# Polynomial Proof Systems, Effective Derivations, and their Applications in the Sum-of-Squares Hierarchy 



Benjamin Weitz

Electrical Engineering and Computer Sciences University of California at Berkeley

Technical Report No. UCB/EECS-2017-38
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-38.html
May 9, 2017

Copyright © 2017, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

# Polynomial Proof Systems, Effective Derivations, and their Applications in the Sum-of-Squares Hierarchy 

by<br>Benjamin Weitz<br>A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy<br>in<br>Computer Science<br>in the<br>Graduate Division<br>of the<br>University of California, Berkeley<br>Committee in charge:<br>Professor Prasad Raghavendra, Chair<br>Professor Satish Rao<br>Professor Nikhil Srivastava<br>Professor Luca Trevisan

Spring 2017

Polynomial Proof Systems, Effective Derivations, and their Applications in the Sum-of-Squares Hierarchy

## Copyright 2017

 byBenjamin Weitz

A bstract<br>Polynomial Proof Systems, Effective Derivations, and their Applications in the Sum-of-Squares Hierarchy<br>by<br>Benjamin Weitz<br>Doctor of Philosophy in Computer Science<br>University of California, Berkeley<br>Professor Prasad Raghavendra, Chair

Semidefinite programming (SDP) relaxations have been a popular choice for approximation algorithm design ever since Goemans and Williamson used one to improve the best approximation of Max-Cut in 1992. In the effort to construct stronger and stronger SDP relaxations, the Sum-of-Squares (SOS) or Lasserre hierarchy has emerged as the most promising set of relaxations. However, since the SOS hierarchy is relatively new, we still do not know the answer to even very basic questions about its power. For example, we do not even know when the SOS SDP is guaranteed to run correctly in polynomial time!

In this dissertation, we study the SOS hierarchy and make positive progress in understanding the above question, among others. First, we give a sufficient, simple criteria which implies that an SOS SDP will run in polynomial time, as well as confirm that our criteria holds for a number of common applications of the SOS SDP. We also present an example of a Boolean polynomial system which has SOS certificates that require $2^{O(\sqrt{n})}$ time to find, even though the certificates are degree two. This answers a conjecture of [54].

Second, we study the power of the SOS hierarchy relative to other symmetric SDP re laxations of comparable size. We show that in some situations, the SOS hierarchy achieves the best possible approximation among every symmetric SDP relaxation. In particular, we show that the SOS SDP is optimal for the Matching problem. Together with an SOS lower bound due to Grigoriev [32], this implies that the Matching problem has no subexponential size symmetric SDP relaxation. This can be viewed as an SDP analogy of Yannakakis' original symmetric LP lower bound [72].

As a key technical tool, our results make use of low-degreecertificates of ideal membership for the polynomial ideal formed by polynomial constraints. Thus an important step in our proofs is constructing certificates for arbitrary polynomials in the corresponding constraint ideals. Wedevel op a meta-strategy for exploiting symmetries of the underlying combinatorial problem. We apply our strategy to get low-degree certificates for Matching, Balanced CSP, TSP, and others.

To my wonderful parents, brother, and girlfriend.

## Contents

Contents ..... ii
1 Introduction ..... 1
1.1 Combinatorial Optimization and Approximation ..... 1
1.2 Convex Relaxations ..... 2
1.3 Sum-of-Squares Relaxations ..... 4
1.4 Polynomial Ideal Membership and Effective Derivations ..... 6
1.5 Contribution of Thesis ..... 7
1.6 Organization of Thesis ..... 7
2 Preliminaries ..... 9
2.1 Notation ..... 9
2.2 Semidefinite Programming and Duality ..... 10
2.3 Polynomial Ideals and Polynomial Proof Systems ..... 11
2.4 Combinatorial Optimization Problems ..... 16
2.5 SDP Relaxations for Optimization Problems ..... 17
2.6 Polynomial Formulations, Theta Body and SOS SDP Relaxations ..... 19
2.7 Symmetric Relaxations ..... 23
3 Effective Derivations ..... 26
3.1 Gröbner Bases ..... 26
3.2 Proof Strategy for Symmetric Solution Spaces ..... 27
3.3 Effective Derivations for Matching ..... 28
3.4 Effective Derivations for TSP ..... 32
3.5 Effective Derivations for Balanced-CSP ..... 37
3.6 Boolean Sparse PCA ..... 42
3.7 Optimization Problems with Effective Derivations ..... 46
4 Bit Complexity of Sum-of-Squares Proofs ..... 48
4.1 Conditions, Definitions, and the Main Result ..... 49
4.2 How Hard is it to be Rich? ..... 51
4.3 Optimization Problems with Rich Solution Spaces ..... 53
4.4 Proof of the Main Theorem ..... 55
4.5 A Polynomial System with No Efficient Proofs ..... 57
5 Optimal Symmetric SDP Relaxations ..... 63
5.1 Theta Body Optimality ..... 63
5.2 Optimality for TSP ..... 67
5.3 Lower Bounds for the Matching Problem ..... 69
6 Future Work ..... 71
Bibliography ..... 73

## A cknowledgments

First, I would like to thank my advisor Prasad Raghavendra for the invaluable help and time he has given me over the last five years at UC Berkeley. He is undoubtedly the person second-most responsible for the creation of this document. My stay at Berkeley was not always easy, and I passed long periods of time without achieving results, which ended with me feeling frustrated and hopeless. Despite this, Prasad was always willing to devote time and talk with me, on subjects both mathematical and otherwise. His mind is truly incredible, and I was always amazed by how quickly he could imagine new and different approaches to problems we were stuck on. Thanks to his assistance, I am now graduating and I am excited for the future Thank you so much, Prasad!

I would also like to thank Chris Umans (also a Berkeley alum), who was one of my favorite professors at Caltech. Chris was the first person who showed me what research in Theoretical Computer Science was like, and he helped cultivate my interest in it during my time at Caltech. He was also a fantastic teacher, and his classes were a joy to attend. He is probably third-most responsible for this thesis, as without him I may not have even come to graduate school.

Thanks are also in order for Satish Rao, Nikhil Srivastava, and Luca Trevisan for serving on both my Qualifying Committe and my Dissertation Committee. Thank you for taking time out your schedule to listen to me ramble.

I would also like to thank my many graduate student peers at Berkeley (and one technically from Stanford) for sharing many of the experiences of the past five years with me. I would particularly like to thank J onah Brown-Cohen, Rishi Gupta, Alex Psomas, Aviad Rubinstein, J arett Schwartz, Ning Tan and Tselil Schramm. Each of you has been a great friend to me, and contributed in no small part to my happiness during my time at Berkeley. I will miss all of you greatly.

My girlfriend Irene deserves more than I could possibly write in the small space provided to me You have happily supported me in the pursuit of all of my goals, both academic and otherwise. That means everything to me, and I love you very much. I cannot wait to see what the future has in store for us.

Finally, I want to thank my loving mother, father, and brother. Each of you has provided me with plenty of advice when times were tough for me, and it is thanks to you that I was even in the position to begin to attempt this thesis in the first place. In many respects, you are partly responsible for all of my achievements because you raised me. Luckily, I think you did a pretty darn good job of it. I know I do not call as often as you would like, but know that I love each of you to a large degree.

## Chapter 1

## I ntroduction

### 1.1 Combinatorial Optimization and A pproximation

Combinatorial optimization problems have been intensely studied by mathematicians and computer scientists for many years. Here we mean any computational task which involves maximizing a function over some discrete set of feasible solutions. The function to maximize is given as input to an al gorithm, which attempts to find the feasible solution which achieves the best value. Here are a few examples of problems which will appear repeatedly throughout this thesis:

Example 1.1.1. The Matching problem is, given a graph $G=(V, E)$, compute the size of the largest subset $F \subseteq E$ such that any two edges $e_{1}, e_{2} \in F$ are disjoint.

Example 1.1.2. The Traveling Salesperson, or TSP problem is, given a set of points $X$ and a distance function $d: X \times X \rightarrow \mathbb{R}_{+}$, compute the least distance traveled by any tour which visits every point in $X$ exactly once and returning to the starting point.

Example 1.1.3. The $c$-Balanced CSP problem is, given Boolean formulas $\phi_{1}, \ldots, \phi_{m}$, compute the largest number of $\phi_{1}, \ldots, \phi_{m}$ that can be simultaneously satisfied by an assignment with a $c$-fraction of variables assigned true

Computer scientists initially began studying combinatorial optimization problems be cause they appear frequently in both practice and theory. For example, TSP naturally arises when trying to plan school bus routes and Matching clearly emerges when trying to match medical school graduates to hospitals for residency. Unfortunately for the school bus driver, solving TSP has proven to be exceedingly difficult because optimizing such routes is NP -hard [43]. Indeed, almost all combinatorial problems of interest are NP-hard (Matching is a notable exception), and arethus believed to be computationally intractable The barrier of NP-hardness for solving these problems has been in place since the 1970s.

In an attempt to overcome this roadblock, the framework of approximation algorithms emerged a few years later in 1976 [64]. Rather than trying to exactly solve TSP by finding
the route that minimizes the distance traveled, an approximation algorithm attempts to nd a route that is not too much longer than the minimum possible route. For example, maybe the al gorithm nds a route that is guaranteed to be at most twice the length of the minimum route, even though the minimum route itself is impossible to e ciently compute A wide variety of al gorithmic techniques have been brought to bear on approximation problems. In this work we will focus on writing convex relaxations for combinatorial problems in order to approximate them.

### 1.2 Convex Relaxations

A popular strategy in approximation algorithm design is to develop convex relaxations for combinatorial problems, as can be seen for example in [28, 70, 2, 48]. Since the solution space for combinatorial problems is discrete, we frequently know of no better maximization technique than to simply evaluate a function on every point in the space. However, if we embed the combinatorial solutions somenow in a continuous space and the combinatorial function as a continuous function $f$, we can enlarge the solution space to make it convex. The enlarged space is called the feasible region of the convex relaxation. If we choose our feasible region carefully, then standard convex optimization techniques can be applied to optimize $f$ over it. Because the new solution space is larger than just the set of discrete solutions, the value we receive will be an overestimate of the true discretemaximum of $f$. We want the convex relaxation to be a good approximation in the sense that this overestimate is not too far from the true maximum of $f$.

Example 1.2.1 (Held-Karp redaxation for TSP). Given an instance of TSP, i.e distance function $d:[n] \times[n] \rightarrow \mathbf{R}$, for every tour $\tau$ (a cycle which visits each $i \in[n]$ exactly once), let $\left(\chi_{\tau}\right)_{i j}=1$ if $\tau$ visits $j$ immediately after or before $i$. Each $\chi_{\tau}$ is an embedding of a tour $\tau$ in $\mathbf{R}^{\binom{n}{2}}$. Then
and the function $f=\mathrm{P}{ }_{i j} x_{i j}$ is a convex relaxation for TSP. In fact, when $d$ is a metric, $\min _{K} f$ is at least $2 / 3$ the true minimum.

Proving that a relaxation is a good approximation is usually highly non-trivial, and is frequently done by exhibiting a rounding scheme. A rounding scheme is an algorithm that takes a point in the relaxed body and maps it to one of the original feasible solutions for the combinatorial problem. Rounding schemes are designed so that they output a point with approximately the same value, i.e within a multiplicative factor of $\rho$. This implies that minimizing over the relaxed body gives an answer that is within a factor of $\rho$ of minimizing over the discrete solutions. As an example, Christo des' approximation for TSP [19] can
be interpreted as a rounding algorithm for the Held-Karp relaxation which achieves an approximation factor of $3 / 2$.

In this thesis we will consider a particular kind of convex relaxation, called a semide nite program (SDP). In an SDP, the enlarged convex body is the intersection of an a ne plane with the cone of positive semide nite (PSD) matrices, that is, the set of symmetric matrices which have all non-negative eigenvalues. The Ellipsoid Algorithm (a detailed history of which can be found in [1]) can be used to optimize a linear function over convex bodies in time polynomial in the dimension ${ }^{1}$ so long as there is an e cient procedure to nd a separating hyperplane for points outside the body. If a matrix is not PSD, then it must have an eigenvector with a negative eigenvalue. This eigenvector forms a separating hyperplane, and sinceeigenvector computations can be performed e ciently, the Ellipsoid Algorithm can be used to e ciently optimize linear functions over the feasible regions of SDPs.

SDPs are generalizations of linear programs (LPs), which are convex relaxations whose feasible regions are the intersection of an a ne plane with the non-negative orthant. LPs have enjoyed extensive use in approximation algorithms (see [71] for an in-depth discussion). Since the non-negative orthant can be obtained as a linear subspace of the PSD cone (the diagonal of thematrices), SDPs should be able to provide stronger approximation al gorithms than LPs.

SDPs rst appeared in [49] as a method to study approximation of the Independent Set problem. The work of [28] catapulted SDPs to the cutting edge of approximation algorithms research when the authors wrote an SDP relaxation with a randomized rounding al gorithm for the Max Cut problem, achieving the rst non-trivial, polynomial-time approximation. Wenow know that this result separates SDPs from LPs, as [15] implies that any LP relaxation achieving such approximation for Max Cut must be exponential size In fact, the SDP of [28] is so e ective for this problem that it remains the best polynomial-time approximation for Max Cut we know, even decades years later. Since then SDPs have seen a huge amount of success in the approximation world for a wide variety of problems, including clustering [56], tensor decomposition [68], Vertex Cover [41], Sparsest Cut [2], graph coloring [17], and especially constraint satisfaction problems (CSPs) [26, 33, 16]. In fact, if a complexity assumption called the Unique Games Conjecture [44] is true, then the work of Raghavendra [59] implies that SDP relaxations provide optimal approximation algorithms for CSPs; to develop a better algorithm would prove $\mathrm{P}=\mathrm{NP}$.

The success of SDPs has prompted signi cant investigation into the limits of their power. For Boolean combinatorial problems, in principleone could write an SDP with an exponential number of variables that exactly solves the problem. However, such an SDP would not be of much use since even the Ellipsoid Algorithm would require an exponential amount of time to solve the SDP. The study of lower bounds for SDPs has thus been focused on proving that approximating a combinatorial problem requires an SDP with a large number of
any $x$ satisfying the constraints. Unless we hope to break the N P -hardness barrier, looking for any such identity is intractable, so we consider relaxing the problem to checking for the existence of such an identity that uses only polynomials up to degree $2 d$. The existence of a degree $2 d$ identity turns out to be equivalent to the feasibility of a certain SDP of size $n^{O(d)}$ (see Section 2.6 for speci cs), which we call the degree-d or dth SOS SDP.

While the SOS relaxations have been popular and successful, they are still relatively new, and so our knowledge about them is far from complete. There are even very basic questions about them for which we do not know the answer. In particular, we do not even know when we can solve the SOS relaxations in polynomial time! Because the $d$ th SOS relaxation is a semide nite program of size $n^{O(d)}$, it is often claimed that any degree $d$ proof can be found in time polynomial in $n^{O(d)}$ via the Ellipsoid algorithm. However, this claim was debunked very recently by Ryan O'Donnell in [54]. He noted that complications could arise if every proof of non-negativity involves polynomials with extremely large coe cients, and furthermore, he gave an explicit example showing that it is possible for this to occur. Resolving this issue is of paramount importance, as the SOS relaxations lie at the heart of so many approximation algorithms. In this dissertation, we continue this line of work with some positive and negative results discussed in Section 1.5.

A nother open area of research is investigating the true power of the SOS relaxations. Since we know SOS relaxations provide good approximation for so many computational problems, it is natural to continue to apply them to new problems. This is a worthy pursuit, but not one that will be explored in this work. An alternative approach would be to try to identify for which problems the SOS relaxations do not provide good approximations. For any Boolean optimization problem, if $d$ is largeenough, then the $d$ th SOS relaxation will solve the problem exactly. However, if $d$ is too large, then the SDP will have a super-polynomial number of variables, so that even the Ellipsoid Algorithm cannot solve it in polynomial time. Thus as for general SDP lower bounds, it is common to rephrase this question by giving a lower bound on the degree of the SOS relaxation required to achieve a good enough approximation. The degree $d$ SOS relaxation is size $n^{O(d)}$, so if $d$ is super-constant then the size of the SDP is super-polynomial. This area of research has been much more fruitful than general SDP lower bounds, as the SOS relaxations are concrete objects which are more easily reasoned about. In [32], Grigoriev gives a linear degree lower bound against the Matching problem. A sequence of results [52, 21, 60, 36, 6] all givelower bounds against the Planted Clique problem. SOS lower bounds for Densest $k$-Subgraph are given in [8]. Di erent CSP problems are considered in [65,58, 27, 69, 46]. Proving more lower bounds is also a noble goal, but this thesis will focus on a slightly di erent evaluation of the e ectiveness of the SOS relaxations.

Rather than evaluating the SOS relaxations by how good an approximation they achieve in the absolutesense, we will beevaluating them relativeto other SDPs. In particular, wewill explore whether or not thereexist other SDPs which perform better than theSOS relaxations. Previously, [47, 46] proved that the SOS relaxations provide the best approximation among SDPs of a comparable size for CSPs. We will explore the more restricted setting of [47], where the other SDP relaxations we measure against must be symmetric in some sense, i.e.
respect the natural symmetries of the corresponding combinatorial optimization problem (see Section 2.7 for details).

### 1.4 Polynomial Ideal Membership and E ective Derivations

In order to study the SOS relaxations, in this dissertation we use as a technical tool polynomial proof systems and the existence of low-degree polynomial proofs. Here we introduce a bit of background on these tools. The polynomial ideal membership problem is the following computational task: Given a set of polynomials $\mathcal{P}=\left\{p_{1}, \ldots, p_{n}\right\}$ and a polynomial $r$, we want to determine if $r$ is in the ideal generated by $\mathcal{P}$ or not, denoted $\langle\mathcal{P}\rangle$. This problem was rst studied by Hilbert [35], and has applications in solving polynomial systems [20] and polynomial identity testing [3]. The theory of Grobner bases [12] originated as a method to solve the membership problem. Unfortunately, the membership problem is EX P SPACE-hard to solve in general [51, 38]. Luckily this will not impede us too much, since we will be studying this problem for the very special instances that correspond to common combinatorial optimization problems.

The membership problem is easily solvable if there exist low-degree proofs of membership for the ideal $\langle\mathcal{P}\rangle$. Note that $r \in\langle\mathcal{P}\rangle$ if and only if there exists a polynomial identity

$$
r(x)={ }_{p 2 \mathrm{P}}^{\mathrm{X}} \lambda_{p}(x) p(x)
$$

for some polynomials $\left\{\lambda_{p} \mid p \in \mathcal{P}\right\}$. We call such a polynomial identity a derivation or proof of membership for $r$ from $\mathcal{P}$. If we had an a priori bound on the degree required for this identity, we could simply solve a system of linear equations to determine the coe cients of each $\lambda_{p}$. The E ective Nullstellensatz [34] tells us that we can take $d \leq(\operatorname{deg} r)^{2^{|p|} \mid}$. This bound is not terribly useful, because we would need to solve an enormous linear system. This is unavoidable in general because of the EXPSPACE-hardness, but in speci c cases we could hope for a better bound on $d$. In particular, the polynomial ideals that arise from combinatorial optimization problems frequently have nice properties that make them much more reasonable than arbitrary polynomial ideals. For example, these ideals are often Boolean (and thus have nite solution spaces) and highly symmetric. In these cases, we could hope for a much better degree bound.

This problem has been studied in [7, 14, 31, 13], mostly in the context of lower bounds. In these works the problem is referred to as the degree of Nullstellensatz proofs of membership for $r$. In this work we will continue to study this problem, however we will be mostly interested in upper bounds on the required degree. We will be able to use the existence of low-degree Nullstellensatz proofs for combinatorial ideals to study the SOS relaxations.
combinatorial optimization problems, SDP relaxations, and the SOS relaxations themselves. In Chapter 3 we will discuss low-degreeproofs of membership and compilea (non-exhaustive) list of combinatorial optimization problems which admit such proofs. In Chapter 4, we discuss the bit complexity of SOS proofs, and show how low-degree proofs can be used to prove the existence of SOS proofs with small bit complexity. In Chapter 5 we discuss the optimality of the SOS relaxations, and show how this implies an exponential size lower bound for approximating the Matching problem. Finally, in Chapter 6 we discuss a few open problems continuing the lines of research of this thesis.

We use $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$ to denote the space of polynomials on variables $x_{1}, \ldots, x_{n}$, and $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$ for the space of degree $d$ polynomials. For a xed integer $d$ to be understood from context and a polynomial $p$ of degree at most $d$, let $N=\underset{d}{n+d} 1$. We use $p$ for the element of $\mathbf{R}^{N}$ which is the vector of coe cients of $p$ up to degree $d$. We use $\mathrm{x}^{\mathrm{d}}$ to denote the vector of monomials such that $p(x)=p \cdot \mathbf{x}^{\mathrm{d}}$.

If $p$ is a polynomial of degree at most $2 d$, then we also use $\hat{p}$ for an element of $\mathbf{R}^{N}{ }^{N}$ such that $p(x)=\hat{p} \cdot \mathrm{x}^{\mathrm{d}}\left(\mathrm{X}^{\mathrm{d}}\right)^{T}$. Since multiple entries of $\mathrm{x}^{\mathrm{d}}\left(\mathrm{X}^{\mathrm{d}}\right)^{T}$ are equal, there are multiple dhoices for $\hat{p}$, for concretenespwe choose the one that evenly distributes the coe cient over the equal entries. Now $p={ }_{i} q_{i}^{2}$ for some polynomials $q_{i}$ if and only if $\hat{p}={ }_{i} q_{\pi} q_{i}^{T}$, i.e $\hat{p} \in \mathrm{~S}_{+}^{N}$. We use $\|p\|$ to denote the largest absolute value of a coe cient of $p$. If $\mathcal{P}$ is a set of polynomials, then $\|\mathcal{P}\|=\max _{p 2 \mathrm{P}}\|p\|$.

### 2.2 Semide nite Programming and Duality

In order to explore the power of the Sum-of-Squares relaxations, rst we need to explain what a semide nite program is. In this section we de ne semide nite programs and their duals, which are also semide nite programs.

De nition 2.2.1. A semidefinite program (SDP) of size $d$ is a tuple ( $C,\left\{A_{i}, b_{i}\right\}_{i=1}^{m}$ ) where $C, A_{i} \in R^{d}{ }^{d}$ for each $i$, and $b_{i} \in \mathrm{R}$ for each $i$. The feasible region of the SDP is the set $S=\left\{X \mid \forall i: A_{i} \cdot X=b_{i}, X \in \mathrm{~S}_{+}^{d}\right\}$. The value of the SDP is $\max _{X 2 S} C \cdot X$.

Fact 2.2.2. There is an algorithm (referred to as the Ellipsoid Algorithm in this thesis) that, given an $S D P\left(C,\left\{A_{i}, b_{i}\right\}_{i=1}^{m}\right)$ whose feasible region $S$ intersects a ball of radius $R$, computes the value of that $S D P$ up to accuracy $\epsilon$ in time polynomial in $d$, $\max _{i}\left(\log \left\|A_{i}\right\|, \log \left|b_{i}\right|\right)$, $\log \|C\|, \log R$, and $\frac{1}{\epsilon}$.

De nition 2.2.3. The dual of an SDP $\left(C,\left\{A_{i}, b_{i}\right\}_{i=1}^{m}\right)$ is the optimization problem (with variables $(y, S)$ ):

$$
\begin{aligned}
& \text { s.t. }{ }^{\min ^{y, S}}{ }_{i} A_{i} y_{i}-C=S \\
& \\
& S \succeq 0 .
\end{aligned}
$$

The value of the dual is the value of the optimum $b \cdot y$.
The following is a well-known fact about strong duality for SDPs, due to Slater [67].
Lemma 2.2.4 (Slater's Condition). Let $P$ be the $S D P\left(C,\left\{A_{i}, b_{i}\right\}_{i=1}^{m}\right)$ and let $D$ be its dual. If $X$ is feasible for $P$ and $(y, S)$ is feasible for $D$, then $C \cdot X \leq b \cdot y$. Moreover, if there exists a strictly feasible point $X$ for $P$ or $(y, S) D$, that is, a feasible $X$ with $X \succ 0$ or a feasible $(y, S)$ with $S \succ 0$, then $\operatorname{val} P=\operatorname{val} D$.

### 2.3 Polynomial Ideals and Polynomial Proof Systems

We write $p(x)$ or sometimes just $p$ for a polynomial in $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$, and $\mathcal{P}$ for a set of polynomials. We will often also use $q$ and $r$ for polynomials and $\mathcal{Q}$ for a second set of polynomials.

De nition 2.3.1. Let $\mathcal{P}, \mathcal{Q}$ be any sets of polynomials in $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$, and let $S$ be any set of points in $\mathrm{R}^{n}$.

- We call $V(\mathcal{P})=\left\{x \in \mathrm{R}^{n} \mid \forall p \in \mathcal{P}: p(x)=0\right\}$ the real variety of $\mathcal{P}$.
- We call $H(\mathcal{Q})=\left\{x \in \mathbf{R}^{n} \mid \forall q \in \mathcal{Q}: q(x) \geq 0\right\}$ the positive set of $\mathcal{Q}$.
- We call $I(S)=\left\{p \in R\left[x_{1}, \ldots, x_{n}\right] \mid \forall x \in S: p(x)=0\right\}$ the vanishing ideal of $S$.
- We denote $\langle\mathcal{P}\rangle=\left\{q \in R\left[x_{1}, \ldots, x_{n}\right] \mid \exists \lambda_{p}(x): q={ }^{\mathrm{P}}{ }_{p 2 \mathrm{P}} \lambda_{p} \cdot p\right\}$ for the ideal generated by $\mathcal{P}$.
- We call $\mathcal{P}$ complete if $\langle\mathcal{P}\rangle=I(V(\mathcal{P}))$.
- If $\mathcal{P}$ is complete, then we write $p_{1} \cong p_{2} \bmod \langle\mathcal{P}\rangle$ if $p_{1}-p_{2} \in\langle\mathcal{P}\rangle$ or, equivalently, if $p_{1}(\alpha)=p_{2}(\alpha)$ for each $\alpha \in V(\mathcal{P})$.

