
Controls for Assistive Robots

Guangzheng Zang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-79
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-79.html

May 12, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

	 1	

	

Controls	for	Assistive	Robots	

	
by	Guangzheng	Zang	

	
Research	Project	

Submitted	to	the	Department	of	Electrical	Engineering	and	Computer	Sciences,	University	of	
California	at	Berkeley,	in	partial	satisfaction	of	the	requirements	for	the	degree	of	Master	of	
Science,	Plan	II.	

Approval	for	the	Report	and	Comprehensive	Examination:	

Committee:	

	

Professor	Anca	Dragan	

Research	Advisor	

	

	

*	*	*	*	*	*	*	

	

Professor	Jitendra	Malik	

Second	Reader	

	

	

	 	 	 	 	 	 05/11/2017	

	

	 2	

ABSTRACT	
	

The	industry	of	robotics	is	on	the	rise;	an	increasing	number	of	robots	are	being	used	in	factories	

and	households.	Our	capstone	project	–	Controls	for	Assistive	Robots	–	deals	with	this	market	demand.	

We	aim	to	implement	and	integrate	various	subsystems	of	UC	Berkeley’s	InterACT	lab	to	enhance	its	

infrastructure.	My	technical	contribution	is	a	robot	perception	system	that	gives	the	robot	the	ability	to	

“see”	and	interact	with	the	environment.	Specifically,	we	implemented	a	vision	system	using	Microsoft’s	

Kinect	v2	sensor.	We	managed	to	make	the	Kinect	a	quantitative	sensor	ready	to	use	in	research.	We	also	

integrated	it	with	other	subsystems	in	the	lab	and	build	a	system	so	that	the	robot	could	detect	the	pose	

of	certain	objects	in	real	world,	and	plan	to	grab	them	in	a	3D	virtual	environment.	With	the	systems	we	

developed,	future	researchers	in	the	lab	will	be	able	to	conduct	their	own	research	and	keep	making	a	

meaningful	impact	to	the	robotics	industry.		

	

	

	

	

	

	

	

	

	 3	

TABLE	OF	CONTENTS	
ABSTRACT	..	2	

INTRODUCTION	...	4	

PROBLEM	STATEMENT	...	4	

THEORETICAL	BACKGROUND	...	8	

IMPLEMENTATION	AND	VALIDATION	..	12	

CONCLUSION	..	16	

APPENDIX	..	17	

A,	HOMOGENEOUS	COORDINATES	...	17	

BIBLIOGRAPHY	..	18	

	

	

	

	

	

	

	

	

	

	 4	

INTRODUCTION	
Our	team	aims	to	implement	and	integrate	certain	components	of	UC	Berkeley’s	InterACT	

Laboratory	in	the	EECS	department.	In	order	to	achieve	this,	we	built	a	system	that	allows	a	robot	arm	to	

perceive	the	pose	of	an	object	and	plan	to	grab	it.	More	specifically,	we	want	to	set	up	and	calibrate	

Microsoft’s	Kinect	v2	sensor	as	the	robot	arm’s	perception	system,	have	it	work	with	AprilTags,	a	fiducial	

marker	developed	by	april	robotics	laboratory	(april	robotics	laboratory,	2016)	so	that	the	system	could	

recognize	an	object’s	6D	pose	(x,	y,	z,	yaw,	pitch,	roll),	and	apply	trajectory	smoothing	algorithms	in	order	

for	a	robot	arm	to	grab	it.	Table	1	shows	a	work	breakdown	of	our	project.		

Team	member	 Project	component	 Description	

Guangzheng	(Jeff)	 Perception	System	 Set	up	and	calibrate	Kinect	v2	sensor	

Tyler	 AprilTag	Recognition	 Recognize	the	6D	pose	of	objects	using	AprilTags	

Geronimo	 Motion	planning	 Configure	a	smooth	trajectory	to	grab	the	object	

	

	

PROBLEM	STATEMENT	
This	paper	focuses	on	the	implementation	of	an	imaging	system	for	the	InterACT	Laboratory.	The	

aim	is	to	properly	set	up	the	imaging	sensors,	allowing	the	system	to	get	reliable	data	from	the	

environment	so	that	the	robot	could	“see”	the	world.	In	future	steps,	the	imaging	system	will	be	used	to	

Table	1,	Work	breakdown	of	project	

	 5	

take	images	containing	certain	objects	with	AprilTags	on	it.	Therefore,	setting	up	the	imaging	system	is	

the	first	step	of	our	project.		

