated at arbitrary spatial
digital frequencies {k,,} is:

1 = ,
Fkm) = 7 > flwn)e Bk, (1)

n=0

Similarly, the adjoint operation is defined as follows:

| M-l ‘
flzn) = ﬁ Z F(km)e-‘rz%rxnkm. @)

m=0

The above formulation uses a similar normalization that ap-
pears for the orthonormal DFT. However, unlike the orthonor-
mal DFT, the adjoint and inverse NUDFT operations are not
the same. Computing the inverse NUDFT is more difficult.
Depending on the number of samples and their distribution,
the inverse may be under- or over-determined and in general
requires computing the inverse of the NUDFT matrix [13], [14]
or computing the inverse through iterative algorithms, such as
the conjugate gradient (CG) [15]-[17], that use the NUDFT
and its adjoint operation internally.

FFT algorithms can achieve O(N log N) runtime by lever-
aging the symmetry of Cartesian sampling patterns [52], which
does not apply to the NUDFT. Therefore, the algorithmic com-
plexity of the direct computation of the NUDFT is O(MN).

B. Gridding

We focus primarily on gridding algorithms, which approxi-
mate the forward and adjoint NUDFT by interpolating between

non-uniform samples and a Cartesian grid to allow use of the
FFT. Table I defines the relevant variables and functions.
The forward NUFFT operation of a signal with length N is
described by the following procedure:
1) Perform pre-apodization by dividing by h(x).
2) Zero-pad to a grid N and perform an FFT.
3) Interpolate to the non-Cartesian grid by convolution
with the kernel function H (k) with finite width W,
and evaluate the result at frequencies {k,, }.

The adjoint NUFFT operation applies the operations in
reverse and is described by the following procedure:

1) Convolve the non-uniform samples F(k,,) with the in-
terpolation kernel H (k) of finite width W, and evaluate
the result on an oversampled Cartesian grid with size
alN.

2) Apply the inverse FFT and crop to size V.

3) Perform deapodization by dividing by h(z).

We provide an in-depth discussion of the adjoint operation,
since this operation used along with density compensation
is often the method of choice for approximating the inverse
NUFFT in practice. In the first step, the non-uniform samples
F(k,,) are convolved with an interpolation kernel H (k) and
resampled onto a Cartesian grid, which may be written as the
following summation:

(F * H)(kg) = >

m:|kg—km | SW/2

F(k'rn)H(I‘%g - k'm)~ (3)

The inverse FFT is then applied to the resampled data. As
shown in Fig. 2, convolving F(k,,) with H(k) in the fre-
quency domain corresponds to multiplying f(z,) by h(z) =
F~!'{H(k)} in the image domain. Resampling on the over-
sampled Cartesian grid of size G = aN with Ak = O%N cor-
responds to replication with spacing aNV in the image domain,
which results in aliasing. Finally, the uniform samples in the
image domain are obtained by dividing by h(x) and cropping
the image. This deconvolution step is called deapodization and
is implemented as a pointwise division. As shown in [29], the
result of the adjoint NUFFT can be summarized as follows:

fla) = F {[F (k) » H() TIT (Gk)} ey @

The overlapping replications in the image domain can cause
undesirable aliasing artifacts and degrade image quality. The
level of aliasing is determined by the gridding parameters:
oversampling ratio, kernel width, and interpolation kernel.

Commonly used interpolation kernels include Hamming,
Hanning, Gaussian, and Kaiser-Bessel windows. We choose to
use the Kaiser-Bessel kernel here, since it can be parameterized
by a single parameter and has low relative sidelobe energy as
a function of width W, as shown by Jackson et al. [34]. The
Kaiser-Bessel kernel in one dimension is

HK) = 1o (V1= CGHWR),  ©



with inverse Fourier transform
sin/(nWz/G)? — 32
h(z) =
(nWax/G)? — 52
where we use the shape parameter § from Beatty et al. [29]
2 B, W) = 7T\/W(Oé— )2 —0.8, and Io(-) is the zero-

; )

order modified Bessel function of the first kind. In higher
dimensions, separable interpolation kernels can be used.

The Kaiser-Bessel kernel width determines the amplitude of
sidelobes of h(x). A wider kernel results in smaller sidelobes
and therefore lower error. However, the level of aliasing also
depends on the oversampling ratio, which affects the spacing
of the replications of the image. A higher oversampling ratio
increases the distance between replications and allows for a
transition region in h(x), which reduces the amount of aliasing.

The approximation error of the NUFFT can be calculated by
computing the exact NUDFT and subtracting the result of the
NUFFT. However, this is impractical since the exact NUDFT
may be expensive to compute and the error depends on both
the sampling pattern and the sampled data. Instead, we desire a
method for estimating approximation error that is independent
of the sampling pattern and data. Beatty et al. [29] introduced
the concept of the maximum aliasing amplitude ¢, which they
have shown to reliably estimate the order of magnitude of
the approximation error. The maximum aliasing amplitude is
defined as:

1 2
€ = max \/h(m)Q ];)(h(x + Gp))2. (8)

The relationship between maximum aliasing amplitude e,
oversampling ratio o, and kernel width W is shown in Fig.
3 for the Kaiser-Bessel kernel. Multiple (o, W) pairs that
achieve the same desired maximum aliasing amplitude € can
be enumerated.

Given parameter values for (a, W), we can analyze the
NUFFT algorithmic complexity. The interpolation requires
evaluating the kernel W¢ times for each non-Cartesian sample.
With an oversampling ratio «, an FFT with N elements is
evaluated. Finally, the deapodization step has N point-wise
multiplications. The total runtime of gridding is

et MW + cy(a?N)log aN + e3N, )

where ¢; are implementation and hardware dependent con-
stants. The first two terms corresponding to the interpolation
and FFT steps, respectively, dominate the overall runtime,
while the last term for the deapodization is negligible.

To keep the maximum aliasing amplitude € below a certain
value, a high oversampling ratio o may be selected, at the
cost of increased FFT runtime. Since a high oversampling
ratio results in replications of the image spaced further apart
with less aliasing, a small kernel width W corresponding to
higher amplitude sidelobes is sufficient to achieve the desired
accuracy level. The choice of a small kernel width decreases
the interpolation runtime. Similarly, a lower oversampling ratio
may be selected, which necessitates a larger kernel width to
achieve the same maximum aliasing amplitude.

Maximum aliasing amplitude

—e=0.1
8- —e=0.01
¢ = 0.001]

kernel width
(8)] D

i

1 1.5 2 25 3
oversampling ratio

Fig. 3.  Maximum aliasing amplitude ¢ as a function of oversampling ratio
a and kernel width W, for linearly interpolated presampled Kaiser-Bessel
kernel [29]. The maximum aliasing amplitude is a data-independent estimate
of error between NUDFT and NUFFT. Lower error levels can be achieved by
increasing o or W. Different sets of parameters (o, W) that achieve equal
error levezl)) can be enumerated. The values shown here were calculated for
N = 128°.

