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Abstract Model-based design methodologies are commonly used in industry for
the development of complex cyber-physical systems (CPS). There are many dif-
ferent languages, tools, and formalisms for model-based design, each with its
strengths and weaknesses. Instead of accepting some weaknesses of a particular
tool, an alternative is to embrace heterogeneity, and to develop tool integration
platforms and protocols to leverage the strengths from different environments.
A fairly recent attempt in this direction is the Functional Mock-up Interface
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(FMI) standard that includes support for co-simulation. Although this standard
has reached acceptance in industry, it provides only limited support for simulating
systems that mix continuous and discrete behavior, which are typical of CPS. This
paper identifies the representation of time as a key problem, because the FMI rep-
resentation does not support well the discrete events that typically occur at the
cyber-physical boundary. We analyze alternatives for representing time in hybrid
co-simulation and conclude that a superdense model of time using integers only
solves many of these problems. We show how an execution engine can pick an ad-
equate time resolution, and how disparities between time representations internal
to co-simulated components and the resulting effects of time quantization can be
managed. We propose a concrete extension to the FMI standard for supporting hy-
brid co-simulation that includes integer time, automatic choice of time resolution,
and the use of absent signals. We explain how these extensions can be implemented
modularly within the frameworks of existing simulation environments.

Keywords Co-simulation - Functional Mock-up Interface - Time

1 Introduction

Model-based design of cyber-physical systems (CPS) requires modeling tech-
niques that embrace both the cyber and the physical parts of a system [24]. There
is a long history of modeling languages and tools that integrate techniques that
were originally developed independently, and on different sides of the border that
separates the cyber and the physical. Modelica [20, 39], for example, integrates
object-oriented design (a cyber modeling technique) with differential-algebraic
equations (DAEs, a physical modeling technique). Languages and tools for hybrid
systems design [11] integrate finite state automata (cyber) with ordinary differen-
tial equations (ODEs, physical). Discrete-event (DE) modeling tools [12,18,29,49]
integrate a model of a time continuum (physical) with discrete, instantaneous
events (cyber). Such simulation tools are capable, in principle, of simulating both
cyber components (software and networks) and physical components (mechanical,
electrical, fluid flows, etc.).

In spite of the power and utility of existing tools, we should not be sanguine
about CPS modeling. All of the above integrations have pitfalls, limitations, and
corner cases where a model that can be easily handled in one tool cannot be
easily handled in another. Modelica-based tools, for example, have difficulty with
some discrete phenomena, even purely physical ones, forcing model builders to
sometimes model discrete behaviors as rapid continuous dynamics [41]. Conversely,
tools that handle discrete events well, such as DE tools, may have difficulty with
continuous dynamics [36], forcing model builders into brute-force methods such as
sampled-data models with high sampling frequencies.

One possible solution is to embrace the heterogeneity of tools and to provide
tool integration platforms and protocols that enable co-simulation using a multi-
plicity of tools [23]. There is a long history of tool integration platforms (sometimes
called “simulation backplanes”) for DE modeling and a well-established standard
called the High-Level Architecture (HLA) for tool interoperability [27]. A more
recent development is the Functional Mock-up Interface (FMI), a standard ini-
tiated by Daimler AG within the ITEA2 MODELISAR project [5,40], now main-
tained by the Modelica Association. It has been designed to enable the exchange or



Hybrid Co-simulation: It’s About Time 3

co-simulation of model components, Functional Mock-up Units (FMUs), designed
with different modeling tools. The standard consists of a C application program
interface (API) for simulation components and an XML schema for describing
components. Largely unspecified is the algorithm that coordinates the execution
of a collection of FMUs, the master algorithm (MA). The idea is that the stan-
dard should be flexible enough to accommodate the inevitable differences between
execution engines in different tools. FMI provides two distinct mechanisms for in-
teraction between an FMU and a host simulator: i) model exchange (FMI-ME),
where the host simulator is responsible for all numerical integration methods, and
ii) co-simulation (FMI-CS), where the FMU implements its own mechanisms for
advancing the values of state variables. FMI for co-simulation is more focused on
tool interoperability; the host simulator provides input values to the FMU, re-
quests that the FMU advance its state variables and output values in time, and
then queries for the updated output values.

The current standard for co-simulation (version 2.0 [38]), however, is unable
to correctly simulate many mixed discrete and continuous behaviors, limiting its
utility in current form for model-based design for CPS [8]. As a consequence,
the community-driven standardization process is considering another mechanism
called hybrid co-simulation that strives for the loose coupling of co-simulation,
but with support for discrete and discontinuous signals and instantaneous events.
The intent of this mechanism is to support hybrid systems [1,11,34,42,46], where
continuous dynamics are combined with discrete mode changes and discrete events.
Hybrid co-simulation promises better interoperability between models of the cyber
and the physical sides of the CPS problem.

In this article, we focus on a particular issue with hybrid co-simulation that
has proved central to the problem, namely the modeling of time. Time is a central
concept in reasoning about the physical world, but is largely abstracted away when
reasoning about the cyber world. As a result, the engineering methods that CPS
builds on have misaligned abstractions between the physics domain, the mathemat-
ical domain used to model physics, the computational domain used to implement
these mathematical abstractions for simulation, and the computational domain
used on the cyber side of CPS. The most egregious misaligned abstractions con-
cern time, where all four domains routinely use mutually incompatible models of
time.

The most common resolution for this conundrum is to adopt the naive New-
tonian ideal model of time, where time is a real number known everywhere and
advancing uniformly, and the real number is approximated in software as a floating-
point number. In this paper, we show that floating-point numbers are inadequate
for hybrid co-simulation. We describe instead a representation of time that elimi-
nates the problems associated with floating-point representations, allows for mul-
tiplicity of time resolutions, and allows for cyber abstractions where events can
occur discretely in time and in sequences without time advancing. For the latter
property, we adopt a form of superdense time [33,34] (see Section 2.2). Our
solution satisfies all of the requirements for hybrid co-simulation stated in [8].

Although the approach presented in this paper is general and could potentially
be applicable to many different hybrid co-simulation environments, we have chosen
to illustrate the concept concretely, by applying it to FMI and showing that only
modest extensions to the FMI standard are needed to follow our recommenda-
tions. Within this framework, we show how to perform hybrid co-simulation with
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heterogeneous time models and accommodate mixtures of components that may
internally represent time differently. Specifically, our solution supports hybrid co-
simulation of FMUs that use floating-point time together with integer-time FMUs,
even if those integer-time FMUs internally use a different resolutions.

In summary, we make the following contributions:

— We analyze and compare alternatives for representing time, including floating-
point numbers, rational numbers, and integers. We discuss superdense time and
the concepts of time resolution. We also propose a model of time that supports
a multiplicity of time resolutions, differing even within the same simulation,
supports discrete events with an exact notion of simultaneity, invulnerable to
quantization errors, and is efficiently converted to and from legacy floating-
point representations of time to accommodate legacy simulators within a co-
simulation environment. It also supports abstractions of time such as sequences
of events where time does not elapse, enabling better integration of cyber
models with physical ones (Section 2).

— We present a concrete proposal for a new FMI standard for hybrid co-simulation,
FMI-HC. The three main parts of the proposal are: i) the use of integer time,
ii) the capability of FMUs to negotiate the resolution of time, iii) the use of
absent signals for handling discrete events (Section 3).

— We describe how a master algorithm can use the FMI-HC extensions and sup-
ports co-simulation of components that operate at different time resolutions.
The algorithm finds a suitable global time resolution for the simulation based
on the FMUs’ preferences and is able to handle disparities between the time
resolutions of co-simulated FMUs. Our modular implementation using wrap-
pers demonstrates that it is easy to add support for hybrid co-simulation to
existing master algorithms (Section 3).

— We give a detailed analysis and a solution to the time conversion and quantiza-
tion problem, an unavoidable consequence when different components operate
at different time resolutions (Section 4).

And finally, our implementation of the proposed FMU wrappers, a simple method
to achieve compatibility with FMI-HC, is explained in detail in Appendix A.

1.1 A Motivating Example

Broman et al. in [8] give the model shown in Figure 1 as a “simplest possible”
nontrivial illustration of the challenges of hybrid co-simulation. This model in-
cludes a simplest-possible physical side, an Integrator integrating a constant and
the result being offset by a constant by an Adder. This model detects a zero cross-
ing of the offset output of an integrator, providing a simplest-possible nontrivial
interface from the physical side to the cyber side. This detector produces a dis-
crete event that is the processed by the simplest-possible cyber component, labeled
“Microstep Delay.” The output of this component then resets the Integrator, cre-
ating a simplest-possible closed-loop cyber-physical control system. In this model,
the cyber component is abstracted as instantaneous, and the ensuing potential
causality loop is averted by using superdense time, introducing an infinitesimal
delay that makes the model constructive (for subtleties surrounding such models,
see [30]). In this model, the resetting of the continuous output of the integrator
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is required to occur as a discrete, zero-duration discontinuity, but to ensure con-
sistent semantics for the physical models, all continuous-time signals are required
to be piecewise continuous, and continuous from both the left and the right at all
points of discontinuity. These requirements imply that some form of superdense
time is required.

Constant Integrator Zero-Crossing
Adder Detector
l; D /l der, Y
U FMU Constant2 FMU FMU
cl ’_f—’
FMU Microstep
Del.
¢ -0.001 =
FMU

Fig. 1 A zero-delay feedback model.

x10® Zero-Delay Feedback - Integer Time
1.0 I I
=
05
0.0 1 L
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Time [seconds] x107®

Fig. 2 Output of Integrator.

Figure 2 shows the output of the Integrator assuming the constant values 1 and
-0.001 shown in Figure 1. An essential feature of this output is that discontinuities
occur at precise times, that they take zero time to transition, and that between
the discontinuities, signals are continuous.