To	get	the	images,	we	use	Microsoft’s	Kinect	v2	sensor	(shown	in	Image	1),	which	is	able	to	take	

both	RGB	and	depth	images	(shown	in	Image	2).	The	RGB	images	are	simply	color	images,	which	are	no	

different	from	the	images	seen	by	human’s	eyes;	the	depth	images	record	the	depth	of	each	pixel	from	

the	camera,	giving	the	robot	a	sense	of	the	3D	shape	of	objects.	This	sensor	has	one	color	camera,	one	IR	

camera,	and	three	IR	emitters.	The	IR	emitters	project	IR	light	which	is	reflected	once	hitting	an	object;	

the	reflected	light	is	perceived	by	the	IR	camera.	Based	on	this	set	up,	the	depth	of	each	pixel	is	

calculated	based	on	the	Time	of	Flight	(ToF)	scheme:	the	distance	from	the	camera	to	each	pixel	is	

RGB Camera

IR Emitter

IR Camera

Image	1	(Derivative,	n.d.),	Kinect	V2	sensor	

Image	2,	Sample	RGB	image	(left)	and	Depth	image	(Right)	

	 6	

proportional	to	the	time	it	takes	for	the	IR	signal	to	travel	to	that	pixel	and	bounce	back	to	the	IR	camera.	

Some	of	the	technical	features	of	the	sensor	is	shown	in	Table	2.	

IR	camera	resolution	 512	x	424	pixels	

RGB	camera	resolution	 1920	x	1080	pixels	

Field	of	view	 70	x	60	degrees	

Frame	rate	 30	frame	per	second	

Operative	measuring	range	 0.5	to	4.5	meters	

Object	pixel	size	 1.4mm	(@0.5m)	to	12mm	(@4.5m)	

	

However,	simply	hacking	into	the	sensor	and	extract	the	color	and	depth	frames	would	give	

imprecise	images:	there	are	three	pitfalls	in	this	seemingly	simple	procedure.	First,	the	Kinect	sensor	uses	

Digital	Single	Lens	Reflex	(DSLR)	cameras,	and	therefore	geometric	distortion	exists.	As	shown	in	Image	

3(a),	this	distortion	is	most	observable	when	there	are	pairs	of	parallel	lines	in	the	image.	Using	these	

distorted	images	would	lower	the	accuracy	of	the	image	and	hurt	the	performance	of	the	project.	

Second,	due	to	the	imperfections	of	the	camera,	there	is	a	mismatch	between	the	actual	image	taken	and	

the	image	expected	by	a	pinhole	camera	model.	These	imperfections	could	include	shift	in	the	principal	

point	(the	center	point	of	the	image	plane),	different	pixel	scaling	factor	along	the	two	axes	of	the	image,	

etc.	Third,	as	shown	in	Image	1,	there	is	a	small	distance	(~2.5	cm)	between	the	centers	of	IR	and	RGB	

Table	2,	Technical	Features	of	Kinect	V2	sensor	(Lachat,	2015)	

	 7	

camera	on	the	Kinect	sensor.	This	causes	a	shift	between	the	color	and	depth	images.	This	shift	can	be	

seen	in	Image	4	(a).		

In	order	to	eliminate	these	distortions	and	to	achieve	precise	image	data,	we	need	to	perform	

calibration	on	the	cameras.	Specifically,	distortion	calibration	would	counter	the	effect	of	lens	(radial	and	

tangential)	distortion,	intrinsic	calibration	would	counter	the	imperfections	of	the	camera,	and	a	dual	

camera	calibration	on	the	IR	and	RGB	camera	would	solve	the	mismatch	problem	of	the	two	images.	