Grobner bases are objects rst considered in [12] as a way to determine if a polynomial $r$ is an element of $\langle\mathcal{P}\rangle$. We de ne them here and include some of their important properties.

De nition 2.3.2. Let $\succ$ be an ordering on monomials such that, for three monomials $u, v$, and $w$, if $u \succeq v$ then $u w \succeq v w$. We say that $\mathcal{P}$ is a Gröbner Basis for $\langle\mathcal{P}\rangle$ (with respect to $\succ$ ) if, for every $r \in\langle\mathcal{P}\rangle$, there exists a $p \in \mathcal{P}$ such that the leading term of $r$ is divisible by the leading term of $p$.

Example 2.3.3. Consider the polynomials on $n$ variables $x_{1}, \ldots, x_{n}$ and let $\succ$ bethe degree lexicographic ordering, so that for two monomials $u$, and $v, u \succeq v$ if the vector of degrees of $u$ is larger than the vector of $v$ in the lexicographic ordering. Then $\mathcal{P}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ is a Grobner Basis. The proof is in the proof of Corollary 3.1.2.

If $\mathcal{P}$ is a Grobner basis, then it is a nice generating set for $\langle\mathcal{P}\rangle$ in the sense that it is possible to de ne a multivariate division algorithm for $\langle\mathcal{P}\rangle$ with respect to $\mathcal{P}$.

De nition 2.3.4. Let $\succ$ be an ordering of monomials such that if $x_{U} \succ x_{V}$ then $x_{U} x_{W} \succ$ $x_{V} x_{W}$. We say a polynomial $q$ is reducible by a set of polynomials $\mathcal{P}$ if there exists a $p \in \mathcal{P}$ such that some monomial of $q$, say $c_{Q} x_{Q}$, is divisible by the leading term of $p, c_{P} x_{P}$. Then a reduction of $q$ by $\mathcal{P}$ is $q-\frac{c_{Q}}{c_{P}} x_{Q \mathrm{n} P} \cdot p$. We say that a total reduction of $q$ by $\mathcal{P}$ is a polynomial obtained by iteratively applying reductions until we reach a polynomial which is not reducible by $\mathcal{P}$.

In general the total reductions of a polynomial $q$ by a set of polynomials $\mathcal{P}$ is not unique and depends on which polynomials one chooses from $\mathcal{P}$ to reduce by, and in what order. So it does not make much sense to call this a division algorithm since there is not a unique remainder. However, when $\mathcal{P}$ is a Grobner basis, there is indeed a unique remainder.

Proposition 2.3.5. Let $\mathcal{P}$ be a Gröbner basis for $\langle\mathcal{P}\rangle$ with respect to $\succ$. Then for any polynomial $q$, there is a unique total reduction of $q$ by $\mathcal{P}$. In particular if $q \in\langle\mathcal{P}\rangle$, then the total reduction of $q$ by $\mathcal{P}$ is 0 . The converse is also true, so if $\mathcal{P}$ is a set of polynomials such that any polynomial $q \in\langle\mathcal{P}\rangle$ has unique total reduction by $\mathcal{P}$ equal to 0 , then $\mathcal{P}$ is a Gröbner basis.

Proof. When we reduce a polynomial $q$ by $\mathcal{P}$, the resulting polynomial does not contain one term of $q$, since it was canceled via a multiple of $p$ for some polynomial $p \in \mathcal{P}$. Because it was canceled via the leading term of $p$, no higher monomials were introduced in the reduction. Thus as we apply reduction, the position of the terms of $q$ monotonically decrease This has to terminate at some point, so there is a remainder $r$ which is not reducible by $\mathcal{P}$. To prove that $r$ is unique, rst notice that the result of total reduction is a polynomial identity $q=p+r$, where $p \in\langle\mathcal{P}\rangle$ and $r$ is not reducible by $\mathcal{P}$. If there are multiple remainders $q=p_{1}+r_{1}$ and $q=p_{2}+r_{2}$, then clearly $r_{1}-r_{2}=p_{2}-p_{1} \in\langle\mathcal{P}\rangle$. By the de nition of Grobner Basis, $r_{1}-r_{2}$ must have its leading term divisible by the leading term of some $p \in \mathcal{P}$. But the leading term of $r_{1}-r_{2}$ must come from either $r_{1}$ or $r_{2}$, neither of which contain terms divisible by leading terms of any polynomial in $\mathcal{P}$. Thus $r_{1}-r_{2}=0$.

For the converse, let $q \in\langle\mathcal{P}\rangle$, and note again that any reduction of $q$ by a polynomial in $\mathcal{P}$ does not include higher monomials than the one canceled. Since the only total reduction of $q$ is 0 , its leading term has to be canceled eventually, so it must be divisible by the leading term of some polynomial in $\mathcal{P}$.

## Testing Zero Polynomials

This section discusses how to certify that a polynomial $r(x)$ is zero on all of some set $S$. In the main context of this thesis, we have access to some polynomials $\mathcal{P}$ such that $S=V(\mathcal{P})$. When $\mathcal{P}$ is complete, testing if $r$ is zero on $S$ is equivalent to testing if $r \in\langle\mathcal{P}\rangle$. One obvious way to do this is to simply bruteforce over the points of $V(\mathcal{P})$ and evaluate $r$ on all of them. However, we are mostly interested in situations where the points of $V(\mathcal{P})$ are in bijection with solutions to some combinatorial optimization problem. In this case, there arefrequently an exponential number of points in $V(\mathcal{P})$ and this amounts to a bruteforce search over this space. If $\mathcal{P}$ is a Grobner basis, then we could also simply compute a total reduction of $r$ by $\mathcal{P}$ and check if it is 0 . However, Grobner bases are often very complicated and di cult to compute, and we do not always have access to one. We want a more e cient certi cate for membership in $\langle\mathcal{P}\rangle$.

De nition 2.3.6. Let $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ bea set of polynomials. We say that $r$ is derived from $\mathcal{P}$ in degree $d$ if there is a polynomial identity of the form

$$
r(x)=X_{i=1}^{X^{n}} \lambda_{i}(x) \cdot p_{i}(x)
$$

and $\max _{i} \operatorname{deg}\left(\lambda_{i} \cdot p_{i}\right) \leq d$. We often call this polynomial identity a Nullstellensatz (HN) proof, derivation, or certi cate from $\mathcal{P}$. We also write $r_{1} \cong_{d} r_{2}$ if $r_{1}-r_{2}$ has a derivation from $\mathcal{P}$ in degree $d$. We write $\langle\mathcal{P}\rangle_{d}$ for the polynomials with degree $d$ derivations from $\mathcal{P}$ ( $n$ ot the degree $d$ polynomials in $\langle\mathcal{P}\rangle$ !).

The following is an important result which connects derivations to the feasibility of a polynomial system of equations.
Lemma 2.3.7 (Hilbert's Weak Nullstellensatz [35]). $1 \in\langle\mathcal{P}\rangle$ if and only if there is no $\alpha \in \mathrm{C}^{n}$ such that $p(\alpha)=0$ for every $p \in \mathcal{P}$, i.e. $\mathcal{P}$ is infeasible.

A derivation of 1 from $\mathcal{P}$ is called an $H N$ refutation of $\mathcal{P}$. It is a study of considerable interest to bound the degree of refutations for various systems of polynomial equations [7, 14, 31, 13]. However, in this thesis we will primarily concern ourselves with feasible systems of polynomial equations, so we will mostly use the Nullstellensatz to argue that the only constant polynomial in $\langle\mathcal{P}\rangle$ is the zero polynomial.

The following lemma is an easy but important fact, which we will use to construct derivations in Chapter 3.

Lemma 2.3.8. If $q_{0} \cong_{d_{1}} q_{1}$ and $q_{1} \cong_{d_{2}} q_{2}$, then $q_{0} \cong_{d} q_{2}$ where $d=\max \left(d_{1}, d_{2}\right)$.
Proof. We have the polynomial identities

$$
q_{i}-q_{i+1}={ }_{p 2 \mathrm{P}}^{\mathrm{X}} \lambda_{i p} \cdot p
$$

for $i=0$ and $i=1$. Adding the two identities together gives a derivation for $q_{0}-q_{2}$. The degrees of the polynomials appearing in derivation are clearly bounded by max $\left(d_{1}, d_{2}\right)$.

The problem of nding a degree $d$ HN derivation for $r$ can be expressed as a linear program with $n^{d}|\mathcal{P}|$ variables, since the polynomial identity is linear in the coe cients of the $\lambda_{i}$. Thus if such a derivation exists, it is possible to nd e ciently in time polynomial in $n^{d}|\mathcal{P}|, \log \|\mathcal{P}\|$ and $\log \|r\|$. These parameters are all polynomially related to the size required to specify the input: $(r, \mathcal{P}, d)$.
De nition 2.3.9. Wesay that $\mathcal{P}$ is $k$-effective if $\mathcal{P}$ is completeand every polynomial $p \in\langle\mathcal{P}\rangle$ of degree $d$ has a HN proof from $\mathcal{P}$ in degree $k d$.

When $\mathcal{P}$ is $k$-e ective for constant $k$, if we ever wish to test membership in $\langle\mathcal{P}\rangle$ for some polynomial $r$, we need only search for a HN proof up to degree $k \operatorname{deg} r$, yiedding an e cient al gorithm for the membership problem (this is polynomial time because the size of the input $r$ is $\left.O\left(n^{\mathrm{deg} r}\right)\right)$.

## Testing Non-negative Polynomials with Sum of Squares

Testing non-negativity for polynomials on a set $S$ has an obvious application to optimization. If one is trying to solve the polynomial optimization problem

$$
\begin{array}{cl} 
& \max r(x) \\
\text { s.t. } & p(x)=0, \forall p \in \mathcal{P} \\
& q(x) \geq 0, \forall q \in \mathcal{Q}
\end{array}
$$

then one way to do so is to iteratively pick a $\theta$ and test whether $\theta-r(x)$ is positive on $S=V(\mathcal{P}) \cap H(\mathcal{Q})$. If we perform binary search on $\theta$, we can compute the maximum of $r$ very quidkly. One way to try and certify non-negative polynomials is to express them as sums of squares.

De nition 2.3.10. Ap polynomial $s(x) \in \mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a sum-of-squares (or $S O S$ ) polynomial if $s(x)={ }_{i} h_{i}^{2}(x)$ for some polynomials $h_{i} \in \mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$. We often use $s(x)$ to denote SOS polynomials.

Clearly an SOS polynomial is non-negative on all of $\mathrm{R}^{n}$. However, the converse is not always true

Fact 2.3.11 (Motzkin's Polynomial [53]). The polynomial $p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$ is non-negative on $\mathbf{R}^{n}$ but is not a sum of squares.

Because our goal is to optimize over some set $S$, we actually only care about the nonnegativity of a polynomial on $S$ rather than on all of $\mathrm{R}^{n}$.

De nition 2.3.12. A polynomial $r(x) \in \mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$ is called $S O S$ modulo $S$ if there is an SOS polynomial $s \in I(S)$ such that $r \cong s \bmod I(S)$. If deg $s=k$ then we say $r$ is $k$-SOS modulo $S$. If $S=V(\mathcal{P})$ and $\mathcal{P}$ is complete, we sometimes use modulo $\mathcal{P}$ instead.

If a polynomial $r$ is SOS modulo $S$ then $r$ is non-negative on $S$. For many optimization problems, $S \subseteq\{0,1\}^{n}$. In this case, the converse holds.

Fact 2.3.13. If $S \subseteq\{0,1\}^{n}$ and $r$ is a polynomial which is non-negative on $S$, then $r$ is $n$-SOS modulo $S$.

When we have access to two sets of polynomials $\mathcal{P}$ and $\mathcal{Q}$ such that $S=V(\mathcal{P}) \cap H(\mathcal{Q})$, as in our main context of polynomial optimization, we can de ne a certi cate of non-negativity:

De nition 2.3.14. Let $\mathcal{P}$ and $\mathcal{Q}$ be two sets of polynomials. A polynomial $r(x)$ is said to have a degree $d$ proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$ if there is a polynomial identity of the form

$$
r(x)=s(x)+{ }_{q 2 \mathrm{Q}}^{\mathrm{X}} s_{q}(x) \cdot q(x)+{ }_{p 2 \mathrm{P}}^{\mathrm{X}} \lambda_{p}(x) \cdot p(x),
$$

where $s(x)$, and each $s_{q}(x)$ are SOS polynomials, and $\max _{p q}\left(\operatorname{deg} s, \operatorname{deg} s_{q} q, \operatorname{deg} \lambda_{p} p\right) \leq d$. We often call this polynomial identity a Positivestellensatz Calculus ( $\mathrm{PC}_{>}$) proof of nonnegativity, derivation, or certi cate from $\mathcal{P}$ and $\mathcal{Q}$. We often identify the proof with the set of polynomials $=\{s\} \cup\left\{s_{q} \mid q \in \mathcal{Q}\right\} \cup\left\{\lambda_{p} \mid p \in \mathcal{P}\right\}$.

If $\mathcal{Q}=\emptyset$ and both $r(x)$ and $-r(x)$ have $\mathrm{PC}_{>}$proofs of non-negativity from $\mathcal{P}$, then we say that $r$ has a $\mathrm{PC}_{>}$derivation.

If $r$ has a $\mathrm{PC}_{>}$proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$, then $r$ is non-negative on $S=$ $V(\mathcal{P}) \cap H(\mathcal{Q})$. This can be seen by noticing that the rst two terms in the proof are nonnegative because they are sums of products of polynomials which are non-negative on $S$, and the nal term is of course zero on $S$ because it is in $\langle\mathcal{P}\rangle$.

The problem of nding a degree $d$ proof of non-negativity can be expressed as a semidefinite program of size $O\left(n^{d}(|\mathcal{P}|+|\mathcal{Q}|)\right)$ since a polynomial is SOS if and only if its matrix of coe cients is PSD. Then the Ellipsoid Algorithm can be used to nd a degree $d$ proof of non-negativity in time polynomial in $n^{d}(|\mathcal{P}|+|\mathcal{Q}|), \log \|r\|, \log \|\mathcal{P}\|, \log \|\mathcal{Q}\|$, and $\log \|\|$. Nearly all of these parameters are bounded by the size required to specify the input of $(r, \mathcal{P}, \mathcal{Q}, d)$. However, the quantity $\|\|$ is worrisome; is not part of the input and we have no a priori way to bound its size. One way to argue $r$ has proofs of bounded norm is of course to simply exhibit one. If we suspect there are no proofs with small norm, there are also certi cates we can nd:
Lemma 2.3.15. Let $\mathcal{P}$ and $\mathcal{Q}$ be sets of polynomials and $r(x)$ be a polynomial. Pick any $p \in \mathcal{P}$. If there exists a linear functional $\phi: \mathrm{R}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathrm{R}$ such that
(1) $\phi[r]=-\epsilon<0$,
(2) $\phi[\lambda p]=0$ for every $p \in \mathcal{P}$ except $p$ and $\lambda$ such that $\operatorname{deg}(\lambda p) \leq 2 d$,
(3) $\phi\left[s^{2} q\right] \geq 0$ for every $q \in \mathcal{Q}$ and polynomial s such that $\operatorname{deg}\left(s^{2} q\right) \leq 2 d$,
(4) $\phi\left[s^{2}\right] \geq 0$ for every polynomial s such that $\operatorname{deg}\left(s^{2}\right) \leq 2 d$,
(5) $|\phi[\lambda p]| \leq \delta\|\lambda\|$ for every $\lambda$ such that $\operatorname{deg}(\lambda p) \leq 2 d$.
then every degree-d $P C_{>}$proof of non-negativity for $\operatorname{rfrom} \mathcal{P}$ and $\mathcal{Q}$ has $\left\|\| \geq \frac{\epsilon}{\delta}\right.$.
Proof. The proof is very simple. Any degree $d$ proof of non-negativity for $r$ is a polynomial identity
with polynomial degrees appropriately $\underset{X}{\text { bounded. If we }} \underset{X}{\mathrm{X}}$ apply $\phi$ to both sides, we have

$$
\begin{aligned}
-\epsilon=\phi[r] & =\phi[s]+{\underset{q 2 \mathrm{Q}}{\mathrm{X}} \phi\left[s_{q} q\right]+\underset{\substack{p 2 \mathrm{P} \\
p \in p^{*}}}{\mathrm{X}} \phi\left[\lambda_{p} p\right]+\phi[\lambda p]}=a_{1}+a_{2}+0+\phi[\lambda p],
\end{aligned}
$$

where $a_{1}, a_{2} \geq 0$ by properties (3) and (4) of $\phi$. Thus $\phi[\lambda p] \leq-\epsilon$, but by property (5), we must have $\|\lambda\| \geq \frac{\epsilon}{\delta}$, and thus $\|\|$ is at least this much as well.

Strong duality actually implies that the converse of Lemma 2.3.15 is true as well (the reader might notice that $\phi$ is actually a hyperplane separating $r$ from the set of polynomials with bounded coe cients for $p$ ), but as we only need this direction in this thesis we omit the proof of the converse. Also note that if $\delta=0$, i.e $\phi$ satis es $\phi[\lambda p]=0$, then the lemma implies there are no proofs of non-negativity for $r$.

### 2.4 Combinatorial Optimization Problems

We follow the framework of [9] for combinatorial problems. We de ne only maximization problems here, but it is clear that the de nition extends easily to minimization problems as well.

De nition 2.4.1. A combinatorial maximization problem $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ consists of a niteset $\mathcal{S}$ of feasible solutions and a set $\mathcal{F}$ of non-negative objective functions. An exact algorithm for such a problem takes as input an $f \in \mathcal{F}$ and computes $\max _{\alpha 2 \mathrm{~s}} f(\alpha)$.

We can also generalize to approximate solutions: Given two functions $c, s: \mathcal{F} \rightarrow \mathrm{R}$ called approximation guarantees, we say an algorithm ( $c, s$ )-approximately solves $\mathcal{M}$ or achieves approximation $(c, s)$ on $\mathcal{M}$ if given any $f \in \mathcal{F}$ with $\max _{s 2 s} f(s) \leq s(f)$ as input, it computes val $\in \mathrm{R}$ satisfying $\max _{\alpha 2 \mathrm{~s}} f(\alpha) \leq \mathrm{val} \leq c(f)$. If $c(f)=\rho s(f)$, we also say the algorithm $\rho$-approximately solves $\mathcal{M}$ or achieves approximation ratio $\rho$ on $\mathcal{M}$.

We think of the functions $f \in \mathcal{F}$ as de ning the problem instances and the feasible solutions $\alpha \in \mathcal{S}$ as de ning the combinatorial objects we are trying to maximize over. The functions $c$ and $s$ can be thought of as the usual approximation parameters completeness and soundness. If $c(f)=s(f)=\max _{\alpha 2 s} f(\alpha)$, then a $(c, s)$-approximate algorithm for $\mathcal{M}$ is also an exact al gorithm. Here are few concrete examples of combinatorial maximization problems:

Example 2.4.2 (Maximum Matching). Recall that the Maximum Matching problem is, given a graph $G=(V, E)$, nd a maximum set of disjoint edges. We can express this as a combinatorial optimization problem for each even $n$ as follows: $K_{n}$ bethe completegraph on $n$ vertices. The set of feasible solutions $\mathcal{S}_{n}$ is the set of all maximum matchings on $K_{n}$. The objective functions will be indexed by edge subsets of $K_{n}$ and de ned $f_{E}(M)=|E \cap M|$. It is clear that for a graph $G=(V, E)$ with $|V|=n$, the size of the maximum matching in $G$ is exactly ether $\max _{M 2 s_{n}} f_{E}(M)$ or $\max _{M 2 s_{n+1}} f_{E}(M)$, depending on if $n$ is even or odd respectively.

Example 2.4.3 (Traveling Salesperson Problem). Recall that the Traveling Salesperson Problem (TSP) is, given a set $X$ and a function $d: X \times X \rightarrow \mathrm{R}^{+}$, nd a tour $\tau$ of $X$ that minimizes the total cost of adjacent pairs in the tour (including the rst and last dements).

This can be cast in this framework easily: the set of feasible solutions $\mathcal{S}$ is the set of all permutations of $n$ bements. The objective functions are indexed by the function $d$ and can be written $f_{d}(\tau)={ }_{i=1}^{n} d(\tau(i), \tau(i+1))$, where $n+1$ is taken to be 1 . TSP is a minimization problem rather than a maximization problem, so we ask for the al gorithm to compute $\min _{\tau 2 \mathrm{~s}} f(\tau)$ instead. We could set $s(f)=\min _{\alpha 2 \mathrm{~s}} f(\alpha)$ and $c(f)=\frac{2}{3} \min _{\alpha 2 \mathrm{~s}} f(\alpha)$ and ask for an algorithm that ( $c, s$ )-approximately solves TSP instead (Christo des' algorithm [19] is one such algorithm when $d$ is a metric).

De nition 2.4.4. For a problem $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ and approximation guarantees $c$ and $s$, the $(c, s)$-Slack Matrix $M$ is an operator that takes as input an $\alpha \in \mathcal{S}$ and an $f \in \mathcal{F}$ such that $\max _{\alpha 2 \mathrm{~S}} f(\alpha) \leq s(f)$ and returns $M(\alpha, f)=c(f)-f(\alpha)$.

The slack matrix encodes some combinatorial properties of $\mathcal{M}$, and we will see in the next section that certain properties of the slack matrix correspond to the existence of speci c convex relaxations that ( $c, s$ )-approximately solve $\mathcal{M}$. In particular, we will see that the existence of SDP relaxations for $\mathcal{M}$ depends on certain factorizations of the slack matrix.

### 2.5 SDP Relaxations for Optimization Problems

A popular method for solving combinatorial optimization problems is to formulate them as SDPs, and use generic algorithms such as the Ellipsoid Method for solving SDPs.

De nition 2.5.1. Let $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ be a combinatorial maximization problem. Then an SDP relaxation of $\mathcal{M}$ of size $d$ consists of

1. SDP: Constraints $\left\{A_{i}, b_{i}\right\}_{i=1}^{m}$ with $A_{i} \in \mathbf{R}^{d}{ }^{d}$ and $b_{i} \in \mathrm{R}$ and a set of a ne objective functions $\left\{w^{f} \mid f \in \mathcal{F}\right\}$ with each $w^{f}: \mathbf{R}^{d d} \rightarrow \mathbf{R}$,
2. Feasible Solutions: A set $\left\{X^{\alpha} \mid \alpha \in S\right\}$ in the feasible region of the SDP satisfying $w^{f}\left(X^{\alpha}\right)=f(\alpha)$ for each $f$.

We say that the SDP relaxation is a ( $c, s$ )-approximate relaxation or that it achieves $(c, s)$ approximation if, for each $f \in \mathcal{F}$ with $\max _{\alpha 2 \mathrm{~S}} f(\alpha) \leq s(f)$,

$$
\max _{X} w^{f}(X) \mid \forall i: A_{i} \cdot X=b_{i}, X \in \mathbf{S}_{+}^{d} \leq c(f) .
$$

If the SDP relaxation achieves a ( $\max _{\alpha 2 \mathrm{~s}} f(\alpha)$, $\max _{\alpha 2 \mathrm{~s}} f(\alpha)$ )-approximation, we say it is exact. If $c(f)=\rho s(f)$, then we also say the SDP relaxation achieves a $\rho$-approximation.

Given a ( $c, s$ )-approximateSDP formulation for $\mathcal{M}$, we can $(c, s)$-approximately solve $\mathcal{M}$ on input $f$ simply by solving the SDP $\max w^{f}(X)$ subject to $X \in \mathrm{~S}_{+}^{d}$ and $\forall i: A_{i}(X)=b_{i}$.

Substituting $X^{\alpha}$ and adding $\mu_{f}=c(f)-w \geq 0$ (the inequality follows because the SDP relaxation achieves approximation $(c, s)$ ), we get

$$
M(\alpha, f)=Y_{f} \cdot X^{\alpha}+\mu_{f} .
$$

For the other direction, let $w^{f}(X)=c(f)-\mu_{f}-Y_{f} \cdot X$, let the $X^{\alpha}$ be the feasible solutions, and let the constraints be empty, so the SDP is simply $X \succeq 0$. Then for any $f$ satisfying the soundness guarantee,

$$
\max _{X} w^{f}(X)=c(f)-\mu_{f}-\min _{X} Y_{f} \cdot X=c(f)-\mu_{f} \leq c(f) .
$$

Clearly the $X^{\alpha}$ are feasible because they are PSD, and so we have constructed a $(c, s)$ approximate SDP relaxation.

### 2.6 Polynomial Formulations, Theta Body and SOS SDP Relaxations

In this section we rst de ne what a polynomial formulation for a combinatorial optimization problem $\mathcal{M}$ is, and then use that formulation to derive two families of SDP relaxations for $\mathcal{M}$ : The Theta Body and Sum-of-Squares relaxations.
De nition 2.6.1. A degree-d polynomial formulation on $n$ variables for a combinatorial optimization problem $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ is threesets of degree $d$ polynomials $\mathcal{P}, \mathcal{Q}, \mathcal{O} \subseteq \mathrm{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$ and a bijection $\phi$ between $\mathcal{S}$ and $V(\mathcal{P}) \cap H(\mathcal{Q})$ such that for each $f \in \mathcal{F}$ and $\alpha \in \mathcal{S}$, there exists a polynomial $o^{f} \in \mathcal{O}$ with $o^{f}(\phi(\alpha))=f(\alpha)$. We will often abuse notation by suppressing the bijection $\phi$ and writing $\alpha$ for both an element of $\mathcal{S}$ and the corresponding one in $V(\mathcal{P}) \cap H(\mathcal{Q})$. We call $\mathcal{P}$ the equality constraints, $\mathcal{Q}$ the inequality constraints, and $\mathcal{O}$ the objective polynomials. Thepolynomial formulation is called Boolean if $V(\mathcal{P}) \cap H(\mathcal{Q}) \subseteq\{0,1\}^{n}$.
Example 2.6.2. Matching on $n$ vertices has a degree two polynomial formulation on ${ }_{2}^{n}$ variables. Let

$$
\mathcal{P}=x_{i j}^{2}-x_{i j}\left|i, j \in[n] \cup X \quad x_{i j}-1\right| j \in[n] \cup\left\{x_{i j} x_{i k} \mid i, j, k \in[n], j \neq k\right\} .
$$

For a matching $M$, let $\left(\chi_{M}\right)_{i j}=1$ if $(i, j) \in M$ and 0 otherwise. Then clearly $\phi(M)=\chi_{M}$ is a bijection, and it is easily veri ed thatpevery $\chi_{M} \in V(\mathcal{P})$. Finally, for an objective function $f_{E}(M)=|M \cap E|$, we de ne $o^{f_{E}}(x)={ }_{i j:(i, j) 2 E} x_{i j}$.