Our goal in this paper is to provide a model of time for the interactions between
these components that is semantically well-defined and exact. If the interactions
between the components are well defined, then the components themselves can be
made much more complex, with predictable results. The Integrator FMU could be
replaced with a sophisticated ordinary differential equation (ODE) solver with a
much more complicated internal model, the Adder could be replaced with some
continuous-time simulation engine, the Zero-Crossing Detector could be replaced
with more elaborate discrete-event processing, and the Microstep Delay could be
replaced with some software engineering model of the control strategies.

1.2 Related Work
This paper follows the line of research on FMI initiated in [7], where the FMI

standard was formalized, and two co-simulation algorithms were proposed and
proven to be determinate. In that same paper, small extensions to the standard
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were proposed with the goal of enhancing the standard’s ability to handle mixed
discrete and continuous behaviors. Some of these extensions are reminiscent of
functions included in the actor interface in the modular formal semantics of the
Ptolemy tool [48]. For instance, the “getMaxStepSize” function of [7] is similar to
the D (“deadline”) function of [48].

Followup work includes [8], which proposes a collection of test cases together
with acceptance criteria that can be used to determine whether a hybrid co-
simulation technique is acceptable. Tripakis in [47] investigates techniques to
bridge the semantic gap between various formalisms (state machines, discrete-
event models, dataflow, etc.) and FMI. Cremona et al. in [14] propose a new mas-
ter algorithm that uses step size refinement to enable state event detection with
FMI. An implementation of the FMI extensions on top of Ptolemy II is described
n [15]. This implementation has been used in [6] to connect via co-simulation the
model-checkers Uppaal [28] and SpaceEx [19]. Several authors have also described
approaches to implement FMI master algorithms [2,45], and ways to implement
FMUs in the currently available FMI standard [17,43], without considering the
time aspects for hybrid co-simulation.

The topics addressed in this paper are relevant to modeling of hybrid and
cyber-physical systems at large, but we choose to present our ideas on the basis of a
concrete framework, namely the FMI standard. They could equally well be applied
to other frameworks, such as HLA. Several papers exist in the literature that
address the problem of formal modeling of cyber-physical systems, in particular,
using hybrid automata with an emphasis on verification [1,22,26,46]. The focus
of this paper, however, is not formal verification, but rather (co-)simulation, with
an emphasis on the practicalities, and in particular the representation of time.

The list of modeling languages and tools for CPS and hybrid systems design
is long, and beyond the scope of this paper to cover exhaustively. A survey dat-
ing from 2006 can be found in [11], and a description of the mapping between
formalisms, languages, and tools can be found in [9]. There have been numerous
developments in the field, including many others, e.g., [3,4,10,50,51].

A side benefit of our proposal in this paper is that it potentially enables co-
simulation between classical ODE simulators and a relatively newer way of model-
ing continuous dynamics called “quantized-state systems” (QSS) [25]. QSS simula-
tors model continuous dynamics using discrete events, and sometimes the resulting
simulations are more accurate (because of the use of symbolic computation) and
more efficient than classical ODE solvers [31]. Since our proposed technique facili-
tates interoperability between continuous-time solvers and discrete-event systems,
and QSS is based on discrete-event systems, it potentially enables interesting hy-
brid simulation techniques, where QSS can be used where it is most beneficial.

2 Representing Time

A major challenge in the design of cyber-physical systems is that time is almost
completely absent from models used on the cyber side, while time is central on
the physical side. In order for hybrid simulators to interact in predictable and
controllable ways, we will need a semantic notion of time that can be used to
model both continuous physical dynamics and discrete events. It is naive to assume
that we can just use the Newtonian ideal, where time is absolute, a real number ¢,
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visible everywhere, and advancing uniformly. We begin in this section by reviewing
a set of requirements that any useful model of time must satisfy. We then elaborate
with an analysis of practical, realizable alternatives that meet these requirements,
at least partially.

2.1 Models of Time

Like the Newtonian ideal, any useful semantic notion of time has to provide a
clear ordering of events. Specifically, each component in a system must be able to
distinguish past, present, and future. The state of a component at a “present” is a
summary of the past, and it contains everything the component needs to react to
further stimulus in the future. A component changes state as time advances, and
every observer of this component should see state changes in the same order.

We also require a semantic notion of time to respect an intuitive notion of
causality. If one event A causes another B, then every observer should see A ordered
before B.

In order to cleanly support discrete events, we also require a semantic notion
of simultaneity. Under such a notion, two events are simultaneous if all observers
see them occurring at the same time. We need to avoid models where one observer
deems two events to be simultaneous and another does not.

We could easily now digress into philosophy or modern physics. For example,
how could a notion of simultaneity be justifiable, given relativity and the uncer-
tainty principles of quantum mechanics? We resist the temptation to digress, and
appeal instead to practicality. We need models that are useful for co-simulation.
The goal is be able to design and build better simulators, not to unlock the secrets
of the universe. Even after the development of relativity and quantum mechanics,
Newtonian ideal time is a practical choice for studying many macroscopic systems.

But ironically, Newtonian time proves not so practical for hybrid co-simulation.
The most obvious reason is that digital computers do not work with real num-
bers. Computer programs typically approximate real numbers using floating-point
numbers, which can create problems. While real numbers have infinite precision,
their floating-point representation does not. This discrepancy leads to quantiza-
tion errors. Quantization errors may accumulate. Although real numbers can be
compared for equality (e.g. to define “simultaneity”), it rarely makes sense to do
so for floating-point numbers. In fact, some software bug finders, such as Coverity,
report equality tests of floating-point numbers as potential bugs.

Consider a model where two components produce periodic events with the
same period starting at the same time. The modeling paradigm should assure that
those events will appear simultaneously to any other component that observes
them. Without such a notion of simultaneity, the order of these events will be
arbitrary, and changing the order of discrete events can have a much bigger effect
than perturbing their timing, and a much bigger effect than perturbing samples of
a continuous signals. Periods that are simple multiples of one another should also
yield simultaneous events. Quantization errors should not be permitted to weaken
this property.

Broman et al. [8] list three requirements for a model of time:

1. The precision with which time is represented is finite and should be
the same for all observers in a model. Infinite precision (as provided by
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real numbers) is not practically realizable in computers, and if precision
differs between observers, then they will not agree on which events are
simultaneous.

2. The precision with which time is represented should be independent of
the absolute magnitude of the time. In other words, the time origin (the
choice for the meaning of time zero) should not affect the precision.

3. Addition of time should be associative. That is, for any three time in-
tervals t1, to, and t3,

(t1 +t2) +ta =t1 + (t2 + t3).

In contrast to the above quote from Broman et al. [8], and to avoid confusion with
the term precision in measurement theory, henceforth we will in this article use
the term resolution instead of precision to denote the grain at which we can tell
apart two distinct time stamps.

Definition 1 (Time resolution) Time resolution is the smallest representable
time difference between two time stamps.

For instance, if we state that “a model has a time resolution of one millisecond,”
or for short, “the time resolution is milliseconds,” it means that the time points
0.001s, 0.002s, 0.003s, ... are representable, but the time points in between are
not. No values can be defined at unrepresentable time points.

Note that properties 2 and 3 are not satisfied by floating-point numbers due to
rounding errors [21]. For instance, consider the following C code that adds double
precision floating-point numbers.

double r = 0.8;
double k = 0.7;
k =k + 0.1;

printf ("%f,%f,%d\n" ,r, k,r==k) ;

The output of this program is 0.800000,0.800000,0. Both r and k appear to have
value 0.800000, but due to rounding errors, the test for equality r==k evaluates to
false, which is represented as a 0-value integer in C. Hence, floating-point numbers
should not be used as the primary representation for time if there is to be a
clean notion of simultaneity. Unfortunately, in FMI 2.0 and many other simulation
frameworks, it is exactly the representation that is used. This is problematic.

2.2 Superdense Time

A model of time that is particularly useful for hybrid co-simulation is superdense
time [13,33,34,35]. Superdense time is supported by FMI-ME, but not by FMI-CS.
Fundamentally, superdense time allows two distinct ordered events to occur in the
same signal without time elapsing between them.

A superdense time value can be represented as a pair (¢,n), called a time
stamp, where ¢ is the model time and n is a microstep (also called an index).
The model time represents the time at which some event occurs, and the microstep
represents the sequencing of events that occur at the same model time. Two time
stamps (t,n1) and (¢,n2) can be interpreted as being simultaneous (in a weak
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sense) even if ni # na. A stronger notion of simultaneity would require the time
stamps to be equal (both in model time and microstep).

Superdense time is ordered lexicographically (like a dictionary), which means
that (t1,m1) < (t2,n2) if either ¢1 < t2, or ¢1 = t2 and n1 < ng. Thus, an event is
considered to occur before another if its model time is less or, if the model times
are the same, if its microstep is lower.

An event is value with a time stamp. Time stamps are a particular realiza-
tion of tags in the tagged-signal model of [32]. They provide a semantic ordering
relationship between events that can be used in software simulations of physical
phenomena and also in the programming logic on the cyber side of a cyber-physical
system. But computers cannot perfectly represent real numbers, so a time stamp
of form (¢,n) € R x N is not realizable in software. Many software systems approx-
imate a time ¢ using a double precision floating-point number. But as we noted
above, this is not a good choice. We examine alternatives below.

The microstep can also be problematic for software, because in theory, it has no
bound. But computers can represent unbounded integers (assuming that memory
is unbounded), although the implementation cost of doing so may be high, and
the benefit may not justify the cost. The microstep, therefore, should either be
represented using a bounded integer (such as a 32-bit integer), or not represented
at all. With some care in simulator design, it may be possible to never construct
an explicit representation of the microstep, and instead rely only on well-defined
ordering of time stamped values. Microsteps can implicitly begin at zero and in-
crement until a signal stabilizes. This is the approach used in FMI-ME, where
there is no explicit microstep, and yet, superdense time is supported. By contrast,
in FMI-CS version 2.0, microsteps are explicitly disallowed [40].

