
Understanding Deep Learning Through Visualization

Jingqiu Liu

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-85
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-85.html

May 12, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.





 

 

Understanding Deep Learning  

Through Visualization 

 

Jingqiu Liu 
jingqiu_liu@berkeley.edu 

 
 

Department of Electrical Engineering  
and Computer Science 

 
 
 
 

  Co-authors:        Xuan Zou, zouxuan@berkeley.edu 
                  Han Qi, qihan@berkeley.edu 
                                                   Chen Tang, chen.tang@berkeley.edu 
 
                        Advisor:             Prof. John Canny, canny@berkeley.edu 

   



Executive Summary 
 
 Our project aims at building a deep learning visualization tool which can supports real-

time visualization and interactive user-tool communication. We have completed building the tool 

and conducted some example studies. The chapter 1 of this paper will focus on introducing the 

techniques we used to realize code evaluation. And the chapter 2 will discuss three aspects related 

to this project: Project management and software engineering, Industry analysis, and Marketing 

strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1. Technical Contribution 

1. Introduction 

    1.1 Project background  

 As an important branch of machine learning, deep learning (a.k.a. deep neural networks) 

provides human like intelligence which allows machine to appropriately describe a given image 

or correctly translate Chinese sentence to English. We describe the training of a deep neural 

networks as a process of inputting preprocessed data into a selected model, waiting for the machine 

to compute for days and weeks and getting the final model for specific use. If the model does not 

work well, we may reprocess data in different way, tune model hyperparameters, change update 

rule or even the model itself, and retrain the model. For example, we use millions of images and 

their corresponding category as input, and we train the Convolutional Neural Network based on 

those data and get a final model which has the ability to tell you (we call it “prediction”) whether 

a given image is a dog or a ship.  

 The training process is critical to a successful model. On the one hand, each model has its 

strengths and drawbacks, and is usually used to solve a specific kind of problems. The selection 

and design of initial model directly affects the prediction accuracy of the final model. That is why 

we consider correct hyperparameter tuning as an important aspect of a training process. On the 

other hand, the time scale of a training process is usually in days, weeks or even months. It is a 

pain point for most data scientists when they find out their final model does not work as expected 

after training for a long time. Our project is aiming at building a visualization tool to relief this 

pain. 



  

    1.2 Project Goals and Tasks  

 One efficient way to understand, monitor and debug the deep neural network training 

process is to see how the important statistics change during the process. Indeed, people in the field 

of study already recognize the importance of training visualizations, and a lot of excellent 

visualization tool demonstrates this fact. For example, Google embedded TensorBoard into 

TensorFlow to support visualization (TensorBoard, 2017). Compared to other visualization tool, 

one unique feature of our product is the interactive communication between users and the tool. 

Our visualization tool will draw graphs to show the changing pattern of desired statistics, and allow 

users to access and download those graphs while realizing real-time visualization. Also, we would 

like to enable users to submit request for adding/deleting specific statistics visualization tasks 

without interrupting the training process. In addition, we hope users can dynamically tune model 

hyperparameters based on visualization result while training is still going on. 

 Our tool is based on BIDMach which is a fast machine learning library written by Scala. 

BIDMach will handle users’ tasks of training different neural networks. Based on the timeline, our 

main tasks are:  

Sep – Oct 2016 Study BIDMach, try to run some training samples to get familiar with the 
library 

Oct – Mid Nov 
2016 

Build a publisher that will initialize a web browser, publish all required 
statistics from BIDMach, generate graphs of those statistics 

Mid Nov – Jan 
2017 

Build a bidirectional messenger with which user can push their code as string 
(request for additional visualization tasks) into BIDMach, and BIDMach can 
send specific error message to the user if the user input errors out 

Mid Nov – Jan Find a way to enable BIDMach to interpret pushed string as real code that 



2017 Scala can run and extract corresponding error message when error occurs 

Jan – Feb 2017 Use JavaScript to design a user friendly webpage and draw graphs using 
published statistics. 

