
Polynomial Proof Systems, Effective Derivations, and their
Applications in the Sum-of-Squares Hierarchy

Benjamin Weitz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-38
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-38.html

May 9, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Polynomial Proof Systems, Effective Derivations, and their Applications in the
Sum-of-Squares Hierarchy

by

Benjamin Weitz

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Prasad Raghavendra, Chair
Professor Satish Rao

Professor Nikhil Srivastava
Professor Luca Trevisan

Spring 2017

Polynomial Proof Systems, Effective Derivations, and their Applications in the
Sum-of-Squares Hierarchy

Copyright 2017
by

Benjamin Weitz

1

Abstract

Polynomial Proof Systems, Effective Derivations, and their Applications in the
Sum-of-Squares Hierarchy

by

Benjamin Weitz

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Prasad Raghavendra, Chair

Semidefinite programming (SDP) relaxations have been a popular choice for approximation
algorithm design ever since Goemans and Williamson used one to improve the best approx-
imation of Max-Cut in 1992. In the effort to construct stronger and stronger SDP relax-
ations, the Sum-of-Squares (SOS) or Lasserre hierarchy has emerged as the most promising
set of relaxations. However, since the SOS hierarchy is relatively new, we still do not know
the answer to even very basic questions about its power. For example, we do not even know
when the SOS SDP is guaranteed to run correctly in polynomial time!

In this dissertation, we study the SOS hierarchy and make positive progress in under-
standing the above question, among others. First, we give a sufficient, simple criteria which
implies that an SOS SDP will run in polynomial time, as well as confirm that our criteria
holds for a number of common applications of the SOS SDP. We also present an example
of a Boolean polynomial system which has SOS certificates that require 2O(

√
n) time to find,

even though the certificates are degree two. This answers a conjecture of [54].
Second, we study the power of the SOS hierarchy relative to other symmetric SDP re-

laxations of comparable size. We show that in some situations, the SOS hierarchy achieves
the best possible approximation among every symmetric SDP relaxation. In particular, we
show that the SOS SDP is optimal for the Matching problem. Together with an SOS lower
bound due to Grigoriev [32], this implies that the Matching problem has no subexponen-
tial size symmetric SDP relaxation. This can be viewed as an SDP analogy of Yannakakis’
original symmetric LP lower bound [72].

As a key technical tool, our results make use of low-degree certificates of ideal membership
for the polynomial ideal formed by polynomial constraints. Thus an important step in our
proofs is constructing certificates for arbitrary polynomials in the corresponding constraint
ideals. We develop a meta-strategy for exploiting symmetries of the underlying combinatorial
problem. We apply our strategy to get low-degree certificates for Matching, Balanced
CSP, TSP, and others.

i

To my wonderful parents, brother, and girlfriend.

ii

Contents

Contents ii

1 Introduction 1
1.1 Combinatorial Optimization and Approximation 1
1.2 Convex Relaxations . 2
1.3 Sum-of-Squares Relaxations . 4
1.4 Polynomial Ideal Membership and Effective Derivations 6
1.5 Contribution of Thesis . 7
1.6 Organization of Thesis . 7

2 Preliminaries 9
2.1 Notation . 9
2.2 Semidefinite Programming and Duality . 10
2.3 Polynomial Ideals and Polynomial Proof Systems 11
2.4 Combinatorial Optimization Problems . 16
2.5 SDP Relaxations for Optimization Problems 17
2.6 Polynomial Formulations, Theta Body and SOS SDP Relaxations 19
2.7 Symmetric Relaxations . 23

3 Effective Derivations 26
3.1 Gröbner Bases . 26
3.2 Proof Strategy for Symmetric Solution Spaces 27
3.3 Effective Derivations for Matching . 28
3.4 Effective Derivations for TSP . 32
3.5 Effective Derivations for Balanced-CSP 37
3.6 Boolean Sparse PCA . 42
3.7 Optimization Problems with Effective Derivations 46

4 Bit Complexity of Sum-of-Squares Proofs 48
4.1 Conditions, Definitions, and the Main Result 49
4.2 How Hard is it to be Rich? . 51
4.3 Optimization Problems with Rich Solution Spaces 53

iii

4.4 Proof of the Main Theorem . 55
4.5 A Polynomial System with No Efficient Proofs 57

5 Optimal Symmetric SDP Relaxations 63
5.1 Theta Body Optimality . 63
5.2 Optimality for TSP . 67
5.3 Lower Bounds for the Matching Problem 69

6 Future Work 71

Bibliography 73

iv

Acknowledgments

First, I would like to thank my advisor Prasad Raghavendra for the invaluable help and
time he has given me over the last five years at UC Berkeley. He is undoubtedly the person
second-most responsible for the creation of this document. My stay at Berkeley was not
always easy, and I passed long periods of time without achieving results, which ended with
me feeling frustrated and hopeless. Despite this, Prasad was always willing to devote time
and talk with me, on subjects both mathematical and otherwise. His mind is truly incredible,
and I was always amazed by how quickly he could imagine new and different approaches to
problems we were stuck on. Thanks to his assistance, I am now graduating and I am excited
for the future. Thank you so much, Prasad!

I would also like to thank Chris Umans (also a Berkeley alum), who was one of my
favorite professors at Caltech. Chris was the first person who showed me what research in
Theoretical Computer Science was like, and he helped cultivate my interest in it during my
time at Caltech. He was also a fantastic teacher, and his classes were a joy to attend. He is
probably third-most responsible for this thesis, as without him I may not have even come to
graduate school.

Thanks are also in order for Satish Rao, Nikhil Srivastava, and Luca Trevisan for serving
on both my Qualifying Committee and my Dissertation Committee. Thank you for taking
time out your schedule to listen to me ramble.

I would also like to thank my many graduate student peers at Berkeley (and one tech-
nically from Stanford) for sharing many of the experiences of the past five years with me.
I would particularly like to thank Jonah Brown-Cohen, Rishi Gupta, Alex Psomas, Aviad
Rubinstein, Jarett Schwartz, Ning Tan and Tselil Schramm. Each of you has been a great
friend to me, and contributed in no small part to my happiness during my time at Berkeley.
I will miss all of you greatly.

My girlfriend Irene deserves more than I could possibly write in the small space provided
to me. You have happily supported me in the pursuit of all of my goals, both academic and
otherwise. That means everything to me, and I love you very much. I cannot wait to see
what the future has in store for us.

Finally, I want to thank my loving mother, father, and brother. Each of you has provided
me with plenty of advice when times were tough for me, and it is thanks to you that I was
even in the position to begin to attempt this thesis in the first place. In many respects, you
are partly responsible for all of my achievements because you raised me. Luckily, I think you
did a pretty darn good job of it. I know I do not call as often as you would like, but know
that I love each of you to a large degree.

1

Chapter 1

Introduction

1.1 Combinatorial Optimization and Approximation

Combinatorial optimization problems have been intensely studied by mathematicians and
computer scientists for many years. Here we mean any computational task which involves
maximizing a function over some discrete set of feasible solutions. The function to maximize
is given as input to an algorithm, which attempts to find the feasible solution which achieves
the best value. Here are a few examples of problems which will appear repeatedly throughout
this thesis:

Example 1.1.1. The Matching problem is, given a graph G = (V,E), compute the size
of the largest subset F ⊆ E such that any two edges e1, e2 ∈ F are disjoint.

Example 1.1.2. The Traveling Salesperson, or TSP problem is, given a set of points
X and a distance function d : X×X → R+, compute the least distance traveled by any tour
which visits every point in X exactly once and returning to the starting point.

Example 1.1.3. The c-Balanced CSP problem is, given Boolean formulas φ1, . . . , φm,
compute the largest number of φ1, . . . , φm that can be simultaneously satisfied by an assign-
ment with a c-fraction of variables assigned true.

Computer scientists initially began studying combinatorial optimization problems be-
cause they appear frequently in both practice and theory. For example, TSP naturally
arises when trying to plan school bus routes and Matching clearly emerges when trying
to match medical school graduates to hospitals for residency. Unfortunately for the school
bus driver, solving TSP has proven to be exceedingly difficult because optimizing such
routes is NP-hard [43]. Indeed, almost all combinatorial problems of interest are NP-hard
(Matching is a notable exception), and are thus believed to be computationally intractable.
The barrier of NP-hardness for solving these problems has been in place since the 1970s.

In an attempt to overcome this roadblock, the framework of approximation algorithms
emerged a few years later in 1976 [64]. Rather than trying to exactly solve TSP by finding

CHAPTER 1. INTRODUCTION 2

the route that minimizes the distance traveled, an approximation algorithm attempts to find
a route that is not too much longer than the minimum possible route. For example, maybe
the algorithm finds a route that is guaranteed to be at most twice the length of the minimum
route, even though the minimum route itself is impossible to efficiently compute. A wide
variety of algorithmic techniques have been brought to bear on approximation problems. In
this work we will focus on writing convex relaxations for combinatorial problems in order to
approximate them.

1.2 Convex Relaxations

A popular strategy in approximation algorithm design is to develop convex relaxations for
combinatorial problems, as can be seen for example in [28, 70, 2, 48]. Since the solution
space for combinatorial problems is discrete, we frequently know of no better maximization
technique than to simply evaluate a function on every point in the space. However, if we
embed the combinatorial solutions somehow in a continuous space and the combinatorial
function as a continuous function f , we can enlarge the solution space to make it convex.
The enlarged space is called the feasible region of the convex relaxation. If we choose our
feasible region carefully, then standard convex optimization techniques can be applied to
optimize f over it. Because the new solution space is larger than just the set of discrete
solutions, the value we receive will be an overestimate of the true discrete maximum of f . We
want the convex relaxation to be a good approximation in the sense that this overestimate
is not too far from the true maximum of f .

Example 1.2.1 (Held-Karp relaxation for TSP). Given an instance of TSP, i.e. distance
function d : [n] × [n] → R, for every tour τ (a cycle which visits each i ∈ [n] exactly once),
let (χτ)ij = 1 if τ visits j immediately after or before i. Each χτ is an embedding of a tour

τ in R(n2). Then

K =

x
∣∣∣∣∀S ⊂ [n] :

∑
(i,j)∈S×S

xij ≥ 2,∀ij : 0 ≤ xij ≤ 1

and the function f =

∑
ij xij is a convex relaxation for TSP. In fact, when d is a metric,

minK f is at least 2/3 the true minimum.

Proving that a relaxation is a good approximation is usually highly non-trivial, and is
frequently done by exhibiting a rounding scheme. A rounding scheme is an algorithm that
takes a point in the relaxed body and maps it to one of the original feasible solutions for the
combinatorial problem. Rounding schemes are designed so that they output a point with
approximately the same value, i.e. within a multiplicative factor of ρ. This implies that
minimizing over the relaxed body gives an answer that is within a factor of ρ of minimizing
over the discrete solutions. As an example, Christofides’ approximation for TSP [19] can

CHAPTER 1. INTRODUCTION 3

be interpreted as a rounding algorithm for the Held-Karp relaxation which achieves an
approximation factor of 3/2.

In this thesis we will consider a particular kind of convex relaxation, called a semidefinite
program (SDP). In an SDP, the enlarged convex body is the intersection of an affine plane
with the cone of positive semidefinite (PSD) matrices, that is, the set of symmetric matrices
which have all non-negative eigenvalues. The Ellipsoid Algorithm (a detailed history of
which can be found in [1]) can be used to optimize a linear function over convex bodies
in time polynomial in the dimension1 so long as there is an efficient procedure to find a
separating hyperplane for points outside the body. If a matrix is not PSD, then it must have
an eigenvector with a negative eigenvalue. This eigenvector forms a separating hyperplane,
and since eigenvector computations can be performed efficiently, the Ellipsoid Algorithm can
be used to efficiently optimize linear functions over the feasible regions of SDPs.

SDPs are generalizations of linear programs (LPs), which are convex relaxations whose
feasible regions are the intersection of an affine plane with the non-negative orthant. LPs
have enjoyed extensive use in approximation algorithms (see [71] for an in-depth discussion).
Since the non-negative orthant can be obtained as a linear subspace of the PSD cone (the
diagonal of the matrices), SDPs should be able to provide stronger approximation algorithms
than LPs.

SDPs first appeared in [49] as a method to study approximation of the Independent Set
problem. The work of [28] catapulted SDPs to the cutting edge of approximation algorithms
research when the authors wrote an SDP relaxation with a randomized rounding algorithm
for the Max Cut problem, achieving the first non-trivial, polynomial-time approximation.
We now know that this result separates SDPs from LPs, as [15] implies that any LP relaxation
achieving such approximation for Max Cut must be exponential size. In fact, the SDP of
[28] is so effective for this problem that it remains the best polynomial-time approximation
for Max Cut we know, even decades years later. Since then SDPs have seen a huge amount
of success in the approximation world for a wide variety of problems, including clustering
[56], tensor decomposition [68], Vertex Cover [41], Sparsest Cut [2], graph coloring [17],
and especially constraint satisfaction problems (CSPs) [26, 33, 16]. In fact, if a complexity
assumption called the Unique Games Conjecture [44] is true, then the work of Raghavendra
[59] implies that SDP relaxations provide optimal approximation algorithms for CSPs; to
develop a better algorithm would prove P=NP.

The success of SDPs has prompted significant investigation into the limits of their power.
For Boolean combinatorial problems, in principle one could write an SDP with an exponential
number of variables that exactly solves the problem. However, such an SDP would not
be of much use since even the Ellipsoid Algorithm would require an exponential amount
of time to solve the SDP. The study of lower bounds for SDPs has thus been focused on
proving that approximating a combinatorial problem requires an SDP with a large number of

1Actually the runtime of the Ellipsoid Algorithm also depends polynomially on logR, where R is the
radius of the smallest ball intersecting the feasible region of the SDP. This technical requirement is usually
not an issue for most SDPs, but it will turn out to be important for studying the SOS hierarchy, which will
see a bit later.

CHAPTER 1. INTRODUCTION 4

variables. This can be seen as a continuation of the work on LP lower bounds of Yannakakis
[72], in which he proved that the Matching problem has no symmetric LP relaxation of
subexponential size. The symmetric requirement was finally dropped 25 years later by [63],
and more asymmetric lower bounds were given in [24] for TSP and [15] for CSPs. However,
SDP relaxations are fairly new compared to LP relaxations, and there are significantly
fewer examples of strong SDP lower bounds. The existence of 0/1 polytopes that require
exponential-size exact SDP relaxations is proven in [11]. In [23] and [47] the authors provide
exponential symmetric SDP lower bounds for CSPs, and [46] are able to drop the symmetry
requirement, again for CSPs.

1.3 Sum-of-Squares Relaxations

There is a particular family of SDP relaxations which has received a great deal of atten-
tion recently as a promising tool for approximation algorithms. Called the Sum-of-Squares
(SOS) or Lasserre relaxations, they first appeared in [66, 55, 45] as a sequence of SDPs that
eventually exactly converge to any 0/1 polytope. They have recently formed the foundation
of algorithms for many different problems, ranging from tensor problems [68, 4, 37, 57] to
Independent Set [18], Knapsack [42], and CSPs and TSP [61, 47]. There has even been
hope among computer scientists that the SOS relaxations could represent a single, unified
algorithm which achieves optimal approximation guarantees for many, seemingly unrelated
problems [5]. We give a brief description of the SOS relaxations here and give a more precise
definition in Section 2.6.

We consider a polynomial embedding of a combinatorial optimization problem, i.e. there
are sets of polynomials P and Q such that solving

max r(x)

s.t. p(x) = 0, ∀p ∈ P
q(x) ≥ 0,∀q ∈ Q

is equivalent to solving the original combinatorial problem. This is not unusual, and indeed
every combinatorial optimization problem has such an embedding. One way to solve such an
optimization problem is to pick some θ and check if θ − r(x) is non-negative on the feasible
points. If we can do this, then by binary search we can compute the maximum of r quickly.
But how can we check if θ − r(x) is non-negative? The SOS relaxations attempt to express
θ − r(x) as a sum-of-squares polynomial, modulo the constraints of the problem. In other
words, they try to find a polynomial identity of the form

θ − r(x) =
∑
i

h2
i (x) +

∑
q∈Q

(∑
j

h2
qj(x)

)
q(x) +

∑
p∈P

λp(x)p(x)

for some polynomials {hi}, {hqj}, {λp}. We call such an identity an SOS proof of non-
negativity for θ− r(x). If such an identity exists, then certainly θ− r(x) is non-negative on

CHAPTER 1. INTRODUCTION 5

any x satisfying the constraints. Unless we hope to break the NP-hardness barrier, looking
for any such identity is intractable, so we consider relaxing the problem to checking for the
existence of such an identity that uses only polynomials up to degree 2d. The existence of a
degree 2d identity turns out to be equivalent to the feasibility of a certain SDP of size nO(d)

(see Section 2.6 for specifics), which we call the degree-d or dth SOS SDP.
While the SOS relaxations have been popular and successful, they are still relatively

new, and so our knowledge about them is far from complete. There are even very basic
questions about them for which we do not know the answer. In particular, we do not even
know when we can solve the SOS relaxations in polynomial time! Because the dth SOS
relaxation is a semidefinite program of size nO(d), it is often claimed that any degree-d proof
can be found in time polynomial in nO(d) via the Ellipsoid algorithm. However, this claim
was debunked very recently by Ryan O’Donnell in [54]. He noted that complications could
arise if every proof of non-negativity involves polynomials with extremely large coefficients,
and furthermore, he gave an explicit example showing that it is possible for this to occur.
Resolving this issue is of paramount importance, as the SOS relaxations lie at the heart of
so many approximation algorithms. In this dissertation, we continue this line of work with
some positive and negative results discussed in Section 1.5.

Another open area of research is investigating the true power of the SOS relaxations.
Since we know SOS relaxations provide good approximation for so many computational
problems, it is natural to continue to apply them to new problems. This is a worthy pursuit,
but not one that will be explored in this work. An alternative approach would be to try to
identify for which problems the SOS relaxations do not provide good approximations. For
any Boolean optimization problem, if d is large enough, then the dth SOS relaxation will solve
the problem exactly. However, if d is too large, then the SDP will have a super-polynomial
number of variables, so that even the Ellipsoid Algorithm cannot solve it in polynomial
time. Thus as for general SDP lower bounds, it is common to rephrase this question by
giving a lower bound on the degree of the SOS relaxation required to achieve a good enough
approximation. The degree-d SOS relaxation is size nO(d), so if d is super-constant then the
size of the SDP is super-polynomial. This area of research has been much more fruitful than
general SDP lower bounds, as the SOS relaxations are concrete objects which are more easily
reasoned about. In [32], Grigoriev gives a linear degree lower bound against the Matching
problem. A sequence of results [52, 21, 60, 36, 6] all give lower bounds against the Planted
Clique problem. SOS lower bounds for Densest k-Subgraph are given in [8]. Different
CSP problems are considered in [65, 58, 27, 69, 46]. Proving more lower bounds is also a
noble goal, but this thesis will focus on a slightly different evaluation of the effectiveness of
the SOS relaxations.

Rather than evaluating the SOS relaxations by how good an approximation they achieve
in the absolute sense, we will be evaluating them relative to other SDPs. In particular, we will
explore whether or not there exist other SDPs which perform better than the SOS relaxations.
Previously, [47, 46] proved that the SOS relaxations provide the best approximation among
SDPs of a comparable size for CSPs. We will explore the more restricted setting of [47],
where the other SDP relaxations we measure against must be symmetric in some sense, i.e.

CHAPTER 1. INTRODUCTION 6

respect the natural symmetries of the corresponding combinatorial optimization problem
(see Section 2.7 for details).

1.4 Polynomial Ideal Membership and Effective

Derivations

In order to study the SOS relaxations, in this dissertation we use as a technical tool polyno-
mial proof systems and the existence of low-degree polynomial proofs. Here we introduce a
bit of background on these tools. The polynomial ideal membership problem is the follow-
ing computational task: Given a set of polynomials P = {p1, . . . , pn} and a polynomial r,
we want to determine if r is in the ideal generated by P or not, denoted 〈P〉. This prob-
lem was first studied by Hilbert [35], and has applications in solving polynomial systems
[20] and polynomial identity testing [3]. The theory of Gröbner bases [12] originated as a
method to solve the membership problem. Unfortunately, the membership problem is EX-
PSPACE-hard to solve in general [51, 38]. Luckily this will not impede us too much, since
we will be studying this problem for the very special instances that correspond to common
combinatorial optimization problems.

The membership problem is easily solvable if there exist low-degree proofs of membership
for the ideal 〈P〉. Note that r ∈ 〈P〉 if and only if there exists a polynomial identity

r(x) =
∑
p∈P

λp(x)p(x)

for some polynomials {λp | p ∈ P}. We call such a polynomial identity a derivation or proof
of membership for r from P . If we had an a priori bound on the degree required for this
identity, we could simply solve a system of linear equations to determine the coefficients of
each λp. The Effective Nullstellensatz [34] tells us that we can take d ≤ (deg r)2|P| . This
bound is not terribly useful, because we would need to solve an enormous linear system.
This is unavoidable in general because of the EXPSPACE-hardness, but in specific cases
we could hope for a better bound on d. In particular, the polynomial ideals that arise
from combinatorial optimization problems frequently have nice properties that make them
much more reasonable than arbitrary polynomial ideals. For example, these ideals are often
Boolean (and thus have finite solution spaces) and highly symmetric. In these cases, we
could hope for a much better degree bound.

This problem has been studied in [7, 14, 31, 13], mostly in the context of lower bounds. In
these works the problem is referred to as the degree of Nullstellensatz proofs of membership
for r. In this work we will continue to study this problem, however we will be mostly
interested in upper bounds on the required degree. We will be able to use the existence of
low-degree Nullstellensatz proofs for combinatorial ideals to study the SOS relaxations.

CHAPTER 1. INTRODUCTION 7

1.5 Contribution of Thesis

In the first part of this thesis, to set the stage for analyzing the SOS relaxations, we give
upper bounds on the required degree for Nullstellensatz proofs for many ideals arising from
a number of combinatorial problems, including Matching, TSP, and Balanced CSP. In
particular, we prove that if P is a set of polynomials corresponding to Matching, TSP,
or Balanced CSP and r ∈ 〈P〉,2 then r has a Nullstellensatz proof degree at most k deg r
for k ≤ 3. This implies that the polynomial ideal membership problem for these ideals has
a polynomial-time solution. We achieve results for so many different ideals because we de-
velop a meta-strategy which exploits the symmetries present in the underlying combinatorial
optimization problems in order to give good upper bounds.

Recall that the Ellipsoid Algorithm can be used to solve the SOS relaxations in polyno-
mial time so long as the bit complexity of the SOS proof it is trying to find is polynomially
bounded. The second part of the thesis is devoted to studying this problem of bit complexity
in SOS proofs. Our main contribution is to show that SOS proofs for Planted Clique,
Max CSP, TSP, Bisection, and some others can be taken to have polynomial bit com-
plexity. This implies that SOS relaxations for these problems do indeed run in polynomial
time, patching a potential problem with several known approximation algorithms. We prove
this result by giving a set of criteria for the constraints P and Q, one of which is that any
polynomial r ∈ 〈P〉 has Nullstellensatz proofs of bounded degree. This partially motivates
our study of Nullstellensatz proofs. On the negative side, we provide an example of a set of
polynomials P containing Boolean constraints and a polynomial r which has a degree-two
SOS proof of non-negativity, but every SOS proof up until degree Ω(

√
n) requires coeffi-

cients of size roughly 22
√
n
. This refutes a conjecture of [54] that simply containing Boolean

constraints suffices for polynomial bit complexity.
The final part of the thesis investigates the power of the SOS relaxations, especially for

the Matching problem. In particular, we prove the SDP version of Yannakakis’ LP lower
bound for Matching: The Matching problem has no subexponential-size symmetric SDP
achieving a non-trivial approximation. We prove this by extending the techniques of [47] to
Matching and show that the degree-d SOS relaxation achieves the best approximation of
any symmetric SDP of about the same size. Together with the SOS lower bound of Grigoriev
[32], this gives us the exponential lower bound. We prove a similar SOS optimality result for
TSP and Balanced CSP, but there are no currently known SOS lower bounds for these
problems.

1.6 Organization of Thesis

Chapter 2 will contain preliminary and background discussion on mathematical concepts
needed. We will precisely define many of the objects discussed in this introduction, including

2Technically, for c-Balanced CSP we also require that deg r ≤ c. This is due to a specific obstruction
for higher degree polynomials, and the details are in Section 3.5.

CHAPTER 1. INTRODUCTION 8

combinatorial optimization problems, SDP relaxations, and the SOS relaxations themselves.
In Chapter 3 we will discuss low-degree proofs of membership and compile a (non-exhaustive)
list of combinatorial optimization problems which admit such proofs. In Chapter 4, we
discuss the bit complexity of SOS proofs, and show how low-degree proofs can be used
to prove the existence of SOS proofs with small bit complexity. In Chapter 5 we discuss
the optimality of the SOS relaxations, and show how this implies an exponential size lower
bound for approximating the Matching problem. Finally, in Chapter 6 we discuss a few
open problems continuing the lines of research of this thesis.

9

Chapter 2

Preliminaries

In this chapter we define and discuss the basic mathematical concepts needed for this dis-
sertation.

2.1 Notation

In this section we clarify the basic notation that will be used throughout this thesis. We will
use [n] for the set {1, 2, . . . , n}, and [

(
n
2

)
] for the set {(i, j) | i, j ∈ [n], i 6= j}. For two vectors

u and v, we use u · v to denote the inner product
∑

i uivi. For a matrix A, we use AT to
denote the transpose of A. For matrices A and B with the same dimensions, we use A ·B or
〈A,B〉 to denote the inner product Tr[ABT] =

∑
ij AijBij. We will also use · to emphasize

multiplication. We use R+ to denote the space of positive reals, and Rm×n to denote the
space of m× n matrices. We use Sn to denote the space of n× n symmetric matrices.

Definition 2.1.1. A matrix A ∈ Sn is called positive semidefinite (PSD) if any of the
following equivalent conditions holds:

• vTAv ≥ 0 for every v ∈ Rn.

• A =
∑

i λiviv
T
i for some λi ≥ 0 and vi ∈ Rn.

• Every eigenvalue of A is non-negative.

• A ·B ≥ 0 for every positive semidefinite B.

We use Sn+ to denote the space of positive semidefinite n×n matrices, and we write A � 0
interchangeably with A ∈ Sn+. If every eigenvalue of A is positive, then we say A is positive
definite and write A � 0. The set of positive definite matrices is the interior of the set of
positive semidefinite matrices.

For any matrix or vector, we use ‖ · ‖ to denote the maximum entry of that matrix or
vector, often represented ‖·‖∞ in other works. In this thesis we will not use any other norms,
so we find it most convenient to just omit the subscript.