2.3 Integer Time

Given that floating-point numbers are a problematic representation of time, what
should we use? An obvious alternative is integers. We postulate that a hybrid
co-simulation extension must use integer numbers in some way to represent the
progress of time for coordinating FMUs. But how, exactly? And at what cost?

Integers are typically represented in a computer using a fixed number of bits.
E.g., a C int32_t is a 32-bit, two’s-complement integer. A uint32_t in C is a 32-bit
unsigned integer. Note that the integer values can be interpreted as representing a
time value with some arbitrary units. For example, we might interpret an integer
value as having units of microseconds, in which case a value 100, for example,
represents 0.0001 seconds.

Integers can be added and subtracted without quantization errors, a key prop-
erty enabling a clean semantic notion of simultaneity. For example, suppose that
one discrete-event signal has regularly spaced events with a period of p; = 3, and
another has regularly spaced events with a period of pa = 1, both beginning at
time 0. The times of the events in the first signal are 0, p1,p1 +p1,p1 +p1 +p1, ",
and the times of the events in the second signal are 0, p2, p2 + p2,p2 +p2 +p2, - -.
Then no matter how these additions are performed, every third event in the second
signal will be simultaneous with an event in the first signal.

Again, we have no such assurance with floating-point numbers. For example,
suppose that we are using the IEEE 754 double precision floating-point standard,
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and we let p; = 0.000003 (3 microseconds). If we add p; to itself 12 times, per-
forming (--- ((p1 +p1) +p1)+p1---), then the result is 0.000003599999999999999.
On the other hand, if we let ¢ = ((p1 + p1) + p1), then (((¢ + ¢) + ¢) + ¢) yields
0.0000036. The results are not equal.

If signals are continuous, then such small differences in time have very little
effect on system behavior. But if signals are discrete, then any difference in time
can change the order in which events occur, and the potential effects on system
behavior are not bounded.

One possible solution is to explicitly use an error tolerance when comparing two
floating-point numbers. For example, suppose we assume an error tolerance of 100
nanoseconds. That is, we consider two times to be simultaneous if their difference
is less than 100 nanoseconds. Then the above two times are simultaneous. But now
consider three times, t; = 0.0000036, t2 = 0.00000367, and t3 = 0.00000374. Then
t1 is simultaneous with 2, and t2 is simultaneous with ¢3, but ¢; is not simultaneous
with ¢3. Surely we would want simultaneity to be a transitive property!

An alternative to floating-point numbers is rational numbers. A time value
could be given by two unsigned integers, a numerator and denominator. Addition
of two such numbers will require first finding the least common multiple M of the
denominators, then scaling all four numbers so that the two denominators equal M.
Then the numerators can be added, and the denominator of the result will be M.
However, this makes addition a relatively expensive operation, unless measures
are taken to ensure that denominators are equal. Such measures, however, are
equivalent to reaching agreement across a model on a time resolution, so we believe
that a simpler solution uses an integer representation of time with an agreed
resolution. It is also much more difficult to determine when overflow will occur
with rational numbers. For example, if denominators are represented using 32-
bit unsigned integers, and two times with denominators 100,000 and 100,001 are
added, will overflow occur?

Suppose we adopt an integer representation of time. What units should we
choose? We could start by considering existing integer representations of time.
For example, VHDL, a widely used hardware simulation language, uses integer
time with units of femtoseconds. Another example is the Network Time Protocol
(NTP) [37], a widely used clock synchronization protocol that sets the current time
of day on most computers today. NTP represents time using two 32 bit integers, one
counting seconds, one counting fractions of a second (with units of 273 seconds).
This can be treated as an ordinary 64-bit integer with units of 2732 seconds (about
0.23 nanoseconds). IEEE 1588 [16], a more recent clock synchronization protocol,
is designed to deliver higher precision clock synchronization on local area networks.
A time value in IEEE 1588 is represented using two integers, a 32-bit integer that
counts nanoseconds, and a 48-bit integer that counts seconds.

NTP and IEEE 1588 are designed to coordinate notions of time across a net-
work. All participants in such a network agree to a time resolution (based on a
resolution of 273? seconds for NTP, 1 nanosecond for 1588). The first requirement
in Broman et al. [8] stipulates simply that the time resolution should be the same
for all observers in a model. It need not be the same across models. In fact, sim-
ulation models tend to have very different time scales; high-speed circuits require
femtoseconds while astronomy may only require years. Co-simulation involves the
coupling of independent models that are coordinated in a black-box manner, each
of which can operate at a different time resolution. From the perspective of the
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master that coordinates the exchange of data between components, however, all
components must be understood to progress in increments that are multiples of
the time resolution used by the master.

In Ptolemy II [44], the time resolution is a single global property of a simula-
tion model, shared by all components. The resolution is given as a floating-point
number, but the time itself is given as an integer, representing a multiple of that
resolution. All arithmetic is done on the integer representation, and the unit is
only used when rendering the resulting times for human observation. E.g., if the
resolution is given by the floating-point number 1E-10, which in units of seconds
denotes 0.1 nanoseconds, then the integer 10,000,000 will be presented to the user
as 0.001 seconds.

Integers are, of course, vulnerable to overflow. Adding two integers can result
in an integer that is no longer representable in the same bit format. Subtracting
two unsigned integers can result in a negative number, which is not representable
using an unsigned integer.

Whether and when an overflow occurs depends on the resolution, but also on
the origin (what time is zero time). NTP and IEEE 1588 both set time relative
to a fixed zero time, which in the case of NTP is Oh January 1, 1900, and in the
case of 1588 is Oh January 1, 1970, TAI (International Atomic Time). Sometime
in the year 2036, 232 seconds will have elapsed since January 1, 1970, and all
NTP clocks will overflow. IEEE 1588 uses 48 bits, so the first overflow will not
occur for approximately 9.1 million years. If we define the time origin to be, say,
the start time of a simulation, then the NTP representation will be able to sim-
ulate approximated 62 years before its representation of time overflows. A VHDL
simulator using a 64 bit integer representation of time with units of femtosec-
onds can simulate approximately 2.56 hours of operation before overflow occurs,
so clearly choosing the origin to be January 1, 1900 would not be reasonable. In
Ptolemy II, overflow cannot occur, because the integer representation of time uses
an unbounded data structure to represent an arbitrarily large integer.! And the
resolution is a parameter of the model, so Ptolemy II simulations can handle high
speed circuits as well as astronomical simulations.

In computers, addition and subtraction of integers is extremely efficient. In
the IEEE 1588 representation, however, the two numbers cannot be conjoined
into a single number, and arithmetic on the numbers must account for carried
digits from the nanoseconds representation (32 bits) to the seconds representation
(48 bits). Since computers do not have hardware support for such arithmetic,
such a representation will be more computationally expensive to support. Adding
two IEEE 1588 times takes quite a few steps in software. For the Ptolemy II
unbounded integers, addition and subtraction are also potentially more expensive
than addition on ordinary 32 or 64-bit integers, but the cost is not as high as for
IEEE 1588 because overflow is more easily detected in the hardware.

In modern computers, addition and subtraction of 32 and 64-bit integers is at
least as fast as addition and subtraction of floating-point numbers, and it requires
significantly less energy. Multiplication, however, is a more complicated story. The
problem with multiplication of integers lies in the units. Consider two integers with

1 Strictly speaking, overflow can occur in the sense that the machine may run out of memory
to represent the integer times. But this would occur at such absurdly large times, beyond the
age of the universe with any imaginable resolution, that it is simply not worth worrying about.
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units of microseconds. If we multiply the two times, the units of the result will be
microseconds squared. First, this is not a time, and hence there is no reason to
insist that this result be represented the same way times are represented. Second,
whether the result is representable in a 32 or 64-bit integer will depend on the
origin and resolution of the times.

Multiplication of two times, however, is a relatively rare operation. A more
common operation is multiplication of a time by a unitless scalar. For the example
above, instead of adding p; to itself 12 times, we might have multiplied 12 * p;.
As long as there is no overflow, such multiplication will typically be performed
without quantization error and reasonably efficiently in a computer. However, not
all processors have hardware support for integer division. And multiplication by a
non-integer, as in 0.1 * p;, will yield a floating-point representation of the result,
not an integer representation. Hence, it will be vulnerable to quantization errors.

We claim that for the purposes of coordinating FMUs, addition, subtraction,
and multiplication by integers are mostly sufficient, and hence an integer represen-
tation of time can be very efficient. Within an FMU, however, there may be more
complex operations involving time, and the FMU may include legacy software or
ODE solvers that use floating-point representations of time. Such FMUs will suffer
a (hopefully small) cost of conversion of time values at the interface. Presumably,
since such FMUs already tolerate quantization errors inherent in a floating-point
representation, any errors that are introduced in the conversion process will also be
tolerated. For example, such FMUs should never compare two times for equality,
because if they are using a floating-point representation of time, such a comparison
is meaningless. They should also not have behavior that depends strongly on the
relative ordering of two time values.

We choose to represent time with a 64-bit unsigned integer with arbitrary
resolution, where the resolution is a parameter of the model, and origin equal to
the simulation start time. It is computationally efficient on modern machines. And
for well-chosen resolutions, will tolerate very long simulations without overflow. It
is also easily converted to and from floating-point representations (with losses, of
course). Also, given the enormous range of time scales that might be encountered
in different simulation models, choosing a fixed universal resolution that applies to
all models probably does not make sense. We believe further that all the acceptance
criteria of [8] can be met without an explicit representation of the microstep.

2.4 The Choice of Resolution

The only remaining issue is how to choose the resolution. There are two questions
here. First, what data type should be used to represent the resolution? Second,
should an FMU be able to constrain the selected resolution?