Feb – Apr 2017 Improve webpage to contain all the required visualization graphs, a message 
box to send further visualization request, as well as a table to display current 
hyperparameter values and support parameter tuning. Conduct user study 
and improve product based on feedback. 

 Table 1. Project timelines. This table briefly introduce the project task splits and time of 
delivery. 

 Han’s paper will mainly discuss potential user requirements of the tool from a broad view, 

and the design of the publisher and messenger based on those requirements, involving 

communication protocol comparison and selection, as well as webserver implementation details. 

Xuan will focus on introducing our current visualization webpage. Topics include basic web 

system architecture, visualization technique, as well as some visualization charts. And my paper 

will focus on reasoning why we need the messenger, how do we complete the connection between 

messenger and web browser from the stand point of successful user’s code interpretation and error 

extraction by Scala.  

 



Figure 1. Visualization tool structures and work flow. 

 Figure 1 briefly shows the whole working flow of our tool. BIDMach generates statistics 

for graphs while it is training. Publisher grasps the generated statistics and send them to web 

browser to draw graphs using JavaScript. Users view the graphs in the web browser and send 

additional requests via the webpage. Messenger receives user code and interpret it as real Scala 

code so that BIDMach can run. When the code errors out, messenger extract the error message and 

send it back to webpage. 

 It is clear from the flow that the messenger is essential as an intermediate between 

BIDMach and the webpage. Though we can ask webpage to directly send user input to BIDMach, 

creating a messenger efficiently split work among each part and allows more flexibility in 

architecture design.  

 The rest of the paper will discuss different paths we took to realize user code interpretation 

and error extraction, as well as some future work. 

 

2. Tools  

 Before we get into more technical details, let us first introduce any tool we use. As 

mentioned, BIDMach is written by Scala. Scala is an object oriented programming language that 

is inspired by Java. Compared to Java, Scala has more complex structure, resulting in more concise 

code. As Hicks mentioned in his article, “In contrast, Scala was created specifically with the goal 

of being a better language, shedding those aspects of Java which it considered restrictive, overly 

tedious, or frustrating for developer” (Hicks , 2014). 



 Since we pass user input as a string, in order to make BIDMach successfully understand 

user’s code and process new requests, we need to find a way to enable Scala “read” and 

“understand” user input, and evaluate it as real Scala code and call it during training to generate 

new required statistics. To make the interpreter work, we tried to utilized the Scala IMain package 

and ToolBox package.  

 

3. Problems and Progress 

 3.1 Code Interpreter 

 When BIDViz starts, a training thread will be created and is responsible for running the 

training loop. A serving thread will also be created and is responsible for communicating with the 

web browser to handle user request and send out relevant information. Inside the serving thread, 

we create an interpreter such that each time when new request comes in, the user input will be sent 

to the interpreter and get evaluated as real Scala code. And the evaluated function will be added to 

a Map so that it will be called when BIDViz is notified.  

 When user send new visualization request, we expect the code to construct a class object 

with methods needed to complete user’s task. And this code will be sent into BIDMach as a string. 

Our engine should interpret this string and evaluate it as a class in Scala so that we can further call 

the functions defined in the class.   

 Our first approach is to use Imain package. Imain package has methods called “interpret” 

and “valueOfTerm”. Interpret method will take a string of Scala code as an input, and it will 

execute this code at the request of the user. ValueOfTerm method will take an object variable as 

input and return the value of that object. The returned value can be as simple as an integer or as 

complex as a class with multiple methods and values.  



 Ideally combining these two methods will give us expected result: we pass a string into the 

“interpret” function and the string is to assign a function as value to a variable. We then call 

“valueOfTerm” on that variable and it will return the function for us. We tested it by simply passing 

a string to assign a variable ‘example’ with value 1 into interpreter. And we called the 

“valueOfTerm” method and it actually gave us result of 1, which is the value of ‘example’. We 

then tested it by writing a piece of more complicated code, which is defining a class ‘C’ and a 

function ‘f’ inside the class, and passed it to the interpreter as a string. However, when we try to 

evaluate the class and run the function ‘f’, we received an error message indicates that Scala cannot 

find class ‘C’. This is because after interpreting, the class ‘C’ will be returned as an object with 

type “Any”. And we actually lose the class “C” as type “C”.  