A polynomial formulation for $\mathcal{M}$ de nes a polynomial optimization problem: given input $o^{f}$,

$$
\begin{aligned}
& \max { }_{o}{ }^{f}(x) \\
& \text { s.t. } p(x)=0, \forall p \in \mathcal{P} \\
& q(x) \geq 0, \forall q \in \mathcal{Q} \text {. }
\end{aligned}
$$

Solving this optimization problem is equivalent to solving the problem $\mathcal{M}$.
In Section 2.3 we discussed how polynomial optimization problems could sometimes be solved by searching for $\mathrm{PC}_{>}$proofs of non-negativity. Furthermore, these proofs can befound using semide nite programming. It should come as no surprise then that, given a polynomial formulation for $\mathcal{M}$, there are SDP relaxations based on nding certi cates of non-negativity. The Theta Body relaxation, rst considered in [29], is de ned only for formulations without inequality constraints. It nds a certi cate of non-negativity for $r(x)$ which is an SOS polynomial $s(x)$ together with a polynomial $g \in\langle\mathcal{P}\rangle$ such that $r(x)=s(x)+g(x)$.

Let $(\mathcal{P}, \mathcal{O}, \phi)$ be a degree $d$ polynomial formulation for $\mathcal{M}$. Recall that every polynomial $p$ of degree at most $2 d$ has a $d \times d$ matrix of coe cients $p$ such that $p(\alpha)=$ b. $\mathrm{X}^{\mathrm{d}}(\alpha)\left(\mathrm{X}^{\mathrm{d}}(\alpha)\right)^{T}$. This includes the constant polynomial 1 , whose matrix we denote $\hat{1}$.

De nition 2.6.3. For $D \geq d$, the degree- $D$ or Dth Theta-Body Relaxation of $(\mathcal{P}, \mathcal{O}, \phi)$ is an SDP relaxation for $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ consisting of:

1. Semidefinite program:

- $\quad$ b $X=0$ for every $p \in\langle\mathcal{P}\rangle$ of degree at most $2 D$,
- $\mathbf{~} . ~ X=1$, and
- $X \succeq 0$.
- For each polynomial $o^{f} \in \mathcal{O}$, we de ne the a ne function $w^{f}(X)=\mathrm{b}^{\mathrm{b}} \cdot X$.

2. Feasible solutions: For any $\alpha \in \mathcal{S}$, let $X^{\alpha}=X^{\mathrm{D}}(\phi(\alpha))\left(\mathrm{x}^{\mathrm{D}}(\phi(\alpha))\right)^{T}$.

This de nition of theTheta Body Relaxation makes it obvious that it is an SDP relaxation for $\mathcal{M}$, but we will frequently nd it more convenient to work with the dual SDP. Working with the dual exposes the connection between the Theta Body relaxation and polynomial proof systems.
Lemma 2.6.4. The dual of the Theta Body SDP Relaxation with objective function by $\cdot X$ can be expressed min $c$ subject to $c-o^{f}(x)$ is $2 D$-SOS modulo $\langle\mathcal{P}\rangle$.

Proof. The dual is

$$
\begin{array}{ll}
\text { s.t. } & y_{1} \cdot \mathbf{\Phi}-\mathrm{b}=\mathrm{b}+\mathrm{X}_{p 2 \mathrm{hPi}}^{\mathrm{X}} y_{p} \cdot \mathrm{~b} \\
\mathrm{~b} \succeq 0
\end{array}
$$

The equality constraint of the dual is a constraint on matrices, but we can also think of it as a constraint on degree $2 D$ polynomials via the map $b \leftrightarrow p$. Recall that $\mathrm{b} \succeq 0$ if and only if $s$ is a sum-of-squares polynomial. Thus this constraint is equivalent to asking that the polynomial $y_{1}-o^{f}(x)$ be $2 D$-SOS modulo $\langle\mathcal{P}\rangle$.

The Theta Body does not nd PC> proofs of non-negativity, but instead nds a di erent kind of proof that uses any low degree $g \in\langle\mathcal{P}\rangle$. To write down the $D$ th Theta Body relaxation, we need to know all the degree $D$ polynomials in $\langle\mathcal{P}\rangle$. In particular, we need a basis of polynomials for the vector space of degree $D$ polynomials in $\langle\mathcal{P}\rangle$. To get our hands on this, we would need to be able to at least solve the membership problem for $\langle\mathcal{P}\rangle$ up to degree $D$. Unfortunately, this problem is frequently intractable, and so even trying to formulate the $D$ th Theta Body is intractable. We can de ne a weaker SDP relaxation which does not merely use an arbitrary $g \in\langle\mathcal{P}\rangle$, but provides a derivation for $g$ from $\mathcal{P}$, i.e. it
nds a $\mathrm{PC}_{>}$proof. More generally, even when $\mathcal{Q} \neq \emptyset$, we can de ne the Lasserre or SOS relaxations as follows:

De nition 2.6.5. Let $(\mathcal{P}, \mathcal{Q}, \mathcal{O}, \phi)$ be a degree $d$ polynomial formulation for $\mathcal{M}=(\mathcal{S}, \mathcal{F})$, and let $\mathcal{Q}=\left\{q_{1}, \ldots, q_{k}\right\}$. For $D \geq d$, the degree- $D$ or Dth Lasserre Relaxation or degree- $D$ or Dth Sum-of-Squares Relaxation (SOS) is an SDP relaxation for $\mathcal{M}$ consisting of:

1. Semide nite program: For clarity, we de ne $q_{0}$ to be the constant polynomial $1, D_{i}=$ $D-\operatorname{deg} q_{i}$, and $N_{i}=\underset{D_{i}}{n+D_{i}} 1$. Let diag $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ denote the block-diagonal matrix whose blocks are $M_{1}, \ldots, M_{k}$. Then the constraints are

- $X=\operatorname{diag}\left(X_{q_{0}}, X_{q_{1}}, X_{q_{2}}, \ldots, X_{q_{k}}\right)$, where $X_{q_{i}}$ is an $N_{i} \times N_{i}$ matrix whose rows and columns are indexed by the monomials up to degree $D_{i}$.
- For every $i$ and pair of monomials $x_{U}$ and $x_{V}$ of degree at most $D_{i},\left(X_{q_{i}}\right)_{U V}=$ $X_{q_{0}} \cdot \mathrm{qd} x_{U} x_{V}$. This implies that if $\sim$ is the vector of coe cients of a polynomial $c(x)$ of degre at most $D_{i}$ and $X_{q_{0}}=\mathbf{x}^{\mathrm{D}_{0}}\left(\mathrm{X}^{\mathrm{D}_{0}}\right)^{T}$, then $\tau^{T} X_{i} \sim=q(x) c(x)^{2}$.
- For every $p \in \mathcal{P}$ and polynomial $\lambda$ such that $\lambda p$ has degree at most $2 d$, we have the constraint $\mathbb{X}_{p} \cdot X_{q_{0}}=0$.
- $\mathbf{~}$. $X_{q_{0}}=1$
- $X \succeq 0$.
- For each polynomial $o^{f} \in \mathcal{O}$, we de ne the a ne objective function $w^{f}(X)=$ b. $\cdot X_{q_{0}}$.

2. Feasible solutions: For any $\alpha \in \mathcal{S}$, let $X_{q_{i}}^{\alpha}=\mathbf{x ~}^{\mathrm{D}_{\mathrm{i}}}(\phi(\alpha))\left(\mathrm{X}^{\mathrm{D}_{\mathrm{i}}}(\phi(\alpha))\right)^{T} q_{i}(\alpha)$ for each $0 \leq i \leq k$. Then let

$$
X^{\alpha}=\operatorname{diag}\left(X_{q_{0}}^{\alpha}, X_{q_{1}}^{\alpha}, \ldots, X_{q_{k}}^{\alpha}\right)
$$

Once again, we will nd it much more convenient to work with the dual to make the connections to polynomial proof systems more explicit.

Lemma 2.6.6. The dual of the degree $2 D$ Sum-of-Squares SDP Relaxation with objective function ${ }^{b}$ can be expressed as $\min c$ subject to $c-o^{f}(x)$ has a degree $2 D P C_{>}$proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$.

Proof. Recall we use diag $\left(M_{1}, \ldots, M_{k}\right)$ to denote the block-diagonal matrix whose blocks are $M_{1}, \ldots, M_{k}$. Then the dual of the SOS relaxation is min $y_{1}$ subject to $\hat{s} \succeq 0$ and

$$
\begin{aligned}
\operatorname{diag}\left(y_{1} \cdot \mathrm{\Phi}, 0, \ldots, 0\right)-\operatorname{diag}(\mathrm{b}, 0, \ldots, 0) & =\mathrm{b}+{\underset{p}{p 2 \mathrm{P}}}_{\mathrm{X}}^{\lambda_{\lambda p}} \cdot \operatorname{diag}(\mathbb{A} p, 0, \ldots, 0)+ \\
& +{\underset{\substack{i 2[k] \\
U, V}}{y_{i U V}} \cdot \operatorname{diag}\left(d x_{U} x_{V}, 0, \ldots, 0, \not x_{U} x_{V}, 0, \ldots, 0\right)}^{\mathrm{X}} .
\end{aligned}
$$

where in the last sum the second nonzero diagonal block is in the $i$ th place. Clearly b must be block-diagonal since eperything else is block-diagonal. Furthermore, we know that the $i$ th block of $b$ is equal to ${ }_{U V} x_{U} x_{V} y_{i U V}$ since the LHS is zero in every block but the rst. Since $S \succeq 0$, this block must also be PSD, and thus must correspond to a sum-of-squares polynomial $s_{i}$. The constraint on the rst block is then

As a constraint on polynomials, this simply reads that $y_{1}-o^{f}(x)$ must have a degree $2 D$ $\mathrm{PC}_{>}$proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$.

Remark 2.6.7. The observant reader may notice that as presented, the Theta Body and SOS relaxations do not satisfy Slater's condition for strong duality (see Lemma 2.2.4), so it may not be valid to consider their duals instead of their primals. One can handle this by taking $\mathrm{x}^{\mathrm{D}}$ to be a basis for the low-degree elements of $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right] /\langle\mathcal{P}\rangle$, rather than a basis for every low-degree polynomial. Then [39] show that if $V(\mathcal{P}) \cap H(\mathcal{Q})$ is compact, there is no duality gap. From this point on we work exclusively with the duals, so we will not worry about it too much.

The $D$ th Theta Body and SOS relaxations are each relaxations of size $N=\underset{D}{n+D}{ }_{D}^{1}$, since their feasible solutions have one coordinate for each monomial up to total degree $D$. For both hierarchies, it is clear that by projecting onto the coordinates up to degree $D^{0}<D$, the feasible region of the $D^{q}$ th relaxation is contained in the feasible region of the $D^{q}$ th relaxation. Thus if the $D^{q}$ th relaxation achieves a $(c, s)$-approximation, so does the $D$ th. Furthermore, sometimes if we take the degree large enough, the relaxation becomes exact.

Lemma 2.6.8. If the polynomial formulation is Boolean, then the nth Theta Body and nth SOS relaxation are both exact.

Proof. Follows immediately from Fact 2.3.13

## Relations B etween Theta Body and Lasserre Relaxations

Here we compare and contrast the two di erent relaxations. Let $(\mathcal{P}, \mathcal{O}, \phi)$ be a polynomial formulation for $\mathcal{M}=(\mathcal{S}, \mathcal{F})$.

Lemma 2.6.9. If the Dth Lasserre relaxation achieves ( $c, s$ )-approximation of $\mathcal{M}$, then the Dth Theta Body relaxation does as well.

Proof. The lemma follows immediately by noticing that any degree $2 D$ PC> proof of nonnegativity from $\mathcal{P}$ for a polynomial $r(x)$ implies that $r(x)$ is $2 D$-SOS modulo $\langle\mathcal{P}\rangle$.

We can also prove a partial converse in some cases:
Proposition 2.6.10. If $\mathcal{P}$ is $k$-effective and the Dth Theta Body relaxation achieves $(c, s)$ approximation of $\mathcal{M}$, then the $k D$ th Lasserre relaxation does as well.
Proof. Because the Theta Body relaxation is a ( $c, s$ )-approximation of $\mathcal{M}$, we have that, for every $f \in \mathcal{F}$ with $\max f \leq s(f)$, there exists a number $c \leq c(f)$ such that $c-o^{f}(x)$ is $2 D$-SOS modulo $\langle\mathcal{P}\rangle$. In other words, there is a polynomial identity $c-o^{f}(x)=s(x)+g(x)$, where $s$ is an SOS polynomial and $g \in\langle\mathcal{P}\rangle$. Because $\mathcal{P}$ is $k$-e ective, $g$ has a degree $2 k D$ derivation from $\mathcal{P}$, so we have a polynomial identity

$$
c-o^{f}(x)=s(x)+{ }_{p 2 \mathrm{P}}^{\mathrm{X}} \lambda_{p}(x) p(x) .
$$

This implies that ( $c, s(x), \lambda_{p}(x)$ ) are feasible solutions for the $k D$ th Lasserre relaxation, and since $c \leq c(f)$, it achieves a ( $c, s)$-approximation.

Example 2.6.11. For CSP, $\mathcal{P}=\left\{x_{i}^{2}-1 \mid i \in[n]\right\}$. By Corollary 3.1.2, $\mathcal{P}$ is 1 -e ective Thus the $D$ th Theta Body and Lasserre Relaxations are identical in this case

Proposition 2.6.10 allows us to translate results about the Theta Body relaxations to Lasserre relaxations. In particular, in Chapter 5 we will see how easy it is to prove that Theta Body relaxations are optimal among symmetric relaxations of a given size. If the constraints are e ective, this allows us to conclude that Lasserre relaxations which are not too much larger achieve the same guarantees. This allows us to lower bound the size of any symmetric SDP relaxation by nding lower bounds for Lasserre relaxations.

### 2.7 Symmetric R elaxations

Often, the solutions to a combinatorial optimization problem exhibit many symmetries. For example, in the Matching problem, a maximum matching of $K_{n}$ is still a maximum matching even if the vertices are permuted arbitrarily. This additional structure allows for easier analysis. It is natural, then, to consider relaxations that exhibit similar symmetries. Rounding these relaxations is often more straightforward and intuitive. In this section we
formally de ne what we mean by symmetric versions of all the problem formulations we have presented above. First, we recall some basic group theory.

De nition 2.7.1. Let $G$ be a group and $X$ be a set. We say $G$ acts on $X$ if there is a map $\phi: G \rightarrow(X \rightarrow X)$ satisfying $\phi(1)(x)=x$ and $\phi\left(g_{1}\right)\left(\phi\left(g_{2}\right)(x)\right)=\phi\left(g_{1} g_{2}\right)(x)$. In practice we omit the $\phi$ and simply write $g x$ for $\phi(g)(x)$.

De nition 2.7.2. Let $G$ act on $X$. Then $\operatorname{Orbit}(x)=\{y \mid \exists g: g x=y\}$ is called the orbit of $x$, and $\operatorname{Stab}(x)=\{g \mid g x=x\}$ is called the stabilizer of $x$.

Fact 2.7.3 (Orbit-Stabilizer Theorem). Let $G$ act on $X$. Then $|G: \operatorname{Stab}(x)|=|\operatorname{Orbit}(x)|$.
We will use $S_{n}$ to denote the symmetric group on $n$ letters, and $A_{n}$ for the alternating group on $n$ letters. For $I \subseteq[n]$, we use $S([n] \backslash I)$ for the subgroup of $S_{n}$ which stabilizes every $i \in I$, and similarly for $A([n] \backslash I)$.

Optimization problems often have natural symmetries, which we can represent by the existence of a group action.

De nition 2.7.4. A combinatorial optimization problem $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ is $G$-symmetric if there are actions of $G$ on $\mathcal{S}$ and $\mathcal{F}$ such that, for each $\alpha \in \mathcal{S}$ and $f \in \mathcal{F}, g f(g \alpha)=f(\alpha)$.

Example 2.7.5 (Maximum Matching). Let $\mathcal{M}$ be the Matching problem on $n$ vertices from Example 2.4.2. For an element $g \in S_{n}$ and a matching $M$ of $K_{n}$, let $g M$ be the matching where $(i, j) \in g M$ if and only if $\left(g{ }^{1} i, g{ }^{1} j\right) \in M$. For a subset of edges $E$, let $g f_{E}(M)=f_{g E}(M)$, where $g E=\{(g i, g j) \mid(i, j) \in E\}$. Then $\mathcal{M}$ is $S_{n}$-symmetric under these actions.

De nition 2.7.6. An SDP relaxation ( $\left\{X^{\alpha}\right\},\left\{\left(A_{i}, b_{i}\right)\right\},\left\{w^{f}\right\}$ ) for a $G$-symmetric problem $\mathcal{M}$ is $G$-symmetric if there is an action of $G$ on $\mathrm{S}_{+}^{d}$ such that $g X^{\alpha}=X^{g \alpha}$ for every $\alpha$, and $w^{g f}(g X)=w^{f}(X)$, and $A_{i} \cdot X=b$ for all $i$ if and only if $A_{i} \cdot g X=b$ for all $i$. We say the relaxation is $G$-coordinatesymmetric if the action of $G$ is by permutation of the coordinates, in other words $G$ has an action on $[d]$ and $(g X)_{i j}=X_{g i, g j}$.

Example 2.7.7. The usual linear relaxation for the Matching problem on $n$ vertices is

$$
K=\quad x \in \mathbf{R}^{\binom{n}{2}} \forall i:_{j}^{\mathrm{X}} x_{i j} \leq 1, \forall i j: 0 \leq x_{i j} \leq 1
$$

with objective functions $w^{f_{E}}(x)={ }^{\mathrm{P}}{ }_{(i, j) 2 E} x_{i j}$. This redaxation is $S_{n}$-coordinatesymmetric under the action $(g \alpha)_{i j}=\alpha_{g i, g j}$ for any $\alpha \in \mathrm{R}^{\binom{n}{2} \text {. This action essentially represents the }}$ permutation of the vertices of the underlying graph. It is simple to con rm that this action satis es the above requirements.

Asymmetric relaxations are harder to come by, since they are unintuitive to design. The above example has the nice interpretation that $x_{i j}$ is a variable that is supposed to represent the presence of the edge $(i, j)$ in the matching. Asymmetric relaxations do not have such simple interpretations. We do not have many examples of cases where asymmetry actually helps, but the reader can refer to [40] for one example for the Matching problem with only $\log n$ edges.

De nition 2.7.8. A polynomial formulation ( $\mathcal{P}, \mathcal{Q}, \mathcal{O}, \phi$ ) on $n$ variables for a $G$-symmetric problem $\mathcal{M}$ is $G$-symmetric if thereis an action of $G$ on [ $n$ ], yielding an action on polynomials simply by extending $g x_{i}=x_{g i}$ multiplicatively and linearly, such that $g p \in \mathcal{P}$ for each $p \in \mathcal{P}$, $g q \in \mathcal{Q}$ for each $q \in \mathcal{Q}$, and $g o \in \mathcal{O}$ for each $o \in \mathcal{O}$. Note that this implies that $G$ xes $\langle\mathcal{P}\rangle$ as well, and that the natural action of $G$ on $\mathrm{R}^{n}$ also $\operatorname{xes} V(\mathcal{P}) \cap H(\mathcal{Q})$. Finally, we require $g \phi(\alpha)=\phi(g \alpha)$.
Lemma 2.7.9. If a $G$-symmetric problem $\mathcal{M}$ has a $G$-symmetric polynomial formulation, then the Theta Body and SOS SDP relaxations are G-coordinate-symmetric.
Proof. The $D$ th Theta Body and SOS SDP relaxations are determined by $N=\begin{gathered}n+D \\ D\end{gathered}$ coordinates, one for every monomial up to degree $D$. We index the coordinates by these monomials. We de ne an action of $G$ on $\mathrm{S}_{+}^{N}$ which permutes [ $N$ ] simply by its action on monomials inherited by the $G$-symmetric polynomial formulation. Under this action, for any polynomial $p$, we have $\hat{p} \cdot(g X)=g^{\mathrm{d}}{ }^{1} p \cdot X$. Since $\langle\mathcal{P}\rangle, \mathcal{Q}, \mathcal{O}$ are xed by $G$ and $g^{\mathrm{d}} 1=\hat{1}$, it is clear that the constraints and objective functions of both the Theta Body and SOS relaxations are invariant under $G$. The feasible solutions are also invariant:

$$
g X^{\alpha}=\mathrm{x}^{\mathrm{d}}(g \phi(\alpha))\left(\mathrm{x}^{\mathrm{d}}(g \phi(\alpha))\right)^{T}=\mathrm{x}^{\mathrm{d}}(\phi(g \alpha))\left(\mathrm{x}^{\mathrm{d}}(\phi(g \alpha))\right)^{T}=X^{g \alpha}
$$

concluding the proof.
When we have a $G$-symmetric combinatorial optimization problem, it is sensible to write symmetric SDP relaxations for it. The structure and symmetries of the problem arere ected in the relaxation, and it can often be interpreted more easily.

## Chapter 3

## E ective Derivations

In this section we prove that many natural sets of polynomials $\mathcal{P}$ arising from polynomial formulations for combinatorial optimization problems are $k$-e ective with $k$ a constant. This means that the problem of determining if a polynomial $p$ is in the ideal $\langle\mathcal{P}\rangle$ can be solved simply by solving a linear system with $n^{O(\operatorname{deg} p)}$ variables. This can bedonein timepolynomial in $n^{\operatorname{deg} p}$ and $\log \|p\|$, which is the size required to specify the input $p$. When $\mathcal{P}$ is complete, this is equivalent to determining if $p(\alpha)=0$ for every $\alpha \in V(\mathcal{P})$. In Chapter 4 and Chapter 5 we will see that determining if $\mathcal{P}$ is $k$-e ective has important consequences for studying the Sum-of-Squares relaxations on the polynomial optimization problem determined by the equality constraints $\mathcal{P}$.

### 3.1 Grobner Bases

Recall the de nition of Grobner basis from De nition 2.3.2, and in particular recall that we can de ne a multivariate division algorithm with respect to a Grobner basis such that every polynomial has a unique remainder. The following lemma is an obvious consequence of the division algorithm.

Lemma 3.1.1. Let $\mathcal{P}$ be a Gröbner basis. Then $\mathcal{P}$ is 1 -effective.
Proof. Let $r \in\langle\mathcal{P}\rangle$ be of degree $d$, and consider the remainder of $r$ after dividing by $\mathcal{P}$. Because $r \in\langle\mathcal{P}\rangle$, and remainders are unique, the only possible remainder is the zero polynomial. If we enumerate the polynomials that are produced by the iterative reductions $r=r_{0}, r_{1}, \ldots, r_{N}=0$, then $r_{i}=r_{i+1}+q_{i+1} p_{i+1}$, where $p_{i+1} \in \mathcal{P}$, $\operatorname{deg} p_{i+1} \leq \operatorname{deg} r_{i}$, and $\operatorname{deg} q_{i+1} p_{i+1} \leq \operatorname{deg} r_{i}$. Combining all these sums into one, we get $r={ }_{i} q_{i} p_{i}$, which is a derivation of degree $d$.

Lemma 3.1.1 is unsurprising, as Grobner bases rst originated as a method to solve the polynomial ideal problem [12]. While Grobner bases yidd positive results, they are often unwieddy, complicated, and above all extremely expensive to compute Even so, there
are several important combinatorial optimization problems that have constraints which are Grobner bases, one of which we used in Example 2.3.3.

Corollary 3.1.2. The CSP formulation $\mathcal{P}_{\mathrm{CSP}}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ is 1 -effective.
Proof. We provethat $\mathcal{P}_{\mathrm{CSP}}$ is a Grobner basis. Let $p \in\left\langle\mathcal{P}_{\mathrm{CSP}}\right\rangle$. If $p$ is not multilinear, we can divide $p$ by elements of $\mathcal{P}_{\mathrm{CSP}}$ until we have a multilinear remainder $r$. Because $p \in\left\langle\mathcal{P}_{\mathrm{CSP}}\right\rangle$ and each element of $\mathcal{P}_{\mathrm{CSP}}$ is zero on the hypercube $\{0,1\}^{n}, r$ must also be zero on the hypercube. But the multilinear polynomials form a basis for functions on the hypercube, so if $r$ is a multilinear polynomial which is zero, then it must be the zero polynomial.

Corollary 3.1.3. The Clique formulation $\mathcal{P}_{\text {Clique }}=\left\{x_{i}^{2}-x_{i} \mid i \in V\right\} \cup\left\{x_{i} x_{j} \mid(i, j) \notin E\right\}$ is 1-effective.

Proof. We prove that $\mathcal{P}_{\text {Clique }}$ is a Grobner basis. Let $p \in\left\langle\mathcal{P}_{\text {Clique }}\right\rangle$. If $p$ is not multilinear, we can divide it until we have a multilinear remainder $r_{1}$. Now by dividing $r_{1}$ by the nonedge polynomials in the second part of $\mathcal{P}_{\text {Clique }}$, we can remove all monomials containing $x_{i} x_{j}$ where $(i, j) \notin E$ to get $r_{2}$. Thus $r_{2}$ contains only monomials which are cliques of varying sizes in the graph $(V, E)$. Let $C$ be the smallest clique with a nonzero coe cient $r_{C}$ in $r_{2}$. Let $\chi_{C}$ be the characteristic vector of $C$, i.e. $\left(\chi_{C}\right)_{i}=1$ if $i \in C$, and $\left(\chi_{C}\right)_{i}=0$ otherwise. Then $r_{2}\left(\chi_{C}\right)=r_{C}$. But $p\left(\chi_{C}\right)=0$ for every $p \in \mathcal{P}$, and $r_{2} \in\langle\mathcal{P}\rangle$. Thus $r_{C}=0$, a contradiction, and $\mathrm{so} r_{2}$ is the zero polynomial.

