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Abstract

Imputing a Variational Inequality Function or a Convex Objective Function:
a Robust Approach

by

Jérôme Thai

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexandre Bayen, Chair

To impute the function of a variational inequality and the objective of a convex opti-
mization problem from observations of (nearly) optimal decisions, previous approaches con-
structed inverse programming methods based on solving a convex optimization problem [17,
7]. However, we show that, in addition to requiring complete observations, these approaches
are not robust to measurement errors, while in many applications, the outputs of decision
processes are noisy and only partially observable from, e.g., limitations in the sensing in-
frastructure. To deal with noisy and missing data, we formulate our inverse problem as the
minimization of a weighted sum of two objectives: 1) a duality gap or Karush-Kuhn-Tucker
(KKT) residual, and 2) a distance from the observations robust to measurement errors. In
addition, we show that our method encompasses previous ones by generating a sequence of
Pareto optimal points (with respect to the two objectives) converging to an optimal solution
of previous formulations. To compare duality gaps and KKT residuals, we also derive new
sub-optimality results defined by KKT residuals. Finally, an implementation framework is
proposed with applications to delay function inference on the road network of Los Angeles,
and consumer utility estimation in oligopolies.
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Chapter 1

Introduction

1.1 Motivation

Many decision processes are modeled as a Variational Inequality (VI) or Convex Optimization
(CO) problem [15, 8]. However, the function that describes these processes are often difficult
to estimate while their outputs (the decisions they describe) are often directly observable.
For example, the traffic assignment problem considers a road network in which each road
segment is associated to a delay that is a function of the volume of traffic on the arc [22].
The Wardrop’s equilibrium principles [25] describe an equilibrium flow that is easily locally
measurable by induction loop detectors or video cameras. While the delay functions are in
general not observable, having accurate estimates of these functions is still crucial for urban
planning. However, due to their cost of maintenance, traffic sensors are sparse, we thus
present an approach robust to missing values and measurement errors. In consumer utility
estimation, for example, the consumer is assumed to purchase various products from different
companies in order to maximize a utility function minus the price paid, where the utility
function measures the satisfaction the consumer receives from his purchases. In practice, the
consumer’s utility function is difficult to estimate but the consumer purchases, which is a
function of the products’ prices, are easily observable. We refer to [17, 7] for more examples,
e.g., value function estimation control.

1.2 Contributions and outline

Estimating the parameters of a process based on observations is related to various lines
of work, e.g., inverse reinforcement learning in robotics [20, 1], the inverse shortest path
problem [10], recovering the parameters of the Lyapunov function given a linear control
policy [9, §10.6]. The field of structural estimation in economics estimates the parameters
of observed equilibrium models, e.g. imputing production and demand functions [23, 2, 4].
In general, inverse problems have been studied quite extensively and we refer to [17, 7] for
more references on the subject. In [17] (resp. [7]), a program is proposed to impute a convex
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objective (resp. a VI function) based on complete observations of nearly optimal decisions.
The program is solved via CO.

After reviewing preliminary results in VI and CO in Section 2 and formally stating the
problem in Section 3, our contributions in the remainder of the present article is as follows.
In Section 4, we demonstrate that the methods presented in [17, 7] are in general not ro-
bust to noise and outliers in the data. In Section 5, we formulate our inverse problem as
a weighted sum of a distance robs from the observations and residual functions req in the
form of duality gaps or Karush-Kuhn-Tucker (KKT) residuals, and show that our method
is robust to noise and outliers while it avoids the disjunctive nature of the complementary
condition. In Section 6, we show that the proposed weighted sum defines a set of Pareto
efficient points whose closure contains a solution to the programs proposed in [17, 7]. Our
method thus encompasses previous ones but performs better against noise and missing data.
It also provides a conceptual way to recognize the implicit assumption of full noiseless ob-
servations made by previous inverse programming approaches. In Section 7, we compare
the KKT residual and the duality gap and derive new sub-optimality results defined by the
KKT residuals. In Section 8, an implementation framework is proposed. Finally, we apply
our method to delay inference in the road network of Los Angeles, and consumer utility
estimation and pricing in oligopolies in Sections 9 and 10.
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Chapter 2

Preliminaries

2.1 Variational Inequality (VI) and Convex

Optimization (CO)

VI is used to model a broad class of problems from economics, convex optimization, and
game theory, see, e.g. [15], for a comprehensive treatment of the subject. Mathematically, a
VI problem is defined as follows:

Definition 2.1. Given a closed, convex set K ⊆ Rn and a map F : K → Rn, the VI
problem, denoted VI(K, F ), consists in finding a vector x ∈ K such that

F (x)T (u− x) ≥ 0, ∀u ∈ K (2.1)

For the remainder of the article, we suppose that K is a polyhedron, written in standard
form:1

K = {x ∈ Rn |Ax = b, x ≥ 0} (2.2)

This allows different characterizations of solutions to VI(K, F ). We define the primal-dual
system associated to the Linear Program (LP) minu∈K F (x)Tu:

Definition 2.2. (See [3, Th. 1].) Given VI(K, F ), and (x,y) ∈ Rn × Rn, we define the
associated primal-dual system as follows:

F (x)Tx = bTy
ATy ≤ F (x)
Ax = b, x ≥ 0

(2.3)

In the above system, we say that x is primal feasible if Ax = b, x ≥ 0, and (x,y) is dual
feasible if ATy ≤ F (x). From LP strong duality, we have:

1The results in the present work can be generalized to conic-representable sets, but we choose to restrict
K to a polyhedron for ease of notation. A discussion on the generalization is presented in Section 11.
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Theorem 2.1. (See [3, Th. 1].) Let K be a polyhedron given by (2.2). Then x ∈ Rn solves
VI(K, F ) if and only if there exists y ∈ Rn such that the pair (x,y) satisfies the primal-dual
system (2.3).

We also define the Karush-Kuhn-Tucker (KKT) system of the VI(K, F ):

Definition 2.3. Let K be a polyhedron given by (2.2). Given a map F and (x,y,π) ∈
Rn × Rn × Rn, we define the associated KKT system as follows:

F (x) = ATy + π
Ax = b
x ≥ 0, π ≥ 0, xTπ = 0

(2.4)

Theorem 2.2. (See [8, §5.5.3].) Let K be a polyhedron given by (2.2). Then a vector
x ∈ Rn solves VI(K, F ) if and only if there exists y,π ∈ Rn such that the tuple (x,y,π)
satisfies the KKT system (2.4).

Convex Optimization (CO) is closely related to VI, see [8] for a comprehensive treatment
on the subject. A CO problem is defined as follows:

Definition 2.4. Given a closed, convex set K ∈ Rn and a convex potential f : K → R, the
CO problem, denoted CO(K, f), is a program of the form:

min f(x) s.t. x ∈ K (2.5)

We have the following optimality condition to the CO(K, f):

Theorem 2.3. (See [8, §4.2.3].) Given CO(K, f), suppose f differentiable. Then a vector
x ∈ K is an optimal solution to CO(K, f) if and only if:

∇f(x)T (u− x) ≥ 0, ∀u ∈ K (2.6)

Hence VI(K, F ) can be seen as a generalization of CO(K, f) where the gradient ∇f is
substituted by a general map F . Hence, when f is differentiable, the primal-dual and KKT
systems are both optimality conditions for the CO(K, f).