The latter question seems relatively easier to answer. In hybrid co-simulation,
an FMU may encapsulate considerable expertise about a system that it models,
and the FMU’s model may only be valid over a range of time scales. It seems
reasonable, therefore, that an FMU should be able to insist on a resolution. On
the other hand, to be composable with other FMUs, the FMU should be capable
of adapting to a finer resolution than the one it requests. If two FMUs provide
different resolutions, or if their resolution differ from the default resolution of the
simulation, then how should the differences be reconciled?
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We see two possibilities:

(i) The selected resolution for the model is the finest of all specified resolutions.
(ii) The selected resolution for the model is the greatest common divisor (GCD)
of all specified resolutions.

Whether the second option is even possible depends on the data type used for
the resolution. Here, we see several possibilities:

(a) double. In Ptolemy II, all components share a single double precision floating-
point number, the unit, which specifies the resolution of the model. All times-
tamps are interpreted as an integer multiple of this value.

(b) rational. Alternatively, resolution can be specified given as a pair of integers,
a numerator and a denominator. In this case, it is always possible in theory to
find a GCD, although there is risk of overflow if the numerator and denominator
are represented with a bounded number of bits. In addition, conversion to and
from a floating-point representation, which is often needed internally by an
FMU, may be costly.

(¢) decimal. Finally, the resolution can also be specified using integer exponent n
that stipulates a resolution of 10™ seconds. For instance, IEEE 1588 resolution
is achieved with n = —9, VHDL resolution is achieved with n = —12. Using a
decimal resolution, the finest resolution is always the same as the GCD and is
always precise.

Defining resolution as a power of ten has the very nice feature that any parameter
that is specified using a decimal representation, such as 0.3332, is exactly rep-
resentable, with no quantization error, as long as the resolution is sufficient, for
example n = —4 for 0.3332. In contrast, when such a decimal number is converted
to a binary floating-point representation, errors may be introduced. Since it is
extremely common to give parameter values in decimal, this advantage cannot be
ignored.

Also, since parameters are often related to one another, the ability to, for exam-
ple, calculate the difference between two parameter values without quantization
error can be important. For instance, if a component specifies using parameter
values that it produces events at times ¢1 and t2, given in decimal, then the time
interval to — t1 can be calculated without error.

If parameter values are not given in decimal, for example “1/3,” then decimal
resolution is not sufficient to avoid quantization errors. Such errors can be avoided
by selecting rational resolution instead. A rational resolution has the advantage
that if an FMU internally performs computation according to its specified reso-
lution, then simultaneity of any events it generates compared to events generated
by other similar FMUs is well defined. The simultaneity of such events will not be
subject to quantization errors. However, this choice comes at a possibly consider-
able cost in converting time values to and from floating-point numbers. And, as
we have noted, this choice has a more complicated overflow risk.

For these reasons, we prefer option (c), which also implies option (i). An FMU
can stipulate a minimum required resolution and be guaranteed that resolution or
a resolution that divides its resolution by some power of ten:

r=10" (1)
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However, not every FMU may be prepared to adapt to a finer resolution than
the preferred resolution it declares. For instance, an FMU may generate events
exclusively at time instants that are multiples of its declared time resolution. For
such an FMU there is no reason to adopt a finer resolution than the one it specifies;
it would merely complicate the design of the FMU. For that reason, we believe
that this capability should not be mandatory, rather it should be optional. In the
next section, we describe an architecture that accommodates such flexibility.

3 Hybrid Co-simulation with Integer Time

In order to examine the effects of using integer time in hybrid co-simulation we need
a practical framework for our analysis. Instead of defining our own, we leverage
the existing FMI-CS 2.0 standard, and extend it to use integer time. In addition,
in order to support discrete events, we enrich the interface to encode the absence
of an event and allow FMUs to react instantaneously, i.e., without moving forward
in time. We call this framework FMI-HC (FMI for Hybrid Co-simulation).

3.1 Extensions to the FMI standard

As a consequence of using integer time, the FMUs and MA need to agree on a
resolution before the simulation starts. Two new functions are introduced for this:
getPreferredResolution and setResolution. In addition, we introduce a hybrid
step function doStepHybrid that uses integer time instead of doubles, a function
getMaxStepSizeHybrid that returns the maximal allowed communication step size,
and the functions getHybrid and setHybrid that in addition to the exchange of
regular signal values can also communicate “absent,” to indicate that there is no
value present at the corresponding time instant.

3.1.1 Advancing Time

In FMI, simulation is driven by a master that keeps time and instructs FMUs
to advance their time in increments called “steps.” Once all participating FMUs
have advanced their time by some delta, an iteration has finished. In each iteration,
FMUs exchange data, the master proposes a new step, and so forth. The specifics
of this sequence are encoded in a master algorithm. Only the interface of the FMU
is standardized. FMUs are prescribed to advance time through calls to the function
doStep. In the FMI-CS 2.0 standard, this function has the following signature:

fmi2Status fmi2DoStep(
fmi2Component c,
fmi2Real currentCommunicationPoint,
fmi2Real communicationStepSize,
fmi2Boolean noSetFMUStatePriorToCurrentPoint) ;

The first parameter points to a particular FMU. The second parameter states
the current time, using a double-precision floating-point value (named fmi2Real
in the standard). The third parameter states the communication step size, which
is the time interval over which the master requests the FMU to advance. Finally,
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the fourth parameter provides information as to whether any rollbacks can occur,
which allows the FMU to abandon any kept state if this parameter is true.

Clearly, this function is not suitable for communicating an integer step size
to the FMU. For backward compatibility, we preserve the original fmi2doStep
function and add a new function that is used to advance hybrid co-simulation
FMUs using integer time steps?:

fmi2Status doStepHybrid(
fmi2Component c,
fmiXIntegerTime currentCommunicationPoint,
fmiXIntegerTime communicationStepSize,
fmi2Boolean noSetFMUStatePriorToCurrentPoint),
fmiXIntegerTime* performedStepSize) ;

Instead of using fmi2Real data type, we use the type definition fmiXIntegerTime, a
64-bit unsigned integer type. The additional parameter performedStepSize is used
for communicating back to the master the size of the performed step, which could
be smaller than the requested step, communicationStepSize. If the performed step
size is equal to the requested step, then the FMU has accepted the requested step.
If the performed step is smaller than the requested step, then the FMU has rejected
the requested step, but nevertheless advanced to time currentCommunicationPoint
+ performedStepSize.

As observed by Broman et al. [7], adding a function fmiGetMaxStepSize makes
it possible for an FMU to state a predictable step size. Such function with integer
time can be defined to have the following signature:

fmi2Status getMaxStepSizeHybrid(
fmi2Component c,
fmiXIntegerTime* maxStepSize);

This function returns an upper bound of the step size that the FMU will accept
on the next invocation of doStepHybrid. The master algorithm should query this
function before calling doStepHybrid.

3.1.2 Negotiating the Resolution of Time

In the previous section, we explained that FMUs may be designed to preferably
(or exclusively) operate at some specific time scale. To accommodate this, an FMU
must be able to inform the master of its preferred resolution, which can be done
by extending FMI for hybrid co-simulation with:

fmi2Status getPreferredResolution(
fmi2Component c,
fmiXTimeResolutionExponent* n);

2 Our proposed extension does not target a specific version of FMI. For this reason (and
for brevity), we have removed the prefix “fmi2” from all newly proposed functions. Newly
introduced datatypes honor the naming convention but have the FMI version number replaced
by a wildcard, “X.”
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The preferred resolution is returned as an integer using the second parameter. As
described in the previous section, the resolution represents an integer n, that
stipulates a resolution of 10" seconds.

Although it is important that an FMU can express its preferred resolution, we
will also show the need for the master to explicitly state that the FMU should use
a specific resolution. We define the following function to enforce this behavior:

fmi2Status setResolution(
fmi2Component c,
fmiXTimeResolutionExponent n) ;

8.1.8 Discrete Fvents

The aforementioned functions are introduced to offer support for integer time.
In order to support discrete signals, an FMU must be able to output or take in
discrete events, which are present only for a duration of zero time (one microstep
in superdense time) and absent otherwise.

The FMI standard defines two kinds of functions for setting and getting input
and output signal values: fmi2SetXXX and fmi2GetXXX. There are different functions
for different variable types. The substring XXX is a placeholder for the type3. For
instance, fmiSetReal is the function that is used to set input signal values of type
fmi2Real, which is implemented using double-precision floating-point numbers.

In the FMI-CS 2.0 standard, values exchanged between FMUs are always
present. This means that the current co-simulation standard does not yet have
the support for discrete events. To make it possible to express discrete events,
FMI needs to have functions for setting and getting values, where the values can
be stated to be either present or absent. By extending the current standard get
and set functions, we obtain the following signatures:

fmiStatus setHybrid (

fmi2Component c,

const fmi2ValueReference vr[],
size_t nvr,
const fmi2XXX value(],

const fmi2SignalStatus flagl[l);

fmiStatus getHybrid(
fmi2Component c,
const fmi2ValueReference vrl[],

size_t nvr,
fmi2XXX value[],
fmiXSignalStatus flagll);

The first argument points to the FMU to set values for or get values from. The
second argument, vr, is an array of identifiers that refer to specific variables.
Furthermore, nvr is the size of that array, and the array value (also of length nvr)
specifies the values that should be set or gotten. The iy, element from value is

3 For simplicity, we omit this implementation detail from the remainder of the discussion
and refer to these functions without the “XXX” wildcard suffix.
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Fig. 3 A taxonomy for different categories of hybrid co-simulation FMUs.

assigned to or read from the i, variable declared in vr. These function arguments
are the same as in the original fmi2Get and fmi2Set functions in the FMI-CS 2.0
standard. The “hybrid” get and set functions introduce an additional argument,
fmiXSignalStatus, which is defined as:

typedef enum {present, absent} fmiXSignalStatus;

If flag[i] == present, the signal is considered to be present and the value of the
variable vr[i] is value[i]. In case flag[i] == absent, the signal is not present
and the value[i] of variable vr[i] should be ignored. Note that there are many
alternative ways of extending the standard with capabilities of expressing absent
and present signals. For instance, instead of creating new get and set functions,
separate functions can be used for indicating if a signal is present or absent. How-
ever, these implementation details are outside the scope of this paper and would
be a decision for the FMI steering committee.