Of course, not every problem is so neatly described by a small Grobner basis. There are many natural problems whose solution spaces have a small set of generating polynomials which are not Grobner bases, and indeed their Grobner basis can be exponentially. Even though the generating polynomials are not a Grobner basis, they can still be $k$-e ective for constant $k$, and thus admit a good algorithm for membership.

### 3.2 Proof Strategy for Symmetric Solution Spaces

In this section we describe our main proof strategy to show that a set of polynomials $\mathcal{P}$ is e ective. We apply this strategy to combinatorial optimization problems which have a natural symmetry to their solution spaces $V(\mathcal{P})$. For each of these problems, we will de nean $S_{m}$-action on [ $n$ ], which extends to an action on $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right.$ ] as well as $\mathrm{R}^{n}$ by permutation of variable names and indices respectively. The action will be a natural permutation of the solutions. For example, for Matching, the group action will correspond to simply permuting the vertices of the graph.

After the group action is de ned, our proof strategy follows in three steps:
(1) Provethat $\mathcal{P}$ is complete. This is usually doneby exhibiting a degree $n$ derivation from $\mathcal{P}$ for any polynomial $p$ which is zero on $V(\mathcal{P})$. This step is essential for the induction in step (3).
partial matching we are dong otherwise there exist edges $f, g \in A$ which are not disjoint. But then $x_{f} x_{g} \in \mathcal{P}_{\mathrm{M}}$, and so ${ }_{e 2 A} x_{e}$ has a derivation from $\mathcal{P}_{\mathrm{M}}$ in degree $|A|$, which implies the statement.

With Lemma 3.3.1 in hand, we complete step (1) of our strategy:
Lemma 3.3.2. $\left\langle\mathcal{P}_{\mathrm{M}}(n)\right\rangle$ is complete for any even $n$.
Proof. Let $p$ be a polynomial such that $p(\alpha)=0$ for each $\alpha \in V\left(\mathcal{P}_{\mathrm{M}}\right)$. By Lemma 3.3.1, we can assume that $p(x)$ is a multilinear polynomial whose mbnomiqds correspond to partial matchings. For such a partial matçing $M$, clearly $x_{M}-x_{M}{ }_{u}{ }_{M}{ }_{M}{ }_{v} x_{u v}$ has a derivation in degree $n$ using the constraints ${ }_{v} x_{u v}-1 \oint \mathcal{P}_{\mathrm{M}}$. By diminating terms which do not correspond to partial matchings, we get $x_{M}-{ }_{M^{\prime}: M}{ }_{M^{\prime}} x_{M^{\prime}} \in\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle$. Doing this to every monomial, we determine there is a polynomial $p^{0}$ which is homogeneous of degree $n$ such that $p-p^{0} \in\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle$. Now since the coe cients of $p^{0}$ correspond exactly to perfect matchings, for each monomial in $p^{0}$, there is an $\alpha \in V\left(\mathcal{P}_{\mathrm{M}}\right)$ such that the coe cient of the monomial is $p^{\boldsymbol{q}}(\alpha)$. Since $p^{\boldsymbol{q}}(\alpha)=0$ for every $\alpha \in V\left(\mathcal{P}_{\mathrm{M}}\right)$, it must be that $p^{0}=0$, and so $p \in\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle$.

Now we move on to the second step of our proof.

## Symmetric Polynomials

We will prove the following lemma:
 ${ }_{\sigma 2 \mathrm{~S}_{n}} \sigma p-c_{p} \in\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle_{\text {deg } p}$.
To do so, it will be useful to rst prove a few lemmas on how we can simplify the structure of $p$. Any partial matching monomial may be extended as a sum over partial matching monomials containing that partial matching using the constraint ${ }_{j} x_{i j}-1 \in \mathcal{P}_{\mathrm{M}}$, as we did in the proof of Lemma 3.3.2. The rst lemma here shows how to extend by a single edge, and the second iteratively applies this process to extend by multiple edges.
Lemma 3.3.4. For any partial matching $M$ on $2 d$ vertices and a vertex $u$ not covered by M,

$$
x_{M} \cong_{d+1}^{\substack{M_{1}=M[f i, j g: \\ j 2[n] n(M[f i g)}} x_{M_{1}} .
$$

Proof. We use the constraints ${ }^{\mathrm{P}}{ }_{v} x_{i j}-1$ to add variables corresponding to edges at $u$, and then use $x_{u v} x_{u w}$ to remove monomials not corresponding to a partial matching:

$$
x_{M} \cong x_{M} \underset{v 2 K_{n}}{ } \underset{x_{i j}}{ } \xlongequal[{\substack{M_{1}=M\left[f i, j g: \\ j 2 K_{n} \mathrm{n}(M[f i g)\right.}}]{ } x_{M_{1}} .
$$

It is easy to see that these derivations are done in degree $d+1$.

Corollary 3.3.6. If $p \in\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle$, then ${ }^{\mathrm{P}}{ }_{\sigma 2 S_{n}}$ op has a derivation from $\mathcal{P}_{\mathrm{M}}$ in degree deg $p$. Proof. Apply Lemma 3.3.3 to obtain a constant $c_{p}$ such that ${ }^{\mathrm{P}}{ }_{\sigma 2 \mathrm{~s}_{n}} \sigma p \cong c_{p}$. Now since $p \in$ $\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle, c_{p} \in\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle$ as well. But the only constant polynomial in $\left\langle\mathcal{P}_{\mathrm{M}}\right\rangle$ is 0 by Lemma 2.3.7.

## Getting to a Symmetric Polynomial

Now by Lemmap2.3.8 and Lemma 3.3.3, it su ces to exhibit a derivation of the di erence polynomial $p-{ }_{\sigma 2 S_{n}} \sigma p$ from $\mathcal{P}_{\mathrm{M}}$ in low degree Our proof will be by an induction on the number of vertices $n$. Because the number of vertices will be changing in this section, we will stop omitting the dependence on $n$. The next lemma will allow us to apply induction:

Lemma 3.3.7. Let $L \in\left\langle\mathcal{P}_{\mathrm{M}}(n)\right\rangle_{d}$. Then $L \cdot x_{n+1, n+2} \in\left\langle\mathcal{P}_{\mathrm{M}}(n+2)\right\rangle_{d+1}$.
Proof. It su ces to prove the statement for $L \in \mathcal{P}_{\mathrm{M}}(n)$. If $L=x_{\mathrm{p}}^{2}-x_{i j}$ or $L=x_{i j} x_{i k}$, the claim is clearly true because $L \in \mathcal{P}_{\mathrm{M}}(n+2)$. So consider $L={ }_{j} x_{i j}-1$ for some $i \in[n]$, and note that

$$
\begin{aligned}
& \begin{aligned}
L \cdot x_{n+1, n+2}-{ }_{j=1}^{\mathrm{X}^{+2}} x_{i j}-1 \quad x_{n+1, n+2} & =-x_{i, n+1} x_{n+1, n+2}-x_{i, n+2} x_{n+1, n+2} \\
& \cong_{2} 0 .
\end{aligned}
\end{aligned}
$$

We are now ready to prove the main theorem of this section.
Theorem 3.3.8. Let $p \in\left\langle\mathcal{P}_{\mathrm{M}}(n)\right\rangle$, and let $d=\operatorname{deg} p$. Then $p$ has a derivation from $\mathcal{P}_{\mathrm{M}}(n)$ in degree $2 d$.

Proof. By Lemma 3.3.1, we can assume without loss of generality that $p$ is a multilinear polynomial whose monomials correspond to partial matchings. As promised, our proof is by induction on $n$. Consider the base case of $n=2$. Then $V\left(\mathcal{P}_{\mathrm{M}}(2)\right)=\{1\}$ and since there is only one variable, either $p$ is a constant or linear polynomial. The only such polynomials that are zero on $V\left(\mathcal{P}_{\mathrm{M}}(2)\right)$ are 0 and scalar multiples of $x_{12}-1$. The former case has the trivial derivation, and the latter case is simply an element of $\mathcal{P}_{\mathrm{M}}(2)$.

Now assume that for any $d$, the theorem statement holds for polynomials in $\left\langle\mathcal{P}_{\mathrm{M}}(n 9\rangle\right.$ for any $n^{0}<n$. Let $p \in\left\langle\mathcal{P}_{\mathrm{M}}(n)\right\rangle$ be multilinear of degree $d$ whose monomials correspond to partial matchings, and let $\sigma=(i, j)$ be a transposition of two vertices. We consider the polynomial $=p-\sigma p$. Note that $\in\left\langle\mathcal{P}_{\mathrm{M}}(n)\right\rangle$, and any monomial which does not match either $i$ or $j$, or a monomial which matches $i$ to $j$, will not appear in as it will be canceled by the subtraction. Thus we can write

$$
=\mathrm{X}_{e: i 2 e \text { or } j 2 e} L_{e} x_{e},
$$

with each $L_{e}$ having degree at most $d-1$. Our goal is to remove two of the variables in these matchings in order to apply induction. In order to do that, we will need each term to depend not only on either $i$ or $\dot{p}$, but both. To this end, we multiply each term by the appropriate polynomial ${ }_{k} x_{i k}$ or ${ }_{k} x_{j k}$ (recall that $\left.{ }_{k} x_{i k}-1 \in \mathcal{P}(n)\right)$ to obtain

$$
\cong_{d+1}{\underset{k_{1} k_{2}}{\wedge}}^{L_{k_{1} k_{2}} x_{i k_{1}} x_{j k_{2}} .}
$$

We can think of the RHS polynomial as being a partition over the possible di erent ways to match $i$ and $j$. Furthermore, because of the edements of $\mathcal{P}$ of type $x_{i j} x_{i k}$, we can take $L_{k_{1} k_{2}}$ to be independent of $x_{e}$ for any $e$ incident to any of $i, j, k_{1}, k_{2}$. Wearguethat $L_{k_{1} k_{2}} \in \mathcal{P}_{\mathrm{M}}(n-4)$. We know that $\quad(\alpha)=0$ for any $\alpha \in V\left(\mathcal{P}_{\mathrm{M}}(n)\right)$. Let $\alpha \in V\left(\mathcal{P}_{\mathrm{M}}(n)\right)$ such that $\alpha_{i k_{1}}=1$ and $\alpha_{j k_{2}}=1$. Then it must be that $\alpha_{i k}=0$ and $\alpha_{j k}=0$ for any other $k$, since otherwise $\alpha \notin V\left(\mathcal{P}_{\mathrm{M}}(n)\right)$. Thus $(\alpha)=L_{k_{1} k_{2}}(\alpha)$. Since $L_{k_{1} k_{2}}$ is independent of any edge incident to $i, j, k_{1}, k_{2}$, it does not involve those variables, so $L_{k_{1} k_{2}}(\alpha)=L_{k_{1} k_{2}}(\beta)$, where $\beta$ is the restriction of $\alpha$ to the ${ }^{n}{ }^{4}$ variables which $L_{k_{1} k_{2}}$ depends on. But such a $\beta$ is simply an element of $V\left(\mathcal{P}_{\mathrm{M}}(n-4)\right.$ ), and all elements of $V\left(\mathcal{P}_{\mathrm{M}}(n-4)\right)$ can be obtained this way. Thus $L_{k_{1} k_{2}}$ is zero on all of $V\left(\mathcal{P}_{\mathrm{M}}(n-4)\right)$, and by Lemma 3.3.2, $L_{k_{1} k_{2}} \in\left\langle\mathcal{P}_{\mathrm{M}}(n-4)\right\rangle$. Now by the inductive hypothesis, $L_{k_{1} k_{2}}$ has a derivation from $\mathcal{P}_{\mathrm{M}}(n-4)$ of degree at most $2 d-2$. By two applications of Lemma 3.3.7, $L_{k_{1} k_{2}} x_{i k_{1}} x_{j k_{2}}$ has a derivation from $\mathcal{P}_{\mathrm{M}}(n)$ of degree at most $2 d$, and thus so does

Beqause transpositions generate the symmetric group, the above argument implies that $p-\frac{1}{n!}{ }_{\sigma 2 S_{n}} \sigma p$ has a derivation from $\mathcal{P}_{\mathrm{M}}(n)$ of degree at most $2 d$. Combined with Corollary 3.3.6, this is enough to prove the theorem statement.

### 3.4 E ective Derivations for TSP

For each integer $n$, a polynomial formulation with $n^{2}$ variables for TSP on $n$ vertices uses the following polynomials:

$$
\begin{align*}
\mathcal{P}_{\mathrm{TSP}}(n)= & \binom{x_{i j}^{2}-x_{i j} \mid i, j \in[n]}{\mathrm{X}}  \tag{3.4}\\
& \cup \quad x_{i j}-1 \mid j \in[n] \\
& \cup\left\{x_{i j} x_{i k}, x_{j i} x_{k i} \mid i, j, k \in[n], j \neq k\right\} .
\end{align*}
$$

The rst group of polynomials ensures the variables are Boolean, the second group of polynomials ensures that each city $i$ is visited at some point in the tour, and the last set of polynomials ensures that no city is visited multiple times in the tour. A tour $\tau \in S_{n}$ (which is a feasible solution for TSP) is identi ed with the vector $\chi_{\tau}(i, j)=1$ if $\tau(i)=j$ and 0 otherwise We omit the dependence on $n$ if it is clear from context. For an element $\sigma$ of the symmetric group $S_{n}$, we de ne the action of $\sigma$ on a variable by $\sigma x_{i j}=x_{\sigma(i) j}$. We de ne the
action of $\sigma$ on a monomial by extending this action multiplicatively, and the action of $\sigma$ on a full polynomial by extending linearly. Then $\mathcal{P}_{\text {TSP }}$ is xed by the action of every $\sigma$, as are its solutions $V\left(\mathcal{P}_{\mathrm{TSP}}\right)$ corresponding to the tours.

Note that $V\left(\mathcal{P}_{\mathrm{TSP}}\right)$ corresponds to a matching on $K_{n, n}$, the complete bipartite graph on $2 n$ vertices. Thus it should come as no surprise that the same proof strategy as the one we used for matchings on the complete graph $K_{n}$ should work just ne. This section will be extremely similar to the previous one, and the reader loses very little by skipping ahead to Section 3.5. It would be more elegant if we could just reduce $\mathcal{P}_{\mathrm{TSP}}(n)$ to $\mathcal{P}_{\mathrm{M}}(2 n)$. This requires proving that any polynomial which is zero on $V\left(\mathcal{P}_{\mathrm{TSP}}(n)\right)$ is the projection of a polynomial of similar degree which is zero on $V\left(\mathcal{P}_{\mathrm{M}}(2 n)\right)$. Unfortunately we do not know how to prove this except by proving that $\mathcal{P}_{\mathrm{TSP}}$ is e ective, so the reader will have to live with some repetition.
Q For a partial matching $M$ of $K_{n, n}$, i.e a set of disjoint pairs from $[n] \times[n]$, de ne $x_{M}=$ ${ }_{e 2 M} x_{e}$ with the convention that $x_{;}=1$. We also de ne $M_{L}=\{i \in[n] \mid \exists j:(i, j) \in M\}$ and $M_{R}=\{j \in[n] \mid \exists i:(i, j) \in M\}$.

Lemma 3.4.1. Let $p$ be any polynomial. Then there is a multilinear polynomial $q$ such that every monomial of $q$ is a partial matching monomial, and $p-q$ has a derivation from $\mathcal{P}$ of degree $\operatorname{deg} p$.

Proof. The statement follows easily by using the elements of $\mathcal{P}_{\text {TSP }}$ of the form $x_{i j}^{2}-x_{i j}$ to make a multilinear polynomial, then eliminating any monomial which is not a partial matching by using elements of the form $x_{i j} x_{i k}$ or $x_{j i} x_{k i}$.

With Lemma 3.4.1 in hand, we prove the following easy result:
Lemma 3.4.2. $\left\langle\mathcal{P}_{\mathrm{TSP}}(n)\right\rangle$ is complete for any $n$.
Proof. Let $p$ be a polynomial such that $p(\alpha)=0$ for each $\alpha \in V\left(\mathcal{P}_{\mathrm{TSP}}\right)$. By Lemma 3.4.1, we can assume that $p(x)$ is a multilinear polynomial whose ronompals correspond to partial matchings. For such a partial patching $M$, clearly $x_{M}-x_{M}{ }_{i \chi_{M}}{ }_{j} x_{i j}$ has a derivation in degree $n$ using the constraints ${ }_{j} x_{i j}-1 \in \mathcal{P}_{\mathbb{T} P \mathrm{P}}$. By diminating terms which do not corre spond to partial matchings, we get $x_{M}-C_{M} \quad{ }_{M^{\prime}: M} M_{M^{\prime}} x_{M^{\prime}} \in\langle\mathcal{P}\rangle$, for some constant $C_{M}$. Doing this to every monomial, we determine there is a polynomial $p^{0}$ which is homogeneous of degree $n$ such that $p-p^{0} \in\langle\mathcal{P}\rangle$. Now since the monomials of $p^{0}$ correspond to perfect matchings, each monomial has an $\alpha$ such that the coe cient of that monomial is exactly $p^{\top}(\alpha)$. Since $p^{\varphi}(\alpha)=0$ for every $\alpha \in V\left(\mathcal{P}_{\mathrm{TSP}}\right)$, it must bethat $p^{0}=0$, and so $p \in\left\langle\mathcal{P}_{\mathrm{TSP}}\right\rangle$.

Now we move on to the second step of our proof.

## Symmetric Polynomials

We will complete this step of our proof using the same helper lemmas as for Matching. The numbers appearing are slightly di erent due to the di erence in the number of partial
matchings for $K_{n}$ and $K_{n, n}$, and theaction of $S_{n}$ is slightly di erent, but they are all basically the same.

Lemma 3.4.3. For any partial matching $M$ on $2 d$ vertices and a vertex $i \in[n] \backslash M_{L}$,

$$
\begin{equation*}
x_{M} \cong x_{\substack{M_{1}=M\left[f i, j g: \\ j 2[n] n\left(M_{R}\right)\right.}} x_{M_{1}}, \tag{3.5}
\end{equation*}
$$

and the derivation can be done in degree $d+1$.
Proof. We use the constraints ${ }^{\mathrm{P}}{ }_{v} x_{u v}-1$ to add variables corresponding to edges at $u$, and then use $x_{u v} x_{u w}$ to remove monomials not corresponding to a partial matching:

$$
x_{M} \cong x_{M} \quad x_{i j} \cong x_{\substack{M_{1}=M[n] f i, j g: \\ j 2[n] \mathrm{n} M}} x_{M_{1}} .
$$

It is easy to see that these derivations are done in degree $d+1$.
Lemma 3.4.4. For any partial matching $M$ of $2 d$ vertices and $d \leq k \leq n$, we have

Proof. We use induction on $k-d$. The start of the induction is with $k=d$, when the sides of (3.6) are actually equal. If $k>d$, let $i$ be a xed vertex not in $M_{L}$. Applying Lemma 3.4.3 to $M$ and $i$ followed by the inductive hypothesis gives:

Averaging over all vertices $i$ not in $M_{L}$, we obtain:

$$
\begin{aligned}
& =\frac{1}{\substack{n \\
k \\
k \\
d}}{ }_{\substack{M^{\prime}, M \\
\mathrm{j} M^{\prime} \mathrm{j}=k}}^{\mathrm{X}} x_{M^{\prime}}
\end{aligned}
$$

where in the second step the factor $(k-d)$ accounts for the di erent choices of $\{i, j\}$ that can lead to extending $M$ to $M^{0}$.
pemma 3.4.5. Let $p$ be a polynomial in $\mathbf{R}^{n^{2}}$. Then there is a constant $c_{p}$ such that ${ }_{\sigma 2 S_{n}} \sigma p-c_{p}$ has a derivation from $\mathcal{P}_{\mathrm{TSP}}$ in degree at most $\operatorname{deg} p$.

Proof. Given Lemma 3.4.1, it su ces to provetheclaimfor $p=x_{M}$ for some partial matching $M$. Let deg $p=\left|\mathrm{p}^{V}\right|=k$. There are ( $n_{\mathrm{P}} k$ )! elements of $S_{n}$ that stabilize a given partial matching $M$, so ${ }_{\sigma 2 S_{n}} \sigma x_{M}=(n-k)!_{M^{\prime}: \mathrm{j}^{\prime} \mathrm{j}=k} x_{M^{\prime}}$. Finally, apply Lemma 3.4.4 with $d=0$ :

$$
\begin{aligned}
& \mathrm{X} \\
& \sigma 2 S_{n} \\
& \sigma x_{M}=(n-k)!\quad \mathrm{X} \\
& \cong(n-k)!\begin{array}{l}
M^{\prime}: \mathrm{j} M^{\prime} \mathrm{j}=k \\
k
\end{array} x_{M^{\prime}} .
\end{aligned}
$$

Corollary 3.4.6. If $p \in\left\langle\mathcal{P}_{\mathrm{TSP}}\right\rangle$, then ${ }^{\mathrm{P}}{ }_{\sigma 2 S_{n}}$ op has a derivation from $\mathcal{P}_{\mathrm{TSP}}$ in degree $\operatorname{deg} p$.
Proof. Apply Lemma 3.4.5 to obtain a constant $c_{p}$ such that ${ }^{\mathrm{P}}{ }_{\sigma 2 S_{n}} \sigma p \cong c_{p}$. Now since $p \in\left\langle\mathcal{P}_{\mathrm{TSP}}\right\rangle, c_{p} \in\left\langle\mathcal{P}_{\mathrm{TSP}}\right\rangle$ as well. But by Lemma 2.3.7, the only constant polynomial in $\left\langle\mathcal{P}_{\mathrm{TSP}}\right\rangle$ is 0 .

## Getting to a Symmetric Polynomial

The third step also proceeds in an almost identical manner.
Lemma 3.4.7. Let $L$ be a polynomial with a degree d derivation from $\mathcal{P}_{\mathrm{TSP}}(n)$. Then $L x_{n+1, n+2} x_{n+2, n+1}$ has a degree $d+2$ derivation from $\mathcal{P}_{\mathrm{TSP}}(n+2)$.

Proof. It su ces to prove the statement for $L \in \mathcal{P}_{\text {TSP }}(n)$. If $L=x_{i j}^{2}-x_{i j}, L={ }_{\mathrm{P}} x_{i j} x_{i k}$, or $L=x_{j i} x_{k i}$, the claim is clearly true because $L \in \mathcal{P}_{\text {TSP }}(n+2)$. So consider $L={ }_{j} x_{i j}-1$ for some $i$, and note that

$$
\begin{aligned}
L x_{n+1, n+2} x_{n+2, n+1} & -{ }_{j=1}^{X^{+2}} x_{i j}-1 \quad x_{n+1, n+2} x_{n+2, n+1}=\left(x_{i, n+1}+x_{i, n+2}\right) x_{n+1, n+2} x_{n+2, n+1} \\
& =\left(x_{i, n+1} x_{n+2, n+1}\right) x_{n+1, n+2}+\left(x_{i, n+2} x_{n+1, n+2}\right) x_{n+2, n+1} \\
& \cong_{3} 0
\end{aligned}
$$

The case for $L={ }^{\mathrm{P}}{ }_{i} x_{i j}-1$ is symmetric.
We are now ready to prove the main theorem of this section.

### 3.5 E ective Derivations for Balanced-CSP

Fix integers $n$ and $c \leq n$. Then the Balanced-CSP problem has a polynomial formulation on $n$ variables with constraints

$$
\mathcal{P}_{\mathrm{BCSP}}(n, c)=x_{i}^{2}-x_{i} \left\lvert\, i \in[n] \cup \begin{align*}
& \binom{\mathrm{X}}{x_{i}-c} . \tag{3.7}
\end{align*}\right.
$$

The rst set of polynomials ensures that the variables are Boolean, and the nal polynomial is a balance constraint that forces a speci c number of variables to be 1. The Bisection constraints are the special case when $n$ is even and $c=n / 2$. As before, we need to de ne the appropriate symmetric action. For an element $\sigma \in S_{n}$, we de ne $\sigma x_{i}=x_{\sigma(i)}$ and extend this action multiplicatively and linearly to get an action on every polynomial. Once again, note that $\mathcal{P}_{\mathrm{BCSP}}$ and $V\left(\mathcal{P}_{\mathrm{BCSP}}\right)$ are xed by $S_{n}$ under this action, and thus if $p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$, then $\sigma p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$. We will begin by proving 1-e ectiveness for the special case of Bisection, as we will encounter an obstacle for general $c$. Because $\mathcal{P}_{\text {BCSP }}$ contains the Boolean constraints $\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$, we will takg $p$ to be a multilinear polynomial without loss of generality. For a set $A \subseteq[n]$, let $x_{A}={ }_{i 2 A} x_{i}$. Our proof strategy is the same threestep strategy referenced in Section 3.2.

Lemma 3.5.1. $\left\langle\mathcal{P}_{\mathrm{BCSP}}(n, c)\right\rangle$ is complete for any $n$ and $c \leq n$.
Proof. Let $p$ be a multilinear polynomial which is zero on all of $V\left(\mathcal{P}_{\mathrm{BCSP}}\right)$. First, we argue that if $A \subseteq[n]$ is such that $|A|>c$ then $x_{A} \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$. We prove this by backwards induction from $n$ to $c+1$. For the base case of $|A|=n$, note that

$$
x_{A} \cong \frac{1}{n-c} x_{A} \quad X_{i} \quad x_{i}
$$

and the RHS is clearly an element of $\langle\mathcal{P}\rangle$. Now if $|A|=k$ with $c+1 \leq k<n$, we have

$$
(k-c) x_{A}+{\underset{i \nless A}{\mathrm{X}}}_{x_{A[\mathrm{f} i \mathrm{~g}} \cong x_{A}} \quad \begin{gathered}
\mathrm{X} \\
x_{i}-c
\end{gathered}
$$

By the inductive hypothesis, the second term of the LHS is in $\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$, and obviously the RHS is in $\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$, and thus so is $x_{A}$. Thus we can assumethat the monomials of $p$ are all of degree at most $c$. For apy monomial $x_{A}$ of $p$, we have $x_{A}\left({ }_{i} x_{i}-1\right) \cong{ }_{i \chi_{A}} x_{A[f i g}-(c-$ $|A|) x_{A}$, and so $x_{A}-\frac{1}{c \mathrm{j} A \mathrm{j}} \quad{ }_{i \nmid A} x_{A[f i \mathrm{~g}} \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$, and so we can replace $x_{A}$ with monomials of one higher degree. Repeatedly applying this up to degree $c$ (at which point we must stop to avoid dividing by zero), we determine there is a polynomial $p^{0}$ which is homogenous of degree $c$ such that $p-p^{0} \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$. Now let $p_{i_{1}, \ldots, i_{c}}^{0}$ be the coe cient of the monomial $x_{i_{1}} \ldots x_{i_{c}}$ in $p^{0}$ and let $\alpha$ be the element of $V\left(\mathcal{P}_{\mathrm{BCSP}}\right)$ with $i_{1}, \ldots, i_{c}$ coordinates equal to 1 and all other coordinates equal to zero. Then $p^{\top}(\alpha)=p_{i_{1}, \ldots, i_{c}}^{0}$, but $p^{q}(\alpha)=0$. Thus in fact $p^{0}=0$, and so $p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$.