Gridding implementations can trade off runtime between
the interpolation and FFT, depending on the choice of over-
sampling ratio and kernel width. Since multiple («, W) pairs
achieve the same accuracy and it is unclear which set of
parameters results in the fastest execution time, we can use
empirical performance optimization to benchmark different
sets of parameter values and then choose the fastest one.

The NUFFT gridding computations may be expressed com-
pactly in terms of linear operators:

NUFFT =TFD, (10
NUFFT? = DTFHETT (11)

where I' € RM*G | € CE*E and D € RE*N . The adjoint
and forward NUFFT are conjugate Hermitian operations. D
is a diagonal matrix with deapodization values which also
performs zero-padding, and T' is the interpolation matrix,
where

12)

Lo {H(kg —km) Vg — b <
9 0 else

The interpolation operators I' and I'T can be implemented
in several ways. The interpolation coefficients can be com-
puted on-the-fly during execution or precomputed in advance.
If the coefficients are computed on-the-fly, the operation is
implemented directly as a convolution with the interpolation
kernel. Alternatively, all coefficients may be precomputed and



TABLE 1. GRIDDING VARIABLES
M Number of non-uniform samples
N Image size (total number of pixels)
G Oversampled grid size (total number of pixels, G = a?N)
d Dimensionality of image
T Image coordinate, x € R?
k Spatial frequency coordinate, k € R?
k Spatial frequency coordinate on oversampled grid, keRr?
n Image grid index, n € {0,--- ,N — 1}
m Spatial frequency index, m € {0,--- , M — 1}
g Oversampled grid index, g € {0,--- ,G — 1}
f(zn) Image with uniformly spaced samples
F(ky,)  Spatial frequency signal, with non-uniform sampling pattern
flzn) Gridding result from adjoint NUFFT
e’ Oversampling ratio, for each dimension (o = ’\i/%)
w Kernel width (in grid units)
€ Maximum aliasing amplitude
R Acceleration factor
ar Zero-padding ratio for Toeplitz method
H (k) Kaiser-Bessel interpolation kernel
h(z) Inverse Fourier transform of Kaiser-Bessel kernel H (k)
B Shape parameter of Kaiser-Bessel kernel
F{} Fourier transform
r Sparse interpolation matrix for the gridding-based NUFFT
D Preapodization and zero-padding matrix for gridding-based NUFFT

stored in a sparse matrix. During execution, the interpolation
is performed via sparse matrix-vector multiplication (SpMV),
where the dense vector is the vectorized non-Cartesian sam-
ples in the frequency domain or the uniform samples in the
image domain. These different implementation strategies are
discussed further in Section IV.

C. The Toeplitz Method

In iterative reconstructions, the primary operation of interest
is often the forward NUFFT directly followed by an adjoint
NUFFT. In this case, a fast approach that combines the
forward and adjoint NUFFTs into a single operation can be
advantageous. As shown in [41]-[44], [49], [53], when using
a grid oversampling larger than two, the joint forward and
adjoint NUFFTs have a Toeplitz structure which reduces the
joint operation to a convolution with the point spread function
(PSF) ¢g(x,,) of the non-uniform sampling pattern. This linear
convolution can be computed in practice, by using a zero-
padding ratio of o > 2 and performing the convolution in
the DFT domain as follows:

9(@n) = f(zn) xq(xn) = F~! {F{f(zn)} F{q(zn)}}, (13)

where g(z,) = SN} emi2mnkn | 0 < n < arN, which
may be computed exactly or via gridding. In the planning
phase, F {q(z,)} is computed and stored in memory.

During execution, two FFTs of size adTN are computed,
where ar > 2, with a%N pointwise multiplications. The
runtime of the Toeplitz-based approach is

c12(0dN)log ab N + cyadN. (14)

The FFT step dominates the runtime while the pointwise
multiplication is negligible. Unlike the gridding-based method,
the Toeplitz-based approach has an execution runtime that is
independent of the approximation error. Since the runtime of
FFT is non-monotonic, auto-tuning can be applied to determine
the value of o that yields the fastest execution time.

IV. NUFFT IMPLEMENTATIONS

Here we discuss further several implementations and op-
timization strategies on the GPU. In particular, we discuss
different computation methods for interpolation and FFT in
gridding.

A. CUDA Overview

The CUDA programming model provides a framework to
extend C and write functions called kernels to launch on the
GPU. Whereas CPUs are optimized for latency, GPUs have
high throughput with many processors for parallel computa-
tion. Kernels are executed by a grid of blocks, which are
groups of threads that execute in parallel. Threads execute
in lockstep in groups of 32 called warps. To achieve high
performance, kernels need to exploit sufficient parallelism to
hide latency. Care must be taken to choose the grid and block
sizes appropriately. High occupancy (number of active warps
divided by maximum active warps) usually allows for latency-
hiding and results in good performance.

GPUs have three main types of memory: global memory,
shared memory, and local memory. Global memory is the
largest and accessible to all threads, but has high latency.
Shared memory is fast on-chip memory with the lowest
latency, but it is a limited resource and is shared between
threads in the same block. Local memory is private to each
thread with latency similar to that of global memory.

General strategies for obtaining good performance include
using memory efficiently, avoiding thread divergence, and
minimizing data transfers. Accesses to global memory should
be linear and aligned when possible, to encourage coalescing
and caching. Thread divergence occurs when threads within
the same warp take different execution paths. When a subset
of threads in a warp proceed on an execution path, all other
threads in the warp are idle, which degrades performance.
Lastly, data transfers between CPU and GPU can take a
significant amount of time relative to computation. Data trans-
fers should be avoided when possible or overlapped with
computation.

B. Interpolation and Resampling

NUFFT implementations span a spectrum of different levels
of precomputation, shown in Figure 4, ranging from no pre-
computation to full precomputation. Toeplitz-based methods
can be considered to fall in the category of full precomputation,
since the location of the non-Cartesian samples are no longer
required during execution, after the Fourier transform of the
PSF has been precomputed. Table II shows existing software
implementations and related work along the spectrum of
precomputation levels.



Here we compare different implementations of gridding-
based methods across the spectrum of precomputation levels.
Precomputation-free methods require less memory and plan-
ning time for precomputation compared to fully precomputed
methods, but may result in slower execution time. If a non-
uniform sampling pattern is reused multiple times, then the
cost of precomputation is amortized over multiple executions
of the same NUFFT plan, and higher levels of precomputation
with faster execution times may be preferred.

The relative spatial positions and ordering of the non-
Cartesian samples in memory affect the interpolation time. In
particular, the performance of GPU programs are highly sen-
sitive to cache performance. Additional optimizations, which
are not explored further here, can be made for methods of all
precomputation levels by reordering the non-Cartesian samples
to improve the pattern of memory accesses and caching
behavior.

1) No Precomputation: In the precomputation-free ap-
proach, the interpolation is performed as a convolution, which
may be parallelized over non-Cartesian samples or Cartesian
grid points, referred to as input-driven or output-driven inter-
polation, respectively [36]. The precomputation-free approach
is implemented in PowerGrid [48], NFFT [46], PNFFT [47],
BART [50], and IRT [55].