CHAPTER 2. PRELIMINARIES 10

We use R[x1, . . . , xn] to denote the space of polynomials on variables x1, . . . , xn, and
R[x1, . . . , xn]d for the space of degree d polynomials. For a fixed integer d to be understood
from context and a polynomial p of degree at most d, let N =

(
n+d−1

d

)
. We use p̃ for the

element of RN which is the vector of coefficients of p up to degree d. We use x⊗d to denote
the vector of monomials such that p(x) = p̃ · x⊗d.

If p is a polynomial of degree at most 2d, then we also use p̂ for an element of RN×N such
that p(x) = p̂ ·x⊗d(x⊗d)T . Since multiple entries of x⊗d(x⊗d)T are equal, there are multiple
choices for p̂, for concreteness we choose the one that evenly distributes the coefficient over
the equal entries. Now p =

∑
i q

2
i for some polynomials qi if and only if p̂ =

∑
i q̃iq̃

T
i , i.e.

p̂ ∈ SN+ . We use ‖p‖ to denote the largest absolute value of a coefficient of p. If P is a set of
polynomials, then ‖P‖ = maxp∈P ‖p‖.

2.2 Semidefinite Programming and Duality

In order to explore the power of the Sum-of-Squares relaxations, first we need to explain
what a semidefinite program is. In this section we define semidefinite programs and their
duals, which are also semidefinite programs.

Definition 2.2.1. A semidefinite program (SDP) of size d is a tuple (C, {Ai, bi}mi=1) where
C,Ai ∈ Rd×d for each i, and bi ∈ R for each i. The feasible region of the SDP is the set
S = {X | ∀i : Ai ·X = bi, X ∈ Sd+}. The value of the SDP is maxX∈S C ·X.

Fact 2.2.2. There is an algorithm (referred to as the Ellipsoid Algorithm in this thesis) that,
given an SDP (C, {Ai, bi}mi=1) whose feasible region S intersects a ball of radius R, computes
the value of that SDP up to accuracy ε in time polynomial in d, maxi (log ‖Ai‖, log |bi|),
log ‖C‖, logR, and 1

ε
.

Definition 2.2.3. The dual of an SDP (C, {Ai, bi}mi=1) is the optimization problem (with
variables (y, S)):

min
y,S

b · y

s.t.
∑
i

Aiyi − C = S

S � 0.

The value of the dual is the value of the optimum b · y∗.

The following is a well-known fact about strong duality for SDPs, due to Slater [67].

Lemma 2.2.4 (Slater’s Condition). Let P be the SDP (C, {Ai, bi}mi=1) and let D be its dual.
If X is feasible for P and (y, S) is feasible for D, then C ·X ≤ b ·y. Moreover, if there exists
a strictly feasible point X for P or (y, S) D, that is, a feasible X with X � 0 or a feasible
(y, S) with S � 0, then valP = valD.

CHAPTER 2. PRELIMINARIES 11

2.3 Polynomial Ideals and Polynomial Proof Systems

We write p(x) or sometimes just p for a polynomial in R[x1, . . . , xn], and P for a set of
polynomials. We will often also use q and r for polynomials and Q for a second set of
polynomials.

Definition 2.3.1. Let P ,Q be any sets of polynomials in R[x1, . . . , xn], and let S be any
set of points in Rn.

• We call V (P) = {x ∈ Rn | ∀p ∈ P : p(x) = 0} the real variety of P .

• We call H(Q) = {x ∈ Rn | ∀q ∈ Q : q(x) ≥ 0} the positive set of Q.

• We call I(S) = {p ∈ R[x1, . . . , xn] | ∀x ∈ S : p(x) = 0} the vanishing ideal of S.

• We denote 〈P〉 = {q ∈ R[x1, . . . , xn] | ∃λp(x) : q =
∑

p∈P λp · p} for the ideal generated
by P .

• We call P complete if 〈P〉 = I(V (P)).

• If P is complete, then we write p1
∼= p2 mod 〈P〉 if p1 − p2 ∈ 〈P〉 or, equivalently, if

p1(α) = p2(α) for each α ∈ V (P).

Gröbner bases are objects first considered in [12] as a way to determine if a polynomial
r is an element of 〈P〉. We define them here and include some of their important properties.

Definition 2.3.2. Let � be an ordering on monomials such that, for three monomials u, v,
and w, if u � v then uw � vw. We say that P is a Gröbner Basis for 〈P〉 (with respect to
�) if, for every r ∈ 〈P〉, there exists a p ∈ P such that the leading term of r is divisible by
the leading term of p.

Example 2.3.3. Consider the polynomials on n variables x1, . . . , xn and let � be the degree-
lexicographic ordering, so that for two monomials u, and v, u � v if the vector of degrees of
u is larger than the vector of v in the lexicographic ordering. Then P = {x2

i − xi | i ∈ [n]}
is a Gröbner Basis. The proof is in the proof of Corollary 3.1.2.

If P is a Gröbner basis, then it is a nice generating set for 〈P〉 in the sense that it is
possible to define a multivariate division algorithm for 〈P〉 with respect to P .

Definition 2.3.4. Let � be an ordering of monomials such that if xU � xV then xUxW �
xV xW . We say a polynomial q is reducible by a set of polynomials P if there exists a p ∈ P
such that some monomial of q, say cQxQ, is divisible by the leading term of p, cPxP . Then
a reduction of q by P is q − cQ

cP
xQ\P · p. We say that a total reduction of q by P is a

polynomial obtained by iteratively applying reductions until we reach a polynomial which is
not reducible by P .

CHAPTER 2. PRELIMINARIES 12

In general the total reductions of a polynomial q by a set of polynomials P is not unique
and depends on which polynomials one chooses from P to reduce by, and in what order.
So it does not make much sense to call this a division algorithm since there is not a unique
remainder. However, when P is a Gröbner basis, there is indeed a unique remainder.

Proposition 2.3.5. Let P be a Gröbner basis for 〈P〉 with respect to �. Then for any
polynomial q, there is a unique total reduction of q by P. In particular if q ∈ 〈P〉, then the
total reduction of q by P is 0. The converse is also true, so if P is a set of polynomials such
that any polynomial q ∈ 〈P〉 has unique total reduction by P equal to 0, then P is a Gröbner
basis.

Proof. When we reduce a polynomial q by P , the resulting polynomial does not contain one
term of q, since it was canceled via a multiple of p for some polynomial p ∈ P . Because it was
canceled via the leading term of p, no higher monomials were introduced in the reduction.
Thus as we apply reduction, the position of the terms of q monotonically decrease. This
has to terminate at some point, so there is a remainder r which is not reducible by P . To
prove that r is unique, first notice that the result of total reduction is a polynomial identity
q = p + r, where p ∈ 〈P〉 and r is not reducible by P . If there are multiple remainders
q = p1 + r1 and q = p2 + r2, then clearly r1 − r2 = p2 − p1 ∈ 〈P〉. By the definition of
Gröbner Basis, r1 − r2 must have its leading term divisible by the leading term of some
p ∈ P . But the leading term of r1 − r2 must come from either r1 or r2, neither of which
contain terms divisible by leading terms of any polynomial in P . Thus r1 − r2 = 0.

For the converse, let q ∈ 〈P〉, and note again that any reduction of q by a polynomial in
P does not include higher monomials than the one canceled. Since the only total reduction
of q is 0, its leading term has to be canceled eventually, so it must be divisible by the leading
term of some polynomial in P .

Testing Zero Polynomials

This section discusses how to certify that a polynomial r(x) is zero on all of some set S. In
the main context of this thesis, we have access to some polynomials P such that S = V (P).
When P is complete, testing if r is zero on S is equivalent to testing if r ∈ 〈P〉. One obvious
way to do this is to simply brute-force over the points of V (P) and evaluate r on all of them.
However, we are mostly interested in situations where the points of V (P) are in bijection
with solutions to some combinatorial optimization problem. In this case, there are frequently
an exponential number of points in V (P) and this amounts to a brute-force search over this
space. If P is a Gröbner basis, then we could also simply compute a total reduction of r by
P and check if it is 0. However, Gröbner bases are often very complicated and difficult to
compute, and we do not always have access to one. We want a more efficient certificate for
membership in 〈P〉.

CHAPTER 2. PRELIMINARIES 13

Definition 2.3.6. Let P = {p1, p2, . . . , pn} be a set of polynomials. We say that r is derived
from P in degree d if there is a polynomial identity of the form

r(x) =
n∑
i=1

λi(x) · pi(x),

and maxi deg(λi · pi) ≤ d. We often call this polynomial identity a Nullstellensatz (HN)
proof, derivation, or certificate from P . We also write r1

∼=d r2 if r1 − r2 has a derivation
from P in degree d. We write 〈P〉d for the polynomials with degree d derivations from P
(not the degree d polynomials in 〈P〉!).

The following is an important result which connects derivations to the feasibility of a
polynomial system of equations.

Lemma 2.3.7 (Hilbert’s Weak Nullstellensatz [35]). 1 ∈ 〈P〉 if and only if there is no
α ∈ Cn such that p(α) = 0 for every p ∈ P, i.e. P is infeasible.

A derivation of 1 from P is called an HN refutation of P . It is a study of considerable
interest to bound the degree of refutations for various systems of polynomial equations [7,
14, 31, 13]. However, in this thesis we will primarily concern ourselves with feasible systems
of polynomial equations, so we will mostly use the Nullstellensatz to argue that the only
constant polynomial in 〈P〉 is the zero polynomial.

The following lemma is an easy but important fact, which we will use to construct
derivations in Chapter 3.

Lemma 2.3.8. If q0
∼=d1 q1 and q1

∼=d2 q2, then q0
∼=d q2 where d = max(d1, d2).

Proof. We have the polynomial identities

qi − qi+1 =
∑
p∈P

λip · p

for i = 0 and i = 1. Adding the two identities together gives a derivation for q0 − q2. The
degrees of the polynomials appearing in derivation are clearly bounded by max(d1, d2).

The problem of finding a degree-d HN derivation for r can be expressed as a linear
program with nd|P| variables, since the polynomial identity is linear in the coefficients of
the λi. Thus if such a derivation exists, it is possible to find efficiently in time polynomial
in nd|P|, log ‖P‖ and log ‖r‖. These parameters are all polynomially related to the size
required to specify the input: (r,P , d).

Definition 2.3.9. We say that P is k-effective if P is complete and every polynomial p ∈ 〈P〉
of degree d has a HN proof from P in degree kd.

When P is k-effective for constant k, if we ever wish to test membership in 〈P〉 for some
polynomial r, we need only search for a HN proof up to degree k deg r, yielding an efficient
algorithm for the membership problem (this is polynomial time because the size of the input
r is O(ndeg r)).

CHAPTER 2. PRELIMINARIES 14

Testing Non-negative Polynomials with Sum of Squares

Testing non-negativity for polynomials on a set S has an obvious application to optimization.
If one is trying to solve the polynomial optimization problem

max r(x)

s.t. p(x) = 0,∀p ∈ P
q(x) ≥ 0, ∀q ∈ Q,

then one way to do so is to iteratively pick a θ and test whether θ − r(x) is positive on
S = V (P) ∩ H(Q). If we perform binary search on θ, we can compute the maximum of r
very quickly. One way to try and certify non-negative polynomials is to express them as
sums of squares.

Definition 2.3.10. A polynomial s(x) ∈ R[x1, . . . , xn] is called a sum-of-squares (or SOS)
polynomial if s(x) =

∑
i h

2
i (x) for some polynomials hi ∈ R[x1, . . . , xn]. We often use s(x)

to denote SOS polynomials.

Clearly an SOS polynomial is non-negative on all of Rn. However, the converse is not
always true.

Fact 2.3.11 (Motzkin’s Polynomial [53]). The polynomial p(x, y) = x4y2 + x2y4− 3x2y2 + 1
is non-negative on Rn but is not a sum of squares.

Because our goal is to optimize over some set S, we actually only care about the non-
negativity of a polynomial on S rather than on all of Rn.

Definition 2.3.12. A polynomial r(x) ∈ R[x1, . . . , xn] is called SOS modulo S if there is an
SOS polynomial s ∈ I(S) such that r ∼= s mod I(S). If deg s = k then we say r is k-SOS
modulo S. If S = V (P) and P is complete, we sometimes use modulo P instead.

If a polynomial r is SOS modulo S then r is non-negative on S. For many optimization
problems, S ⊆ {0, 1}n. In this case, the converse holds.

Fact 2.3.13. If S ⊆ {0, 1}n and r is a polynomial which is non-negative on S, then r is
n-SOS modulo S.

When we have access to two sets of polynomials P and Q such that S = V (P)∩H(Q), as
in our main context of polynomial optimization, we can define a certificate of non-negativity:

Definition 2.3.14. Let P and Q be two sets of polynomials. A polynomial r(x) is said to
have a degree d proof of non-negativity from P and Q if there is a polynomial identity of the
form

r(x) = s(x) +
∑
q∈Q

sq(x) · q(x) +
∑
p∈P

λp(x) · p(x),

CHAPTER 2. PRELIMINARIES 15

where s(x), and each sq(x) are SOS polynomials, and maxpq(deg s, deg sqq, deg λpp) ≤ d.
We often call this polynomial identity a Positivestellensatz Calculus (PC>) proof of non-
negativity, derivation, or certificate from P and Q. We often identify the proof with the set
of polynomials Π = {s} ∪ {sq | q ∈ Q} ∪ {λp | p ∈ P}.

If Q = ∅ and both r(x) and −r(x) have PC> proofs of non-negativity from P , then we
say that r has a PC> derivation.

If r has a PC> proof of non-negativity from P and Q, then r is non-negative on S =
V (P) ∩ H(Q). This can be seen by noticing that the first two terms in the proof are non-
negative because they are sums of products of polynomials which are non-negative on S, and
the final term is of course zero on S because it is in 〈P〉.

The problem of finding a degree-d proof of non-negativity can be expressed as a semidef-
inite program of size O(nd(|P| + |Q|)) since a polynomial is SOS if and only if its matrix
of coefficients is PSD. Then the Ellipsoid Algorithm can be used to find a degree-d proof of
non-negativity Π in time polynomial in nd(|P|+ |Q|), log ‖r‖, log ‖P‖, log ‖Q‖, and log ‖Π‖.
Nearly all of these parameters are bounded by the size required to specify the input of
(r,P ,Q, d). However, the quantity ‖Π‖ is worrisome; Π is not part of the input and we have
no a priori way to bound its size. One way to argue r has proofs of bounded norm is of
course to simply exhibit one. If we suspect there are no proofs with small norm, there are
also certificates we can find:

Lemma 2.3.15. Let P and Q be sets of polynomials and r(x) be a polynomial. Pick any
p∗ ∈ P. If there exists a linear functional φ : R[x1, . . . , xn]→ R such that

(1) φ[r] = −ε < 0,

(2) φ[λp] = 0 for every p ∈ P except p∗ and λ such that deg(λp) ≤ 2d,

(3) φ[s2q] ≥ 0 for every q ∈ Q and polynomial s such that deg(s2q) ≤ 2d,

(4) φ[s2] ≥ 0 for every polynomial s such that deg(s2) ≤ 2d,

(5) |φ[λp∗]| ≤ δ‖λ‖ for every λ such that deg(λp∗) ≤ 2d.

then every degree-d PC> proof of non-negativity Π for r from P and Q has ‖Π‖ ≥ ε
δ
.

Proof. The proof is very simple. Any degree-d proof of non-negativity for r is a polynomial
identity

r(x) = s(x) +
∑
q∈Q

sq(x) · q(x) +
∑
p∈P
p6=p∗

λp(x) · p(x) + λ∗(x) · p∗(x)

with polynomial degrees appropriately bounded. If we apply φ to both sides, we have

−ε = φ[r] = φ[s] +
∑
q∈Q

φ[sqq] +
∑
p∈P
p 6=p∗

φ[λpp] + φ[λ∗p]

= a1 + a2 + 0 + φ[λ∗p∗],

CHAPTER 2. PRELIMINARIES 16

where a1, a2 ≥ 0 by properties (3) and (4) of φ. Thus φ[λ∗p∗] ≤ −ε, but by property (5), we
must have ‖λ∗‖ ≥ ε

δ
, and thus ‖Π‖ is at least this much as well.

Strong duality actually implies that the converse of Lemma 2.3.15 is true as well (the
reader might notice that φ is actually a hyperplane separating r from the set of polynomials
with bounded coefficients for p∗), but as we only need this direction in this thesis we omit
the proof of the converse. Also note that if δ = 0, i.e. φ satisfies φ[λp∗] = 0, then the lemma
implies there are no proofs of non-negativity for r.

2.4 Combinatorial Optimization Problems

We follow the framework of [9] for combinatorial problems. We define only maximization
problems here, but it is clear that the definition extends easily to minimization problems as
well.

Definition 2.4.1. A combinatorial maximization problem M = (S,F) consists of a finite set
S of feasible solutions and a set F of non-negative objective functions. An exact algorithm
for such a problem takes as input an f ∈ F and computes maxα∈S f(α).

We can also generalize to approximate solutions: Given two functions c, s : F → R called
approximation guarantees, we say an algorithm (c, s)-approximately solves M or achieves
approximation (c, s) onM if given any f ∈ F with maxs∈S f(s) ≤ s(f) as input, it computes
val ∈ R satisfying maxα∈S f(α) ≤ val ≤ c(f). If c(f) = ρs(f), we also say the algorithm
ρ-approximately solves M or achieves approximation ratio ρ on M.

We think of the functions f ∈ F as defining the problem instances and the feasible
solutions α ∈ S as defining the combinatorial objects we are trying to maximize over. The
functions c and s can be thought of as the usual approximation parameters completeness
and soundness. If c(f) = s(f) = maxα∈S f(α), then a (c, s)-approximate algorithm for M
is also an exact algorithm. Here are few concrete examples of combinatorial maximization
problems:

Example 2.4.2 (Maximum Matching). Recall that the Maximum Matching problem is,
given a graph G = (V,E), find a maximum set of disjoint edges. We can express this as a
combinatorial optimization problem for each even n as follows: Kn be the complete graph on
n vertices. The set of feasible solutions Sn is the set of all maximum matchings on Kn. The
objective functions will be indexed by edge subsets of Kn and defined fE(M) = |E ∩M |.
It is clear that for a graph G = (V,E) with |V | = n, the size of the maximum matching in
G is exactly either maxM∈Sn fE(M) or maxM∈Sn+1 fE(M), depending on if n is even or odd
respectively.

Example 2.4.3 (Traveling Salesperson Problem). Recall that the Traveling Salesperson
Problem (TSP) is, given a set X and a function d : X ×X → R+, find a tour τ of X that
minimizes the total cost of adjacent pairs in the tour (including the first and last elements).

CHAPTER 2. PRELIMINARIES 17

This can be cast in this framework easily: the set of feasible solutions S is the set of all
permutations of n elements. The objective functions are indexed by the function d and can
be written fd(τ) =

∑n
i=1 d(τ(i), τ(i+ 1)), where n+ 1 is taken to be 1. TSP is a minimiza-

tion problem rather than a maximization problem, so we ask for the algorithm to compute
minτ∈S f(τ) instead. We could set s(f) = minα∈S f(α) and c(f) = 2

3
minα∈S f(α) and ask

for an algorithm that (c, s)-approximately solves TSP instead (Christofides’ algorithm [19]
is one such algorithm when d is a metric).

Definition 2.4.4. For a problem M = (S,F) and approximation guarantees c and s, the
(c, s)-Slack Matrix M is an operator that takes as input an α ∈ S and an f ∈ F such that
maxα∈S f(α) ≤ s(f) and returns M(α, f) = c(f)− f(α).

The slack matrix encodes some combinatorial properties of M, and we will see in the
next section that certain properties of the slack matrix correspond to the existence of specific
convex relaxations that (c, s)-approximately solve M. In particular, we will see that the
existence of SDP relaxations for M depends on certain factorizations of the slack matrix.

2.5 SDP Relaxations for Optimization Problems

A popular method for solving combinatorial optimization problems is to formulate them as
SDPs, and use generic algorithms such as the Ellipsoid Method for solving SDPs.

Definition 2.5.1. Let M = (S,F) be a combinatorial maximization problem. Then an
SDP relaxation of M of size d consists of

1. SDP: Constraints {Ai, bi}mi=1 with Ai ∈ Rd×d and bi ∈ R and a set of affine objective
functions {wf | f ∈ F} with each wf : Rd×d → R,

2. Feasible Solutions: A set {Xα | α ∈ S} in the feasible region of the SDP satisfying
wf (Xα) = f(α) for each f .

We say that the SDP relaxation is a (c, s)-approximate relaxation or that it achieves (c, s)-
approximation if, for each f ∈ F with maxα∈S f(α) ≤ s(f),

max
X

{
wf (X) | ∀i : Ai ·X = bi, X ∈ Sd+

}
≤ c(f).

If the SDP relaxation achieves a (maxα∈S f(α),maxα∈S f(α))-approximation, we say it is
exact. If c(f) = ρs(f), then we also say the SDP relaxation achieves a ρ-approximation.

Given a (c, s)-approximate SDP formulation forM, we can (c, s)-approximately solveM
on input f simply by solving the SDP maxwf (X) subject to X ∈ Sd+ and ∀i : Ai(X) = bi.

CHAPTER 2. PRELIMINARIES 18

Example 2.5.2. We can embed any polytope in n dimensions with d facets into the PSD
cone of size 2n + d and get an exact SDP relaxation for the optimization problem that
maximizes linear functions over the vertices of P . Let V be the vertices and (A, b) determine
the facets of P , so that

P = conv{α | α ∈ V } = {x : Ax ≤ b},

where A is a d×n matrix. Then we can define new variables x+
i and x−i for each i ∈ [n] and

zj for each j ∈ [d]. Let diag(()X, Y) denote the block-diagonal matrix whose blocks are X
and Y . Then for any vector l ∈ Rn, let l′ = diag(ai,−ai, 0, 0, . . . , 1, 0, 0, . . . , 0), where the 1
is where the ith zero would be. In other words,

l′ · (x+
1 , x

+
2 , . . . , x

+
n , x

−
1 , x

−
2 , . . . , x

−
n , z1, z2, . . . , zd) = l · (x+ − x−) + zi.

Now for any vertex α of P , there is a (x+
α , x

−
α , zα) such that (x+

α − x−α) = α. Thus the SDP
diag(a′i) ·X = bi, X = diag(x+, x−, z), X � 0 with feasible solutions Xα = diag(x+

α , x
−
α , zα)

and objective functions wl(X) = diag(l′) ·X is an SDP relaxation for maximizing any linear
function over the vertices of P . It is easy to see that it is exact.

Now that we have defined SDP relaxations, we wish to know when we can use them to get
good approximations for combinatorial problems. This question has been studied for some
time, originally in the context of linear relaxations. Yannakakis was able to prove a con-
nection between the (c, s)-approximate slack matrix and the existence of (c, s)-approximate
linear relaxations [72]. His work laid the foundation for a number of extensions to other kinds
of convex relaxations. Here we give the generalization for the existence of (c, s)-approximate
SDP relaxations.

Theorem 2.5.3 (Generalization of Yannakakis’ Factorization Theorem). Let M be a com-
binatorial optimization problem with (c, s)-Slack Matrix M(α, f). There exists an (c, s)-
approximate SDP relaxation of size d forM if and only if there exists Xα, Yf ∈ Sd+ and µf ∈
R+ such that Xα · Yf + µf = M(α, f) for each α ∈ S and f ∈ F with maxα∈S f(α) ≤ s(f).
Such Xα and Yf are called a PSD factorization of size d.

(Proof from [9]). First, we prove that if M has such a size d relaxation, then M has a
factorization of size at most d. Let {Ai, bi} be the constraints of the SDP, Xα be the feasible
solutions, and wf be the affine objective functions. We assume that there exists an X such
that Ai · X = bi and Xi � 0 is strictly feasible. Otherwise, the feasible region lies entirely
on a face of Sd+, which itself is a PSD cone of smaller dimension, and we could take an SDP
relaxation of smaller size. For an f ∈ F such that maxα∈S f(α) ≤ s(f), let wf (X) have
maximum w∗ on the feasible region of the SDP. By Lemma 2.2.4, there exists (yf , Yf) such
that

w∗ − wf (X) = Yf ·X −
∑
i

(yf)i(Ai ·X − bi).

CHAPTER 2. PRELIMINARIES 19

Substituting Xα and adding µf = c(f) − w∗ ≥ 0 (the inequality follows because the SDP
relaxation achieves approximation (c, s)), we get

M(α, f) = Yf ·Xα + µf .

For the other direction, let wf (X) = c(f) − µf − Yf · X, let the Xα be the feasible
solutions, and let the constraints be empty, so the SDP is simply X � 0. Then for any f
satisfying the soundness guarantee,

max
X�0

wf (X) = c(f)− µf −min
X�0

Yf ·X = c(f)− µf ≤ c(f).

Clearly the Xα are feasible because they are PSD, and so we have constructed a (c, s)-
approximate SDP relaxation.

2.6 Polynomial Formulations, Theta Body and SOS

SDP Relaxations

In this section we first define what a polynomial formulation for a combinatorial optimization
problem M is, and then use that formulation to derive two families of SDP relaxations for
M: The Theta Body and Sum-of-Squares relaxations.

Definition 2.6.1. A degree-d polynomial formulation on n variables for a combinatorial opti-
mization problemM = (S,F) is three sets of degree-d polynomials P ,Q,O ⊆ R[x1, . . . , xn]d
and a bijection φ between S and V (P) ∩H(Q) such that for each f ∈ F and α ∈ S, there
exists a polynomial of ∈ O with of (φ(α)) = f(α). We will often abuse notation by sup-
pressing the bijection φ and writing α for both an element of S and the corresponding one in
V (P)∩H(Q). We call P the equality constraints, Q the inequality constraints, and O the ob-
jective polynomials. The polynomial formulation is called Boolean if V (P)∩H(Q) ⊆ {0, 1}n.

Example 2.6.2. Matching on n vertices has a degree two polynomial formulation on
(
n
2

)
variables. Let

P =
{
x2
ij − xij | i, j ∈ [n]

}
∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik | i, j, k ∈ [n], j 6= k} .

For a matching M , let (χM)ij = 1 if (i, j) ∈M and 0 otherwise. Then clearly φ(M) = χM is
a bijection, and it is easily verified that every χM ∈ V (P). Finally, for an objective function
fE(M) = |M ∩ E|, we define ofE(x) =

∑
ij:(i,j)∈E xij.

A polynomial formulation forM defines a polynomial optimization problem: given input
of ,

max of (x)

s.t. p(x) = 0,∀p ∈ P
q(x) ≥ 0,∀q ∈ Q.

CHAPTER 2. PRELIMINARIES 20

Solving this optimization problem is equivalent to solving the problem M.
In Section 2.3 we discussed how polynomial optimization problems could sometimes be

solved by searching for PC> proofs of non-negativity. Furthermore, these proofs can be found
using semidefinite programming. It should come as no surprise then that, given a polynomial
formulation forM, there are SDP relaxations based on finding certificates of non-negativity.
The Theta Body relaxation, first considered in [29], is defined only for formulations without
inequality constraints. It finds a certificate of non-negativity for r(x) which is an SOS
polynomial s(x) together with a polynomial g ∈ 〈P〉 such that r(x) = s(x) + g(x).