## Symmetric Polynomials

The second step is to show that any symmetrized polynomial can be derived from a constant polynomial in low degree It is considerably simpler than Matching ip this case, as the fundamental theorem of symmetric polynomials tells us that powers of ${ }_{i} x_{i}$ generate all the symmetric polynomials.
Lemma 3.5.2p Let $p$ be a multilinear polynomial in $\mathbf{R}^{n}$. Then there exists a constant $c_{p}$ such that $p^{0}={ }_{\sigma 2 \mathrm{~S}_{n}} \sigma p-c_{p} \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle_{\operatorname{deg} p}$. If $p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$, then $p^{0} \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle_{\operatorname{deg} p}$.
Proof. It is su cient to prove the lemma for monomials $x_{A}={ }^{\mathrm{Q}}{ }_{i 2 A} x_{i}$. We will ipduct on the degree of the monomial $|A|$. If $|A|=1$, then $p=x_{i}$ for some $i \in[n]$, and $p^{0}={ }_{\sigma 2 S_{n}} \sigma x_{i}=$ $(n-1)!{ }_{i} x_{i} \cong\left(n-p^{1}\right)!\cdot c$, which can cleaply be performed in degree one Now assume $|A|=k$, so that $p^{0}={ }^{\sigma}{ }^{\sigma} \mathrm{S}_{n} \sigma x_{A}=(n-k)!{ }_{\mathrm{j} \mathrm{Bj}=k} x_{B}$. Then $p^{\mathrm{D}}=p^{0}-\frac{(n k)!}{k!}\left({ }_{i} x_{i}-c\right)^{k}$ is a polynomial which, after multilinearizing by reducing by the Boolean constraints, has degree at most $k-1$ (the coe cient $\frac{(n k)!}{k!}$ was chosen to cance the highest degree term of $p$ 9. Furthermore, $p^{\infty}$ is in $\left\langle\mathcal{P}_{\text {BCSP }}\right\rangle$ because $p$ and $p^{0}$ are, and $\left({ }_{i} x_{i}-c\right)^{k}$ is an element of $\langle\mathcal{P}\rangle$. Finally, $p^{\infty}$ is xed by every $\sigma$. Thus by the inductive hypothesis, $p^{\infty}$ has a derivation from some constant in degree $k-1$. Since $p^{0} \cong_{k} p^{\infty}$, this implies the statement for $|A|=k$ and completes the proof by induction.

The second line of thelemma follows immediately, sinceif $p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$ then $c_{p} \in\left\langle\mathcal{P}_{\mathrm{BCSP}}\right\rangle$, but the only constant polynomial in $\left\langle\mathcal{P}_{\text {BCSP }}\right\rangle$ is 0 by Lemma 2.3.7.

Now we move on to the third and nal step, where we specialize to the Bisection constraints $\mathcal{P}_{\text {BCSP }}(n, n / 2)$.

## Getting to a Symmetric Polynomial

Recall the third step of our strategy is to show that $p-\sigma p$ can be derived from $\mathcal{P}_{\text {BCSP }}$ in low degree It will be easier in this case as compared to Matching because we do not have to increase the degre of $p-\sigma p$ in order to isolate a variable to remove and do the induction. Because of this, we will be able to show that Bisection is actually 1-e ective and not lose a factor of two. We need a lemma to help us do the induction:

Lemma 3.5.3. Let $L \in\left\langle\mathcal{P}_{\mathrm{BCSP}}(n, c)\right\rangle_{d}$. Then $L \cdot\left(x_{n+1}-x_{n+2}\right) \in\left\langle\mathcal{P}_{\mathrm{BCSP}}(n+2, c+1)\right\rangle_{d+1}$.
 then $L \in \mathcal{P}_{\operatorname{BCSP}}(n+2, c+1)$ and so the lemma is clearly true If $L={ }_{i=0}^{n} x_{i}-c$, then

$$
\begin{aligned}
L \cdot\left(x_{n+1}-x_{n+2}\right) & -{ }_{i=0}^{x^{+2}} x_{i}-(c+1) \quad\left(x_{n+1}-x_{n+2}\right)=\left(1-x_{n+1}-x_{n+2}\right) \cdot\left(x_{n+1}-x_{n+2}\right) \\
& =x_{n+1}-x_{n+2}-x_{n+1}^{2}-x_{n+1} x_{n+2}+x_{n+1} x_{n+2}+x_{n+2}^{2} \\
& \cong_{2} 0 .
\end{aligned}
$$

This obstacle is not an artifact of our proof strategy, but an intrinsic obstacle. There are essentially two kinds of polynomials in $\left\langle\mathcal{P}_{\mathrm{BCSP}}(n, c)\right\rangle$ : Polynomials of degree at most $c$, and polynomials of degree $c+1$ or greater. The former have e cient derivations:

Lemma 3.5.5. Let $p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}(n, c)\right\rangle$ have degree at most $c$. Then $p$ has a derivation from $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ in degree $\operatorname{deg} p$.

We delay the proof of this lemma until the next section. However, the polynomials of degree $c+1$ or greater actually have no derivations until degree $(n-c+1) / 2$, so if $c \ll n$, then $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ is not $k$-e ective for any constant $k$. We will see that this phenomenon is because of the fact that the Pigeonhole Principle requires high degree for HN derivations. The negation of the Pigeonhole Principle is the following set of constraints:

$$
\begin{aligned}
\neg \mathcal{P H P}(m, n)= & \left(x_{i j}^{2}-x_{i j} \mid i \in[m], j \in[n]\right. \\
& \text { X } \quad x_{i j}-1 \mid i \in[m] \\
& \quad{ }^{j} \\
& \cup\left\{x_{i j} x_{i k} \mid i \in[m], j, k \in[n], j \neq k\right\} \\
& \cup\left\{x_{i j} x_{k j} \mid i, k \in[m], j \in[n], i \neq k\right\}
\end{aligned}
$$

$\neg \mathcal{P H} \mathcal{P}(m, n)$ asserts the existence of an injective mapping from [ $m$ ] into [ $n$ ]. If $m>n$, then clearly there is no such mapping, so the set of polynomials is infeasible. This implies that $1 \in\langle\neg \mathcal{P H} \mathcal{P}(m, n)\rangle$ by Lemma 2.3.7. However, Razborov proved that any derivation of 1 from $\neg \mathcal{P H P}(m, n)$ has degree at least $n / 2+1$ [62]. This allows us to prove the following by reduction:

Lemma 3.5.6. Let $p=x_{1} x_{2} \ldots x_{c} x_{c+1}$. Then $p \in\left\langle\mathcal{P}_{\operatorname{BCSP}}(n, c)\right\rangle$, but any derivation of $p$ from $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ has degree at least $(n-c+1) / 2$.

Proof. We argued $p \in\left\langle\mathcal{P}_{\mathrm{BCSP}}(n, c)\right\rangle$ in Lemma 3.5.1, and essentially used a Pigeonhole Principle argument where the pigeons are the $n-c$ zeros, and the holes are the $n-c-1$ variables not appearing in $p$. More formally, we show how to manipulate any derivation of $p$ from $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ to get a refutation of $\neg \mathcal{P H \mathcal { P }}(n-c, n-c-1)$.

Any derivation of $p$ from $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ is a polynomial identity of the following form:

$$
x_{1} x_{2} \ldots x_{c+1}=\lambda \cdot \quad{ }_{i}^{\mathrm{X}} x_{i}-c+{ }_{i}^{\mathrm{X}} \lambda_{i} \cdot\left(x_{i}^{2}-x_{i}\right) .
$$

Now set $x_{1}=x_{2}=\cdots=x_{c+1}=1$ to get

$$
1=\lambda^{0} . \quad{\underset{i>c+1}{ } \quad x_{i}+1}_{+}^{\mathrm{X}} \lambda_{i>c+1}^{0} \cdot\left(x_{i}^{2}-x_{i}\right)
$$

We de ne variables $y_{i j}$ with the intention that $y_{i j}=1$ if the $i$ th variable is the $j$ th zero. Thus we replace $x_{i} \rightarrow 1-{\underset{j}{n=1}}_{\substack{c}} y_{i j}$ and get

Note that each term in the last equation contains a constraint in $\neg \mathcal{P H} \mathcal{P}(n-c, n-c-1)$. Thus the degree of this derivation must be at least $(n-c+1) / 2$. Fixing $x_{1}, \ldots, x_{c+1}$ can only reduce the degree, so the degre of the original derivation must be at least $(n-c+1) / 2$ as well.

## E ective PC > Derivations for High Degree Polynomials

Lemma 3.5.6 tells us that we cannot hope to prove that $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ has e ective HN proofs, but we are not soley interested in HN proofs. In particular, because the applications we consider in this thesis are primarily focused on Semide nite Programming, we have access to the more powerful $\mathrm{PC}_{>}$proof system. In this system, $\neg \mathcal{P} \mathcal{H} \mathcal{P}$ is not di cult to refute, and indeed once we allow ourselves PC> proofs we can show that Balanced-CSP admits e ective derivations.

Lemma 3.5.7. Let $p=x_{1} x_{2} \ldots x_{c} x_{c+1}$. Then $p$ has a $P C>$ proof from $\mathcal{P}_{\mathrm{BCSP}}(n, c)$ in degree $2(c+1)$ with $\|\| \leq 1$.

Proof. Recall that a $\mathrm{PC}_{>}$proof consists of two proofs of non-negativity: one for $p$ and one for $-p$. The rst is trivial: every monomial is the multilinearization of itself squared. Thus every monomial has a proof of non-negativity in twice its degree. For the second, we observe the following identity

The rst two terms each have factors in $\mathcal{P}_{\mathrm{BCSP}}(n, c)$, and the last term is a sum of monomials with non-negative coe cients. These monomials all have proofs of non-negativity, and thus so does $-p$. It is simple to check that these proofs involve coe cients of unit size

Proof. Recall that by pigeonhole principle any monomial that involves $c+1$ or more distinct variables will bezero over $V\left(\mathcal{P}_{\mathrm{SPCA}}\right)$. Our rst step is to show that thesearein $\left\langle\mathcal{P}_{\mathrm{SPCA}}\right\rangle$. The proof will bea reverse induction on the number of distinct variables, going from $n \operatorname{tq} c+1$. For the basecase, let $x_{A}$ beany monomial with $n$ distinct variables. Then $x_{A} \cong \frac{1}{n c} x_{A}\left({ }_{i} x_{i}^{2}-c\right)$, so clearly $x_{A} \in\left\langle\mathcal{P}_{\mathrm{SPCA}}\right\rangle$. Now let $x_{A}$ be any monomial with $c+1 \leq k<n$ distinct variables. Then

$$
(k-c) x_{A}+{\underset{i \not \chi_{A}}{\mathrm{X}} x_{A[\mathrm{f} i, i \mathrm{~g}} \simeq x_{A}}^{\mathrm{X}} \quad{ }_{i}^{2}-c
$$

By the inductive hypothesis, the second term of the LHS is in $\left\langle\mathcal{P}_{\mathrm{SPCA}}\right\rangle$, and thus so is $x_{A}$. Now let $p$ be a polynomial such that $p(\alpha)=0$ for every $\alpha \in V\left(\mathcal{P}_{\text {SPCA }}\right)$. We can assume that the pnonomials of $p$ involve at most $c$ distinct variables. For anpy monomial $x_{A}$ of $p$, we have $x_{A}\left(\quad{ }_{i} x_{i}-1\right) \cong{ }_{i \neq A} x_{A[f} f, i \mathrm{~g}-(c-|A|) x_{A}$, and so $x_{A}-\frac{1}{c \mathrm{j} A \mathrm{j}} \quad{ }_{i \neq A} x_{A[\mathrm{f} i, i \mathrm{~g}} \in\left\langle\mathcal{P}_{\mathrm{SPCA}}\right\rangle$, and so we can replace $x_{A}$ with monomials of one higher degree Repeatedly applying this up to degree $c$ (at which point we must stop to avoid dividing by zero), we determine there is a polynomial $p^{0}$ which has only monomials involving exactly $c$ distinct variables such that $p-p^{0} \in\left\langle\mathcal{P}_{\text {SPCA }}\right\rangle$. Fix two disjoint sets $U_{1}$ and $U_{2}$ of the variables with $\left|U_{1} \cup U_{2}\right|=c$ and let $p_{U_{1} U_{2}}^{0}$ be the coe cient of the monomial of $p^{0}$ corresponding to the variables in $U_{1} \cup U_{2}$ with the variables in $U_{1}$ appearing with degree one and the variables in $U_{2}$ appearing with degreetwo. We will prove by induction that $p_{U_{1} U_{2}}^{0}=0$ for every $U_{1}, U_{2}$. For the base case, let $U_{1}=\emptyset$. Then if we average every monomial of $p^{0}$ over the $\alpha \in V\left(\mathcal{P}_{\text {SPCA }}\right)$ that assign nonzero values exactly to the variables in $U_{1} \cup U_{2}$, every monomial except $p_{U_{1} U_{2}}^{0}$ is zero, and that monomial has value one Since $p(\alpha)=0$ for each $\alpha \in V\left(\mathcal{P}_{\text {SPCA }}\right)$, this implies that $p_{U_{1} U_{2}}^{0}=0$. Proceeding by induction, let $\left|U_{1}\right|=k$. Then if we average over all the $\alpha \in V\left(\mathcal{P}_{\mathrm{SPCA}}\right)$ that assign nonzero values exactly to the variables in $U_{1} \cup U_{2}$ and assigns value 1 to the variables in $U_{1}$, every monomial is zero except $p_{U V}^{0}$ with $U \cup V=U_{1} \cup U_{2}$ and $U \subseteq U_{1}$. By the inductive hypothesis these all have zero coe cients except $p_{U_{1} U_{2}}^{0}$, and now since $p^{0}$ is zero on all these points, we once again have $p_{U_{1} U_{2}}^{0}$. Doing this for every $U_{1}, U_{2}$, we determine $p^{0}=0$ and thus $p \in\left\langle\mathcal{P}_{\mathrm{SPCA}}\right\rangle$.

## Symmetric Polynomials

Once again, we prove a derivation lemma for symmetric polynomials. For this set of constraints, it is not as simple as saying that every symmetricppolynomial is equalpto some constant on $V\left(\mathcal{P}_{\text {SPCA }}\right)$ becquse we only have a constraint on ${ }_{i} x_{i}^{2}$ as opposed to ${ }_{i} x_{i}$. In particular, the polynomial ${ }_{i} x_{i}$ itself does not reduce to a constant on $V\left(\mathcal{P}_{\mathrm{SPCA}}\right)$. We will have to make a slightly more general argument.

Lemma 3.6.2. Let $p$ be a polpnomial in $\mathbf{R}^{n}$. $\mathbf{P}$ Then there exists a univariate polynomial $q$ of degree $\operatorname{deg} p$ such that $p^{0}=\frac{1}{n!} \quad{ }_{\sigma 2 \mathrm{~S}_{n}} \sigma p \cong q\left({ }_{i} x_{i}\right)$.
Proof. We prove that for every elementary pymmetric polynomial $e_{k}(x)$, there exists a univariate polynomial $q_{k}$ such that $e_{k}(x)-q_{k}\left({ }_{i} x_{i}\right)$ has a derivation from $\mathcal{P}_{\mathrm{SPCA}}$ in degree $k$,
then the fundamental theorem of symmetric polynomials implies the lemma. For the base case clearly $q_{0}(t)=1$ and $q_{1}(t)=t$. For the general case, consider theterms of the expansion of $\left({ }_{i} x_{i}\right)^{k}$. Theypare indexed by the non-increasing partitions of $k: \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ and can be written $c_{\lambda}{ }_{i_{1}, \ldots, i_{\ell}} x_{i_{1}}^{\lambda_{1}} x_{i_{2}}^{\lambda_{2}} \ldots x_{i_{\ell}}^{\lambda_{\ell}}$. Now just by reducing by $x_{i}^{3}-x_{i}$, we can reduce the exponents on eachpvariable to either one or two. If any exponent is two, then by reducing by the constraint ${ }_{i} x_{i}^{2}-c$, we can replace any of these exponents with a multiplicative constant. Thus after reducing, all of the exponents are one. But now this term is simply a multiple of some $e_{k^{\prime}}(x)$, with $k^{0} \leq k$. Since one term is exactly $k!e_{k}(x)$, we have

$$
\frac{1}{k!} \quad \mathrm{X}_{i} \quad x_{i} \quad-e_{k}(x) \cong_{k}{ }_{i=1}^{1} a_{i} e_{i}(x)
$$

for some real numbers $a_{i}$. Now py the inductive hypothesis, we know that there exist polynomials $q_{i}$ sugh that $e_{i}(x)-q_{i}\left(\quad{ }_{i} x_{i}\right)$ has a derivation from $\mathcal{P}_{\text {SPCA }}$ in degree $i$. Thus we set $\frac{1}{k!} q_{k}(t)=t^{k}-\quad{ }_{i} a_{i} q_{i}(t)$ to complete the induction and the lemma.
Corollary 3.6.3. Let $p \in\left\langle\mathcal{P}_{\mathrm{SPCA}}\right\rangle$ with $\operatorname{deg} p \leq c$. Then $p^{0}=\frac{1}{n!} \quad \mathrm{P}{ }_{\sigma 2 S_{n}} \sigma p$ has a derivation from $\mathcal{P}_{\text {SPCA }}$ in degree $\operatorname{deg} p$.

Proof. By Lemma 3.6.2, we know that there is a univariate polynomial $p(t)$ of degree $\operatorname{deg} p$ such that $p^{0}-q\left({ }_{i} x_{i}\right) \in\left\langle\mathcal{P}_{\text {SPCA }}\right\rangle_{\operatorname{deg} p}$. Since $p \in\left\langle\mathcal{P}_{\text {SPCA }}\right\rangle$, so is $p^{0}$ and $q\left({ }_{i} x_{i}\right)$. Since there are $c+1$ possible values of $\quad x_{i}$ in $V\left(\mathcal{P}_{\text {SPCA }}\right)$, namely $\{-c,-c+2, \ldots, c-2, c\}, q$ has $c+1$ zeros. But $\operatorname{deg} q=\operatorname{deg} p \leq c$, so $q$ must be the zero polynomial.

## Getting to a Symmetric Polynomial

This process should be familiar by now. Since there are more choices for values for the variables we are going to strip o , we are going to need to do a little more casework, but the general strategy is the same. We start with a lemma that allows us to perform induction.

Lemma 3.6.4. Let $L$ be a polynomial with a degree $d$ derivation from $\mathcal{P}_{\mathrm{SPCA}}(n, c)$. Then $L \cdot\left(x_{n+1}^{2}-x_{n+2}^{2}\right)$ has a degree $d+2$ derivation from $\mathcal{P}_{\mathrm{SPCA}}(n+2, c+1)$, and $L \cdot\left(x_{n+1} x_{n+2}\right)$ has a degree $d+2$ derivation from $\mathcal{P}_{\mathrm{SPCA}}(n+2, c+2)$.

Proof. It su ces to prove the theorem for $L \in \mathcal{P}_{\operatorname{SPCA}}(n, c)$. If $L=x_{i}^{3}-x_{i}$ for some $i$, then clearyy the statement is true as $L \in \mathcal{P}_{\mathrm{SPCA}}(n+2, c+1)$ and $L \in \mathcal{P}_{\mathrm{SPCA}}(n+2, c+2)$, so let $L={ }_{i} x_{i}^{2}-c$. Now notice that

$$
\begin{aligned}
L \cdot\left(x_{n+1}^{2}-x_{n+2}^{2}\right)-{ }_{i=1}^{\mathbb{X}^{+2}} x_{i}^{2}-(c+1) \quad\left(x_{n+1}^{2}-x_{n+2}^{2}\right) & =\left(1-x_{n+1}^{2}+x_{n+2}^{2}\right)\left(x_{n+1}^{2}-x_{n+2}^{2}\right) \\
& =x_{n+1}^{2}-x_{n+2}^{2}-x_{n+1}^{4}+x_{n+2}^{4} \\
& \simeq_{4} x_{n+1}^{2}-x_{n+2}^{2}-x_{n+1}^{2}+x_{n+2}^{2} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{X}^{\mathrm{X}+2} x_{i}^{2}-(c+2) \quad x_{n+1} x_{n+2} & =\left(2-x_{n+1}^{2}+x_{n+2}^{2}\right) x_{n+1} x_{n+2} \\
& =2 x_{n+1} x_{n+2}-x_{n+1}^{3} x_{n+2}+x_{n+1} x_{n+2}^{3} \\
& \cong_{4} 2 x_{n+1} x_{n+2}-x_{n+1} x_{n+2}+x_{n+1} x_{n+2} \\
& =0
\end{aligned}
$$

to conclude the lemma.
Now we prove that Boolean Sparse PCA admits e ective derivations for low degree polynomials.

Lemma 3.6.5. Fix $c \leq n / 2$. Let $p \in\left\langle\mathcal{P}_{\text {SPCA }}(n, c)\right\rangle$ with $\operatorname{deg} p \leq c / 2$. Then $p$ has a derivation from $\mathcal{P}_{\mathrm{SPCA}}(n, c)$ in degree at most $3 \operatorname{deg} p$.

Proof. We do double induction on $n$ and $c$. For the base case of $\mathcal{P}_{\text {SPCA }}(n, 0)$, note that the only polynomial with degree at most 0 is the constant polynomial 0 , which has the trivial derivation. Now let $p$ have degree at most $d \leq c / 2$. We can assume the individual degree of each variable is at most two by reducing by the ternary constraints. Following the same argument as in Theorem 3.5.4, we de ne the polynomial $\quad=p-\sigma p$ for the transposition $\sigma=(i, j)$, but now since $p$ is not multilinear, we write it as

$$
p=r_{10} x_{i}+r_{01} x_{j}+r_{20} x_{i}^{2}+r_{02} x_{j}^{2}+r_{11} x_{i} x_{j}+r_{21} x_{i}^{2} x_{j}+r_{12} x_{i} x_{j}^{2}+r_{22} x_{i}^{2} x_{j}^{2}+q_{i j}
$$

where none of the $r$ or $q$ polynomials depend on $x_{i}$ or $x_{j}$. Then can be written

$$
\begin{aligned}
& =\left(r_{10}-r_{01}\right)\left(x_{i}-x_{j}\right)+\left(r_{20}-r_{02}\right)\left(x_{i}^{2}-x_{j}^{2}\right)+\left(r_{21}-r_{12}\right)\left(x_{i}^{2} x_{j}-x_{i} x_{j}^{2}\right) \\
& =\left(\left(r_{10}-r_{01}\right)+\left(r_{20}-r_{02}\right)\left(x_{i}+x_{j}\right)+\left(r_{21}-r_{12}\right) x_{i} x_{j}\right)\left(x_{i}-x_{j}\right) \\
& =\left(R_{0}+R_{1}\left(x_{i}+x_{j}\right)+R_{2} x_{i} x_{j}\right)\left(x_{i}-x_{j}\right)
\end{aligned}
$$

where we de ne $R_{0}=\left(r_{10}-r_{01}\right), R_{1}=\left(r_{20}-r_{02}\right)$, and $R_{2}=\left(r_{21}-r_{12}\right)$, and note that they are polynomials of degree at most $d-1$. If we set $x_{i}=1$ and $x_{j}=0$, we obtain a polynomial $R_{0}+R_{1}$ which must be zero on $V\left(\mathcal{P}_{\mathrm{SPCA}}(n-2, c-1)\right)$. Furthermore, if we set $x_{i}=-1$ and $x_{j}=0$, then $R_{0}-R_{1}$ is zero on $V\left(\mathcal{P}_{\text {SPCA }}(n-2, c-1)\right)$, and setting $x_{i}=1$ and $x_{j}=-1$, we also get that $R_{0}-R_{2}$ is zero on $V\left(\mathcal{P}_{\text {SPCA }}(n-2, c-2)\right)$.

Since $c \leq n / 2$, clearly $c-2 \leq c-1 \leq(n-2) / 2$. Since $d \leq c / 2$, we also have $d-1 \leq$ $(c-2) / 2$. Since by Lemma 3.6.1 we know $\mathcal{P}_{\text {SPCA }}(n, c)$ is complete, wecan apply theinductive hypothesis and so all these polynomials have derivations of degree at most $3(d-1)$ from their constraints. By Lemma 3.6.4, we know $\left(R_{0}+R_{1}\right)\left(x_{i}^{2}-x_{j}^{2}\right)$, $\left(R_{0}-R_{1}\right)\left(x_{i}^{2}-x_{j}^{2}\right)$, and $\left(R_{0}-R_{2}\right) x_{i} x_{j}$ have derivations from $V\left(\mathcal{P}_{\mathrm{SPCA}}(n, c)\right)$ in degree $3 d-1$.


- Boolean Sparse PCA: $\mathcal{P}_{\text {SPCA }}(n, 2 c)=\left\{x_{i}^{3}-x_{i} \mid i \in[n]\right\} \cup\left\{{ }_{i} x_{i}^{2}-2 c\right\}$, for $k=3$.