Parallelization over Cartesian grid points is expensive with-
out precomputation, since it is not known a priori which non-
Cartesian samples contribute to a particular Cartesian grid
point. Each thread corresponding to a Cartesian grid point must
loop over all non-Cartesian samples to find the samples that lie
within its neighborhood of width W, resulting in an O(MN)
algorithm.

Instead, parallelizing over non-Cartesian samples presents a
lower-cost approach with algorithmic complexity O(MW ).
Each thread corresponding to a non-Cartesian sample can enu-
merate its neighboring Cartesian grid points. Fig. 4a illustrates
the precomputation-free method.

In the adjoint direction, each thread adds the non-Cartesian
sample’s contribution to the neighboring Cartesian grid points
via atomic add operations, which are required to ensure
correctness. Similarly, in the forward direction, each thread
accumulates the contribution from neighboring Cartesian grid
points to the non-Cartesian sample. Unlike the adjoint op-
eration, the forward operation does not require atomic add
operations. For each NUFFT computation, each thread must
enumerate the neighboring grid points and calculate the inter-
polation kernel values based on distance to the grid points.

In NUFFT implementations, the interpolation kernel is
usually finely presampled and stored in a lookup table [29].
Presampling the kernel allows us freedom to choose any kernel
function, without needing to account for the cost of evaluating
a particular function in the execution phase. The value of
the kernel at a particular point is approximated using linear
interpolation of the lookup table values. On the GPU, texture
memory can be used to perform fast low-precision linear
interpolation where the linear interpolation coefficients are
represented with 9-bit fixed point format, as implemented in
gpuNUFFT [38].

The precomputation-free approach requires no additional

memory besides the input, output, and interpolation kernel
lookup table, and the planning phase is quick, with only the
computation of the lookup table. However, this approach is
optimal in the number of read operations and suboptimal
in the number of write operations in the adjoint direction,
and vice versa for the forward direction [39]. In the adjoint
direction, each non-Cartesian sample is read once, while values
are written to the surrounding Cartesian grid samples multiple
times using atomic add operations. Similarly, in the forward
direction, each non-Cartesian sample is written once, while the
values of the neighboring Cartesian points are read multiple
times.

Furthermore, in the adjoint direction, if two non-Cartesian
samples are spatially close and their threads attempt to write to
the same grid point simultaneously, the atomic add operations
are serialized. That is, one thread must wait for the other to
finish updating the grid point before it can write its value to
the grid point. In sampling patterns such as the radial sampling
pattern, non-Cartesian samples are densely located toward
the center of k-space, resulting in serialization of atomics.
Meanwhile, non-Cartesian samples at the edge of k-space are
farther apart. Threads corresponding to these samples finish
their computation earlier and must wait for threads at the
center of k-space to finish their work. These issues suggest
that some precomputation may be beneficial in providing a
better balance between the number of read and write operations
and/or preventing serialization of atomics.

2) Partial Precomputation: Various partially precomputed
methods fall between the two ends of the spectrum. One
approach, implemented in gpuNUFFT [38] and described by
Sorensen et al. [54] and Gregerson [36], is to divide k-space
into sectors, where each sector may be assigned to a processor,
as shown in Fig. 4b. During the planning phase, non-Cartesian
samples are sorted into sectors. In the adjoint operation, each
non-Cartesian sample that contributes to a sector is read once
from a precomputed list of samples. The contributions to Carte-
sian grid points are written to fast, low-latency shared memory
multiple times, and the final result is written once to global
memory. In this sector-based approach, the non-Cartesian
samples at the boundaries of the sectors will contribute to
Cartesian grid points in neighboring sectors, which necessitates
extending the boundary of the corresponding shared memory
grid by W/2 in each direction. In gpuNUFFT [38], load-
balancing is also implemented by creating new virtual sectors
when the number of non-Cartesian samples in a sector exceeds
some limit.

Obeid et al. [40] and Gai et al. [49] describe a compact bin-
ning approach, where bins are allowed to have a variable num-
ber of non-uniform samples and load-balancing is achieved by
partitioning work between the GPU and CPU. This approach
is implemented in IMPATIENT [44]. Regular binning, where
each bin contains an equal number of samples, is not used
due to the potentially high level of extra padding and memory
required for highly non-uniform sampling patterns.

3) Full Precomputation: Fully precomputed methods enu-
merate the neighboring Cartesian grid points and calculate
interpolation kernel values in advance during the planning
phase. The interpolation kernel values are stored in a sparse



interpolation Tk Mk
kernel \1/ ’ sector \¢/ ’
v . . AN -
IS \ \ hg"
vz iR 2Rl o I -
LT = DO =S N Sy
. zt pe o ® [ . ‘“HMMU
a) /1% c) Pk e Sparse Matrix

No Precomputation
+ Fast planning
+ Low memory
- Slow execution

Partial Precomputation

Full Precomputation
- Slow planning
- High memory
+ Fast execution

d)

Toeplitz
+ Fast planning
+ Low memory
+ Fast execution
- Does not include adjoint
or forward NUFFT
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points and compute values to gather from or add to its neighbors, and hence requires atomic operations to prevent conflicts. b) Partial precomputation [36], [38],
[40], [44], [54] divides k-space into sectors or bins during the planning phase and computes results for each sector in parallel. Within each sector, non-Cartesian
samples are processed in parallel. ¢) The fully precomputed method computes in advance the interpolation coefficients, which are stored in a sparse matrix.
During the execution phase, the interpolation is performed as an SpMV operation, which is parallelized along the non-Cartesian points in the forward operation
and the Cartesian grid points in the adjoint operation. d) The Toeplitz-based method [41]-[44] precomputes the PSF of the non-uniform sampling pattern during
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TABLE II. SOFTWARE IMPLEMENTATIONS AND RELATED WORK ALONG THE SPECTRUM OF PRECOMPUTATION LEVELS.
Implementation Method
No Precomputation Partial Precomputation | Full Precomputation | Toeplitz
Open-Source GPU Software | gNUFFTW gNUFFTW gNUFFTW
PowerGrid [48] gpuNUFFT [38]
IMPATIENT [44] IMPATIENT [44]
Open-Source CPU Software | NFFT, PNFFT [45], [47] NFFT [45]
BART [50] BART [50]
IRT [55] IRT [55]

Research Publications

Beatty et al. [29]

Obeid et al. [40]
Gregerson [36]

Murphy [32]

Sorensen et al. [39]
Gai et al. [49]

Wajer and Pruessman [41]
Eggers et al. [42]

matrix (Fig. 4c). During the execution phase, the interpolation
and resampling is performed as a sparse matrix-vector multi-
plication (SpMV). We rely on existing optimized libraries for
sparse matrix operations, such as cuSPARSE [33]. Unlike the
previously discussed methods, the fully precomputed method
incurs a large memory footprint. Existing implementations of
the fully precomputed approach can be found in NFFT [46]
and IRT [55].