3.2 Categories of FMUs in FMI-HC

Hybrid co-simulation should be able to work with “legacy” FMUs that do not
implement any of the FMI-HC extensions. Moreover, to make it easy to write
FMI-HC FMUs, we do not wish to require that every FMU implement every
extension. We can divide FMUs into different categories based on the extensions
they implement. It is useful to organize FMUs in a taxonomy based on this criterion
because different category FMUs require different handling by the master. We use
the taxonomy presented in Figure 3 throughout the remainder of the paper to
identify and refer to FMUs in terms of their category.
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— Category 0: An FMU in this category internally uses floating-point numbers
to represent time (see the top of Figure 3). This category can be further refined
into two sub categories. Category 04 denotes an FMU that is compatible with
existing FMI 2.0 co-simulation FMUs. Such FMUs are not suitable for hybrid
co-simulation because the standard disallows zero step-sizes and insists on al-
ways calling doStep (advance time) in between set (providing inputs) and get
(retrieving outputs). The former rules out the use of superdense time while
the latter prohibits the handling of direct feedthrough loops. Therefore, we do
not further discuss category 04 FMUs in this paper. In contrast, Category Op
follows the assumptions in [7], which allows a zero step size and getting and
setting values (multiple times) without having to advance time.

— Category 1: This is the first out of four possible categories of FMUs that use
integers to represent time. Note that categories 1 — 4 represent the exhaus-
tive combinations of getPreferredResolution and setResolution. In category
1, neither of these functions is supported. The operation of an FMU in this
category is time invariant; it does not use time to determine its outputs or
state updates. Such a component can implement, for example, a time-invariant
memoryless function such as addition.

— Category 2: In category 2, function getPreferredResolution is supported,
but setResolution is not. This means that the FMU states which resolution it
will use, but does not allow the master to change its resolution. That is, the
resolution is actually required, not just preferred. A composition of multiple
category 2 FMUs may result in a heterogeneous model with respect to the
resolution of time. Category 2 FMUs are natural to use in cases where the
FMU should output data at periodic time internals, e.g., periodic samplers or
signal generators. Tools that have a fixed time resolution, such as Rhapsody
from IBM or VHDL programs, would produce FMUs of this category.

— Category 3: FMUs in this category support setResolution, but do not sup-
port getPreferredResolution. This means that the FMU is using the integer
notation of time (in contrast to category 1), but any resolution is acceptable.
For instance, a zero-crossing detector would fall into to this category.

— Category 4: An FMU in this category supports both getPreferredResolution
and setResolution. This means that the FMU may first communicate to the
master the resolution that it prefers, and be followed by the master telling the
FMU what resolution it should use. An ODE solver FMU would belong to this
category.

3.3 Modular Support for FMI-HC

Technically, an FMU developer can choose whether or not to support functions like
getPreferredResolution or setResolution and notify the master of the functions
it supports through so-called capability flags in the FMU’s accompanying XML-
file, as prescribed by the FMI standard. With this approach, the master algorithm
must accommodate the use of all the different categories of FMUs in Figure 3.

Figure 4 depicts an architectural view of how an FMI simulation tool can
interact with different category FMUs modularly, without drastic changes to its
simulation engine.
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Fig. 4 A generic architecture for supporting hybrid co-simulation using wrappers. The left side
of the figure shows an (arbitrary) internal interface between the wrappers and the simulation
tool, the right part shows the new FMI-HC extensions used by the wrappers.

In the left part of the figure, the dashed line represent an FMI simulation tool
that takes a set of connected FMUs as input and produces a simulation result as
output. The basic idea is to separate the concerns of the master algorithm from
the logic that handles the translation between different resolutions for different
categories of FMUs. This logic is instead encoded into wrappers, that is, software
components that translate function calls from the master algorithm to the FMUs.
Both the implementation of the master algorithm component and the wrapper
components are internal to a specific tool implementation. The design discussed
in this article does not assume any specific implementation language. Hence, the
wrapper interface functions (with prefix “_”) are arbitrary; tool vendors can choose
the specifics of their wrapper interface as they see fit and are not tied to a specific
programming language for the implementation of their execution engine.

The right part of the figure depicts all different categories of FMUs along with
the particular FMI-HC extensions they implement. The wrapper treats the FMU
as a black box and performs the conversion between the model of time used by the
master and the model of time used by the FMU. This can either be a conversion
between integer time resolutions (for a category 2 FMU) or a conversion between
integer and floating-point time (for a category 0 FMU).

3.4 An Implementation of FMI-HC

The interface extensions described in this paper can be used by making relatively
small adaptations to existing master algorithms. In a nutshell, it requires adopting
our integer-based representation time, using specific wrappers for FMUs based on
their category, and letting the master negotiate a time resolution as part of its
initialization procedure.
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Fig. 5 Schematic description of a variant of the deterministic master algorithm by Broman
et al. [7], extended to accommodate integer time. The figure and implementation are based on
Cremona et al. [15].

In the following, we outline how to make these adjustments based on our
own reference implementation called FIDE [15], an FMI Integrated Development
Environment. FIDE implements a master algorithm based on the work of Broman
et al. [7]. It is capable of deterministically simulating mixtures of continuous-time
and discrete-event dynamics, has a superdense model of time [33,34], and features
extended data types to support an explicit notion of absent. Superdense time is
modeled by allowing the master to take zero-size steps, allowing the simulation to
iterate over a number of lexicographically ordered indexes before it advances to the
next Newtonian time instant. The absence of events in signals is enabled through
the FMI-HC functions getHybrid and setHybrid described in Section 3.1.3.

Figure 5 provides a schematic description of the MA implemented in FIDE.
Any tool that supports FMI will feature an execution engine much like the one
in FIDE. The simulation tool reads a model description that describes how a
set of FMUs is connected. It loads each FMU by reading the FMI XML-file and
dynamically linking the required C libraries as it normally would. However, in
order to accommodate FMI-HC, each FMU is now identified by category and a
matching wrapper object is instantiated for every FMU. The wrapper is specifically
designed to interface with FMUs of a particular category. Since all wrappers are
using the same interface (all are using integer time), the logic of the execution
engine is not complicated by the different ways that FMUs may interpret time:
all the necessary conversions are performed by the wrappers. For instance, if a
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category Op FMU is used, the wrapper is handling the correct conversion between
integer time and floating-point time.

During initialization, the master calls the function _determineResolution()
that determines the time resolution for the simulation. This function iterates
over all the wrappers and queries them for the time resolution exponent using
_getPreferredResolution. The time resolution exponent of the simulation is com-
puted as the minimum among a default value and the resolution exponents ob-
tained from all the FMUs that partake in the simulation. The chosen resolution
exponent is then communicated to the wrappers using _setResolution. The wrap-
pers will eventually use it to convert the integer time stamps used by the master
to whichever model of time is used internally by the wrapped FMU, if necessary.

FIDE must keep track of the global time of the master and the current step
size using integers. Hence, it cannot used the fmi2Real data type that is prescribed
by FMI-CS 2.0 for this purpose. We use a new data type, fmiXIntegerTime, in-
stead. Finally, all direct calls from the master to the FMU functions fmi2DoStep,
getMaxStepSize, get, and set have to be removed and replaced by function calls
to the corresponding intermediate functions provided by the wrappers.

4 Time Conversion and Quantization

Using integers for representing time does not completely remove time quantization
errors: an FMU may still use a floating-point number internally for time keeping. In
such case, conversion from the floating-point representation of the time kept inside
of the FMU to the integer time used by the master comes with a loss of precision.
Specifically, the effects of time quantization come into play when a category Op
FMU rejects a proposed step size and makes partial progress over an interval of
which the length (a floating-point number) cannot be losslessly converted into
a corresponding fixed-resolution integer time for the master to interpret. Similar
problems arise when there is a mismatch in time resolution between the master and
a category 2 FMU. Quantization errors also result when a higher-resolution integer
time is converted to a lower-resolution integer time. For instance, the master may
instruct a category 2 FMU to take a step that is too small to represent with the
resolution that the FMU uses internally.

The key insight here is that in co-simulation participants are treated as a black
box; each component has its own isolated understanding of time that is based on
the characteristics of its local clock. Each level of hierarchy in a co-simulation
gives rise to a different clock domain in which the passing of time may register
differently from another clock domain. The degree to which two components can
be synchronized therefore depends on compatibility of their clock domains. The
issue of translating time across different clock domains gets complicated by corner
cases, which, if not handled appropriately, may lead to Zeno behavior or may cause
discrete events emitted by one component to be missed by another. These kinds of
issues play a role only in the interaction with category Op and category 2 FMUs.
The former does not admit integer time and hence requires an conversion from and
to integer time, and the latter cannot adapt its resolution to its environment, which
requires a conversion between integer times. On the other hand, category 1 FMUs
have no time resolution at all, and therefore their behavior must be time-invariant,
while categories 3 and 4 can adapt their resolution and therefore synchronize



22 Fabio Cremona et al.

perfectly with their environment. Hence, category 0 and category 2 FMUs are the
main focus of the remainder of this section. A full C implementation of wrappers
sufficient to co-simulate any combination of FMUs of any of the aforementioned
categories is given in Appendix A.

4.1 Converting from Integer to Real-valued Time

In the following, we will show the relationship between a 0 FMU’s internal no-
tion of time and its environment’s integer representation, with the assumption
that the FMU internally represents time as a real number with no quantization
errors. Please recognize that this is impossible in a computer, and the FMU will
internally encode these real numbers as double-precision floating-point numbers.
The environment’s time resolution is given as a power of ten, r = 10", measured in
seconds, where n is an integer. An integer time index, i, once scaled by a resolution,
denotes a real-valued time:

t=i-m (2)

also measured in seconds.