2.2 Approximate solutions

We now focus on the VI(K, F ) since it encompasses CO(F , f). The residual functions asso-
ciated to the primal-dual and KKT systems are defined as

Definition 2.5. (See [7].) Given VI(K, F ), a residual function rPD of the primal-dual
system (2.3) is a non-negative function which satisfies for all (x,y) ∈ Rn × Rn such that
Ax = b, x ≥ 0, ATy ≤ F (x):

rPD(x,y) = 0 ⇐⇒ (2.3) holds at (x,y) (2.7)
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Definition 2.6. (See [17].) Given VI(K, F ), a residual function rKKT of the primal-dual
system (2.4) is a non-negative function which satisfies for all (x,y,π) ∈ Rn×Rn×Rn such
that Ax = b, x ≥ 0, π ≥ 0, ATy ≤ F (x)

rKKT(x,y,π) = 0 ⇐⇒ (2.4) holds at (x,y,π) (2.8)

Residual functions are used as sub-optimality certificates in iterative methods for solving
VI(K, F ) and CO(K, f). As in [7] and [17], we specify rPD and rKKT as follows:

rPD(x) = F (x)Tx− bTy (2.9)

rKKT(x,y,π) =

∥∥∥∥[α(F (x)−ATy − π)
x ◦ π

]∥∥∥∥
1

(2.10)

where x◦π = [xiπi]
n
i=1, ‖x‖1 =

∑n
i=1 |xi|, and α > 0 a weighting factor. The choice of rPD in

(2.9) is natural since primal feasibility (Ax = b, x ≥ 0) and dual feasibility (ATy ≤ F (x))
imply that rPD is non-negative from weak LP duality [3, Cor. 1], and it is tied to the
following optimality gaps for VI(K, F ) and CO(K, f), taken from [15, §3.1.5] and [8, §9.3.1]
respectively, for all x ∈ K:

rVI(x) = max
u∈K

F (x)T (x− u) (2.11)

rCO(x) = f(x)−min
u∈K

f(u) (2.12)

Theorem 2.4. (See [7, Th. 2].) Let K be a polyhedron given by (2.2). Then the following
holds for any ε ≥ 0 and x ∈ K:

rVI(x) ≤ ε ⇐⇒ ∃y ∈ Rn : ATy ≤ F (x), rPD(x,y) ≤ ε (2.13)

In addition, if F is the gradient of a convex potential f , then, for all x ∈ K:

rVI(x) ≤ ε =⇒ rCO(x) ≤ ε (2.14)

When primal and dual feasibilities hold, rPD ≤ ε is equivalent to ε-suboptimality for VI(K, F )
with respect to rVI. When f = ∇F , rPD ≤ ε is sufficient for ε-suboptimality for CO(K, f)
with respect to rCO, but not necessary. To see this, consider a quadratic function f : R→ R
with minimum attained at a > 0:

K = R+, f(x) = (x− a)2, F (x) = ∇f(x) = 2(x− a) (2.15)

so rCO(a+ ε) = f(a+ ε) = ε2 while rVI(a+ ε) = rPD(a+ ε) = (a+ ε)F (a+ ε) = 2(a+ ε)ε is
arbitrarily large as a goes to +∞.
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2.3 Distance from solutions

Assume VI(K, F ) (resp. CO(K, f)) has a unique solution x?. An alternative sub-optimality
condition is that ‖x − x?‖ < ε for x ∈ K. Main results rely on of strict and strong mono-
tonicity of F (resp. convexity of f):

Definition 2.7. Given a convex set K ⊆ Rn and a function f : K → R, f is said to be
strictly convex on K if; ∀x, x′ ∈ K and α ∈ (0, 1) such that x 6= x′

f(αx + (1− α)x′) < αf(x) + (1− α)f(x′) (2.16)

is said to be strongly convex on K if; ∃ c > 0 such that ∀α ∈ (0, 1), ∀x, x′ ∈ K:

f(αx + (1− α)x′) ≤ αf(x) + (1− α)f(x′)− c

2
α(1− α)‖x− x′‖2 (2.17)

Definition 2.8. Given a convex set K ⊆ Rn and a map F : K → Rn, F is said to be
strictly monotone on K if

(F (x)− F (x′))T (x− x′) ≥ 0, ∀x, x′ ∈ K (2.18)

strongly monotone on K if ∃ c > 0 such that

(F (x)− F (x′))T (x− x′) ≥ c‖x− x′‖2, ∀x, x′ ∈ K (2.19)

When f is differentiable, f is strictly (resp. strongly) convex is equivalent to ∇f is strictly
(resp. strongly) monotone. Strong monotonicity allows us to bound ‖x−x?‖ by the residual
rVI(x) in (2.11):

Theorem 2.5. (See [21, Th. 4.1].) If VI(K, F ) is such that K ⊆ Rn is closed convex and
F strongly monotone, VI(K, F ) admits a unique solution x? and:

‖x− x?‖2 ≤
√
rVI(x)/c, ∀x ∈ K (2.20)

in addition, if ∃ f : F = ∇f , then x? is the unique solution to CO(K, f) and:

‖x− x?‖2 ≤
√

2 rCO(x)/c, ∀x ∈ K (2.21)

If F is only strictly monotone, then VI(K, F ) admits at most one solution [24]. If the solution
x? exists, then strict monotonicity is not strong enough for a bound similar to (2.20).
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Chapter 3

Problem statement

We present our problem statement in the most general case. We refer to Sections 9 and
10 for illustration of the problem in traffic assignment and consumer utility respectively.
Let us consider a process in which decisions x are made by solving a parametric variational
inequality VI(K(p), F (·,p)), for a set of parameter values p ∈ P :

F (x,p)T (u− x) ≥ 0, ∀u ∈ K(p) (3.1)

K(p) := {x ∈ Rn : A(p)x = b(p), x ≥ 0} (3.2)

where both the map F (·,p) and polyhedron K(p) depend on p. The definitions and theorems
in Section 2 apply for each p ∈ P , and the dependence of the residuals on p are made explicit
with rPD(x,y,p), rKKT(x,y,π,p), etc.

Inputs: We are given A(p), b(p) for all p, along with a parametric observation process
g(·,p) : Rn → Rq and N noisy observations

z(j) := g(x(j),p(j)) + w(j), j = 1, · · · , N (3.3)

of (approximate) solutions x(j) to VI(K(p(j)), F (·,p(j))) with random noise w(j) ∈ Rq and
associated parameters p(j). Unless g(·,p) is an injection from K(p) to Rq for all p, the
observation z(j) contains in general less information than x(j), thus (3.3) is our missing data
model.

