
Adversarial Examples for Visual Decompilers

James Wei

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-81
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-81.html

May 12, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

I would like to thank my advisor, Dawn Song, for her guidance during my
undergraduate and graduate careers. I would also like to thank Alyosha
Efros for his advice, and for introducing me to computer vision and machine
learning. Moreover, this work would not have been possible without my
collaborators, Warren He and Mitar Milutinović. Finally, I would like to
thank my friends at 2609, in whom I found my second family, and my
parents, whose love and support will always continue to inspire me.

Adversarial Examples for Visual Decompilers

by James Wei

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Dawn Song
Research Advisor

May 12, 2017

(Date)

? ? ? ? ? ? ?

Professor Alexei A. Efros
Second Reader

May 12, 2017

(Date)

Adversarial Examples for Visual Decompilers

by

James Chachen Wei

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair

Professor Alexei A. Efros

Spring 2017

Abstract

Adversarial Examples for Visual Decompilers

by

James Chachen Wei

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

Deep learning models are vulnerable to adversarial examples: maliciously perturbed inputs
that compel models to make incorrect predictions with high confidence. We present an
analysis of adversarial examples in the context of visual decompilers. Using the image-to-
LATEX task as a baseline for structured prediction problems, we show that targeted and non-
targeted adversarial examples can fool the model using a minimal amount of perturbations.
Additionally, we apply and discuss the limitations of two detection schemes. Finally, we
propose—and subsequently break—two prevention strategies, one of which involves a novel
attack for quantized adversarial examples.

1

Contents

Contents ii

Acknowledgements iii

1 Introduction 1

2 Problem Definition and Motivation 3
2.1 Adversarial Examples . 3
2.2 Optical Character Recognition . 3
2.3 The Image-to-LATEX Task . 4
2.4 What You Get Is What You See . 4

3 Background and Related Work 6
3.1 Generating Adversarial Examples . 6
3.2 Transferability . 8
3.3 Detection . 9
3.4 Prevention . 9

4 Model Evaluation 10
4.1 WYGIWYS Model Architecture . 10
4.2 Network Sparsity . 10
4.3 Visualizing Network Activations . 11
4.4 Adding More Data . 11

5 Adversarial Examples for Image-to-LATEX 13
5.1 Non-targeted Adversarial Examples . 13
5.2 Targeted Adversarial Examples . 14
5.3 Regularization . 17
5.4 Activation Differences . 19
5.5 Robustness Test . 19

6 Attack Detection 22
6.1 PCA Comparison . 22
6.2 Out-of-distribution Softmaxes . 23

i

7 Defenses and Their Limitations 27
7.1 Types of Adversaries . 27
7.2 Segmentation . 27
7.3 Input Quantization . 29

8 Future Work 34

9 Conclusion 36

Bibliography 37

ii

Acknowledgements

I would like to thank my advisor, Dawn Song, for her guidance during my undergraduate and
graduate careers. I would also like to thank Alyosha Efros for his advice, and for introducing
me to computer vision and machine learning. Moreover, this work would not have been
possible without my collaborators, Warren He and Mitar Milutinović. Finally, I would like
to thank my friends at 2609, in whom I found my second family, and my parents, whose love
and support will always continue to inspire me.

iii

Chapter 1

Introduction

Advancements in the architectures of deep neural networks have revolutionized data modeling
and analysis across a wide number of applications. However, recent analysis indicates that
deep learning models are vulnerable to adversarial examples : inputs generated by adding
small, worst-case perturbations that force the model to produce incorrect answers with high
confidence [21, 4]. For image inputs, successful adversarial perturbations can be so small
that they are virtually imperceptible to the human eye.

Researchers have discovered that adversarial examples are pervasive and can easily be
found using a number of gradient- and optimization-based methods. Moreover, adversarial
examples are transferable [18, 12]: malicious inputs for one model can be used to compromise
another designed for the same task, even if there are significant differences in the models’
architectures or training methods.

As the use of deep learning in practical applications grows more ubiquitous, many ef-
forts have tried to address the problem of adversarial examples. Some propose methods for
detecting the presence of malicious inputs, while others investigate ways to make networks
robust against adversarial noise. However, as the research community evaluates these detec-
tion schemes and defenses, they find that strategies for thwarting adversarial examples are
limited in a number of ways. Common flaws include a failure to generalize beyond simple
tasks, easy circumvention, and detrimental performance trade-offs on non-adversarial inputs.
As such, the issue of detecting and defending against adversarial examples remains an open
question.

Despite the growing research interest in adversarial examples, a large portion of the liter-
ature evaluates adversarial examples on simple image classification problems (e.g., MNIST,
CIFAR-10). Given that the use of neural networks has progressed far beyond basic classifi-
cation, it is important to consider adversarial examples in a wider scope. In particular, deep
learning has been shown to be very successful for structured prediction tasks, as evidenced
by their application to breakthroughs in natural language processing, bioinformatics, and
computer vision.

In this work, we extend the study of adversarial examples to a class of structured pre-
diction models: visual decompilers. Visual decompilers take compiled images as input and
return sequences of high-level markup tokens. Specifically, we study the image-to-LATEX
task, where images of compiled LATEX equations are decompiled into their corresponding
LATEX source code. We focus on the image-to-LATEX task because of several interesting prop-

1

erties that make it a useful baseline for structured prediction tasks in general; an extended
motivation for the image-to-LATEX task is given in Chapter 2.

Adversarial examples for visual decompilers can be designed to manipulate the perfor-
mance of the model. By adding trace amounts of adversarial perturbations to the input
image, an attacker can fool the model into producing uncompilable markup or an arbitrary
output sequence of the attacker’s choosing. Figure 1.1 shows how a visual decompiler re-
sponds differently to valid and adversarial inputs.

We summarize our contributions in this work as follows:

• We adapt methods for generating adversarial examples to visual decompilers. We show
that the perturbations required to produce successful adversarial examples are visually
imperceptible.

• We consider two recently published detection schemes for adversarial examples and
demonstrate their limitations with respect to visual decompilers.

• We propose—and subsequently break—two defenses against adversarial examples. In
the process, we introduce a novel method for crafting quantized adversarial examples.

Figure 1.1: Adversarial examples for visual decompilers.

2

Chapter 2

Problem Definition and Motivation

We begin with a discussion of several important concepts that motivate this work.

2.1 Adversarial Examples

The existence of adversarial examples presents a salient challenge for machine learning re-
searchers. From a theoretical perspective, the abundance of adversarial examples underscores
the brittleness of state-of-the-art models. Furthermore, adversarial examples in image space
demonstrate a fundamental disconnect between human visual understanding and the artifi-
cial representations captured by deep networks. From a practical perspective, this problem
presents a potent attack surface for real-world adversaries. As more applications start to
make use of deep neural networks, adversarial examples threaten the integrity of digital
content filters, biometric authentication systems, autonomous vehicles, and more.

Determining the cause of adversarial examples and formulating a generalizable defense
strategy remain open questions. With a better understanding of adversarial examples, we
hope to simultaneously mitigate their impact on deep neural networks and improve our
ability to create robust models.

