
Fitting Nonconvex Biomechanics Energy Functions

Ahmed Bakhaty

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-46
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-46.html

May 11, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.



Fitting Nonconvex Biomechanics Energy Functions

by

Ahmed A Bakhaty

B.S. Civil & Environmental Engineering University of California, Berkeley 2011
M.S. Civil & Environmental Engineering University of California, Berkeley 2013

A thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Laurent El Ghaoui, Chair
Professor Mohammad RK Mofrad

Spring 2017







Fitting Nonconvex Biomechanics Energy Functions

Copyright c© 2017

by

Ahmed A Bakhaty



Abstract

Fitting Nonconvex Biomechanics Energy Functions

by

Ahmed A Bakhaty

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

It is common practice to model the mechanical behavior of biological tissue with so-called “hy-
perelastic” energy functions. Typically, these models are tuned to a particular dataset, e.g. from
an experimental investigation, by a set of hyperparameters. These energy functions, however, are
typically nonconvex in the hyperparameters and can furthermore be sensitive, making the fitting
procedure challenging. Moreover, the analytical energy functions may be embedded in numerical
procedures (e.g., Finite Element Method) making it even more challenging to tune the hyperpa-
rameters with convex optimization.

In this report we investigate fitting archetype bio-tissue energy functions to experimental data.
The procedure is typically a nonlinear regression on said data. We demonstrate the nonconvexity
of the optimization problem and explore several methods: projected gradient descent, L-BFGS,
Levenberg-Marquardt, and derivative-free search. We conclude with an application of fitting aortic
valve tissue energy functions embedded in a Finite Element “black-box” framework.
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“The reason I’m here today is because I never gave up.” - Future
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Chapter 1

Introduction

Mechanics is the quantitative study of the motion and deformation of physical objects. Mechanics
is often applied to understand biological systems, since the fundamental biochemical processes are
mechanical in nature. [10], [14]. In “biomechanics,” biological tissue is often modeled with what
are known as “strain-energy” functions:

ψ̂(F ;C) : R3×3 7→ R+. (1.1)

The main argument of these functions (F ∈ R3×3) are order-2 tensors. Mechanical response quan-
tities (e.g., material stresses) are obtained by differentiating with respect to the arguments.

Engineers use these models to gain an understanding of how tissue behaves in an effort to develop
novel treatment and prevention modalities for persistent disease. Data obtained from physical
experiments and medical imaging give a basis for calibrating the models, which can then be used
for inference and prediction. [4]

Our objective here is to investigate the process of fitting an archetype of these models to experi-
mental data. The properties of the models, as well as the numerical procedures they are embedded
in, makes it a challenge to effectively perform the fitting: a nonlinear regression.

The energy functions are quasi-convex (in the sense of Morrey [15]) in F , meaning there exists a
solution to the governing mechanics equations. These functions are nonconvex in the hyperparam-
eters used to calibrate the model to different datasets. This means that we cannot blindly exploit
convex optimization techniques to obtain a “good” fit.

We are interested in looking at the problem of fitting the hyperparameters to a set of data. Con-
sidering a set of positive hyperparameters C ∈ Rd++ for fixed F , we re-express (1.1) as

ψ̂(F ;C) = ψ(C;F ) : Rd++ 7→ R+. (1.2)

We seek to fit (2.8) to a data set D := {α,ψi}ni . This can be done by minimizing a square-loss
function:

C∗ = arg min
C∈Rd

++

1

n

n∑
i=1

1

2

(
ψ(C;α)− ψi

)2
. (1.3)
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Our objectives here are as follows:

1. Study the role of the nonconvexity of these functions and how it affects the fitting procedure.

2. Survey a range of techniques to fit the data.

3. Introduce a basic black-box procedure for fitting arbitrary models without the need for ana-
lytical expressions and gradients.

The method we present for item 3 above is a versatile tool that can be applied to a wide range of
problems.

Outline

This report is organized as follows. In Chapter 2, we introduce some relevant background infor-
mation on convex analysis and the mechanics framework. We state the numerical optimization
problem in Chapter 3 and apply the techniques to aortic valve leaflet tissue in Chapter 5. We
briefly conclude in Chapter 4 and discuss important notes for using the robust black-box fitting
procedure mentioned above.

2



Chapter 2

Background

In this chapter, we briefly introduce background for the optimization and biomechanics problems.

2.1 Convex analysis

We first begin with a brief review of optimization (see Rockafellar [18] for a more comprehensive
review). The optimization program is:

f∗ = min
C
f0(C) subject to fi(C) ≤ 0, i = 1, ...,m (2.1)

where C ∈ Rd is the decision variable, f0 : Rd 7→ R is the objective function, fi(x) are constraint
functions, and f∗ is the optimal value of the objective. Define the “feasible” set as

X := {C : fi(C) ≤ 0, i = 1, ...,m}. (2.2)

We call C∗ ∈ X globally optimal if f∗ = f0(C
∗) ≤ f0(C), ∀C ∈ X . Alternatively, C∗ is locally

optimal if f0(C
∗) ≤ f0(C), ∀C ∈ X : ||C − C∗|| < R for some R > 0. Note that even if globally

optimal, C∗ may not be unique and there may be an optimal set X opt := {C : f0(C) = f∗}.

We call the problem (2.1) a convex optimization problem if 1) X is a convex set:

Definition 1 (Convex set) A set X ⊂ Rd is convex if and only if it the line segment between

any two points of the set is also in the set:

∀x, y ∈ X , θ1x+ θ2y ∈ X , ∀θ1, θ2 ≥ 0, θ1 + θ2 = 1. (2.3)

and 2) f0 is a convex function:

3



Definition 2 (Convex function) A function f : Rd 7→ R is convex if its domain, dom f , is a

convex set and

∀x, y ∈ dom f, ∀λ ∈ [0, 1], f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y). (2.4)

If the optimization problem is convex, then any local minimum is also a global minimum, a useful
property. However, if the problem is not convex, then there may exist local minima that are not
globally optimal. This can prove problematic.

Verifying convexity can be challenging, but one useful property is:

Property 1 (2nd order convexity condition) Suppose f : Rd 7→ R is twice differentiable.

Then f is convex if and only if the Hessian, ∇2f � 0 everywhere.

This allows us to verify convexity (or nonconvexity) quite simply, and we exploit this in the sequel.

2.2 Continuum mechanics

Let B0 represent a body (e.g., manifold with boundaries), parameterized by coordinates X ∈ R3

in a reference configuration and Bt be some current configuration of that body, parameterized
by coordinates x ∈ R3. Define the deformation map x(t) = ϕ(X, t) (t parameterizes time), the
deformation gradient F = ∇ϕ, J = detF > 0 the jacobian of deformation map. Furthermore,
Cauchy’s theorem asserts the existence of the Cauchy stress tensor T , ∀x ∈ Bt. Define the Piola
stress tensor as PF T = JT .

We model tissue with “so-called” hyperelastic material models [13], which are characterized by
strain-energy functions ψ̂(F ;C) : R3×3 7→ R+, where C represents internal parameters. The Piola
stress is obtained as

P =
∂ψ̂

∂F
, (2.5)

for a given state F . The equilibrium equations are obtained in a hyperelastic system by minimizing
the system’s potential energy:

ϕ∗ = arg min
ϕ∈S

Π
(
ψ̂(F )

)
. (2.6)

A sufficient condition for the existence of ϕ∗ is the quasi-convexity of ψ̂. [15] A more tractable
condition, which implies quasi-convexity, is the notion of polyconvexity, in the sense of Ball. [2]:

Definition 3 (Polyconvexity) F 7→ ψ̂(F ) is polyconvex if and only if ∃G : R3×3×R3×3×R 7→ R

such that

ψ̂(F ) = G
(
F,AdjF,detF

)
, (2.7)
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where AdjF is the adjugate of F , and G : R19 7→ R is convex ∀X ∈ R3.

The reader is referred to the text by Holzapfel [9] for an in depth treatment of continuum mechancs.

2.3 Biomechanics energy functions

We consider the following form representative of tissue behavior [6] herein, ψ : R2
++ 7→ R+:

ψ(C;α) = C1 exp(αC2), (2.8)

where α ∈ R+. It is a simple exercise to show that the Hessian:

∇2
Cψ =

(
0 α
α α2C1

)
exp(αC2) 6� 0, (2.9)

is not positive semi-definite ∀C ∈ R2
++, ∀α ∈ R and thus, ψ is, in general, not convex in C. Material

models are constructed by sums of terms like (2.8). The hyperparameters, α, are then fit to datasets
(usually) obtained from physical experiments.

2.4 Finite element method

A finite element (FE) [23] approach is often used to solve (2.6). Let ∂Bu and ∂Bt denote the
partitions of the boundary (∂B0) of the body, B0, where deformation and tractions are imposed,
respectively, with ∂Bu∩∂Bt = ∅, ∂Bu ∪ ∂Bt = ∂B0. Equation (2.6) is solved by satisfying the weak
form statement:

Find
ϕ ∈ S := {ϕ | ϕ = ϕ̄ on ∂Bu},

such that ∫
B0

P · ∇(δϕ) dV =
�������
∫
B0

B · δϕ dV +

∫
∂Bt

t̄ · δϕ dA, (2.10)

∀δϕ ∈ V := {δϕ | δϕ = 0 on Bu},

where ρ0 is the material density in B0 and we assume there is no body force B.

Again, the hyperparameters C are to be fit to datasets, but now the hyperparameters are deeply
embedded inside of 2.10. In fact, these equations result in nonlinear equations:

R(ϕ;C) = f. (2.11)

And the quantities that are fit are in turn nonlinear functions of ϕ which are obtained by solv-
ing (2.11), a procedure that requires an iterative solver (e.g., Newton-Rhapson). It is clear to see
that obtaining an analytical expression for the gradients of the quantities to be fit is in general
impossible.
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Chapter 3

Numerical Optimization

In the previous chapter, we briefly introduced the model we wish to fit to a dataset. In this chapter,
we will outline the fitting program and some solution approaches used to solve (3.7):

1. Warm-start projected gradient descent with backtracking line-search

2. Derivative free nonuniform grid search (cyclical coordinate search and random search)

3. Limited memory BFGS

4. Levenberg-Marquardt method.

The reader is referred to Nocedal and Wright [17] for a detailed treatment of the material found in
this chapter.

3.1 Loss function

The problem of interest consists of fitting the strain energy functions to experimental data of a
set of deformations and forces {Fi, ri}. Again, our energy function, ψ(C;α(F )) = ψ̂(F ;C) with
C ∈ R2, has the following form:

ψ
(
C;α) = C1 exp(αC2),

where α(F ) := (tr(F>F )− 3)q, q = 1, 2, 3, ..., which is verifiably polyconvex [21]. More specifically,
we have C ∈ R2nc , α ∈ R:

ψ(C;α) =

nc∑
i=1

Ci,1 exp(αCi,2), (3.1)

where nc determines a particular model. Because the experimental data is obtained for the stress,
we will fit the derived quantity instead:

p(C;α) =
∂ψ

∂α
=

nc∑
i=1

fi(α)Ci,1Ci,2 exp(αCi,2), (3.2)

6



where f(α) : R 7→ R. Let p =
∑

i pi. Then, we have

∇2
Cpi =

(
0 1 + αCi,2

1 + αCi,2 αCi,1(αCi,2 + 2)

)
exp(αCi,2)fi(α), (3.3)

which is, indeed, nonconvex. The data set is defined as D := {αk, (rxk , r
y
k)}nk=1. We define the

corresponding response quantities for our model:

px(C;α) =

nc∑
i=1

fxi (α)Ci,1Ci,2 exp(αCi,2), (3.4)

py(C;α) =

nc∑
i=1

fyi (α)Ci,1Ci,2 exp(αCi,2). (3.5)

To fit the data, we introduce a square loss

`(C) :=
n∑
k=1

`k(C;αk) =
n∑
k=1

1

2

[(
rxk − pxk(C,αk)

)2
+
(
ryk − p

y
k(C,αk)

)2]
. (3.6)

Note that `(C) is similarly nonconvex in C. We state the fitting program:

C∗ = arg min
C>0

`(C), (3.7)

where the constraint is necessary for physical considerations.

3.2 Optimization methods

Our main concern here is to solve (3.7) via a numerical approach to some acceptable tolerance.
These methods are iterative and require some convergence criterion to terminate. Typically we will
measure this either by progress of the loss:

|`(Ck+1)− `(Ck)| < ε`, (3.8)

or progress of the minimizers:

||Ck+1 − Ck|| < εC , (3.9)

where || • || denotes a vector norm, and ε is some tolerance. Because the optimization program is
constrained, the gradient will, in general, not vanish at the optimal point.

Of course, due to the nonconvexity of our problem, (3.8) and (3.9) make no guarantees about global
optimality of the solution, and we assume that we arrive at local minima. We return to this point
in Section 5.1.
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3.2.1 Derivative-free search

Cyclic coordinate search

The primary motivation for derivative-free searches is to establish that they can be used relatively
efficiently for black-box optimization, where it is difficult to obtain a derivative (or approximation
of one).

For this method, all but one coordinate is fixed (at random), and a 1D search is performed on a
log-uniform grid with pre-specified limits. This is done for each coordinate, then repeated until
convergence (or stop criterion), with a different order of coordinates for each pass (epoch). For this
we define

ˆ̀
j(C1, ..., Cd) := `(C),

The algorithm is summarized below:

Algorithm 1 Cyclic coordinate search

1: Initialize grid G := log[gmin, gmax], with ng points, and k = 0.

2: while Convergence Flag do

3: k ← k + 1

4: for j ∈ randperm{1, .., d} do

5: Cj ← arg ming∈G ˆ̀(C1, .., Cj−1, g, Cj+1, ..., Cd)

6: end for

7: end while

The primary advantage of this approach (as opposed to vanilla grid search) is efficiency. Vanilla
grid search is O(gd) where g is the grid size and d is the dimension of the minimizer. This method
is O(gd), which is far more tractable. We can see that this problem becomes intractable for even
small grid sizes!

Random search

In addition to the cyclic coordinate search, we also employ a random search over a nonuniform
grid. One can expect the convergence time to a “good” solution is ∝ N+1

G+1 , where N is the size of
the sample space and G is the number of “good” points.

3.2.2 Gradient descent

We consider a slight relaxation of (3.7):

C∗ = arg min
C≥δ

`(C), δ > 0, (3.10)
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for the purpose of using projections. The gradient updates are given by

Ck+1 = Π
(
Ck − tk∇`(Ck)

)
, (3.11)

where tk is the step size at iteration k and the Euclidean projection is given by

Π(x) = arg min
z
{1

2
||x− z||2 : z ≥ δ}, (3.12)

for small δ. We choose δ = 10−8 herein. The projection operator simplifies to

(
Π(x)

)
i

=

{
xi if xi ≥ δ,
δ if xi < δ.

(3.13)

To employ backtracking line search, each iteration we set tk ← βtk while the Armijo condition,

`
(
Ck + tk∇`(Ck)

)
≤ `(Ck)− γtk||∇`(Ck)||2, (3.14)

is not satisfied. We choose γ = 0.5, β = 0.8. As we will see in section 3, the choice of C0 is critical
for convergence. A cold-start (e.g., a random initialization) can converge to a local minimum.
Thus, we warm start C0 based on prior knowledge on the physics of the problem. This is done by
hand-tuning a set of parameters and starting (near) there.

3.2.3 Newton and Quasi-Newton methods

Levenberg-Marquardt

The Levernberg-Marquardt [12] method is commonly used for nonlinear regression losses given by

`(C) =

n∑
i=1

(
ỹi − y(C;αi)

)2
=
(
ỹ − y(C)

)>(
ỹ − y(C)

)
. (3.15)

where y(C) is the model being fit to the data, ỹ. Defining the Jacobian J := ∂y/∂C, then it is
clear that the gradient descent updates are

Ck+1 ← Ck − 2tkJ
>(ỹ − y). (3.16)

Newton’s approach is to assume the loss is locally quadratic in the parameters near the solution.
We consider a first order Taylor expansion of y(C + h) for perturbation h:

y(C + h) ≈ y(C) + Jh, (3.17)

which when substituted in (3.15) gives

`(C) ≈ ỹ>ỹ + y>y − 2ỹ>y − 2(y − ỹ)>Jh+ h>J>Jh. (3.18)

Minimizing (3.18) leads to the Newton updates:

9



Ck+1 ← Ck −H−1J>(ỹ − y), (3.19)

where H = J>J is the Hessian. Inspecting (3.16) shows that by approximating the Hessian
as H ≈= γI, where I is the n × n identity, and γ is some factor, we have gradient descent. The
Levenberg-Marquardt method considers updates that affinely lie between a gradient descent method
and Newton method:

Ck+1 ← Ck − [H + γkI]−1J>(ỹ − y). (3.20)

The concept is to select γ at each step to adaptively move between the two methods. The rationale
is as follows: Newton’s method converges fast, but only in the neighborhood of the solution, whereas
gradient descent converges slow but does not need to be in the neighborhood 1 So the Levenberg-
Marquardt method involves starting with gradient descent (e.g., a large γ) and adaptively shifting
to a Newton scheme by changing γ. Because the gradient descent step-size tk is built into γk, some
normalization is appropriate, a la Marquardt [12]:

Ck+1 ← Ck − [H + γk diag(J>J))]−1J>(ỹ − y). (3.21)

The algorithm is given in Algorithm 2.

Algorithm 2 Projected Levenberg-Marquardt

1: γ0 = 0.01, warm start C0

2: while ∆` > tol do

3: k ← k + 1

4: Ck+1 ← Ck −Π

([
H + γk diag(J>J)

]−1
J>(ỹ − y)

)
5: while `(Ck+1 > Ck) do

6: γk+1 = 0.1γk

7: end while

8: γk+1 = 10γk

9: end while

L-BFGS

We wrap off the survey of algorithms with a projected BFGS with backtracking line search. [11]
BFGS is a Quasi-Newton that approximates the Hessian (in particuar, the inverse Hessian) in (3.19)
by computationally efficient rank-1 updates as summarized by the following algorithm

In practice we need to compute H−1 which can be done relatively efficiently with the following
update formula:

1Of course, given the nonconvex loss, the starting point cannot be arbitrary.
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Algorithm 3 Projected BFGS with linesearch

1: H0 = I

2: while Convergence Flage do

3: vk = −Hk∇`(xk)

4: Ck+1 ← (3.11) and (3.14)

5: sk = Ck+1 − Ck

6: rk = ∇`(Ck+1)−∇`(Ck)

7: ρk = 1
y>k sk

8: Hk+1 = (I − ρkskr>k )Hk(I − ρkskr>k ) + ρksks
>
k

9: k ← k + 1

10: end while

H−1k+1 = H−1k +
(s>k rk + rkH

−1
k rk)(sks

>
k )

(s>k rk)
2

−
H−1k rks

>
k + skr

>
k H

−1
k

s>k rk
, (3.22)

where H−11 can be computed efficiently with the Sherman-Morrison formula [5]. Rather than drag
the updates from the first step, we consider the limited memory BFGS (L-BFGS), where updates are
dragged only for a limited nu,ber of iterations, i.e., for step k, we perform updates per Algorithm 3
starting from k −m to k for some m. This requires us to store {sj , rj}kj=k−m.

We make use of the MATLAB package minConf by Schmidt. [20] For the purpose of this study, we
arbitrarily set the limited memory (e.g., how many preceding quasi-Hessian updates at each step)
m = 15.

3.3 Black-box optimization

We return to (3.6) but now px(C) and py(C) are no longer given by analytical expressions, but
rather, from the solution of a numerical FE procedure (see Section 2.4). The loss, `(C) is constructed
as in Fig. 3.1.

The major difference here is how we compute the gradients: by probing the numerical model:

∂p

∂Cj
≈ p(C + εjej)− p(C)

εj
, (3.23)

where ej ∈ Rd is the standard Cartesian basis vectors and ε is a suitable differential. Due to the
finite precision calculations required to obtain p (see Section 2.4), ε too small can lead to incorrect
gradients. We take care in choosing ε (e.g., by scaling to Cj) to avoid this problem, but still obtain
an acceptable gradient.

11



Figure 3.1. Schematic of FE blackbox.

Note, that we do not achieve an exact gradient here, but assume that we are close enough to be
following a descent direction. We return to this point in Section 5.1.
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Chapter 4

Applications

We now apply the methods presented in Chapter 3 to the framework introduced in Chapter 2.
In particular, we focus on a particular biomechanics problem: the mechanical stretch response of
aortic valve leaflet tissue. [1] We will look at fitting an analytical model as well as a FE model.

4.1 Fitting analytical function

The analytical model is given by (3.1) with nc = 4 and with some additional terms:

ψ(C;α) =
4∑
i=1

Ci,1 exp(αCi,2) + g(α), (4.1)

where g does not depend on the hyperparameters. The data set D can be found in Stella and
Sacks [22].

4.1.1 Derivative-free searches

Fig. 4.1a demonstrates the convergence of the cyclic coordinate search introduced in section 3.2.
Each epoch corresponds to one one pass of search through each coordinate over a log-uniform grid.
Fig. 4.1b demonstrates the minimum loss of the randomly sampled log-uniform grid over several
trials. Note, that the ordinate of each plot is not representative of real time to convergence. We
present a discussion on computational time in the sequel.

13



Figure 4.1. a) Convergence of cyclic coordinate search. b) Minimum of several trials of
random search at different sampling rates.

4.1.2 Cold-start gradient descent: demonstration of nonconvexity

Fig. 4.2a demonstrates the results for a random choice of C0. We observe quick descent to a
suboptimal local minimum. Note that this result is persistent with different random initializations.
Fig. 4.2b demonstrates a visualization of the fit compared to the data.

4.1.3 Warm-start gradient descent

Fig. 4.3a demonstrates the results for an “educated” choice of C0, based on prior knowledge of the
physics of the problem. Fig. 4.3b demonstrates a visualization of the fit compared to the data.
Note that the data does not fit perfectly. Refer to the discussion (section 4.5) for this.
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Figure 4.2. a) Convergence of GD with cold-start. b) Visualization of fit compared to data.

4.1.4 L-BFGS

Fig. 4.4 demonstrates L-BFGS. Observe the sharp decrease in the objective after sufficient build-up
of the Hessian approximation. In less than 50 iterations, we reach tolerances of 10−6 from cold
starts.

4.2 Black-box optimization: FEM

In this section we consider the same energy as in (4.1) but embedded inside an FE framework,
as outlined in Section 2.4. We restrict our attention to the Levenberg-Marquardt method (Sec-
tion 3.2.3) and compute the Jacobian J via (3.23).

Let C := (C1m, C2m, C1f , C2f , σf ). Here C ∈ R5 due to one additional degree of freedom added to
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Figure 4.3. a) Convergence of GD with warm-start. b) Visualization of fit compared to data.

the model (referred to as “σf”). We fit this model to two different datasets corresponding to two
layers of the trilayer aortic valve leaflet tissue [19]: the fibrosa and the ventricularis.

Figure 4.5 top demonstrates convergence of `(C). Figure 4.5 bottom features a perturbation analysis
of the fit parameters and demonstrates convergence to a minimum. Note the relative sensitivity of
C2m. The individual layer load-deformation curves are presented in Fig 4.6 bottom.

4.3 Discussion

4.3.1 Analytical model

To properly compare these methods, we provide the average computational time for each method
to converge to a tolerance of at least 10−3. All methods were coded serially in MATLAB [8] on
a 2.5 GHz Intel i7 3667U CPU with 8 GB RAM. Table 4.3.1 It is clear that GD is the quickest.
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Figure 4.4. a) Convergence of L-BFGS. b) Visualization of fit compared to data.

Method GD Coordinate Random L-BFGS

Time [s] 0.07 66 5 0.4

Table 4.1. Average time to descend objective to comparable values.

However, from Fig. 4.2, a good guess is required to converge to a “good” solution. This, in practice,
may not be troublesome, but does leave some to be desired in terms of robustness. L-BFGS, for all
practical purposes, is the superior method, offering robustness and efficiency. It is understood that
Newton (and quasi-Newton) methods work well with nonconvex functions. In particular, for cubic
interpolation of the line search step sizes (e.g., minimizing a cubic of a quadratic approximation to
the objective with a cubed weighted norm of the step to correct Newton steps) leads to an upper
bound on the complexity O(ε−2/3) function evaluations to reach a tolerance ε on the norm (for
unconstrained problems). [16]

From Fig. 4.1, one can see that a good solution can be obtained without prior knowledge of
the problem or derivatives, in reasonable time, albeit much slower than GD. Random search in
particular seems to work quite well. However, there are several practical considerations:
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Figure 4.5. Top: Convergence of loss (3.7) using warm-start projected gradient descent
with backtracking line-search. Bottom Perturbation analysis of parameters for fibrosa
(left) and ventricularis (right). For clarity of exposition, the abscissa on the ventricularis
plot is truncated.

1. The upper limit of the grid must be specified. If it is too small, a suboptimal solution may
arise. Furthermore, if it is too large (for the same number of points) a suboptimal solution
may also arise. Thus, there is still some level of prior knowledge required.

2. For coordinate search, enough points are required to ensure an accurate enough solution.
Note that more points doesn’t necessarily mean a lower minimum, since with nonuniform
spacing, a sufficient minimizer may be skipped over with a higher resolution grid. This can
be observed in Fig. 4.1b with the spike at 2000.
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Figure 4.6. Fit of FE model to data.

3. For random search, one can have more points without sacrificing efficiency, since the key
parameters is the number of random samples. Of course, with a higher resolution grid, a
larger number of random samples is required to hit a ‘’good” solution.

Based on these points, one can conclude that the number of grid points is a hyper-parameter that
must be specified (and/or tuned). Note that with the L-BFGS implementation used, we do not
need any prior information regarding the problem physics, nor do we need to select step-sizes,
making it the most robust.

4.3.2 Black-box model

We observe that despite the nonconvexity, the contrived numerical framework, and the numerical
gradient computations, we can arrive at a (local) minima for the problem for reasonable material
fits. The main drawbacks are of course 1) computational times are intensive, since each iteration,
the model is probed1 d + 1 times to compute the gradients, a la (3.23), and 2) the gradient
computations are noisy. In fact, a proper analysis is required to assess the validity of the exercise,
however, from analyses of stochastic gradient descent, we assume that the method should behave
properly [3].

1Probing the model can be costly, depending on application.
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Chapter 5

Conclusion

In this report, we took a look at fitting nonconvex biomechanics energy functions to experimental
data. We found that the nonconvexity can lead to spurious results if the modeler is not careful
when fitting. We also found that efficient iterative convex optimization methods can be used with
the proper initial guess.

Newton methods are preferred due to their fast convergence but suffer from 1) convergence only near
the solution and 2) costly inversion of the Hessian (even for efficient sparse Cholesky factorizations).
The second point is not an issue in general for mechanics problems, since the number of data points
tends to be small, but the first point is an issue for our nonconvex problems. We found the L-BFGS
to be a feasible alternative. The other is the Levenberg-Marquardt method, hence its popularity
in this type of problem.

Finally, we introduced a framework for using numerical gradients to fit general non-analytic frame-
works, such as the commonly used finite element method.

5.1 Limitations and future work

5.1.1 Warm-start

Convergence of the warm-start gradient methods required a good initial guess, which we did by
hand-tuning. A more robust approach is to use a few random-search iterations to generate some
trial points, some of which should converge to an optimum.

5.1.2 Global optimality

One issue we did not address is local optimality: Is the solution we converge to globally optimal?
From the data-fit curves, we found that in the “eyeball norm,” even the local optima are sufficient
from an engineer’s perspective. Global optimization methods like genetic algorithms [7] can be used

20



to find global optima. Another approach, like above, is to use an embedded procedure in which
several random search iterations are used to warm-start the gradient methods.

5.1.3 Robust black-box optimizers

The numerical gradients used to optimize the black-box models are noisy. A more robust approach
is warranted. Furthermore, a proper analysis of the convergence of the method is required.
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