Multiple representations for sparse matrices exist, including
compressed sparse row (CSR) and a hybrid format (HYB)
of Ellpack-Itpack (ELL) and coordinate (COO) formats. COO
stores the nonzero entries and their row and column indices.
CSR compresses the vector of row indices into pointers to the
beginning of each row. HYB stores a portion of the matrix in
ELL format and the remainder in COO format. ELL stores the
nonzero entries and column indices as block matrices, with row

length K. If a row has fewer than K nonzero entries, then zeros
are represented as 0 and -1 for the value and column index,
respectively. The ELL format is useful when the matrix has a
regular structure with a similar number of nonzero entries in
each row. Thus, the HYB format stores the regular part of the
matrix as ELL and the irregular part as COO. On the GPU,
CSR SpMV kernels have partial coalescing, whereas HYB
SpMV kernels have full coalescing. Bell et al. [56] optimized
and benchmarked various SpMV kernels on the GPU and
found that no particular sparse matrix format outperforms the
other formats for all classes of unstructured matrices that were
benchmarked.

The fully precomputed method requires significantly more
memory than precomputation-free and partially precomputed
methods. Using the CSR sparse matrix format requires storing
M row pointers and and MW? values and column indices



for the nonzero entries, for the adjoint operation. The sparse
matrix for the forward operation is the transposed matrix, with
G row pointers and MWW ¢ values and column indices. Memory
requirements for the HYB sparse matrix format depend on
the selected value of K and the number of remaining entries
stored in COO format. The ELL portion stores K values and
column indices for each row, and the COO portion stores
row index, column index, and value for all remaining entries.
Transposing a sparse matrix is generally slow. To obtain
the fastest execution, we store both the adjoint and forward
matrices individually, which doubles the required memory
footprint.

The values of the sparse matrix are real, while the dense
vector is complex. The cuSPARSE library only supports SpMV
operations where the matrix and vector have the same data
type. One option is to perform a sparse matrix dense matrix
multiplication, where the dense matrix consists of the real
and imaginary parts of the complex data. caSPARSE assumes
dense matrices to be stored in column-major ordering, i.e. all
of the real parts followed by all of the imaginary parts, whereas
cuFFT for complex data expects the real and imaginary parts
to be interleaved. Although cuSPARSE can also index into the
dense matrix with row-major ordering, this yields suboptimal
performance. We include in our implementation a modified
version of CUSP SpMYV routine [57] to multiply a real-valued
sparse matrix with complex vector. Alternatively, we can store
the sparse matrix with complex values where the imaginary
part is 0. Although this further doubles the memory footprint,
this option is straightforward and allows us to leverage the
highly optimized cuSPARSE routines. This sparse matrix
representation appeared to perform better than the modified
CUSP routine and HYB format and was chosen for the fully
precomputed method in our library. Future work may involve
exploring optimizations for the modified CUSP routine and
HYB format, such as choosing appropriate grid and block sizes
or choosing the row length parameter K, respectively.

C. FFT Optimizations

1) Pruned FFT: Further optimizations to the FFT step can
be made by pruning unnecessary operations. The output of the
inverse FFT in the adjoint NUFFT is cropped, and the input
to the FFT in the forward NUFFT is zero-padded. We can
compute only a subset of the output in the adjoint operation,
and similarly, only a subset of the inputs in the forward
operation are used. Here we discuss only the cropped inverse
FFT for the adjoint operation where we compute a subset of
the output, and similar analysis also holds for the zero-padded
FFT.

These pruning optimizations are most beneficial when the
subset of interest is small relative to the full output. In the
context of NUFFT, the size of the subset, K, is smallest for
3D problems with a high oversampling ratio, « = 2, where
we are interested in 1/8 of the output. We will analyze the
performance for this best-case scenario.

A multidimensional FFT can be decomposed into 1D FFTs
along each dimension. One way to omit unnecessary operations
is to compute only the 1D FFTs that contribute to the final re-
sult, which is the approach used in PNFFT [47]. For & = 2 and

a 3D FFT with size n3, we perform n? 1D FFTs of length n
in the first dimension, n2 /2 1D FFTs in the second dimension,
and n?/4 1D FFTs in the third dimension. If the algorithmic
complexity for the full FFT problem is c - 3n3log(n), the
algorithmic complexity in this approach is ¢ - 1.75n° log(n).
This approach yields only a constant factor improvement in
algorithmic complexity by 41.67%. Furthermore, performing
a batch of 1D FFTs in this configuration requires custom
FFT kernels. The cuFFT library [31] provides advanced data
layout options, such as distance, stride, and embedded arrays;
however, we require a non-constant distance between the first
element of consecutive batches, which cannot be specified
through the cuFFT interface.

Alternatively, FFT problems can be decomposed into
smaller FFTs, which are then recombined with linear phase
factors. We can directly eliminate all unnecessary operations
that do not contribute to the subset of outputs of interest. This
is referred to as a pruned FFT [54], which has algorithmic
complexity O(N log K) where N is the size of the full output.
Instead of performing a full 3D FFT of size n®, we can
perform 8 smaller FFTs of size (n/2)3, where the algorithmic
complexity is cn® log %. Compared to the previous approach,
the pruned FFT has much lower algorithmic complexity, with
an improvement in the log factor. As shown in Figure 5, we
benchmarked these 3D FFT problems and compared the time
to perform 8 smaller FFTs with the time for the full FFT
problem. The timing measurements represent an upper bound
on the potential speedup of the pruned FFT, as they do not
account for recombination of the intermediate results with the
linear phase factors.

In most cases, the potential speedup of the smaller FFTs
over the full FFT is not substantial enough to justify using the
pruned FFT, and so our library does not include pruned FFTs.

2) Selection of Oversampling Ratio: The runtime of the FFT
is non-monotonic and highly dependent on the factorization
of the problem size. For gridding, we choose the set of
oversampling ratios « that result in oversampled grid sizes
with fast FFT runtimes, of the form 2% - 3 - 5¢ . 7¢. This
both reduces the search space and avoids pathological FFT
sizes. For the same reason, we enumerate several values of ar
for the Toeplitz-based approach and select the optimal value
empirically.

Finally, as shown in Figure 3, for a fixed maximum aliasing
amplitude, the kernel width decreases as the oversampling ratio
increases. However, at high oversampling ratios, increasing
the oversampling ratio further will only result in negligible
decreases in the kernel width. The FFT time will increase
while the interpolation time decreases only by a small amount.
Therefore, we restrict our parameter search space for the
oversampling ratio to « € (1, 2] for gridding.

V. METHODS

Given a target maximum aliasing error, our library empiri-
cally searches over the space of NUFFT implementations and
their parameters, to choose the combination that results in the
fastest execution time. The library includes precomputation-
free, fully precomputed, and Toeplitz methods, which use
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Fig. 5. Potential speedup of 3D pruned FFT compared to full FFT. NUFFT
utilizes FFTs that are zero-padded or cropped, which can be exploited using the
pruned FFT algorithm [54]. The potential performance increase is greatest for
large-dimensional problems where the outputs of interest are a small fraction
of the full FFT output, i.e. 3D FFT with o« = 2. Pruned FFT consists of 8
smaller (n/2)3 FFTs, rather than a single n® FFT. The potential speedup is
calculated by dividing the runtime of the full FFT by the runtime of the 8
smaller FFTs. The plotted data represents an upper bound on speedup and
does not account for data movement.

cuFFT and cuSPARSE. Pruned FFT optimizations are not
included. We also incorporate gpuNUFFT [38] into our auto-
tuning framework, to utilize its implementation of partial
precomputation. We use the recommended sector width of 8
for 3D NUFFTs. gpuNUFFT uses only integer kernel widths,
which we accommodate by rounding the kernel width both up
and down.