 We tried to fix it by forcing the class type to change from “Any” to “Class C”. However, 

this did not work since the “Class C” type is a user-defined type and it only exists inside the 

interpreter. If we tried to call it outside the interpreter, Scala will generate an error since it cannot 

find the class. 

 Our second approach is based on Scala’s nature of how it works. Similar to other compiled 

language, after a Scala file is created with Scala codes, we need to first compile the file into a 

bytecode file, and then use Scala to run the bytecode. Instead of using interpreter, we decided to 

take the approach that consider the user input as a real Scala file, compile user’s code in run time 

and directly call the compiled code.  

 We first created a classloader for class “C”, then used the “compile” method in ToolBox 

package to compile the string, then instantiated class “C” from the bytecode. In addition, we played 

a little trick on how we define class “C” in the string. We made class “C” inherited from class 

“Function[input type, output type]”. In this way, “C” not only has type “class C” but also type 



“Function[input type, output type]”. And the latter type is always valid in Scala. So we instead 

cast the class to type “Function[input type, output type]” when we instantiate the class and call 

function ‘f’. In this way, we do not need to bother even if “Class C” if not in the environment 

outside the interpreter. This approach works successfully. 

 

3.2 Messenger Receiving Messages 

 As described in early page, user types their new request into the message box in the 

webpage and the web browser sends the commands as a string to the messenger. When BIDViz 

receives a fragment of Scala code, it will instantiate a function object by placing the fragment into 

the following template: 

���!!����!!������%"���!��#��"�����
������
  �&�
�"���
�"��'�
����$�  ������������&��������
������������"����
  �&�
�"����
�"�	�'�
�����!�
��(�
(�
!����� �����"����!!�������!!������ #�"������!!�

  

 Based on the interpreter we introduced above, this function template is then compiled into 

Java bytecode through Scala's runtime mirror toolbox in the standard library. This toolbox then 

loads the bytecode directly using the classloader instance of the current running environment. After 

the new class is compiled and loaded, it is not different from any native Scala function object 

written beforehand. We will then obtain a Class<> object for the newly created class and 

instantiate it by invoking its constructor reflectively. 

 The instantiated function object is then placed into a thread-safe HashMap that maintains 

the mapping between the name (or id) of the metrics to the function object. The compilation and 

creation of the function object is done in the serving thread, but the invocation of the said function 

object will be on the training thread, on every pass of the training loop. 



 Besides using this code evaluation mechanism for creating function objects to be used to 

compute metrics at each training iteration, the same mechanism is also used to evaluate commands 

typed into the terminal. When the user types and executes a command, that string is placed inside 

of a function definition template and compiled then invoked once. The return value of that function 

is converted to a string using toString and send back to the terminal. Since the return value of a 

function in Scala is just the last expression when no Return keyword is present, this works 

as expected.  

 For now, the terminal feature is intended to be a tool to inspect the current state of the 

model, so the functions are evaluated in the serving thread, as we don't expect it to modify the 

model. We can easily execute those generated function objects in training thread if we intend to 

use the terminal for modifying the model by creating a thread-safe queue and push the to-be-

executed function into it, which can be called and removed when notify is called. We do not 

maintain a separate Scala interpreter as it is not as easy to share variables between 2 isolated JVM 

environments. 

 

3.3 Error Handling 

 When user submits a code snippet, or types in a command in the terminal, that line of code 

could cause compile time or run time errors. For command in the terminal both of those errors 

are caught as Exceptions when compiled and executed, and the result will be converted to string 

through getMessage method and displayed in the same terminal. 

 However, for metric codes, the compile error will be discovered immediately so it is send 

back through the callback, but the runtime errors, such as NullPointerException, will only be 

discovered when the newly created metric function object is evaluated in the training thread. 