2.2 Optical Character Recognition

Optical character recognition (OCR) refers to the broad task of converting images of text
into some machine-interpretable encoding. Modern-day OCR systems first emerged as a
subset of shape detection in signal processing. Early approaches involve filtering input
signals in Fourier space [14]. Additional work has significantly improved the quality of these
conventional models by means of integrating character segmentation [13] and generalizing to
handwritten characters [5].

With the rapid adoption of convolutional and recurrent neural networks, the performance
of OCR models has significantly improved. Not only do these deep learning approaches
achieve higher character-by-character accuracies, they also understand a larger range of
inputs (e.g., text extraction and recognition from scene images [22]). In addition to their
ability to capture visual patterns, deep learning approaches can also learn representations of
the underlying language model to help produce coherent transcriptions.

3

2.3 The Image-to-LATEX Task

For the purpose of studying adversarial examples for structured prediction tasks, we choose
to focus on a specific OCR subtask: image-to-LATEX. A model for this task takes images of
compiled LATEX equations as input and produces the corresponding LATEX markup. LATEX is a
powerful typesetting language that is capable of accessing files on the system that compiles
it. In some configurations, it can even run shell commands. Thus, it is important for a
LATEX decompiler system to be robust against adversarial examples because an unattended
deployment may emit malicious LATEX source code which unsuspecting users will try to
compile. At best, this could lead to an incorrect formula, and at worst, a system compromise.

Beyond the practical system security concerns, we choose to study the image-to-LATEX
task because of several interesting properties that are important for research:

• The input space for the image-to-LATEX task is highly constrained. Compared to natural
images used for text transcription, image captioning, and object detection, images of
compiled LATEX equations contain significantly fewer degrees of freedom. In general,
they are encoded by a single channel, contain minimal amounts of noise, display glyphs
from a well-defined vocabulary, and reflect a strict syntactic structure.

• Image-to-LATEX comes with a perfect function for the reverse of the task. By rendering
the output markup using a standard LATEX compiler, we can directly compare the input
image with the rendered output, which is helpful for detecting adversarial examples
and for improving the robustness of the model in general.

• It is easy to augment the existing dataset with novel samples of varying size and
complexity.

We hope that understanding adversarial examples in a tightly controlled environment
like image-to-LATEX can serve as a useful baseline for exploring and evaluating generalizable
defenses.

For our experiments, we use the im2latex-100k dataset [9], a collection of 94,630 LATEX
equation images and their corresponding markup, extracted from papers in the HEP-Th
(high energy physics – theory) portion of arXiv between 1992 and 2003. We also collect and
evaluate our own image-to-LATEX dataset that contains 256,742 equations from a different
portion of arXiv; additional details about the augmented dataset will be given in Chapter 4.

2.4 What You Get Is What You See

In order to evaluate attacks, detection strategies, and defenses for adversarial examples,
we use Deng et al.’s visual markup decompiler system “What You Get Is What You See”
(WYGIWYS) [3].

The model uses a six-layer convolutional neural network to capture visual features. The
output of the CNN is passed into a bilinear LSTM encoder, which produces a new feature
grid. Finally, the feature grid is converted to the generated markup output using a bilinear
LSTM decoder with attention. By leveraging both a CNN and an RNN, the WYGIWYS model

4

learns visual characteristics of different glyphs in the LATEX vocabulary while capturing an
underlying language model for syntactically correct LATEX equations.

At the time of writing, the WYGIWYS model is the state-of-the-art solution for the
image-to-LATEX task. A summary of the model’s performance is given in Table 2.1. The
original WYGIWYS model was built using Torch; for our experiments, we use a Tensorflow
reimplementation [11]. We evaluate the Tensorflow implementation and find that it matches
the performance of the Torch model.

BLEU score 0.8773
Exact match 0.7746

Table 2.1: Performance of the WYGIWYS model on the im2latex-100k test set. Results are
taken from [3].

5

Chapter 3

Background and Related Work

Since their introduction in seminal work by Szegedy et al. [21] and Goodfellow et al. [4],
adversarial examples for deep learning models have been explored in a number of different
contexts. Key results indicate that adversarial examples are pervasive, transferable across
several major network configurations (e.g., MNIST, QuocNet, AlexNet), and can be found
using gradient- and optimization-based methods.

With the hope of making neural networks more robust, many additional efforts have been
made to (1) efficiently find vulnerable samples in a given input space, (2) attack a variety
of network architectures, (3) detect the presence of maliciously perturbed inputs, and (4)
formulate defenses against adversarial examples.

3.1 Generating Adversarial Examples

Suppose we have a target classifier F with model parameters θ. Let x be an input to the
classifier with corresponding ground truth label y. For a well-trained classifier, Fθ(x) outputs
a category or label that matches y with high probability. An adversarial example x∗ is some
instance in the input space that is close to x, but causes Fθ to produce an incorrect output.
Prior work considers two classes of adversarial examples.

First, a non-targeted adversarial example is an x∗ that causes the target classifier to
produce any incorrect output: Fθ(x

∗) 6= y. Second, a targeted adversarial example is an x∗

that causes the target classifier to produce a specific incorrect output y∗: Fθ(x
∗) = y∗ where

y 6= y∗.
Adversarial examples can be trivially constructed by setting x∗ equal to the value of

some other sample x′ in the training set with a different label y′ 6= y. As such, we enforce an
additional constraint d(x, x∗) ≤ ε, where d(· , ·) quantifies some distance metric between an
input sample x and its corresponding adversarial example x∗. ε should be sufficiently small
so that the generated adversarial perturbation does not change the ground truth identity of
input. For image inputs, this means the perturbation should be small enough that a human
can still interpret the image correctly.

In general, adversarial examples are created by learning some small perturbation δ that
is added to the original input: x∗ = x+ δ. Several methods for generating non-targeted and
targeted adversarial examples are described below.

6

3.1.1 Fast gradient sign method

Goodfellow et al. propose the fast gradient sign method [4] for generating adversarial exam-
ples. The adversarial examples found using this method can be computed quickly, but are not
optimized; there may exist many other adversarial examples for a particular x that trick the
model into making the same misclassification but require a smaller amount of perturbations.

For a non-targeted attack, the fast gradient sign method computes the adversarial per-
turbation following the gradient sign of the model’s loss function:

δ = ε · sign(∇xJ(Fθ(x), y))

x∗ = clip(x+ δ)

Here, J(· , ·) denotes the loss function that was used to train the model Fθ. ε controls
the magnitude of the permitted perturbation; it functions as a bound on the `∞ norm of
the perturbation. At a high level, this method computes the perturbation δ that yields the
greatest increase in loss, thereby maximizing the probability of misclassification.

For the targeted case, rather than simply perturbing x away from the ground truth
label y, we seek to find a perturbation that minimizes the loss of classifying x∗ as a specific
incorrect label y∗. Thus, we alter the formulation:

δ = −ε · sign(∇xJ(Fθ(x), y∗))

x∗ = clip(x+ δ)

3.1.2 Fast gradient method

While the fast gradient sign method perturbs inputs in the gradient sign direction of the
model’s loss function, the fast gradient method [12] perturbs inputs in the gradient direction.
Both the fast gradient method and the fast gradient sign method are “one-step” algorithms.
That is, both methods can produce an adversarial example after a single gradient computa-
tion. Later, we will explore optimization-based approaches that require more computation
time but produce adversarial examples with higher average rates of success using compara-
tively fewer perturbations.