Objective: We want to impute the parametric map F (·,p) and the decision vectors x(j)

such that, for all j:
(a) x(j) is an approximate solution to VI(K(p(j)), F (p(j))).
(b) x(j) agrees with the observations z(j).
Formalization: Using Theorem 2.4, objective (a) consists in imputing a parametric

map F (·,p) and a collection of decision vectors x(j) ∈ K(p(j)), along with dual variables y(j)

with A(p(j))Ty(j) ≤ F (x(j),p(j)), such that the following sum of residuals is minimized:

req :=
N∑
j=1

rPD(x(j),y(j),p(j)) (3.4)



CHAPTER 3. PROBLEM STATEMENT 8

Objective (b) consists in minimizing, with φ a non-negative convex function in (x,y) such
that φ(x,y) = 0 ⇔ x = y:

robs :=
N∑
j=1

φ
(
g(x(j),p(j)), z(j)

)
(3.5)

As discussed in [17, 7], the parametric map F (·,p) must be searched in a restricted space
F . Since the construction of F is not the focus of the present article, further details will be
presented in Section 8.1.
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Chapter 4

Previous methods

4.1 Inverse Variational Inequality

Formulation: Bertsimas et al. [7] impute F (·,p) given (perfect) observations z(j) = x(j)

(i.e. g(·,p) =Id) of approximate solution to VI(K(p(j)), F (·,p(j))) by setting objective robs
in (3.5) to zero and solving:

min
F,y

req =
∑N

j=1 rPD(z(j),y(j),p(j))

s.t. A(p(j))Ty(j) ≤ F (z(j),p(j)), ∀ j
(4.1)

If rPD(x,y,p) = F (x,p)Tx− b(p)Ty and F (·,p) is restricted to a finite dimensional affine
parametrization

∑K
i=1 aiFi(·,p) with parameters a ∈ RK restricted to a convex set, then

(4.1) is a convex program.
Limitations: The above formulation, which we will refer to as Inverse VI, assumes

that we have complete observations, which is not possible in many applications, such as
in traffic assignment, see Section 9. In addition, (4.1) overlooks the measurement errors
by tightly fitting an equilibrium model to the (complete) observations, thus attempting to
explain random (irreducible) errors by a deterministic process. For example, consider the
following process:

min
x≥0

(x− a)2 (4.2)

where a > 0 needs to be imputed. The associated primal-dual system is:

x(x− a) = 0, x ≥ a, x ≥ 0 (4.3)

Given N observations z(j) ≥ 0, solving (4.1) applied to our particular case:

min
â≥0

N∑
j=1

z(j)(z(j) − â) s.t. â ≤ min
j
z(j) (4.4)
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gives an imputed parameter â = minj z
(j). Independently of the data size, a single measure-

ment error of δ in a set of perfect observations can induce a large mean residual error. In
the above example, if z(1) = a− δ and z(j) = a for j = 2, · · · , N , then the imputed value is
â = a− δ, with mean residual error:

1

N

N∑
j=1

z(j)(z(j) − â) =
(N − 1) a δ

N
−→ aδ as N −→ +∞ (4.5)

Inverse programming as a bilevel program

Formulation: An intuitive approach is via bilevel optimization in which the metric robs =∑
j φ(x(j), z(j)) in (3.5) is minimized with x(j) the decision vector predicted by the imputed

process. We refer to, e.g., [11] for the problem of OD matrix estimation given link cost
functions and observed flows. Applying bilevel optimization to our function estimation
problem:

min
F,x,y

robs =
∑N

j=1 φ
(
g(x(j), p(j)), z(j)

)
x(j) is solution to VI(K(p(j)), F (p(j))), ∀ j

(4.6)

With a good choice of φ, (4.6) can be robust to noise. For example, consider N observations
z(j) of the minimization process (4.2). Then, (4.6) becomes:

min
â≥0, x

N∑
j=1

φ(x(j), z(j)) s.t. x(j) ∈ argmin
u≥0

(u− â)2, ∀ j (4.7)

We note that â is the sample mean when φ(x) = x2, while â is the sample median when
φ(x) = |x|. Hence, formulation (4.6) allows different choices of penalty functions φ on the
observation residuals, thus a fitting more robust to noise. We will refer to (4.6) as the Bilevel
Program (BP) in the context of inverse programming.

Limitations: In general, the solution set of VI(K(p(j)), F (p(j))) does not have a closed-
form expression, thus one approach replaces the constraint in (4.6) by the primal-dual sys-
tem (2.3) or KKT system (2.4) to reduce (4.6) to a single-level program. However, the
complementary condition rPD(z(j),y(j),p(j)) = 0 in the constraints causes the standard
Mangasarian-Fromovitz Constraint Qualification (MFCQ) to be violated at any feasible point
[26], hence generating severe numerical difficulties, see [16, 18].
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Chapter 5

Our method

5.1 A Weighted Sum Program

We minimize simultaneously objectives (3.4) and (3.5) subject to primal and dual feasibilities
by considering the linear combination weqreq + wobsrobs:

min
F,x,y

weq ΣN
j=1rPD(x(j),y(j),p(j)) + wobs ΣN

j=1φ
(
g(x(j), p(j)), z(j)

)
s.t. x(j) ∈ K(p(j)), ∀ j

A(p(j))Ty(j) ≤ F (x(j),p(j)), ∀ j
(5.1)

where weq and wobs are positive scalars that articulate the preferences between the two
objectives. This approach is known as the Weighted Sum method in Pareto Optimization
(PO) theory, and is sufficient for Pareto optimality, i.e., it is not possible to strictly decrease
one objective among req and robs without strictly increasing the other one, see, e.g., [19, 13]
for further details on PO.

One approach to explore the Pareto curve is shown in Algorithm 1. In step 1, we note
that it is often desirable to scale the objective functions to have a consistent comparison
between them. Varying the weights provides information about available trade-offs between
the objectives. Specifically, for each of the different weights in step 2, if the solution is such
that req and robs are large, it means that either our model is not a good model to explain
the observations, or that our observations are very noisy.

Algorithm 1 Weighted-sum(·) Weighted sum method

1: Normalize objectives (3.4) and (3.5) for consistent comparisons.
2: Solve (5.1) with wobs + weq = 1 and wobs ∈ {0.001, 0.01, 0.1, 0.9, 0.99, 0.999}
3: Check the values of (3.4) and (3.5).

The proposed weighted Sum Program (WSP) is robust since it accommodates different
penalty functions φ depending on the type of measurement errors, e.g. φ(x, z) = ‖x−z‖1 for
robustness to outliers, and φ(x, z) = ‖x− z‖2 for robustness to Gaussian noise; see, e.g., [8,
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§6.1]. In addition, our WSP can be seen as a penalty method for constrained optimization
that mitigates numerical difficulties by minimizing rPD(z,y,p) instead of setting rPD(z,y,p)
to 0.