## Chapter 4

## Bit Complexity of Sum-of-Squares Proofs

In this chapter we will show how e ective derivations can be applied to prove that the EIlipsoid algorithm runs in polynomial time for many practical inputs to the Sum-of-Squares algorithm. First, we recall the Sum-of-Squares relaxation for approximate polynomial optimization. We wish to solve the following optimization problem:

$$
\begin{array}{ll} 
& \max r(x) \\
\text { s.t. } & p(x)=0, \forall p \in \mathcal{P} \\
& q(x) \geq 0, \forall q \in \mathcal{Q} .
\end{array}
$$

One natural way to try and solve this optimization problem is to guess a $\theta$ and try to prove that $\theta-r(\alpha) \geq 0$ for all $\alpha$ satisfying the constraints. Then we can use binary search to try and nd the smallest such $\theta$. One way to try to prove this is to try and nd a PC> proof of non-negativity for $\theta-r(x)$ from $\mathcal{P}$ and $\mathcal{Q}$. As discussed in Section 2.3, any such proof of degree at most $d$ can be found by writing a semide nite program of size $n^{O(d)}$ whose constraints use numbers which require a number of bits polynomial in $\log \|r\|, \log \|\mathcal{P}\|$, and $\log \|\mathcal{Q}\|$. Solving this SDP is called the degreed Sum-of-Squares relaxation.

The Ellipsoid Algorithm is commonly cited as a tool that will solve SDPs in polynomial time, and thus it is often claimed that the Sum-of-Squares relaxation can be implemented in polynomial time Unfortunately, as rst pointed out by Ryan O'Donnell in [54], the Ellipsoid Algorithm actually has some technical requirements to ensure that it actually runs in polynomial time, one of which is that the feasible region of the SDP must intersect a ball of radius $R$ centered at the origin such that $\log R$ is polynomial. This is often not an issue, but when trying to argue that a PC> proof can befound in polynomial time singularly because it is low-degree, then the situation is not so clear. The potential problem is that $\theta-r(x)$ may have a degree $d$ proof of non-negativity, but that proof may have to contain coe cients of size so enormous that $\log R$ is not polynomial in $\log \|r\|, \log \|\mathcal{P}\|$, and $\log \|\mathcal{Q}\|$. In this case if our intention is to use the SOS SDP to bruteforce over all degree $d^{2} \mathrm{PC}_{>}$
proofs of non-negativity, we would have to run the Ellipsoid Algorithm for exponential time Indeed, O'Donnell gave an example of a polynomial system and a polynomial $r$ which had degree two proofs of non-negativity, but all of them necessarily contained coe cients of doubly-exponential size In this chapter we develop some of the rst results on when the Sum-of-Squares relaxation for the optimization problem described by $(r, \mathcal{P}, \mathcal{Q})$ is guaranteed to run in polynomial time We show how to use e ective derivations to argue that the bit complexity of PC> proofs of non-negativity is polynomially bounded.

We will conclude this chapter by strengthening the example of Ryan O'Donnell which showed that there are polynomial optimization problems whose low-degree proofs of nonnegativity always contain coe cients of doubly exponential size We show that, despite his hopes in [54], there are even Boolean polynomial optimization problems exhibiting this phenomenon.

### 4.1 Conditions, De nitions, and the $M$ ain Result

As O'Donnell's example shows, we cannot hope to prove that the Sum-of-Squares relaxation will always run in polynomial time. We must impose some conditions on the optimization problem de ned by $(r, \mathcal{P}, \mathcal{Q})$ in order to guarantee a polynomial runtime. First, we will assume that the solution space $S=V(\mathcal{P}) \cap H(\mathcal{Q})$ is reasonably bounded, speci cally that $\|S\| \leq 2^{\text {poly }(n)}$. This will be the case for all of the combinatorial problems we consider (they actually have $\|S\| \leq 1$ ).

Our main theorem is that if there exists a special distribution $\mu$ over $V(\mathcal{P})$ satisfying three conditions, then any PC> proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$ can betaken to have polynomial bit complexity. The conditions are quite general and we believe they apply to a wide swathe of problems beyond those that we prove here In fact, they depend only on the solution space of $(\mathcal{P}, \mathcal{Q})$, so we drop the dependence on $r$. We explain the three conditions we require below.

De nition 4.1.1. For $\epsilon>0$, we say that $\mu \epsilon$-robustly satisfies the inequalities $\mathcal{Q}$ if $q(\alpha) \geq \epsilon$ for each $\alpha \in \operatorname{supp}(\mu)$ and $q \in \mathcal{Q}$.

We require $\epsilon$-robustness because our analysis will end up treating the constraints in $\mathcal{P}$ di erently from the constraints in $\mathcal{Q}$. Because of this, we can only hope for our analysis to hold under $\epsilon$-robustness, since otherwise one could simulate a constraint from $\mathcal{P}$ simply by having both $p$ and $-p$ in $\mathcal{Q}$.

De nition 4.1.2. Recall we usex ${ }^{d}$ denote the vector whose entries are all the monomials in $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right]$ up to total degree $d$. For a point $\alpha \in \mathrm{R}^{n}$, we usex ${ }^{\mathrm{d}}(\alpha)$ to denote the vector whose entries have each been evaluated at $\alpha$. For a distribution $\mu$ on $V(\mathcal{P})$, we de ne the $\mu$-moment matrix up to level $d$ :

$$
M_{\mu, d}={ }_{\alpha} \mathrm{E}_{\mu} \times{ }^{\mathrm{d}}(\alpha) \times{ }^{\mathrm{d}}(\alpha)^{T}
$$

Clearly $M_{\mu, d}$ is a PSD matrix, and furthermore it encodes information about the distribution $\mu$. For example, if we let $\sim \in \mathrm{R}^{\binom{n+d-1}{d}}$, then $\sim$ corresponds to the polynomial $c(x)=\sim \mathrm{x}^{\mathrm{d}}$, and then $\widetilde{\tau}^{T} M_{\mu, d} \sim=\mathrm{E}_{\alpha}{ }_{\mu}\left[c(\alpha)^{2}\right]$. In particular, if $\sim$ is a zero eigenvector of $M_{\mu, d}$, then $c(x)$ is zero on all of $S$.

De nition 4.1.3. We say that $\mu$ is $\delta$-spectrally rich up to degree $d$ if every nonzero eigenvalue of $M_{\mu, d}$ is at least $\delta$.

If $\mu$ is $\delta$-spectrally rich up to degree $d$ and $p$ is an arbitrary polynomial of degree at most $d$, then there exists a polynomial $p^{0}$ such that $p^{9}(\alpha)=p(\alpha)$ for each $\alpha \in \operatorname{supp}(\mu)$ and $\left\|p^{9}\right\| \leq$ $\frac{1}{\delta} \max _{\alpha}\left|p^{q}(\alpha)\right|$. Thus spectral richness can be thought of as ensuring that the polynomials which are not zero on all of $\operatorname{supp}(\mu)$ can be bounded. What about the polynomials that are zero on $\operatorname{supp}(\mu)$ ? We need to ensure that we can bound those as well, or else a PC proof could require one with enormous coe cients. The key is that, since a bounded degree PC derivation is a linear system, its solution can be taken to have bounded coe cients.

De nition 4.1.4. We say that $\mathcal{P}$ is $k$-complete for $\operatorname{supp}(\mu)$ up to degree $d$ if, for every zero eigenvector $\sim$ of $M_{\mu, d}$, the degree $d$ polynomial $c(x)={ }^{T} \mathbf{X}{ }^{\text {d }}$ has a derivation from $\mathcal{P}$ in degree $k$.

If $\mu$ has support over all of $V(\mathcal{P})$, then $k$-completeness up to degree $d$ is implied by $\mathcal{P}$ being $k / d$-e ective. What if the support of $\mu$ is some smaller subset? Well, supp( $\mu$ ) had better at least be very close to $V(\mathcal{P})$, otherwise there is no hope that $\mathcal{P}$ is complete for $\operatorname{supp}(\mu)$ up to degree $d$. In fact, if $\operatorname{supp}(\mu) \neq V(\mathcal{P})$, it is impossible for every polynomial that is zero on $\operatorname{supp}(\mu)$ to have a derivation from $\mathcal{P}$, since in this case $I(\operatorname{supp}(\mu)) \neq\langle\mathcal{P}\rangle$. However, since we are only dealing with PC> proofs up to degree $d$, we only actually care about polynomials up to degree $d$. In other words, we want $\operatorname{supp}(\mu)$ to be close enough to $V(\mathcal{P})$ that only polynomials of degree higher than $d$ can tell the di erence

Example 4.1.5. Let $\mu$ be the uniform distribution over $S=\{0,1\}^{n} \backslash(0,0, \ldots, 0)$. Then $\mathcal{P}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ is 1-complete for $S$ up to degree $n-1$. To see this, let $r(x)$ be a polynomial which is zero on all of $S$, but $r \notin\langle\mathcal{P}\rangle$. Then $r(0,0, \ldots, 0) \neq 0$, and has the unique multilinearization

$$
r(x)=r(0,0, \ldots, 0)_{i=1}^{Y^{n}}\left(1-x_{i}\right)
$$

and thus the degree of $r$ must be $n$.
Example 4.1.6. Let $\mu$ betheuniform distribution over $S=\{0,1\}^{n} \backslash\left\{(1, y) \mid y \in\{0,1\}^{n}{ }^{1}\right\}$. Then $\mathcal{P}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ is not $k$-complete for $S$ up to degree $d$ for any $k \geq d \geq 1$. To see this, note that the polynomial $x_{1}$ is zero on all of $S$, and thus corresponds to a zero eigenvector of $M_{\mu, d}$. But $x_{1}$ is not zero on $V(\mathcal{P})$, so $x \notin\langle\mathcal{P}\rangle$, and thus $x$ has no derivation from $\mathcal{P}$ at all.

In order for $\mu$ to be robust, it must have support only in $S=V(\mathcal{P}) \cap H(\mathcal{Q})$. In this case, completeness implies that the additional constraints $q(x) \geq 0$ for each $q \in \mathcal{Q}$ do not themselves imply a low-degree polynomial equality not already derivable from $\mathcal{P}$. We consider this part of the condition to be extremely mild, because one could simply add such a polynomial equality to the constraints $\mathcal{P}$ of the program.
Example 4.1.7. Let $\mathcal{P}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ and $\mathcal{Q}=\left\{2^{\mathrm{P}^{\mathrm{P}}}{ }_{n=2} x_{i}\right\}$. Then $S=V(\mathcal{P}) \cap H(\mathcal{Q})$ is the set of binary strings with at most two ones. $\mathcal{P}$ is not $k$-complete up to degree 3 for any distribution with $\operatorname{supp}(\mu)=S$ for any $k$ because $x_{1} x_{2} x_{3}$ is zero on $S$ but clearly not on $V(\mathcal{P})$. However, $\mathcal{P}^{0}=\mathcal{P} \cup\left\{x_{i} x_{j} x_{k} \mid i, j, k \in[n]\right.$ and distinct $\}$ is 1-complete for $S$.

Finally, we compile all of the conditions together:
De nition 4.1.8. We say that $(\mathcal{P}, \mathcal{Q})$ admits a $(\epsilon, \delta, k)$-rich solution space up to degree $d$ with certi cate $\mu$ if there exists a distribution $\mu$ over $V(\mathcal{P}) \cap H(\mathcal{Q})$ which $\epsilon$-robustly satis es $\mathcal{Q}$, is $\delta$-spectrally rich, and for which $\mathcal{P}$ is $k$-complete, all up to degree $d$. If $1 / \epsilon=2^{\text {poly }\left(n^{d}\right)}$, $1 / \delta=2^{\text {poly }\left(n^{d}\right)}$, and $k=O(d)$, we simply say that ( $\mathcal{P}, \mathcal{Q}$ ) has a rich solution space up to degree $d$.

Armed with all of these de nitions, we can nally formally state the main result of this dhapter:

Theorem 4.1.9. Assume that $\|\mathcal{P}\|,\|\mathcal{Q}\|,\|r\| \leq 2^{\operatorname{poly}\left(n^{d}\right)}$. Let $(\mathcal{P}, \mathcal{Q})$ admit an $(\epsilon, \delta, k)$-rich solution space up to degree $d$ with certificate $\mu$. Then if $r(x)$ has a $P C_{>}$proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$ in degree at most $d$, it also has a $P C_{>}$proof of non-negativity from $\mathcal{P}$ and $\mathcal{Q}$ in degree $O(d)$ such that the coefficients of every polynomial appearing in the proof are bounded by $\mathrm{Z}^{\mathrm{poly}\left(n^{k}, \log \frac{1}{\delta}, \log \frac{1}{\epsilon}\right)}$.

In particular, if $(\mathcal{P}, \mathcal{Q})$ has a rich solution space up to degree $d$, then every coefficient in the proof can be written with only poly $\left(n^{d}\right)$ bits, and the degree- $O(d)$ Sum-of-Squares relaxation of $(r, \mathcal{P}, \mathcal{Q})$ runs in polynomial time via the Ellipsoid Algorithm.

We delay the proof of Theorem 4.1.9 until Section 4.4. First, we o er some discussion on the restrictiveness of each of the three requirements of richness and collect some example optimization problems which admit rich solution spaces.

### 4.2 How Hard is it to be Rich?

For the rest of this chapter, we pick $\mu$ to be the uniform distribution over $S=V(\mathcal{P}) \cap H(\mathcal{Q})$. For all of the examples we considered, this was su cient to exhibit a rich certi cate. We will abuse terminology a little bit and use $\mu$ and $S$ interchangeably. Here we will argue that robustness is easily achieved, and if $S$ lies inside the hypercube $\{0,1\}^{n}$, then it is naturally spectrally rich. Because most combinatorial optimization problems haveBoolean constraints, their solution spaces lie insidethe hypercube. This means that the main interesting property is the completeness of $\mathcal{P}$ for $S$.

## R obust Satisfaction

How di cult is it to ensure that $S$ robustly satis es the inequalities $\mathcal{Q}$ ? For one, if $\epsilon=$ $\min _{q 2 \mathrm{Q}} \min _{\alpha 2 V(\mathrm{P}) \mathrm{nH}(\mathrm{Q})}|q(\alpha)|>0$, then we can perturb the constraints in $\mathcal{Q}$ slightly without dhanging the underlying solution space $S$ so that $S \epsilon / 2$-robustly satis es $\mathcal{Q}$. Simply make $\mathcal{Q}^{0}$ by replacing each $q \in \mathcal{Q}$ with $q^{0}=q+\epsilon / 2$. Clearly for $\alpha \in S, q^{\gamma}(\alpha)=q(\alpha)+\epsilon / 2 \geq \epsilon / 2$. Furthermore, we still have $S=V(\mathcal{P}) \cap H\left(\mathcal{Q}^{9}\right.$ by the de nition of $\epsilon$. For many combinatorial optimization problems, their solution spaces are discrete and separated, and so this $\epsilon$ is appreciably large, so there is no issue.

Example 4.2.1. C $\boldsymbol{\beta}$ nsidepthe Balanced-Separator constraints: $\mathcal{P}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ and $\mathcal{Q}=\left\{2 n / 3-{ }_{i} x_{i}, \quad{ }_{i} x_{i}-n / 3\right\}$. The solution space $S$ is the set of binary strings with between $n / 3$ and $2 n / 3$ ones. If $n$ is divisible by 3 , then $S$ does not robustly satisfy $\mathcal{Q}$, since there are strings witpexactly $n / 3$ ones. However there is a very simple x by sptting $\mathcal{Q}^{0}=\left\{2 n / 3+1 / 2-{ }_{i} x_{i}, \quad{ }_{i} x_{i}+1 / 2-n / 3\right\}$. Then $S$ is $1 / 2$-robust for $\mathcal{Q}^{0}$, and since ${ }_{i} x_{i}$ is a sum of Boolean variables, any point in $V(\mathcal{P})$ changes the sum by integer numbers. Thus adding $1 / 2$ to the constraints does not change $V(\mathcal{P}) \cap H(\mathcal{Q})$.

While we do not have a generic theorem that shows most problems satisfy robust satisfaction, we have not yet encountered a situation where it was the bottleneck. The technique described above has always su ced.

## Spectral Richness

Recall that $S$ is $\delta$-spectrally rich if the moment matrix $M_{S, d}$ has only nonzero eigenvalues of size at least $\delta$. When $S$ lies in the hypercube, we can achieve a bound for its spectral richness using this simple lemma:
Lemma 4.2.2. Let $M \in \mathbf{R}^{N}{ }^{N}$ be an integer matrix with $\left|M_{i j}\right| \leq B$ for all $i, j \in[N]$. The smallest non-zero eigenvalue of $M$ is at least ( $B N)^{N}$.
Proof. Because $M$ is PSD, it has a full-rank principal minor $A$. Without loss of generality, let $A$ be the upper-left block of $M$. We claim the least eigenvalue of $A$ lower bounds the least nonzero eigenvalue of $M$. Since $M$ is symmetric, there must be a $C$ such that

$$
M=\begin{array}{llll}
I & A & I & C^{T} \\
C & & &
\end{array}
$$

Let $P=\left[I, C^{T}\right], \rho$ be the least eigenvalue of $A$, and $x$ be a vector perpendicular to the zero eigenspace of $P$. Then we have $x^{T} M x \geq \rho x^{T} P^{T} P x$, but $x$ is perpendicular to the zero eigenspace of $P^{T} P$. Now $P^{T} P$ has the same nonzero eigenvalues as $P P^{T}=I+C^{T} C \succeq I$, and thus $x^{T} P^{T} P x \geq 1$, and so every nonzero eigenvalue of $M$ is at least $\rho$. Now $A$ is a fullrank bounded integer matrix with dimension at most $N$. The magnitude of its determinant is at least 1 and all eigenvalues are at most $N \cdot B$. Therefore, its least eigenvalue must be at least ( $B N)^{N}$ in magnitude.

As a corollary, we get:
Corollary 4.2.3. Let $\mathcal{P}$ and $\mathcal{Q}$ be such that $S \subseteq\{0, \pm 1\}^{n}$. Then $S$ is $\delta$-spectrally rich with $\frac{1}{\delta}=2^{\text {poly }\left(n^{d}\right)}$.

Proof. Recall $M_{S, d}=\mathrm{E}_{\alpha 2 S}\left[\mathrm{x}^{\mathrm{d}}(\alpha) \mathrm{x}^{\mathrm{d}}(\alpha)^{T}\right]$, and note that $|S| \cdot M$ is an integer matrix with entries at most $3^{n}$. The result follows by applying Lemma 4.2.2.

Most combinatorial optimization problems are inherently discreteby nature, and so their polynomial formulations can naturally be taken to have solution spaces in $Z^{n}$. In this case some multiple of their moment matrices are integer matrices, and we can use Lemma 4.2.2 to show spectral-richness. Even when not deeling with combinatorial optimization, it is possible to prove spectral richness as we will see with Unit Vector later. For these reasons, we consider spectral ridnness to be a mild condition.

## Completeness

Recall that if $S=V(\mathcal{P})$, then $\mathcal{P}$ being $k$-complete for $S$ up to degre $d$ is equivalent to $\mathcal{P}$ being $k / d$-e ective. Furthermore, it is easy to see that if there is a polynomial $p \in\langle\mathcal{P}\rangle$ of degree $d$ which does not have a degree $k$ derivation from $\mathcal{P}$, then $\mathcal{P}$ cannot be complete for any subset $S \subseteq V(\mathcal{P})$. Thus in order to prove that $\mathcal{P}$ is $k$-complete for some subset $S$ up to degree $d$, we must at least prove that $\mathcal{P}$ is $k / d$-e ective. As we saw in Chapter 3, proving this is often tricky, and there is not yet any general theory for it. On the bright side, because the previous two conditions are so mild, it is often the case that completeness is the only problem to deal with before being able to conclude that the Sum-of-Squares relaxation is e cient. This fact is one of the main motivations behind our study of e ective derivations. Because of the lack of a general theory for e ective derivations, we also lack a general theory for giving low bit complexity proofs of non-negativity, and so we apply Theorem 4.1.9 on a caseby-case basis. However, in this chapter we at least compile a list of some combinatorial problems to which Theorem 4.1.9 applies. These problems arise from common applications of the Sum-of-Squares relaxations.

### 4.3 Optimization Problems with Rich Solution Spaces

Before we assemble the list in full, we give two more problems that have rich solution spaces.
Lemma 4.3.1. \$he Unit-Vector problem has a formulation on $n$ variables with constraints $\mathcal{P}_{\mathrm{UV}}=\left\{{ }_{i=1}^{n} x_{i}^{2}-1\right\}$. Then the uniform distribution over $S=V(\mathcal{P})$ is rich for $\mathcal{P}$ up to any degree.

Proof. To prove spectral richness, 林 note that in [25] the author gives an exact formula for each entry of the matrix $M_{S, d}={ }_{s} m(x)$ for any monomial $p$. The formulas imply that
$(n+d)!\pi^{n / 2} M$ is an integer matrix with entries (very loosely) bounded by $(n+d)!d!2^{n}$. By Lemma 4.2.2, we conclude that $S$ is $\delta$-spectrally rich with $1 / \delta=2^{\operatorname{poly}\left(n^{d}\right)}$.

Since $\langle\mathcal{P}\rangle$ has only a single generator, to prove that $\mathcal{P}$ is $\beta$-complete for $S$, all we have to do is show that every element of $I(S)$ is a multiple of ${ }_{i} x_{i}^{2}-1$. Let $p(x)$ be any degree $d$ polynomial which is zero on the unit sphere $S=V(\mathcal{P})$, and de ne the even part of $p, p_{0}(x)=p(x)+p(-x)$. Clearly $p_{0}$ is also zero on the unit sphere, with degree $k=$ $2\lfloor(d+1) / 2\rfloor$. Note that $p_{0}$ has only terms of even degree. De ne a sequence of polynomials $\left\{p_{i}\right\}_{i 2 \mathrm{f} 0, \ldots, k / 2 \mathrm{~g}}$ as follows. De ne $q_{i}$ to be the part of $p_{i}$ which has degree strictly less than $k$, and let $p_{i+1}=p_{i}+q_{i} \cdot\left({ }_{i} x_{i}^{2}-1\right)$. Then each $p_{i}$ is zero on the unit sphere and has no monomials of degree strictly less than $2 i$. Thus $p_{k / 2}$ is homogeneous of degree $k$. But then $p_{k / 2}(t x)=t^{k} p_{k / 2}(x)=0$ for any unit vector $x$ and $t>0$, and thus $p_{k / 2}(x)$ must be the zero polynomial. This implies that $p_{0}$ is a multiple of ${ }_{i} x_{i}^{2}-1$, since each $p_{i+1}-p_{i}$ is a multiple of ${ }_{\mathbf{P}}^{i} x_{i}^{2}-1$. The same logic shows that the odd part of $p, p(x)-p(-x)$, is also a multiple $\mathrm{ff}^{\mathrm{P}} \quad{ }_{i} x_{i}^{2}-1$, and thus so is $p(x)$. Now since every element of $\langle\mathcal{P}\rangle$ must be a multiple of ${ }_{i} x_{i}^{2}-1$, obviously $\mathcal{P}$ is 1-e ective, so $\mathcal{P}$ is $d$-complete for $S$ up to degree $d$ for any $d$.

Lemma 4.3.2. Consider tpe BalancedpSeparator formulation $\mathcal{P}=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$ and $\mathcal{Q}=\left\{1 / 100+2 n / 3-{ }_{i} x_{i}, 1 / 100+{ }_{i} x_{i}-n / 3\right\}$. Then the uniform distribution over $S=V(\mathcal{P}) \cap H(\mathcal{Q})$ is rich for $(\mathcal{P}, \mathcal{Q})$ up to degree $n / 3$.

Proof. First, $S$ is clearly $1 / 100$-robust for $\mathcal{Q}$, even if $n$ is divisible by three Second, $S \subseteq$ $\{0,1\}^{n}$, so by Corollary 4.2 .3 it is spectrally rich. To prove completeness, we note that $\mathcal{P}$ is 1-e ective by Corollary 3.1.2. It remains to prove that $\mathcal{Q}$ does not introduce additional low-degree polynomial equalities. Suppose $r$ is a polynomial that is zero on $S$. Without loss of generality, we may assume that $r$ is multilinear bypısing the constraints $\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$. Then consider the symmetrized polynomial $r=\frac{1}{n!}{ }_{\sigma 2 S_{n}} \sigma r$, where $\sigma$ acts by $\sigma x_{i}=x_{\sigma(i)}$. Then because $\mathcal{P}$ and $\mathcal{Q}$ are xed by this action, $r$ must also evaluate to zero on $S$. Because $r$ is symmetric and multilinear, it is a linear combination of the elementary symmetric polynomials $e_{k}(x)$. However, a simple inductiop shows that there is a univariate polynomial $q_{k}$ of degree $k$ for each $k$ such that $e_{k}(x)-q_{k}\left({ }_{i} x_{i}\right) \in\langle\mathcal{P}\rangle$. In parbicular this implies there is a univariate polynomial $q(t)$ with $\operatorname{deg} q \leq r=\operatorname{deg} r$ such that $q\left({ }_{i} x_{i}\right)$ is zero on $S$. This \&nivariate polynomial has $n / 3$ zeros since $S$ has points with $n / 3$ di erent possible values for
${ }_{i} x_{i}$. But $q$ cannot be the zero polynomial because it is non-zero on $V(\mathcal{P})$, so $q$ has degree at least $n / 3$, and so does $r$. Thus every non-zero multilinear polynomial that is zero on $S$ but not in $\langle\mathcal{P}\rangle$, has degre at least $n / 3$, and $\mathcal{P}$ is 1-complete for $S$ up to degree $n / 3$.