For the non-targeted case, the fast gradient method computes:

δ = ε · ∇xJ(Fθ(x), y)

||∇xJ(Fθ(x), y)||
x∗ = clip(x+ δ)

For the targeted case, the fast gradient method finds:

δ = −ε · ∇xJ(Fθ(x), y∗)

||∇xJ(Fθ(x), y∗)||
x∗ = clip(x+ δ)

The intuition for the targeted and non-targeted calculations follows from the fast gradient
sign method.

7

3.1.3 Optimization method

In addition to the gradient-based methods described previously, Szegedy et al. show that ad-
versarial examples can be found by iteratively optimizing a given objective function [21]. The
optimization-based approach carries a larger computation cost compared to gradient-based
methods, but produces adversarial examples that minimize the amount of perturbations.

For the non-targeted case, adversarial examples can be crafted by optimizing:

δ = argmin
δ

λ||δ||p − J(Fθ(x+ δ), y)

Here, we seek to find the smallest perturbation that yields the greatest loss. ||δ||p is
the p-norm of the perturbation; λ is a tunable hyperparameter denoting the regularization
strength. Different choices of p-norms (e.g., `0, `1, `2, `∞) generate adversarial examples
with different properties. For instance, for image inputs, optimizing the `2-norm creates
adversarial examples that perturb a large number of pixels by a very small amount, whereas
optimizing the `0- or `1-norm produces adversarial examples that maximally perturb a small
number of pixels.

For the targeted case, we optimize:

δ = argmin
δ

λ||δ||p + J(Fθ(x+ δ), y∗)

The initial experiments conducted by Szegedy et al. use a box-constrained L-BFGS
optimizer to accomplish the minimizations above. However, more recent experiments by
[2, 12] suggest that using the Adam optimizer [10] yields much faster convergence while
producing adversarial examples of the same quality. For the experiments conducted in this
work, we use the optimization-based approach to generate adversarial examples.

3.2 Transferability

The approaches for generating adversarial examples discussed previously require white-box
access to a target model’s gradients. However, from a practical viewpoint, attackers in the
real world typically only have black-box access to the system.

Building off this idea, several works investigate the creation of adversarial examples in
black-box scenarios. Goodfellow et al. suggest that adversarial examples are transferable;
adversarial examples for a single task can be used to compromise multiple models with
different architectures and training procedures.

The issue of transferability is further studied by Papernot, McDaniel, and Goodfellow [18]
and Liu et al [12]. Their investigations produce targeted and non-targeted adversarial exam-
ples for black-box models; this is achieved by training and attacking a substitute model using
minimal information about the properties of the victim model’s architecture and behavior.

Evaluating the transferability of adversarial examples for visual decompilers falls outside
of the scope of this work. Attacks and defenses will be discussed only in the context of a
white-box scenario.

8

3.3 Detection

As a first step towards mitigating the impact of adversarial examples, a number of strategies
have been proposed for distinguishing inputs perturbed with adversarial noise from valid
inputs.

One body of work suggests that adversarial examples exist in a different principal compo-
nent space than valid inputs. Hendrycks and Gimpel perform principal component analysis
and compare the variance of the coefficients for clean and adversarial images [7]. They find
that adversarial images emphasize low-ranked principal components much more than clean
images. Using this method, they build detectors that achieve high AUROC and AUPR for
three image classification tasks: Tiny-ImageNet, CIFAR-10, and MNIST.

Another approach for detecting adversarial examples is based on the idea that adversarial
examples induce intermediate outputs in deep networks that are statistically distinct from
the outputs produced by valid inputs. For instance, Hendrycks and Gimpel [6] suggest that
it is possible to detect incorrectly classified samples by examining output softmax values
because correctly classified samples tend to have greater maximum softmax probabilities than
incorrectly classified samples. With this approach, they build baseline classifiers that detect
incorrectly predicted samples for tasks in computer vision, natural language processing, and
speech recognition.

Finally, adversarial examples can be detected by directly augmenting the network ar-
chitecture of the target model. Metzen et al. propose training a detector subnetwork that
distinguishes adversarial inputs from valid inputs based off the intermediate activations in
the deep network [16].

3.4 Prevention

Beyond detecting adversarial examples, several ideas for defending networks against adver-
sarial examples have been evaluated. However, they contain inherent flaws and have not
been shown to generalize well across different tasks.

Goodfellow et al. introduce adversarial retraining as a first-order defense [4]. This
strategy involves augmenting the training pipeline with adversarial examples found using
fast gradient methods. While this defense is successful in reducing the effectiveness of known
adversarial examples, it ceases to work once an adversary adopts a novel algorithm for
constructing malicious inputs. Other defenses, like defensive distillation [20], have been
proven to be easily circumventable by modifying a minimal number of training parameters [1].

Although a thorough investigation of detection and prevention schemes falls largely out-
side the scope of this work, we will briefly consider and evaluate a couple of detection
strategies and defenses as a part of our discussion.

9

Chapter 4

Model Evaluation

As a first step, we investigate the image-to-LATEX model that we use to carry out experiments
in this work. These results help us better understand subsequent findings.

4.1 WYGIWYS Model Architecture

The WYGIWYS model is divided into three main components that are trained end-to-end.
First, the model captures visual features using a six-layer convolutional neural network.
Second, the filtered output of the CNN is encoded into a feature grid using a bilinear LSTM
row encoder. Finally, a bilinear LSTM decoder with attention produces the markup output.
Please refer to Deng et al.’s paper for additional details [3].

Figure 4.1: WYGIWYS architecture.

4.2 Network Sparsity

To better understand the visual representations being captured by the convolutional neural
network at the front of the WYGIWYS model, we first record metrics about the sparsity
of the six convolutional layers; the results are shown in Table 4.1. The values in Table
4.1 were computed by averaging the activations produced by 633 images from the test set
portion of the im2latex-100k dataset [9]. Additional sparsity measurements were taken
using adversarial images and images perturbed with random Gaussian noise. We find that

10

Num. Filter Filter Activation Mean Mean activated
Layer filters height width density value value

1 64 50 120 0.3817 0.0653 0.2458
2 128 25 60 0.3336 0.0469 0.1708
3 256 13 30 0.6197 0.2787 0.4638
4 256 13 30 0.0417 0.0163 0.4383
5 512 13 15 0.6086 0.3095 0.5209
6 512 7 15 0.4421 0.3517 0.8096

Table 4.1: WYGIWYS model convolutional layer sparsity. “Activation density” refers to the
average fraction of nodes that are turned on by the ReLU activation function for a single
input image.

changing the type of input image (i.e., valid, adversarial, noisy) does not alter the activation
density pattern.

It is interesting to note that while most layers are fairly dense (activation densities be-
tween 30% and 60%), the fourth convolutional layer yields very sparse activations (a little
over 4% of the nodes).

4.3 Visualizing Network Activations

In addition to analyzing the sparsity of convolutional layers, we visualize the activations at
each convolutional layer and at the bilinear LSTM row encoder. These visualizations can be
viewed in Figure 4.2.

Most of the filters we observe are difficult to interpret visually; however, we find that
the activations at the sparse convolutional layer (layer 4) are sensitive to the shapes of
different glyphs in the equation image (see Figure 4.3). Thus, we hypothesize that successful
adversarial examples for the image-to-LATEX task will alter the activation patterns in filters
corresponding to the glyph(s) under attack at this layer.

4.4 Adding More Data

The performance of many deep learning models can be improved by simply training on
more data. We confirm that this holds true for the WYGIWYS model as well by assembling
an augmented dataset that is more than 2.5 times larger than the dataset on which the
WYGIWYS model was originally trained. A comparison between the datasets and subsequent
model performance can be found in Table 4.2.

We constructed our new augmented dataset by collecting equations from arXiv papers
published between November 2016 and December 2016 across all portions. For reference, the
im2latex-100k dataset [9] originally used to train the WYGIWYS model was constructed
using papers in the HEP-Th (high energy physics – theory) portion of arXiv between 1992
and 2003.

11

Figure 4.2: Activations of the first 16 filters in each of the convolutional layers and the
LSTM row encoder. The red overlay denotes positive values and the blue overlay denotes
negative values (color intensity is scaled up by approximately eight times for clarity). Note
that there are no negative values in the convolutional layer activations because a ReLU
activation function is used.

Figure 4.3: Selected filter activations from the sparse convolutional layer (layer 4). The red
overlay indicates the activation area; as before, the color intensity is scaled up to facilitate
viewing. The top left filter appears to activate on right parentheses; the top right filter
appears to activate on left parentheses; the bottom left filter appears to activate on the
character x; the bottom right filter appears to activate on commas.

Num. Num. Num. Mean Mean
Dataset training validation test loss perplexity

im2latex-100k [9] 76,444 8,491 9,695 0.2082 1.2416
Our dataset 205,388 25,673 25,681 0.1437 1.1573

Table 4.2: Results from testing our extended dataset.

12

Chapter 5

Adversarial Examples for
Image-to-LATEX

In this chapter, we show that the optimization-based approach can be used to find successful
adversarial examples that use very small perturbations.

5.1 Non-targeted Adversarial Examples

Non-targeted adversarial examples are the easiest type of adversarial examples to find be-
cause the optimization function enforces a relatively smaller set of constraints. As a reminder,
to craft a non-targeted adversarial example for a valid input sample x with ground truth
label y, we find the necessary perturbation δ by optimizing:

δ = argmin
δ

λ||δ||p − J(Fθ(x+ δ), y)

The resulting non-targeted adversarial example is given by x∗ = x+ δ. As suggested by
Liu et al. [12], adversarial examples with small perturbations can be successfully found even
when omitting the regularization term (λ = 0); we follow this recommendation to produce
a baseline. Later, we will investigate the effect of applying regularization.

We use the Adam optimizer [10] over 100 iterations with a constant learning rate of
η = 0.3. Table 5.1 contains summary metrics for the effectiveness of non-targeted adver-
sarial examples and Figure 5.1 shows two examples of non-targeted adversarial examples.
Even without regularization, the average maximum perturbation magnitude across the non-
targeted adversarial examples is 38.78 for images encoded in 8-bit space (i.e., pixel values
fall in the range [0, 255]).

Input type BLEU score Exact match
Valid 0.8773 0.7746
Non-targeted adversarial examples 0.3807 0.0000

Table 5.1: Performance degradation caused by non-targeted adversarial examples.

13

(a) (b)

Figure 5.1: Two non-targeted adversarial examples. The top row is the original image,
the middle row is the adversarial example, and the bottom row is the visualization of the
perturbations (green denotes the addition of ink and red denotes the removal of ink; color in-
tensities are scaled up to the maximum perturbation magnitude). In Figure 5.1a (left), the
ground truth markup is \phi {n}^{\dagger}\phi {n}=-\frac{\mu {n}^{2}}{2\lambda}
\equiv |v {n}|^{2}; its corresponding non-targeted adversarial example causes the
model to instead output z {n}^{z} \phi {n} = -{-{\mu {a}^{2}} {2\lambda}} \equiv
|{\omega} {a}|^{2}. In Figure 5.1b (right), the ground truth markup is \bar{M} = 2\pi
\int rdr \; (\frac{dG(r)} {dr})^{2} \; \;; its corresponding non-targeted adversar-
ial example causes the model to instead output {1} {\bar {1} {- 1}} = 2{\bar {\pi}}
\int rdr~~({\frac{dG(r)}{dr}})^{2} ~.

5.2 Targeted Adversarial Examples

In addition to non-targeted adversarial examples, targeted adversarial examples can also be
generated for image-to-LATEX. Unlike image classification tasks (e.g., MNIST, ImageNet), an
equation image is not defined by a single label; rather, each image sample is assigned a series
of ordered labels corresponding to the token sequence of the reference markup. Hence, a
targeted attack on this structured prediction task involves modifying either the classification
or sequence order of one or more of the token labels.

As such, a targeted attack for image-to-LATEX can be viewed as “editing” the ground
truth label sequence. Therefore, we divide target attacks into three categories: substitution,
insertion, and deletion.

We generate targeted adversarial examples using the optimization method:

δ = argmin
δ

λ||δ||p + J(Fθ(x+ δ), y∗)

Just as with non-targeted adversarial examples, we initially omit the regularization term
(λ = 0) [12]. For each of the three types of targeted attacks, we generate adversarial
examples using the Adam optimizer [10] over 100 iterations with a constant learning rate
of η = 0.3. We choose to keep these hyperparameters constant in order to compare the

14

difficulty of each type of attack; higher success rates could have been achieved by tailoring
these hyperparameters to each attack type.

5.2.1 Substitution attack

A basic substitution attack involves replacing one character in the ground truth label with
an arbitrary character of the attacker’s choosing. Figure 5.2 shows an adversarial example
that performs a substitution attack: the adversarial perturbations cause the model to misin-
terpret the \alpha token as a \beta token while leaving the predictions on all other tokens
unchanged.

Substitution attacks are the easiest of the three targeted attacks. Using the hyperparam-
eters described previously, we achieve an adversarial success rate of 72%.

Figure 5.2: A targeted substitution attack. The top row is the original image, the middle
row is the adversarial example, and the bottom row is the visualization of the perturbations
(green denotes the addition of ink and red denotes the removal of ink; color intensities are
scaled up to the maximum perturbation magnitude). The adversarial example successfully
compels the model to erroneously substitute the \alpha token with a \beta token so that
the final output prediction reads \lambda \rightarrow e^{i\beta}\lambda ,. Note that
all other tokens are predicted correctly.

15

5.2.2 Insertion attack

While a substitution attack keeps the number of tokens across the adversarial label and the
ground truth label constant, an insertion attack tricks the model into adding one or more
tokens to the structured prediction output. Figure 5.3 gives an example of an insertion attack:
the adversarial perturbations cause the model to output the digit 3 (three) immediately
following the = (equal sign) token.

Using the set of common hyperparameters, we achieve an adversarial success rate of 54%.
This suggests that insertion attacks are more difficult than substitution attacks, most likely
because more precise perturbations are required to fool the model into detecting the presence
of a non-existent glyph than to alter the identity of an existing glyph.

Figure 5.3: A targeted insertion attack. The top row is the original image, the middle row is
the adversarial example, and the bottom row is the visualization of the perturbations (green
denotes the addition of ink and red denotes the removal of ink; color intensities are scaled
up to the maximum perturbation magnitude). The adversarial example successfully compels
the model to erroneously insert a 3 (three) token between the = (equal sign) token and the
0 (zero) token so that the final output prediction reads \Sigma {ch} \Delta {ch} = 30 ..