We evaluate the NUFFT for several different problem sizes,
which are characterized by their image size and the size of
the sampling pattern. The number of non-Cartesian samples
is determined by the efficiency of the sampling pattern and
the acceleration factor R, which is the level of undersampling
below the Nyquist rate. A fully sampled non-uniform sampling
pattern corresponds to acceleration factor R = 1, while under-
sampled sampling patterns correspond to higher acceleration
factors R > 1. The outcome of undersampling is that with
increased R, the ratio between the number of samples in the
frequency and that in the image domain decreases.

For each NUFFT implementation, we measure the execution
time for isotropic 3D images with the following variables:

e image size N = 623,943 12631583, 1903, 2223, 2543

e radial, rotated stack of stars, cones [58], and uniform

random sampling patterns

e acceleration factor R = 1,4, 16

e maximum aliasing amplitudes € = 0.01,0.001

e varying oversampling ratios.

All benchmarking was performed on a Tesla K40 GPU. For
each NUFFT problem, we perform the computation 50 times

and use the median execution time from the CUDA event
timer. We use NUFFT from BART [50], an open-source library
for MRI reconstruction, as a serial CPU baseline, where the
oversampling ratio and kernel width are the fixed default values
(=2, W =3).

Execution times do not include time for data transfer be-
tween CPU and GPU; we assume that input data is already
present on the GPU and output data remains on the GPU.
That is, we assume that the GPU has sufficient memory
for the NUFFT problem and that there may be additional
processing that will also be performed on the GPU. These
assumptions are suitable for iterative reconstructions, where
the input and output data can remain on the GPU between
iterations, provided that the NUFFT problem fits in the GPU
memory.

VI. PERFORMANCE ANALYSIS AND DISCUSSION

Here we present performance analysis of various NUFFT
problems using auto-tuning. First, we examine the effect of
the oversampling ratio on the gridding runtime and examine
the optimal oversampling ratios that yield fast NUFFT compu-
tations. We show that auto-tuning provides substantial perfor-
mance benefits over fixed parameter values. We then compare
the performance of the different gridding- and Toeplitz-based
implementations and analyze the effects of different non-
Cartesian sampling pattern inputs.

A. Performance Improvement from Auto-Tuning Algorithm Pa-
rameters

The effects of the oversampling ratio on the NUFFT runtime
are shown in Fig. 6. As the oversampling ratio increases, the
Cartesian grid size and FFT runtime increase. A lower kernel
width can be used to achieve the same desired accuracy, and
the interpolation time decreases. The total time consists of a
trade-off between the interpolation runtime and FFT runtime.

The trade-off in interpolation and FFT time varies with the
acceleration factor R. With a lower acceleration factor, the
sampling pattern has more samples and the overall runtime
is dominated by the interpolation time, resulting in an optimal
oversampling ratio that is close to 2. As the acceleration factor
is increased, the interpolation runtime decreases while the FFT
runtime remains the same as before. The optimal oversampling
ratio is lower for high acceleration factors. Fig. 7 shows the
optimal oversampling ratios, averaged over different image
sizes N, for a range of sampling patterns, acceleration factors,
and maximum aliasing amplitudes € = 0.01 and € = 0.001.

These effects are more pronounced for the full precom-
putation method than for the precomputation-free method,
as the overall runtime is more closely distributed between
SpMV and FFT than between direct convolution and FFT. In
the precomputation-free method, interpolation time dominates
over the FFT time, and the optimal oversampling ratio tends to
be closer to 2. In the fully precomputed method, the runtime
is generally more evenly balanced between interpolation and
FFT, and the optimal oversampling ratio is more sensitive to
the acceleration factor. In addition, these effects are also more
pronounced at higher maximum aliasing amplitudes for the
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Effects of oversampling ratio on execution time. As the oversampling ratio increases, the FFT time increases, while interpolation time (convolution

or SpMV) decreases due to the decrease in kernel width. In the precomputation-free method, convolution time dominates the total execution time, whereas the
runtime is more evenly balanced between SpMV and FFT for the fully precomputed method. The trade-off between interpolation and FFT times varies with the
interpolation method and the acceleration factor. Parameters: N = 1582, ¢ = 0.01, non-separable (i.e. rotated) stack of stars sampling pattern. (Refer to Fig.
14 in App. C for the corresponding graphs of the forward runtime, which are similar.)

same reasons; the interpolation and FFT times are more evenly
balanced. Therefore, the optimal oversampling ratio depends
on various factors, including maximum aliasing amplitude,
acceleration factor, and non-uniform sampling pattern.

We compare performance with auto-tuned oversampling
ratios versus fixed oversampling ratios in Fig. 8. We bench-
marked the partially precomputed method in gpuNUFFT over
different image sizes, with auto-tuning and with fixed over-
sampling ratios cjow = 1.125 and onpigh = 2. Across all sam-
pling patterns and acceleration factors, the speedup is highest
with the auto-tuned oversampling ratio. The improvement in
performance with the auto-tuned oversampling ratio compared
to fixed oversampling ratios is significant, with up to an
order-of-magnitude increase in speedup. These performance
improvements arise from optimizing the trade-off between
interpolation and FFT runtimes and choosing oversampled grid
sizes that account for the non-monotonic nature of the FFT
runtime.

B. Comparison of NUFFT Implementations

Auto-tuning over algorithm parameters was performed for
a range of implementations, including the precomputation-
free, fully precomputed, and Toeplitz methods implemented
in gNUFFTW and the partially precomputed method from
gpuNUFFT [38]. Fig. 9-10 show the performance across dif-
ferent sampling patterns and acceleration factors for € = 0.01
and ¢ = 0.001.

As expected, higher levels of precomputation generally
correspond to higher speedups. Fewer operations are required
during the execution phase for the higher levels of precom-
putation. We use the NVIDIA Profiler to further examine the
performance of different implementations.

In the precomputation-free method, performance is limited
by high register usage, which is required to store intermediate
results for enumerating and calculating distances to the neigh-
boring grid points. Each thread uses 79 registers, or 60,672
registers per shared multiprocessor (SM), out of a maximum of
65,536 registers per SM. The occupancy is limited to 24 active
warps, out of a maximum of 64 active warps. Because the
occupancy is independent of the maximum aliasing amplitude
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the interpolation occupies a smaller portion of the overall runtime (see Fig.
6). The effect is more pronounced for the fully precomputed method and for
higher values of e, where the runtime is more evenly distributed between
interpolation and FFT.

e, the speedup of the precomputation-free method relative to
the fully precomputed method is similar across € = 0.01 and
€ = 0.001.

The partially precomputed method performs well for low
values of acceleration factor R. However, its performance
suffers at higher acceleration factors where the number of
non-Cartesian samples is low, or with smaller image sizes
N = 623,943, The partially precomputed method requires
additional overhead to combine the intermediate results from
each sector, which can decrease performance, especially for
smaller problem sizes.