5.2 Example

Given N observations z(j) of min
x≥0

(x− a)2, the WSP (5.1) is:

min
â, x

weq

∑N
j=1 x

(j)(x(j) − â) + wobs

∑N
j=1 φ(x(j), z(j))

s.t. x(j) ≥ 0, ∀ j
0 ≤ â ≤ min

j
x(j)

(5.2)

We now set wobs = α, weq = 1 − α for α ∈ (0, 1) and φ(x, y) = |x − y|. Following the case
study in Section 4.1, assume the observations are z(1) = a− δ and z(j) = a for j = 2, · · · , N ,
then the set of Pareto optimal points are

â = x(1) ∈ [a− δ, a], x(j) = a, for j = 2, · · · , N (5.3)

Then, given estimate â ∈ [a− δ, a], objectives req in (3.4) and robs in (3.5) are:

req = (N − 1) a (a− â) (5.4)

robs = |a− δ − â| = â+ δ − a (5.5)

Solving min
â∈[a−δ, a]

weqreq + wobsrobs = (1− α)(N − 1)a(a− â) + α(â+ δ − a):

wobs = α < a(N−1)
1+a(N−1) =⇒ â = a, req = 0, robs = δ

wobs = α > a(N−1)
1+a(N−1) =⇒ â = a− δ, req = (N − 1)aδ, robs = 0

(5.6)

In this case, if wobs is close enough to 1, req is large and equal to the one in the Inverse VI
(see (4.5)), while with wobs smaller, we have a small observation residual robs and req = 0.
Thus, the estimation is good for wobs close enough to 0 despite a fit to the data that is not
perfect due to measurement errors.

In a second example, we randomly generate N = 20 independent and identically dis-
tributed (i.i.d.) samples z(j) from a Gaussian distribution with mean a = 10 and vari-
ance σ = 5. We apply our WSP (5.2) with φ(x, y) = (x − y)2. The estimates â are
shown in Figure 5.1.a), and the values of the residuals robs =

∑N
j=1 x

(j)(x(j) − â) and

req =
∑N

j=1(x
(j) − z(j))2 in Figure 5.1.b), for wobs ∈ {0.001, 0.01, 0.1, 0.9, 0.99, 0.999} and

weq = 1 − wobs. In addition, we compare our method to the Inverse VI (4.4), which is
tagged with label wobs = 1 in Figure 5.1. For wobs < 0.1, req = 0, â = 9.2 is close to 10,
and robs is small, while for wobs > 0.99 and for the Inverse VI, req is large and â is largely
under-estimating a = 10. In the presence of Gaussian noise, our WSP also performs well.
Finally, we note that for large values of wobs, our method behaves similarly to the Inverse
VI method.
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Figure 5.1: Imputation of the parametric program min
x≥0

(x − a)2 from N = 20 noisy

observations with mean 10 shown in Figure a). The estimates are shown by
horizontal lines labelled by the value of wobs used in the WSP (5.2), at the ex-
ception of wobs = 1 for which the estimate is obtained via the Inverse VI (4.4).
The associated residuals robs and req are shown in Figure b).
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Chapter 6

Relation to previous methods

6.1 Preliminary results

Intuitively, as (weq, wobs) approaches (0, 1), the WSP (5.1) mimics the Inverse VI (4.1), and as
(weq, wobs) approaches (1, 0), it mimics the BP (4.6). Formally, given f1, f2 two non-negative
continuous functions, a compact set C ⊆ Rn, and w1, w2 > 0, consider the general weighted
sum program along with its solution set S(w1, w2) and the set S of all Pareto efficient points
associated to it:

min w1f1(u) + w2f2(u) s.t. u ∈ C (6.1)

S(w1, w2) := arg min
u∈C

w1f1(u) + w2f2(u) (6.2)

S :=
{

(w1, w2,u
?) : w1 ∈ (0, 1), w2 = 1− w1, u? ∈ S(w1, w2)

}
(6.3)

Since C is compact, S(w1, w2) 6= ∅ for any w1, w2, hence S is well-defined. We also assume
there exists u ∈ C such that f1(u) = 0, and define the following constrained program and
its approximate objective value f ?2 (ε):

min f2(u) s.t. f1(u) = 0, u ∈ C (6.4)

f ?2 (ε) := min
u∈C : f1(u)≤ε

f2(u), ∀ ε ≥ 0 (6.5)

Lemma 6.1. Let S be a set described by (6.3). Then for any (w1, w2,u
?) ∈ S:

f1(u
?) ≤ (w−11 − 1)f ?2 (0) (6.6)

f2(u
?) ≤ f ?2 (0) (6.7)

Proof. Let u ∈ C such that f1(u) = 0. For any (w1, w2,u
?) ∈ S, we have w1f1(u

?) +
w2f2(u

?) ≤ w2 f2(u), hence, from non-negativity of f1, f2 and positivity of w1, w2:

f2(u
?) ≤ f2(u) (6.8)

f1(u
?) ≤ (w2/w1)f2(u) = ((1− w1)/w1)f2(u) = (w−11 − 1)f2(u) (6.9)
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Since this is true for all u ∈ C such that f1(u) = 0, minimizing f2 for such u completes the
proof. �

Lemma 6.2. (See [5]) Let S be a set described by (6.3). Then {f2(u?)}u?∈S(w1,w2) converges
uniformly to f ?2 (0) as w1 −→ 1. There also exists a solution ū to (6.4) and a sequence

(w
(n)
1 , w

(n)
2 ,un)n∈N ∈ SN such that:

(w
(n)
1 , w

(n)
2 ,un) −→ (1, 0, ū) as n −→ +∞ (6.10)

In addition, if (6.4) admits a unique solution ū, any sequence (w
(n)
1 , w

(n)
2 ,un)n∈N ∈ SN such

that w
(n)
1 −→ 1 satisfies u(n) −→ ū.

Proof. First, we want to prove that f ?2 (·) is continuous at 0. We note that f ?2 (·) is non-
increasing on R+, hence it has a limit from the right at 0, which we denote f ?2 (0+). Given
any sequence (εn)n∈N ∈ RN

+ such that εn → 0, there exists a sequence (un)n∈N such that
un ∈ arg min

u∈C:f1(u)≤εn
f2(u) for all n ∈ N, since C is compact. Hence, f ?2 (εn) = f2(un) for all

n ∈ N. From compactness, there exists a convergent subsequence (ε̃n, ũn)n∈N of (εn,un)n∈N,
and its limit (0, ū) is such that u ∈ C, f1(ū) = 0 and f ?2 (0+) = f2(ū) ≤ f ?2 (0) from continuity
of f1 and f2. By definition of f ?2 (0), we must have f ?2 (0+) = f ?2 (0). Hence f ?2 (·) is continuous
at 0.

To prove the first part of the lemma, we denote g(w1) := (w−11 − 1)f ?2 (0). For any
(w1, w2,u

?) ∈ S, we have f1(u
?) ≤ g(w1) from lemma 6.1, hence f ?2 (g(w1)) ≤ f2(u

?) ≤ f ?2 (0)
by definition of f ?2 (ε). Thus, by continuity of f ?2 (·) at 0: ∀u? ∈ S(w1, w2), |f2(u?)−f ?2 (0)| ≤
|f ?2 (g(w1))− f ?2 (0)| −→

w1→1
0.