When this type of error occurs, we use a new message type error_message to send it along with 

data points. That error message will also be routed to the terminal.  

 To capture the error message, since we use ToolBox package to compile and instantiate the 

new function, if the function errors out when running, a ToolBoxException will be generated, 

and the corresponding error message will be attached to the Exception. Our approach is to 

simply extract the error message attached using getMessage() function. As a result, if some 

error occurs and an exception is raised, our program will catch it, extract the error message, and 

send it to web browser to inform the user.  

 

3.4 Future Works 

 One important heuristic we base on here is that when a lot of error messages about one 

error are provided, the top one will be most relevant to the error and it is a good point to start to 

debug. But we also admit sometimes the latter error messages may also help debugging. 

Therefore, we will try to use other ways to extract the full error message and display them to 

the users via web page. 

 On the other side, we believe that it is better if our tool can have some default visualizations 

that are commonly used by most data scientist to understand and diagnose their training models. 

Therefore, we need to do some research on what kind of statistics and what type of graphs are 

useful.  

 We currently finished the prototype of the first version of our tool based on our initial 

design, which should support statistics visualization as well as interactive communication with 

users through web browser. Our next step will involve user experiments by running different 



deep neural network models by ourselves and ask some other students to try our tool. We will 

further improve our tool based on any feedbacks. 

 Since there are a lot of outstanding machine learning libraries/frameworks such as 

TensorFlow and Caffe, we think it is better if we can find a way to make our tool able to receive, 

understand, and visualize results generated from other libraries. This will be a huge step in 

connecting our tool to other libraries and make it useable to data scientist who do not use 

BIDMach to train the model, thus gives the tool higher flexibility. 

 

4. Conclusion 

 Based on our current progress, we should be able to follow our timeline and produce sound 

deliverables. Our product will work as an efficient tool that can help data scientists better 

understand and monitor the deep neural network training process, and save the training time by 

allowing tuning parameters while training. 

 

 

 

 

 

 

 

 

 

 



Chapter 2. Engineering Leadership 

1. Project Management and Software Engineering 

 The goal of Project Management is to ensure maximal throughput and efficient usage of 

team’s engineering hours to deliver a project. There are many aspects that could affect the team’s 

throughput. Some of those are social aspects, such as how aligned the team’s goal and personal 

goals of each team members aligns or does the people feel the team as a friendly 

environment.  Other aspects are technical, such as can several tasks be carried forward without 

conflict, enabling parallelism among team members. This section will discuss only the technical 

aspects, to show how following a modular design pattern will enable team members to work more 

efficiently, and how does this design also fits many software engineering goals.  

 Software Engineering is a systematic approach to the entire lifecycle of a software systems, 

such as design, implementation, testing and maintenance (Laplante, 2007). As opposed to the 

concerns of computer science, computer engineering concerns the adaptation of a system to a series 

of changing and vaguely defined requirements, instead of just creating a solution for a particular 

well defined problem. A well-engineered software should have the following properties: 1. It 

should be easy to add new features or modify requirements without massively affect other existing 

features, in particular, this means that we can add features by adding code, instead of modifying 

code. And 2. When the system behaves unexpectedly, it should be easy to pinpoint the places that 

need to be fixed. Both of them is essential to ensure maintainability of the system. 

 To achieve both the goals of software engineering and project management, we have 

followed these principles: 

1. Divide the entire system into several independent modules. 



2. Each module can communicate to the others only through a well-defined contract, or 

interface. Interface can be expanded, but never modified or removed. 

3. Each of modules are free to be modified, without changing the contract.  

4. Each module is owned by one team member, though any member can work on any module. 

5. A new feature is implemented by defining additional interface each module need to support, 

and then implemented in parallel. 

 This design allows each module to be worked independently and in parallel, the owner of 

a module is responsible to ensure it abides the predefined interface through change, and also serves 

as the go-to person for questions when other member is working on this module. It also has the 

additional benefits of allowing each module to be unit tested independently, allowing less rooms 

for errors or bugs. 