We express the step size for the master and the FMU separately, each in terms
of a relative increment with respect to their local time representation. For the
master, we define the new time index i’ after having taken a step Ai with respect
to the previous time index i to be i = i + Ai, where i’ corresponds to the time
i’ - r. Similarly, for the FMU, we define the time after a step to be t’ = t + At,
where ¢ is the current time in the clock domain of the FMU and At is the time
step. When the master and the FMU agree on the next time step, we have have
t' =4 .r, and therefore t + At = (i + Ai) - r. We derive the size of the time step of
the FMU as follows:

At = (i+ Ai)-r—t. (3)

4.2 Converting from Real-valued to Integer Time

No matter how fine a time resolution we choose, an arbitrary real-valued time
instant is unlikely to align perfectly with some integer-time instant. As a result,
conversion from a real-valued time to integer time can introduce a time quanti-
zation error up to one unit of the integer time resolution. Notice that this quan-
tization error is controlled by the user, modeler, or tool integrator through the
simulation parameter r, the time resolution. The finer the resolution, the smaller
the quantization error.

Ideally, according to (3), the FMU’s step size in the clock domain of the master
should be:

_t+Ar
== .

Ai (4)
But in general, this will not yield an integer Ai, and we require Ai to be an integer.
We have three alternatives to obtain an integer step from a real-valued time step:
(i) take the floor (the largest smaller integer), (ii) take the ceiling (the smallest
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larger integer), or (iii) round (the nearest integer). Our implementation uses the
ceiling operator, rounding to the next larger integer:

Qi = F‘LAW —i (5)

T

This choice prevents quantization errors from blocking the progress of time. To
see this, consider the model depicted in Figure 6. This model consists of two
category Op FMUs composed in parallel. FMU A outputs a piecewise-constant
signal with a discontinuity at ¢ = 0.4, while FMU B outputs a discrete event at
t = 0.8. Assume that these FMUs are coordinated by an integer-time master and
interfaced through wrappers. Both FMUs use floating-point time internally, and
the wrapper provides the glue code between the master and the FMU. Specifically,
the wrapper’s _getMaxStepSize and _doStep functions implement the conversions
between integer time and floating-point time in accordance with Equations (3)
and (5), and determine when and how the FMU is allowed to advance time.

x(t) T - x(t
ob—r \ ob—
—— FMU A ‘ ¢
0 02 04 06 08 it - 0 1t
v h y ¥
FMU B [
0 02 04 06 08 1t| A= . 0 1t

Fig. 6 The outputs of two FMUs composed in parallel. The signal = shows a discontinuity
that registers at ¢ = 0.4 in the clock domain of FMU A. The signal y shows a discrete event
that registers at ¢ = 0.8 in the clock domain of FMU B. The discontinuity and the discrete
event, however, occur at the same time, ¢ = 1, in the clock domain of the master.

For simplicity, we assume the master adopted a time resolution of 1 second
(n = 0). At time ¢t = 0 the master calls _getMaxStepSize of the FMU A wrapper
(FMU B does not implement _getMaxStepSize, and hence gives no indication as
to what step size it will accept). The FMU A wrapper then calls getMaxStepSize
which returns At = 0.4. Because of the master’s time resolution r = 1, At cannot
be represented exactly in terms of multiples of r. Therefore, using the ceiling
operator as its quantization method, the wrapper reports back 1, indicating to the
master that the FMU will accept a step size of size 1. Notice that had we used
the floor operator instead, the wrapper would have returned 0, and the simulation
would have gotten stuck forever at ¢t = 0 because the master will proceed with
the smallest of the step sizes that the wrappers return through _getMaxStepSize.
Similarly, if we had used rounding, and rounding of 0.4 returns 0, then again, the
simulation would get stuck.

The master will next invoke _doStep with a proposed step size of 1. It can
invoke this function in either order, first for FMU A, or first for FMU B. Assume
FMU B goes first. It will reject the step and indicate that it has made progress up to
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time 0.8. But that time is not representable in integer time either, so the wrapper
rounds it up using the ceiling function. Since [0.8] = 1, the wrapper accepts the
step, but makes an internal annotation that the FMU only progressed to time 0.8.
The next invocations of get and set will provide inputs and retrieve outputs that
for the master will appear to occur at time 1, but will look to FMU B as if they
occur at time 0.8.

The procedure for FMU A is similar, but the wrapper has a bit more information
to work with, since the FMU has previously indicated that it would accept a
maximum step of 0.4. Hence, when the master proposes a step of size 1, the
wrapper can propose a step of 0.4 to the FMU. The next invocations of get and
set will provide inputs and retrieve outputs that, again, for the master appear to
occur at time 1, but will look to FMU A as if they occur at time 0.4.

Assume further that the output of FMU A has a discontinuity at time 0.4. This
means that the FMU requires that the next invocation of doStep has a step size
of 0. It indicates this by returning 0 when getMaxStepSize is called. The wrapper
passes this on to the master by returning 0 in _getMaxStepSize. The master now
has no choice but to propose a zero step size. Upon invocation of this zero step,
FMU A advances in superdense time because of the discontinuity, so its local time
remains at 0.4. Since FMU B produces a discrete event at this time, its local time
will remain at 0.8. The outputs of both FMUs will appear to the master to occur
at time 1.

Suppose that after this neither FMU has any anticipated events and therefore
will accept any step size. Suppose the master proposes a step of size 10 to the
wrappers. The wrappers will need to compensate for the lag of their FMUs, and
instead propose a step of 10.6 and 10.2, respectively, to FMU A and FMU B.

It may be possible to design other wrappers with a different API that use
the floor or other rounding functions instead of the ceiling function, but the our
solution appears to be simple, to work well, to preserve causality, and to ensure
that time continues to advance. We observe that using the floor in _getMaxStepSize
will always make the FMU lag behind with respect to the master. For 0g FMUs, the
quantization effects due to the use of integer time only play a part in the conversion
of time steps in the FMU’s clock domain to time steps in the master’s clock
domain, not vice versa. Conversion from master time to FMU time suffers only
from ordinary rounding that is a consequence of the floating-point representation
of time inside the FMU.

4.3 Converting Between Different-resolution Integer Times

Conversions between times expressed in different-resolution clock domains can
be derived in a similar fashion as shown in Section 4.2. These conversions are
necessary for the support of fixed-resolution integer-time FMUs; the master might
choose to operate using a different time resolution than a category 2 FMU. In such
scenario, each time the master proposes a time step Ai, expressed as a multiple
of the master’s resolution, 10", this step must be converted into a time step Aj
that is interpreted as a multiple of the FMU’s resolution, 10*. Assuming that
the FMU has accepted the time step, Ai in clock domain of the master, Aj in
the clock domain of the FMU, then j/ = j + Aj is the future time index of the
FMU and i’ = i + Ai is the target time index of the master. After the step is
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completed, we assume master and FMU have reached the same point in time,
hence: i’ - 10" = j/ - 10¥. We obtain Aj, the step to be taken by the FMU, as
follows:

Aj = (i+ Ai)-10"F — j. (6)

Observe that the term 10" ¥ in Equation (6) could be a fractional number (specif-
ically, it is fractional when n — k < 0). This is possible because n shall always be
smaller than or equal to k (as per the resolution negotiation procedure in Figure 5,
the resolution of the master must be at least as fine as the resolution of the FMU).
Therefore, since A7 must be an integer, quantization may be necessary. Just as
we did for the time conversion method for category 0 FMUSs, we need to pick a
quantization method for category 2 FMUs.

It should be noted that we can compute the floor or ceiling of Aj using solely
integer arithmetic; there is no need for floating-point arithmetic for either of them.
The floor can be implemented using an integer division that truncates toward zero,
which is standard in C99 and most other contemporary programming languages.
The ceiling function can also be implemented using integer division: if the division
truncates to zero then [%] can be computed using the following expression: (x+y-1)
/y.

Using the ceiling operator as our quantization method allows the FMU to
move ahead of the master (and any other higher-resolution FMUs), while using
the floor operator would let the FMU lag behind. Neither of the two solutions is
more accurate than the other, but given that we quantize time for 05 FMUs such
that they lag behind with respect to the master’s clock, it would make sense to
adopt the same policy for category 2 FMUs and therefore select the floor operator;
to round to the previous smaller integer. Hence, we obtain:

Aj = [(i+ 4i)- 10" — 4. (7)

To convert a step in the clock domain of the FMU to a step in the clock
domain of the master, we essentially use Equation 7, except here, we can omit the
rounding. Because the master operates at a time resolution greater than or equal
to the time resolution of the FMU, it must be that kK — n > 0, so no rounding is
ever needed. Hence, we compute a step in the master’s clock domain based on a
step in the FMU’s clock domain as follows:

Ai = (j+ Aj)- 108" —4., (8)

It is important to emphasize that time quantization plays a different role for
category 2 FMUs than it does for category 0 FMUs. The former experience
quantization only in the conversion from master time to time FMU time, while
the latter experience quantization only in the conversion from FMU time to master
time; the directionality of time quantization is opposite in comparison between the
two. This observation also explains why it is no issue to use ceiling quantization
for category 2 FMUs, because the Zeno condition described in Section 4.1 is due
to loss of precision in the conversion from FMU time to master time, which for
category 2 FMUs is lossless. A detailed description of the application of Equation
(7) and (8) in the wrapper for category 2 FMUs can be found in Appendix A.
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A\ 4

FMUA [ > FMU B

r=1 r=10

Fig. 7 Two category 2 FMUs in cascade composition. Each FMU can only update their input
and output signal at times that are multiples of their resolution. The discrete event produced
by FMU A at local time 15 is received at by FMU B at local time 10. No time quantization
occurs with the discrete events produced at times 20 and 30.

Finally, let us examine the effects of time quantization using an example. Con-
sider the model in Figure 7 that depicts two category 2 FMUs. The master, along
with FMU A, uses a resolution of 1s, while FMU B uses a resolution of 10s. In
other words, a step of size 1 in the clock domain of FMU B represents a step size
of 10 in the clock domain of FMU A. Conversion the other way around, dividing
by 10!, may not yield a whole number and therefore incurs a quantization error.