We prove the second part of the lemma. Given a sequence (w
(n)
1 , w

(n)
2 ,un) ∈ SN such that

w
(n)
1 −→ 1, consider a convergent subsequence of it from compactness of C. Its limit (1, 0, ū)

is such that ū ∈ C, f1(ū) = 0, and f2(ū) = f ?2 (0) from continuity of f1 and f2. Hence ū is a
solution to (6.4), which gives the second result of the lemma.

For the third part of the lemma, we start from the proof of the second part and note
that any convergent subsequence (w̃

(n)
1 , w̃

(n)
2 , ũn) of (w

(n)
1 , w

(n)
2 ,un) is such that ũn converges

to the unique solution ū to (6.4). Hence any convergent subsequence has the same limit

(1, 0, ū), and (w
(n)
1 , w

(n)
2 ,un) thus converges to (1, 0, ū). Since this is true for any sequence

(w
(n)
1 , w

(n)
2 ,un) ∈ SN such that w

(n)
1 −→ 1, we have the third result of the lemma. �

6.2 Main results

To apply the results in Section 6.1 to our WSP, we substitute u with the tuple (F (·,p),
{x(j)}j, {y(j)}j) and the objectives (f1, f2) with (robs, req). Since the feasible set in (5.1) is
closed, compactness is guaranteed with this assumption:

Assumption 6.1. The variables (F (·,p), {x(j)}j, {y(j)}j) of the WSP (5.1) are in a finite-
dimensional bounded set.
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The finite dimension assumption is reasonable since restricting the map F (·,p) to a finite
dimensional affine parametrization

∑K
i=1 aiFi(·,p) is intuitive (as in [17, 7]). The bounded-

ness is essential since the primal variables x(j), dual variables y(j), and the parameters a have
physical interpretations in terms of resource allocation, resource valuation, and variations of
the map F (·,p) respectively, and thus are restricted to physically (or economically) reason-
able ranges. Hence Assumption 6.1 is reasonable and guarantees compactness of the set of
feasible variables of the WSP, and enables to apply the results in Section 6.1. From com-
pactness, the minimal objective value r?eq of the Inverse VI (4.1), and the minimal objective
value r?obs of the BP (4.6) are also attained.

Theorem 6.1. Under Assumption 6.1, given N approximate solutions z(j) ∈ K(p(j)) to the
problems VI(K(p(j)), F (·,p(j))) for j = 1, · · · , N , any optimal solution to the WSP (5.1) is
such that robs ≤ r?eq(w

−1
obs − 1) and req ≤ r?eq. In addition, req converges uniformly to r?eq as

wobs −→ 1 and there exists a sequence of solutions to the WSP converging to a solution to
the inverse VI (4.1).

Theorem 6.2. Under Assumption 6.1, given N observations z(j) in (3.3), any optimal
solution to the WSP (5.1) is such that req ≤ r?obs(w

−1
eq − 1), robs ≤ r?obs, and In addition, robs

converges uniformly to r?obs as weq −→ 1 and there exsits a sequence of solutions to the WSP
converging to a solution to the BP (4.6).

Finally, the objective robs in our WSP (5.1) can be generalized, thus our WSP can be
seen as a smoothing method for general bilevel programs where the complementary condition
rPD = 0 is included in the objective in the form of a penalty function. Previous works have
proposed smoothing methods via, e.g., the perturbed Fischer-Burmeister function [12, §6.5]
or a similar one [14], but our smoothing via residuals has a sub-optimality interpretation.
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Chapter 7

Comparison of the duality gap and
the KKT residual

Given N observations z(j), for j = 1, · · · , N , let (F (·,p), {x(j)}j, {y(j)}j) be an optimal
solution to the WSP (5.1). Then robs in (3.5) measures how well x(j) agree with the ob-
servations z(j), while req in (3.4) measures how well the imputed process VI(K(p), F (·,p))
explains the imputed decision vectors x(j). If the imputed map F (·,p) admits a unique
solution x̂(p) for all p (e.g., from strict monotonicity), then an alternative metric to req is∑N

j=1 ‖x(j)− x̂(p(j))‖. If F (·,p) is strongly monotone with parameter c for all p, from (2.13)
and (2.20):

‖x(j) − x̂(p(j))‖2 ≤
√
rPD(x(j),y(j),p(j))/c ∀ j (7.1)

where rPD(x(j),y(j),p(j)), j = 1, · · · , N are directly available from the WSP. Note that with
only strict convexity of F (·,p), we can have ‖x(j)− x̂(p(j))‖2 = δ while

√
rPD(x(j),y(j),p(j))

is infinitely small, as shown at the end of Section 2.3.
However, there is no result of the form ‖x − x?‖ = O(

√
rKKT(x,y,π)) to the best of

our knowledge. We define the slack variables associated to the dual feasibility condition
ATy ≤ F (x):

ν := F (x)−ATy (7.2)

which implies that dual feasibility is equivalent to ν ≥ 0. We now derive a bound for the
following generalized residuals:

r
`p
PD(x) = ‖ν ◦ x‖p =

(
n∑
i=1

|νixi|p
)1/p

(7.3)

r
`p
KKT(x,y,π) =

∥∥∥∥[α(ν − π)
x ◦ π

]∥∥∥∥
p

=

(
n∑
i=1

αp|νi − πi|p + |xiπi|p
)1/p

(7.4)
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where ‖x‖p is the p-norm for p ≥ 1, and u ◦ v = [uivi]
n
i=1 for all u, v ∈ Rn. Since ‖x‖p ≤

‖x‖1 ≤ n1−1/p‖x‖p for all x ∈ Rn, we have

r
`p
PD(x,y) ≤ r`1PD(x,y) ≤ n1−1/p · r`pPD(x,y) (7.5)

r
`p
KKT(x,y,π) ≤ r`1KKT(x,y,π) ≤ n1−1/p · r`pKKT(x,y,π) (7.6)

When primal and dual feasibilities hold, i.e. ν ≥ 0, Ax = b, x ≥ 0, we note that r`1PD, r
`1
KKT

defined above correspond to rPD, rKKT in (2.9), (2.8) since, for r`1PD:

r`1PD(x,y) =
n∑
i=1

νixi = νTx = (F (x)−ATy)Tx = F (x)Tx− bTy (7.7)

The results in Section 2 thus hold for r
`p
PD and r

`p
KKT with an additional n1−1/p factor, vali-

dating them as residuals for the primal-dual and KKT systems respectively. Before stating
our main result of the section, we present a lemma:

Lemma 7.1. Let K be a polyhedron given by (2.2). Then the following holds for any α > 0,
p > 1, x ∈ K, y ∈ Rn such that ATy ≤ F (x):

min
π≥0

r
`p
KKT(x,y,π) =

 n∑
i=1

(νixi)
p(

1 + (xi/α)
p

p−1

)p−1


1/p

(7.8)

If p = 1, then for any α > 0, x ∈ K, y ∈ Rn such that ATy ≤ F (x), we have:

min
π≥0

r`1KKT(x,y,π) =
∑
i :xi<α

xiνi +
∑
i :xi>α

ανi (7.9)