Details	on	this	will	be	discussed	in	“Theoretical	Background”	section.	

Unfortunately,	being	able	to	get	precise	images	does	not	equal	to	a	successfully	set	up	sensing	

system;	in	most	cases,	including	this	capstone	project,	the	6D	pose	of	the	camera	itself	relative	to	a	

shared	coordinate	system	is	needed	in	order	to	make	sense	of	the	images.	In	the	next	steps	of	our	

project,	we	will	use	AprilTags	to	detect	the	6D	pose	of	an	object	relative	to	the	camera.	If	the	robot	arm	

a b

a b

Image	4	(Wiedemeyer,	Kinect2	Calibration	,	2016),	Calibrate	IR	to	RGB	camera:	(a)	with	the	shift,	the	
flat	surface	(white)	does	not	perfectly	cover	its	color	image;	(b)	after	calibration,	the	flat	surface	
(white)	perfectly	covers	its	color	image.	

Image	3	(ROS	Wiki,	2015),	Intrinsic/distortion	Calibration	of	Monocular	Camera:	(a)	with	geometric	
distortion,	straight	lines	appear	curved;	(b)	after	calibration,	straight	lines	appear	straight		

a b

	 8	

cannot	access	the	position	and	orientation	of	the	camera	in	some	shared	coordinate	system,	the	

detected	pose	of	the	target	object	is	meaningless	because	there	is	no	way	for	the	robot	arm	to	convert	

that	detected	pose	(relative	to	camera)	to	the	pose	relative	to	itself,	thus	forbidding	the	arm	to	really	

perceive	the	object.	

In	summary,	it	comes	to	the	following	challenges	in	order	to	build	the	imaging	system:	

1. Figure	out	the	intrinsic	parameters	of	the	camera	(Intrinsic	calibration)	

2. Fit	the	image	to	a	non-linear	transform	to	counter	lens	distortion	(Distortion	calibration)	

3. Calibrate	the	IR	camera	to	RGB	camera	(Dual	lens	calibration)	

4. Obtain	the	6D	pose	of	the	camera	itself	in	a	shared	coordinate	system	(Extrinsic	

calibration)	

	

THEORETICAL	BACKGROUND	
	 As	discussed	in	“Problem	Statement”	section,	in	order	to	make	Kinect	v2	a	quantitative	sensor,	

we	need	to	apply	certain	camera	calibration	procedures.	Therefore,	this	section	will	emphasize	on	the	3D	

to	2D	projection	process	in	a	camera	as	well	as	the	role	that	camera	calibration	is	playing.		

	 A	camera	can	be	generally	modeled	as	a	pinhole	camera,	assuming	that	the	image	plane	is	in	

front	of	the	camera	center	–	shown	in	Image	5.	Here,	a	point	X	in	3D	with	coordinate	(", $, %)	is	

projected	onto	the	image	plane	with	respect	to	the	camera	center	C.	The	resulting	pixel	is	denoted	as	x.	

The	Z-coordinate	of	x	(or	any	other	point	on	the	image	plane)	is	defined	as	the	focal	length	(')	of	the	

camera.	To	calculate	the	Y-coordinate	of	x,	we	analyze	the	similar	triangle	shape	shown	on	Y-Z	plane	

located	at	right	side	of	Image	5.	The	law	of	similar	triangle	gives	us:		

	 9	

(= '$/%	

Similarly,	from	the	similar	triangle	on	the	X-Z	plane,	we	have:	

+ = '"/%	

Therefore,	the	pixel	x	has	coordinate	 +, (= (,-
.
, ,/
.
).	