In addition, performance for the partially precomputed
method decreases as ¢ is lowered, due to limitations on shared
memory usage. The partially precomputed method requires
shared memory for each sector which has padded dimensions
SWi = (SW +2[ % ])%, where SW is the chosen sector
width. The additional padding is necessary to compute the
gridded values near the edges of the sectors. Since shared
memory is a limited resource, shared memory usage can limit
occupancy on the GPU.

Consider an oversampling ratio = 1.5 and sector width
SW = 8 on the Tesla K40. To achieve a maximum aliasing
amplitude € = 0.01, the required kernel width is W = 3.139
which corresponds to (8 + 2 * 1)3 complex floats, or 7.8125
KiB of shared memory out of a maximum of 48 KiB per
shared multiprocessor. With block size SW]?ad, the occupancy
is limited to 24 active warps. When the maximum aliasing
amplitude is lowered to € = 0.001, the required kernel width
increases to W = 4.346 and 13.5 KiB of shared memory
is required. Due to the increased shared memory usage, the
occupancy is decreased to 15 active warps.

In the fully precomputed method, performance is limited
by the memory bandwidth of the GPU, due to the high
memory traffic incurred by SpMV operations. On different
GPU architectures, differences in the available registers, shared
memory, and memory bandwidth will result in different relative
speedups between no precomputation, partial precomputation,
and full precomputation methods.

The Toeplitz method achieves higher performance than
gridding-based methods when the number of non-Cartesian
samples is relatively high or when the desired maximum
aliasing amplitude is low. As shown in Fig. 9-10, the Toeplitz
method is slower than gridding-based methods when there
are few non-Cartesian samples (i.e. R = 16). The Toeplitz
method requires a larger FFT than gridding-based methods. For
problems with few non-Cartesian samples, the time to perform
the larger FFT of the Toeplitz method (ap > 2) is greater than
the time to interpolate the samples onto a Cartesian grid and
perform a smaller FFT (« € (1, 2]). When the number of non-
Cartesian samples is relatively high or the required maximum
aliasing amplitude is low, the Toeplitz-based approach may be
the optimal choice of algorithm if the separate adjoint and/or
forward operations are not needed.

In summary, higher levels of precomputation generally
achieve higher speedups, since they require fewer operations
during execution. However, when a low maximum aliasing
amplitude is required, performance of the partially precom-
puted method decreases due to shared memory requirements.
The Toeplitz method is favorable over gridding-based methods
when the sampling pattern has a large number of non-Cartesian
points or when a low maximum aliasing amplitude is required.

C. Effects of Non-Cartesian Sampling Pattern

The non-Cartesian sampling pattern affects the pattern of
memory accesses in the interpolation step of gridding. Here
we compare different sampling patterns by examining the
interpolation runtime and the distribution of non-zero entries
per row in the sparse matrices I' and I'" as shown in Fig. 11,
with the calculated standard deviations in Table III in App. C.

In the adjoint operation, the distribution of row lengths
reflects the spatial distribution of the non-Cartesian samples.
For example, the standard deviation of the row lengths is
highest for the radial sampling pattern, where many samples
are located near the center of k-space and few samples are
located at the outer edges. In the case of the random sampling
pattern, the standard deviation is low since samples have a
uniform random spatial distribution. In the precomputation-
free method, a high standard deviation corresponds to uneven
serialization of atomics across different threads. In the fully
precomputed method, each row is assigned a warp of threads.
When the row lengths have an uneven distribution, some warps
have more work than others, which will increase the overall
runtime.

In the forward operation, each non-Cartesian sample is
computed from approximately W? neighboring grid points,
where W may be rounded up or down in each dimension
depending on the location of the non-Cartesian sample in
the grid. For example, with a kernel width W = 3.25, each
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non-Cartesian point may have {|W |, [IW] }4 neighboring grid
points (33, 32 -4, 3-42, or 4% in 3D). The distribution of
non-zero entries per row is similar for all sampling patterns.

As previously discussed, the runtime for interpolation is
cMW<e, where ¢ depends on the hardware, implementation,
and sampling pattern. Fig. 12-13 show interpolation times with
linear fits for various values of MW, corresponding to the
problems represented in Fig. 9-10. Comparing Fig. 11 with
Fig. 12-13, we observe that the non-Cartesian sampling pattern
affects the interpolation runtime via 1) the spatial distribution
of samples and 2) the ordering of the samples in memory.

First, the spatial distribution of samples affects the pattern
of memory accesses, as reflected by the adjoint interpolation
runtimes. Unequal spatial distribution of points may result
in serialized atomics in the precomputation-free method or
imbalanced row lengths in the fully precomputed method, both
of which result in increased interpolation runtime. The slope of
interpolation time vs. number of non-zero entries for the radial
sampling pattern is higher than that of the stack of stars and
cones sampling patterns, due to the unequal spatial distribution
of samples.

Second, the ordering of the samples in memory relative
to their spatial positions affects caching of global memory
and the interpolation runtime. For example, the high slope
for the random sampling pattern with precomputation-free
method in the adjoint direction can be attributed to the random
ordering of the non-uniform samples relative to their spatial
positions. In the forward direction, although all sampling
patterns have similar distributions of non-zeros per row, the
slope is highest for the random sampling pattern. In the radial,
stack of stars, and cones sampling patterns, consecutive non-
Cartesian samples are spatially near one another and tend to
access the same Cartesian grid points, which are loaded into
cache. In the random sampling pattern, however, non-Cartesian
samples have random ordering relative to their spatial location.
Cartesian grid points are repeatedly entering and leaving cache
with non-coalesced access, resulting in increased interpolation
runtime. Reordering the non-Cartesian samples can increase
cache performance and encourage coalesced memory accesses,
although strategies for reordering are not implemented in this
work.

VII. CONCLUSION

In this work, we have presented a fast, flexible NUFFT
library for auto-tuning NUFFT computations on the GPU. The
library contains implementations of gridding- and Toeplitz-
based methods and can be easily modified to perform auto-
tuning using other existing libraries. In addition, we present
analysis of the different NUFFT implementations along a
spectrum of precomputation levels. Choosing appropriate im-
plementations as well as parameter values is crucial to NUFFT
performance.

The auto-tuning approach in this library uses an exhaustive
search over implementations and algorithm parameters, which
can be time-consuming. Developing heuristics to select the
implementations and/or algorithm parameters can reduce the
planning time and improve the utility of the library.

Further improvements can be explored to increase the per-
formance of the NUFFT implementations described in this
work. Performance of the partial precomputation method can
be improved by auto-tuning the sector width to increase
occupancy or by handling the shared memory limitation in
other ways. In the fully precomputed method, other storage
formats such as HYB or novel storage formats can be explored
to exploit specific non-uniform sampling patterns. Additional
algorithms may be also added to the optimization search space,
such as fast methods for evaluating NUDFT on the GPU [59].

Additional areas of exploration include optimizing oversam-
pling ratios for anisotropic image sizes, using radial instead
of separable kernels [60], or extending the library to include
multi-GPU systems.
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Fig. 11. Distribution of row lengths in fully precomputed sparse matrices I' and I'T, for N = 643,¢ = 0.01, R = 1. The row length of I'T indicates the

number of neighboring non-Cartesian samples for each Cartesian grid point, whereas the row length of I' indicates the number of Cartesian neighbors for each
non-Cartesian sample. The sparse matrix I' T for the adjoint operation has a heavy right-tailed distribution. Note that the distribution for the sparse matrix T' "
in the adjoint operation is shown on a semilog scale. The radial sampling pattern has the widest variance in the distribution of row lengths, followed by stack
of stars, cones, and random sampling patterns. The sparse matrix I" for the forward operation has a lower variance in the row lengths than T' T . Since each row

may have {|W |, [W]}¢ non-zero entries, the variation in row length is similar across all sampling patterns for T. (Refer to Table III in App. C for standard
deviations of each distribution.)
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Fig. 12. The precomputation-free interpolation time is approximately linear with the number of grid contributions, M/ . The slope of the linear fit in the

adjoint operation shows the effect of the spatial distribution of non-Cartesian points from different sampling patterns. The slope is highest for the random
sampling pattern, due to the random ordering of non-Cartesian samples which causes low cache performance. The next highest slope corresponds to the
radial sampling pattern, which reflects the distributions shown in Fig. 11. The slope of the linear fit in the forward direction is similar for all sampling
patterns except random, which is slightly higher, again due to the random ordering of non-Cartesian samples. Parameters: ¢ = 0.01,0.001; R = 1,4, 16;
N = 623,943 1263, 1583, 1903, 2223, 2543, (See Table IV in App. C for calculated slopes of linear fits.)
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Fig. 13. Similar to the precomputation-free method, the fully precomputed interpolation time is also approximately linear with the number of non-zero entries

in the precomputed sparse matrix. The slope for the radial sampling pattern in the adjoint direction is relatively high, due to the uneven distribution of row
lengths. The random sampling pattern has a high slope in the forward direction, due to the random ordering of non-uniform samples. All parameters are the
same as in Fig. 12. (See Table IV in App. C for calculated slopes of linear fits.)



APPENDIX A
OPEN-SOURCE SOFTWARE LIBRARY

Our library performs auto-tuning across different
NUFFT implementations and their parameters. We include
precomputation-free, fully precomputed, and Toeplitz-based
implementations, with the ability to include and perform
auto-tuning on other implementations from external libraries.
Our library computes 2D and 3D NUFFTs and allows for
anisotropic image sizes. The library provides C and Matlab
interfaces.

The user specifies the desired maximum aliasing amplitude
and provides the coordinates of the non-uniform samples to
nufftPlan, which performs auto-tuning and precomputes
any required data structures on the GPU.

The space of auto-tuning is determined by a user-provided
flag, similar to the planning flags in FFTW [30]. Flags include:

e NUFFT_EXHAUSTIVE: library auto-tunes over different
implementations as well as algorithm parameters

e NUFFT_CHOOSE_TYPE: user specifies a desired imple-
mentation and library auto-tunes over algorithm param-
eters only

e NUFFT_CHOOSE: user specifies both implementation
and oversampling ratio

Additional flags can be added to the library to specify different
sets of implementations of interest, over which auto-tuning will
be performed.

When using NUFFT_CHOOSE_TYPE or NUFFT_CHOOSE,
the user must supply additional arguments for the desired
implementation and/or parameter value (type and a). When
the user specifies an implementation type, type_args may
be used to indicate the operations where precomputation is
used. For example, the user may specify that sparse matrices
are precomputed for the adjoint operation but not the forward
operation.

To summarize, the supplied arguments to nufftPlan
include:

e h_kcoord: coordinates of non-uniform samples (array
of dim X Mtotal)
h_dcf: density compensation factors (or NULL)
N: image size (vector of length dim)
e M: scaling of non-Cartesian coordinates (vector
of length dim), where all scaled coordinates
h_kcoord[i, :]1/M[i] lie within [—0.5,0.5]
Mtotal: total number of non-Cartesian samples
dim: dimensionality of NUFFT
e: desired maximum aliasing amplitude
isNoncartesianKspace: true if frequency domain
is non-uniform, false if image domain is non-uniform
e Ntrials: number of times to measure execution times
during auto-tuning
e flag: auto-tuning flag
Additional arguments

o type: NUFFT implementation

o type_args: specify directions where precompu-
tation is used (vector of length 3)

o a: oversampling ratio

After creating a NUFFT plan, the computation can be
performed using nufftExec, which accepts pointers to
input and output data on the GPU and the direction of
the operation (NUFFT_ADJOINT, NUFFT_FORWARD, or
NUFFT_FORWARD_ADJOINT). When the plan is no longer
required, GPU and CPU resources may be released by calling
nufftDestroy.

An example usage of the C library interface is shown here:

nufftHandle plan;

float *xh_kcoord;

float e;

cuComplex *d_idata, *d_odata;

nufftPlan(&plan, h_kcoord, h_dcf,
N, M, Mtotal,
dim, e, isNoncartesianKspace,
Ntrials, flag,
[type, type_args, al);

nufftExec(plan, d_idata, d_odata, direction);

nufftDestroy(plan);

APPENDIX B
ALIASING AMPLITUDE OF N-D PRESAMPLED KERNEL

Beatty et al. [29] derive the sampling density required for
presampling a 1D kernel, which will be linearly interpolated.
We extend the derivation to higher dimensions using a linearly
separable kernel.

For example, in 2D we obtain the following equations. The
inverse Fourier Transform of the linearly interpolated kernel is
modulated by the envelope function

h(z,y) = sinc? (%) sinc? (%) , (15)
where S is the kernel sampling density.

The aliasing amplitude due to the linear interpolation and
sampling density is

(16)

where

h(i,j) = [>_[h(i+ SGq,j+ SGr)]? an

q,7

_ \/F{[h(a:,y)]QHI (“’Sgyg)} (18)
G e (arg)) (Gt b (o))

19)




Substituting (19) into (16), we obtain

=il Grisbng)

sinc? (s5) sinc? (&)

w2 i \?
154 :
55 \5C @D
when i = j = —N/2.
In n dimensions, the linear approximation of ¢; is

E1.D A E1,1DVN (22)
where €1 1p &~ 0.37/(aS)? when i = —N/2.



APPENDIX C
SUPPLEMENTAL DATA

A. Effects of Oversampling Ratio on Execution Time

Here we show the effect of the oversampling ratio on the NUFFT execution time. Fig. 14 shows the NUFFT execution time
in the forward direction, while Fig. 6 shows the execution time for the adjoint direction for N = 1583 and ¢ = 0.01 with a
rotated stack of stars sampling pattern. In both cases, as the oversampling ratio increases and the kernel width decreases, the FFT
runtime increases and the interpolation time decreases. The total time consists of a trade-off between the interpolation runtime
and FFT runtime.

Again, this trade-off varies with the acceleration factor and level of precomputation. At low acceleration factors, the optimal
oversampling ratio tends to be close to two, while at high acceleration factors, the optimal oversampling ratio tends to be lower.
When the overall runtime is more evenly balanced between interpolation and FFT (e.g. full precomputation or high maximum
aliasing amplitude as shown in Fig. 7), the optimal oversampling ratio is more sensitive to the acceleration factor R.
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Fig. 14. Effects of oversampling ratio on execution time. As the oversampling ratio increases, the FFT time increases, while interpolation time (convolution
or SpMV) decreases due to the decrease in kernel width. In the precomputation-free method, convolution time dominates the total execution time, whereas the
runtime is more evenly balanced between SpMV and FFT for the fully precomputed method. Parameters: N = 1582, ¢ = 0.01, stack of stars sampling pattern.

B. Average Speedup in Forward and Adjoint Directions for Various NUFFT Implementations

The results in Fig. 9-10 showed the speedup of the forward and adjoint NUFFT performed in succession. Here we show
the speedups for the adjoint and forward NUFFTs separately. We compare different auto-tuned NUFFT implementations with
radial, stack of stars, cones, and random sampling patterns over different acceleration factors R = 1,4, 16 and maximum aliasing
amplitudes € = 0.01,0.001.

We observe similar trends, e.g. higher levels of precomputation generally result in faster speedups, except in the case when the
maximum aliasing amplitude is low (¢ = 0.001) and shared memory usage in the partial precomputation method is increased,
which lowers its performance.
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Fig. 15. Speedup over CPU implementation in forward and adjoint directions, averaged across image sizes, for isotropic 3D problems with different sampling
patterns. Error bars show minimum and maximum speedup. Parameters: ¢ = 0.01; R = 1,4,16; N = 1263,1583,1903,2223, 2543, (Speedups for N =
623,943 are not shown here, since the performance of partial precomputation is reduced for smaller problem sizes.)
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Average Speedup for Adjoint NUFFT, € = 0.001
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Fig. 16. Speedup over CPU implementation in forward and adjoint directions, averaged across image sizes, for isotropic 3D images with different non-uniform
sampling patterns. Error bars show minimum and maximum speedup. Parameters: £ = 0.001; all other parameters same as in Fig. 15.
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C. Speedup of NUFFT vs. Image Dimension

Fig. 9,10,15,16 showed speedups averaged over the image size /N to summarize the timing measurements. Here we include the
complete timing measurements, with the speedup plotted over the isotropic image dimension N'/3 for all operations of interest
(forward + adjoint, forward, adjoint). All parameters are the same as in Fig. 9,10,15,16.

The speedups shown here for N = 1263, 1583, 1903, 2223, 2543 were used to calculate the average speedups in Fig. 9,10,15,16.
N = 623,94% were not used, since the performance for the partial precomputation method is lowered, due to overhead in
recombining the intermediate outputs from each sector, which is less suitable for smaller problems. At larger image sizes,
however, the individual speedups shown here have similar trends to the averaged speedups in Fig. 9,10,15,16.

Fig. 17-18 show speedups of the forward + adjoint NUFFT for ¢ = 0.01 and € = 0.001, respectively. Similarly, Fig. 19-20
shows speedups of the adjoint NUFFT, and Fig. 21-22 shows speedups of the forward NUFFT, for ¢ = 0.01 and ¢ = 0.001.

Speedup of Forward + Adjoint NUFFT vs. Image Dimension, € = 0.01
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Fig. 17. Speedup over CPU implementation for forward + adjoint NUFFT, for isotropic 3D images with different non-uniform sampling patterns and acceleration
factors, vs. size of image N1/3. Parameters: ¢ = 0.01; N = 623,943,1263, 1583, 1903, 2223, 2543,
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Fig. 19. Speedup over CPU implementation in adjoint direction, for isotropic 3D images with different non-uniformsampling patterns and acceleration factors,
vs. size of image N 1/3 Al parameters same as in Fig. 17.
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Fig. 20. Speedup over CPU implementation in adjoint direction, for isotropic 3D images with different non-uniform sampling patterns and acceleration factors,
vs. size of image N 1/3 Al parameters same as in Fig. 18.
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Speedup over CPU implementation in forward direction, for isotropic 3D images with different non-uniform sampling patterns and acceleration factors,
vs. size of image N 1/3 Al parameters same as in Fig. 17.
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Speedup of Forward NUFFT vs. Image Dimension, € = 0.001
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Fig. 22. Speedup over CPU implementation in forward direction, for isotropic 3D images with different non-uniform sampling patterns and acceleration factors,
vs. size of image N 1/3 Al parameters same as in Fig. 18.
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D. Effects of Non-Cartesian Sampling Pattern on Performance of Interpolation

We analyze the effect of different non-Cartesian sampling patterns on the performance of interpolation, by comparing the
interpolation runtime with the distribution of non-zero entries per row of the sparse matrices I' and I' . The following tables
correspond to Fig. 11, which shows representative distributions for each non-Cartesian sampling pattern, and Fig. 12-13, which
include interpolation times from all experiments described in Section V.

Table III lists the standard deviations of the distributions shown in Fig. 11. Table IV lists the slopes of the linear fits of the
interpolation runtime vs. total number of non-zero entries. In general, a high slope in the linear fit corresponds to a high standard
deviation of the distribution of non-zero entries per row. If the rows are unevenly distributed, then the work distribution between
threads in the precomputation-free method (or warps in the fully precomputed method) is unequal. Threads that are assigned
the most work finish executing last, while other threads that finish earlier must wait, increasing the interpolation runtime. This
correspondence between the linear fit slopes and the standard deviations generally holds true, except in the case of the random

sampling pattern where the random ordering of non-Cartesian samples lowers cache performance and increases the interpolation
runtime.

TABLE III. STANDARD DEVIATION OF NON-ZERO ENTRIES PER ROW OF PRECOMPUTED SPARSE MATRICES I" AND FT, WITH DISTRIBUTIONS SHOWN
IN FIG. 11.
Sampling Pattern | Adjoint Forward
Radial 224.182 10.950
Stack of Stars 40.563 10.170
Cones 28.523 11.001
Random 3.647 10.974
TABLE IV. SLOPE OF LINEAR FIT BETWEEN INTERPOLATION RUNTIME AND NUMBER OF NON-ZERO ENTRIES M W@ IN PRECOMPUTED SPARSE

MATRICES I, I'T, WITH R2 VALUES, CORRESPONDING TO FIG. 12-13.

No Precomputation (ms/non-zero entry (Rz)) Full Precomputation (ms/non-zero entry (R2))

Sampling Pattern

Adjoint

Forward

Adjoint

Forward

Radial

Stack of Stars
Cones
Random

9.266e-7 (0.933)
7.814e-7 (0.987)
6.172¢-7 (0.989)
13.061e-7 (0.943)

5.217e-7 (0.950)
4.473e-7 (0.994)
4.676¢-7 (0.986)
6.350e-7 (0.905)

2.420e-7 (0.790)
1.444e-7 (0.733)
1.929e-7 (0.811)
1.503e-7 (0.772)

1.499¢-7 (0.735)
1.334e-7 (0.792)
1.299e-7 (0.834)
2.662e-7 (0.912)
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