Proof. For any p ≥ 1, x ∈ Rn, and y ∈ Rn:

min
π≥0

(
r
`p
KKT(x,y,π)

)p
= min

π≥0

n∑
i=1

αp|νi − πi|p + |xiπi|p (7.10)

=
n∑
i=1

min
πi≥0
{αp|νi − πi|p + |xiπi|p} (7.11)

When primal and dual feasibilities hold, x ≥ 0, ν ≥ 0, which causes the map πi ≥ 0 7→
αp|νi − πi|p + |xiπi|p to increase on [νi,+∞) and thus to attain its minimum on [0, νi], on
which it is also differentiable, for all p ≥ 1, with gradient:

πi 7→ −pαp(νi − πi)p−1 + pxpiπ
p−1
i , i = 1, · · · , n (7.12)

When p > 1, the gradient vanishes at a unique point π?i in [0, νi]:

π?i =
νi

1 + (xi/α)p/(p−1)
, i = 1, · · · , n (7.13)
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Substituting in (7.11):

min
πi≥0
{αp|νi − πi|p + |xiπi|p} =

(νixi)
p

(1 + (xi/α)p/(p−1))p−1
(7.14)

which gives the desired result for p > 1.
When p = 1, the map πi ≥ 0 7→ α|νi − πi| + |xiπi| is just affine on [0, νi], in which the

minimum is, and thus attains it minimum at 0 if xi − α ≥ 0, and νi if xi − α < 0. Hence:∑
i

min
πi≥0
{α|νi − πi|+ |xiπi|} =

∑
i :xi<α

xiνi +
∑
i :xi>α

ανi (7.15)

which completes the proof. �

We are now present the main result of the section, where ‖x‖∞ = max
i
|xi|:

Theorem 7.1. Let K be a polyhedron given by (2.2). Then the following holds for any
α > 0, p ≥ 1, ε > 0, x ∈ K, y ∈ Rn such that ATy ≤ F (x):

r
`p
PD(x,y) ≤ ε =⇒ ∃π ∈ Rn : r

`p
KKT(x,y,π) ≤ ε (7.16)

Reciprocally, for p > 1, we have; for all ε > 0, x ∈ K, y ∈ Rn : ATy ≤ F (x):

∃π ∈ Rn
+, r

`p
KKT(x,y,π) ≤ ε =⇒ r

`p
PD(x,y) ≤ ε

(
1 + (‖x‖∞/α)

p
p−1

) p−1
p

(7.17)

When p = 1, we have; for all ε > 0, x ∈ K, y ∈ Rn, and ATy ≤ F (x):

∃π ∈ Rn
+, r

`1
KKT(x,y,π) ≤ ε =⇒ r`1PD(x) ≤ εmax (‖x‖∞/α, 1) (7.18)

Proof. To prove (7.16) for p > 1, note that for all x ∈ K, y ∈ Rn such that ATy ≤ F (x),

each term (νixi)
p/
(

1 + (xi/α)
p

p−1

)p−1
in min

π≥0
r
`p
KKT(x,y,π) given by (7.8) is less or equal

than |νixi|p. Hence:

min
π≥0

r
`p
KKT(x,y,π) ≤ r

`p
PD(x,y) (7.19)

which proves (7.16) for p > 1. For p = 1, (7.16) is true since, from x ≥ 0 and ν ≥ 0:

min
π≥0

r`1KKT(x,y,π) =
∑
i :xi<α

xiνi +
∑
i :xi>α

ανi ≤
∑
i

xiνi = r`1PD(x,y) (7.20)

To prove (7.17), we note that for all x ∈ K, y ∈ Rn such that ATy ≤ F (x), each term

(νixi)
p/
(

1 + (xi/α)
p

p−1

)p−1
in min

π≥0
r
`p
KKT(x,y,π) is greater or equal than (νixi)

p/
(

1 + (‖x‖∞/α)
p

p−1

)p−1
,
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hence, for all π ∈ Rn such that π ≥ 0:

r
`p
KKT(x,y,π) ≥ min

π≥0
r
`p
KKT(x,y,π) (7.21)

≥

(∑
i

(νixi)
p/
(

1 + (‖x‖∞/α)
p

p−1

)p−1)1/p

(7.22)

which proves (7.17) for p > 1. For p = 1, we have, with (x)+ = max(x, 0):

r`1PD(x,y)−min
π≥0

r`1KKT(x,y,π) =
∑
i :xi>α

(xi − α)νi (7.23)

≤ (‖x‖∞ − α)+
∑
i :xi>α

νi (7.24)

≤ (‖x‖∞ − α)+
α

min
π≥0

r`1KKT(x,y,π) (7.25)

hence r`1PD(x,y) ≤ (1 + (‖x‖∞/α− 1)+) min
π≥0

r`1KKT(x,y,π). Finally, noting that 1+(‖x‖∞/α−
1)+ = max(‖x‖∞/α, 1) completes the proof. �

The first bound (7.16) in Theorem 5.1. is tight since, using Lemma 5.1, we have

min
π≥0

r
`p
KKT(x,y,π) −→ rPD(x,y) as α −→ +∞, for any p ≥ 1. The bounds (7.17) and

(7.18) are tight since we have equality in one dimension, i.e. n = 1. Combining (7.17), (7.5),
(2.13) and (2.20) we have:

Theorem 7.2. Let K be a polyhedron given by (2.2), and F be a strongly monotone function
with parameter c > 0. Then VI(K, F ) admits a unique solution x? and; for any α > 0, p >
1, ε > 0, x ∈ K:

∃y, π ∈ Rn : ATy ≤ F (x), π ≥ 0, r
`p
KKT(x,y,π) ≤ ε

=⇒ ‖x− x?‖2 ≤
√
n1−1/p · ε

(
1 + (‖x‖∞/α)

p
p−1

) p−1
p
/ c

(7.26)

For p = 1, the bound is ‖x− x?‖2 ≤
√
εmax (‖x‖∞/α, 1) /c.
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Chapter 8

Implementation

8.1 Affine parametrization

For tractability reasons, a classic approach consists in restricting the parametric map F (·,p)
to be imputed to a finite dimensional affine parametric model

F (·,p) = F0(·,p) +
K∑
i=1

aiFi(·,p), a ∈ A ⊆ RK (8.1)

where Fi(·,p), i = 0, · · · , K are pre-selected basis functions that typically contain prior
knowledge on the candidate functions, and a is imputed in the set of allowable parameter
vectors A. For instance, if the true map F true(·,p) is known to be increasing for all p,
then having a parameter space A ⊆ RK

+ and increasing basis maps Fi(·,p) given any (i,p)
guarantees an increasing parametric map F (·,p) for all a ∈ A. In addition, the constant
shift F0(·,p) imposes a normalization on F (·,p) such that trivial solutions are excluded, e.g.,
null maps where all of K is solution to the VI problem, and for which both non-negative
objectives req (3.4) and robs (3.5) can be minimized to zero.