5.2.3 Deletion attack

A deletion attack allows an adversary to remove one or more tokens from the output pre-
diction. Figure 5.4 shows an example of a deletion attack: the adversarial perturbations

16

prevent the model from recognizing the = (equal sign) token.
Using the set of common hyperparameters, our deletion attack achieves an adversarial

success rate of 26%. This shows that deletion is the most difficult of the three targeted
attack types. Masking the visual presence of an existing character in an equation image—
especially given the amount of ink used to encode an equal sign—requires high-precision
adversarial perturbations. We can achieve higher adversarial success rates for deletion attacks
by increasing the number of iterations and adjusting the learning rate.

Figure 5.4: A targeted deletion attack. The top row is the original image, the middle row is
the adversarial example, and the bottom row is the visualization of the perturbations (green
denotes the addition of ink and red denotes the removal of ink; color intensities are scaled
up to the maximum perturbation magnitude). The adversarial example successfully compels
the model to erroneously omit the = (equal sign) token so that the final output prediction
reads \delta {\epsilon} z^{\Delta} 0.

5.3 Regularization

The adversarial examples created previously were optimized without a regularization term.
Although they were successful, we observe a large number of perturbations that fall outside
of the area of the token under attack (see the perturbation visualizations in Figures 5.2, 5.3,
and 5.4).

17

(a) (b)

Figure 5.5: Two targeted adversarial examples for substitution attacks optimized with an
`1 regularization term. The top row is the original image, the middle row is the adversarial
example, and the bottom row is the visualization of the perturbations (green denotes the
addition of ink and red denotes the removal of ink; color intensities are scaled up to the
maximum perturbation magnitude). In each of the two examples, the model predicts each
\alpha character as a \beta character while predicting every other token correctly. The
perturbation visualizations (last row) show that the `1 regularization term effectively con-
strains the adversarial perturbations to the area around the target glyph. This is especially
apparent in Figure 5.5b (right), where there are two \alpha characters present.

To minimize the magnitude of perturbations and the number of perturbed pixels, we
introduce an `1 regularization term to our optimization function. Specifically, for a targeted
attack, we find:

δ = argmin
δ

λ||δ||1 + J(Fθ(x+ δ), y∗) with λ > 0

For this experiment, we generate regularized substitution attacks. We use the Adam
optimizer [10] over 500 iterations with a learning rate η = 0.35 and a regularization strength
λ = 0.0032. Two examples are shown in Figure 5.5. Overall, this approach achieves an
adversarial success rate of 86%. Comparable success rates can be achieved for insertion and
deletion attacks by tuning the hyperparameters accordingly.

These regularized results show that the image-to-LATEX model can be compromised by
adversarial perturbations that are virtually imperceptible.

18

5.4 Activation Differences

Our analysis in Chapter 4 included visualizations of different convolutional layers in the
WYGIWYS model. We drew particular attention to the fourth convolutional layer, which
exhibited very sparse activations. As shown in Figure 4.3, we hypothesized that the filters
learned in the fourth convolutional layer activate on different glyphs in the LATEX vocabulary.

To confirm this hypothesis, we compare the difference between the filter activations be-
tween valid inputs and adversarial images. As shown in Figure 5.6, filters sensitive to the
character under attack activate and deactivate in line with the adversarial substitution.

Figure 5.6: Selected filter activations at the fourth convolutional layer on an adversarial
example. The first image (top row) is the activation of a filter sensitive to the x character
on a valid input: fx(Ivalid). The second image (middle row) shows the difference between
the activation of fx on an adversarial example and the valid image: fx(Iadversarial)−fx(Ivalid).
Here, the adversarial example substitutes the first x character on the right-hand side with
a y character. We observe that the nodes of fx around the target x character deactivate
(blue shading indicates a negative difference value). The third image (bottom row) is the
activation of a filter sensitive to the y character on the adversarial image: fy(Iadversarial).
Note that only the targeted x character activates, while unperturbed x characters do not
activate.

5.5 Robustness Test

We measure the resiliency of adversarial examples against random noise. That is, does a
targeted adversarial example remain effective if perturbed by random Gaussian noise?

A targeted adversarial example perturbed by random noise can either (1) maintain its
effectiveness as a targeted adversarial example, (2) return to its ground truth label, or (3)
degrade into some non-targeted adversarial example. We experimentally evaluate each of
these three probabilities by perturbing a varying fraction of pixels in a collection of targeted
adversarial examples (substitution, insertion, and deletion) with random Gaussian noise over
a range of variances.

19

Figure 5.7 shows that targeted adversarial examples remain effective when a large number
of pixels are perturbed by noise with small variance, or when a small number of pixels are
perturbed by noise with large variance. Unfortunately, just because targeted adversarial
examples lose their effectiveness in the face of larger amounts of random Gaussian noise does
not mean that these noisy adversarial examples revert back to their reference labels. Figure
5.8 indicates that adversarial examples that become ineffective because of random Gaussian
noise overwhelmingly degrade to non-targeted adversarial examples.

Figure 5.7: The likelihood of targeted adversarial examples remaining effective as a function
of noise density (vertical axis) and noise intensity (horizontal axis). Green indicates that the
adversarial example is likely to remain effective (p > 0.5), white indicates that the adversarial
example is equally likely to maintain or lose effectiveness (p = 0.5), and red indicates that
the adversarial example is likely to become ineffective (p < 0.5).

20

Figure 5.8: The likelihood of targeted adversarial examples reverting back to their ground
truth labels as a function of noise density (vertical axis) and noise intensity (horizontal
axis). Green indicates that the adversarial example is likely to revert back to its ground
truth label (p > 0.5) and red indicates that the adversarial example is unlikely to revert
back to its ground truth label (p < 0.5). The plot is entirely red because the probability
that an adversarial example reverts back to its reference label is low across all measured data
points (the average probability of reverting back to the ground truth label is 0.0845).

21

Chapter 6

Attack Detection

In this chapter, we evaluate two recently proposed methods for detecting adversarial exam-
ples and discuss their limitations with respect to adversarial examples for the image-to-LATEX
task.

6.1 PCA Comparison

Hendrycks and Gimpel argue that valid inputs and adversarial examples exist in different
principal component spaces [7]. They perform PCA on the pixels of valid training set images
and show that mapping adversarial examples to this space results in an abnormal emphasis
on lower-rank principal components.

Figure 6.1 gives a visualization of the comparison proposed by Hendrycks and Gimpel for
a single valid and adversarial image pair. The coefficients of lower-rank principal components
for adversarial images (blue) is several orders of magnitude larger than their corresponding
coefficients for valid images (orange). The PCA coefficients of twelve additional pairs of valid
and adversarial images for the image-to-LATEX task are compared in Figure 6.2.

At first glance, this method may seem like an effective way to distinguish between valid
and adversarial images. However, we find that Hendrycks and Gimpel’s approach is brittle:

Figure 6.1: The PCA coefficient comparison between a single valid equation image (orange)
and its corresponding adversarial example (blue). The principal components are arranged
along the horizontal axis in order of rank; the vertical axis denotes the coefficient value.

22

Figure 6.2: The PCA coefficient comparison between twelve randomly selected pairs of valid
and adversarial images. The adversarial images were computed using the optimization-based
approach with `1 regularization.

even the smallest amount of random Gaussian noise causes the coefficients for lower-rank
principal components to explode. As an experiment, we take random images from the test
set and perturb a 5% of the pixels in each image using random Gaussian noise with σ = 5.
Recall that the images in the dataset are scaled between 0 and 255, so random Gaussian
noise with σ = 5 is very small. The WYGIWYS model produces the correct markup for each
of these noisy images, but the coefficients of the lower-rank principal components behave as
if the noisy image were adversarial, as shown in Figure 6.3. A practical deployment of this
detection method would yield a high false positive rate in the face of minuscule amounts of
noise. These results highlight the importance of a detection strategy’s ability to distinguish
between adversarial noise and random noise.

6.2 Out-of-distribution Softmaxes

In another work, Hendrycks and Gimpel suggest that incorrectly classified inputs—including
adversarial examples—yield softmax outputs that fall in a different distribution than softmax
outputs for correctly classified samples because correctly classified samples tend to have a

23

Figure 6.3: The PCA coefficient comparison between a clean image and a noisy image.
(1) Top left: the clean image. (2) Bottom left: the noisy image; 5% of the pixels have
been perturbed with random Gaussian noise (σ = 5). (3) Top right: a visualization of the
added noise (green denotes the addition of ink and red denotes the removal of ink; color
intensities are scaled up to the maximum perturbation magnitude). (4) Bottom right: the
PCA coefficient comparison between the clean image and the noisy image.

higher maximum softmax value than incorrectly classified samples [6]. As such, a classifier
for out-of-distribution samples can be built using observed softmax probabilities.

We apply this approach to the image-to-LATEX model. Because we are making structured
predictions, the WYGIWYS outputs a set of softmax probabilities for each output token. We
divide the tokens into four sets: (1) all tokens across a collection of valid images, (2) all
tokens across a symmetric collection of adversarial images, (3) the tokens in the valid image
collection that are targeted by adversarial examples, (4) the tokens in the adversarial image
collection that are maliciously modified. For clarity, set 3 is a subset of set 1; similarly, set
4 is a subset of set 2.

We note the model’s maximum softmax output for each of the tokens. Table 6.1 summa-
rizes the maximum softmax probability distributions for each set. The distribution metrics
shown in Table 6.1 indicate that there is a clear difference between the softmax probabilities
produced by valid, pre-perturbation target characters and those produced by adversarial,
post-perturbation target characters (set 3 versus set 4). However, if we consider the softmax
probabilities of all characters across the valid and adversarial images (set 1 versus set 2), the
distinction is much less clear.

Table 6.2 shows the results of building classifiers to detect adversarial tokens with respect
to the output softmax values. If we assume that the defender knows exactly which token or
tokens the attacker wants to manipulate, then this detection scheme works perfectly since
the ranges of the softmax probabilities in set 1 and set 2 are disjoint (see row 1 in Table 6.2).

24

Token Num. Standard
set samples Mean deviation Max. Min.

(1) All, valid 761 0.9793 0.0647 1.0000 0.4096
(2) All, adversarial 761 0.9582 0.1122 1.0000 0.2452
(3) Target, valid 49 0.9892 0.0196 0.9997 0.9101

(4) Target, adversarial 49 0.6291 0.1776 0.8970 0.2452

Table 6.1: A summary of the maximum softmax probability distributions for the four token
sets.

However, if the defender does not have prior knowledge about which tokens are under
attack, Hendryck and Gimpel’s approach does not work well. In the case where we consider
the softmax probabilities from all tokens in both valid and adversarial images (row 3 in
Table 6.2), the AUPR and AUROC fall between 50% and 55%, which means that the de-
tector is only performing slightly better than random. If we consider larger equation images
containing a greater number of tokens, the performance will likely degrade further.

It is still possible that residual adversarial noise affects the distribution of softmax values
in neighboring, non-targeted characters. If so, we can use this information to make stronger
predictions about the validity of an equation image. To test this hypothesis, we compare
corresponding non-targeted tokens from the collections of valid and adversarial images to
see if there is a difference in their maximum softmax distributions that can be used to
differentiate the two sources. The base rate for each of the entries in Table 6.3 is 50/50 since
a token in the valid image that is not subject to attack should be identically decompiled in
the adversarial image.

The results in Table 6.3 show that such a difference does not exist: the maximum softmax
probability distribution for non-targeted characters in the valid image collection is indistin-
guishable from the maximum softmax probability distribution for non-targeted characters
in the adversarial image collection. This means that without precise knowledge of the ad-
versary’s intent, softmax probabilities cannot be used to deduce whether an image is valid
or adversarial.

Moreover, given that an attack may only manipulate a small number of tokens across a
small number of images, even if our detectors work with high AUROC in the 50/50 base
rate case, the prior distribution of valid and adversarial images will heavily bias a practical
detector to return a non-adversarial verdict.

In Out Base Normality Abnormality
class class rate AUPR AUPR AUROC

Target (3) Target (4) 50/50 1.0000 1.0000 1.0000
All (1) Target (4) 94/6 0.9989 0.7613 0.9834
All (1) All (2) 50/50 0.5077 0.5522 0.5210

Table 6.2: Detecting out-of-distribution token predictions using softmax probabilities.

25

Non-targeted Num. Normality Abnormality
token samples AUPR AUPR AUROC

= (equal sign) 46 0.4776 0.4740 0.4802
\frac 30 0.5348 0.4747 0.5022

^ (caret) 76 0.5017 0.4882 0.4761
(underscore) 90 0.4570 0.4608 0.4467

Table 6.3: Distinguishing non-targeted tokens in valid and adversarial images using softmax
probabilities.

26

Chapter 7

Defenses and Their Limitations

In this chapter, we consider several defensive measures against adversarial examples for
image-to-LATEX and their respective limitations.

7.1 Types of Adversaries

We begin with a discussion of two threat models to consider when evaluating defenses.
First, we define a weak adversary to be an attacker that is not aware of any defenses

that may be in place to protect the model from adversarial examples. A weak adversary
can generate adversarial examples using known methods. The ability to successfully defend
against a weak adversary is the minimum requirement for a defense.

Second, we define a strong or adaptive adversary to be an attacker that is aware of any
and all defensive measures, understands exactly how the defenses work, and actively tries to
circumvent them. Following a key tenet in computer security, an ideal defense should remain
effective against an adaptive attacker.

For each of the following defenses, we show that it successfully defends against weak
adversaries, but fails against adaptive ones.

7.2 Segmentation

In Chapter 5, we gave several examples of non-targeted and targeted adversarial examples.
In Figures 5.1, 5.2, 5.3, and 5.4, a significant portion of the adversarial perturbations falls in
the whitespace area surrounding the equation. Even in the regularized case (Figure 5.5), not
all of the adversarial perturbations fall strictly over the inked areas of the glyph in question.

This motivates the use of image segmentation as a defense against adversarial examples.
Given a mask over the equation image, we can nullify adversarial perturbations that fall
outside of the inked glyphs. By doing so, we reduce the number of pixels an adversary can
perturb.

27

(a) Original equation image. (b) Precise segmentation mask.

(c) Dilated mask (1 pixel). (d) Dilated mask (2 pixels).