Let (P ,O, φ) be a degree-d polynomial formulation for M. Recall that every poly-
nomial p of degree at most 2d has a d × d matrix of coefficients p̂ such that p(α) =
p̂ ·
(
x⊗d(α)(x⊗d(α))T

)
. This includes the constant polynomial 1, whose matrix we denote 1̂.

Definition 2.6.3. For D ≥ d, the degree-D or Dth Theta-Body Relaxation of (P ,O, φ) is
an SDP relaxation for M = (S,F) consisting of:

1. Semidefinite program:

• p̂ ·X = 0 for every p ∈ 〈P〉 of degree at most 2D,

• 1̂ ·X = 1, and

• X � 0.

• For each polynomial of ∈ O, we define the affine function wf (X) = ôf ·X.

2. Feasible solutions: For any α ∈ S, let Xα = x⊗D(φ(α))(x⊗D(φ(α)))T .

This definition of the Theta Body Relaxation makes it obvious that it is an SDP relaxation
for M, but we will frequently find it more convenient to work with the dual SDP. Working
with the dual exposes the connection between the Theta Body relaxation and polynomial
proof systems.

Lemma 2.6.4. The dual of the Theta Body SDP Relaxation with objective function ôf ·X
can be expressed min c subject to c− of (x) is 2D-SOS modulo 〈P〉.

Proof. The dual is

min y1

s.t. y1 · 1̂− ôf = ŝ+
∑
p∈〈P 〉

yp · p̂

ŝ � 0

The equality constraint of the dual is a constraint on matrices, but we can also think of it
as a constraint on degree 2D polynomials via the map p̂↔ p. Recall that ŝ � 0 if and only
if s is a sum-of-squares polynomial. Thus this constraint is equivalent to asking that the
polynomial y1 − of (x) be 2D-SOS modulo 〈P〉.

CHAPTER 2. PRELIMINARIES 21

The Theta Body does not find PC> proofs of non-negativity, but instead finds a different
kind of proof that uses any low degree g ∈ 〈P〉. To write down the Dth Theta Body
relaxation, we need to know all the degree-D polynomials in 〈P〉. In particular, we need a
basis of polynomials for the vector space of degree-D polynomials in 〈P〉. To get our hands
on this, we would need to be able to at least solve the membership problem for 〈P〉 up
to degree D. Unfortunately, this problem is frequently intractable, and so even trying to
formulate the Dth Theta Body is intractable. We can define a weaker SDP relaxation which
does not merely use an arbitrary g ∈ 〈P〉, but provides a derivation for g from P , i.e. it
finds a PC> proof. More generally, even when Q 6= ∅, we can define the Lasserre or SOS
relaxations as follows:

Definition 2.6.5. Let (P ,Q,O, φ) be a degree-d polynomial formulation for M = (S,F),
and let Q = {q1, . . . , qk}. For D ≥ d, the degree-D or Dth Lasserre Relaxation or degree-D
or Dth Sum-of-Squares Relaxation (SOS) is an SDP relaxation for M consisting of:

1. Semidefinite program: For clarity, we define q0 to be the constant polynomial 1, Di =
D − deg qi, and Ni =

(
n+Di−1

Di

)
. Let diag(M1,M2, . . . ,Mk) denote the block-diagonal

matrix whose blocks are M1, . . . ,Mk. Then the constraints are

• X = diag(Xq0 , Xq1 , Xq2 , . . . , Xqk), where Xqi is an Ni×Ni matrix whose rows and
columns are indexed by the monomials up to degree Di.

• For every i and pair of monomials xU and xV of degree at most Di, (Xqi)UV =
Xq0 · q̂ixUxV . This implies that if c̃ is the vector of coefficients of a polynomial
c(x) of degree at most Di and Xq0 = x⊗D0(x⊗D0)T , then c̃TXic̃ = q(x)c(x)2.

• For every p ∈ P and polynomial λ such that λp has degree at most 2d, we have
the constraint λ̂p ·Xq0 = 0.

• 1̂ ·Xq0 = 1

• X � 0.

• For each polynomial of ∈ O, we define the affine objective function wf (X) =

ôf ·Xq0 .

2. Feasible solutions: For any α ∈ S, let Xα
qi

= x⊗Di(φ(α))(x⊗Di(φ(α)))T qi(α) for each
0 ≤ i ≤ k. Then let

Xα = diag(Xα
q0
, Xα

q1
, . . . , Xα

qk
).

Once again, we will find it much more convenient to work with the dual to make the
connections to polynomial proof systems more explicit.

Lemma 2.6.6. The dual of the degree 2D Sum-of-Squares SDP Relaxation with objective

function ôf can be expressed as min c subject to c − of (x) has a degree 2D PC> proof of
non-negativity from P and Q.

CHAPTER 2. PRELIMINARIES 22

Proof. Recall we use diag(M1, . . . ,Mk) to denote the block-diagonal matrix whose blocks are
M1, . . . ,Mk. Then the dual of the SOS relaxation is min y1 subject to ŝ � 0 and

diag(y1 · 1̂, 0, . . . , 0)− diag(ôf , 0, . . . , 0) = ŝ+
∑
p∈P
λ

yλp · diag(λ̂p, 0, . . . , 0)+

+
∑
i∈[k]
U,V

yiUV · diag(q̂ixUxV , 0, . . . , 0, −̂xUxV , 0, . . . , 0)

where in the last sum the second nonzero diagonal block is in the ith place. Clearly ŝ must
be block-diagonal since everything else is block-diagonal. Furthermore, we know that the
ith block of ŝ is equal to

∑
UV x̂UxV yiUV since the LHS is zero in every block but the first.

Since S � 0, this block must also be PSD, and thus must correspond to a sum-of-squares
polynomial si. The constraint on the first block is then

y1 · 1̂− ôf = ŝ1 +
∑
p∈P
λ

yλp · λ̂p+
k∑
i=1

ŝiqi.

As a constraint on polynomials, this simply reads that y1 − of (x) must have a degree 2D
PC> proof of non-negativity from P and Q.

Remark 2.6.7. The observant reader may notice that as presented, the Theta Body and SOS
relaxations do not satisfy Slater’s condition for strong duality (see Lemma 2.2.4), so it may
not be valid to consider their duals instead of their primals. One can handle this by taking
x⊗D to be a basis for the low-degree elements of R[x1, . . . , xn]/〈P〉, rather than a basis for
every low-degree polynomial. Then [39] show that if V (P) ∩ H(Q) is compact, there is no
duality gap. From this point on we work exclusively with the duals, so we will not worry
about it too much.

The Dth Theta Body and SOS relaxations are each relaxations of size N =
(
n+D−1

D

)
,

since their feasible solutions have one coordinate for each monomial up to total degree D.
For both hierarchies, it is clear that by projecting onto the coordinates up to degree D′ < D,
the feasible region of the D′th relaxation is contained in the feasible region of the D′th
relaxation. Thus if the D′th relaxation achieves a (c, s)-approximation, so does the Dth.
Furthermore, sometimes if we take the degree large enough, the relaxation becomes exact.

Lemma 2.6.8. If the polynomial formulation is Boolean, then the nth Theta Body and nth
SOS relaxation are both exact.

Proof. Follows immediately from Fact 2.3.13

CHAPTER 2. PRELIMINARIES 23

Relations Between Theta Body and Lasserre Relaxations

Here we compare and contrast the two different relaxations. Let (P ,O, φ) be a polynomial
formulation for M = (S,F).

Lemma 2.6.9. If the Dth Lasserre relaxation achieves (c, s)-approximation of M, then the
Dth Theta Body relaxation does as well.

Proof. The lemma follows immediately by noticing that any degree 2D PC> proof of non-
negativity from P for a polynomial r(x) implies that r(x) is 2D-SOS modulo 〈P〉.

We can also prove a partial converse in some cases:

Proposition 2.6.10. If P is k-effective and the Dth Theta Body relaxation achieves (c, s)
approximation of M, then the kDth Lasserre relaxation does as well.

Proof. Because the Theta Body relaxation is a (c, s)-approximation ofM, we have that, for
every f ∈ F with max f ≤ s(f), there exists a number c∗ ≤ c(f) such that c∗ − of (x) is
2D-SOS modulo 〈P〉. In other words, there is a polynomial identity c∗−of (x) = s(x)+g(x),
where s is an SOS polynomial and g ∈ 〈P〉. Because P is k-effective, g has a degree 2kD
derivation from P , so we have a polynomial identity

c∗ − of (x) = s(x) +
∑
p∈P

λp(x)p(x).

This implies that (c∗, s(x), λp(x)) are feasible solutions for the kDth Lasserre relaxation, and
since c∗ ≤ c(f), it achieves a (c, s)-approximation.

Example 2.6.11. For CSP, P = {x2
i − 1 | i ∈ [n]}. By Corollary 3.1.2, P is 1-effective.

Thus the Dth Theta Body and Lasserre Relaxations are identical in this case.

Proposition 2.6.10 allows us to translate results about the Theta Body relaxations to
Lasserre relaxations. In particular, in Chapter 5 we will see how easy it is to prove that
Theta Body relaxations are optimal among symmetric relaxations of a given size. If the
constraints are effective, this allows us to conclude that Lasserre relaxations which are not
too much larger achieve the same guarantees. This allows us to lower bound the size of any
symmetric SDP relaxation by finding lower bounds for Lasserre relaxations.

2.7 Symmetric Relaxations

Often, the solutions to a combinatorial optimization problem exhibit many symmetries.
For example, in the Matching problem, a maximum matching of Kn is still a maximum
matching even if the vertices are permuted arbitrarily. This additional structure allows for
easier analysis. It is natural, then, to consider relaxations that exhibit similar symmetries.
Rounding these relaxations is often more straightforward and intuitive. In this section we

CHAPTER 2. PRELIMINARIES 24

formally define what we mean by symmetric versions of all the problem formulations we have
presented above. First, we recall some basic group theory.

Definition 2.7.1. Let G be a group and X be a set. We say G acts on X if there is a map
φ : G → (X → X) satisfying φ(1)(x) = x and φ(g1)(φ(g2)(x)) = φ(g1g2)(x). In practice we
omit the φ and simply write gx for φ(g)(x).

Definition 2.7.2. Let G act on X. Then Orbit(x) = {y | ∃g : gx = y} is called the orbit of
x, and Stab(x) = {g | gx = x} is called the stabilizer of x.

Fact 2.7.3 (Orbit-Stabilizer Theorem). Let G act on X. Then |G : Stab(x)| = |Orbit(x)|.

We will use Sn to denote the symmetric group on n letters, and An for the alternating
group on n letters. For I ⊆ [n], we use S([n] \ I) for the subgroup of Sn which stabilizes
every i ∈ I, and similarly for A([n] \ I).

Optimization problems often have natural symmetries, which we can represent by the
existence of a group action.

Definition 2.7.4. A combinatorial optimization problem M = (S,F) is G-symmetric if
there are actions of G on S and F such that, for each α ∈ S and f ∈ F , gf(gα) = f(α).

Example 2.7.5 (Maximum Matching). Let M be the Matching problem on n vertices
from Example 2.4.2. For an element g ∈ Sn and a matching M of Kn, let gM be the
matching where (i, j) ∈ gM if and only if (g−1i, g−1j) ∈ M . For a subset of edges E, let
gfE(M) = fgE(M), where gE = {(gi, gj) | (i, j) ∈ E}. Then M is Sn-symmetric under
these actions.

Definition 2.7.6. An SDP relaxation ({Xα}, {(Ai, bi)}, {wf}) for a G-symmetric problem
M is G-symmetric if there is an action of G on Sd+ such that gXα = Xgα for every α, and
wgf (gX) = wf (X), and Ai ·X = b for all i if and only if Ai · gX = b for all i. We say the
relaxation is G-coordinate-symmetric if the action of G is by permutation of the coordinates,
in other words G has an action on [d] and (gX)ij = Xgi,gj.

Example 2.7.7. The usual linear relaxation for the Matching problem on n vertices is

K =

{
x ∈ R(n2)

∣∣∣∣ ∀i :
∑
j

xij ≤ 1,∀ij : 0 ≤ xij ≤ 1

}
,

with objective functions wfE(x) =
∑

(i,j)∈E xij. This relaxation is Sn-coordinate-symmetric

under the action (gα)ij = αgi,gj for any α ∈ R(n2). This action essentially represents the
permutation of the vertices of the underlying graph. It is simple to confirm that this action
satisfies the above requirements.

CHAPTER 2. PRELIMINARIES 25

Asymmetric relaxations are harder to come by, since they are unintuitive to design. The
above example has the nice interpretation that xij is a variable that is supposed to represent
the presence of the edge (i, j) in the matching. Asymmetric relaxations do not have such
simple interpretations. We do not have many examples of cases where asymmetry actually
helps, but the reader can refer to [40] for one example for the Matching problem with only
log n edges.

Definition 2.7.8. A polynomial formulation (P ,Q,O, φ) on n variables for a G-symmetric
problemM is G-symmetric if there is an action of G on [n], yielding an action on polynomials
simply by extending gxi = xgi multiplicatively and linearly, such that gp ∈ P for each p ∈ P ,
gq ∈ Q for each q ∈ Q, and go ∈ O for each o ∈ O. Note that this implies that G fixes 〈P〉
as well, and that the natural action of G on Rn also fixes V (P) ∩H(Q). Finally, we require
gφ(α) = φ(gα).

Lemma 2.7.9. If a G-symmetric problem M has a G-symmetric polynomial formulation,
then the Theta Body and SOS SDP relaxations are G-coordinate-symmetric.

Proof. The Dth Theta Body and SOS SDP relaxations are determined by N =
(
n+D−1

D

)
coordinates, one for every monomial up to degree D. We index the coordinates by these
monomials. We define an action of G on SN+ which permutes [N] simply by its action on
monomials inherited by the G-symmetric polynomial formulation. Under this action, for any

polynomial p, we have p̂ · (gX) = ĝ−1p · X. Since 〈P〉,Q,O are fixed by G and ĝ−11 = 1̂,
it is clear that the constraints and objective functions of both the Theta Body and SOS
relaxations are invariant under G. The feasible solutions are also invariant:

gXα = x⊗d(gφ(α))(x⊗d(gφ(α)))T = x⊗d(φ(gα))(x⊗d(φ(gα)))T = Xgα,

concluding the proof.

When we have a G-symmetric combinatorial optimization problem, it is sensible to write
symmetric SDP relaxations for it. The structure and symmetries of the problem are reflected
in the relaxation, and it can often be interpreted more easily.

26

Chapter 3

Effective Derivations

In this section we prove that many natural sets of polynomials P arising from polynomial
formulations for combinatorial optimization problems are k-effective with k a constant. This
means that the problem of determining if a polynomial p is in the ideal 〈P〉 can be solved
simply by solving a linear system with nO(deg p) variables. This can be done in time polynomial
in ndeg p and log ‖p‖, which is the size required to specify the input p. When P is complete,
this is equivalent to determining if p(α) = 0 for every α ∈ V (P). In Chapter 4 and Chapter 5
we will see that determining if P is k-effective has important consequences for studying
the Sum-of-Squares relaxations on the polynomial optimization problem determined by the
equality constraints P .

3.1 Gröbner Bases

Recall the definition of Gröbner basis from Definition 2.3.2, and in particular recall that we
can define a multivariate division algorithm with respect to a Gröbner basis such that every
polynomial has a unique remainder. The following lemma is an obvious consequence of the
division algorithm.

Lemma 3.1.1. Let P be a Gröbner basis. Then P is 1-effective.

Proof. Let r ∈ 〈P〉 be of degree d, and consider the remainder of r after dividing by P .
Because r ∈ 〈P〉, and remainders are unique, the only possible remainder is the zero poly-
nomial. If we enumerate the polynomials that are produced by the iterative reductions
r = r0, r1, . . . , rN = 0, then ri = ri+1 + qi+1pi+1, where pi+1 ∈ P , deg ri+1 ≤ deg ri, and
deg qi+1pi+1 ≤ deg ri. Combining all these sums into one, we get r =

∑
i qipi, which is a

derivation of degree d.

Lemma 3.1.1 is unsurprising, as Gröbner bases first originated as a method to solve
the polynomial ideal problem [12]. While Gröbner bases yield positive results, they are
often unwieldy, complicated, and above all extremely expensive to compute. Even so, there

CHAPTER 3. EFFECTIVE DERIVATIONS 27

are several important combinatorial optimization problems that have constraints which are
Gröbner bases, one of which we used in Example 2.3.3.

Corollary 3.1.2. The CSP formulation PCSP = {x2
i − xi | i ∈ [n]} is 1-effective.

Proof. We prove that PCSP is a Gröbner basis. Let p ∈ 〈PCSP〉. If p is not multilinear, we can
divide p by elements of PCSP until we have a multilinear remainder r. Because p ∈ 〈PCSP〉
and each element of PCSP is zero on the hypercube {0, 1}n, r must also be zero on the
hypercube. But the multilinear polynomials form a basis for functions on the hypercube, so
if r is a multilinear polynomial which is zero, then it must be the zero polynomial.

Corollary 3.1.3. The Clique formulation PClique = {x2
i − xi | i ∈ V }∪{xixj | (i, j) /∈ E}

is 1-effective.

Proof. We prove that PClique is a Gröbner basis. Let p ∈ 〈PClique〉. If p is not multilinear,
we can divide it until we have a multilinear remainder r1. Now by dividing r1 by the non-
edge polynomials in the second part of PClique, we can remove all monomials containing xixj
where (i, j) /∈ E to get r2. Thus r2 contains only monomials which are cliques of varying
sizes in the graph (V,E). Let C be the smallest clique with a nonzero coefficient rC in r2. Let
χC be the characteristic vector of C, i.e. (χC)i = 1 if i ∈ C, and (χC)i = 0 otherwise. Then
r2(χC) = rC . But p(χC) = 0 for every p ∈ P , and r2 ∈ 〈P〉. Thus rC = 0, a contradiction,
and so r2 is the zero polynomial.

Of course, not every problem is so neatly described by a small Gröbner basis. There are
many natural problems whose solution spaces have a small set of generating polynomials
which are not Gröbner bases, and indeed their Gröbner basis can be exponentially. Even
though the generating polynomials are not a Gröbner basis, they can still be k-effective for
constant k, and thus admit a good algorithm for membership.

3.2 Proof Strategy for Symmetric Solution Spaces

In this section we describe our main proof strategy to show that a set of polynomials P
is effective. We apply this strategy to combinatorial optimization problems which have a
natural symmetry to their solution spaces V (P). For each of these problems, we will define an
Sm-action on [n], which extends to an action on R[x1, . . . , xn] as well as Rn by permutation
of variable names and indices respectively. The action will be a natural permutation of
the solutions. For example, for Matching, the group action will correspond to simply
permuting the vertices of the graph.

After the group action is defined, our proof strategy follows in three steps:

(1) Prove that P is complete. This is usually done by exhibiting a degree n derivation from
P for any polynomial p which is zero on V (P). This step is essential for the induction
in step (3).

CHAPTER 3. EFFECTIVE DERIVATIONS 28

(2) Prove that for every p ∈ 〈P〉, the polynomial 1
n!

∑
σ∈Sm σp has a derivation from P in

degree deg p. This is usually fairly easy because of the large amount of structure this
symmetrization forces on the polynomial.

(3) Prove that for every σ ∈ Sm, p−σp has a derivation from P in degree at most k deg p,
for some constant k. This is performed by induction on a natural parameter of the
combinatorial optimization problem. Generally speaking, the more complicated the
solution space for the problem, the worse bounds we can prove for the constant k.

We use this general strategy to prove that many polynomial formulations for different nat-
ural combinatorial optimization problems admit effective derivations. Our efforts to find a
unifying theory that explains the effectiveness of this strategy on the different problems have
failed, so we have to prove that each set of polynomials is effective on a case-by-case basis.

3.3 Effective Derivations for Matching

Fix an even integer n. Then the Matching problem has a polynomial formulation on
(
n
2

)
variables with constraints

PM(n) =
{
x2
ij − xij | i, j ∈ [n]

}
(3.1)

∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik | i, j, k ∈ [n], j 6= k} .

The first group of polynomials ensures the variables are Boolean. The second group of
polynomials ensures each vertex is matched to another vertex. The last group of polynomials
ensures that each vertex is not matched to multiple vertices. We abuse notation slightly
and use xij and xji equivalently. We omit the dependence on n when it is clear from
context. For an element σ of the symmetric group Sn, we define the action of σ on a
variable by σxij = xσ(i)σ(j). We define the action of σ on a monomial by extending this
action multiplicatively, and the action of σ on a full polynomial by extending linearly. Note
that PM is fixed by the action of every σ, as are its solutions V (PM) corresponding to the
matchings of Kn. Thus for any p ∈ PM, we also have σp ∈ PM. For a partial matching M ,
i.e. a set of disjoint pairs from [

(
n
2

)
], define xM =

∏
e∈M xe with the convention that x∅ = 1.

First, we note an easy lemma on the structure of polynomials in 〈PM〉:

Lemma 3.3.1. Let p be any polynomial. Then there is a multilinear polynomial q such that
every monomial of q is a partial matching monomial, and p− q ∈ 〈PM〉deg p.

Proof. It suffices to prove the lemma when p is a monomial. Let p =
∏

e∈A x
ke
e for a set A

of edges with multiplicities ke ≥ 1. From the constraint x2
e − xe, it follows that

∏
e∈A x

ke
e −

C
∏

e∈A xe has a derivation from PM in degree deg p, for some constant C. Now if A is a

CHAPTER 3. EFFECTIVE DERIVATIONS 29

partial matching we are done, otherwise there exist edges f, g ∈ A which are not disjoint.
But then xfxg ∈ PM, and so

∏
e∈A xe has a derivation from PM in degree |A|, which implies

the statement.

With Lemma 3.3.1 in hand, we complete step (1) of our strategy:

Lemma 3.3.2. 〈PM(n)〉 is complete for any even n.

Proof. Let p be a polynomial such that p(α) = 0 for each α ∈ V (PM). By Lemma 3.3.1,
we can assume that p(x) is a multilinear polynomial whose monomials correspond to partial
matchings. For such a partial matching M , clearly xM − xM

∏
u/∈M

∑
v xuv has a derivation

in degree n using the constraints
∑

v xuv − 1 ∈ PM. By eliminating terms which do not
correspond to partial matchings, we get xM −

∑
M ′:M⊂M ′ xM ′ ∈ 〈PM〉. Doing this to every

monomial, we determine there is a polynomial p′ which is homogeneous of degree n such
that p− p′ ∈ 〈PM〉. Now since the coefficients of p′ correspond exactly to perfect matchings,
for each monomial in p′, there is an α ∈ V (PM) such that the coefficient of the monomial is
p′(α). Since p′(α) = 0 for every α ∈ V (PM), it must be that p′ = 0, and so p ∈ 〈PM〉.

Now we move on to the second step of our proof.

Symmetric Polynomials

We will prove the following lemma:

Lemma 3.3.3. Let p be a polynomial in R(n2). Then there is a constant cp such that∑
σ∈Sn σp− cp ∈ 〈PM〉deg p.

To do so, it will be useful to first prove a few lemmas on how we can simplify the
structure of p. Any partial matching monomial may be extended as a sum over partial
matching monomials containing that partial matching using the constraint

∑
j xij−1 ∈ PM,

as we did in the proof of Lemma 3.3.2. The first lemma here shows how to extend by a single
edge, and the second iteratively applies this process to extend by multiple edges.

Lemma 3.3.4. For any partial matching M on 2d vertices and a vertex u not covered by
M ,

xM ∼=d+1

∑
M1=M∪{i,j}:
j∈[n]\(M∪{i})

xM1 . (3.2)

Proof. We use the constraints
∑

v xij − 1 to add variables corresponding to edges at u, and
then use xuvxuw to remove monomials not corresponding to a partial matching:

xM ∼= xM
∑
v∈Kn

xij ∼=
∑

M1=M∪{i,j}:
j∈Kn\(M∪{i})

xM1 .

It is easy to see that these derivations are done in degree d+ 1.

CHAPTER 3. EFFECTIVE DERIVATIONS 30

Lemma 3.3.5. For any partial matching M of 2d vertices and d ≤ k ≤ n/2, we have

xM ∼=k
1(

n/2−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ (3.3)

Proof. We use induction on k − d. The start of the induction is with k = d, when the sides
of (3.3) are actually equal. If k > d, let u be a fixed vertex not covered by M . Applying
Lemma 3.3.4 to M and u followed by the inductive hypothesis gives:

xM ∼=d+1

∑
M1=M∪{i,j}:
j∈Kn\(M∪{i})

xM1

∼=k
1(

n/2−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{i,j}:
j∈Kn\(M∪{i})

xM ′
.

Averaging over all vertices i not covered by M , we obtain:

xM ∼=k
1

n− 2d

1(
n/2−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{i,j}:
{i,j}∈Kn\M

xM ′

=
1

n− 2d

1(
n/2−d−1
k−d−1

)2(k − d)
∑
M ′⊃M
|M ′|=k

xM ′

=
1(

n/2−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′

.

where in the second step the factor 2(k − d) accounts for the different choices of {i, j} that
can lead to extending M to M ′.

Finally, we can prove the first main lemma:

Proof of Lemma 3.3.3. Given Lemma 3.3.1, it suffices to prove the claim for p = xM for
some partial matching M . Let deg p = |M | = k. Note that Sn acts transitively on the
monomials of degree k, and thus by the Orbit-Stabilizer theorem, 2kk!(n− 2k)! elements of
Sn stabilize p. Thus

∑
σ∈Sn σxM = 2kk!(n−2k)!

∑
M ′:|M ′|=k xM ′ . Finally, apply Lemma 3.3.5

with d = 0: ∑
σ∈Sn

σxM = 2kk!(n− 2k)!
∑

M ′ : |M ′|=k

xM ′

∼=k 2kk!(n− 2k)!

(
n/2

k

)
.

CHAPTER 3. EFFECTIVE DERIVATIONS 31

Corollary 3.3.6. If p ∈ 〈PM〉, then
∑

σ∈Sn σp has a derivation from PM in degree deg p.

Proof. Apply Lemma 3.3.3 to obtain a constant cp such that
∑

σ∈Sn σp
∼= cp. Now since p ∈

〈PM〉, cp ∈ 〈PM〉 as well. But the only constant polynomial in 〈PM〉 is 0 by Lemma 2.3.7.

Getting to a Symmetric Polynomial

Now by Lemma 2.3.8 and Lemma 3.3.3, it suffices to exhibit a derivation of the difference
polynomial p−

∑
σ∈Sn σp from PM in low degree. Our proof will be by an induction on the

number of vertices n. Because the number of vertices will be changing in this section, we
will stop omitting the dependence on n. The next lemma will allow us to apply induction:

Lemma 3.3.7. Let L ∈ 〈PM(n)〉d. Then L · xn+1,n+2 ∈ 〈PM(n+ 2)〉d+1.