A nonparametric estimation has also been considered in [7] using kernel methods and
regularization methods from statistical learning. The methodology presented in the present
article can also be extended to this approach.

8.2 Block-coordinate descent

Plugging in the affine parametrization (8.1) above, we solve the following WSP:

min
a,x,y

weq ΣN
j=1rPD(x(j),y(j),p(j) | a) + wobs ΣN

j=1φ(g(x(j),p(j))− z(j))

s.t. x(j) ∈ K(p(j)), ∀ j
A(p(j))Ty(j) ≤ F (x(j),p(j) | a), ∀ j
a ∈ A
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where the dependencies in a are made explicit. Since the size of the inverse problem in-
creases linearly with the number of observations N , but is separable into N sub-problems
with respect to the variables {x(j),y(j)}j=1,··· ,N , we suggest to apply a Block-Coordinate
Descent (BCD) algorithm to solve the WSP while avoiding the curse of dimensionality, see
Algorithm 2. For the BCD, we cyclically update the N vectors {x(j)}j=1,··· ,N , the N vectors
{y(j)}j=1,··· ,N , and the parameter vector a. The sub-problems are:

min
x(j)

weq F (x(j),p(j) | a)Tx(j) + wobs φ(g(x(j),p(j))− z(j))

s.t. x(j) ∈ K(p(j))
A(p(j))Ty(j) ≤ F (x(j),p(j) | a)

(8.2)

min
y(j)
− bTy(j) s.t. A(p(j))Ty(j) ≤ F (x(j),p(j) | a) (8.3)

min
a∈A

∑N
i=1 F (x(j),p(j) | a)Tx(j)

s.t. A(p(j))Ty(j) ≤ F (x(j),p(j) | a), ∀ j
(8.4)

We note that steps 3 and 4 in Algorithm 2 can be done in parallel.

Algorithm 2 BCD(·) Block descent algorithm for the inverse problem

1: while stopping criteria not met do
2: t := t+ 1
3: x(j,t+1) := solution to (8.2) at (y(j), a) = (y(j,t), a(t)) for j = 1, · · · , N .
4: y(j,t+1) := solution to (8.3) at (x(j), a) = (x(j,t+1), a(t)) for j = 1, · · · , N .
5: a(t+1) := solution to (8.4) at (x(j),y(j)) = (x(j,t+1),y(j,t+1)) for all j.
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Chapter 9

Application to Traffic Assignment

9.1 Model

A classic application of VI and CO is the traffic assignment problem, see, e.g. [22] for more
details. Given road network modeled as a directed graph (V , E), with vertex set V and
directed edge set E , and a set of commodities W ⊆ V × V , a flow rate dk of a commodity
k must be routed from sk to tk for each k = (sk, tk) ∈ C. The k-th commodity flow vector

x(k) = [x
(k)
e ]e∈E ∈ RE+ is feasible if it satisfies the flow equation at every vertex i ∈ V :

∑
j : (j,i)∈E

x
(k)
(j,i) −

∑
j : (i,j)∈E

x
(k)
(i,j) =


−dk if i = sk

dk if i = tk

0 otherwise

(9.1)

In matrix form, x(k) is feasible if Nx(k) = b(k), x(k) ≥ 0, where N is the node-arc incidence
matrix and b(k) ∈ RV the demand vector associated to commodity k with entries such that
b
(k)
sk = −dk, b(k)tk = dk, and b

(k)
i = 0, ∀ i 6= sk, tk. Stacking everything together, we can simply

rewrite the flow equations as Ax = b, x ≥ 0, where x = [x
(k)
e ]e∈E,k∈C is the overall flow vector.

Following [6], the cost ce(xe) of a road segment e only depends on the flow xe of vehicles

on this segment, where xe is expressed as xe =
∑

k∈C x
(k)
e , the sum of all the commodity

flows. The cost functions ce(·) are assumed to be continuous, positive, non-decreasing, and
Beckmann et al. [6] proved that the User Equilibrium (UE), defined by [25], exists and is
solution to the CO(K, f) with potential:

f(x) =
∑
e∈E

∫ ∑
k∈C x

(k)
e

0

ce(u)du (9.2)

However, cost functions ce are in general unknown, other as through empirical modeling
such as the BPR function, while total flows xe =

∑
k∈C x

(k)
e are measurable, but only on a

small subset of arcs in the network, due to the cost of deploying and maintaining a sensing



CHAPTER 9. APPLICATION TO TRAFFIC ASSIGNMENT 24

infrastructure in a large urban area. With g(·) our fixed observation function (due to a
fixed sensing infrastructure), we want to estimate delay functions from partial and noisy
observations z(j) = g(x(j)) + w(j) of flows x(j) associated to different traffic demands b(p(j))
and with noise w(j), where each superscript j refers to different demand levels, e.g., morning
or evening commutes. The imputed delay functions can be used to control or re-design the
road network. See Figure 9.1 for an example.

Figure 9.1: Example of a morning commute on a simple road network
with arcs {a, b, c, d, e}, and two commodities 1 and 2 with commodity flows

x
(k)
a , x

(k)
b , x

(k)
c , x

(k)
d , x

(k)
e , k ∈ {1, 2}. A flow of 1000 veh/hour in c1 is known to be

routed along the shortest paths from nodes 1 to 4 and a flow of 2000 veh/hour
in commodity c2 is routed from 2 to 4, resulting in a UE flow on the network.
Given only measurement of z1 = (x

(1)
c + x

(2)
c ) + w1 and z2 = (x

(1)
d + x

(2)
d ) + w2 with

noise w1, w2, how can we impute the delay functions on each arc?

9.2 Parametrization

We want to fit polynomial edge cost functions that are positive and non-decreasing. Hence
we use the following parametrization, for all e ∈ E :

ce(xe | a) = de + de

K∑
i=1

ai(xe/me)
i, a = [ai]

K
i=1 ∈ RK

+ (9.3)

where me is the capacity of road segment e (typically proportional to the numer of lanes), and
de is the known free-flow travel time. Here, de is the shift discussed in Section 8.1 to restrict
the parameters ai. The potential function f (which does not depend on the parameter p) is
then, using the expression in (9.2):

f(x | a) = f0(x) +
K∑
i=1

aifi(x)

fi(x) =
∑
e∈E

de
mi
e

∫ ∑
k∈C x

(k)
e

0

uidu =
∑
e∈E

de
mi
e

(∑
k∈C x

(k)
e

)i+1

i+ 1
i = 0, 1, · · · , K
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We are now in position to use our method with the basis map functions:

Fi(x) = ∇fi(x) = [∂fi(x)/∂x(k)e ]e∈E,k∈C =

de
(∑

k∈C x
(k)
e

)i
mi
e


e∈E,k∈C

(9.4)

9.3 Numerical experiments

Figure 9.2: Left: Highway network of L.A. in morning rush hour on 2014-06-12 at
9:14 AM from Google Maps; right: The network in UE with the resulting delays
under demand 1.2*b. The congested area is near central L.A.