Figure 7.1: Segmentation masks with varying degrees of precision.

7.2.1 Computing masks

Naturally, this defense brings up questions about how masks can be obtained. Further-
more, if we use a machine learning model for image segmentation, can the attacker instead
compromise the segmentation system?

Because we have access to the clean, pre-perturbed images in the test set, we devise
a simple segmentation oracle for the sake of this evaluation. For any valid 8-bit encoded
equation image Ivalid, we can find a precise segmentation mask M0 by calculating:

M0 = Ivalid < 200 (0 is black and 255 is white)

In addition to calculating a precise mask, we can construct masks of varying precision by
thresholding the result of convolving the precise mask with a ones matrix. For instance, to
compute a mask with one-pixel dilation, we calculate

M1 = (M0 ∗ J3) > 0

where J3 is the 3× 3 ones matrix. Similarly, to compute a mask with two-pixel dilation, we
calculate:

M2 = (M0 ∗ J5) > 0

A visualization of the resulting segmentation masks is given in Figure 7.1.

7.2.2 Weak adversary

We first test this defense on a weak adversary that generates adversarial examples following
the optimization-based approach used in Chapter 5. After the weak adversary submits a set

28

of adversarial examples, we use a precise mask to set all areas of the image that fall outside
the inked equation to white (255).

Without the segmentation defense, the weak adversary achieves a 74% adversarial success
rate. With the segmentation defense, the weak adversary achieves a 0% success rate; none
of the segmented targeted adversarial examples match their intended adversarial labels. The
defense is comparably effective using when using suboptimal masks with one- or two-pixel
dilation.

7.2.3 Adaptive adversary

Next, we consider mounting this defense against an adaptive attacker. Because an adaptive
attacker is aware of the segmentation defense, he or she modifies the generation procedure
for adversarial examples to account for this change. Specifically, the adaptive attacker re-
stricts the update step and the regularization computation to operate exclusively within
the segmented area. To emulate an adaptive attacker, we use the Adam optimizer [10]
over 500 iterations with a constant learning rate η = 0.35 and an `1 regularization strength
λ = 0.0032.

Using the precise segmentation masks, our results show that predictions on the adver-
sarial images exactly match the adversarial label 76% of the time across a batch of fifty
adversarial examples. Moreover, if we only consider the subset of adversarial images whose
valid counterparts yield predictions that exactly match their respective reference labels, then
the adversarial success rate increases to 89.2%.

Figure 7.2 gives an example of an adversarial example produced by an adaptive adver-
sary. The attacker successfully restricts all adversarial perturbations to the space within
the segmentation mask. These results look similar to the adversarial examples generated
with `1 regularization. However, they obey a stronger constraint here since not all of the
perturbations in `1-regularized adversarial examples fall precisely over the inked glyphs.

As expected, using masks with lower precision (e.g., one-pixel dilation or two-pixel dila-
tion) simply serves to increase the attack surface for the adaptive adversary. For instance,
in the one-pixel dilation case, the adaptive adversary achieves an adversarial success rate of
86%.

With our artificial segmentation oracle, we produce perfect (or near-perfect) segmenta-
tions of equation images; yet, an adaptive attacker can easily circumvent these masks. This
means that in a practical deployment where we do not have access to such an oracle, the seg-
mentation quality can only decrease. An imperfect segmentation system that is too liberal
fails to mask out all whitespace outside of the inked equation, thereby giving an adaptive
adversary access to more pixels to perturb. On the other hand, an imperfect segmentation
system that is too conservative may mistakenly mask out parts of the inked equation, which
would undermine the performance of the model on valid inputs.

7.3 Input Quantization

The adversarial examples we have produced thus far rely on perturbations with small float-
ing point magnitudes. However, the WYGIWYS model is trained and evaluated on images

29

Figure 7.2: An adversarial example produced by an adaptive adversary that is aware of the
segmentation defense. The top row is the original image, the middle row is the adversar-
ial example, and the bottom row is the visualization of the perturbations (green denotes
the addition of ink and red denotes the removal of ink; color intensities are scaled up to
the maximum perturbation magnitude). The adversary successfully restricts all adversarial
perturbations to the space within the precise segmentation mask.

that are quantized to 8-bit integer values. By allowing inputs to take on arbitrary floating
point values, the model unnecessarily leaves itself vulnerable to the space of floating point
adversarial inputs.

As such, a proposed defense involves limiting the precision of input values to the quanti-
zation space of the training set. For the image-to-LATEX task, this means small perturbations
that fall between the 8-bit quantization boundaries will be rounded accordingly, thereby re-
ducing the precision and effectiveness of adversarial examples optimized in floating point
space.

To make the defense more robust, we can take this one step further by reducing the
precision of the training data itself. Rather than training and testing in an 8-bit image space,
we binarize the image data (i.e., reduce to single-bit precision) using a simple thresholding
scheme and retrain the network. The binarized model achieves comparable performance
on the test set with a mean loss of 0.2302 and a mean perplexity of 1.2709; for reference,
the model achieves a mean loss of 0.2082 and a mean perplexity of 1.2416 when trained
and evaluated on 8-bit images. In fact, this behavior can be observed in other models for
different tasks: models for MNIST and CIFAR-10 experience minimal performance losses

30

when trained and evaluated on low-precision images [23].

7.3.1 Weak adversary

Given this new binary quantization space, adversarial perturbations are forced to fully acti-
vate or deactivate pixel values in the image. Suppose the weak adversary generates adversar-
ial examples with floating point values between 0 and 255 as before. Because the majority
of the adversarial perturbations are not large enough to change their respective binary acti-
vation states, the binarized versions of these adversarial images are more or less identical to
the binarized versions of their valid counterparts. Therefore, by performing binarization as
a pre-processing step, the adversarial examples lose their effectiveness.

7.3.2 Adaptive adversary

Now, suppose we are faced with an adaptive adversary that is aware of the binary quan-
tization scheme. Naturally, the attacker can add the binary quantization constraint to the
adversarial example generation pipeline. However, the discrete nature of the desired per-
turbations presents several problems for optimizers that operate in continuous space (e.g.,
stochastic gradient descent, Adam).

To begin, gradients cannot backpropagate smoothly across the quantization layer. More-
over, if the magnitude of the accumulated gradients over a single training step are not large
enough to flip the binary activation state at any given pixel, the optimizer receives no use-
ful feedback because the binarization nullifies these undersized perturbations. That is, the
optimizer cannot see how much progress it has made towards generating a binarized adver-
sarial example, or if it is even making steps in the right direction. This makes convergence
extremely difficult. Ultimately, the only part of the objective function that the optimizer
can control is the regularization term, so applying an unmodified optimization procedure for
binarized adversarial images trivially returns an empty perturbation mask (δ = 0).

These observations are all empirically verified. We also find that the optimizer fails to
produce any meaningful adversarial noise even with a large learning rate and no regular-
ization term. Because current approaches for generating adversarial examples fail to adapt
to quantized scenarios, we introduce a new method for generating quantized adversarial
examples.

Categorical reparameterization with Gumbel-Softmax

Jang et al. and Maddison et al. demonstrate an approach for learning latent categorical vari-
ables using continuous optimizers [8, 15]. Rather than attempting to explicitly backpropagate
gradients through a non-differentiable discrete-valued matrix, they propose a continuous re-
laxation of categorical variables by reparameterizing them as differentiable samples from a
Gumbel-Softmax distribution.