Proof. It suffices to prove the statement for L ∈ PM(n). If L = x2
ij − xij or L = xijxik, the

claim is clearly true because L ∈ PM(n + 2). So consider L =
∑

j xij − 1 for some i ∈ [n],
and note that

L · xn+1,n+2 −

(
n+2∑
j=1

xij − 1

)
xn+1,n+2 = −xi,n+1xn+1,n+2 − xi,n+2xn+1,n+2

∼=2 0.

We are now ready to prove the main theorem of this section.

Theorem 3.3.8. Let p ∈ 〈PM(n)〉, and let d = deg p. Then p has a derivation from PM(n)
in degree 2d.

Proof. By Lemma 3.3.1, we can assume without loss of generality that p is a multilinear
polynomial whose monomials correspond to partial matchings. As promised, our proof is by
induction on n. Consider the base case of n = 2. Then V (PM(2)) = {1} and since there
is only one variable, either p is a constant or linear polynomial. The only such polynomials
that are zero on V (PM(2)) are 0 and scalar multiples of x12 − 1. The former case has the
trivial derivation, and the latter case is simply an element of PM(2).

Now assume that for any d, the theorem statement holds for polynomials in 〈PM(n′)〉
for any n′ < n. Let p ∈ 〈PM(n)〉 be multilinear of degree d whose monomials correspond
to partial matchings, and let σ = (i, j) be a transposition of two vertices. We consider the
polynomial ∆ = p− σp. Note that ∆ ∈ 〈PM(n)〉, and any monomial which does not match
either i or j, or a monomial which matches i to j, will not appear in ∆ as it will be canceled
by the subtraction. Thus we can write

∆ =
∑

e:i∈e or j∈e

Lexe,

CHAPTER 3. EFFECTIVE DERIVATIONS 32

with each Le having degree at most d − 1. Our goal is to remove two of the variables in
these matchings in order to apply induction. In order to do that, we will need each term
to depend not only on either i or j, but both. To this end, we multiply each term by the
appropriate polynomial

∑
k xik or

∑
k xjk (recall that

∑
k xik − 1 ∈ P(n)) to obtain

∆ ∼=d+1

∑
k1k2

Lk1k2xik1xjk2 .

We can think of the RHS polynomial as being a partition over the possible different ways to
match i and j. Furthermore, because of the elements of P of type xijxik, we can take Lk1k2 to
be independent of xe for any e incident to any of i, j, k1, k2. We argue that Lk1k2 ∈ PM(n−4).
We know that ∆(α) = 0 for any α ∈ V (PM(n)). Let α ∈ V (PM(n)) such that αik1 = 1 and
αjk2 = 1. Then it must be that αik = 0 and αjk = 0 for any other k, since otherwise
α /∈ V (PM(n)). Thus ∆(α) = Lk1k2(α). Since Lk1k2 is independent of any edge incident
to i, j, k1, k2, it does not involve those variables, so Lk1k2(α) = Lk1k2(β), where β is the
restriction of α to the

(
n−4

2

)
variables which Lk1k2 depends on. But such a β is simply an

element of V (PM(n− 4)), and all elements of V (PM(n− 4)) can be obtained this way. Thus
Lk1k2 is zero on all of V (PM(n − 4)), and by Lemma 3.3.2, Lk1k2 ∈ 〈PM(n − 4)〉. Now by
the inductive hypothesis, Lk1k2 has a derivation from PM(n − 4) of degree at most 2d − 2.
By two applications of Lemma 3.3.7, Lk1k2xik1xjk2 has a derivation from PM(n) of degree at
most 2d, and thus so does ∆.

Because transpositions generate the symmetric group, the above argument implies that
p − 1

n!

∑
σ∈Sn σp has a derivation from PM(n) of degree at most 2d. Combined with Corol-

lary 3.3.6, this is enough to prove the theorem statement.

3.4 Effective Derivations for TSP

For each integer n, a polynomial formulation with n2 variables for TSP on n vertices uses
the following polynomials:

PTSP(n) =
{
x2
ij − xij | i, j ∈ [n]

}
(3.4)

∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik, xjixki | i, j, k ∈ [n], j 6= k} .

The first group of polynomials ensures the variables are Boolean, the second group of poly-
nomials ensures that each city i is visited at some point in the tour, and the last set of
polynomials ensures that no city is visited multiple times in the tour. A tour τ ∈ Sn (which
is a feasible solution for TSP) is identified with the vector χτ (i, j) = 1 if τ(i) = j and 0
otherwise. We omit the dependence on n if it is clear from context. For an element σ of the
symmetric group Sn, we define the action of σ on a variable by σxij = xσ(i)j. We define the

CHAPTER 3. EFFECTIVE DERIVATIONS 33

action of σ on a monomial by extending this action multiplicatively, and the action of σ on
a full polynomial by extending linearly. Then PTSP is fixed by the action of every σ, as are
its solutions V (PTSP) corresponding to the tours.

Note that V (PTSP) corresponds to a matching on Kn,n, the complete bipartite graph on
2n vertices. Thus it should come as no surprise that the same proof strategy as the one
we used for matchings on the complete graph Kn should work just fine. This section will
be extremely similar to the previous one, and the reader loses very little by skipping ahead
to Section 3.5. It would be more elegant if we could just reduce PTSP(n) to PM(2n). This
requires proving that any polynomial which is zero on V (PTSP(n)) is the projection of a
polynomial of similar degree which is zero on V (PM(2n)). Unfortunately we do not know
how to prove this except by proving that PTSP is effective, so the reader will have to live
with some repetition.

For a partial matching M of Kn,n, i.e. a set of disjoint pairs from [n]× [n], define xM =∏
e∈M xe with the convention that x∅ = 1. We also define ML = {i ∈ [n] | ∃j : (i, j) ∈ M}

and MR = {j ∈ [n] | ∃i : (i, j) ∈M}.

Lemma 3.4.1. Let p be any polynomial. Then there is a multilinear polynomial q such that
every monomial of q is a partial matching monomial, and p− q has a derivation from P of
degree deg p.

Proof. The statement follows easily by using the elements of PTSP of the form x2
ij − xij

to make a multilinear polynomial, then eliminating any monomial which is not a partial
matching by using elements of the form xijxik or xjixki.

With Lemma 3.4.1 in hand, we prove the following easy result:

Lemma 3.4.2. 〈PTSP(n)〉 is complete for any n.

Proof. Let p be a polynomial such that p(α) = 0 for each α ∈ V (PTSP). By Lemma 3.4.1,
we can assume that p(x) is a multilinear polynomial whose monomials correspond to partial
matchings. For such a partial matching M , clearly xM −xM

∏
i/∈M

∑
j xij has a derivation in

degree n using the constraints
∑

j xij − 1 ∈ PTSP. By eliminating terms which do not corre-
spond to partial matchings, we get xM − CM

∑
M ′:M⊂M ′ xM ′ ∈ 〈P〉, for some constant CM .

Doing this to every monomial, we determine there is a polynomial p′ which is homogeneous
of degree n such that p − p′ ∈ 〈P〉. Now since the monomials of p′ correspond to perfect
matchings, each monomial has an α such that the coefficient of that monomial is exactly
p′(α). Since p′(α) = 0 for every α ∈ V (PTSP), it must be that p′ = 0, and so p ∈ 〈PTSP〉.

Now we move on to the second step of our proof.

Symmetric Polynomials

We will complete this step of our proof using the same helper lemmas as for Matching.
The numbers appearing are slightly different due to the difference in the number of partial

CHAPTER 3. EFFECTIVE DERIVATIONS 34

matchings for Kn and Kn,n, and the action of Sn is slightly different, but they are all basically
the same.

Lemma 3.4.3. For any partial matching M on 2d vertices and a vertex i ∈ [n] \ML,

xM ∼=
∑

M1=M∪{i,j}:
j∈[n]\(MR)

xM1 , (3.5)

and the derivation can be done in degree d+ 1.

Proof. We use the constraints
∑

v xuv − 1 to add variables corresponding to edges at u, and
then use xuvxuw to remove monomials not corresponding to a partial matching:

xM ∼= xM
∑
j∈[n]

xij ∼=
∑

M1=M∪{i,j}:
j∈[n]\MR

xM1 .

It is easy to see that these derivations are done in degree d+ 1.

Lemma 3.4.4. For any partial matching M of 2d vertices and d ≤ k ≤ n, we have

xM ∼=
1(
n−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ (3.6)

Proof. We use induction on k−d. The start of the induction is with k = d, when the sides of
(3.6) are actually equal. If k > d, let i be a fixed vertex not in ML. Applying Lemma 3.4.3
to M and i followed by the inductive hypothesis gives:

xM ∼=
∑

M1=M∪{i,j}:
j∈[n]\MR

xM1

∼=
1(

n−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{i,j}:
j∈[n]\MR

xM ′
.

Averaging over all vertices i not in ML, we obtain:

xM ∼=
1

n− d
1(

n−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{i,j}:
{i,j}∈[n]×[n]\M

xM ′

=
1

n− d
1(

n−d−1
k−d−1

)(k − d)
∑
M ′⊃M
|M ′|=k

xM ′

=
1(
n−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′

.

CHAPTER 3. EFFECTIVE DERIVATIONS 35

where in the second step the factor (k − d) accounts for the different choices of {i, j} that
can lead to extending M to M ′.

Lemma 3.4.5. Let p be a polynomial in Rn2
. Then there is a constant cp such that∑

σ∈Sn σp− cp has a derivation from PTSP in degree at most deg p.

Proof. Given Lemma 3.4.1, it suffices to prove the claim for p = xM for some partial matching
M . Let deg p = |M | = k. There are (n − k)! elements of Sn that stabilize a given partial
matching M , so

∑
σ∈Sn σxM = (n − k)!

∑
M ′:|M ′|=k xM ′ . Finally, apply Lemma 3.4.4 with

d = 0: ∑
σ∈Sn

σxM = (n− k)!
∑

M ′ : |M ′|=k

xM ′

∼= (n− k)!

(
n

k

)
.

Corollary 3.4.6. If p ∈ 〈PTSP〉, then
∑

σ∈Sn σp has a derivation from PTSP in degree deg p.

Proof. Apply Lemma 3.4.5 to obtain a constant cp such that
∑

σ∈Sn σp
∼= cp. Now since

p ∈ 〈PTSP〉, cp ∈ 〈PTSP〉 as well. But by Lemma 2.3.7, the only constant polynomial in
〈PTSP〉 is 0.

Getting to a Symmetric Polynomial

The third step also proceeds in an almost identical manner.

Lemma 3.4.7. Let L be a polynomial with a degree d derivation from PTSP(n). Then
Lxn+1,n+2xn+2,n+1 has a degree d+ 2 derivation from PTSP(n+ 2).

Proof. It suffices to prove the statement for L ∈ PTSP(n). If L = x2
ij − xij, L = xijxik, or

L = xjixki, the claim is clearly true because L ∈ PTSP(n + 2). So consider L =
∑

j xij − 1
for some i, and note that

Lxn+1,n+2xn+2,n+1 −

(
n+2∑
j=1

xij − 1

)
xn+1,n+2xn+2,n+1 = (xi,n+1 + xi,n+2)xn+1,n+2xn+2,n+1

= (xi,n+1xn+2,n+1)xn+1,n+2 + (xi,n+2xn+1,n+2)xn+2,n+1

∼=3 0

The case for L =
∑

i xij − 1 is symmetric.

We are now ready to prove the main theorem of this section.

CHAPTER 3. EFFECTIVE DERIVATIONS 36

Theorem 3.4.8. Let p ∈ 〈PTSP(n)〉 for any n, and let d = deg p. Then p has a derivation
from PTSP(n) in degree 2d.

Proof. By Lemma 3.4.1, we can assume that p is a multilinear polynomial whose monomials
correspond to partial matchings on Kn,n. As before, our proof is by induction on n. Consider
the base case of n = 1. Then V (PTSP(1)) = {1} and either p is a constant or linear polynomial
(since there is only one variable, x11). The only such polynomials that are zero on V (PTSP(1))
are 0 and scalar multiples of x11 − 1. The former case has the trivial derivation, and the
latter case is simply an element of PTSP(1).

Now assume that for any d, the theorem statement holds for polynomials in 〈PTSP(n′)〉
for any n′ < n. Let p ∈ 〈PTSP(n)〉 be multilinear of degree d whose monomials correspond
to partial matchings, and let σ = (i, j) be a transposition of two left indices. We consider
the polynomial ∆ = p − σp. Note that ∆ ∈ 〈PTSP(n)〉, and any monomial which does not
match either i or j will not appear in ∆ as it will be canceled by the subtraction. Thus we
can write

∆ =
∑

e:e=(i,k) or e=(j,k)

Lexe,

with each Le having degree at most d− 1. Proceeding as before, we multiply each term by
the appropriate constraint

∑
k xik or

∑
j xjk to obtain a decomposition

∆ ∼=d+1

∑
k1,k2

Lk1k2xik1xjk2 .

We can think of the RHS polynomial as being a partition over the possible different ways
to match i and j. Furthermore we can take Lk1k2 to be independent of xe for any e incident
to any of i, j, k1, k2. We argue that Lk1k2 ∈ PTSP(n − 2). We know that ∆(α) = 0 for
any α ∈ V (PTSP(n)). Let α ∈ V (PTSP(n)) such that αik1 = 1 and αjk2 = 1. Then it
must be that αik = 0 and αjk = 0 for any other k, since otherwise α /∈ V (PTSP(n)).
Thus ∆(α) = Lk1k2(α). Since Lk1k2 is independent of any edge incident to i, j, k1, k2, it
does not involve those variables, so Lk1k2(α) = Lk1k2(β), where β is the restriction of α
to the (n − 2)2 variables which Lk1k2 depends on. But such a β is simply an element of
V (PTSP(n − 2)), and all elements of V (PTSP(n − 2)) can be obtained this way. Thus Lk1k2
is zero on all of V (PTSP(n − 2)), and by Lemma 3.4.2, Lk1k2 ∈ 〈PTSP(n − 2)〉. Now by the
inductive hypothesis, Lk1k2 has a derivation from PTSP(n− 2) of degree at most 2d− 2. By
Lemma 3.4.7, Lk1k2xik1xjk2 has a derivation from PTSP(n) of degree at most 2d, and thus so
does ∆.

Because transpositions generate the symmetric group, the above argument implies that
p− 1

n!

∑
σ∈Sn σp has a derivation from PTSP(n) of degree at most 2d. Combined with Corol-

lary 3.4.6 and Lemma 2.3.8, this is enough to prove the theorem statement.

CHAPTER 3. EFFECTIVE DERIVATIONS 37

3.5 Effective Derivations for Balanced-CSP

Fix integers n and c ≤ n. Then the Balanced-CSP problem has a polynomial formulation
on n variables with constraints

PBCSP(n, c) =
{
x2
i − xi | i ∈ [n]

}
∪

{∑
i

xi − c

}
. (3.7)

The first set of polynomials ensures that the variables are Boolean, and the final polynomial
is a balance constraint that forces a specific number of variables to be 1. The Bisection
constraints are the special case when n is even and c = n/2. As before, we need to define the
appropriate symmetric action. For an element σ ∈ Sn, we define σxi = xσ(i) and extend this
action multiplicatively and linearly to get an action on every polynomial. Once again, note
that PBCSP and V (PBCSP) are fixed by Sn under this action, and thus if p ∈ 〈PBCSP〉, then
σp ∈ 〈PBCSP〉. We will begin by proving 1-effectiveness for the special case of Bisection, as
we will encounter an obstacle for general c. Because PBCSP contains the Boolean constraints
{x2

i − xi | i ∈ [n]}, we will take p to be a multilinear polynomial without loss of generality.
For a set A ⊆ [n], let xA =

∏
i∈A xi. Our proof strategy is the same three-step strategy

referenced in Section 3.2.

Lemma 3.5.1. 〈PBCSP(n, c)〉 is complete for any n and c ≤ n.

Proof. Let p be a multilinear polynomial which is zero on all of V (PBCSP). First, we argue
that if A ⊆ [n] is such that |A| > c then xA ∈ 〈PBCSP〉. We prove this by backwards
induction from n to c+ 1. For the base case of |A| = n, note that

xA ∼=
1

n− c
xA

(∑
i

xi − c

)
,

and the RHS is clearly an element of 〈P〉. Now if |A| = k with c+ 1 ≤ k < n, we have

(k − c)xA +
∑
i/∈A

xA∪{i} ∼= xA

(∑
i

xi − c

)
.

By the inductive hypothesis, the second term of the LHS is in 〈PBCSP〉, and obviously the
RHS is in 〈PBCSP〉, and thus so is xA. Thus we can assume that the monomials of p are all
of degree at most c. For any monomial xA of p, we have xA(

∑
i xi− 1) ∼=

∑
i/∈A xA∪{i}− (c−

|A|)xA, and so xA − 1
c−|A|

∑
i/∈A xA∪{i} ∈ 〈PBCSP〉, and so we can replace xA with monomials

of one higher degree. Repeatedly applying this up to degree c (at which point we must stop
to avoid dividing by zero), we determine there is a polynomial p′ which is homogenous of
degree c such that p − p′ ∈ 〈PBCSP〉. Now let p′i1,...,ic be the coefficient of the monomial
xi1 . . . xic in p′ and let α be the element of V (PBCSP) with i1, . . . , ic coordinates equal to 1
and all other coordinates equal to zero. Then p′(α) = p′i1,...,ic , but p′(α) = 0. Thus in fact
p′ = 0, and so p ∈ 〈PBCSP〉.

CHAPTER 3. EFFECTIVE DERIVATIONS 38

Symmetric Polynomials

The second step is to show that any symmetrized polynomial can be derived from a constant
polynomial in low degree. It is considerably simpler than Matching in this case, as the
fundamental theorem of symmetric polynomials tells us that powers of

∑
i xi generate all

the symmetric polynomials.

Lemma 3.5.2. Let p be a multilinear polynomial in Rn. Then there exists a constant cp
such that p′ =

∑
σ∈Sn σp− cp ∈ 〈PBCSP〉deg p. If p ∈ 〈PBCSP〉, then p′ ∈ 〈PBCSP〉deg p.

Proof. It is sufficient to prove the lemma for monomials xA =
∏

i∈A xi. We will induct on the
degree of the monomial |A|. If |A| = 1, then p = xi for some i ∈ [n], and p′ =

∑
σ∈Sn σxi =

(n − 1)!
∑

i xi
∼= (n − 1)! · c, which can clearly be performed in degree one. Now assume

|A| = k, so that p′ =
∑

σ∈Sn σxA = (n − k)!
∑
|B|=k xB. Then p′′ = p′ − (n−k)!

k!
(
∑

i xi − c)
k

is a polynomial which, after multilinearizing by reducing by the Boolean constraints, has
degree at most k − 1 (the coefficient (n−k)!

k!
was chosen to cancel the highest degree term of

p′). Furthermore, p′′ is in 〈PBCSP〉 because p and p′ are, and (
∑

i xi − c)k is an element of
〈P〉. Finally, p′′ is fixed by every σ. Thus by the inductive hypothesis, p′′ has a derivation
from some constant in degree k − 1. Since p′ ∼=k p

′′, this implies the statement for |A| = k
and completes the proof by induction.

The second line of the lemma follows immediately, since if p ∈ 〈PBCSP〉 then cp ∈ 〈PBCSP〉,
but the only constant polynomial in 〈PBCSP〉 is 0 by Lemma 2.3.7.

Now we move on to the third and final step, where we specialize to the Bisection
constraints PBCSP(n, n/2).

Getting to a Symmetric Polynomial

Recall the third step of our strategy is to show that p−σp can be derived from PBCSP in low
degree. It will be easier in this case as compared to Matching because we do not have to
increase the degree of p− σp in order to isolate a variable to remove and do the induction.
Because of this, we will be able to show that Bisection is actually 1-effective and not lose
a factor of two. We need a lemma to help us do the induction:

Lemma 3.5.3. Let L ∈ 〈PBCSP(n, c)〉d. Then L · (xn+1 − xn+2) ∈ 〈PBCSP(n+ 2, c+ 1)〉d+1.

Proof. It is sufficient to prove the lemma for L ∈ PBCSP(n, c). If L = x2
i − xi for some i,

then L ∈ PBCSP(n+ 2, c+ 1) and so the lemma is clearly true. If L =
∑n

i=0 xi − c, then

L · (xn+1 − xn+2)−

(
n+2∑
i=0

xi − (c+ 1)

)
(xn+1 − xn+2) = (1− xn+1 − xn+2) · (xn+1 − xn+2)

= xn+1 − xn+2 − x2
n+1 − xn+1xn+2 + xn+1xn+2 + x2

n+2

∼=2 0.

CHAPTER 3. EFFECTIVE DERIVATIONS 39

We are now ready to prove that the Bisection constraints admit effective derivations.

Theorem 3.5.4. Let n be even and p ∈ 〈PBCSP(n, n/2)〉 and d = deg p. Then p has a
derivation from PBCSP(n, n/2) in degree d.

Proof. By reducing by the Boolean constraints, we can assume p is a multilinear polynomial.
We will induct on the number of vertices n, so first we must handle the base case of n = 2
(recall n is even). The only degree zero polynomial in PBCSP(2, 1) is the zero polynomial
which has the trivial derivation. If p = ax1 + bx2 + c, we know p(0, 1) = p(1, 0) = 0. This
implies a = b = −c, and so p is a multiple of

∑
i xi − 1, which clearly has a derivation of

degree 1. Finally, x1x2 has the derivation x1x2 = x1(x1 + x2 − 1) + (−1) · (x2
1 − x1). So any

quadratic polynomial in 〈PBCSP(2, 1)〉 can be reduced to a linear polynomial in degree 2, but
we already showed that every linear polynomial has a degree 1 derivation. This proves the
base case.

Now assume the theorem statement for PBCSP(n′, n′/2) with n′ < n. Let σ = (i, j) be
a transposition between two vertices. We consider the polynomial ∆ = p − σp. We can
decompose p = rixi + rjxj + rijxixj + qij, where each of the polynomials ri, rj, rij, and qij
depend on neither xi nor xj, and ri and rj are degree d−1. Then ∆ = (ri−rj)(xi−xj). Now
since ∆ ∈ 〈PBCSP(n, n/2)〉, we know that ∆(x) = 0 for any x ∈ {0, 1}n with exactly n/2
indices which are 1. In particular, if we set xi = 1 and xj = 0, we know that (ri − rj) must
be zero if the remaining variables are set so that they have exactly n/2− 1 indices which are
1. In other words, (ri− rj) is zero on V (PBCSP(n− 2, (n− 2)/2)). By Lemma 3.5.1, we have
(ri − rj) ∈ 〈PBCSP(n − 2, (n − 2)/2)〉, and thus by the inductive hypothesis (ri − rj) has a
derivation from PBCSP(n−2, (n−2)/2) in degree d−1. By Lemma 3.5.3, ∆ = (ri−rj)(xi−xj)
has a derivation from PBCSP(n, n/2) in degree d.

Now since the transpositions generate the entire symmetric group, we have

p ∼=d
1

n!

∑
σ∈Sn

σp ∼=d 0,

where the last congruence is by Lemma 3.5.2. Thus p has a derivation from PBCSP(n, n/2)
in degree d.

Obstacles for General c

We will consider general c < n/2 since the case of c > n/2 is symmetric via the linear
transformation yi = 1− xi. We would like to argue that PBCSP(n, c) is effective even in the
case of general c. What goes wrong if we just try to imitate the proof of Theorem 3.5.4?
If we do so, eventually we arrive at the base case of the induction: PBCSP(n − 2c, 0). The
problem is that the linear monomials xi are in 〈PBCSP(n− 2c, 0)〉 but it is not obvious how
to derive xi from PBCSP(n− 2c, 0). In fact, it turns out that derivations of xi require degree
(n− 2c+ 1)/2. If c = Ω(n), the gap between this and the degree of xi, namely 1, is as large
as Ω(n)!

CHAPTER 3. EFFECTIVE DERIVATIONS 40

This obstacle is not an artifact of our proof strategy, but an intrinsic obstacle. There are
essentially two kinds of polynomials in 〈PBCSP(n, c)〉: Polynomials of degree at most c, and
polynomials of degree c+ 1 or greater. The former have efficient derivations:

Lemma 3.5.5. Let p ∈ 〈PBCSP(n, c)〉 have degree at most c. Then p has a derivation from
PBCSP(n, c) in degree deg p.

We delay the proof of this lemma until the next section. However, the polynomials of
degree c+ 1 or greater actually have no derivations until degree (n− c+ 1)/2, so if c << n,
then PBCSP(n, c) is not k-effective for any constant k. We will see that this phenomenon is
because of the fact that the Pigeonhole Principle requires high degree for HN derivations.
The negation of the Pigeonhole Principle is the following set of constraints:

¬PHP(m,n) =
{
x2
ij − xij | i ∈ [m], j ∈ [n]

}
∪

{∑
j

xij − 1 | i ∈ [m]

}
∪ {xijxik | i ∈ [m], j, k ∈ [n], j 6= k}
∪ {xijxkj | i, k ∈ [m], j ∈ [n], i 6= k}

¬PHP(m,n) asserts the existence of an injective mapping from [m] into [n]. If m > n, then
clearly there is no such mapping, so the set of polynomials is infeasible. This implies that
1 ∈ 〈¬PHP(m,n)〉 by Lemma 2.3.7. However, Razborov proved that any derivation of 1
from ¬PHP(m,n) has degree at least n/2 + 1 [62]. This allows us to prove the following by
reduction:

Lemma 3.5.6. Let p = x1x2 . . . xcxc+1. Then p ∈ 〈PBCSP(n, c)〉, but any derivation of p
from PBCSP(n, c) has degree at least (n− c+ 1)/2.

Proof. We argued p ∈ 〈PBCSP(n, c)〉 in Lemma 3.5.1, and essentially used a Pigeonhole
Principle argument where the pigeons are the n − c zeros, and the holes are the n − c − 1
variables not appearing in p. More formally, we show how to manipulate any derivation of
p from PBCSP(n, c) to get a refutation of ¬PHP(n− c, n− c− 1).

Any derivation of p from PBCSP(n, c) is a polynomial identity of the following form:

x1x2 . . . xc+1 = λ ·

(∑
i

xi − c

)
+
∑
i

λi · (x2
i − xi).

Now set x1 = x2 = · · · = xc+1 = 1 to get

1 = λ′ ·

(∑
i>c+1

xi + 1

)
+
∑
i>c+1

λ′i · (x2
i − xi).

CHAPTER 3. EFFECTIVE DERIVATIONS 41

We define variables yij with the intention that yij = 1 if the ith variable is the jth zero.
Thus we replace xi → 1−

∑n−c
j=1 yij and get

1 = λ′(y) ·

(∑
i>c+1

(
1−

n−c∑
j=1

yij

)
+ 1

)
+
∑
i>c+1

λ′i(y) ·

(1−
n−c∑
j=1

yij

)2

− 1 +
n−c∑
j=1

yij

= λ′(y) ·

(
n− c− 1−

∑
i>c+1,j

yij + 1

)
+
∑
i>c+1

λ′i(y) ·

(
n−c∑
j=1

y2
ij −

n−c∑
j=1

yij + 2
∑
j 6=j′

yijyij′

)

=
n−c∑
j=1

−λ′(y) ·

(∑
i>c+1

yij − 1

)
+
∑
i>c+1

λ′i(y) ·

(∑
j

(
y2
ij − yij

)
+ 2

∑
j 6=j′

yijyij′

)
.

Note that each term in the last equation contains a constraint in ¬PHP(n − c, n − c − 1).
Thus the degree of this derivation must be at least (n − c + 1)/2. Fixing x1, . . . , xc+1 can
only reduce the degree, so the degree of the original derivation must be at least (n− c+ 1)/2
as well.

Effective PC> Derivations for High Degree Polynomials

Lemma 3.5.6 tells us that we cannot hope to prove that PBCSP(n, c) has effective HN proofs,
but we are not soley interested in HN proofs. In particular, because the applications we
consider in this thesis are primarily focused on Semidefinite Programming, we have access
to the more powerful PC> proof system. In this system, ¬PHP is not difficult to refute,
and indeed once we allow ourselves PC> proofs we can show that Balanced-CSP admits
effective derivations.

Lemma 3.5.7. Let p = x1x2 . . . xcxc+1. Then p has a PC> proof Π from PBCSP(n, c) in
degree 2(c+ 1) with ‖Π‖ ≤ 1.

Proof. Recall that a PC> proof consists of two proofs of non-negativity: one for p and one
for −p. The first is trivial: every monomial is the multilinearization of itself squared. Thus
every monomial has a proof of non-negativity in twice its degree. For the second, we observe
the following identity

−x1x2 . . . xc+1 = x1x2 . . . xc

(
c−

∑
i

xi

)
+
∑
i≤c

−(x2
i − xi)

∏
j≤c,j 6=i

xj +

(∏
i≤c

xi

) ∑
i>c+1

xi.

The first two terms each have factors in PBCSP(n, c), and the last term is a sum of monomials
with non-negative coefficients. These monomials all have proofs of non-negativity, and thus
so does −p. It is simple to check that these proofs involve coefficients of unit size.

CHAPTER 3. EFFECTIVE DERIVATIONS 42

Effective HN Derivations for Low Degree Polynomials

It remains to prove that the low-degree polynomials in PBCSP(n, c) have efficient derivations.
We will be able to use simple HN derivations for these polynomials. The proof is very similar
to the one for Bisection, but we have to do a double induction on n and c since the balance
changes in the inductive step. We will take c ≤ n/2, since the other case is symmetric.

Lemma 3.5.8. Fix c ≤ n/2. Let p ∈ 〈PBCSP(n, c)〉 with deg p ≤ c. Then p has a derivation
from PBCSP(n, c) in degree deg p.

Proof. The proof is by double induction on n and c. The base case is the lemma statement
for PBCSP(n, 0) for all n. In this case p is a constant polynomial, and the only constant
polynomial in PBCSP(n, 0) is the zero polynomial, which has the trivial derivation. Now
consider the case when p ∈ PBCSP(n, c) for c ≤ n/2. Then following the same argument as in
Theorem 3.5.4, we define ∆ = p−σp = (ri− rj) · (xi−xj), where ri and rj do not depend on
xi or xj. Setting xi = 1 and xj = 0, we again conclude that (ri− rj) ∈ 〈PBCSP(n− 2, c− 1)〉.
Since c ≤ n/2, clearly c − 1 ≤ (n − 2)/2. Also, since ri − rj has degree deg p − 1, we still
have deg(ri − rj) ≤ c − 1. Thus we can apply the inductive hypothesis to get a derivation
for ri − rj from PBCSP(n − 2, c − 1) in degree deg p − 1. Then Lemma 3.5.3 tells us that
∆ has a derivation from PBCSP(n, c) in degree deg p, completing the induction. Taken with
Lemma 3.5.2, this implies the statement.

3.6 Boolean Sparse PCA

The last example we give for our proof strategy is the Boolean Sparse PCA problem,
which has a formulation on n variables with constraints

PSPCA(n, c) =
{
x3
i − xi | i ∈ [n]

}
∪

{∑
i

x2
i − c

}
.

The first set of polynomials ensures that the variables are ternary, and lie in {0,±1}. The
last polynomial is another balance constraint, and sets the number of variables that can be
nonzero. We define a symmetric action by σxi = xσ(i) for σ ∈ Sn and extend it appropriately.
These constraints arise when trying to reconstruct a planted sparse vector from noisy samples,
see for example [50].

These constraints are similar to the Balanced-CSP constraints of the previous section
with one crucial difference: The variables are ternary instead of binary. This will complicate
the analysis, but it turns out that with a bit more casework we will be able to push it
through. However, the Pigeonhole Principle obstacle remains, and we will once again only
be able to prove that low-degree polynomials have effective HN derivations.

Lemma 3.6.1. PSPCA(n, c) is complete for every n and c ≤ n.

CHAPTER 3. EFFECTIVE DERIVATIONS 43

Proof. Recall that by pigeonhole principle any monomial that involves c+1 or more distinct
variables will be zero over V (PSPCA). Our first step is to show that these are in 〈PSPCA〉. The
proof will be a reverse induction on the number of distinct variables, going from n to c+1. For
the base case, let xA be any monomial with n distinct variables. Then xA ∼= 1

n−cxA(
∑

i x
2
i−c),

so clearly xA ∈ 〈PSPCA〉. Now let xA be any monomial with c+ 1 ≤ k < n distinct variables.
Then

(k − c)xA +
∑
i/∈A

xA∪{i,i} ∼= xA

(∑
i

x2
i − c

)
.

By the inductive hypothesis, the second term of the LHS is in 〈PSPCA〉, and thus so is xA.
Now let p be a polynomial such that p(α) = 0 for every α ∈ V (PSPCA). We can assume
that the monomials of p involve at most c distinct variables. For any monomial xA of p, we
have xA(

∑
i xi− 1) ∼=

∑
i/∈A xA∪{i,i}− (c− |A|)xA, and so xA− 1

c−|A|
∑

i/∈A xA∪{i,i} ∈ 〈PSPCA〉,
and so we can replace xA with monomials of one higher degree. Repeatedly applying this
up to degree c (at which point we must stop to avoid dividing by zero), we determine there
is a polynomial p′ which has only monomials involving exactly c distinct variables such that
p − p′ ∈ 〈PSPCA〉. Fix two disjoint sets U1 and U2 of the variables with |U1 ∪ U2| = c and
let p′U1U2

be the coefficient of the monomial of p′ corresponding to the variables in U1 ∪ U2

with the variables in U1 appearing with degree one and the variables in U2 appearing with
degree two. We will prove by induction that p′U1U2

= 0 for every U1, U2. For the base case, let
U1 = ∅. Then if we average every monomial of p′ over the α ∈ V (PSPCA) that assign nonzero
values exactly to the variables in U1 ∪ U2, every monomial except p′U1U2

is zero, and that
monomial has value one. Since p′(α) = 0 for each α ∈ V (PSPCA), this implies that p′U1U2

= 0.
Proceeding by induction, let |U1| = k. Then if we average over all the α ∈ V (PSPCA) that
assign nonzero values exactly to the variables in U1 ∪U2 and assigns value 1 to the variables
in U1, every monomial is zero except p′UV with U ∪ V = U1 ∪ U2 and U ⊆ U1. By the
inductive hypothesis these all have zero coefficients except p′U1U2

, and now since p′ is zero on
all these points, we once again have p′U1U2

. Doing this for every U1, U2, we determine p′ = 0
and thus p ∈ 〈PSPCA〉.

Symmetric Polynomials

Once again, we prove a derivation lemma for symmetric polynomials. For this set of con-
straints, it is not as simple as saying that every symmetric polynomial is equal to some
constant on V (PSPCA) because we only have a constraint on

∑
i x

2
i as opposed to

∑
i xi. In

particular, the polynomial
∑

i xi itself does not reduce to a constant on V (PSPCA). We will
have to make a slightly more general argument.

Lemma 3.6.2. Let p be a polynomial in Rn. Then there exists a univariate polynomial q of
degree deg p such that p′ = 1

n!

∑
σ∈Sn σp

∼= q(
∑

i xi).

Proof. We prove that for every elementary symmetric polynomial ek(x), there exists a uni-
variate polynomial qk such that ek(x)− qk(

∑
i xi) has a derivation from PSPCA in degree k,

CHAPTER 3. EFFECTIVE DERIVATIONS 44

then the fundamental theorem of symmetric polynomials implies the lemma. For the base
case, clearly q0(t) = 1 and q1(t) = t. For the general case, consider the terms of the expansion
of (
∑

i xi)
k. They are indexed by the non-increasing partitions of k: λ = (λ1, λ2, . . . , λ`) and

can be written cλ
∑

i1,...,i`
xλ1i1 x

λ2
i2
. . . xλ`i` . Now just by reducing by x3

i − xi, we can reduce the
exponents on each variable to either one or two. If any exponent is two, then by reducing
by the constraint

∑
i x

2
i − c, we can replace any of these exponents with a multiplicative

constant. Thus after reducing, all of the exponents are one. But now this term is simply a
multiple of some ek′(x), with k′ ≤ k. Since one term is exactly k!ek(x), we have

1

k!

(∑
i

xi

)k

− ek(x) ∼=k

k−1∑
i=1

aiei(x)

for some real numbers ai. Now by the inductive hypothesis, we know that there exist
polynomials qi such that ei(x)− qi(

∑
i xi) has a derivation from PSPCA in degree i. Thus we

set 1
k!
qk(t) = tk −

∑
i aiqi(t) to complete the induction and the lemma.

Corollary 3.6.3. Let p ∈ 〈PSPCA〉 with deg p ≤ c. Then p′ = 1
n!

∑
σ∈Sn σp has a derivation

from PSPCA in degree deg p.

Proof. By Lemma 3.6.2, we know that there is a univariate polynomial q(t) of degree deg p
such that p′− q(

∑
i xi) ∈ 〈PSPCA〉deg p. Since p ∈ 〈PSPCA〉, so is p′ and q(

∑
i xi). Since there

are c+ 1 possible values of
∑

i xi in V (PSPCA), namely {−c,−c+ 2, . . . , c− 2, c}, q has c+ 1
zeros. But deg q = deg p ≤ c, so q must be the zero polynomial.

Getting to a Symmetric Polynomial

This process should be familiar by now. Since there are more choices for values for the
variables we are going to strip off, we are going to need to do a little more casework, but the
general strategy is the same. We start with a lemma that allows us to perform induction.

Lemma 3.6.4. Let L be a polynomial with a degree d derivation from PSPCA(n, c). Then
L · (x2

n+1 − x2
n+2) has a degree d+ 2 derivation from PSPCA(n+ 2, c+ 1), and L · (xn+1xn+2)

has a degree d+ 2 derivation from PSPCA(n+ 2, c+ 2).

Proof. It suffices to prove the theorem for L ∈ PSPCA(n, c). If L = x3
i − xi for some i, then

clearly the statement is true as L ∈ PSPCA(n+ 2, c+ 1) and L ∈ PSPCA(n+ 2, c+ 2), so let
L =

∑
i x

2
i − c. Now notice that

L · (x2
n+1 − x2

n+2)−

(
n+2∑
i=1

x2
i − (c+ 1)

)
(x2

n+1 − x2
n+2) = (1− x2

n+1 + x2
n+2)(x2

n+1 − x2
n+2)

= x2
n+1 − x2

n+2 − x4
n+1 + x4

n+2

∼=4 x
2
n+1 − x2

n+2 − x2
n+1 + x2

n+2

= 0

CHAPTER 3. EFFECTIVE DERIVATIONS 45

and

Lxn+1xn+2 −

(
n+2∑
i=1

x2
i − (c+ 2)

)
xn+1xn+2 = (2− x2

n+1 + x2
n+2)xn+1xn+2

= 2xn+1xn+2 − x3
n+1xn+2 + xn+1x

3
n+2

∼=4 2xn+1xn+2 − xn+1xn+2 + xn+1xn+2

= 0

to conclude the lemma.

Now we prove that Boolean Sparse PCA admits effective derivations for low degree
polynomials.

Lemma 3.6.5. Fix c ≤ n/2. Let p ∈ 〈PSPCA(n, c)〉 with deg p ≤ c/2. Then p has a
derivation from PSPCA(n, c) in degree at most 3 deg p.

Proof. We do double induction on n and c. For the base case of PSPCA(n, 0), note that the
only polynomial with degree at most 0 is the constant polynomial 0, which has the trivial
derivation. Now let p have degree at most d ≤ c/2. We can assume the individual degree
of each variable is at most two by reducing by the ternary constraints. Following the same
argument as in Theorem 3.5.4, we define the polynomial ∆ = p − σp for the transposition
σ = (i, j), but now since p is not multilinear, we write it as

p = r10xi + r01xj + r20x
2
i + r02x

2
j + r11xixj + r21x

2
ixj + r12xix

2
j + r22x

2
ix

2
j + qij

where none of the r or q polynomials depend on xi or xj. Then ∆ can be written

∆ = (r10 − r01)(xi − xj) + (r20 − r02)(x2
i − x2

j) + (r21 − r12)(x2
ixj − xix2

j)

= ((r10 − r01) + (r20 − r02)(xi + xj) + (r21 − r12)xixj)(xi − xj)
= (R0 +R1(xi + xj) +R2xixj)(xi − xj)

where we define R0 = (r10 − r01), R1 = (r20 − r02), and R2 = (r21 − r12), and note that they
are polynomials of degree at most d−1. If we set xi = 1 and xj = 0, we obtain a polynomial
R0 +R1 which must be zero on V (PSPCA(n− 2, c− 1)). Furthermore, if we set xi = −1 and
xj = 0, then R0−R1 is zero on V (PSPCA(n− 2, c− 1)), and setting xi = 1 and xj = −1, we
also get that R0 −R2 is zero on V (PSPCA(n− 2, c− 2)).

Since c ≤ n/2, clearly c − 2 ≤ c − 1 ≤ (n − 2)/2. Since d ≤ c/2, we also have d − 1 ≤
(c−2)/2. Since by Lemma 3.6.1 we know PSPCA(n, c) is complete, we can apply the inductive
hypothesis and so all these polynomials have derivations of degree at most 3(d − 1) from
their constraints. By Lemma 3.6.4, we know (R0 + R1)(x2

i − x2
j), (R0 − R1)(x2

i − x2
j), and

(R0 −R2)xixj have derivations from V (PSPCA(n, c)) in degree 3d− 1.

CHAPTER 3. EFFECTIVE DERIVATIONS 46

From the first two polynomials, it is clear that R0(x2
i−x2

j) and R1(x2
i−x2

j) have derivations
in degree 3d− 1. We also have

R0(x2
i − x2

j) · (xi + xj)− (R0 −R2)xixj · (xi − xj) =

= R0((x2
i − x2

j)(xi + xj)− xixj(xi − xj)) +R2xixj(xi − xj)
∼= (R0 +R2xixj)(xi − xj)

and thus (R0 +R2xixj)(xi−xj) is derivable in degree 3d. Together with R1(xi +xj)(xi−xj)
having a derivation in degree 3d−1, this implies that ∆ has a derivation in degree 3d. Taken
together with Lemma 3.6.2, we conclude that p has a derivation in degree 3d.

3.7 Optimization Problems with Effective Derivations

We include a corollary here summarizing all the results of this chapter:

Corollary 3.7.1. The following polynomial formulations of combinatorial optimization prob-
lems admit k-effective derivations:

• CSP: PCSP(n) = {x2
i − xi | i ∈ [n]}, for k = 1.

• Clique: PClique(V,E) = {x2
i − xi | i ∈ V } ∪ {xixj | (i, j) /∈ E}, for k = 1.

• Matching:

PM(n) =
{
x2
ij − xij | i, j ∈ [n]

}
∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik | i, j, k ∈ [n], j 6= k} ,

for k = 2.

• TSP:

PTSP(n) =
{
x2
ij − xij | i, j ∈ [n]

}
∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik, xjixki | i, j, k ∈ [n], j 6= k} ,

for k = 2.

• Bisection: PBCSP(n, n/2) = {x2
i − xi | i ∈ [n]} ∪

{∑
i xi −

n
2

}
, for k = 1.

The following sets of constraints admit k-effective derivations up to degree c:

CHAPTER 3. EFFECTIVE DERIVATIONS 47

• Balanced CSP: PBCSP(n, c) = {x2
i − xi | i ∈ [n]} ∪ {

∑n
i=1 xi − c}, for k = 1.

• Boolean Sparse PCA: PSPCA(n, 2c) = {x3
i − xi | i ∈ [n]}∪{

∑
i x

2
i − 2c}, for k = 3.

48

Chapter 4

Bit Complexity of Sum-of-Squares
Proofs

In this chapter we will show how effective derivations can be applied to prove that the El-
lipsoid algorithm runs in polynomial time for many practical inputs to the Sum-of-Squares
algorithm. First, we recall the Sum-of-Squares relaxation for approximate polynomial opti-
mization. We wish to solve the following optimization problem:

max r(x)

s.t. p(x) = 0,∀p ∈ P
q(x) ≥ 0, ∀q ∈ Q.

One natural way to try and solve this optimization problem is to guess a θ and try to prove
that θ − r(α) ≥ 0 for all α satisfying the constraints. Then we can use binary search to
try and find the smallest such θ. One way to try to prove this is to try and find a PC>

proof of non-negativity for θ − r(x) from P and Q. As discussed in Section 2.3, any such
proof of degree at most d can be found by writing a semidefinite program of size nO(d) whose
constraints use numbers which require a number of bits polynomial in log ‖r‖, log ‖P‖, and
log ‖Q‖. Solving this SDP is called the degree-d Sum-of-Squares relaxation.

The Ellipsoid Algorithm is commonly cited as a tool that will solve SDPs in polynomial
time, and thus it is often claimed that the Sum-of-Squares relaxation can be implemented
in polynomial time. Unfortunately, as first pointed out by Ryan O’Donnell in [54], the
Ellipsoid Algorithm actually has some technical requirements to ensure that it actually runs
in polynomial time, one of which is that the feasible region of the SDP must intersect a
ball of radius R centered at the origin such that logR is polynomial. This is often not an
issue, but when trying to argue that a PC> proof can be found in polynomial time singularly
because it is low-degree, then the situation is not so clear. The potential problem is that
θ − r(x) may have a degree-d proof of non-negativity, but that proof may have to contain
coefficients of size so enormous that logR is not polynomial in log ‖r‖, log ‖P‖, and log ‖Q‖.
In this case if our intention is to use the SOS SDP to brute-force over all degree-d PC>

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 49

proofs of non-negativity, we would have to run the Ellipsoid Algorithm for exponential time.
Indeed, O’Donnell gave an example of a polynomial system and a polynomial r which had
degree two proofs of non-negativity, but all of them necessarily contained coefficients of
doubly-exponential size. In this chapter we develop some of the first results on when the
Sum-of-Squares relaxation for the optimization problem described by (r,P ,Q) is guaranteed
to run in polynomial time. We show how to use effective derivations to argue that the bit
complexity of PC> proofs of non-negativity is polynomially bounded.

We will conclude this chapter by strengthening the example of Ryan O’Donnell which
showed that there are polynomial optimization problems whose low-degree proofs of non-
negativity always contain coefficients of doubly exponential size. We show that, despite
his hopes in [54], there are even Boolean polynomial optimization problems exhibiting this
phenomenon.

4.1 Conditions, Definitions, and the Main Result

As O’Donnell’s example shows, we cannot hope to prove that the Sum-of-Squares relaxation
will always run in polynomial time. We must impose some conditions on the optimization
problem defined by (r,P ,Q) in order to guarantee a polynomial runtime. First, we will
assume that the solution space S = V (P) ∩ H(Q) is reasonably bounded, specifically that
‖S‖ ≤ 2poly(n). This will be the case for all of the combinatorial problems we consider (they
actually have ‖S‖ ≤ 1).

Our main theorem is that if there exists a special distribution µ over V (P) satisfying
three conditions, then any PC> proof of non-negativity from P and Q can be taken to have
polynomial bit complexity. The conditions are quite general and we believe they apply to a
wide swathe of problems beyond those that we prove here. In fact, they depend only on the
solution space of (P ,Q), so we drop the dependence on r. We explain the three conditions
we require below.

Definition 4.1.1. For ε > 0, we say that µ ε-robustly satisfies the inequalities Q if q(α) ≥ ε
for each α ∈ supp(µ) and q ∈ Q.

We require ε-robustness because our analysis will end up treating the constraints in P
differently from the constraints in Q. Because of this, we can only hope for our analysis to
hold under ε-robustness, since otherwise one could simulate a constraint from P simply by
having both p and −p in Q.

Definition 4.1.2. Recall we use x⊗d denote the vector whose entries are all the monomials
in R[x1, . . . , xn] up to total degree d. For a point α ∈ Rn, we use x⊗d(α) to denote the vector
whose entries have each been evaluated at α. For a distribution µ on V (P), we define the
µ-moment matrix up to level d:

Mµ,d = E
α∼µ

[
x⊗d(α)x⊗d(α)T

]

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 50

Clearly Mµ,d is a PSD matrix, and furthermore it encodes information about the dis-

tribution µ. For example, if we let c̃ ∈ R(n+d−1
d), then c̃ corresponds to the polynomial

c(x) = c̃ · x⊗d, and then c̃TMµ,dc̃ = Eα∼µ [c(α)2]. In particular, if c̃ is a zero eigenvector of
Mµ,d, then c(x) is zero on all of S.

Definition 4.1.3. We say that µ is δ-spectrally rich up to degree d if every nonzero eigenvalue
of Mµ,d is at least δ.

If µ is δ-spectrally rich up to degree d and p is an arbitrary polynomial of degree at most
d, then there exists a polynomial p′ such that p′(α) = p(α) for each α ∈ supp(µ) and ‖p′‖ ≤
1
δ

maxα |p′(α)|. Thus spectral richness can be thought of as ensuring that the polynomials
which are not zero on all of supp(µ) can be bounded. What about the polynomials that are
zero on supp(µ)? We need to ensure that we can bound those as well, or else a PC> proof
could require one with enormous coefficients. The key is that, since a bounded degree PC
derivation is a linear system, its solution can be taken to have bounded coefficients.

Definition 4.1.4. We say that P is k-complete for supp(µ) up to degree d if, for every zero
eigenvector c̃ of Mµ,d, the degree-d polynomial c(x) = c̃Tx⊗d has a derivation from P in
degree k.

If µ has support over all of V (P), then k-completeness up to degree d is implied by P
being k/d-effective. What if the support of µ is some smaller subset? Well, supp(µ) had
better at least be very close to V (P), otherwise there is no hope that P is complete for
supp(µ) up to degree d. In fact, if supp(µ) 6= V (P), it is impossible for every polynomial
that is zero on supp(µ) to have a derivation from P , since in this case I(supp(µ)) 6= 〈P〉.
However, since we are only dealing with PC> proofs up to degree d, we only actually care
about polynomials up to degree d. In other words, we want supp(µ) to be close enough to
V (P) that only polynomials of degree higher than d can tell the difference.

Example 4.1.5. Let µ be the uniform distribution over S = {0, 1}n \ (0, 0, . . . , 0). Then
P = {x2

i − xi | i ∈ [n]} is 1-complete for S up to degree n − 1. To see this, let r(x) be
a polynomial which is zero on all of S, but r /∈ 〈P〉. Then r(0, 0, . . . , 0) 6= 0, and has the
unique multilinearization

r̃(x) = r(0, 0, . . . , 0)
n∏
i=1

(1− xi) ,

and thus the degree of r must be n.

Example 4.1.6. Let µ be the uniform distribution over S = {0, 1}n\{(1, y) | y ∈ {0, 1}n−1}.
Then P = {x2

i − xi | i ∈ [n]} is not k-complete for S up to degree d for any k ≥ d ≥ 1.
To see this, note that the polynomial x1 is zero on all of S, and thus corresponds to a zero
eigenvector of Mµ,d. But x1 is not zero on V (P), so x /∈ 〈P〉, and thus x has no derivation
from P at all.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 51

In order for µ to be robust, it must have support only in S = V (P) ∩ H(Q). In this
case, completeness implies that the additional constraints q(x) ≥ 0 for each q ∈ Q do
not themselves imply a low-degree polynomial equality not already derivable from P . We
consider this part of the condition to be extremely mild, because one could simply add such
a polynomial equality to the constraints P of the program.

Example 4.1.7. Let P = {x2
i−xi | i ∈ [n]} and Q = {2−

∑n
i=2 xi}. Then S = V (P)∩H(Q)

is the set of binary strings with at most two ones. P is not k-complete up to degree 3 for
any distribution with supp(µ) = S for any k because x1x2x3 is zero on S but clearly not on
V (P). However, P ′ = P ∪ {xixjxk | i, j, k ∈ [n] and distinct} is 1-complete for S.

Finally, we compile all of the conditions together:

Definition 4.1.8. We say that (P ,Q) admits a (ε, δ, k)-rich solution space up to degree d
with certificate µ if there exists a distribution µ over V (P)∩H(Q) which ε-robustly satisfies
Q, is δ-spectrally rich, and for which P is k-complete, all up to degree d. If 1/ε = 2poly(nd),
1/δ = 2poly(nd), and k = O(d), we simply say that (P ,Q) has a rich solution space up to
degree d.

Armed with all of these definitions, we can finally formally state the main result of this
chapter:

Theorem 4.1.9. Assume that ‖P‖, ‖Q‖, ‖r‖ ≤ 2poly(nd). Let (P ,Q) admit an (ε, δ, k)-rich
solution space up to degree d with certificate µ. Then if r(x) has a PC> proof of non-negativity
from P and Q in degree at most d, it also has a PC> proof of non-negativity from P and
Q in degree O(d) such that the coefficients of every polynomial appearing in the proof are

bounded by 2poly(nk,log 1
δ
,log 1

ε
).

In particular, if (P ,Q) has a rich solution space up to degree d, then every coefficient
in the proof can be written with only poly(nd) bits, and the degree-O(d) Sum-of-Squares
relaxation of (r,P ,Q) runs in polynomial time via the Ellipsoid Algorithm.

We delay the proof of Theorem 4.1.9 until Section 4.4. First, we offer some discussion
on the restrictiveness of each of the three requirements of richness and collect some example
optimization problems which admit rich solution spaces.

4.2 How Hard is it to be Rich?

For the rest of this chapter, we pick µ to be the uniform distribution over S = V (P)∩H(Q).
For all of the examples we considered, this was sufficient to exhibit a rich certificate. We
will abuse terminology a little bit and use µ and S interchangeably. Here we will argue that
robustness is easily achieved, and if S lies inside the hypercube {0, 1}n, then it is naturally
spectrally rich. Because most combinatorial optimization problems have Boolean constraints,
their solution spaces lie inside the hypercube. This means that the main interesting property
is the completeness of P for S.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 52

Robust Satisfaction

How difficult is it to ensure that S robustly satisfies the inequalities Q? For one, if ε =
minq∈Qminα∈V (P)\H(Q) |q(α)| > 0, then we can perturb the constraints in Q slightly without
changing the underlying solution space S so that S ε/2-robustly satisfies Q. Simply make
Q′ by replacing each q ∈ Q with q′ = q + ε/2. Clearly for α ∈ S, q′(α) = q(α) + ε/2 ≥ ε/2.
Furthermore, we still have S = V (P)∩H(Q′) by the definition of ε. For many combinatorial
optimization problems, their solution spaces are discrete and separated, and so this ε is
appreciably large, so there is no issue.

Example 4.2.1. Consider the Balanced-Separator constraints: P = {x2
i − xi | i ∈ [n]}

and Q = {2n/3 −
∑

i xi,
∑

i xi − n/3}. The solution space S is the set of binary strings
with between n/3 and 2n/3 ones. If n is divisible by 3, then S does not robustly satisfy Q,
since there are strings with exactly n/3 ones. However there is a very simple fix by setting
Q′ = {2n/3 + 1/2−

∑
i xi,

∑
i xi + 1/2−n/3}. Then S is 1/2-robust for Q′, and since

∑
i xi

is a sum of Boolean variables, any point in V (P) changes the sum by integer numbers. Thus
adding 1/2 to the constraints does not change V (P) ∩H(Q).

While we do not have a generic theorem that shows most problems satisfy robust satis-
faction, we have not yet encountered a situation where it was the bottleneck. The technique
described above has always sufficed.

Spectral Richness

Recall that S is δ-spectrally rich if the moment matrix MS,d has only nonzero eigenvalues
of size at least δ. When S lies in the hypercube, we can achieve a bound for its spectral
richness using this simple lemma:

Lemma 4.2.2. Let M ∈ RN×N be an integer matrix with |Mij| ≤ B for all i, j ∈ [N]. The
smallest non-zero eigenvalue of M is at least (BN)−N .

Proof. Because M is PSD, it has a full-rank principal minor A. Without loss of generality,
let A be the upper-left block of M . We claim the least eigenvalue of A lower bounds the
least nonzero eigenvalue of M . Since M is symmetric, there must be a C such that

M =

[
I
C

]
A
[
I CT

]
.

Let P = [I, CT], ρ be the least eigenvalue of A, and x be a vector perpendicular to the
zero eigenspace of P . Then we have xTMx ≥ ρxTP TPx, but x is perpendicular to the zero
eigenspace of P TP . Now P TP has the same nonzero eigenvalues as PP T = I + CTC � I,
and thus xTP TPx ≥ 1, and so every nonzero eigenvalue of M is at least ρ. Now A is a full-
rank bounded integer matrix with dimension at most N . The magnitude of its determinant
is at least 1 and all eigenvalues are at most N ·B. Therefore, its least eigenvalue must be at
least (BN)−N in magnitude.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 53

As a corollary, we get:

Corollary 4.2.3. Let P and Q be such that S ⊆ {0,±1}n. Then S is δ-spectrally rich with
1
δ

= 2poly(nd).

Proof. Recall MS,d = Eα∈S[x⊗d(α)x⊗d(α)T], and note that |S| ·M is an integer matrix with
entries at most 3n. The result follows by applying Lemma 4.2.2.

Most combinatorial optimization problems are inherently discrete by nature, and so their
polynomial formulations can naturally be taken to have solution spaces in Zn. In this case
some multiple of their moment matrices are integer matrices, and we can use Lemma 4.2.2 to
show spectral-richness. Even when not dealing with combinatorial optimization, it is possible
to prove spectral richness as we will see with Unit Vector later. For these reasons, we
consider spectral richness to be a mild condition.

Completeness

Recall that if S = V (P), then P being k-complete for S up to degree d is equivalent to P
being k/d-effective. Furthermore, it is easy to see that if there is a polynomial p ∈ 〈P〉 of
degree d which does not have a degree-k derivation from P , then P cannot be complete for
any subset S ⊆ V (P). Thus in order to prove that P is k-complete for some subset S up to
degree d, we must at least prove that P is k/d-effective. As we saw in Chapter 3, proving
this is often tricky, and there is not yet any general theory for it. On the bright side, because
the previous two conditions are so mild, it is often the case that completeness is the only
problem to deal with before being able to conclude that the Sum-of-Squares relaxation is
efficient. This fact is one of the main motivations behind our study of effective derivations.
Because of the lack of a general theory for effective derivations, we also lack a general theory
for giving low bit complexity proofs of non-negativity, and so we apply Theorem 4.1.9 on a
case-by-case basis. However, in this chapter we at least compile a list of some combinatorial
problems to which Theorem 4.1.9 applies. These problems arise from common applications
of the Sum-of-Squares relaxations.

4.3 Optimization Problems with Rich Solution Spaces

Before we assemble the list in full, we give two more problems that have rich solution spaces.

Lemma 4.3.1. The Unit-Vector problem has a formulation on n variables with con-
straints PUV = {

∑n
i=1 x

2
i − 1}. Then the uniform distribution over S = V (P) is rich for P

up to any degree.

Proof. To prove spectral richness, we note that in [25] the author gives an exact formula
for each entry of the matrix MS,d =

∫
S
m(x) for any monomial p. The formulas imply that

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 54

(n+ d)!π−n/2M is an integer matrix with entries (very loosely) bounded by (n+ d)!d!2n. By
Lemma 4.2.2, we conclude that S is δ-spectrally rich with 1/δ = 2poly(nd).

Since 〈P〉 has only a single generator, to prove that P is d-complete for S, all we have
to do is show that every element of I(S) is a multiple of

∑
i x

2
i − 1. Let p(x) be any

degree-d polynomial which is zero on the unit sphere S = V (P), and define the even part
of p, p0(x) = p(x) + p(−x). Clearly p0 is also zero on the unit sphere, with degree k =
2b(d+ 1)/2c. Note that p0 has only terms of even degree. Define a sequence of polynomials
{pi}i∈{0,...,k/2} as follows. Define qi to be the part of pi which has degree strictly less than
k, and let pi+1 = pi + qi · (

∑
i x

2
i − 1). Then each pi is zero on the unit sphere and has no

monomials of degree strictly less than 2i. Thus pk/2 is homogeneous of degree k. But then
pk/2(tx) = tkpk/2(x) = 0 for any unit vector x and t > 0, and thus pk/2(x) must be the zero
polynomial. This implies that p0 is a multiple of

∑
i x

2
i − 1, since each pi+1− pi is a multiple

of
∑

i x
2
i − 1. The same logic shows that the odd part of p, p(x)− p(−x), is also a multiple

of
∑

i x
2
i − 1, and thus so is p(x). Now since every element of 〈P〉 must be a multiple of∑

i x
2
i − 1, obviously P is 1-effective, so P is d-complete for S up to degree d for any d.

Lemma 4.3.2. Consider the Balanced Separator formulation P = {x2
i − xi | i ∈ [n]}

and Q = {1/100 + 2n/3−
∑

i xi, 1/100 +
∑

i xi − n/3}. Then the uniform distribution over
S = V (P) ∩H(Q) is rich for (P ,Q) up to degree n/3.

Proof. First, S is clearly 1/100-robust for Q, even if n is divisible by three. Second, S ⊆
{0, 1}n, so by Corollary 4.2.3 it is spectrally rich. To prove completeness, we note that P
is 1-effective by Corollary 3.1.2. It remains to prove that Q does not introduce additional
low-degree polynomial equalities. Suppose r is a polynomial that is zero on S. Without loss
of generality, we may assume that r is multilinear by using the constraints {x2

i −xi | i ∈ [n]}.
Then consider the symmetrized polynomial r∗ = 1

n!

∑
σ∈Sn σr, where σ acts by σxi = xσ(i).

Then because P and Q are fixed by this action, r∗ must also evaluate to zero on S. Because
r∗ is symmetric and multilinear, it is a linear combination of the elementary symmetric
polynomials ek(x). However, a simple induction shows that there is a univariate polynomial
qk of degree k for each k such that ek(x)− qk(

∑
i xi) ∈ 〈P〉. In particular this implies there

is a univariate polynomial q(t) with deg q ≤ r∗ = deg r such that q(
∑

i xi) is zero on S. This
univariate polynomial has n/3 zeros since S has points with n/3 different possible values for∑

i xi. But q cannot be the zero polynomial because it is non-zero on V (P), so q has degree
at least n/3, and so does r. Thus every non-zero multilinear polynomial that is zero on S
but not in 〈P〉, has degree at least n/3, and P is 1-complete for S up to degree n/3.

Finally, we collect all the problems discussed:

Corollary 4.3.3. For the following combinatorial optimization problems, the uniform dis-
tribution over S = V (P) ∩H(Q) is a rich certificate up to any degree:

• CSP: PCSP(n) = {x2
i − xi | i ∈ [n]}.

• Clique: PClique(V,E) = {x2
i − xi | i ∈ V } ∪ {xixj | (i, j) /∈ E}.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 55

• Matching:

PM(n) =
{
x2
ij − xij | i, j ∈ [n]

}
∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik | i, j, k ∈ [n], j 6= k} .

• TSP:

PTSP(n) =
{
x2
ij − xij | i, j ∈ [n]

}
∪

{∑
i

xij − 1 | j ∈ [n]

}
∪ {xijxik, xjixki | i, j, k ∈ [n], j 6= k} .

• Bisection: PBCSP(n, n/2) = {x2
i − xi | i ∈ [n]} ∪

{∑
i xi −

n
2

}
.

• Unit-Vector: PUV = {
∑

i x
2
i − 1}.

For the following optimization problems, S is a rich certificate up to degree c:

• Balanced Separator: PBS(3c) = {x2
i − xi | i ∈ [3c]}, QBS(3c, c) = {1/100 + 2c −∑3c

i=1 xi, 1/100 +
∑3c

i=1 xi − c}.

• Balanced CSP: PBCSP(n, c) = {x2
i − xi | i ∈ [n]} ∪ {

∑n
i=1 xi − c}.

• Boolean Sparse PCA: PSPCA(n, 2c) = {x3
i − xi | i ∈ [n]} ∪ {

∑
i x

2
i − 2c}.

Proof. Unit-Vector and Balanced Separator were discussed above. For all the other
problems, S ⊆ {0,±1}n, so by Corollary 4.2.3, S is spectrally rich. Furthermore, for these
problems, P was proven to admit effective derivations in Chapter 3 (see Corollary 3.7.1),
and Q is empty, so S = V (P). Thus P is k-complete for S up to the appropriate degree d,
with k = O(d).

4.4 Proof of the Main Theorem

(Proof of Theorem 4.1.9). For convenience, we write P = {p1, . . . , pm} and Q = {q1, . . . , q`}.
Let µ be the certificate for (ε, δ, k)-richness of (P ,Q), let S = supp(µ), and let r(x) be a
degree-d polynomial which has a PC> proof of non-negativity from (P ,Q). In other words,
there is a polynomial identity

r(x) =

t0∑
i=1

h2
i +

∑̀
i=1

(
ti∑
j=1

h2
ij

)
qi +

m∑
i=1

λipi.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 56

Our goal is to find a potentially different PC> proof of non-negativity for r which uses only
polynomials of bounded norm.

First, we rewrite the original PC> proof into a more convenient form before proving
bounds on each individual term. Because the elements of x⊗d are a basis for R[x1, . . . , xn]d,
every polynomial in the proof can be expressed as c̃Tx⊗d, where c̃ is a vector of reals:

r(x) =

t0∑
i=1

(h̃Ti x⊗d)2 +
∑̀
i=1

(
ti∑
j=1

(h̃Tijx
⊗d)2

)
qi +

m∑
i=1

λipi

= 〈H,x⊗d(x⊗d)T 〉+
∑̀
i=1

〈Hi,x
⊗d(x⊗d)T 〉qi +

m∑
i=1

λipi

for PSD matrices H, H1, . . . , H`. Next, we average this polynomial identity via the distri-
bution µ:

E
α∼µ

[r(α)] =

〈
H, E

α∼µ

[
x⊗d(α)x⊗d(α)T

]〉
+
∑̀
i=1

〈
Hi, E

α∼µ

[
qi(α)x⊗d(α)x⊗d(α)T

]〉
+ 0

The LHS is at most poly(‖r‖, ‖S‖). The RHS is a sum of positive numbers, since the inner
products are over pairs of PSD matrices (recall qi(α) ≥ ε > 0). Thus the LHS is an upper
bound on each term of the RHS. We would like to say that since S is δ-spectrally rich, the first
term is at least δTr(H). Unfortunately the averaged matrix may have zero eigenvectors, and
it is possible that H could have very large eigenvalues in these directions. However, because
P is k-complete for S, these can be absorbed into the final term at the cost of increasing the
degree to k. More formally, let Π =

∑
u uu

T be the projector onto the zero eigenspace of
Mµ,d = Eα∼µ[x⊗d(α)x⊗d(α)T]. Because P is k-complete for S, for each u there is a degree-k
derivation uTx⊗d =

∑
i σuipi. Then Πx⊗d(x⊗d)T =

∑
u(u

Tx⊗d) · u(x⊗d)T . Thus we can
write

〈H,x⊗d(x⊗d)T 〉 =
〈
H, (Π + Π⊥)x⊗d(x⊗d)T (Π + Π⊥)

〉
=
〈
H,Π⊥x⊗d(x⊗d)TΠ⊥

〉
+
∑
u

uTx⊗d
(〈
H,Π⊥x⊗duT + x⊗duTΠ⊥ + x⊗duTΠ

〉)
=
〈
Π⊥HΠ⊥,x⊗d(x⊗d)T

〉
+
∑
i

σipi,

for some polynomials σi. Doing the same for the other terms and setting H ′ = Π⊥HΠ⊥ and
similarly for H ′i, we get a new proof:

r(x) = 〈H ′,x⊗d(x⊗d)T 〉+
∑̀
i=1

〈H ′i,x⊗d(x⊗d)T 〉qi +
m∑
i=1

λ′ipi.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 57

Now the zero eigenspace of H ′ is contained in the zero eigenspace of Mµ,d. Furthermore,
the δ-spectral richness of µ implies that each nonzero eigenvalue of Mµ,d is at least δ, so
〈H ′,Mµ,d〉 ≥ δTr(H ′). Also, the ε-robustness of µ implies that qi(α) ≥ ε for each i and α.
Thus〈

H ′i, E
α∼µ

[
qi(α)x⊗d(α)(x⊗d(α))T

]〉
≥
〈
H ′i, E

α∼µ

[
εx⊗d(α)(x⊗d(α))T

]〉
≥ εδTr(H ′i).

Thus, after averaging we have

poly(‖r‖, ‖S‖) ≥ δTr(C) +
∑̀
i=1

δεTr(H ′i).

Every entry of a PSD matrix is bounded by the trace, so H ′ and each H ′i have entries
bounded by poly(‖r‖, ‖S‖, 1

δ
, 1
ε
).

The only thing left to do is to bound the coefficients λ′i. This turns out to be easy
because the PC> proof is linear in these coefficients. If we imagine the coefficients of the λ′i
as variables, then the linear system induced by the polynomial identity

r(x)− 〈H ′,x⊗d(x⊗d)T 〉 −
∑̀
i=1

〈H ′i,x⊗d(x⊗d)T 〉 =
m∑
i=1

λ′ipi

is clearly feasible, and the coefficients of the LHS are bounded by poly(‖r‖, ‖S‖, 1
δ
, 1
ε
). There

are O(nk) variables, so by Cramer’s rule, the coefficients of the λ′i can be taken to be bounded
by poly(‖P‖nk , 1

δ
, 1
ε
, ‖r‖, ‖S‖, n!). By assumption, ‖P‖, ‖r‖, ‖S‖ ≤ 2poly(nd). Thus this bound

is at most 2poly(nk,log 1
δ
,log 1

ε
).

4.5 A Polynomial System with No Efficient Proofs

In [54], Ryan O’Donnell gave the first example of a set of polynomials P and a polynomial
r which has a degree two PC> proof of non-negativity from P , but any such degree two
proof must necessarily contain polynomials with doubly-exponential coefficients. In his pa-
per, he was the first to point out the trouble with the Sum-of-Squares relaxation that we
have endeavored to address in this chapter. He also hoped that if P was a Boolean system,
i.e. {x2

i − xi | i ∈ [n]} ⊆ P , then any PC> proof from P could be taken to have polynomial
bit complexity. Unfortunately, in this section we answer this question in the negative. We
develop a polynomial system containing the Boolean constraints, but which still has poly-
nomials with proofs of non-negativity that require polynomials of doubly-exponential size.
Furthermore, our construction also holds even for proofs of high degree. In O’Donnell’s
original example, the polynomial r has proofs of low bit complexity at degree four. In our
example, the polynomial r has no proofs of low bit complexity until degree Ω(

√
n), thus

scuttling any hope of solving the bit complexity problem by simply using a higher degree
Sum-of-Squares relaxation.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 58

A First Example

The original example given in [54] essentially contains the following system whose repeated
squaring is responsible for the blowup of the coefficients in the proofs:

P = {x2
1 − x2, x2

2 − x3, . . . , x2
n−1 − xn, x2

n}.

The solution space is simply V (P) = {(0, 0, . . . , 0)}, and therefore the polynomial ε − x1

must be non-negative over V (P) for any ε > 0. However, it is not obvious as to whether or
not a low-degree PC> proof of this non-negativity exists.

Lemma 4.5.1. The polynomial ε−x1 has a degree two PC> proof of non-negativity from P.

Proof. The following polynomial identity implies the lemma statement:

ε− x1
∼=
(√

ε

n
−
(n

4ε

)1/2

x1

)2

+

(√
ε

n
−
(n

4ε

)3/2

x2

)2

+

(√
ε

n
−
(n

4ε

)7/2

x3

)2

+

+ · · ·+
(√

ε

n
−
(n

4ε

)(2n−1)/2

xn

)2

. (∗)

To explain a little, let the ith term in the proof be (Ai−Bixi)
2. First notice that

∑
iA

2
i = ε.

Second, notice that −2AiBixi = −
(
n
4ε

)2i−1−1
xi. Third, (Bixi)

2 =
(
n
4ε

)2i−1
x2
i
∼=
(
n
4ε

)2i−1
xi+1.

Everything has been carefully set up so that (Bixi)
2 ∼= −2Ai+1Bi+1. Finally, clearly B2

nx
2
n
∼=

0. Thus every term cancels out except
∑

iA
2
i − 2A1B1x1 = ε− x1.

Of course, the above proof involves coefficients of doubly-exponential size, which means
that it will not be found by running a polynomial time version of the Ellipsoid Algorithm.
Is it possible to find a proof for ε− x1 that does not use coefficients of such huge size?

Lemma 4.5.2. Let ε < 1/2. Then any PC> proof of ε− x1 from P of degree d must involve

polynomials with coefficients of size at least Ω
(

1
nd

(
1
2ε

)2n
)

.

Proof. We will define a linear functional φ : R[X]d → R as in Lemma 2.3.15. Recall we want
φ to satisfy the following:

(1) φ[ε− x1] = −ε

(2) φ[σ(x2
i − xi+1)] = 0 for any i ≤ n− 1 and σ of degree at most d− 2

(3) |φ[λx2
n]| ≤ (2ε)2nnd‖λ‖.

(4) φ[p2] ≥ 0 for any p2 of degree at most d

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 59

Note that any monomial is equivalent to some power of x1. For example, x1x2x3
∼= x7

1.
More generally, it is clear from P that

n∏
i=1

xβii
∼= x

∑n
j=1 2j−1βj

1 .

Define φ by linearly extending its action on monomials, defined by:

φ

[
n∏
i=1

xβii

]
= (2ε)

∑
i 2i−1βi .

Clearly φ[ε−x1] = −ε, thus satisfying condition (1). Condition (2) is obviously satisfied if σ
is a monomial, and linearity of φ implies that it holds for any polynomial σ. For condition
(3), if λ is a monomial, then φ[λx2

n] ≤ φ[x2
n] = (2ε)2n . If λ is not a monomial, it has at

most nd monomials, and maximum coefficient at most ‖λ‖. Then by linearity of φ, we
have φ[λx2

n] ≤ (2ε)2nnd‖λ‖. For condition (4), note that φ is multiplicative. Then clearly
φ[p2] = φ[p]2 ≥ 0.

Even though r does not have any efficient PC> proofs of non-negativity, this example
does not achieve our goal of exhibiting a system that contains all the Boolean constraints.
We show how to modify it in the following section.

A Boolean System

One simple way to try to make the system Boolean is to just add the constraints x2
i − xi to

P . Unfortunately, this introduces new proofs for ε − xi, and they have low bit complexity.
To see this, it is clear that x2

i − xi ∼= xi+1 − xi, and by adding these together, we can get a
telescoping sum and derive xn− x1. But now xn− x1

∼= x2
n− x1

∼= −x1, and thus x1 ∈ 〈P〉2.
Because HN proofs are linear, x1 has a derivation

∑
p λpp with low bit complexity, which

can be used to write a PC> proof for

ε− x1 =
√
ε

2
+ λpp.

By constraining the variables xi we add new ways to formulate proofs. We want to add
constraints in a way that PC> proofs do not realize that the xi are actually constrained
further.

We draw inspiration from the Knapsack problem, which is known to be difficult to refute
with PC> proofs. We replace each instance of the variable xi with a sum of 2k Boolean

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 60

variables: xi →
∑

j wij − k. The new set of constraints is

P ′ =

(∑

j

wij − k

)2

−

(∑
j

wi+1,j − k

)
| i ∈ [n− 1]

∪

(∑

j

wnj − k

)2

∪
{
w2
ij − wij | i ∈ [n], j ∈ [2k]

}
.

The solution space V (P ′) is the set of n bit strings of 2k bits, each with exactly k ones.

Lemma 4.5.3. The polynomial r = ε−
(∑

j w1j − k
)

is non-negative on V (P ′), and has a

degree two PC> proof of non-negativity from P ′.

Proof. The polynomial r is non-negative because there are exactly k ones among the w1j,
so r(α) = ε > 0 on V (P ′). Furthermore, r has a proof of non-negativity since we can just

replace each instance of xi with
(∑

j wij − k
)

in (∗).

Before we prove that the doubly-exponential coefficients are necessary, we need the fol-
lowing technical lemma, due to [30]:

Lemma 4.5.4. Let 0 < δ < 1. Then there exists a linear function φδ : R[X]d → R and a
constant C satisfying, for any λ up to degree Ck,

(1) φδ[λ · (w2
ij − wij)] = 0,

(2) φδ[λ · ((
∑

j wij − k)− δ)] = 0,

(3) φδ[p
2] ≥ 0 for any polynomial p of degree at most Ck/2.

The lemma is equivalent to claiming that a PC> refutation for that system of equations
(Knapsack) requires degree Ck. Since δ is not an integer and each wij is Boolean, obviously∑

j wij − k − δ = 0 is unsatisfiable, but because there is no PC> proof until degree Ck, the
linear function φδ exists. We will use these linear functions to pretend that

∑
j wij − k =

(2ε)2i−1
and mimic the proof in Lemma 4.5.2.

Lemma 4.5.5. Let r = ε −
(∑

j wij − k
)

and ε < 1/2. Then any degree-Ck PC> proof of

non-negativity for r from P ′ contains a polynomial of norm at least Ω
(

1
(nk)d

·
(

1
2ε

)2n
)

.

Proof. Let d ≤ Ck, Wi = {wi1, wi2, . . . , wi,2k}, and W =
⋃
iWi. We will use σ(W) to denote

an arbitrary monomial, and σ1(W1), . . . , σn(Wn) to be the monomials whose product is σ.
We will use λ to denote an arbitrary polynomial. We will define a linear functional satisfying

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 61

the requirements of Lemma 2.3.15, which will prove the theorem. Define a linear functional
Φ : R[W1,W2, . . . ,Wn]d → R by linearly extending its action on monomials to the monomial
σ:

Φ[σ] = φ1(σ1)φ2(σ2) . . . φn(σn),

where each φi is the linear function φ(2ε)2i−1 guaranteed to exist by Lemma 4.5.4.
First, clearly

Φ

[
ε−

(∑
j

w1j − k

)]
= φ1

[
ε−

(∑
j

w1j − k

)]
= −ε.

Second,

Φ
[
σ · (w2

ij − wij)
]

= φi
[
σi · (w2

ij − wij)
]∏
j 6=i

φj[σj] = 0.

Linearity of Φ implies the same is true for any polynomial of degree at most Ck. Similarly,

Φ

[
σ ·

(∑
j

wij − k

)]
= φi

[
σi ·

(∑
j

wij − k

)]∏
j 6=i

φj[σj]

= φi

[
σi · (2ε)2i−1

]∏
j 6=i

φj[σj]

= (2ε)2i−1

Φ[σ].

Again, linearity implies that the same holds for any polynomial of degree at most Ck. This
implies that for any polynomial λ,

Φ

λ ·
(∑

j

wij − k

)2

−

(∑
j

wi+1,j − k

) = 0,

as well as ∣∣∣∣∣∣Φ
λ ·(∑

j

wnj − k

)2
∣∣∣∣∣∣ = (2ε)2n |Φ[λ]| ≤ (2ε)2n(nk)d‖λ‖,

where the (nk)d appears because there are at most that many monomials of degree d, and
since every variable is Boolean, Φ is at most 1 on any monomial.

The only remaining condition to prove is that Φ is non-negative on squares. Define the
linear operator Ti : R[W1,W2, . . . ,Wi]→ R[W1, . . . ,Wi−1] with Ti[

∏
j≤i σj] = φi[σi] ·

∏
j<i σj.

Clearly Φ[λ] = T1T2 . . . Tn[λ]. We claim that for any i, and any λ, Ti[λ
2] is a sum-of-squares

polynomial. This, together with the fact that each φi is non-negative on squares, implies
that Φ is non-negative on squares.

CHAPTER 4. BIT COMPLEXITY OF SUM-OF-SQUARES PROOFS 62

It is sufficient to prove the claim for T2. For multisets U with elements from W1 and
V with elements from W2, and we define wU =

∏
w∈U w and similarly for wV . Write λ =∑

UV αUVwUwV . Then

T2[λ2] = T2

[∑
UV U ′V ′

αUV αU ′V ′wUwVwU ′wV ′

]
=

∑
UV U ′V ′

αUV αU ′V ′wUwU ′φ2[wVwV ′].

If we define a matrix M(V, V ′) = φ2[wVwV ′], then because φ2 is non-negative on squares, this
matrix is PSD. Furthermore, define w(V) =

∑
U αUVwU . Then T2[λ2] = wTMw. Since M is

PSD, it can be written
∑

u uu
T for some vectors u. Then T2[λ2] =

∑
u wTuuTw =

∑
u(u

Tw)2

is a sum of squares.

Finally, we prove our main theorem.

Theorem 4.5.6. There exists a set of quadratic polynomials P ′ on n variables and a poly-
nomial r non-negative on V (P ′) such that

• P ′ contains the polynomial x2
i − xi for every i ∈ [n].

• r has a degree two PC> proof of non-negativity from P ′.

• Every PC> proof of non-negativity for r from P ′ of degree at most O(
√
n) has a poly-

nomial with a coefficient of size at least Ω(1
nd

2exp
√
n).

Proof. We take the polynomial system P ′ discussed in this section with k = n. Then
there are N = n2 variables total, and the properties follow directly from Lemma 4.5.3 and
Lemma 4.5.5.

63

Chapter 5

Optimal Symmetric SDP Relaxations

The main result of this section is to show that when the solution space of a polynomial
formulation for a combinatorial optimization problem satisfies certain symmetry properties,
then the Theta Body SDP relaxation (see Section 2.6) achieves the best approximation
among all symmetric SDPs of a comparable size. This is proven using an old technique of
Yannakakis on the size of certain permutation groups that has been used time and time
again to find optimal symmetric LP and SDP relaxations.

We combine this result with some of our results in Chapter 3 to prove that the Sum-
of-Squares SDP relaxation (see Section 2.6 again) performs no worse than the Theta Body
relaxation, thus showing that the SOS SDP is optimal for problems including Matching,
TSP, and Balanced CSP. Furthermore, this allows us to translate lower bounds against
the SOS SDP to lower bounds against any symmetric SDP formulation. We apply this to the
Matching problem using the lower bound of Grigoriev [32] and get an exponential lower
bound for the size of any symmetric SDP relaxation for the Matching problem.

5.1 Theta Body Optimality

Recall that a Sm-symmetric combinatorial optimization problemM = (S,F) has a symmet-
ric polynomial formulation if two conditions hold. First, there is a polynomial optimization
problem (P ,Q,O, φ) on n variables such that solving the associated optimization prob-
lem solves M as well. Second, there is an action of Sm on the coordinates [n] (extending
naturally to an action on Rn and R[x1, . . . , xn]) that is compatible with the action on S:
σφ(α) = φ(σα).

Definition 5.1.1. We say that the symmetric polynomial formulation is (k1, k2)-block tran-
sitive if, for each I ⊆ [m] of size at most k1, there exists a J ⊆ [n] of size at most k2 such
that A([m] \ U) acts transitively on each SJ,c = {x ∈ Rn : x ∈ V (P), x|J = c}, i.e. each set
of solutions in V (P) which agree on J .

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 64

Example 5.1.2. The usual formulation for the Matching problem is
(
k,
(
k
2

))
-block transi-

tive for each k < m/2. Recall the constraints of the polynomial formulation for the Match-
ing problem on

(
m
2

)
variables from (3.1). The map φ is defined so that for a matching M ,

φ(M) = χM , where (χM)ij = 1 if (i, j) ∈ M and 0 otherwise. Then Sm acts by permuting
the vertices of the graph.

For a subset I ⊆ [m] with |I| < m/2, we set J = E(I, I), the set of edges that lie entirely
in I. Let M1 and M2 be two matchings that agree on J . We define a permutation σ as
follows: Set σ to fix I. Because M1 and M2 are perfect matchings, they must have the same
number of edges in both E(I, I) and E(I, I). For a vertex v ∈ I, if M1(v) ∈ I, then we set
σ(v) = M2(M1(v)). Otherwise, we set σ to be an arbitrary bijection between the edges of
M1 in E(I, I) and the edges of M2 in E(I, I). Clearly σ ∈ S([m] \ I) and σ(χM1) = χM2 . If
σ is even, we are done. Otherwise, since |I| < m/2, there is an edge (u, v) ∈ M2 ∩ E(I, I).
Then if σuv is the transposition of u and v, σuvσ is an even permutation which still fixes J
and maps χM1 to χM2 .

Example 5.1.3. The usual formulation for Balanced CSP is (k, k)-block transitive for
every k ≤ m−3. Recall the constraints for the polynomial formulation for Balanced CSP
on m variables from (3.7). The map φ is defined so that for an assignment A, φ(A) = χA,
where (χA)i = 1 if A(i) = 1 and 0 otherwise. Then Sn acts by permuting the labels of the
variables.

For a subset I ⊆ [m], we set J = I. Let two assignments A1 and A2 that agree on J , and
define a permutation σ as follows: χA1 and χA2 have the same number of indices which are
zero, and indices which are one. Let σ be any pair of bijections between the indices which
are one in χA1 and the indices which are one in χA2 , and likewise for the indices which are
zero. Furthermore, since χA1 and χA2 agree on J , we can choose σ to be a pair of bijections
which are the identity on J , so σ ∈ S([m] \ J). Clearly σ(χA1) = χA2 . Finally, if σ is
not already even, since |I| ≤ m − 3, there are two indices `1 and `2 outside of J such that
A2(`1) = A2(`2). Then (`1, `2) · σ is even and still fixes J and maps χA1 to χA2 .

The point of this definition is that if a polynomial formulation is block-transitive, then
it is easy to show that invariant functions can be represented with low-degree polynomials.
Going from arbitrary functions to low-degree polynomials is crucial to showing optimality
for the Theta Body.

Lemma 5.1.4. Let (P ,O, φ) be a Am-symmetric, Boolean, (k1, k2)-block transitive polyno-
mial formulation and h : V (P) → R be a function. If there is a set I of size |I| ≤ k1 such
that h is stabilized by A([m] \ I) under the group action σh(α) = h(σ−1α), then there is a
polynomial h′(x) such that h′(φ(α)) = h(φ(α)) and the degree of h′ is at most k2.

Proof. For any σ ∈ A([m] \ I) and α ∈ V (P), we know h(α) = σh(α) = h(σ−1α). By block-
transitivity, there exists a set J of size |J | ≤ k2 such that A([m] \ I) acts transitively on
elements of V (P) which agree on J . Thus if α, β ∈ V (P) such that α|J = β|J , h(α) = h(β).
Thus h depends only on the coordinates J , and since the polynomial formulation is Boolean,
any such function can be expressed as a degree-|J | polynomial.

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 65

Before we state our main theorem, we recall that the dth Theta Body relaxation with
objective o(x) is

min c

s.t. c− o(x) is d-SOS modulo 〈P〉.

Theorem 5.1.5. Let M = (S,F) have a Sm-symmetric (k1, k2)-block transitive Boolean
polynomial formulation (P ,O, φ) on n variables. Then if M has any (c, s)-approximate,

Sm-symmetric SDP relaxation of size r <
√(

m
k1

)
the k2th Theta Body relaxation is a (c, s)-

approximate relaxation as well.

Recall that the size of the k2th Theta Body relaxation is nO(k2), so if k2 = O(k1), then
the size of the Theta Body relaxation is polynomial in the size of the original symmetric
formulation. Before we prove the main theorem, we need two lemmas. One has to do
with obtaining sum-of-squares representations for the objective functions given a small SDP
formulation:

Lemma 5.1.6. If M = (S,F) has a (c, s)-approximate SDP formulation of size at most k,
then there exist a family of

(
k+1

2

)
functions H from S into R such that for every f ∈ F , with

maxα∈S f(α) ≤ s(f),

c(f)− f =
∑
i

g2
i

where each gi ∈ 〈H〉. Furthermore, if the SDP formulation is G-coordinate-symmetric for
some group G, then H is G-invariant under the action σh(s) = h(σ−1s).

Proof. Consider the slack matrix forM: M(α, f) = c(f)− f(α). By Theorem 2.5.3, if there
exists an SDP formulation forM of size k1, then there are k1× k1 PSD matrices Xα and Yf
such that M(α, f) = Xα · Yf + µf for some µf > 0. Let

√
· denote the unique PSD square

root. We define a set of functions H by hij(α) = (
√
Xα)ij. Since hij = hji there are only(

k1+1
2

)
functions in H. We have

c(f)− f(α) = Xα · Yf + µf

= Tr[
√
Xα
√
Xα
√
Yf
√
Yf] + µf

= Tr[(
√
Xα
√
Yf)

T
√
Xα
√
Yf] + µf

=
∑
ij

(∑
k

(
√
Xα)ik(

√
Yf)kj

)2

+ µf

=
∑
ij

(∑
k

(
√
Yf)kjhik(α)

)2

+ µf .

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 66

Lastly, σhij(α) = hij(σ
−1α) =

√
Xσ−1α

ij =
√
σ−1Xα

ij. Because σ−1 is a coordinate permu-
tation, its action on Xα can be written σ−1Xα = P (σ)XαP (σ)T . Then since(

P (σ)
√
XαP (σ)T

)2

= P (σ)XαP (σ)T = σ−1Xα,

and the PSD square root is unique, we have
√
σ−1Xα = σ−1

√
Xα. Thus hij(σ

−1α) =
σ−1
√
Xα

ij =
√
Xα

σ−1iσ−1j = hσ−1iσ−1j(α), so indeed H is G-invariant.

The second lemma we need is an old group-theoretic result. It has been used frequently
in the context of symmetric LP and SDP formulations, see for example [47, 40, 10].

Lemma 5.1.7. [([22], Theorems 5.2A and 5.2B)] Let m ≥ 10 and let G ≤ Sm. If |Sm :
G| <

(
m
k

)
for some k < m/4, then there is a subset I ⊆ [m] such that |I| < k, and A([m] \ I)

is a subgroup of G.

We are ready to prove the main theorem.

Proof of Theorem 5.1.5. We start with the family of
(
r+1

2

)
<
(
m
k1

)
functions H with the

properties specified in Lemma 5.1.6. We abuse notation slightly and just continue to write
H for the family of functions whose domain is V (P) instead of S. There is no real difference
since they are in bijection. For h ∈ H, we have |Orb(h)| ≤ |H| <

(
m
k1

)
. By the orbit-

stabilizer theorem, |Sm : Stab(h)| = |Orb(h)| <
(
m
k1

)
, so by Lemma 5.1.7, there is a I ⊆ [m]

of size at most k1 such that A([m] \ I) ≤ Stab(h). Applying Lemma 5.1.4, we obtain
polynomials h′(x) of degree at most k2 which agree with h on V (P). Then for each f
satisfying maxα∈S f(α) ≤ s(f),

c(f)− of (φ(α)) =
∑
i

(∑
h∈H

αh · h′(φ(α))

)2

+ µf

for every α ∈ S. This is an equality on every point of V (P) and each h′ is degree at most
k2, so C(f) − of (x) is 2k2-SOS modulo 〈P〉. Thus the k2th Theta Body relaxation is a
(c, s)-approximate SDP relaxation of M.

Theorem 5.1.5 and Proposition 2.6.10 immediately imply the following corollary:

Corollary 5.1.8. Let M = (S,F) have a Sm-symmetric (k1, k2)-block transitive Boolean
polynomial formulation (P ,O, φ) on n variables. If P is `-effective, then ifM has any (c, s)-

approximate, Sm-symmetric SDP relaxation of size r <
√(

m
k1

)
the `k2th Lasserre relaxation

is a (c, s)-approximate relaxation as well.

We also have collected several examples of combinatorial problems that we can apply
Corollary 5.1.8 to:

Corollary 5.1.9.

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 67

• If the Matching problem has a Sm-symmetric SDP relaxation of size r <
√(

m
k

)
achieving (c, s)-approximation, the 2k2 Lasserre relaxation is a (c, s)-approximate re-
laxation as well.

• If Balanced CSP has a Sm-symmetric SDP relaxation of size r <
√(

m
k

)
achieving

(c, s)-approximation, the kth Lasserre relaxation is a (c, s)-approximate relaxation as
well.

Proof. Follows from Example 5.1.2, Example 5.1.3, Theorem 3.3.8, Lemma 3.5.8,
Lemma 3.5.7 and Corollary 5.1.8.

5.2 Optimality for TSP

While block-transitivity is a useful categorization for capturing the symmetries of many
problems, sometimes it is not sufficient. Unfortunately, TSP is not block-transitive, so we
are unable to exactly apply the framework of the previous section. However, we will find
out that is very nearly block-transitive, and a few modifications are enough to prove that
the SOS relaxations are optimal for TSP. Recall the polynomial formulation of TSP on m2

variables from (3.4). The map φ is defined so that for a tour τ , φ(τ) = χτ , where (χτ)ij = 1
if τ(i) = j and 0 otherwise.

This polynomial formulation is Sm-symmetric under the action σ(xij) = xσ(i)j, which
represents simply composing a tour τ with σ on the left. Under this action, the above
formulation for TSP is almost block-transitive:

Lemma 5.2.1. If I ⊆ [m], then let J = I × [m]. Then A([m] \ I) acts transitively on the
elements of V (P) that agree on J and have the same parity (as tours).

Proof. If τ, τ ′ are tours with φ(τ)|J = φ(τ ′)|J and sign(τ) = sign(τ ′), then let σ = τ ′τ−1.
Clearly στ = τ ′. For i ∈ I, σ(i) = τ ′(τ−1(i)) = i since τ ′ and τ agree on I, thus σ ∈ S([m]\I).
Because both τ ′ and τ have the same parity, σ must be even, so σ ∈ A([m] \ I).

If we naively attempt the same strategy as in the previous section, we will show that
the functions in H depend only on the placement of a small number of vertices in the tour,
and the parity of the tour. Unfortunately, the parity of the tour is a high degree function
in this polynomial formulation. To handle this dependence, we embed any tour as an even
tour on a larger set of vertices, then find a good approximation for TSP on the set of larger
vertices. To this end, define the function T : Sm → A2m by T (τ) = ττ ′, where τ ′ fixes [m],
and τ ′(i) = τ(i) + m for i ∈ {m + 1, . . . , 2m}. Since sign(τ) = sign(τ ′), T (τ) is indeed an
even permutation. Also note that T (τ)|[m] is a permutation of [m], and indeed equal to τ .
Now we are ready to prove our main theorem:

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 68

Theorem 5.2.2. If TSP on 2m vertices has an A2m-coordinate symmetric SDP relaxation

of size r <
√(

2m
k

)
with approximation guarantees s(f) = minα∈S f(α) and c(f) = ρs(f),

then the 2kth Lasserre relaxation is a (c, s)-approximate relaxation for TSP on m vertices.

Proof. Let f be an objective function for TSP on m vertices, and let F be the objective
function for TSP on 2m vertices which has

dF (i, j +m) = dF (i+m, j) = dF (i+m, j +m) = dF (i, j) = df (i, j).

Then F (T (τ)) = 2f(τ). Furthermore, if Π ∈ S2m, then there exist tours τ1 of [m] and τ2 of
{m+ 1, . . . , 2m} such that F (Π) = F (τ1τ2) = f(τ1) + f(τ2). This can be seen just by setting
τ1(i) = Π(i) or Π(i)−m, whichever is in [m], and τ2(i+m) = Π(i) or Π(i) +m, whichever
is in {m+ 1, . . . , 2m}. Clearly from the definition of F this does not change the value. This
implies that minΠ F (Π) = 2 minτ f(τ).

Now if TSP has a symmetric SDP relaxation as in the theorem statement, by starting
identically to Theorem 5.1.5, we obtain a family of

(
r+1

2

)
functionsH which are A2m-invariant

and
F (Π)− ρmin

Π
F (Π) =

∑
i

g2
i (Π)

where each gi ∈ 〈H〉. Furthermore, each h ∈ H has a subset Ih such that h is stabilized
by A([2m] \ Ih) and |Ih| ≤ k. Then by Lemma 5.2.1, the function h depends only on the
variables in Ih × [2m] and the sign of the permutation. The restriction of h to the image of
T must then depend only on the variables in Ih × [2m], since every image of T is an even
permutation. Thus there exists a polynomial h′(x) which depends only on the variables in
Ih × [2m] which agrees with h on the image of T . Because the polynomial formulation for
TSP is Boolean and we can eliminate monomials of the form xijxi` for j 6= `, the polynomial
h′(x) can be taken to have degree at most |Ih| ≤ k. Finally, we note that xij = xi+m,j+m and
xi,j+m = xi+m,j = 0 for every i, j ∈ [m] on the image of T . Thus we can replace each instance
of xi+m,j+m in h′(x) with xij, and each instance of xi,j+m or xi+m,j with 0 and not change the
value of h′(x) on the image of T . Now h′ depends only on variables with indices in [m]× [m],
and since T (τ) restricted to these variables is τ , we have the following polynomial identity:

F (T (τ))− ρmin
Π
F (Π) =

∑
i

(∑
h∈H

αihh
′(φ(τ))

)2

.

Now the LHS is equal to 2f(τ)−2ρminτ f(τ), and thus of (x)−ρminτ f(τ) is 2k-SOS modulo
〈P〉. Since this is true for every objective f , this implies that the kth Theta Body on m
vertices is a ρ-approximate SDP relaxation. Finally, by Theorem 3.4.8, we know that P is
2-effective, so the 2kth Lasserre relaxation is also a ρ-approximate SDP relaxation.

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 69

5.3 Lower Bounds for the Matching Problem

In Section 5.1 we proved that the SOS relaxation provides the best approximation for the
Matching problem among small symmetric SDPs. However, it is also known that the
SOS relaxations, which certify non-negativity via PC> proofs, do not perform well on the
Matching problem. In particular, they are incapable of certifying that the number of edges
in the matching of an m-clique with m odd is at most (m− 1)/2 until Ω(m) rounds:

Theorem 5.3.1 (Due to [32]). If m is odd, V (PM(m)) = ∅, but every PC> refutation of
PM(m) has degree Ω(m).

Since the SOS relaxations do poorly on matchings, we can prove that every small sym-
metric SDP formulation must do poorly.

Theorem 5.3.2. Assume the Matching problem has an Sm-coordinate-symmetric SDP
relaxation of size d that achieves a (c, s)-approximation with c(f) = max f + ε/2 and s(f) =
max f for some 0 ≤ ε < 1. Then d ≥ 2Ω(m).

Proof. Let k be the smallest integer such that d <
√(

m
k

)
. Taking Example 5.1.2,

Theorem 3.3.8, and Corollary 5.1.8 together, the 2
(
k
2

)
th Lasserre relaxation is a (C, S)-

approximate SDP formulation for the Matching problem. Actually if we are slightly more
careful in our application of Lemma 5.1.4, we can show that the kth Lasserre relaxation
suffices. For a set I ⊆ [m], the associated subset of

[(
m
2

)]
that satisfies the block-transitivity

is E(I, I), the set of edges lying entirely in I. This has size
(
k
2

)
, and so we can conclude that

the polynomials h′ have degree at most
(
k
2

)
. However, by eliminating monomials containing

xijxi` for ` 6= j (which are zero on V (PM)), we can actually take the polynomials h′ to have
degree at most k/2.

Now let n = m/2 or m/2 − 1, whichever is odd. Let A = [n], B = {n, . . . , 2n}, and if
n = m/2−1, let C = {2n+1, 2n+2}, otherwise C = ∅. Note that A∪B∪C = [m] and they
are all disjoint. Consider the objective function f = fE(A,A) and its associated polynomial
of (x) =

∑
ij∈E(A,A) xij. Because the kth Lasserre relaxation achieves a (max f + ε/2,max f)-

approximation, and by choice of s(f), every f satisfies the soundness condition, we know

c(f)− of (x) =
n− 1

2
+
ε

2
−

∑
ij∈E(A,A)

xij

∼=1
1

2

∑
i∈A
j∈B,C

xij −
1− ε

2

has a PC> proof of non-negativity from PM(m) of degree at most 2k. Now we make a
substitution in the polynomial identity: replace each instance of xij with either xi−n,j−n if
i, j ∈ B, or 0 if (i, j) ∈ (A,B), (A,C), (B,C). If (i, j) ∈ (C,C), replace xij with 1. Note that
under this substitution, every polynomial in PM(m) is mapped to either 0 or a polynomial in

CHAPTER 5. OPTIMAL SYMMETRIC SDP RELAXATIONS 70

PM(n). So if this substitution is made on a PC> proof from PM(m), the result is a PC> proof
from PM(n), clearly of no higher degree. Since this substitution maps

∑
ij:(i,j)∈(A,B) or (A,C) xij

to the zero polynomial, this implies that −1−ε
2

has a degree-2k PC> proof of non-negativity
from PM(n). By Theorem 5.3.1, this means that k = Ω(n), and since n = Θ(m), clearly
d ≥ 2Ω(m).

71

Chapter 6

Future Work

Despite the progress made in this thesis, there are still plenty of directions for future efforts.

Effective Derivations

In Chapter 3 we developed a proof strategy for proving that sets of polynomials admit
effective derivations. However this strategy is by no means universally applicable, and it
had to be applied on a case-by-case basis. Is there a criterion for combinatorial ideals
that suffices to show that a set of polynomials admits k-effective derivations for constant
k? Failing that, knowing more combinatorial optimization problems that have polynomial
formulations which admit effective derivations would be especially useful, for example for ap-
plying Theorem 4.1.9. What about combinatorial optimization problems without the strong
symmetries discussed in this thesis? As an example, does the Vertex Cover formulation
PVC(V,E) = {x2

i − xi | i ∈ V } ∪ {(1− xi)(1− xj) | (i, j) ∈ E} admit effective derivations?

Bit Complexity of SOS proofs

In Chapter 4 we provided a sufficient criteria to check if PC> proofs of non-negativity can be
taken to have only polynomial bit complexity. However, it has some significant shortcomings.
The most glaring example is its inapplicability to PC> refutations, i.e. proofs that −1 ≥ 0
from an infeasible system of polynomial equations. Because an infeasible set of polynomials
has no solutions, it certainly cannot have a rich solution space, and our criteria does not
apply. For example, we are unable to prove that the SOS refutations of Knapsack use only
small coefficients, even though it is clear from simply examining these known refutations that
they do not have enormous coefficients. It is also known that adding the objective function
as a constraint to the SDP, i.e. adding c − o(x) = 0 and checking feasibility is a tighter
relaxation. Our results do not extend to this case as it is requires finding refutations when
the constraints are infeasible. More generally, our criteria are sufficient but not necessary.
Exactly categorizing the sets of polynomials that have PC> proofs with small bit complexity

CHAPTER 6. FUTURE WORK 72

is of great importance for applying the SOS relaxations as approximation algorithms, and it
is a potential direction for future research.

Optimal SDPs

In Chapter 5 we gave some results on when the SOS relaxations provide optimal approxima-
tion among any symmetric SDP of comparable size. One obvious open problem is to drop
the symmetry requirement. The SOS relaxations are known to be optimal for constraint
satisfaction problems [46] even among asymmetric SDPs, and our results give some evidence
that the same might be true for the Matching problem. This would be an important result,
as it would mean that the Matching problem cannot be solved using SDPs, even though
the problem lies in P! This would show that SDPs do not provide optimal approximations
for every combinatorial optimization problem.

73

Bibliography

[1] M. Akgül. Topics in relaxation and ellipsoidal methods. Research notes in mathematics.
Pitman Advanced Pub. Program, 1984. isbn: 9780273086345. url: https://books.
google.com/books?id=VCqCAAAAIAAJ.

[2] Sanjeev Arora, Satish Rao, and Umesh Vazirani. “Expander Flows, Geometric Embed-
dings and Graph Partitioning”. In: J. ACM 56.2 (Apr. 2009), 5:1–5:37. issn: 0004-5411.
doi: 10.1145/1502793.1502794. url: http://doi.acm.org/10.1145/1502793.
1502794.

[3] V. Arvind and Partha Mukhopadhyay. “The Ideal Membership Problem and Polyno-
mial Identity Testing”. In: Inf. Comput. 208.4 (Apr. 2010), pp. 351–363. issn: 0890-
5401. doi: 10.1016/j.ic.2009.06.003. url: http://dx.doi.org/10.1016/j.ic.
2009.06.003.

[4] Boaz Barak, Jonathan A. Kelner, and David Steurer. “Dictionary Learning and Tensor
Decomposition via the Sum-of-Squares Method”. In: Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing. STOC ’15. New York, NY, USA:
ACM, 2015, pp. 143–151. isbn: 978-1-4503-3536-2. doi: 10.1145/2746539.2746605.
url: http://doi.acm.org/10.1145/2746539.2746605.

[5] Boaz Barak and David Steurer. “Sum-of-squares proofs and the quest toward optimal
algorithms”. In: arXiv preprint arXiv:1404.5236 (2014).

[6] Boaz Barak et al. “A Nearly Tight Sum-of-Squares Lower Bound for the Planted
Clique Problem”. In: CoRR abs/1604.03084 (2016). url: http://arxiv.org/abs/
1604.03084.

[7] P. Beame et al. “Lower bounds on Hilbert’s Nullstellensatz and propositional proofs”.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994,
pp. 794–806. doi: 10.1109/SFCS.1994.365714.

[8] Aditya Bhaskara et al. “Polynomial Integrality Gaps for Strong SDP Relaxations of
Densest K-subgraph”. In: Proceedings of the Twenty-third Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SODA ’12. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2012, pp. 388–405. url: http://dl.acm.org/citation.
cfm?id=2095116.2095150.

https://books.google.com/books?id=VCqCAAAAIAAJ
https://books.google.com/books?id=VCqCAAAAIAAJ
http://dx.doi.org/10.1145/1502793.1502794
http://doi.acm.org/10.1145/1502793.1502794
http://doi.acm.org/10.1145/1502793.1502794
http://dx.doi.org/10.1016/j.ic.2009.06.003
http://dx.doi.org/10.1016/j.ic.2009.06.003
http://dx.doi.org/10.1016/j.ic.2009.06.003
http://dx.doi.org/10.1145/2746539.2746605
http://doi.acm.org/10.1145/2746539.2746605
http://arxiv.org/abs/1604.03084
http://arxiv.org/abs/1604.03084
http://dx.doi.org/10.1109/SFCS.1994.365714
http://dl.acm.org/citation.cfm?id=2095116.2095150
http://dl.acm.org/citation.cfm?id=2095116.2095150

BIBLIOGRAPHY 74

[9] Gábor Braun, Sebastian Pokutta, and Daniel Zink. “Inapproximability of Combinato-
rial Problems via Small LPs and SDPs”. In: Proceedings of the Forty-seventh Annual
ACM Symposium on Theory of Computing. STOC ’15. New York, NY, USA: ACM,
2015, pp. 107–116. isbn: 978-1-4503-3536-2. doi: 10.1145/2746539.2746550. url:
http://doi.acm.org/10.1145/2746539.2746550.

[10] Gabor Braun et al. “Approximation Limits of Linear Programs (Beyond Hierarchies)”.
In: Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science. FOCS ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 480–
489. isbn: 978-0-7695-4874-6. doi: 10.1109/FOCS.2012.10. url: http://dx.doi.
org/10.1109/FOCS.2012.10.

[11] Jop Briët, Daniel Dadush, and Sebastian Pokutta. “On the existence of 0/1 polytopes
with high semidefinite extension complexity”. In: Mathematical Programming 153.1
(2015), pp. 179–199. issn: 1436-4646. doi: 10.1007/s10107- 014- 0785- x. url:
http://dx.doi.org/10.1007/s10107-014-0785-x.

[12] Bruno Buchberger. “Bruno Buchberger’s PhD Thesis 1965: An Algorithm for Finding
the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal”.
In: J. Symb. Comput. 41.3-4 (Mar. 2006), pp. 475–511. issn: 0747-7171. doi: 10.1016/
j.jsc.2005.09.007. url: http://dx.doi.org/10.1016/j.jsc.2005.09.007.

[13] Sam Buss et al. “Linear Gaps Between Degrees for the Polynomial Calculus Modulo
Distinct Primes”. In: J. Comput. Syst. Sci. 62.2 (Mar. 2001), pp. 267–289. issn: 0022-
0000. doi: 10.1006/jcss.2000.1726. url: http://dx.doi.org/10.1006/jcss.
2000.1726.

[14] Samuel R Buss and Toniann Pitassi. “Good Degree Bounds on Nullstellensatz Refuta-
tions of the Induction Principle”. In: J. Comput. Syst. Sci. 57.2 (Oct. 1998), pp. 162–
171. issn: 0022-0000. doi: 10.1006/jcss.1998.1585. url: http://dx.doi.org/10.
1006/jcss.1998.1585.

[15] Siu On Chan et al. “Approximate Constraint Satisfaction Requires Large LP Relax-
ations”. In: J. ACM 63.4 (Oct. 2016), 34:1–34:22. issn: 0004-5411. doi: 10.1145/
2811255. url: http://doi.acm.org/10.1145/2811255.

[16] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. “Near-optimal Algo-
rithms for Maximum Constraint Satisfaction Problems”. In: ACM Trans. Algorithms
5.3 (July 2009), 32:1–32:14. issn: 1549-6325. doi: 10.1145/1541885.1541893. url:
http://doi.acm.org/10.1145/1541885.1541893.

[17] Eden Chlamtac. “Approximation Algorithms Using Hierarchies of Semidefinite Pro-
gramming Relaxations”. In: Proceedings of the 48th Annual IEEE Symposium on Foun-
dations of Computer Science. FOCS ’07. Washington, DC, USA: IEEE Computer So-
ciety, 2007, pp. 691–701. isbn: 0-7695-3010-9. doi: 10.1109/FOCS.2007.13. url:
http://dx.doi.org/10.1109/FOCS.2007.13.

http://dx.doi.org/10.1145/2746539.2746550
http://doi.acm.org/10.1145/2746539.2746550
http://dx.doi.org/10.1109/FOCS.2012.10
http://dx.doi.org/10.1109/FOCS.2012.10
http://dx.doi.org/10.1109/FOCS.2012.10
http://dx.doi.org/10.1007/s10107-014-0785-x
http://dx.doi.org/10.1007/s10107-014-0785-x
http://dx.doi.org/10.1016/j.jsc.2005.09.007
http://dx.doi.org/10.1016/j.jsc.2005.09.007
http://dx.doi.org/10.1016/j.jsc.2005.09.007
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1006/jcss.1998.1585
http://dx.doi.org/10.1006/jcss.1998.1585
http://dx.doi.org/10.1006/jcss.1998.1585
http://dx.doi.org/10.1145/2811255
http://dx.doi.org/10.1145/2811255
http://doi.acm.org/10.1145/2811255
http://dx.doi.org/10.1145/1541885.1541893
http://doi.acm.org/10.1145/1541885.1541893
http://dx.doi.org/10.1109/FOCS.2007.13
http://dx.doi.org/10.1109/FOCS.2007.13

BIBLIOGRAPHY 75

[18] Eden Chlamtac and Gyanit Singh. “Improved Approximation Guarantees Through
Higher Levels of SDP Hierarchies”. In: Proceedings of the 11th International Work-
shop, APPROX 2008, and 12th International Workshop, RANDOM 2008 on Approxi-
mation, Randomization and Combinatorial Optimization: Algorithms and Techniques.
APPROX ’08 / RANDOM ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 49–
62. isbn: 978-3-540-85362-6. doi: 10.1007/978- 3- 540- 85363- 3_5. url: http:

//dx.doi.org/10.1007/978-3-540-85363-3_5.

[19] N. Christofides and CARNEGIE-MELLON UNIV PITTSBURGH PA MANAGE-
MENT SCIENCES RESEARCH GROUP. Worst-Case Analysis of a New Heuristic
for the Travelling Salesman Problem. Management sciences research report. Defense
Technical Information Center, 1976. url: https://books.google.com/books?id=
2A7eygAACAAJ.

[20] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Un-
dergraduate Texts in Mathematics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2007. isbn: 0387356509.

[21] Yash Deshpande and Andrea Montanari. “Improved Sum-of-Squares Lower Bounds for
Hidden Clique and Hidden Submatrix Problems”. In: Proceedings of The 28th Confer-
ence on Learning Theory. Ed. by Peter Grnwald, Elad Hazan, and Satyen Kale. Vol. 40.
Proceedings of Machine Learning Research. Paris, France: PMLR, 2015, pp. 523–562.
url: http://proceedings.mlr.press/v40/Deshpande15.html.

[22] J.D. Dixon and B. Mortimer. Permutation Groups. Graduate Texts in Mathematics.
Springer New York, 1996. isbn: 9780387945996. url: https://books.google.com/
books?id=4QDpFN6k61EC.

[23] H. Fawzi, J. Saunderson, and P. A. Parrilo. “Equivariant semidefinite lifts and sum-
of-squares hierarchies”. In: ArXiv e-prints (Dec. 2013). arXiv: 1312.6662 [math.OC].

[24] Samuel Fiorini et al. “Exponential Lower Bounds for Polytopes in Combinatorial Op-
timization”. In: J. ACM 62.2 (May 2015), 17:1–17:23. issn: 0004-5411. doi: 10.1145/
2716307. url: http://doi.acm.org/10.1145/2716307.

[25] Gerald B. Folland. “How to Integrate a Polynomial over a Sphere”. In: The Ameri-
can Mathematical Monthly 108.5 (2001), pp. 446–448. issn: 00029890, 19300972. url:
http://www.jstor.org/stable/2695802.

[26] A. Frieze and M. Jerrum. “Improved approximation algorithms for MAXk-CUT and
MAX BISECTION”. In: Algorithmica 18.1 (1997), pp. 67–81. issn: 1432-0541. doi:
10.1007/BF02523688. url: http://dx.doi.org/10.1007/BF02523688.

http://dx.doi.org/10.1007/978-3-540-85363-3_5
http://dx.doi.org/10.1007/978-3-540-85363-3_5
http://dx.doi.org/10.1007/978-3-540-85363-3_5
https://books.google.com/books?id=2A7eygAACAAJ
https://books.google.com/books?id=2A7eygAACAAJ
http://proceedings.mlr.press/v40/Deshpande15.html
https://books.google.com/books?id=4QDpFN6k61EC
https://books.google.com/books?id=4QDpFN6k61EC
http://arxiv.org/abs/1312.6662
http://dx.doi.org/10.1145/2716307
http://dx.doi.org/10.1145/2716307
http://doi.acm.org/10.1145/2716307
http://www.jstor.org/stable/2695802
http://dx.doi.org/10.1007/BF02523688
http://dx.doi.org/10.1007/BF02523688

BIBLIOGRAPHY 76

[27] Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. “Optimal Sherali-Adams
Gaps from Pairwise Independence”. In: Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques: 12th International Workshop, AP-
PROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA,
August 21-23, 2009. Proceedings. Ed. by Irit Dinur et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 125–139. isbn: 978-3-642-03685-9. doi: 10.1007/978-3-
642-03685-9_10. url: http://dx.doi.org/10.1007/978-3-642-03685-9_10.

[28] Michel X. Goemans and David P. Williamson. “Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Programming”. In:
J. ACM 42.6 (Nov. 1995), pp. 1115–1145. issn: 0004-5411. doi: 10.1145/227683.
227684. url: http://doi.acm.org/10.1145/227683.227684.

[29] João Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. “Theta Bodies for Polynomial
Ideals”. In: SIAM J. on Optimization 20.4 (Mar. 2010), pp. 2097–2118. issn: 1052-
6234. doi: 10.1137/090746525. url: http://dx.doi.org/10.1137/090746525.

[30] D. Grigoriev. “Complexity of Positivstellensatz proofs for the knapsack”. In: compu-
tational complexity 10.2 (2001), pp. 139–154. issn: 1420-8954. doi: 10.1007/s00037-
001-8192-0. url: http://dx.doi.org/10.1007/s00037-001-8192-0.

[31] D. Grigoriev. “Tseitin’s tautologies and lower bounds for Nullstellensatz proofs”.
In: Proceedings 39th Annual Symposium on Foundations of Computer Science. 1998,
pp. 648–652. doi: 10.1109/SFCS.1998.743515.

[32] Dima Grigoriev. “Linear lower bound on degrees of Positivstellensatz calculus proofs
for the parity”. In: Theoretical Computer Science 259.1 (2001), pp. 613–622.

[33] Eran Halperin and Uri Zwick. “Approximation Algorithms for MAX 4-SAT and Round-
ing Procedures for Semidefinite Programs”. In: Proceedings of the 7th International
IPCO Conference on Integer Programming and Combinatorial Optimization. London,
UK, UK: Springer-Verlag, 1999, pp. 202–217. isbn: 3-540-66019-4. url: http://dl.
acm.org/citation.cfm?id=645589.757889.

[34] G. Hermann. “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale.
(Unter Benutzung nachgelassener Stze von K. Hentzelt)”. In: Mathematische Annalen
95 (1926), pp. 736–788. url: http://eudml.org/doc/159153.

[35] D. Hilbert. “Ueber die vollen Invariantensysteme”. In: Mathematische Annalen 42
(1893), pp. 313–373. url: http://eudml.org/doc/157652.

[36] Samuel B. Hopkins, Pravesh K. Kothari, and Aaron Potechin. “SoS and Planted Clique:
Tight Analysis of MPW Moments at all Degrees and an Optimal Lower Bound at
Degree Four”. In: CoRR abs/1507.05230 (2015). url: http://arxiv.org/abs/1507.
05230.

[37] Samuel B. Hopkins, Jonathan Shi, and David Steurer. “Tensor principal component
analysis via sum-of-squares proofs”. In: CoRR abs/1507.03269 (2015). url: http:

//arxiv.org/abs/1507.03269.

http://dx.doi.org/10.1007/978-3-642-03685-9_10
http://dx.doi.org/10.1007/978-3-642-03685-9_10
http://dx.doi.org/10.1007/978-3-642-03685-9_10
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1145/227683.227684
http://doi.acm.org/10.1145/227683.227684
http://dx.doi.org/10.1137/090746525
http://dx.doi.org/10.1137/090746525
http://dx.doi.org/10.1007/s00037-001-8192-0
http://dx.doi.org/10.1007/s00037-001-8192-0
http://dx.doi.org/10.1007/s00037-001-8192-0
http://dx.doi.org/10.1109/SFCS.1998.743515
http://dl.acm.org/citation.cfm?id=645589.757889
http://dl.acm.org/citation.cfm?id=645589.757889
http://eudml.org/doc/159153
http://eudml.org/doc/157652
http://arxiv.org/abs/1507.05230
http://arxiv.org/abs/1507.05230
http://arxiv.org/abs/1507.03269
http://arxiv.org/abs/1507.03269

BIBLIOGRAPHY 77

[38] Dung T. Huynh. “Complexity of the word problem for commutative semigroups of
fixed dimension”. In: Acta Informatica 22.4 (1985), pp. 421–432. issn: 1432-0525. doi:
10.1007/BF00288776. url: http://dx.doi.org/10.1007/BF00288776.

[39] Cédric Josz and Didier Henrion. “Strong duality in Lasserre’s hierarchy for polynomial
optimization”. In: Optimization Letters 10.1 (2016), pp. 3–10. issn: 1862-4480. doi:
10.1007/s11590-015-0868-5. url: http://dx.doi.org/10.1007/s11590-015-
0868-5.

[40] Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. “Symmetry Matters for
the Sizes of Extended Formulations”. In: Proceedings of the 14th International Con-
ference on Integer Programming and Combinatorial Optimization. IPCO’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 135–148. isbn: 3-642-13035-6, 978-3-642-13035-
9. doi: 10.1007/978-3-642-13036-6_11. url: http://dx.doi.org/10.1007/978-
3-642-13036-6_11.

[41] George Karakostas. “A Better Approximation Ratio for the Vertex Cover Problem”.
In: ACM Trans. Algorithms 5.4 (Nov. 2009), 41:1–41:8. issn: 1549-6325. doi: 10.1145/
1597036.1597045. url: http://doi.acm.org/10.1145/1597036.1597045.

[42] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. “Integrality Gaps of Linear
and Semi-definite Programming Relaxations for Knapsack”. In: CoRR abs/1007.1283
(2010). url: http://arxiv.org/abs/1007.1283.

[43] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of
Computer Computations: Proceedings of a symposium on the Complexity of Computer
Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM Research Math-
ematical Sciences Department. Ed. by Raymond E. Miller, James W. Thatcher, and
Jean D. Bohlinger. Boston, MA: Springer US, 1972, pp. 85–103. isbn: 978-1-4684-2001-
2. doi: 10.1007/978-1-4684-2001-2_9. url: http://dx.doi.org/10.1007/978-
1-4684-2001-2_9.

[44] Subhash Khot. “On the Power of Unique 2-prover 1-round Games”. In: Proceedings of
the Thiry-fourth Annual ACM Symposium on Theory of Computing. STOC ’02. New
York, NY, USA: ACM, 2002, pp. 767–775. isbn: 1-58113-495-9. doi: 10.1145/509907.
510017. url: http://doi.acm.org/10.1145/509907.510017.

[45] Jean B. Lasserre. “An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs”. In:
Integer Programming and Combinatorial Optimization: 8th International IPCO Con-
ference Utrecht, The Netherlands, June 13–15, 2001 Proceedings. Ed. by Karen Aardal
and Bert Gerards. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 293–303.
isbn: 978-3-540-45535-6. doi: 10.1007/3-540-45535-3_23. url: http://dx.doi.
org/10.1007/3-540-45535-3_23.

http://dx.doi.org/10.1007/BF00288776
http://dx.doi.org/10.1007/BF00288776
http://dx.doi.org/10.1007/s11590-015-0868-5
http://dx.doi.org/10.1007/s11590-015-0868-5
http://dx.doi.org/10.1007/s11590-015-0868-5
http://dx.doi.org/10.1007/978-3-642-13036-6_11
http://dx.doi.org/10.1007/978-3-642-13036-6_11
http://dx.doi.org/10.1007/978-3-642-13036-6_11
http://dx.doi.org/10.1145/1597036.1597045
http://dx.doi.org/10.1145/1597036.1597045
http://doi.acm.org/10.1145/1597036.1597045
http://arxiv.org/abs/1007.1283
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1145/509907.510017
http://doi.acm.org/10.1145/509907.510017
http://dx.doi.org/10.1007/3-540-45535-3_23
http://dx.doi.org/10.1007/3-540-45535-3_23
http://dx.doi.org/10.1007/3-540-45535-3_23

BIBLIOGRAPHY 78

[46] James R. Lee, Prasad Raghavendra, and David Steurer. “Lower Bounds on the Size of
Semidefinite Programming Relaxations”. In: Proceedings of the Forty-seventh Annual
ACM Symposium on Theory of Computing. STOC ’15. New York, NY, USA: ACM,
2015, pp. 567–576. isbn: 978-1-4503-3536-2. doi: 10.1145/2746539.2746599. url:
http://doi.acm.org/10.1145/2746539.2746599.

[47] James R. Lee et al. “On the Power of Symmetric LP and SDP Relaxations”. In:
Proceedings of the 2014 IEEE 29th Conference on Computational Complexity. CCC
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 13–21. isbn: 978-1-
4799-3626-7. doi: 10.1109/CCC.2014.10. url: http://dx.doi.org/10.1109/CCC.
2014.10.

[48] Shi Li. “A 1.488 approximation algorithm for the uncapacitated facility location prob-
lem”. In: Information and Computation 222 (2013). 38th International Colloquium
on Automata, Languages and Programming (ICALP 2011), pp. 45 –58. issn: 0890-
5401. doi: http://doi.org/10.1016/j.ic.2012.01.007. url: http://www.
sciencedirect.com/science/article/pii/S0890540112001459.

[49] L. Lovasz. “On the Shannon Capacity of a Graph”. In: IEEE Trans. Inf. Theor. 25.1
(Sept. 2006), pp. 1–7. issn: 0018-9448. doi: 10.1109/TIT.1979.1055985. url: http:
//dx.doi.org/10.1109/TIT.1979.1055985.

[50] Tengyu Ma and Avi Wigderson. “Sum-of-squares Lower Bounds for Sparse PCA”.
In: Proceedings of the 28th International Conference on Neural Information Processing
Systems. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, pp. 1612–1620. url: http:
//dl.acm.org/citation.cfm?id=2969239.2969419.

[51] Ernst W Mayr and Albert R Meyer. “The complexity of the word problems for
commutative semigroups and polynomial ideals”. In: Advances in Mathematics 46.3
(1982), pp. 305 –329. issn: 0001-8708. doi: http://dx.doi.org/10.1016/0001-
8708(82)90048-2. url: http://www.sciencedirect.com/science/article/pii/
0001870882900482.

[52] Raghu Meka, Aaron Potechin, and Avi Wigderson. “Sum-of-squares Lower Bounds
for Planted Clique”. In: Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing. STOC ’15. New York, NY, USA: ACM, 2015, pp. 87–96. isbn:
978-1-4503-3536-2. doi: 10.1145/2746539.2746600. url: http://doi.acm.org/10.
1145/2746539.2746600.

[53] T.S. Motzkin. The arithmetic-geometric inequality. Wright-Patterson, Air Force Base,
Ohio, 1967.

[54] Ryan O’Donnell. “SOS is not obviously automatizable, even approximately”. In: Elec-
tronic Colloquium on Computational Complexity (ECCC) 23 (2016), p. 141. url: http:
//eccc.hpi-web.de/report/2016/141.

[55] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Meth-
ods in Robustness and Optimization. Tech. rep. 2000.

http://dx.doi.org/10.1145/2746539.2746599
http://doi.acm.org/10.1145/2746539.2746599
http://dx.doi.org/10.1109/CCC.2014.10
http://dx.doi.org/10.1109/CCC.2014.10
http://dx.doi.org/10.1109/CCC.2014.10
http://dx.doi.org/http://doi.org/10.1016/j.ic.2012.01.007
http://www.sciencedirect.com/science/article/pii/S0890540112001459
http://www.sciencedirect.com/science/article/pii/S0890540112001459
http://dx.doi.org/10.1109/TIT.1979.1055985
http://dx.doi.org/10.1109/TIT.1979.1055985
http://dx.doi.org/10.1109/TIT.1979.1055985
http://dl.acm.org/citation.cfm?id=2969239.2969419
http://dl.acm.org/citation.cfm?id=2969239.2969419
http://dx.doi.org/http://dx.doi.org/10.1016/0001-8708(82)90048-2
http://dx.doi.org/http://dx.doi.org/10.1016/0001-8708(82)90048-2
http://www.sciencedirect.com/science/article/pii/0001870882900482
http://www.sciencedirect.com/science/article/pii/0001870882900482
http://dx.doi.org/10.1145/2746539.2746600
http://doi.acm.org/10.1145/2746539.2746600
http://doi.acm.org/10.1145/2746539.2746600
http://eccc.hpi-web.de/report/2016/141
http://eccc.hpi-web.de/report/2016/141

BIBLIOGRAPHY 79

[56] Jiming Peng and Yu Wei. “Approximating K-means-type Clustering via Semidefinite
Programming”. In: SIAM J. on Optimization 18.1 (Feb. 2007), pp. 186–205. issn: 1052-
6234. doi: 10.1137/050641983. url: http://dx.doi.org/10.1137/050641983.

[57] Aaron Potechin and David Steurer. “Exact tensor completion with sum-of-squares”.
In: CoRR abs/1702.06237 (2017). url: http://arxiv.org/abs/1702.06237.

[58] P. Raghavendra and D. Steurer. “Integrality Gaps for Strong SDP Relaxations of
UNIQUE GAMES”. In: 2009 50th Annual IEEE Symposium on Foundations of Com-
puter Science. 2009, pp. 575–585. doi: 10.1109/FOCS.2009.73.

[59] Prasad Raghavendra. “Optimal Algorithms and Inapproximability Results for Every
CSP?” In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Comput-
ing. STOC ’08. New York, NY, USA: ACM, 2008, pp. 245–254. isbn: 978-1-60558-047-
0. doi: 10.1145/1374376.1374414. url: http://doi.acm.org/10.1145/1374376.
1374414.

[60] Prasad Raghavendra and Tselil Schramm. “Tight Lower Bounds for Planted Clique in
the Degree-4 SOS Program”. In: CoRR abs/1507.05136 (2015). url: http://arxiv.
org/abs/1507.05136.

[61] Prasad Raghavendra and Ning Tan. “Approximating CSPs with Global Cardinality
Constraints Using SDP Hierarchies”. In: Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms. SODA ’12. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2012, pp. 373–387. url: http://dl.acm.
org/citation.cfm?id=2095116.2095149.

[62] A.A. Razborov. “Lower bounds for the polynomial calculus”. In: computational com-
plexity 7.4 (1998), pp. 291–324. issn: 1420-8954. doi: 10.1007/s000370050013. url:
http://dx.doi.org/10.1007/s000370050013.

[63] Thomas Rothvoss. “The Matching Polytope Has Exponential Extension Complexity”.
In: Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing.
STOC ’14. New York, NY, USA: ACM, 2014, pp. 263–272. isbn: 978-1-4503-2710-7.
doi: 10.1145/2591796.2591834. url: http://doi.acm.org/10.1145/2591796.
2591834.

[64] Sartaj Sahni and Teofilo Gonzalez. “P-Complete Approximation Problems”. In: J.
ACM 23.3 (July 1976), pp. 555–565. issn: 0004-5411. doi: 10.1145/321958.321975.
url: http://doi.acm.org/10.1145/321958.321975.

[65] Grant Schoenebeck. “Linear Level Lasserre Lower Bounds for Certain k-CSPs”. In:
Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science. FOCS ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 593–
602. isbn: 978-0-7695-3436-7. doi: 10.1109/FOCS.2008.74. url: http://dx.doi.
org/10.1109/FOCS.2008.74.

http://dx.doi.org/10.1137/050641983
http://dx.doi.org/10.1137/050641983
http://arxiv.org/abs/1702.06237
http://dx.doi.org/10.1109/FOCS.2009.73
http://dx.doi.org/10.1145/1374376.1374414
http://doi.acm.org/10.1145/1374376.1374414
http://doi.acm.org/10.1145/1374376.1374414
http://arxiv.org/abs/1507.05136
http://arxiv.org/abs/1507.05136
http://dl.acm.org/citation.cfm?id=2095116.2095149
http://dl.acm.org/citation.cfm?id=2095116.2095149
http://dx.doi.org/10.1007/s000370050013
http://dx.doi.org/10.1007/s000370050013
http://dx.doi.org/10.1145/2591796.2591834
http://doi.acm.org/10.1145/2591796.2591834
http://doi.acm.org/10.1145/2591796.2591834
http://dx.doi.org/10.1145/321958.321975
http://doi.acm.org/10.1145/321958.321975
http://dx.doi.org/10.1109/FOCS.2008.74
http://dx.doi.org/10.1109/FOCS.2008.74
http://dx.doi.org/10.1109/FOCS.2008.74

BIBLIOGRAPHY 80

[66] N. Z. Shor. “An approach to obtaining global extremums in polynomial mathematical
programming problems”. In: Cybernetics 23.5 (1987), pp. 695–700. issn: 1573-8337.
doi: 10.1007/BF01074929. url: http://dx.doi.org/10.1007/BF01074929.

[67] Morton Slater. “Lagrange Multipliers Revisited”. In: Traces and Emergence of Non-
linear Programming. Ed. by Giorgio Giorgi and Tinne Hoff Kjeldsen. Basel: Springer
Basel, 2014, pp. 293–306. isbn: 978-3-0348-0439-4. doi: 10.1007/978-3-0348-0439-
4_14. url: http://dx.doi.org/10.1007/978-3-0348-0439-4_14.

[68] Gongguo Tang and Parikshit Shah. “Guaranteed Tensor Decomposition: A Moment
Approach”. In: Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org,
2015, pp. 1491–1500. url: http://dl.acm.org/citation.cfm?id=3045118.3045277.

[69] Madhur Tulsiani. “CSP Gaps and Reductions in the Lasserre Hierarchy”. In: Pro-
ceedings of the Forty-first Annual ACM Symposium on Theory of Computing. STOC
’09. New York, NY, USA: ACM, 2009, pp. 303–312. isbn: 978-1-60558-506-2. doi:
10.1145/1536414.1536457. url: http://doi.acm.org/10.1145/1536414.1536457.

[70] Santosh Vempala and Mihalis Yannakakis. “A Convex Relaxation for the Asymmet-
ric TSP”. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’99. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1999, pp. 975–976. isbn: 0-89871-434-6. url: http://dl.acm.org/
citation.cfm?id=314500.314955.

[71] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
1st. New York, NY, USA: Cambridge University Press, 2011. isbn: 0521195276,
9780521195270.

[72] Mihalis Yannakakis. “Expressing Combinatorial Optimization Problems by Linear Pro-
grams”. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting. STOC ’88. New York, NY, USA: ACM, 1988, pp. 223–228. isbn: 0-89791-264-0.
doi: 10.1145/62212.62232. url: http://doi.acm.org/10.1145/62212.62232.

http://dx.doi.org/10.1007/BF01074929
http://dx.doi.org/10.1007/BF01074929
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dl.acm.org/citation.cfm?id=3045118.3045277
http://dx.doi.org/10.1145/1536414.1536457
http://doi.acm.org/10.1145/1536414.1536457
http://dl.acm.org/citation.cfm?id=314500.314955
http://dl.acm.org/citation.cfm?id=314500.314955
http://dx.doi.org/10.1145/62212.62232
http://doi.acm.org/10.1145/62212.62232

	Contents
	Introduction
	Combinatorial Optimization and Approximation
	Convex Relaxations
	Sum-of-Squares Relaxations
	Polynomial Ideal Membership and Effective Derivations
	Contribution of Thesis
	Organization of Thesis

	Preliminaries
	Notation
	Semidefinite Programming and Duality
	Polynomial Ideals and Polynomial Proof Systems
	Combinatorial Optimization Problems
	SDP Relaxations for Optimization Problems
	Polynomial Formulations, Theta Body and SOS SDP Relaxations
	Symmetric Relaxations

	Effective Derivations
	Gröbner Bases
	Proof Strategy for Symmetric Solution Spaces
	Effective Derivations for Matching
	Effective Derivations for TSP
	Effective Derivations for Balanced-CSP
	Boolean Sparse PCA
	Optimization Problems with Effective Derivations

	Bit Complexity of Sum-of-Squares Proofs
	Conditions, Definitions, and the Main Result
	How Hard is it to be Rich?
	Optimization Problems with Rich Solution Spaces
	Proof of the Main Theorem
	A Polynomial System with No Efficient Proofs

	Optimal Symmetric SDP Relaxations
	Theta Body Optimality
	Optimality for TSP
	Lower Bounds for the Matching Problem

	Future Work
	Bibliography