 

 We have divided our project in 4 modules. The first one is core: core module is the 

existing machine learning library (BIDMach) that we are based on, this part is developed and 

maintained by Prof. Canny. The next one is channel: channel observes the event happened inside 

of core, and send them out. This module follows the “Observer Pattern” specified in the “Design 

Patterns” book by Gamma et. al. (2004). The channel will observe events, and compute statistics 

on those events, and finally it will send it out to the last module, web interface. The web 

interface itself is complicated system, so it is then divided into smaller modules following the 

“Model-View-Controller” pattern from the same book by Gamma et. al. (2004). This design 

allows each components to evolve in their own, also allows prof. Canny’s other projects to 

continue on the same code base, without affecting each other. 

 



2. Industry Analysis 

 Deep learning is changing the world. However, in the early days, AI research community 

disregarded the potential of neural networks. For example, Marvin Minsky et al. (1969) in the 

book “Perceptron” pointed out many drawback and limitation of neural nets. This situation has 

not improved over years until the popularity of Internet led to a stage of Big Data. Online 

activities make the internet a giant pool of data. Unlike traditional way of telling the machine 

what to do by hard coding, machine learning takes the approach to train the machine from data 

and expect it to make correct prediction on data after training. Therefore, the more data we use 

to train the model, the more “experienced” the machine will be, and this highly increases the 

training accuracy of the model. For example, in the research of generating image caption using 

deep neural networks, Vinyal’s team used images uploaded to Flickr.com, and this dataset is as 

big as 30,000 images. (Vinyal et al. 2015,5) In addition, they also used dataset from MS COCO 

of over 80,000 images and corresponding picture descriptions. (Vinyal et al. 2015,5) 
 In recent years, many tech giants in Silicon Valley join a so called “Race of AI”. Sundar 

Pichai, Google’s CEO, claims that we are moving to a AI-first world (D’Onfro, 2016) in 

Alphabet’s Q1 earnings call. Apple, Microsoft and Amazon are heavily investing in smart 

personal assistants, such as Siri and Cortana. Intel acquired three AI-focusing startups in 2016 

alone. (CB Insights-blog, 2017) Companies invest tremendous resources in their AI research 

group, aiming at design better algorithms, build more efficient models to accelerate their 

product/service quality. 

 Besides technology firms, deep learning is widely used in other industries, such as financial 

institutions. Banks build neural nets to provide risk score of a customer based on its multiple 

data resources such as salary, credit history, etc. Banks and merchants worldwide suffered 



around $16.31 billion of fraud loss in 2015 (Allerin, 2016). Deep learning algorithms can be 

used to predict criminal transaction patterns and distinguish fraudulent activities from normal 

ones. 

 The broad application of deep neural networks demonstrates a big need of visualization 

tools and we will target any industries that uses machine learning algorithms as our potential 

users. 

 After discussing our potential users, we need to further analyze any potential competitors. 

We believe TensorBoard will be our major competitor. TensorBoard is a visualization tool that 

is embedded in TensorFlow – a widely used machine learning library. TensorFlow generates 

summary data during training process and TensorBoard operates by reading those data. 

 While both tools have same operation mechanisms, our tool enjoys some features that are 

essential to a data scientist. First of all, we allow users to add additional visualization requests 

during training process, while TensorBoard has to stop the training and add logging data. 

Second, we enable users to tune hyperparameters while training to dramatically save training 

time.  

 

3. Marketing Strategies 

 Our project is about understanding deep neural networks through visualization, and our 

market will focus on the fields that utilizing neural networks to do data analysis, pattern 

recognition or image classification work.  