Interestingly, the event emitted by FMU A at internal time index j4 = 15, which
corresponds to time ¢ = 15, will appear on the input of FMU B (due the use of the
floor function) when it is at internal time index jp = 1 which corresponds to time
t = 10. Superficially, this may look like a causality violation, but it is not, because
the two internal clock domains are completely isolated from each other. They are
analogous to two people having a phone conversation, but where one is looking
at a clock that is ahead compared to a clock the other is looking at. They cannot
see each other’s clocks. An outside observer (the master) has its own clock, which
may differ from both the internal clocks (although in this particular example it is
perfectly synchronized with FMU A because they use the same resolution). In all
three clock domains, causality is preserved.

5 Conclusions

Although we all harbor a simple intuitive notion of time, how it is measured, how
it progresses, and what it means for two events to be simultaneous, a deeper ex-
amination of the notion, both in models and in physics, reveals considerable sub-
tleties. Cyber-physical systems pose particularly interesting challenges, because
they marry a world, the cyber side, where time is largely irrelevant and is replaced
by sequences and precedence relations, with a physical world, where even the clas-
sical Newtonian idealization of time stumbles on discrete, instantaneous behaviors
and notions of causality and simultaneity. Since CPS entails both the smooth
continuous dynamics of classical Newtonian physics, and the discrete, algorithmic
dynamics of computation, it becomes impossible to ignore these subtleties.

We have shown that the approach taken in FMI (and many other modeling
frameworks) that embraces a naive Newtonian physical model of time, and a cyber-
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approximation of this model using floating-point numbers, is inadequate for CPS.
It is suitable only for modeling continuous dynamics without discrete behaviors.
Using this unfortunate choice for CPS results in models with unnecessarily inex-
plicable, nondeterministic, and complex behaviors. Moreover, we have shown that
these problems are solvable in a very practical way, resulting in CPS models with
clear semantics that are invulnerable to the pragmatics of limited-precision arith-
metic in computers. To accomplish this, our solution requires an explicit choice
of time resolution that quantizes time so that arithmetic on time values is per-
formed on integers only, something that modern computers can do exactly, without
quantization errors. Moreover, we have shown that such an integer model of time
can be used in a practical co-simulation environment, and that this environment
can even embrace components that internally use floating-point representations
of Newtonian time, for example to model continuous dynamics without discrete
behaviors.

We have gone to considerable effort in this paper to show that choosing a bet-
ter model of time does not complicate a co-simulation framework such as FMI
by much. A small number of very simple extensions to the existing standard are
sufficient, and these extensions can be realized in a way that efficiently supports
legacy simulation environments that use floating-point Newtonian time. But while
supporting such legacy simulators, it also admits integration of a new class of
simulators, including discrete-event simulators, software engineering models, hy-
brid systems modelers, and even the new QSS classes of simulators for continuous
dynamics. Such a co-simulation framework has the potential for offering a clean
and universal modeling framework for CPS. And although we have only worked
out the details for FMI, we are convinced that the same principles can be applied
to other co-simulation frameworks such as HLA and to simulators that directly
embrace mixed discrete and continuous behaviors such as Simulink/Stateflow. We
hope that our readers include the people who can make this happen.
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A Appendix: Implementation Details

This appendix details a C implementation of the wrappers outlined in Section 3.
For each category of FMU we discuss the logic required to let it successfully partake
in hybrid co-simulation. Each wrapper fully implements the API shown at the left
in Figure 4 in Section 3.3 and makes use of the FMI-HC extensions implemented
by the FMU. It should be fairly straightforward to augment any master algorithm
to support FMI-HC through the use of wrappers like the ones we describe in this
section. Before discussing any category-specific implementation details, we first
provide implementations of the functions that should be the same for wrappers of
all categories.

A.1 A Template for Wrappers

Although each FMU category requires a different wrapper, there is an intersection
between the functionality of all these wrappers. One could think of this intersection
in terms of a “base class” in object-oriented terminology. Yet the C language has
no object-oriented features, so we implement a makeshift wrapper base class using
a struct that bundles pointers to the wrapper API functions, along with the state
kept by the wrapper, and of course, a pointer to the FMU itself. The C code
is given in Figure 8. This bundle serves as a template for wrappers category Op
through 4.

Not all categories of FMUs implement the functions getPreferredResolution
and setResolution. The wrapper, however, must implement both. We list an
implementation of _getPreferredResolution in Figure 9 that is generic in the
sense that it can be used for all FMU categories. In case the FMU does imple-
ment getPreferredResolution (categories 2 and 4), the wrapper invokes it and
returns to the master the preferred time resolution specified by the FMU. In case
getPreferredResolution is not implemented (categories 0, 1, and 3), the function
simply returns a fmi2Discard status. We assume that the master interprets this
response as if the component states no preference.

After negotiating a time resolution based on the preferences stated by the
FMUs, according to the algorithm described in Figure 5 in Section 3.4, the master
calls _setResolution on each wrapper to inform it of the time resolution that it
has adopted. Note that instead of passing the actual resolution to the wrappers,
the master passes the exponent n that determines the adopted time resolution as
10 to the power of n (see Equation (1) in Section 2.4).

In Figure 10 we list an implementation that can be used for all FMU categories.
Importantly, the wrapper acts differently depending on the category of FMU it
interacts with. A category Op wrapper computes and stores the time resolution in
floating-point format, whereas a category 2 wrapper computes the ratio between
its own time resolution and the resolution that the master has chosen. This ratio,
as is further explained in Section 4, is used by the wrapper to compute the step
size in the master’s clock domain with respect to a step taken in the FMU’s clock
domain, and vice versa.

It should be noted that in Figure 10 we use two different functions to compute
powers of ten. On line 10, we use function fmi2Real realPow1O(int n). It takes
the time resolution exponent of the master (n) and returns a double-precision
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1 typedef struct {

2 FMU * fmu; // pointer to the FMU

3 fmi2Real r_master; // floating-point representation
1

// of the master’s time resolution
5 // i.e., 10°n
6 fmi2Integer r_ratio; // 10~ (k - n)
7 fmiXIntegerTime t_FMU; // local time of the FMU
8 } wrapperState;

10 typedef struct {

11 wrapperState component;

12 fmi2Status (*_doStep) (wrapperStatex,

13 fmiXIntegerTime,

14 fmiXIntegerTime,

15 fmi2Boolean,

16 fmiXIntegerTime*) ;

17 fmi2Status (*_setResolution) (wrapperStatex*,

18 fmiXTimeResolutionExponent);
19 fmi2Status (*_getPreferredResolution) (wrapperStatex,

0 fmiXTimeResolutionExponent*);
1 fmi2Status (* _getMaxStepSize) (wrapperStatex,

2 fmiXIntegerTime,

3 fmiXIntegerTimex*);

1} WRAPPER;

Fig. 8 We declare the wrapper as a struct containing pointers to each function in the wrapper
interface and a pointer to the wrapper’s state. The state is also kept in a struct, which keeps
a pointer to the FMU and holds the following state: a floating-point representation of the
master’s time resolution (r_master, used only by the category 0 wrapper), the ratio between
the FMU’s time resolution and the master’s time resolution (r_ratio), and the current integer
time of the FMU (t_fmu). The last two variables are only used by the category 2 wrapper. In
our working implementation of WRAPPER struct inside the FIDE framework, we also included
pointers to functions like _rollback, _saveState, _init, _set and _get. However, we did not
include these functions here since they are not inherent to the problem of converting time.

1 fmi2Status _getPreferredResolution(wrapperState* wrp,
2 fmiXTimeResolutionExponent* n) {

3 FMU* fmu = (*wrp).fmu;
A fmi2Component c = (*fmu).component;
5 fmi2Status status = fmi2Discard;

7 // FMU-HC2 and FMU-HCY
8 if ((*fmu).canGetPreferredResolution) {
9 status = (xfmu).getPreferredResolution(c, n);

10 ¥

12 return status;

13}

Fig. 9 Our implementation of _getPreferredResolution. This function is the same for all
categories. When the FMU does not implement the method fmiGetPreferredResolution (ca-
pability flag canGetPreferredResolution == fmi2False), the wrapper returns fmi2Discard.
In this case, the master should ignore the value that pointer n points to.

floating-point number that represents the time resolution (10™). Function unsigned
int intPow10(unsigned int n) at line 21, on the other hand, takes an unsigned
integer as input (the difference between the time resolution exponent of the FMU,
k, and n) and returns the integer representing the ratio between the FMU’s time
resolution (10¥) and the master’s resolution (10™). Function realPowl10 returns
a floating point number since n can be any integer value, positive or negative.
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1 fmi2Status _setResolution(wrapperState* wrp,
2 fmiXTimeResolutionExponent n) {

FMU* fmu = (*wrp).fmu;
1 fmi2Component c = (*fmu).component;
5 fmi2Status status = fmi20K;
6 unsigned int delta_n = 0;
8 // FMU-HCOB
9 if (!(*fmu).canHandleIntegerTime) {
10 (*wrp).r_master = realPowl0(n);
11 return status;
12 ¥
13 // FMU-HC2
14 if ((*fmu).canGetPreferredResolution &&
15 !'(¥xfmu) .canSetResolution) {

16 fmiXTimeResolutionExponent k;

17 status = (*fmu).getPreferredResolution(c, &k);

18 // the master’s resolution must always finer or equal!
19 assert(n <= k);

20 delta_n = k - n;

1 (*wrp).r_ratio = intPowl10O(delta_n);

22 return status;

3 }
| // FMU-HC3 and FMU-HC4

25 if ((*fmu).canSetResolution) {

26 status = (*fmu).setResolution(c, n);
27 return status;

28 }

2
29 return status;

Fig. 10 Our implementation of _setResolution. This function is shared between all cate-
gories. For an FMU of category Op it computes and stores the master’s resolution r_master,
for an FMU of category 2 it computes and stores r_ratio, the ration between the FMU’s time
resolution 10¥ and the master’s resolution 10™. For categories 3 and 4, the function simply
invokes setResolution() on the FMU to pass on the time resolution exponent selected by the
master.

It suffices for function intPow10 to solely work with unsigned integers since the
variable deltan = k - n at line 21 is always positive because k is always smaller
than or equal to n.

Aside from _getPreferredResolution and _setResolution, our template lacks
implementations for _get, _set, _getMaxStepSize, and _doStep. The first two
are trivial for category 1-4; they simply pass their arguments to getHybrid and
setHybrid, respectively, and return. For the category Op wrapper the situation
is a bit different, because this type of FMU does not support absent. Therefore,
when the wrapper encounters absent in _get or _set, it substitutes the absent
value by the last-known present value of the referenced variable. This mechanism
implements a so-called zero-order hold and is consistent with the semantics of FMI
2.0, and therefore suitable for legacy FMUs. The functions _getMaxStepSize, and
_doStep require logic that is specifically tailored to their category of FMU. Hence,
we discuss these two functions separately for each of the different categories.
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1 fmi2Status _getMaxStepSize(wrapperState* wrp,
2 fmiXIntegerTime currentCommunicationPoint,
fmiXIntegerTime* maxStepSize) {

5 FMU * fmu = (*xwrp).fmu;

6 fmi2Component c¢ = (*fmu).component;
7 fmi2Status status = fmi20K;

8 fmi2Real resolution = (*wrp).r_master;
9 fmi2Real h_FMU = 0;

10 fmi2Real t_FMU = 0;

11
12 status = (*fmu).getMaxStepSize(c, &h_FMU);

13 (¥fmu) . getRealStatus (c, fmi2LastSuccessfulTime, &t_FMU);
1

15 *maxStepSize = ceil((h_FMU + t_FMU) / resolution)

16 - currentCommunicationPoint;

17 return status;

18}

Fig. 11 An implementation of _getMaxStepSize function for category Op wrappers.

A.2 Wrapper Implementations
A Wrapper for Category Op FMUs

The wrapper for a category O FMU is predominantly tasked with performing
conversions between integer time and floating-point time, and vice versa. Refer
to Sections 4.1 and 4.2, respectively, for a detailed discussion on these types of
conversions.

Figure 11 shows an implementation of the function _getMaxStepSize. This func-
tion queries a category 0g FMU for the maximum step size using getMaxStepSize
(line 12), which returns a floating-point number. The conversion from FMU time
(a floating-point number) to master time (an integer) is based on Equation (5),
and implemented on lines 15-16 (we use here the ceiling function defined in the
C standard library math.h). The correspondence between the variables in Equa-
tion (5) and the variables in the code is as follows: t +» t_FMU , At <> h_FMU, r <>
resolution, ¢ <> currentCommunicationPoint , and Ai <> maxStepSize. Function
_doStep is presented in Figure 12. Conversion from master time to local time is
based on Equation (3) and is performed at line 17 and 18. If the FMU only made
partial progress (the performed step size is not equal to the requested step size),
converting the performed step size in the time resolution of the master, again in-
volves time quantization. The conversion is implemented on lines 25-26 according
to Equation (5).

A Wrapper for Category 1 FMUs

A category 1 FMU neither implements function setResolution, nor function
getPreferredResolution. This means that the FMU is not making use of time.
Hence, the functions _setResolution and _getPreferredResolution do not have to
do anything. The _doStep function only needs to forward the call to doStepHybrid,
but the actual communication time can be arbitrary because the FMU of category
1 does not consider time. Finally, _getMaxStepSize should return that it accepts
any step size.
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1 fmi2Status _doStep(wrapperState* wrp,

2 fmiXIntegerTime currentCommunicationPoint,
fmiXIntegerTime communicationStepSize,

| fmi2Boolean noSetFMUStatePriorToCurrentPoint,

5 fmiXIntegerTime* performedStepSize) {

7 FMU* fmu = (*wrp).fmu;

8 fmi2Component c = (*fmu).component;

9 fmi2Status status = fmi20K;

10 fmi2Real resolution = (*wrp).r_master;

11 fmi2Real h_FMU = 0;

12 fmi2Real t_FMU = 0;

13 fmi2Real new_t_FMU = 0;

1

15 (xfmu) .getRealStatus(c, fmi2LastSuccessfulTime, &t_FMU);
16

17 h_FMU = (currentCommunicationPoint + communicationStepSize)
18 * resolution - t_FMU;

20 status = (*fmu).doStep(c, t_FMU, h_FMU,
noSetFMUStatePriorToCurrentPoint);

3 (¥fmu) . getRealStatus (¢, fmi2LastSuccessfulTime, &new_t_FMU);
1

25 *performedStepSize = ceil ((new_t_FMU) / resolution)
26 - currentCommunicationPoint;

28 // Overwrite status in case of partial progress
29 if (xperformedStepSize == communicationStepSize)

30 status = fmi20K;

1
32 return status;

Fig. 12 An implementation of _doStep function for category Op wrapper.

A Wrapper for Category 2 FMUs

A category 2 FMU implements getPreferredResolution, but not setResolution.
The FMU therefore does not only prefer, but insists on using the resolution re-
turned by getPreferredResolution. This means that the category 2 wrapper needs
to convert between the resolution that the master algorithm decides to use and
the resolution that the FMU insists on using, and vice versa. These types of con-
versions are discussed in depth in Section 4.3.

The first step in the implementation of function _doStep (Figure 13) is to
compute the local step size (Aj) according to Equation (7). The next step in func-
tion _doStep is to call the FMU function doStepHybrid using the local step size
h_FMU. If the FMU accepts the step, the wrapper returns that the performed step
size h_FMU_accepted is equal to the requested step size communicationStepSize.
However, if the local progress h_FMU_accepted is less than the local step size
communicationStepSize, then the FMU made partial progress. In such a case, we
compute the performed step size according to Equation (8).

In _getMaxStepSize (Figure 14), we need to compute the maximum step size of
the FMU. The first step is to call getMaxStepSizeHybrid, which returns the local
maximal step size (Aj). The returned value is an integer that encodes a multiple of
the FMU’s resolution. To convert the step into a multiple of the master’s resolution
(A7), we use again Equation (8). Function _getMaxStepSize returns As. It should
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1 fmi2Status _doStep(wrapperState* wrp,

2 fmiXIntegerTime currentCommunicationPoint,
fmiXIntegerTime communicationStepSize,

| fmi2Boolean noSetFMUStatePriorToCurrentPoint,

5 fmiXIntegerTime* performedStepSize) {

7 FMU* fmu = (*wrp).fmu;

8 fmi2Component c = (*fmu).component;
9 fmi2Status status = fmi20K;

10 fmi2Integer r_ratio = (xwrp).r_ratio;

11 fmiXIntegerTime t_FMU (xwrp).t_FMU;

12 fmiXIntegerTime h_FMU = 0;

13 fmiXIntegerTime h_FMU_accepted = 0;

1

15 h_FMU = (currentCommunicationPoint

16 + communicationStepSize) / r_ratio - t_FMU;
17

18 status = (*fmu).doStepHybrid(c, t_FMU, h_FMU,

19 noSetFMUStatePriorToCurrentPoint, &h_FMU_accepted);

1 if ((t_FMU + h_FMU_accepted) * r_ratio < currentCommunicationPoint)
22 *performedStepSize = 0;

3 else
| *performedStepSize = (t_FMU + h_FMU_accepted) * r_ratio
25 - currentCommunicationPoint;

27 (*wrp) .t _FMU = t_FMU + h_FMU_accepted;
28 return status;

Fig. 13 An implementation of _doStep function for category 2 wrapper.

be noted that the ratio between the resolutions of the FMU and the master as used
in Equations (8) and (7) is precomputed during initialization in _setResolution
(see Figure 10) and stored in wrp->r_ratio.

There is one additional subtlety that this wrapper accounts for. When the
global time advances with time steps that are smaller than the time resolution of
the FMU, the FMU time does not advance (as can be deduced from Equation 7)
causing the FMU to lag behind the master algorithm. When the FMU indeed lags
behind, and the master instructs the wrapper to take a zero-size step, however,
Equation 8 would yield a negative value for Ai (a negative time index), which
is clearly wrong. Therefore, the wrapper returns 0 in this particular situation
(Figure 13 line 22 and Figure 14 line 15).

Wrappers for Category 3 and Category 4 FMUs

Wrappers for category 3 and category 4 FMUs are straightforward to implement.
Both category 3 and 4 FMUs implement setResolution, which means that the
FMUs must accept the resolution that the master algorithm states. The only dif-
ference between these two categories is that category 4 FMUs also implement
getPreferredResolution, whereas category 3 FMUs do not. All the wrapper func-
tions are simply transferring the call to the corresponding FMI function. No trans-
lation of resolutions are necessary because the FMUs promise to handle the reso-
lution that is set by the master.
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1 fmi2Status _getMaxStepSize(wrapperState* wrp,
2 fmiXIntegerTime currentCommunicationPoint,
3 fmiXIntegerTime* maxStepSize) {

|

5 FMU * fmu = (*wrp).fmu;

6 fmi2Component c = (xfmu).component;
7 fmi2Status status = fmi20K;

8 fmi2Integer r_ratio = (*wrp).r_ratio;

9 fmiXIntegerTime t_FMU = (*wrp).t_FMU;

10 fmiXIntegerTime h_FMU = 0;

12 status = (*fmu).getMaxStepSizeHybrid(c, &h_FMU);

14 if ((h_FMU + t_FMU) * r_ratio < currentCommunicationPoint)

15 *maxStepSize = 0;

16 else

17 *maxStepSize = (h_FMU + t_FMU) * r_ratio -
18 currentCommunicationPoint;

20 return status;

Fig. 14 An implementation of _getMaxStepSize function for category 2 wrappers.