We consider the highway network near Los Angeles with 44 nodes and 122 arcs; see
Figure 9.2. The roads characteristics (geometry, capacity, free flow delay) are obtained
from OpenStreetMaps. The OD demands b are based on data from the Census Bureau
and calibrated to represent a static morning rush hour model. We consider N = 4 equilibria
x(1),x(2),x(3),x(4) associated to four demand vectors b(p(j)) ∈ R|C||V|, j ∈ {1, 2, 3, 4} obtained
by scaling b with respective factors .5, 0.8, 1, 1.2. The measurements are obtained by solving
the traffic assignment problem:

min
x
f(x) s.t. Ax = b(p), x ≥ 0 (9.5)

with potential function f given by (9.2), constraints A given by (9.1), demand vectors
b(p(j)), j ∈ {1, 2, 3, 4}, and for two types of delay functions:

cpoly(xe) = de(1 + 0.15(xe/me)
4) (9.6)

chyper(xe) = 1− 3.5/3 + 3.5/(3− xe/me) (9.7)

where (9.6) is estimated by the Bureau of Public Roads (BPR), and (9.7) is hyperbolic delay
similar to the BPR one. These two functions are considered the ground truth delay functions
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and we want to recover them from the observations z(j) = g(x(j)) = [
∑

k∈C x
(k)
e ]e∈Eobs , where

Eobs ⊆ E is the set of observed edge flows. We normalize req and robs and solve the WSP (5.1)
using the BCD algorithm discussed in Section 8.2. For wobs = 0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999
and weq = 1 − wobs, Figure 9.3 provides the error

∑N
j=1 ‖x(j) − x̂(p(j))‖, where x(j) are the

ground-truth equilibrium flows and x̂(p(j)) the estimated ones.

Figure 9.3: Imputation of the delay maps cpoly, chyper with parametric map given
by (9.3). The relative error on the flow predicted by the imputed map is small
for wobs large enough as shown in (b). With accurate measurements, we suggest
to solve the WSP with wobs = 0.9, which gives the estimated cost function for
the BPR cost function in (c) and hyperbolic cost function in (d).

In a second experiment, we study the sensitivity of our estimation algorithm to four
sets of observed links, see Figure 9.4. The parameters a imputed by our latency inference
methodology give a delay function 1 +

∑6
i=1 aix

i for each of the four sensor configurations.
In case 1, we have a very good match between the estimated delay function and the true one
because we observe the entire network, while in case 4, the measurements do not provide
additional information because they are already contained in the given OD demands, see
Figure 9.4.
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Figure 9.4: Left: the 4 sensor configurations: (1) all arcs are observed; (2) 10
arcs are observed in the congested area; (3) 4 arcs are observed in the congested
area; (4) 4 arcs are observed at the boundaries of the region, where the inflows
are already known from the OD demands.
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Chapter 10

Application to Consumer Utility

10.1 Model

We also consider an oligopoly in which n firms produce each one a product indexed by
i = 1, · · · , n with prices p = [pi]

n
i=1. We suppose that the consumer purchases a quantity xi

of product i in order to maximize a non-decreasing and concave utility function U(x) minus
the price paid pTx, where x = [xi]

n
i=1 is the overall demand, hence the optimization problem

and parametric map:

min
x≥0

f(x) = pTx− U(x) =⇒ F (x,p) = p−∇U(x) (10.1)

However, the utility U : Rn → R is not known in practice, and the inverse problem consists
in imputing U based on N observations of pairs (p(j),x(j)), j = 1, · · · , N of prices and
associated demands. The imputed utility U is then used by company producing i to set a
price pi in order to achieve a target consumer demand xdesi in its product. In oligopolies, the
price of each product is publicly available and each firm in general knows its own demand
xi, however it may only have partial information on other demands. For example, if there
are n = 5 firms and consumer demand in product 1 produced by firm 1 is not known, then
we only observe the vector z = g(x) = [x2, x3, x4, x5]

T .

10.2 Parametrization

Similarly to [17], we consider a quadratic parametrization for the utility U , i.e. U(x |Q, r) =
xTQx + 2rTx, hence the parametric potential is

f(x,p |Q, r) = pTx−
(
xTQx + 2rTx

)
, (Q, r) ∈ A (10.2)

A = {(Q, r) : Qxmax + r ≥ 0, r ≥ 0, Q � 0} (10.3)
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where A is chosen such that U(· |Q, r) is concave and non-decreasing on the demand range
[0,xmax]. The parametric map F (·,p |Q, r) is then:

F (x,p |Q, r) = p− 2Qx− 2r (10.4)

10.3 Numerical experiments

Figure 10.1: Use of the imputed utility to price product 3 for different target
demands xdes3 . In (b), the prices are scattered due to correlations with other
prices in model 1, while in (d), the prices vary linearly with xdes3 since the prices
in model 2 are more uncorrelated. In (a), (c) the blue line is the x = y line.
For both models, the imputed utility performs well with relative errors of 26%
and 10% on the training data and target demands xdes

3 close to realized demands
xreal
3 .

We consider the case of n = 5 firms competing for the same market. At the time period
j, let x(j) ∈ R5

+ be the consumer demand in response to the prices p(j) ∈ R5
+ set by each

firm, sampled uniformly as i.i.d. random vectors in [8, 12]5. We assume that the third

firm only observes the demand z(j) = [x
(j)
2 , · · · , x(j)5 ]T in products from firms 2, 3, 4, 5 over

N = 200 time periods along with the prices p(j). The demand x(j) incurred by prices p(j) are
assumed to be solution of the convex optimization model (10.1) with underlying consumer
utility function U real(x) = 1T

√
Ax + b. Firm 3 wants to impute U real using the parametric

utility given by (10.2). The numerical results are shown in Figure 10.1 with two models for
A = 50(I + B) in U real: model 1 where Bij is sampled uniformly in [0, 0.3] for i 6= j, and
model 2 where Bij is sampled from 0.5·Bernoulli(0.3).
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Remark: possible extensions to
convex cones

The results in the present article can be generalized to conic representable sets, such as the
feasible set for the primal variables, which can be restricted to the generalized polyhedron,
with C ⊆ Rn a convex cone:

K = {x ∈ Rn |Ax = b, x ∈ C} (11.1)

In the article, C is the non-negative orthant Rn
+, but more complex cones include the second-

order cone or the cone of positive semi-definite matrices. Using the standard notation:
x ≥C y ⇐⇒ x − y ≥C 0 ⇐⇒ x − y ∈ C, the primal-dual and KKT systems in Section 2
can be generalized to:

Primal-dual F (x)Tx = bTy KKT F (x) = ATy + π
system: F (x) ≥C ATy system: Ax = b

Ax = b, x ∈ C x ∈ C, π ∈ C, xTπ = 0
(11.2)

Hence, for all x, y ∈ Rn, primal feasibility becomes Ax = b, x ∈ C and dual feasibility
becomes F (x) ≥C ATy. All the results in the article hold at the exception of Lemma 7.1,
and Theorems 7.1 and 7.2, which require that C = Rn

+.
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