In	homogeneous	coordinates	(see	Appendix	A),	the	transformation	from	(", $, %)	to	(,-
.
, ,/
.
)	can	

be	written	as:	

+
(=

+
(
1

=

'"
%
'$
%
1

=
'"
'$
%

=
' 0
0
0

'
0
					
0
0
1
					
0
0
0

"
$
%
1

=
' 0
0
0

'
0
					
0
0
1

1 0
0
0

1
0
					
0
0
1
					
0
0
0

"
$
%
1

	

This	model	is	ideal	and	does	not	take	into	account	three	practical	non-idealities.	First,	the	(+, ()	

coordinate	of	the	pixel	in	the	ideal	model	might	not	be	reflected	on	the	real	image.	Three	intrinsic	

imperfections	of	the	camera	might	contribute	to	this	effect:	

1. The	center	of	the	image,	i.e.	point	
0
0
1

	in	homogeneous	coordinate,	might	be	shifted	in	

the	real	image.	The	shift	is	denoted	as	
34
54 .	

Image	5	(Forsman,	2011),	Simple	Pinhole	camera	model.	Notation:	X	is	point	in	3D	world,	x	is	point	
on	2D	image,	C	is	Camera	center,	P	is	principal	point,	f	is	focal	length	

	 10	

2. The	camera	might	have	different	scaling	factors	(67, 68)	along	x	and	y	directions	when	

taking	the	image.	

3. There	might	also	be	a	skew	coefficient	(9)	between	the	x	and	y	axis.	

These	factors	along	with	the	focal	length	'	are	commonly	referred	to	as	the	intrinsic	parameters	

of	a	camera.	Taking	all	these	factors	into	account,	the	real	image	coordinate	
3
5 	becomes:	

3
5 =

67 9
0
0

68
0
					
34
54
1

+
(
1

=
67 9
0
0

68
0
					
34
54
1

' 0
0
0

'
0
					
0
0
1

1 0
0
0

1
0
					
0
0
1
					
0
0
0

"
$
%
1

=
'67 '9
0
0

'68
0
					
34
54
1

1 0
0
0

1
0
					
0
0
1
					
0
0
0

"
$
%
1

= :
1 0
0
0

1
0
					
0
0
1
					
0
0
0

"
$
%
1

	

where	: =
'67 '9
0
0

'68
0
					
34
54
1

,	defined	as	the	camera	intrinsic	matrix.	The	idea	of	intrinsic	calibration	is	

to	estimate	these	constants;	knowing	this	matrix,	we	could	apply	its	inverse	and	achieve	images	predicted	

by	the	ideal	pinhole	camera	model.	

	 The	second	non-ideality	is	that	point	X’s	coordinate	is	often	hard	to	measure	correctly	in	

camera’s	frame.	In	order	words,	
"
$
%

	is	often	calculated	from	point	X’s	coordinate	in	the	world	frame	

";
$;
%;

.	This	process	is	also	known	as	rigid	body	transform	(shown	in	Image	6).	Two	transforms	constitute	

a	rigid	body	transform:	rotation	and	translation.	Rotation	is	a	Euclidean	Transform	and	can	be	

represented	as	a	3-by-3	matrix	<;	translation	can	be	represented	as	a	3D	vector	= =
=7
=8
=>

.	In	this	sense,	

	 11	

the	target	point	?@ABCD@ = < ∙ ?F + = =
<H ∙ ?F + =7
<I ∙ ?F + =8
<J ∙ ?F + =>

,	where	<K 	is	the	L-th	row	of	R.	In	homogeneous	

coordinates,	this	becomes:	

"
$
%
1

=

MHH MHI
MIH
MJH
0

MII
MJI
0
					

MHJ
MIJ
MJJ
0

					

=7
=8
=>
1

";
$;
%;
1

	

	

	

	

	

	

Therefore,	the	real	image	coordinate	becomes:	

3
5 = :

1 0
0
0

1
0
					
0
0
1
					
0
0
0

"
$
%
1

= :
1 0
0
0

1
0
					
0
0
1
					
0
0
0

MHH MHI
MIH
MJH
0

MII
MJI
0
					

MHJ
MIJ
MJJ
0

					

=7
=8
=>
1

";
$;
%;
1

= :
MHH MHI
MIH
MJH

MII
MJI
					
MHJ
MIJ
MJJ
					
=7
=8
=>

";
$;
%;
1

= : < = ?;
1

	

Image	6,	Rigid	body	transform.	Transform	from	coordinate	system	1	(blue)	to	coordinate	system	2	
(red).	

	 12	

where	<	is	3-by-3	rotation	matrix,	=	is	3D	translation	matrix,	and	?;	is	the	measured	coordinate	in	world	

frame.	The	process	of	extrinsic	calibration	deals	with	the	measurement	of	<	and	=,	which	is	essentially	the	

6D	pose	of	the	camera	in	world	frame.		

The	third	factor	that	makes	the	simple	model	of	pinhole	camera	non-ideal	is	the	existence	of	

geometric	distortion,	which	includes	radial	and	tangential	distortion.	Radial	distortion	exists	because	the	

shape	of	the	lens	causes	variations	in	light	refractions.	Radial	distortion	cannot	be	estimated	by	a	linear	

transform	or	matrix;	practically,	it	is	often	modeled	by	a	polynomial	function	with	sufficiently	high	

accuracy.	An	effective	formula	to	correct	radial	distortion	is:	

+4NBBD4@DO = +(1 + PH ∙ MI + PI ∙ MQ + PJ ∙ MR)	

(4NBBD4@DO = ((1 + PH ∙ MI + PI ∙ MQ + PJ ∙ MR)	

where	M	is	the	distance	from	the	pixel	to	the	center:	MI = +I + (I.	Tangential	distortion	comes	from	the	

fact	that	the	lens	might	not	be	perfectly	parallel	to	the	image	plane.	Similar	to	radial	distortion,	this	effect	

can	be	corrected	using	the	following	non-linear	equations:	

+4NBBD4@DO = + + [2UH+(+ UI MI + 2+I]	

(4NBBD4@DO = (+ [UH MI + 2(I + 2UI+(]	

PH, PI, PJ, UH, UI	are	coefficients	that	need	to	be	estimated	by	distortion	calibration.		

	

IMPLEMENTATION	AND	VALIDATION	
	 This	section	will	discuss	the	steps	we	took	to	perform	the	necessary	calibration	procedures	

discussed	above;	it	will	also	show	the	results	of	these	procedures.		

	 13	

First	of	all,	to	hack	the	Kinect	v2	sensor,	we	are	using	an	open	source	package	called	iai_kinect2.	

This	driver	has	three	ROS	packages:		

1. kinect2_bridge:	create	the	bridge	between	libfreenect2,	an	open	source	driver	for	Kinect	

v2	sensor,	and	ROS	nodes	that	broadcast	images	detected	and	sensor	information	

2. kinect2_viewer:	create	visualization	of	detected	images	

3. kinect2_calibration:	a	package	dedicated	for	intrinsic	and	distortion	calibration,	as	well	as	

dual	camera	calibration	of	IR	and	RGB	cameras	

Therefore,	we	first	installed	all	the	above	software	by	following	iai_kinect2’s	online	tutorial	(Wiedemeyer,	

IAI	Kinect2,	2017).	We	made	sure	that	image	can	be	streamed	to	the	viewer	before	continuing	to	the	next	

step.	

	 Second,	we	followed	the	procedure	in	kinect2_calibration	package	to	get	precise	images.	The	first	

step	in	this	procedure	is	intrinsic	and	distortion	calibration	for	both	RGB	and	IR	cameras.	We	showed	

camera	a	checkerboard	pattern	(shown	in	Image	7	(a))	with	known	dimensions.	Corner	detection	

algorithms	are	applied	to	detected	the	inner	corners	of	the	checkerboard	pattern,	as	shown	in	Image	7	

(b).	Because	the	shape	and	scale	of	the	checkerboard	pattern	is	known	to	the	software,	it	is	able	to	use	

these	inner	corner	points	to	fit	for	a	precise	model	of	intrinsic	matrix	: =
'67 '9
0
0

'68
0
					
34
54
1

	,	as	well	as	

Image	7,	Checkerboard	pattern	for	intrinsic/distortion/dual	camera	calibration.	(a)	sample	input	
image	used;	(b)	inner	corners	detected	(marked	by	color	dots)	

a b

	 14	

the	distortion	parameters	PH, PI, PJ, UH, UI.	For	each	camera,	around	100	images	are	used	to	make	sure	

the	data	points	are	sufficient	enough	to	predict	these	parameters	accurately.	The	second	step	is	dual	

camera	calibration	for	the	two	cameras.	Similar	to	the	previous	step,	we	showed	the	checkerboard	

pattern	to	both	cameras	at	the	same	time	to	estimate	the	essential	matrix.	The	calibration	results	are:	

:WXY =
1067.6486954727648 0

0
0

1067.9665181210512
0

					
964.13734842242093
558.48297731126331

1
	

PWXY,H
PWXY,I
UWXY,H
UWXY,I
PWXY,J

=

0.097691856090063728
−0.17002329009962283
0.00079887031789669760
0.0030040866129423297
0.081674308190985132

	

:cW =
360.74855402784794 0

0
0

360.61065953563514
0

					
251.45892721502329
211.30081753336793

1
	

PcW,H
PcW,I
UcW,H
UcW,I
PcW,J

=

0.093080426557230964
−0.28251132382012545
−0.0010445405024170492
0.00049370947897657178
0.10772278110128708

	

defK,@ = −23.622009807933534	

	 15	

The	calibrated	images	are	shown	in	Image	8.	

	

	

Third,	we	need	to	estimate	the	pose	of	the	camera	itself	in	a	shared	coordinate	system.	This	

shared	coordinate	system	is	defined	by	a	checkerboard	pattern	that	is	fixed	to	a	lab	table	(an	example	is	

shown	in	Image	9).	An	extrinsic	calibration	ROS	node	is	used	to	read	in	an	image	containing	this	

checkboard	pattern	and	broadcast	the	6D	pose	of	the	camera	relative	to	this	shared	coordinate	system.	

As	an	example,	given	an	image	shown	in	image	9	(a),	the	extrinsic	calibration	ROS	node	is	able	to	calculate	

the	pose	of	the	camera	in	this	example	as:		

Image	9,	Image	of	checkerboard	pattern	on	lab	table.	(a)	an	example	of	input	image	to	the	extrinsic	
calibration	node.	(b)	after	extrinsic	calibration,	the	node	is	able	to	detect	the	x,	y,	z	axis	and	draw	
them	on	the	image.		

Image	8,	overlay	of	IR	and	RGB	images	before	and	after	calibration.	(a)	before	calibration,	there	is	a	
shallow	IR	“shadow”	of	the	box	to	the	right	of	its	color	image.	(b)	after	calibration,	the	“shadow”	
overlaps	completely	with	its	color	image.			

a b

a b

	 16	

< =
−0.15032725 0.46206395
0.98855974
0.01232449

0.08127456
−0.88311458

					
−0.87401294
−0.12706148
−0.46899547

	

= =
0.75806523
0.43898541
0.59396386

	

Also,	the	x,	y,	z	axis	of	the	shared	frame	are	detected	as	shown	in	Image	9	(b).	Using	this	setup,	a	

researcher	should	perform	two	steps	before	taking	images:	

1. fix	the	pose	of	the	sensor	and	have	it	take	an	image	containing	the	checkerboard	pattern;	

2. give	this	image	to	the	extrinsic	calibration	ROS	node	to	broadcast	its	6D	pose.		

	

CONCLUSION	
	 In	conclusion,	we	have	successfully	made	the	Kinect	v2	sensor	a	quantitative	sensor.	After	

performing	calibration	procedures,	we	are	able	to	take	accurate	color	and	depth	images	containing	

objects	to	be	perceived	by	the	robot.	Moreover,	we	are	able	to	obtain	and	broadcast	the	6D	pose	of	the	

Image	10,	(a)	Typical	setup	of	the	system	and	(b)	corresponding	openrave	simulations.	

b a

	 17	

camera	itself	in	a	shared	coordinate	system.	Please	refer	to	Lab	Wiki	for	how	to	install	all	necessary	

software,	perform	calibration	procedures,	and	get	both	color	and	depth	images	from	the	sensor.	

Combining	the	work	done	by	Tyler	and	Geronimo,	we	set	up	our	system	shown	in	Image	10	(a).	

The	Kinect	sensor	is	able	to	accurately	detect	the	pose	of	the	AprilTag	(meant	to	represent	a	mug)	in	the	

coordinate	system	defined	by	the	checkerboard	pattern.	Then,	it	sends	its	coordinates	to	an	openrave	

ROS	node	shown	in	10	(b).	From	here,	Geronimo’s	algorithms	allow	the	robot	to	smoothly	move	to	the	

mug.		

	

APPENDIX	

A,	HOMOGENEOUS	COORDINATES	

	 Homogeneous	coordinate	is	a	system	that	uses	a	vector	of	dimension	g + 1	to	represent	a	point	

in	dimension	g	or	any	point	infinitely	far	away.	For	example,	a	point	in	2D	
+
(can	be	represented	as	

+
(
h

	

in	homogeneous	coordinates.	One	property	of	homogeneous	coordinates	is	that	
+
(
h

≡ j
+
(
h

,	where	j	

is	any	real	number;	in	other	words,	a	point	in	dimension	g	corresponding	to	a	ray	in	homogeneous	

coordinates	of	dimension	g + 1.	Note	that	the	excess	degree	of	freedom	derived	from	the	increased	

dimension	is	eliminated	by	this	scaling	factor.	If	h	is	not	zero,	we	normally	write	
+
(
h

	as	
+/h
(/h
1

	by	fixing	h	

to	1;	if	h	is	zero,	
+
(
0

	represents	a	point	infinitely	far	away.	

	 18	

	 In	the	context	of	this	paper,	the	use	of	homogeneous	coordinates	makes	it	much	easier	to	

represent	rigid	body	transform,	which	is	essentially	a	rotation	combined	with	a	translation.	Specifically,	if	

we	want	to	apply	a	rotation	matrix	<	and	a	translation	=	to	a	point	? =
"
$
%

	in	3D	without	homogeneous	

coordinates,	we	need	to	write	?k = <? + =,	which	is	a	matrix	multiplication	and	a	vector	addition.	On	the	

other	hand,	with	the	help	of	homogeneous	coordinates,	we	could	write	? =
"
$
%
1

;	this	way,	the	rigid	

body	transform	<, =	can	be	written	as	one	matrix	l =
MHH MHI
MIH
MJH

MII
MJI
					
MHJ
MIJ
MJJ
					
=7
=8
=>

,	and	?k = l?.	Only	one	

matrix	multiplication	is	enough	to	represent	rigid	body	transform.	

	

BIBLIOGRAPHY	
april	robotics	laboratory.	(2016,	12).	AprilTag.	Retrieved	from	

https://april.eecs.umich.edu/software/apriltag.html	

Derivative.	(n.d.).	Kinect.	Retrieved	from	Derivative	Wiki:	
http://www.derivative.ca/wiki088/index.php?title=Kinect	

Forsman,	M.	(2011).	Point	cloud	densification.	UMEA˚	UNIVERSITY	DEPARTMENT	OF	PHYSICS.	

Lachat,	E.	(2015,	10).	Assessment	and	Calibration	of	a	RGB-D	Camera	(Kinect	v2	Sensor)	Towards	a	
Potential	Use	for	Close-Range	3D	Modeling.	MDPI.	

ROS	Wiki.	(2015).	ROS.org.	Retrieved	from	How	to	Calibrate	a	Monocular	Camera:	
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration	

Wiedemeyer,	T.	(2016).	Kinect2	Calibration	.	Retrieved	from	github.com:	https://github.com/code-
iai/iai_kinect2/tree/master/kinect2_calibration	

Wiedemeyer,	T.	(2017).	IAI	Kinect2.	Retrieved	from	Github:	https://github.com/code-iai/iai_kinect2	

	