To give a simple high-level example, suppose we want to optimize a 1 × 1 categorical
variable X that takes on one of three values in the set {−1, 0, 1}. Conventional optimization
approaches that involve backpropagating gradients to X fail because X is not differentiable.

31

However, following the ideas presented in [8, 15], we can solve this problem by instead
reparameterizing X as X

′
= [X

′
−1, X

′
0, X

′
1], a 1 × 3 matrix that represents a probability

distribution over the categorical values of X. Note that the values of X
′

k are continuous. In
the forward pass, we randomly sample a discrete value from the set {−1, 0, 1} based on the
values in X

′
; in the backward pass, we backpropagate gradients to each X

′

k. To help the
model converge, we anneal the sampling temperature as the number of optimization steps
grows large.

For a complete explanation of the reparameterization trick that includes more details
about temperature annealing and a derivation of the Gumbel-Softmax distribution, please
refer to [8] and [15].

Quantized adversarial examples for MNIST

Using Gumbel-Softmax reparameterization, we show that an adaptive attacker can success-
fully produce adversarial examples that resist the quantization defense. Here, we evaluate the
Gumbel-Softmax attack by generating targeted adversarial examples for an MNIST model
that only accepts binarized inputs.

In the binary quantization case, there are a total three possible perturbation values: −1,
0, and 1. As such, we reparameterize the discrete perturbation mask δ as δ

′
= [δ

′
−1, δ

′
0, δ

′
1],

which encodes three unnormalized probabilities at each pixel. In general, for an n-bit quan-
tization scheme, the number of possible noise values is given by 2n+1 − 1.

For the continuous case, we initialize the perturbation mask δ at 0. For the repa-
rameterized case, we instead encode the zero initialization by setting δ

′

k = ε,∀k 6= 0 and
δ
′
0 = 1− (ε · (2n+1 − 2)), where ε is some small value (we used 0.001) and n is the bit depth.

We use the Adam optimizer [10] over 750 iterations with a constant learning rate η =
0.09 and an `1 regularization weight λ = 0.5. We initialize the Gumbel-Softmax sampling
temperature at τ = 1.0 and exponentially anneal it at a rate of 0.003 until it reaches a
minimum temperature of τ = 0.1.

Across a batch of 10,000 targeted adversarial examples, the attacks match their target
adversarial labels at a rate of 0.8560, their reference labels at a rate of 0.1309, and some
non-targeted adversarial label at a rate of 0.0131. For reference, the binary input MNIST
model achieves a test set accuracy of 0.9898. Figure 7.3 gives some examples resulting from
the Gumbel-Softmax attack.

Adapting the Gumbel-Softmax attack to the image-to-LATEX task remains a piece of
future work.

32

Figure 7.3: Binarized adversarial examples generated using the Gumbel-Softmax attack.
The left column gives the original binarized images; the middle column gives the binarized
adversarial examples; the right column gives a visualization of the adversarial perturbations
(green denotes addition and red denotes subtraction). The reference labels for the four
images are [8, 3, 7, 2] and the adversarial target labels are [7, 5, 9, 9]. The adversarial examples
exactly match their adversarial labels.

33

Chapter 8

Future Work

This work is framed primarily as a preliminary baseline evaluation of adversarial examples
for structured prediction tasks. As such, we leave many avenues open for future work.

High-level categories for future work include:

• Generating adversarial examples for image-to-LATEX using other methods not consid-
ered by this work (e.g., JSMA [19], DeepFool [17])

• Evaluating the transferability of adversarial examples for image-to-LATEX

• Investigating adversarial examples in different types of visual decompilers (e.g., image-
to-HTML), or in other structured prediction tasks

• Testing the robustness of visual decompilers on larger images (i.e., equations with
multiple lines and/or more tokens)

• Adapting and evaluating upcoming and existing detection strategies and defenses on
structured prediction tasks

As a piece of immediate follow-up work, we take advantage of the highly controlled nature
of the image-to-LATEX task by integrating feedback from a LATEX compiler at test time. We
hope that the process of rendering the output prediction and comparing it against the input
image can help the model detect discrepancies that arise from either adversarial examples
or non-adversarial misclassification.

34

Figure 8.1: An example pipeline that uses the re-rendered output as additional feedback to
validate the correctness of the prediction.

35

Chapter 9

Conclusion

We presented adversarial examples for visual decompilers. In our investigation of the image-
to-LATEX structured prediction task, we adapt methods for generating adversarial examples
and demonstrate that targeted and non-targeted adversarial examples can be produced using
virtually imperceptible perturbations.

In an effort to mitigate the impact of adversarial examples, we evaluate two detection
schemes. We show that PCA comparison is brittle in the face of random noise, and that
the out-of-distribution softmax detection strategy fails without knowledge of the adversary’s
intent.

Additionally, we propose and break two defenses. Image segmentation is an effective
defense against weak adversaries, but fails against adaptive adversaries because it is possible
to constrain the necessary adversarial perturbations within the masked equation area. Input
quantization trades off a small degree of model performance to drastically shrink the space
of adversarial examples. While previous methods for generating adversarial images cease to
work in the quantized case, we successfully carry out a novel attack using Gumbel-Softmax
reparameterization.

Finally, we outline some points of future work. Primarily, we plan to use a LATEX compiler
at test time as a source of feedback about the quality of the output prediction; this will help
detect misclassified samples (both valid and adversarial).

As deep learning makes its way into more and more mission-critical applications, un-
derstanding and combating adversarial examples become increasingly important. We hope
that this work can inform future investigations into generating, detecting, and preventing
adversarial examples for structured prediction tasks.

36

Bibliography

[1] Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial
examples. arXiv preprint, 2016.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural net-
works. arXiv preprint arXiv:1608.04644, 2016.

[3] Yuntian Deng, Anssi Kanervisto, and Alexander M Rush. What you get is what you
see: A visual markup decompiler. arXiv preprint arXiv:1609.04938, 2016.

[4] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[5] Gösta H Granlund. Fourier preprocessing for hand print character recognition. IEEE
transactions on computers, 100(2):195–201, 1972.

[6] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[7] Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images.
arXiv preprint arXiv:1608.00530, 2016.

[8] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. stat, 1050:1, 2017.

[9] Anssi Kanervisto. im2latex-100k, arxiv:1609.04938, June 2016.

[10] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[11] Rithesh Kumar. im2latex-tensorflow, 2017.

[12] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable ad-
versarial examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

[13] Yi Lu. Machine printed character segmentation—; an overview. Pattern recognition,
28(1):67–80, 1995.

[14] A Vander Lugt. Signal detection by complex spatial filtering. IEEE Transactions on
information theory, 10(2):139–145, 1964.

37

[15] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712,
2016.

[16] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting
adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017.

[17] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[18] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:1605.07277, 2016.

[19] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In Security
and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 372–387. IEEE,
2016.

[20] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Dis-
tillation as a defense to adversarial perturbations against deep neural networks. In
Security and Privacy (SP), 2016 IEEE Symposium on, pages 582–597. IEEE, 2016.

[21] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[22] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text recog-
nition with convolutional neural networks. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 3304–3308. IEEE, 2012.

[23] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

38