 The neural networks have plenty of applications in all kinds of fields and have already been 

integrated into many software and devices. One of the most straightforward application is using 

neural networks to recognize characters. For example, the postman categorizes the letters 



according to the post code on the envelop, by developing a software that integrated with neural 

networks, it could distinguish the digit with high efficiency and accuracy, which can save the 

post office bunch of money and relieve human from this boring work. In order to achieve good 

performance and accuracy of this application, we need to develop and tune the neural network, 

in which the product our project can help a lot. (B. Hussain 1994:98) 

 Another application of neural networks that may not be obvious but is much more 

profitable is in the finance area. According to some companies such as MJ Futures, neural 

networks have been touted as all-powerful tools in stock-market prediction. It claims 199.2% 

returns over a 2-year period using their neural network prediction methods. Meanwhile the 

software integrated with neural networks are easy to use. As technical editor John Sweeney said 

"you can skip developing complex rules (and redeveloping them as their effectiveness 

fades) just define the price series and indicators you want to use, and the neural network does 

the rest.” (Artificial Neural Networks 135)  

 The idea of stock market prediction is not new, of course. Business people always attempt 

to anticipate the trend of the stock market by their experience in some external parameters, such 

as economic indicators, public opinion, and current political climate. While with neural 

networks, software is able to discover the trends that human might not notice and use this trends 

in the prediction.  

 Our project is about understanding deep neural networks through visualization, so the 

outcome of our research is a software tool that could monitor and analyze the training process 

of neural network. The software can be used to improve the performance of neural networks 

and help tune the parameters and architecture of deep neural networks. Therefore, our software 

can play a role in the areas that require well-architecture neural network. 



 In order to commercialize our product, we have three steps plan. The first step is to present 

the demos and results in some famous communities, in order to attract the attention of academia 

field. This can help improve the fame of our product and gain the acknowledgement of experts. 

The second step is to build a website for our product. We will allow users or companies to freely 

download our software but with a time-limited trial, which is a common strategy of many 

software. After the period of trial, they have to pay to acquire membership to continue use. The 

last step is after we have got a certain amount of users and further refined our product, we will 

try to get contact with some big companies, to promote our product and provide customized 

service for them. Through the cooperation with big companies, our product can get advice from 

industry and further get improved. 

 

 

 

 

 

 

 

 

 

 

 



Reference: 

TensorBoard.(2017). TensorBoard: Visualizing Learning. Retrieved from 

https://www.tensorflow.org/get_started/summaries_and_tensorboard 

Hicks, M. (2014). Why Should I Learn Scala?  Retrieved from 

https://www.toptal.com/scala/why-should-i-learn-scala  

P. Laplante (2007). What Every Engineer Should Know about Software Engineering. Boca 

Raton: CRC. ISBN 978-0-8493-7228-5. Retrieved 2011-01-21. 

E. Gamma, R. Johnson, R. Helm, J. Vlissides. (2004) “Design Patterns: Elements of 

Reusable Object-Oriented Software”. Indianapolis, Indiana: Addison-Wesley. 

M. Minsky, S. Papert. (1969) “Perceptrons”. Cambridge, MA: The MIT Press. 

O. Vinyals, A.Toshev,  S. Bengio, and D. Erhan. (2015) Show and Tell: A Neural Image 

Caption Generator. Arxiv.org/pdf/1411.4555v2.pdf 

J. D’Onfro. (2016) Google’s CEO is looking to the next big thing beyond smartphones. 

Retrieved from http://www.businessinsider.com/sundar-pichai-ai-first-world-2016-4  

CB Insights – blog. (2017) The Race for AI: Google, Twitter, Intel, Apple In A Rush To 

Grab Artificial Intelligence Startups. Retrieved from https://www.cbinsights.com/blog/top-

acquirers-ai-startups-ma-timeline/   

Allerin. (2016) How is deep learning being used in the banking industry? Retrieved from 

https://www.allerin.com/blog/how-is-deep-learning-being-used-in-the-banking-industry  



B. Hussain and M. R. Kabuka. (1994) "A novel feature recognition neural network and its 

application to character recognition," in IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 16, no. 1, pp. 98-106, Jan 1994. 

Artificial Neural Networks: Applications in Financial Forecasting pp.135 