Finally, we collect all the problems discussed:
Corollary 4.3.3. For the following combinatorial optimization problems, the uniform distribution over $S=V(\mathcal{P}) \cap H(\mathcal{Q})$ is a rich certificate up to any degree:

- CSP: $\mathcal{P}_{\mathrm{CSP}}(n)=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\}$.
- Clique: $\mathcal{P}_{\text {Clique }}(V, E)=\left\{x_{i}^{2}-x_{i} \mid i \in V\right\} \cup\left\{x_{i} x_{j} \mid(i, j) \notin E\right\}$.
- Matching:

$$
\begin{aligned}
\mathcal{P}_{\mathrm{M}}(n) & =\binom{x_{i j}^{2}-x_{i j} \mid i, j \in[n]}{\mathrm{X}} \\
& \cup \quad x_{i j}-1 \mid j \in[n] \\
& \cup\left\{x_{i j} x_{i k} \mid i, j, k \in[n], j \neq k\right\} .
\end{aligned}
$$

- TSP:

$$
\begin{aligned}
\mathcal{P}_{\mathrm{TSP}}(n) & =\binom{x_{i j}^{2}-x_{i j} \mid i, j \in[n]}{\mathrm{X}} \\
& \cup \quad x_{i j}-1 \mid j \in[n] \\
& \cup\left\{x_{i j}{ }^{i} x_{i k}, x_{j i} x_{k i} \mid i, j, k \in[n], j \neq k\right\} .
\end{aligned}
$$

- Bisection: $\mathcal{P}_{\mathrm{BCSP}}(n, n / 2)=\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\} \cup{ }_{i}{ }_{i} x_{i}-\frac{n}{2}$.
- Unit-Vector: $\mathcal{P}_{\mathrm{UV}}=\left\{{ }^{\mathrm{P}}{ }_{i} x_{i}^{2}-1\right\}$.

For the following optimization problems, $S$ is a rich certificate up to degree $c$ :



- Boolean Sparse PCA: $\mathcal{P}_{\operatorname{SPCA}}(n, 2 c)=\left\{x_{i}^{3}-x_{i} \mid i \in[n]\right\} \cup\left\{{ }^{\mathrm{P}}{ }_{i} x_{i}^{2}-\mathbf{2 c}\right\}$.

Proof. Unit-Vector and Balanced Separator were discussed above For all the other problems, $S \subseteq\{0, \pm 1\}^{n}$, so by Corollary 4.2.3, $S$ is spectrally rich. Furthermore, for these problems, $\mathcal{P}$ was proven to admit e ective derivations in Chapter 3 (see Corollary 3.7.1), and $\mathcal{Q}$ is empty, so $S=V(\mathcal{P})$. Thus $\mathcal{P}$ is $k$-complete for $S$ up to the appropriate degree $d$, with $k=O(d)$.

### 4.4 Proof of the M ain Theorem

(Proof of Theorem 4.1.9). For convenience, wewrite $\mathcal{P}=\left\{p_{1}, \ldots, p_{m}\right\}$ and $\mathcal{Q}=\left\{q_{1}, \ldots, q_{\ell}\right\}$. Let $\mu$ be the certi cate for $(\epsilon, \delta, k)$-richness of $(\mathcal{P}, \mathcal{Q})$, let $S=\operatorname{supp}(\mu)$, and let $r(x)$ be a degree $d$ polynomial which has a $\mathrm{PC}_{>}$proof of non-negativity from $(\mathcal{P}, \mathcal{Q})$. In other words, there is a polynomial identity

$$
r(x)=\mathrm{X}_{i=1}^{\mathrm{X}_{0}} h_{i}^{2}+\mathrm{X}_{i=1}^{\mathrm{X}^{\ell}} \mathbf{X}_{j=1}^{\boldsymbol{X}_{i}} h_{i j}^{2} \quad q_{i}+\mathrm{X}_{i=1}^{\mathrm{X}^{n}} \lambda_{i} p_{i} .
$$

Our goal is to nd a potentially di erent $\mathrm{PC}_{>}$proof of non-negativity for $r$ which uses only polynomials of bounded norm.

First, we rewrite the original $\mathrm{PC}_{>}$proof into a more convenient form before proving bounds on each individual term. Because the elements of $\mathrm{x}{ }^{\mathrm{d}}$ are a basis for $\mathrm{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$, every polynomial in the proof can be expressed as $\tilde{}^{T} X^{d}$, where cis a vector of reals:
for PSD matrices $H, H_{1}, \ldots, H_{\ell}$. Next, we average this polynomial identity via the distribution $\mu$ :

$$
\mathrm{E}_{\alpha}[r(\alpha)]=H, \mathrm{E}_{\mu} \mathbf{x}^{\mathrm{d}}(\alpha) \mathrm{X}^{\mathrm{d}}(\alpha)^{T}+{ }_{i=1}^{\mathrm{X}} H_{i},{\underset{\alpha}{\alpha}}_{\mu} q_{i}(\alpha) \mathrm{X}^{\mathrm{d}}(\alpha) \mathrm{x}^{\mathrm{d}}(\alpha)^{T} \quad+0
$$

The LHS is at most poly $(\|r\|,\|S\|)$. The RHS is a sum of positive numbers, since the inner products are over pairs of PSD matrices (recall $q_{i}(\alpha) \geq \epsilon>0$ ). Thus the LHS is an upper bound on each term of theRHS. We would liketo say that since $S$ is $\delta$-spectrally rich, the rst term is at least $\delta \operatorname{Tr}(H)$. Unfortunately the averaged matrix may have zero eigenvectors, and it is possible that $H$ could have very large eigenvalues in these directions. However, because $\mathcal{P}$ is $k$-complete for $S$, these can be absorbed into the nal term at the cost of increasing the degree to $k$. More formally, let $={ }_{u} u u^{T}$ be the projector onto the zero eigenspace of $M_{\mu, d}=\mathrm{E}_{\alpha}{ }_{\mu}\left[\mathrm{X}^{\mathrm{d}}(\alpha) \mathrm{X}_{\mathrm{P}}{ }^{\mathrm{d}}(\alpha)^{T}\right]$. Because $\mathcal{P}$ is $k$-complet ${ }_{\beta}$ for $S$, for each $u$ there is a degre $k$ derivation $u^{T} \mathbf{X}^{\mathrm{d}}={ }_{i} \sigma_{u i} p_{i}$. Then $\mathrm{X}^{\mathrm{d}}\left(\mathbf{X}^{\mathrm{d}}\right)^{T}={ }_{u}\left(u^{T} \mathbf{X}^{\mathrm{d}}\right) \cdot u\left(\mathbf{X}^{\mathrm{d}}\right)^{T}$. Thus we can write

$$
\begin{aligned}
& \left\langle H, \mathrm{x}^{\mathrm{d}}\left(\mathrm{x}^{\mathrm{d}}\right)^{T}\right\rangle=H,\left(+{ }^{?}\right) \mathrm{x}^{\mathrm{d}}\left(\mathrm{x}^{\mathrm{d}}\right)^{T}\left(+{ }^{?}\right) \\
& \quad=H,{ }^{?} \mathrm{x}^{\mathrm{d}}\left(\mathrm{x}^{\mathrm{d}}\right)^{T} ?+{ }^{?} u^{T} \mathrm{x}^{\mathrm{d}} H, \quad{ }^{?} \mathrm{x}^{\mathrm{d}} u^{T}+\mathrm{x}^{\mathrm{d}} u^{T} ?+\mathrm{x}^{\mathrm{d}} u^{T} \\
& \quad={ }^{?} H ?, \mathrm{x}^{\mathrm{d}}\left(\mathrm{x}^{\mathrm{d}}\right)^{T}+{ }^{u} \sigma_{i} p_{i},
\end{aligned}
$$

for some polynomials $\sigma_{i}$. Doing the same for the other terms and setting $H^{0}={ }^{?} H \quad{ }^{?}$ and similarly for $H_{i}^{0}$, we get a new proof:

$$
r(x)=\left\langle H^{0}, \mathbf{x}^{\mathrm{d}}\left(\mathbf{x}^{\mathrm{d}}\right)^{T}\right\rangle+{ }_{i=1}^{\mathbf{X}^{\ell}}\left\langle H_{i}^{0}, \mathbf{x}^{\mathrm{d}}\left(\mathbf{x}^{\mathrm{d}}\right)^{T}\right\rangle q_{i}+{ }_{i=1}^{\mathrm{X}^{n}} \lambda_{i}^{0} p_{i}
$$

Now the zero eigenspace of $H^{0}$ is contained in the zero eigenspace of $M_{\mu, d}$. Furthermore, the $\delta$-spectral richness of $\mu$ implies that each nonzero eigenvalue of $M_{\mu, d}$ is at least $\delta$, so $\left\langle H^{0}, M_{\mu, d}\right\rangle \geq \delta \operatorname{Tr}\left(H^{9}\right)$. Also, the $\epsilon$-robustness of $\mu$ implies that $q_{i}(\alpha) \geq \epsilon$ for each $i$ and $\alpha$. Thus

$$
H_{i}^{0},{ }_{\alpha}{ }_{\mu} q_{i}(\alpha) \mathbf{x}^{\mathrm{d}}(\alpha)\left(\mathrm{X}^{\mathrm{d}}(\alpha)\right)^{T} \geq H_{i}^{0},{ }_{\alpha} \mathrm{E}_{\mu} \in \mathrm{X}^{\mathrm{d}}(\alpha)\left(\mathrm{X}^{\mathrm{d}}(\alpha)\right)^{T} \geq \epsilon \delta \operatorname{Tr}\left(H_{i}^{\mathrm{g}}\right) .
$$

Thus, after averaging we have

$$
\operatorname{poly}(\|r\|,\|S\|) \geq \delta \operatorname{Tr}(C)+{ }_{i=1}^{\mathrm{X}^{\ell}} \delta \epsilon \operatorname{Tr}\left(H_{i}^{\mathrm{g}}\right)
$$

Every entry of a PSD matrix is bounded by the trace, so $H^{0}$ and each $H_{i}^{0}$ have entries bounded by poly $\left(\|r\|,\|S\|, \frac{1}{\delta}, \frac{1}{\epsilon}\right)$.

The only thing left to do is to bound the coe cients $\lambda_{i}^{0}$. This turns out to be easy because the $\mathrm{PC}_{>}$proof is linear in these coe cients. If we imagine the coe cients of the $\lambda_{i}^{0}$ as variables, then the linear system induced by the polynomial identity

$$
r(x)-\left\langle H^{0}, \mathrm{X}^{\mathrm{d}}\left(\mathrm{X}^{\mathrm{d}}\right)^{T}\right\rangle-\mathrm{X}_{i=1}^{\mathrm{X}}\left\langle H_{i}^{0}, \mathrm{X}^{\mathrm{d}}\left(\mathrm{X}^{\mathrm{d}}\right)^{T}\right\rangle={ }_{i=1}^{\mathrm{X}^{n}} \lambda_{i}^{0} p_{i}
$$

is clearly feasible, and the coe cients of the LHS are bounded by poly $\left(\|r\|,\|S\|, \frac{1}{\delta}, \frac{1}{\epsilon}\right)$. There are $O\left(n^{k}\right)$ variables, so by Cramer's rule, the coe cients of the $\lambda_{i}^{0}$ can betaken to be bounded by poly $\left(\|\mathcal{P}\| n^{n^{k}}, \frac{1}{\delta}, \frac{1}{\epsilon},\|r\|,\|S\|, n!\right)$. By assumption, $\|\mathcal{P}\|,\|r\|,\|S\| \leq 2^{\text {poly }\left(n^{d}\right)}$. Thusthis bound is at most $2^{\text {poly }\left(n^{k}, \log \frac{1}{\delta}, \log \frac{1}{\epsilon}\right)}$.

### 4.5 A Polynomial System with No E cient Proofs

In [54], Ryan O'Donnell gave the rst example of a set of polynomials $\mathcal{P}$ and a polynomial $r$ which has a degree two PC> proof of non-negativity from $\mathcal{P}$, but any such degree two proof must necessarily contain polynomials with doubly-exponential coe cients. In his paper, he was the rst to point out the trouble with the Sum-of-Squares relaxation that we have endeavored to address in this chapter. He also hoped that if $\mathcal{P}$ was a Boolean system, i.e. $\left\{x_{i}^{2}-x_{i} \mid i \in[n]\right\} \subseteq \mathcal{P}$, then any PC> proof from $\mathcal{P}$ could betaken to have polynomial bit complexity. Unfortunately, in this section we answer this question in the negative. We develop a polynomial system containing the Boolean constraints, but which still has polynomials with proofs of non-negativity that require polynomials of doubly-exponential size Furthermore, our construction also holds even for proofs of high degree In O'Donnell's original example, the polynomial $r$ has proofs of low bit complexity at degree four. In our example, the polynomial $r$ has no proofs of low bit complexity until degree $(\sqrt{n})$, thus scuttling any hope of solving the bit complexity problem by simply using a higher degree Sum-of-Squares relaxation.

Note that any monomial is equivalent to some power of $x_{1}$. For example, $x_{1} x_{2} x_{3} \cong x_{1}^{7}$. More generally, it is clear from $\mathcal{P}$ that

$$
\mathrm{Y}_{i=1}^{n} x_{i}^{\beta_{i}} \cong x_{1}^{\mathrm{P}_{j=1}^{n} 2^{j-1} \beta_{j}}
$$

De ne $\phi$ by linearly extending its action on monomials, de ned by:

$$
\phi{ }_{i=1}^{"} x_{i}^{n} \quad \# \quad(2 \epsilon)^{\beta_{i}}{ }_{i}{ }^{2-1} \beta_{i} .
$$

Clearly $\phi\left[\epsilon-x_{1}\right]=-\epsilon$, thus satisfying condition (1). Condition (2) is obviously satis ed if $\sigma$ is a monomial, and linearity of $\phi$ implies that it holds for any polynomial $\sigma$. For condition (3), if $\lambda$ is a monomial, then $\phi\left[\lambda x_{n}^{2}\right] \leq \phi\left[x_{n}^{2}\right]=(2 \epsilon)^{2^{n}}$. If $\lambda$ is not a monomial, it has at most $n^{d}$ monomials, and maximum coe cient at most $\|\lambda\|$. Then by linearity of $\phi$, we have $\phi\left[\lambda x_{n}^{2}\right] \leq(2 \epsilon)^{2^{n}} n^{d}\|\lambda\|$. For condition (4), note that $\phi$ is multiplicative Then clearly $\phi\left[p^{2}\right]=\phi[p]^{2} \geq 0$.

Even though $r$ does not have any e cient PC ${ }_{>}$proofs of non-negativity, this example does not achieve our goal of exhibiting a system that contains all the Boolean constraints. We show how to modify it in the following section.

## A Boolean System

One simple way to try to make the system Boolean is to just add the constraints $x_{i}^{2}-x_{i}$ to $\mathcal{P}$. Unfortunately, this introduces new proofs for $\epsilon-x_{i}$, and they have low bit complexity. To see this, it is clear that $x_{i}^{2}-x_{i} \cong x_{i+1}-x_{i}$, and by adding these together, we can get a telescoping sum and derive $x_{n}-x_{1}$. But now $x_{n}-x_{\mathcal{P}} \cong x_{n}^{2}-x_{1} \cong-x_{1}$, and thus $x_{1} \in\langle\mathcal{P}\rangle_{2}$. Because HN proofs are linear, $x_{1}$ has a derivation ${ }_{p} \lambda_{p} p$ with low bit complexity, which can be used to write a PC $>$ proof for

$$
\epsilon-x_{1}=\sqrt{\epsilon}^{2}+\lambda_{p} p .
$$

By constraining the variables $x_{i}$ we add new ways to formulate proofs. We want to add constraints in a way that $\mathrm{PC}_{>}$proofs do not realize that the $x_{i}$ are actually constrained further.

We draw inspiration from the K napsack problem, which is known to be di cult to refute with $\mathrm{PC}_{>}$proofs. We replace each instance of the variable $x_{i}$ with a sum of $2 k$ Boolean
the requirements of Lemma 2.3.15, which will prove the theorem. De ne a linear functional $: \mathrm{R}\left[W_{1}, W_{2}, \ldots, W_{n}\right]_{d} \rightarrow \mathrm{R}$ by linearly extending its action on monomials to the monomial $\sigma$ :

$$
[\sigma]=\phi_{1}\left(\sigma_{1}\right) \phi_{2}\left(\sigma_{2}\right) \ldots \phi_{n}\left(\sigma_{n}\right),
$$

where each $\phi_{i}$ is the linear function $\phi_{(2 \epsilon)^{2^{i-1}}}$ guaranteed to exist by Lemma 4.5.4.
First, clearly

Second,

$$
\sigma \cdot\left(w_{i j}^{2}-w_{i j}\right)=\phi_{i} \sigma_{i} \cdot\left(w_{i j}^{2}-w_{i j}\right) \quad \mathrm{Y}_{j}\left[\sigma_{j}\right]=0 .
$$

Linearity of implies the same is true for any polynomial of degree at most $C k$. Similarly,

$$
\begin{aligned}
& =\phi_{i} \quad \sigma_{i} \cdot(2 \epsilon)^{2^{i-1}}{ }_{j \notin i}^{\mathrm{i}} \mathrm{Y}_{j}{ }_{j}\left[\sigma_{j}\right] \\
& =(2 \epsilon)^{2^{i-1}} \quad[\sigma] .
\end{aligned}
$$

Again, linearity implies that the same holds for any polynomial of degree at most $C k$. This implies that for any polynomial $\lambda$,

$$
\begin{aligned}
& 20 \\
& 4_{\lambda \cdot} \text { @ }
\end{aligned} \begin{aligned}
& \mathrm{K}_{2} \\
& w_{i j}-k
\end{aligned} \mathrm{X}_{w_{i+1, j}-k} \quad \mathrm{~A} 5=0,
$$

as well as
where the $(n k)^{d}$ appears because there are at most that many monomials of degree $d$, and since every variable is Boolean, is at most 1 on any monomial.

The only remaining condition to prove is that is non-negatige on squares. Dene the linear operator $T_{i}: \mathrm{R}\left[W_{1}, W_{2}, \ldots, W_{i}\right] \rightarrow \mathrm{R}\left[W_{1}, \ldots, W_{i} 1\right]$ with $T_{i}\left[\begin{array}{c}{ }_{j}, \sigma_{j} \\ \sigma_{j}\end{array}\right]=\phi_{i}\left[\sigma_{i}\right]$. ${ }_{j<i} \sigma_{j}$. Clearly $[\lambda]=T_{1} T_{2} \ldots T_{n}[\lambda]$. We claim that for any $i$, and any $\lambda, T_{i}\left[\lambda^{2}\right]$ is a sum-of-squares polynomial. This, together with the fact that each $\phi_{i}$ is non-negative on squares, implies that is non-negative on squares.

It is su cient to prove the claim for $T_{2}$. Forquiltisets $U$ with elements from $W_{1}$ and $\wp$ with elements from $W_{2}$, and we de ne $w_{U}={ }_{w 2 U} w$ and similarly for $w_{V}$. Write $\lambda=$ ${ }_{U V} \alpha_{U V} w_{U} w_{V}$. Then

$$
\begin{aligned}
T_{2}\left[\lambda^{2}\right] & =T_{2} \mathrm{X} \alpha_{U V} \alpha_{U^{\prime} V^{\prime}} w_{U} w_{V} w_{U^{\prime}} w_{V^{\prime}} \\
& =\underset{U V U^{\prime} V^{\prime}}{ } \alpha_{U V U^{\prime} V^{\prime}} \alpha_{U^{\prime} V^{\prime}} w_{U} w_{U^{\prime}} \phi_{2}\left[w_{V} w_{V^{\prime}}\right] .
\end{aligned}
$$

If we de ne matrix $M\left(V, V^{9}\right)=\phi_{2}\left[w_{V} w_{V^{\prime}}\right]$, then because $\phi_{2}$ is non-negative on squares, this matrix is PSD. Furtherpmore, de new $(V)={ }_{U} \alpha_{U V} w_{U}$. Then $T_{\nmid}\left\langle\lambda^{2}\right]=\mathbf{w}^{T} M \mathrm{w}$. pince $M$ is PSD, it can bewritten ${ }_{u} u u^{T}$ for somevectors $u$. Then $T_{2}\left[\lambda^{2}\right]={ }_{u} \mathbf{w}^{T} u u^{T} \mathbf{w}={ }_{u}\left(u^{T} \mathbf{W}\right)^{2}$ is a sum of squares.

Finally, we prove our main theorem.
Theorem 4.5.6. There exists a set of quadratic polynomials $\mathcal{P}^{0}$ on $n$ variables and a polynomial $r$ non-negative on $V(\mathcal{P})$ such that

- $\mathcal{P}^{0}$ contains the polynomial $x_{i}^{2}-x_{i}$ for every $i \in[n]$.
- $r$ has a degree two $P C_{>}$proof of non-negativity from $\mathcal{P}^{0}$.
- Every $P C_{>}$proof of non-negativity for $r$ from $\mathcal{P}^{0}$ of degree at most $O(\sqrt{n})$ has a polynomial with a coefficient of size at least $\left(\frac{1}{n^{d}} 2^{\exp }{ }^{\bar{n}}\right)$.

Proof. We take the polynomial system $\mathcal{P}^{0}$ discussed in this section with $k=n$. Then there are $N=n^{2}$ variables total, and the properties follow directly from Lemma 4.5.3 and Lemma 4.5.5.

Example 5.1.2. The usual formulation for the Matching problem is $k,{ }_{2}^{k}$-block transitive for each $k<m / 2$. Recall the constraints of the polynomial formulation for the Matching problem on ${ }_{2}^{m}$ variables from (3.1). The map $\phi$ is de ned so that for a matching $M$, $\phi(M)=\chi_{M}$, where $\left(\chi_{M}\right)_{i j}=1$ if $(i, j) \in M$ and 0 otherwise. Then $S_{m}$ acts by permuting the vertices of the graph.

For a subset $I \subseteq[m]$ with $|I|<m / 2$, we set $J=E(I, I)$, the set of edges that lie entirely in $I$. Let $M_{1}$ and $M_{2}$ be two matchings that agree on $J$. We de ne a permutation $\sigma$ as follows: Set $\sigma$ to $\times I$. Because $M_{1}$ and $M_{2}$ are perfect matchings, they must have the same number of edges in both $E(I, \bar{I})$ and $E(\bar{I}, \bar{I})$. For a vertex $v \in \bar{I}$, if $M_{1}(v) \in I$, then we set $\sigma(v)=M_{2}\left(M_{1}(v)\right)$. Otherwise, we set $\sigma$ to be an arbitrary bijection between the edges of $M_{1}$ in $E(\bar{I}, \bar{I})$ and the edges of $M_{2}$ in $E(\bar{I}, \bar{I})$. Clearly $\sigma \in S([m] \backslash I)$ and $\sigma\left(\chi_{M_{1}}\right)=\chi_{M_{2}}$. If $\sigma$ is even, we are done. Otherwise, since $|I|<m / 2$, there is an edge ( $u, v) \in M_{2} \cap E(\bar{I}, \bar{I})$. Then if $\sigma_{u v}$ is the transposition of $u$ and $v, \sigma_{u v} \sigma$ is an even permutation which still xes $J$ and maps $\chi_{M_{1}}$ to $\chi_{M_{2}}$.

Example 5.1.3. The usual formulation for Balanced CSP is $(k, k)$-block transitive for every $k \leq m-3$. Recall the constraints for the polynomial formulation for Balanced CSP on $m$ variables from (3.7). The map $\phi$ is de ned so that for an assignment $A, \phi(A)=\chi_{A}$, where $\left(\chi_{A}\right)_{i}=1$ if $A(i)=1$ and 0 otherwise. Then $S_{n}$ acts by permuting the labels of the variables.

For a subset $I \subseteq[m]$, we set $J=I$. Let two assignments $A_{1}$ and $A_{2}$ that agree on $J$, and de ne a permutation $\sigma$ as follows: $\chi_{A_{1}}$ and $\chi_{A_{2}}$ have the same number of indices which are zero, and indices which are one. Let $\sigma$ be any pair of bijections between the indices which are one in $\chi_{A_{1}}$ and the indices which are one in $\chi_{A_{2}}$, and likewise for the indices which are zero. Furthermore, since $\chi_{A_{1}}$ and $\chi_{A_{2}}$ agree on $J$, we can choose $\sigma$ to be a pair of bijections which are the identity on $J$, so $\sigma \in S([m] \backslash J)$. Clearly $\sigma\left(\chi_{A_{1}}\right)=\chi_{A_{2}}$. Finally, if $\sigma$ is not already even, since $|I| \leq m-3$, there are two indices $\ell_{1}$ and $\ell_{2}$ outside of $J$ such that $A_{2}\left(\ell_{1}\right)=A_{2}\left(\ell_{2}\right)$. Then $\left(\ell_{1}, \ell_{2}\right) \cdot \sigma$ is even and still xes $J$ and maps $\chi_{A_{1}}$ to $\chi_{A_{2}}$.

The point of this de nition is that if a polynomial formulation is block-transitive, then it is easy to show that invariant functions can be represented with low-degree polynomials. Going from arbitrary functions to low-degree polynomials is crucial to showing optimality for the Theta Body.

Lemma 5.1.4. Let $(\mathcal{P}, \mathcal{O}, \phi)$ be a $A_{m}$-symmetric, Boolean, $\left(k_{1}, k_{2}\right)$-block transitive polynomial formulation and $h: V(\mathcal{P}) \rightarrow \mathrm{R}$ be a function. If there is a set $I$ of size $|I| \leq k_{1}$ such that $h$ is stabilized by $A([m] \backslash I)$ under the group action $\sigma h(\alpha)=h\left(\sigma^{1} \alpha\right)$, then there is a polynomial $h^{\top}(x)$ such that $h^{\top}(\phi(\alpha))=h(\phi(\alpha))$ and the degree of $h^{0}$ is at most $k_{2}$.
Proof. For any $\sigma \in A([m] \backslash I)$ and $\alpha \in V(\mathcal{P})$, we know $h(\alpha)=\sigma h(\alpha)=h\left(\sigma^{1} \alpha\right)$. By blocktransitivity, there exists a set $J$ of size $|J| \leq k_{2}$ such that $A([m] \backslash I)$ acts transitively on elements of $V(\mathcal{P})$ which agree on $J$. Thus if $\alpha, \beta \in V(\mathcal{P})$ such that $\left.\alpha\right|_{J}=\left.\beta\right|_{J}, h(\alpha)=h(\beta)$. Thus $h$ depends only on the coordinates $J$, and since the polynomial formulation is Boolean, any such function can be expressed as a degree $|J|$ polynomial.

Before we state our main theorem, we recall that the $d$ th Theta Body relaxation with objective $o(x)$ is
$\min c$
s.t. $c-o(x)$ is $d$-SOS modulo $\langle\mathcal{P}\rangle$.

Theorem 5.1.5. Let $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ have a $S_{m}$-symmetric ( $k_{1}, k_{2}$ )-block transitive Boolean polynomial formulation $(\mathcal{P}, \mathcal{O}, \phi)$ on $n$ vagiables. Then if $\mathcal{M}$ has any $(c, s)$-approximate, $S_{m}$-symmetric SDP relaxation of size $r<\overline{k_{1}}$ the $k_{2}$ th Theta Body relaxation is a $(c, s)$ approximate relaxation as well.

Recall that the size of the $k_{2}$ th Theta Body relaxation is $n^{O\left(k_{2}\right)}$, so if $k_{2}=O\left(k_{1}\right)$, then the size of the Theta Body relaxation is polynomial in the size of the original symmetric formulation. Before we prove the main theorem, we need two lemmas. One has to do with obtaining sum-of-squares representations for the objective functions given a small SDP formulation:

Lemma 5.1.6. If $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ has a $(c, s)$-approximate $S D P$ formulation of size at most $k$, then there exist a family of ${ }_{2}^{k+1}$ functions $\mathcal{H}$ from $\mathcal{S}$ into $\mathbf{R}$ such that for every $f \in \mathcal{F}$, with $\max _{\alpha 2 \mathrm{~s}} f(\alpha) \leq s(f)$,

$$
c(f)-f={ }_{i} g_{i}^{2}
$$

where each $g_{i} \in\langle\mathcal{H}\rangle$. Furthermore, if the SDP formulation is $G$-coordinate-symmetric for some group $G$, then $\mathcal{H}$ is $G$-invariant under the action $\sigma h(s)=h\left(\sigma^{1} s\right)$.

Proof. Consider the slack matrix for $\mathcal{M}: M(\alpha, f)=c(f)-f(\alpha)$. By Theorem 2.5.3, if there exists an SDP formulation for $\mathcal{M}$ of size $k_{1}$, then there are $k_{1} \times k_{1}$ PSD matrices $X^{\alpha}$ and $Y_{f}$ such that $M(\alpha, f)=X^{\alpha} \cdot Y_{f}+\mu_{f}$ for some $\mu_{f}>0$. Let $\sqrt{ }$. denote the unique PSD square root. We de ne a set of functions $\mathcal{H}$ by $h_{i j}(\alpha)=\left(\sqrt{X^{\alpha}}\right)_{i j}$. Since $h_{i j}=h_{j i}$ there are only ${ }_{2}^{k_{1}+1}$ functions in $\mathcal{H}$. We have

$$
\begin{aligned}
& c(f)-f(\alpha)=X^{\alpha} \cdot Y_{f}+\mu_{f} \\
& =\operatorname{Tr}\left[\sqrt{X^{\alpha}} \sqrt{X^{\alpha}} \mathrm{p}_{\overline{Y_{f}}} \mathrm{p} \overline{Y_{f}}\right]+\mu_{f} \\
& \begin{aligned}
= & \operatorname{Tr}\left[\left({\sqrt{X^{\alpha}}}^{\mathrm{p}} \overline{Y_{f}}\right)^{T}{\sqrt{X^{\alpha}}}^{\mathrm{p}} \overline{Y_{f}}\right]+\mu_{f} \\
& \mathrm{X} \quad \mathrm{X}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& ={ }_{i j}^{\mathrm{X}} \quad \mathrm{X} \quad \mathrm{P}_{\left.\overline{Y_{f}}\right)_{k j} h_{i k}(\alpha)}{ }^{2}+\mu_{f} .
\end{aligned}
$$

Lastly, $\sigma h_{i j}(\alpha)=h_{i j}\left(\sigma^{1} \alpha\right)=\sqrt{X^{\sigma^{-1}}{ }_{i j}}=\sqrt{\sigma^{1} X^{\alpha}}{ }_{i j}$. Because $\sigma^{1}$ is a coordinate permutation, its action on $X^{\alpha}$ can be written $\sigma^{1} X^{\alpha}=P(\sigma) X^{\alpha} P(\sigma)^{T}$. Then since

$$
P(\sigma) \sqrt{X^{\alpha}} P(\sigma)^{T}=P(\sigma) X^{\alpha} P(\sigma)^{T}=\sigma^{1} X^{\alpha}
$$

and the PSD square root is unique, we have $\sqrt{\sigma^{1} X^{\alpha}}=\sigma^{1} \sqrt{X^{\alpha}}$. Thus $h_{i j}\left(\sigma^{1} \alpha\right)=$ $\sigma^{1}{\sqrt{X^{\alpha}}}_{i j}={\sqrt{X^{\alpha}}}_{\sigma^{-1}{ }_{i \sigma^{-1}}}=h_{\sigma^{-1} i \sigma^{-1} j}(\alpha)$, so indeed $\mathcal{H}$ is $G$-invariant.

The second lemma we need is an old group-theoretic result. It has been used frequently in the context of symmetric LP and SDP formulations, see for example [47, 40, 10].

Lemma 5.1.7. [([22], Theorems 5.2A and 5.2B)] Let $m \geq 10$ and let $G \leq S_{m}$. If $\mid S_{m}$ : $G \mid<{ }_{k}^{m}$ for some $k<m / 4$, then there is a subset $I \subseteq[m]$ such that $|I|<k$, and $A([m] \backslash I)$ is a subgroup of $G$.

We are ready to prove the main theorem.
Proof of Theorem 5.1.5. We start with the family of ${ }_{2}^{r+1}<{ }_{2}^{m}$ functions $\mathcal{H}$ with the properties speci ed in Lemma 5.1.6. We abuse notation slightly and just continue to write $\mathcal{H}$ for the family of functions whose domain is $V(\mathcal{P})$ instead of $\mathcal{S}$. There is no real di erence since they are in bijection. For $h \in \mathcal{H}$, we have $|\operatorname{Orb}(h)| \leq|\mathcal{H}|<{ }_{k_{1}}^{m}$. By the orbitstabilizer theorem, $\left|S_{m}: \operatorname{Stab}(h)\right|=|\operatorname{Orb}(h)|<{ }_{k_{1}}^{m}$, so by Lemma 5.1.7, there is a $I \subseteq[m]$ of size at most $k_{1}$ such that $A([m] \backslash I) \leq \operatorname{Stab}(h)$. Applying Lemma 5.1.4, we obtain polynomials $h^{9}(x)$ of degree at most $k_{2}$ which agree with $h$ on $V(\mathcal{P})$. Then for each $f$ satisfying $\max _{\alpha 2 \mathrm{~s}} f(\alpha) \leq s(f)$,

$$
c(f)-o^{f}(\phi(\alpha))=\underbrace{}_{i} \quad \begin{array}{lll}
\mathrm{X}^{2 H} & \alpha_{h} \cdot h^{q}(\phi(\alpha))_{2}
\end{array}+\mu_{f}
$$

for every $\alpha \in \mathcal{S}$. This is an equality on every point of $V(\mathcal{P})$ and each $h^{0}$ is degree at most $k_{2}$, so $C(f)-o^{f}(x)$ is $2 k_{2}$-SOS modulo $\langle\mathcal{P}\rangle$. Thus the $k_{2}$ th Theta Body relaxation is a ( $c, s$ )-approximate SDP relaxation of $\mathcal{M}$.

Theorem 5.1.5 and Proposition 2.6.10 immediately imply the following corollary:
Corollary 5.1.8. Let $\mathcal{M}=(\mathcal{S}, \mathcal{F})$ have a $S_{m}$-symmetric ( $k_{1}, k_{2}$ )-block transitive Boolean
 approximate, $S_{m}$-symmetric SDP relaxation of size $r<{\underset{k}{ }}_{m}^{m}$ the $\ell k_{2}$ th Lasserre relaxation is $a(c, s)$-approximate relaxation as well.

We also have collected several examples of combinatorial problems that we can apply Corollary 5.1.8 to:

Corollary 5.1.9.

Theorem 5q2.2. If TSP on $2 m$ vertices has an $A_{2 m}$-coordinate symmetric SDP relaxation of size $r<\underset{k}{2 m}$ with approximation guarantees $s(f)=\min _{\alpha 2 \mathrm{~s}} f(\alpha)$ and $c(f)=\rho s(f)$, then the $2 k$ th Lasserre relaxation is a $(c, s)$-approximate relaxation for TSP on $m$ vertices.

Proof. Let $f$ be an objective function for TSP on $m$ vertices, and let $F$ be the objective function for TSP on $2 m$ vertices which has

$$
d_{F}(i, j+m)=d_{F}(i+m, j)=d_{F}(i+m, j+m)=d_{F}(i, j)=d_{f}(i, j)
$$

Then $F(T(\tau))=2 f(\tau)$. Furthermore, if $\in S_{2 m}$, then there exist tours $\tau_{1}$ of [ $m$ ] and $\tau_{2}$ of $\{m+1, \ldots, 2 m\}$ such that $F(\quad)=F\left(\tau_{1} \tau_{2}\right)=f\left(\tau_{1}\right)+f\left(\tau_{2}\right)$. This can be seen just by setting $\tau_{1}(i)=(i)$ or $(i)-m$, whichever is in [ $m$ ], and $\tau_{2}(i+m)=(i)$ or $(i)+m$, whichever is in $\{m+1, \ldots, 2 m\}$. Clearly from the de nition of $F$ this does not change the value This implies that min $F()=2 \min _{\tau} f(\tau)$.

Now if TSP has a symmetric SDP relaxation as in the theorem statement, by starting identically to Theorem 5.1.5, we obtain a family of ${ }_{2}^{r+1}$ functions $\mathcal{H}$ which are $A_{2 m}$-invariant and

$$
F()-\rho \min F(\quad)=_{i}^{\lambda} g_{i}^{2}(\quad)
$$

where each $g_{i} \in\langle\mathcal{H}\rangle$. Furthermore, each $h \in \mathcal{H}$ has a subset $I_{h}$ such that $h$ is stabilized by $A\left([2 m] \backslash I_{h}\right)$ and $\left|I_{h}\right| \leq k$. Then by Lemma 5.2.1, the function $h$ depends only on the variables in $I_{h} \times[2 \mathrm{~m}]$ and the sign of the permutation. The restriction of $h$ to the image of $T$ must then depend only on the variables in $I_{h} \times[2 m$ ], since every image of $T$ is an even permutation. Thus there exists a polynomial $h^{9}(x)$ which depends only on the variables in $I_{h} \times[2 m]$ which agrees with $h$ on the image of $T$. Because the polynomial formulation for TSP is Boolean and we can eliminate monomials of the form $x_{i j} x_{i \ell}$ for $j \neq \ell$, the polynomial $h^{9}(x)$ can betaken to have degree at most $\left|I_{h}\right| \leq k$. Finally, we notethat $x_{i j}=x_{i+m, j+m}$ and $x_{i, j+m}=x_{i+m, j}=0$ for every $i, j \in[m]$ on the image of $T$. Thus we can replace each instance of $x_{i+m, j+m}$ in $h^{9}(x)$ with $x_{i j}$, and each instance of $x_{i, j+m}$ or $x_{i+m, j}$ with 0 and not change the value of $h^{9}(x)$ on the image of $T$. Now $h^{0}$ depends only on variables with indices in $[\mathrm{m}] \times[\mathrm{m}]$, and since $T(\tau)$ restricted to these variables is $\tau$, we have the following polynomial identity:

$$
F(T(\tau))-\rho \min F(\quad)=\begin{array}{lll}
\mathrm{X} & \mathrm{X} & \alpha_{i h} h^{q}(\phi(\tau))
\end{array}
$$

Now the LHS is equal to $2 f(\tau)-2 \rho \min _{\tau} f(\tau)$, and thus $o^{f}(x)-\rho \min _{\tau} f(\tau)$ is $2 k$-SOS modulo $\langle\mathcal{P}\rangle$. Since this is true for every objective $f$, this implies that the $k$ th Theta Body on $m$ vertices is a $\rho$-approximate SDP relaxation. Finally, by Theorem 3.4.8, we know that $\mathcal{P}$ is 2-e ective, so the $2 k$ th Lasserre relaxation is also a $\rho$-approximate SDP relaxation.

### 5.3 Lower Bounds for the M atching Problem

In Section 5.1 we proved that the SOS relaxation provides the best approximation for the Matching problem among small symmetric SDPs. However, it is also known that the SOS relaxations, which certify non-negativity via $\mathrm{PC}_{>}$proofs, do not perform well on the Matching problem. In particular, they are incapable of certifying that the number of edges in the matching of an $m$-clique with $m$ odd is at most $(m-1) / 2$ until ( $m$ ) rounds:

Theorem 5.3.1 (Due to [32]). If $m$ is odd, $V\left(\mathcal{P}_{\mathrm{M}}(m)\right)=\emptyset$, but every $P C_{>}$refutation of $\mathcal{P}_{\mathrm{M}}(m)$ has degree ( $m$ ).

Since the SOS relaxations do poorly on matchings, we can prove that every small symmetric SDP formulation must do poorly.

Theorem 5.3.2. Assume the Matching problem has an $S_{m}$-coordinate-symmetric SDP relaxation of size $d$ that achieves a $(c, s)$-approximation with $c(f)=\max f+\epsilon / 2$ and $s(f)=$ $\max f$ for some $0 \leq \epsilon<\mathbf{1}$. Then $d \geq \mathbf{2}^{(m)}$.
Proof. Let $k$ be the smallest integer such that $d<\frac{\mathrm{q}}{\underset{k}{m}}$. Taking Example 5.1.2, Theorem 3.3.8, and Corollary 5.1.8 together, the $2 \underset{2}{k}$ th Lasserre relaxation is a ( $C, S$ )approximate SDP formulation for the Matching problem. Actually if we are slightly more careful in our application of Lemma 5.1.4, we can show that the $k$ th Lasserre relaxation su ces. For a set $I \subseteq[m]$, the associated subset of $\begin{gathered}m \\ 2\end{gathered}$ that satis es the block-transitivity is $E(I, I)$, the set of edges lying entirely in $I$. This has size ${ }_{2}^{k}$, and so we can conclude that the polynomials $h^{0}$ have degree at most ${ }_{2}^{k}$. However, by eliminating monomials containing $x_{i j} x_{i \ell}$ for $\ell \neq j$ (which are zero on $V\left(\mathcal{P}_{\mathrm{M}}\right)$ ), we can actually take the polynomials $h^{0}$ to have degree at most $k / 2$.

Now let $n=m / 2$ or $m / 2-1$, whichever is odd. Let $A=[n], B=\{n, \ldots, 2 n\}$, and if $n=m / 2-1$, let $C=\{2 n+1,2 n+2\}$, otherwise $C=\emptyset$. Notethat $A \cup B \cup C=[m]$ and they are all disjoint. Consider the objective function $f=f_{E(A, A)}$ and its associated polynomial $o^{f}(x)={ }_{i j 2 E(A, A)} x_{i j}$. Because the $k$ th Lasserre redaxation achieves a ( $\max f+\epsilon / 2, \max f$ )approximation, and by choice of $s(f)$, every $f$ satis es the soundness condition, we know

$$
\begin{aligned}
c(f)-o^{f}(x) & =\frac{n-1}{2}+\frac{\epsilon}{2}-\frac{\mathrm{X}}{{ }_{i j 2 E(A, A)}} x_{i j} \\
& \cong_{1} \frac{1}{2}_{\substack{i 2 A \\
j 2 B, C}} x_{i j}-\frac{1-\epsilon}{2}
\end{aligned}
$$

has a $\mathrm{PC}_{>}$proof of non-negativity from $\mathcal{P}_{\mathrm{M}}(m)$ of degree at most $2 k$. Now we make a substitution in the polynomial identity: replace each instance of $x_{i j}$ with either $x_{i}{ }_{n, j}{ }_{n}$ if $i, j \in B$, or 0 if $(i, j) \in(A, B),(A, C),(B, C)$. If $(i, j) \in(C, C)$, replace $x_{i j}$ with 1 . Note that under this substitution, every polynomial in $\mathcal{P}_{\mathrm{M}}(m)$ is mapped to either 0 or a polynomial in

## Chapter 6

## Future Work

Despite the progress made in this thesis, there are still plenty of directions for futuree orts.

## E ective Derivations

In Chapter 3 we developed a proof strategy for proving that sets of polynomials admit e ective derivations. However this strategy is by no means universally applicable, and it had to be applied on a caseby-case basis. Is there a criterion for combinatorial ideals that su ces to show that a set of polynomials admits $k$-e ective derivations for constant $k$ ? Failing that, knowing more combinatorial optimization problems that have polynomial formulations which admit e ective derivations would be especially useful, for example for applying Theorem 4.1.9. What about combinatorial optimization problems without the strong symmetries discussed in this thesis? As an example, does the Vertex Cover formulation $\mathcal{P}_{\mathrm{VC}}(V, E)=\left\{x_{i}^{2}-x_{i} \mid i \in V\right\} \cup\left\{\left(1-x_{i}\right)\left(1-x_{j}\right) \mid(i, j) \in E\right\}$ admit e ective derivations?

## Bit Complexity of SOS proofs

In Chapter 4 we provided a su cient criteria to check if PC> proofs of non-negativity can be taken to have only polynomial bit complexity. However, it has somesigni cant shortcomings. The most glaring example is its inapplicability to PC> refutations, i.e proofs that $-1 \geq 0$ from an infeasible system of polynomial equations. Because an infeasible set of polynomials has no solutions, it certainly cannot have a rich solution space, and our criteria does not apply. For example, we are unable to prove that the SOS refutations of K napsack use only small coe cients, even though it is clear from simply examining these known refutations that they do not have enormous coe cients. It is also known that adding the objective function as a constraint to the SDP, i.e. adding $c-o(x)=0$ and checking feasibility is a tighter relaxation. Our results do not extend to this case as it is requires nding refutations when the constraints are infeasible. More generally, our criteria are su cient but not necessary. Exactly categorizing the sets of polynomials that have PC > proofs with small bit complexity
is of great importance for applying the SOS relaxations as approximation algorithms, and it is a potential direction for future research.

## Optimal SDPs

In Chapter 5 we gave some results on when the SOS relaxations provide optimal approximation among any symmetric SDP of comparable size. One obvious open problem is to drop the symmetry requirement. The SOS relaxations are known to be optimal for constraint satisfaction problems [46] even among asymmetric SDPs, and our results give some evidence that the same might betruefor the Matching problem. This would bean important result, as it would mean that the Matching problem cannot be solved using SDPs, even though the problem lies in P! This would show that SDPs do not provide optimal approximations for every combinatorial optimization problem.

## Bibliography

[1] M. Akgul. Topics in relaxation and ellipsoidal methods. Research notes in mathematics. Pitman Advanced Pub. Program, 1984. isbn: 9780273086345. url:
[2] Sanjeev Arora, Satish Rao, and Umesh Vazirani. \Expander Flows, Geometric Embeddings and Graph Partitioning". In: J. ACM 56.2 (Apr. 2009), 5:1\{5:37. isSn: 0004-5411. DOI: . URL:
[3] V. Arvind and Partha Mukhopadhyay. \The Ideal Membership Problem and Polynomial Identity Testing". In: Inf. Comput. 208.4 (Apr. 2010), pp. 351\{363. issn: 08905401. Doi:
[4] Boaz Barak, J onathan A. Kelner, and David Steurer. \Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method". In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing. STOC '15. New York, NY, USA: ACM, 2015, pp. 143\{151. ISBN: 978-1-4503-3536-2. Doi: URL:
[5] Boaz Barak and David Steurer. \Sum-of-squares proofs and the quest toward optimal algorithms". In: arXiv preprint arXiv:1404.5236 (2014).
[6] Boaz Barak et al. \A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem". In: CoRR abs/ 1604.03084 (2016). url:
[7] P. Beame et al. \Lower bounds on Hilbert's Nullstellensatz and propositional proofs". In: Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994, pp. 794\{806. DOI:
[8] Aditya Bhaskara et al. \Polynomial Integrality Gaps for Strong SDP Relaxations of Densest K-subgraph". In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '12. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2012, pp. 388\{405. url:
[27] K onstantinos Georgiou, Avner Magen, and Madhur Tulsiani. \Optimal Sherali-Adams Gaps from Pairwise Independence". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques: 12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings. Ed. by Irit Dinur et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 125\{139. isbn: 978-3-642-03685-9. Doi: . URL:
[28] Miche X. Goemans and David P. Williamson. \Improved Approximation Algorithms for Maximum Cut and Satis ability Problems Using Semide nite Programming". In: J. ACM 42.6 (Nov. 1995), pp. 1115\{1145. ISSN: 0004-5411. Doi: . URL:
[29] J oao Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. \Theta Bodies for Polynomial Ideals". In: SIAM J. on Optimization 20.4 (Mar. 2010), pp. 2097\{2118. ISSN: 10526234. Doi:
[30] D. Grigoriev. \Complexity of Positivstellensatz proofs for the knapsadk". In: computational complexity 10.2 (2001), pp. 139\{154. ISSN: 1420-8954. DOI: . URL:
[31] D. Grigoriev. ITseitin's tautologies and lower bounds for Nullstellensatz proofs". In: Proceedings 39th Annual Symposium on Foundations of Computer Science. 1998, pp. 648\{652. Doi:
[32] Dima Grigoriev. \Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity". In: Theoretical Computer Science 259.1 (2001), pp. 613\{622.
[33] Eran Halperin and Uri Zwick. \Approximation Algorithms for MAX 4-SAT and Rounding Procedures for Semide nite Programs". In: Proceedings of the 7th International IPCO Conference on Integer Programming and Combinatorial Optimization. London, UK, UK: Springer-Verlag, 1999, pp. 202\{217. isbn: 3-540-66019-4. url:
[34] G. Hermann. \Die Frage der endlidh vielen Schritte in der Theorie der Polynomideale. (Unter Benutzung nachgelassener Stze von K. Hentzelt)". In: Mathematische Annalen 95 (1926), pp. 736\{788. uRL:
[35] D. Hilbert. \Ueber die vollen Invariantensysteme". In: Mathematische Annalen 42 (1893), pp. 313\{373. URL:
[36] Samuel B. Hopkins, Pravesh K. K othari, and A aron Potechin. \SoS and Planted Clique: Tight Analysis of MPW Moments at all Degrees and an Optimal Lower Bound at Degree Four". In: CoRR abs/ 1507.05230 (2015). url:
[37] Samuel B. Hopkins, J onathan Shi, and David Steurer. \Tensor principal component analysis via sum-of-squares proofs". In: CoRR abs/ 1507.03269 (2015). url:
[38] Dung T. Huynh. \Complexity of the word problem for commutative semigroups of xed dimension". In: Acta Informatica 22.4 (1985), pp. 421\{432. ISSN: 1432-0525. DOI: . URL:
[39] Cedric J osz and Didier Henrion. \Strong duality in Lasserre's hierarchy for polynomial optimization". In: Optimization Letters 10.1 (2016), pp. 3\{10. ISSN: 1862-4480. Doi: . URL:
[40] Volker Kaibed, K anstantsin Pashkovich, and Dirk Oliver Theis. \Symmetry Matters for the Sizes of Extended Formulations". In: Proceedings of the 14th International Conference on Integer Programming and Combinatorial Optimization. IPCO'10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 135\{148. isbn: 3-642-13035-6, 978-3-642-130359. DOI: . URL:
[41] George Karakostas. $\backslash \mathrm{A}$ Better Approximation Ratio for the Vertex Cover Problem". In: ACM Trans. Algorithms 5.4 (Nov. 2009), 41:1\{41:8. IsSN: 1549-6325. Doi:
. URL:
[42] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. \Integrality Gaps of Linear and Semi-de nite Programming Relaxations for Knapsack". In: CoRR abs/ 1007.1283 (2010). URL:
[43] Richard M. Karp. \Reducibility among Combinatorial Problems". In: Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department. Ed. by Raymond E. Miller, J ames W. Thatcher, and J ean D. Bohlinger. Boston, MA: Springer US, 1972, pp. 85\{103. ISBn: 978-1-4684-20012. DOI:
[44] Subhash Khot. \On the Power of Unique 2-prover 1-round Games". In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing. STOC '02. New York, NY, USA: ACM, 2002, pp. 767\{775. isbn: 1-58113-495-9. doi:
. URL:
[45] J ean B. Lasserre \An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs". In: Integer Programming and Combinatorial Optimization: 8th International IPCO Conference Utrecht, The Netherlands, June 13-15, 2001 Proceedings. Ed. by Karen Aardal and Bert Gerards. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 293\{303. isbn: 978-3-540-45535-6. Doi:
[66] N. Z. Shor. \An approach to obtaining global extremums in polynomial mathematical programming problems". In: Cybernetics 23.5 (1987), pp. 695\{700. issn: 1573-8337. DOI: . URL:
[67] Morton Slater. \Lagrange Multipliers Revisited". In: Traces and Emergence of Nonlinear Programming. Ed. by Giorgio Giorgi and Tinne Ho Kjeddsen. Basel: Springer Basel, 2014, pp. 293\{306. Isbn: 978-3-0348-0439-4. Doi:

```
        . URL:
```

[68] Gongguo Tang and Parikshit Shah. \Guaranteed Tensor Decomposition: A Moment Approach". In: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37. ICML'15. Lille, France: JMLR.org, 2015, pp. 1491\{1500. URL:
[69] Madhur Tulsiani. \CSP Gaps and Reductions in the Lasserre Hierardhy". In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing. ST OC '09. New York, NY, USA: ACM, 2009, pp. 303\{312. isbn: 978-1-60558-506-2. Doi: . URL:
[70] Santosh Vempala and Mihalis Yannakakis. $\backslash \mathrm{A}$ Convex Redaxation for the Asymmetric TSP". In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '99. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1999, pp. 975\{976. ISBN: 0-89871-434-6. url:
[71] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. 1st. New York, NY, USA: Cambridge University Press, 2011. isbn: 0521195276, 9780521195270.
[72] Mihalis Yannakakis. \Expressing Combinatorial Optimization Problems by Linear Programs". In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing. STOC '88. New York, NY, USA: ACM, 1988, pp. 223\{228. ISBN: 0-89791-264-0. DOI: . URL:

