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Abstract

In this thesis we address the problem of multi-robot localization with a heterogeneous team
of low-cost mobile robots. The team consists of a single centralized “observer” with an
inertial measurement unit (IMU) and monocular camera, and multiple “picket” robots with
only IMUs and Red Green Blue (RGB) light emitting diodes (LED). This team cooperatively
navigates a visually featureless environment such as a collapsed building. A combination
of camera imagery captured by the observer, as well as IMU measurements on the pickets
and observer are fused to estimate motion of the team. A team movement strategy, referred
to as inchworm, is formulated as follows; pickets move ahead of the observer and then act
as temporary landmarks for the observer to follow. This cooperative approach employs
a single Extended Kalman Filter (EKF) to localize the entire heterogeneous multi-robot
team, using a formulation of the measurement Jacobian to relate the pose of the observer to
the poses of the pickets with respect to the global reference frame. An initial experiment
with the inchworm strategy has shown localization within 0.14 m position error and 2.18�

orientation error over a path-length of 5 meters in an environment with irregular ground,
partial occlusions and a ramp. This demonstrates improvement over a camera only relative
pose measurement localization technique that was adapted to our team dynamic which
produced 0.18m position error and 3.12 � orientation error over the same dataset.
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1 Introduction

The size of a robot can greatly affect what it can do and where it can go. Advantages of small robots include
increased accessibility and a wider range of capabilities such as crawling through pipes, inspecting collapsed
buildings, exploring congested or complex environments, and hiding in small or inconspicuous spaces.
However, these benefits also bring along challenges in the form of limited energy availability, reduced sensing
abilities, lower communication capability, limited computational resources, and tighter power constraints.

One way to overcome these limitations is to employ a heterogeneous team [1] of collaborative robots. This
approach marks a design shift away from the traditional simultaneous localization and mapping (SLAM)
ground robots that have expensive sensors and powerful processors, but less mobility in disaster environments.
The goal is to have small, mobile, disposable robots with limited capabilities collaborate and share information
to accomplish a larger task. Since each robot is expendable, reliability can be obtained in numbers because
even if a single robot fails, few capabilities are lost for the team. Hierarchical organization and the idea
of a heterogeneous teams allows for robots with different specializations, such as larger robots with higher
computation power, smaller robots with increased maneuverability, robots with different sensor modalities,
and so on. Another advantage of a team of less capable robots, rather than one extremely capable robot, is
that it allows sensing from multiple viewpoints and hence a wider effective baseline. This is helpful for tasks
such as surveillance, exploration, and monitoring. Furthermore, physically traversing an area conveys much
more information than simply looking at it from a distance. For example, an expensive scanner can scan the
rubble of a disaster site from the outside, but cannot enter and inspect the inside. Knowledge that cannot be
gained without physical presence includes detection of slippery surfaces, hidden holes, and other obscured
hazards; these can completely incapacitate robots despite their state-of-the-art SLAM algorithms, expensive
cameras, and complex laser range finders. Instead, these same hazards can be detected through sacrifice of
highly mobile disposable picket robots that scout the area [2].

Localization is a central problem in many robotic applications. It is particularly important in collaborative
situations where, without position and orientation information of each robot, there is no global context in which
to meaningfully share the information between the robots. In this thesis, we focus on the localization problem
and consider a heterogeneous multi-robot team consisting of two types of minimally equipped robots. A single,
central, and more capable observer robot is equipped with a monocular camera and a 6-axis IMU consisting
of a gyroscope and accelerometer. Multiple picket robots, which are expendable and less computationally
capable, are equipped with no sensors other than 6-axis IMUs. A limited communication interface between the
observer robot and individual picket robots is assumed. We consider a multi-robot team with a single observer
and multiple picket robots in an unknown environment. We present a method for using a single Extended
Kalman Filter (EKF), which the observer uses to localize the entire multi-robot team, including itself, in six
degrees of freedom (6-DOF) by fusing IMU measurements and relative pose estimates of the pickets. Relative
pose estimation refers to the process of estimating the position and orientation of a picket’s body frame with
respect to the camera frame on the observer. Red Green Blue (RGB) light emitting diodes (LED) are mounted
at known positions on the picket robots to enable relative pose estimation.

In this thesis we present a solution to 6-DOF localization in unstructured, non-planar, and low light environ-
ments without GPS, preplaced landmarks, external visual features, and reliable wheel odometry for a team
consisting of a single observer robot and multiple picket robots. The team processes data asynchronously,
meaning that IMU measurements and pose estimates are not received in temporal order, because of communi-
cation latency. This approach and team dynamic is targeted for environments such as collapsed building where
large robots with greater sensor capabilities may not be able to traverse the environment. In Section 2, we
describe the approach of cooperative inchworm localization. The cooperative inchworm localization approach
is a turn based strategy where at any giving point of time at least one robot remains stationary while the other
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robot move. Specifically, we combine the turn based strategy movement and IMU motion models to reduce
IMU dead-reckoning error. We add multiple color LED to facilitate relative pose estimation of the pickets with
respect to the observer. We derive the measurement model specific to the observer-picket team dynamic which
is used to compute the EKF update.

The datasets discussed in Section 3, results of this thesis include one observer working together with two
pickets to traverse given areas. Even with minimal sensors, the inchworm method is shown to work in dark
environments with visual occlusions such as walls or obstacles, instances when line of sight between the
robots is lost, and nonplanar settings without external visual features or landmarks. The camera and IMU
fusion approach employed by the inchworm method demonstrates improved performance over a camera only
approach. In addition, the accuracy of the approach improves with number of picket robots. Conclusions and
future work are included in Section 4.

1.1 Related Work

Existing strategies using stationary robots have been employed [1]. A stationary robot is defined as a robot
that remains at rest while the other robots move. Stationary robots and leapfrogging strategies build on the
ideas from [1] and have shown promise in 3-DOF environments in [3][4]. These previous approaches have a
stronger condition of requiring two or three stationary robots at any given time. The inchworm strategy relaxes
these constraints to require only a single stationary robot as shown in Figure 1. As shown in Figure 1 (a-c), the
leap frog method uses a homogeneous team where each robot is the same. At each time step one robot moves
while the other two remain stationary. For example during (a) at t = 1, robots 2 and 3 remain stationary while
robot 1 moves. This process repeats where the moving robot cycles at each time step. The inchworm strategy
requires at least one robot to remain stationary. In addition the picket robots generally remain in front of the
observer. For example during Figure 1 (d) the pickets move in front of the observer and during (e) the observer
catches up to the stationary pickets. At (f) picket-1 and the observer both move while picket-2 is stationary.

A similar approach, cooperative positioning system (CPS), to inchworm is presented in [5]. The CPS approach
focuses on 4-DOF (x,y,z,yaw) environments and partitions the robots into two groups each consisting of at
least one robot. Under the CPS system, the team alternates between which group moves. Either group A moves
or group B moves. For the purposes of comparison we can consider group A to be the observer and group B to
be the picket robots. An example of the CPS motion is shown in Figure 1 (d-e) where either the pickets more
or the observer moves. Our inchworm strategy improves on CPS by allowing the observer and picket robots to
move at the same time. An example of this is found in Figure 1 (f) where both picket-1 and the observer move
while picket-2 is stationary. This adds a higher degree of flexibility in team movement. Previous approaches
and variants of leapfrogging strategies were focused on team dynamics with high redundancy where each
robot produces relative pose estimates. The inchworm approach relaxes the sensor constraints of the team to
accommodate teams where a single observer robot is required to have relative pose estimation capabilities.
This leaves the picket robots with more flexibility and specialization.

Haldane et al. [2] use a heterogeneous team to detect slippery terrain by sending out a small picket robot and
having it walk around the area of interest. The large robot is capable of accurately estimating it’s own pose.
The large robot uses an augmented reality (AR) tag on the picket robot for localization. Then, features of
the picket’s motion are used to train a terrain classifier capable of detecting slippery terrain. This approach
demonstrates the value of picket robots in a heterogeneous robot team for exploration or SLAM.

A follow-the-leader approach in [6] demonstrates a team composition similar to picket-observer. The leaders
and children setup in [7] provides a relative localization scheme in 3-DOF; it assumes accurate localization of
the leaders from an external source and localizes of the children robots. This approach is extended in [8] to
localize the leaders. The problem is subdivided into leader localization and then children localization. The
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Figure 1: The above diagrams compare the leapfrog and inchworm strategies. Arrows are drawn to show
motion that happens during a time step. In the Leapfrog method (a-c), all robots are the same type and at each
time step one robot moves while the other two remain stationary. For example during (a) at t = 1, robots 2 and
3 remain stationary while robot 1 moves. This process repeats where the moving robot cycles at each time
step. In our approach, the inchworm method, at least one robot remains stationary while two move. In addition
the picket robots generally remain in front of the observer. For example during (d) the pickets move in front of
the observer and during (e) the observer catches up to the stationary pickets. At (f) picket-1 and the observer
both move leaving picket-2 stationary.

localization of the leaders in [8] requires multiple leader to maintain line of sight to each other. Line of sight
refers to an unobstructed path between a sensor and a robot that is inside the sensor’s field of view. We extend
the approach in [8] to jointly solve the leader and children localization problem without requiring multiple
leaders.

Alternatives to cooperative localization methods have been demonstrated with Khepera robots [9]. They are
5cm in diameter, modular, and can support various sensors. They rely on dead reckoning, global positioning
system (GPS) or fixed global cameras to localize. For unknown, low-light and potentially indoor environments
GPS is not reliable and using/mounting a global camera may not be possible. Other small-scale cooperating
robots have been demonstrated in [10]. They address the localization and coordination problem with a
centralized controller and global camera.

A more recent approach [11] uses range-only sensors with a team of aerial vehicles for SLAM and builds
on the limited sensor approach of [12]. These drones are equipped with on-board computers and lasers. Our
approach is to use inexpensive and disposable picket robots in 6-DOF environment.
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Limited communication capabilities between robots are addressed by [13][14], and this is increasingly critical
in multi-robot teams. Ants robots [15] are small and demonstrate localization capabilities with encoders under
these constraints. In featureless non-planar 6 DOF enviroments these encoders introduce drift from wheel
slippage.

Odometry-based propagation have been successful in 3-DOF fusion architectures [1] [16]. In 6-DOF non-
planar environments, wheel slippage causes systematic biases from encoders. Cell phone quality IMUs are a
low cost alternative to wheel encoders in 6-DOF environments because they provide a motion model even
under slippage. Extensive work in IMU-based propagation in visual-inertial systems has been explored in
[17][18][19]. Monocular pose estimation has been explored in [20][21].

Many algorithms and approaches exist for multi-robot localization. A least-squares optimization approach to
localization with a multi-tier heterogeneous team was employed in [1], which used infrared (IR), GPS, and
sonar modules to produce an estimate at each time step. Graph based approaches have also been used [24][25],
and the graph optimization algorithm in [24] relies on the locations of static landmarks and exploits the sparse
nature of the graph. The use of cluster matching algorithms with IR sensors is presented in [26]. Maximum
a posteriori approaches have also been used for multi-robot localization [27] and are robust to single-point
failures. Existing EKF [28][29][16] or particle filter methods [30][13][31] demonstrate the capability of fusing
data to provide accurate multi-robot localization.

The noted previous works have extensively explored multi-robot localization, their experiments were conducted
with access to significantly more capable robots, availability of GPS or beacons of known pose, 3-DOF settings
with planar environmental assumptions and accurate wheel odometry, requirements of additional stationary
robots, assumptions of light, and existence of landmarks or visual features. In this thesis we relax these
assumptions to localize a team consisting of a single observer robot and multiple picket robots. This is
accomplished using an EKF approach with the inchworm strategy requirement of at least a single stationary
robot at all times. IMU measurements are used for EKF propagation and relative pose estimates are used as an
EKF update.
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2 Approach

General Notation Example
Scalar: lower case x
Vectors: lower case bold x
Matrices: upper case bold X
Identity Matrix I
Zero Matrix 0
Time derivative: dot ˙p = v
Unit quaternion: over-bar ¯q
Quaternion product: ⌦ q1 ⌦ q2

Estimation Notation Example
Estimated value: hat ˆx
Estimation error: tilde ˜x
Rotation correction: �✓

Linear correction: � �p
Rotation error: ˜✓ or �q G

˜✓ or �q
Linear error definition ˜p = p � ˆp
Rotation error definition �q = q ⌦ ˆq�1

Coordinate Frame Notation Example
Coordinate frame: upper case G or {G}
Point in a coordinate frame: point left subscript, frame left superscript G

Bp
Rotation matrix R
Coordinate frame rotation: from left subscript to left superscript B

GR or B
Gq

Subscript Notation Example
Picket robot index, i: right subscript xi
Observer robot index, o: right subscript xo
General robot index, r: right subscript xr
Time index, k: right sub-subscript B

Cpik

Coordinate Frames Example
Global: G or {G}
Observer Body: O or {O}
Picket Body: B or {B}
Camera: C or {C}
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EKF Symbols Definition
⌃ covariance matrix
K Kalman gain
H observation matrix
Hi observation matrix with respect to the ith picket robot
I identity matrix
n Gaussian noise vector
Q observation noise matrix
Qi observation noise matrix with respect to the ith picket robot
r residual
x state vector
�x state correction
�xr state correction with respect to robot r
z observation
zi observation with respect to the ith picket robot

State Symbols Definition
n total number of picket robots
O
G¯q rotation from global to observer body frame
G
B¯qi rotation from global to the ith picket body frame
Gpr position in the global frame with respect to robot r
Gvr velocity in the global frame with respect to robot r
brg bias of the gyroscope with respect to robot r
bra bias of the accelerometer with respect to robot r
G
˜✓r orientation error in the global frame with respect to robot r

IMU Symbols Definition
! rotational velocity vector
a acceleration vector
ng gyroscope white noise
na accelerometer white noise
nwg gyroscope bias driving white noise
nwa accelerometer bias driving white noise

Pose Estimation Symbols Definition
⌃ pixel noise
C LED correspondence
d set of LED centroids
D number of LED centroid detections
J Jacobian of Gauss-Newton minimization on reprojection error
l set of LED configuration
L number of LEDs on a robot
P pose estimate
[

C
O¯qT ,COpT

]

T static camera transform from observer body frame
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The purpose of the multi-robot EKF is to localize all of the robot team’s body frames with respect to a global
reference frame. Each robot is part of the EKF state as described in Section 2.1 An overview of the EKF is
provided in Algorithm 1 and can be described as follows: IMU measurements from both types of robots are
used to propagate the state and covariance of the team with the same IMU motion model. RGB LEDs are
placed with a known configuration on each picket robot such that images captured on the observer can be
used to estimate the relative pose of the robots using [22][23] and Gauss-Newton minimization[20]. Relative
pose is defined as the estimation of a picket’s body frame, position and orientation, with respect to the camera
frame on the observer. The coordinate frames of the team and example LED placement scheme are depicted in
Figure 2. The relative pose estimates are subsequently used in the EKF update step.

The block diagram for the asynchronous data processing is depicted in Figure 3. Each robot in the mobile
systems block receives velocity commands from a controller that dictate the motion of the robot. In practice
this could be a user manually driving the robots or feedback control on the state estimates. The host system
computes relative pose estimate and the EKF. Currently the host is an external laptop but could be the observer
robot in the future. Each robot sends IMU measurements and whether it is moving to the host system sensor
data buffer. In addition, the observer robot transmits camera imagery to the host system to estimate relative
pose. On the host system, an array of n pose estimators compute the relative pose for n picket robots. The
relative pose estimates are then put into the sensor data buffer. The sensor data buffer ensures that messages
can be processed synchronously, in temporal order, despite being received asynchronously. The period at
which the sensor data buffer is processed is addressed in detail in Section 2.5. The buffer is processed in
temporal order, emptied, on a fixed period and the EKF computation is performed with the synchronous data
for each robot according to Algorithm 1. After the data is consumed for EKF computation it is discarded, thus
emptying the buffer for the next period.

A team movement strategy called inchworm is adopted, where the picket robots move ahead of the observer to
scout and then the observer robot catches up. This movement strategy requires at least one stationary robot.
This turn based approach significantly reduces IMU dead-reckoning error and increases the robustness of the
localization algorithm to temporary line of sight as shown in Section 3. An inchworm increment is a set of
motions where the observer and picket robots all move at least once. An example inchworm increment is
shown in Figure 1 (d-e). A stationary robot does not propagate it’s corresponding states or covariances, thus
bounding the uncertainty of the entire team. This enables the stationary robot to function as a temporary visual
landmark and serves as a functional substitute to external visual features. Although external visual features are

Algorithm 1: Cooperative Inchworm Localization (EKF)
Propagation: For each IMU measurement:

• buffer previous IMU measurements received from other robots
• propagate state and covariance for the team using the time-step, buffer and new IMU measurement

(cf. Section 2.2).
Update: For each camera image:

• identify RGB LEDs (cf. Section 2.3.1).
• estimate the relative pose between the visible picket robots and the observer frame with P3P and

Gauss-Newton minimization (cf. Section 2.3.1).
• propagate the state and covariance for the team using the time-step, and most recent IMU

measurements (cf. Section 2.2)
• perform state and covariance update for the team (cf. Section 2.3.2,2.4).

Inchworm requirement: At least one stationary robot at all times
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Figure 2: Coordinate frame overview for a sample team consisting of two robots. The observer, (a), is mounted
with a camera and the picket, (b), with multi-color LED markers.

Figure 3: Block diagram of the asynchronous multi-robot team performing real-time cooperative localization
algorithm. Asynchronous sensor data from the robots is sent over WiFi, sorted into a measurement buffer, and
then used in the EKF propagate and update step. Currently, the host system is an external laptop.

used in traditional visual odometry or visual SLAM systems, they are not consistently available in low light
environments.

One benefit of a stationary picket robot is in situations of complete line of sight failure, where none of the
picket robots are visible to the observer. In this case, a single future re-observation of a stationary robot, i.e.
loop-closure, corrects the IMU dead-reckoning error of the non-stationary robots.

The following sections describe the EKF propagation and update steps in detail. Specifically, Section 2.1
describes the EKF state vector, Section 2.2 describes the IMU motion model, Section 2.3 describes the
camera measurement model, Section 2.4 describes the EKF update and Section 2.5 describes the procedure
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for handling asynchronous measurements. A quaternion reference is provided in Appendix A and an EKF
algorithm reference is provided in Appendix B.

2.1 State Space Representation

The EKF state and accompanying error-state vector stores the state of each single-robot in the multi-robot
team. The state vector components with respect to ith picket robot are:

xi = [

B
G¯qT

i ,
GpT

i ,
GvT

i , bT
ig , bT

ia ]
T 2 R16⇥1 (1)

where B
G¯qT

i 2 R4⇥1, is the unit quaternion representation of the rotation from the global frame {G} to the
body frame {B}, Gpi,

Gvi 2 R3⇥1 are the body frame position and velocity with respect to the global frame,
and big , bia 2 R3⇥1 are the gyroscope and accelerometer biases.

The corresponding error-state components with respect to ith picket robot are:

˜xi = [

G
˜✓
T

i ,
G
˜pT
i ,

G
˜vT
i ,

˜bT

ig ,
˜bT

ia ]
T 2 R15⇥1 (2)

where G
˜✓
T

i is the minimal representation from the error quaternion �¯q ' [

1
2
G
˜✓
T
, 1]T [18] [19]. The non-

quaternion states use the standard additive error model. For example, ˜p = p � ˆp where ˆp is the estimated
position and p is the true position. This results in a reduction by 1 of the dimensions xi as compared with ˜xi.

The observer robot is also a component in the EKF state and error-state vector:

xo = [

O
G¯qT

o ,
GpT

o ,
GvTo , bT

og , bT
oa ]

T 2 R16⇥1

˜xo = [

G
˜✓
T
,G˜pT

o ,
G
˜vT
o ,

˜bT

og ,
˜bT

oa ]
T 2 R15⇥1

(3)

where {O} denotes the observer frame.

Combining the states in Eqns. 1, 2, and 3, the augmented EKF state vector and error-state vector with respect
to the multi-robot team with n pickets becomes:

x = [xTo , xT1 , xT2 , ... xTn ]T 2 R16(n+1)⇥1, ˜x = [

˜xTo , ˜x
T
1 , ˜x

T
2 , ... ˜x

T
n ]

T 2 R15(n+1)⇥1 (4)

where n is the total number of picket robots.

2.2 IMU Propagation Model

The EKF propagation step occurs each time a new IMU measurement from any single-robot or a camera
image is captured on the observer robot. Over time as the team performs inchworm increments, the picket and
observer robots states become correlated. This correlation is preserved under IMU propagation despite the
propagation being calculated independently for each robot. The observer and picket robots utilize the same
linearized motion model. An IMU buffer is used to handle asynchronous IMU measurements as described in
Section 2.5.

The continuous dynamics of the IMU propagation model for a single-robot are [18][19]:

B
G ˙q =

1

2

⌦(!)

B
G¯q

G
˙p =

Gv
G
˙v =

Ga
˙bg = nwg

˙ba = nwa

(5)
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where nwg, nwa are Gaussian white noise vectors for the gyroscope and accelerometer respectively, Ga =

[ax, ay, az]T is the acceleration in the global frame, ! = [!x,!y,!z]
T is the rotational velocity in the body

frame, and

⌦(!) =

"
�b!⇥c !

�!T
0

#
(6)

b!⇥c =

2

64
0 �!z !y

!z 0 �!x

�!y !x 0

3

75 (7)

The discrete time linearized model and the error-state model are derived and discussed with detail in [18][19].
Under this model, IMUs have an additional sensor measurement parameter noise for the gyroscope and
accelerometer defined as ng and na respectively. The parameters {ng, na} model the measurement noise of the
IMU as white noise and {nwg, nwa} model the biases as Brownian motion processes with derivatives driven
by white noise. [18][19]. The IMU values used for our specific robots are discussed in Section 3.1.1.

Critically, stationary robots receive no state or covariance propagation. For example, if the ith picket robot is
stationary between time k and k + 1: ˆxik+1 =

ˆxik . This prevents IMU dead-reckoning drift from moving a
temporary landmark and maintains a bounded covariance block pertaining to the stationary robot.

2.3 Camera Measurement Model

In this section we describe the measurement model of the EKF. In Section 2.3.1 we describe the processing
used to compute relative pose estimates from camera imagery and discuss the benefits and challenges of using
multi-color LEDs on each robot. The relative pose estimates feed directly into the residual and observation
matrix derivation used to compute the EKF update in Section 2.3.2.

2.3.1 Relative Pose Estimation

In this section we describe the process of using a camera image to estimate relative pose from observer to
visible pickets. In this context, relative pose estimation refers to estimating the pose of a visible picket robot
with respect to the camera coordinate frame on board the observer. A relative pose estimate consists of a pose,
quaternion and position in the camera frame, with covariance that are directly used to calculate a residual and
observation matrix which are used in EKF update.

As shown in Figure 2 (b).Four or more active markers, RGB LEDs, are placed at known configurations on
the picket robots to enable relative pose estimation on board the observer. An overview of the relative pose
estimation system is in Figure 4.

The first step consists of LED detection. The camera image is converted to the HSV color space where the
hue and saturation is thresholded. As described in detail in [20], the LED detection has two distinct modes.
In initialization, the entire image is searched for LEDs. Once a single pose estimate has been found from a
previous image, LED detection occurs in a bounding box. An example of these bounding boxes is shown in
Figure 5. The blue boxes represent the bounding boxes, LED detections are marked with crosshairs of the
LED color, and the body frame is overlaid. The bounding box is responsible for feedback loop between “LED
detection” and “pose with covariance” blocks in Figure 4. The key point is that given a previous pose estimate,
computation time can be saved by performing pose estimation on a smaller portion of an image as defined by
the bounding box. The procedure for computing the bounding box and tracking the LEDs in the image frame
is addressed in [20].
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Figure 4: Multi-robot pose estimation for a team consisting of n robots.

A major design decision has to do within the LED correspondence step. The relative pose estimator was
adapted to support multi-color LED configuration rather than single-color or infrared [20]. The first key benefit
is that it increases accuracy and precision of the pose estimator at further ranges. A persistent issue when using
single-color LEDs is that as the picket robot’s distance from the camera increases the LED correspondence
problem becomes harder and inevitably causes repeated errant measurements. This is a direct consequence
of the pixel coordinate locations of the LED detection becoming closer. Multi-color LEDs have occasional
problems with LED correspondence because each LED has a different color. Using multiple colors is especially
valuable when partial occlusions occur and not all LEDs are visible. Single-color LEDs can run into degenerate
geometries under partial occlusions.

In scaling to multiple robots, a multi-color approach eventually has to share colors between robots while this
is not an issue with single-color approach. This is potentially problematic for the multi-color approach. For
the first camera image, the simplest approach is exhaustive searching the LED to robot correspondence. To
avoid exhaustive search in the initialization step, alternative approaches such as power cycling the LEDs in
known patterns or motion patterns could be used as viable alternatives. An example motion pattern is to keep
one picket stationary, and move all of the others such that the stationary LEDs belong to the appropriate robot.
In practice, for small teams, n < 5, this is a non-issue for the multi-color approach. Built into the relative pose
estimation approach from [20] is bounding boxes and tracking in the image plane to reduce computation in
subsequent images. As shown by the blue boxes in Figure 5, the pose estimator only checks for LEDs inside
the bounding box. Once the picket robot for a given pose estimator is found for the first time it ignores the
LEDs from other robots in subsequent frames. This is shown by the non-overlapping blue bounding boxes in
Figure 5 along with the coordinate frames and LED detections.

The second key benefit of the multi-color approach is the computational complexity of the pose estimation
from prospective-3-point P3P algorithm [22] [23]. The computational complexity of the LED correspondence
step in the single-color approach is given by [20]:

4 ·
✓
D

3

◆
L!

(L� 3)!

(8)

where L is the number of LEDs on the robot and D is the number of LED centroid detections. The computa-
tional complexity of the LED correspondence step in the multi-color approach is given by:
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4 ·
✓
D

3

◆
(9)

Starting with Eqns. 8 we can directly derive Eq. 9 as follows. The first computational step in in Eq. 8 is to
find every combination of 3 LEDs [20]. We call a combination of 3 LEDs, an LED cluster. This result in
the

�
D
3

�
term from Eq. 8 and 9. The next computational is checking all permutations of each LED cluster

[20]. The LED correspondence of a cluster, which LED is which on the robot, is unknown in the single-color
case. Hence, all permutations of 3 LEDs, L!

L�3! , must be checked. In the multi-color case, each LED on
a robot has a known unique color. We know the configuration directly without enumerating exhaustively
through L!

L�3! configurations. The constant factor of 4 in Eqns. 8 and 9 comes from the 4 solutions in the
P3P algorithm [22] [23] which is common to both single-color and multi-color approaches. To implement the
multi-color approach we modified the source code from [20] as follows. The first change was the multi-color
LED thresholding previously described with a hue and saturation threshold. The second change was the direct
solution with multi-color LED correspondence. Thus, the correspondence search of our multi-color approach
is L!

L�3! times faster than the single color approach.

With large number of robots the first image is computationally expensive. This is because without the first
pose as a feedback loop, the initialization state of the LED detection passes all of the LEDs in the image rather
than a subset that pertain to the appropriate robot. During this first image, the multi-color naive exhaustive
search correspondence step has computational complexity of D ⇡ L · n from Eq. 9 whereas single-color is
significantly less expensive with D ⇡ L from Eq. 8. For large number of picket robots, n > 5, the previously
mentioned power-cycling or movement strategies can be employed to reduce the computational complexity to
D ⇡ L over a series of images rather than naively exhaustively searching a single image. In subsequent images
where a bounding box has been found for each picket, the LED correspondence improves in performance up
to L!

L�3! times faster if the bounding boxes for all robots are completely non-overlapping. Non-overlapping
bounding boxes occur when the robots are geographically spread out in the image. In multi-robot exploration,
the intended use case of these team dynamic, the geographic spread is consistent such that the speedup is a
achieved in practice. We evaluate the speedup in more detail Section 3.1.2.

From the P3P correspondence checks, Gauss-Newton minimization refines the initial solution from the P3P
algorithm by minimizing reprojection error [20]:

P ⇤
= argmin

P

X

<l,d>2C

||⇡(l, P � d)||2

where P is pose estimate, l is the set of LED configurations, d is the set of LED centroids, C is the LED
correspondences, and ⇡ projects an LED from R3 into R2, the camera image.

In the update step of an EKF framework, the measurement model requires a covariance. We can directly
calculate the pose estimate covariance, Q, with the Jacobian (J) from the Gauss-Newton minimization [20]:

Q = (JT⌃�1J)�1 where ⌃ = I2⇥2 pixels2 (10)

2.3.2 Residual and Observation Matrix Definition

In this section we describe how the relative pose estimates from Section 2.3.1 are used to compute the EKF
update. Following the block diagram from Figure 3, we have previously described the IMU and the pose
estimation blocks. In addition, the propagation portion of the EKF block was covered in Section 2.2. For
simplicity we assume that the measurements are in synchronous order until Section 2.5 such that we can
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Figure 5: Example frame of relative pose estimation. Picket-1’s pose tracker is in (a) and picket-2’s pose
tracker is in (b). Picket-1 and picket-2 share four colors respectively. The bounding boxes shown in blue
correspond to the area where the pose estimator is searching for LEDS. LEDs associate are marked with a
crosshair of their respective color on the associated pose estimator. The body frame of the picket robots are
overlaid with the convention RGB-XYZ.

describe the sensor data buffer last. In order to perform an EKF update, we derive the residual and observation
matrix that relates the relative pose estimates to the state vector as described in Section 2.1. The residual
and the observation matrix are used to calculate the Kalman gain and correction in Section 2.4. Without the
residual and observation matrices the relative pose estimates would serve without use.

An example overview of the multi-robot teams coordinates frames is shown in Figure 2. As a notation reminder,
the camera frame is refered to as {C}, global frame as {G}, observer body as {O} and picket body {B}. The
index i corresponding to the ith picket robot.

A static camera transform is defined as:

[

C
O¯qT ,COpT

]

T 2 R7⇥1 (11)

With respect to a single visible picket robot, i, a relative pose estimate from the camera frame on board the
observer is defined as:

zi = [

B
C¯qT

iz
,BCpT

iz
]

T 2 R7⇥1 (12)

where the additional sub-subscript z refers to a observation in the EKF sense.

In an EKF framework, a residual, r, and a measurement Jacobian, H are used to compute the EKF update. The
standard relationship between the residual and measurement Jacobian is:

r = z � ˆz ⇡ H˜x + n (13)

where n is noise. A prediction of the observation, ˆzi, is used to compute a residual in an EKF. This observation
corresponds to a relative pose for each visible robot. Additionally, the quaternion states in x use the rotational
error definition, �q = q⌦ˆq�1 rather than the standard linear error, ˜p = p�ˆp. This follows from the error-state
definition in Section 2.1.

To compute ˆzi, the state vector estimate is updated with the EKF propagation step. The poses of the picket
robots are then converted from the global frame converted to the camera coordinate frame, {C}, in Eq. 11
to match the relative pose estimate. The rotation of the body frame, {B}, of the ith picket robot with respect
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to the global frame, {G}, is converted to the camera frame , {C}, by composing the camera and observer
transforms. Similarly, the relative position between the camera and the ith picket robot, BGˆpi � O

GˆpO � C
Op , is

converted to the camera frame. These coordinate frame transformations correspond to:

ˆzi =

"
B
C
ˆ

¯qi
B
Cˆpi

#
=

"
B
G
ˆ

¯qi ⌦ G
O
ˆ

¯qO ⌦ O
C
ˆ

¯qO
C
ORO

G
ˆR(

B
Gˆpi � O

GˆpO � C
Op)

#
(14)

where ⌦ represents quaternion multiplication. Note, rotation matrices can be computed directly from the
corresponding quaternions. The definitions for quaternion multiplications and converting quaternions to
rotation matrices are provided in Appendix A. From here onwards, rotation matrices and unit quaternions are
used interchangeably.

The single-robot residuals with respect to each visible pickets robots are calculated according to the definition
Eq. 13:

ri = zi � ˆzi =

"
2 · ⇡(BCˆ

¯q�1
i ⌦ B

C¯qiz
)

B
Cpiz

� B
Cˆpi

#
=

"
2 · ⇡((BGˆ

¯qi ⌦ G
O
ˆ

¯qO ⌦ O
C
ˆ

¯qO)
�1 ⌦ B

C¯qiz
)

B
Cpiz

� C
ORO

G
ˆR(

B
Gˆpi � O

GˆpO � C
Op)

#
(15)

where ⇡ is defined as ⇡([qx, qy, qz, qw]
T
)

T
= [qx, qy, qz]T and utilized as a small angle approximation for

the orientation difference between zi and ˆzi as described in [18][19]. This reduces the dimensionality of
residual, ri 2 R6⇥1, from the measurement, zi 2 R7⇥1 which is a requirement of the indirect EKF [18][19].

The ith measurement Jacobian, Hi, is calculated by applying small angle approximations and taking the partial
derivatives of the ith single-robot residual with respect to the error-state. The non-zero entries are shown below:

ri ' Hi˜x

Hi =

"
�C

G
ˆR 0 0 . . . C

G
ˆR 0 0 . . .

C
G
ˆRb(BGˆpi � O

GˆpO � C
Op)⇥c �C

G
ˆR 0 . . . 0 C

G
ˆR 0 . . .

#
2 R6⇥16(n+1)

˜x =

h
G
˜✓o

G
˜po

G
˜vo · · · G

˜✓i
G
˜pi

G
˜vi · · ·

i
(16)

where C
G
ˆR =

C
ORO

G
ˆR and bq⇥c is the quaternion skew operator from Eq. 7. The higher order and cross terms

are dropped from Hi to satisfy the linear requirement of the EKF.

The states of all picket robots become correlated with the observer robot through the measurement Jacobian.
This enables an individual pose estimate of a picket robot to improve the state estimate of each picket robot.
The correlation is essential to localizing the observer robot because it is unable to observe itself directly with
the camera.

This correlation is essential because it is the reason a single stationary robot is able to mitigate drift IMU
dead-reckoning drift. Starting with the first inchworm increment, the stationary robot functions as a SLAM
landmark and has bounded covariance. Relative to the moving robots during any point of an increment, the
stationary robot has the lowest uncertainty and can correct the IMU propagation error. This is especially
critical in hazardous terrain where IMU propagation has increased noise. Each future inchworm increment can
be viewed as composing the uncertainty of all the past increments.

This correlation builds in automatic loop-closures into the system. If a picket robot is left stationary for an
extended period of time or indefinitely a future re-observation of the robot corrects position drift for all robots
in the team. On a shorter time scale, when the observer loses sight of all pickets, potentially from failed pose
estimation, errant path trajectory, or occlusion, a single re-observation of a stationary picket functions as a loop
closure. This naturally follows from stationary robots states not being propagated so the covariance remains
bounded and adds resiliency to the team.
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2.4 EKF Update

From the camera measurement model the EKF update is performed.

The Kalman gain, K, and covariance update are calculated using standard EKF equations:

K = ⌃k+1|kHT
(H⌃k+1|kHT

+ Q)

�1

⌃k+1|k+1 = (I � KH)⌃k+1|k
(17)

To utilize the standard equations, the overall measurement Jacobian is calculated by vertically stacking the
single-robot measurement Jacobians from the camera measurement model in Eq. 16:

H = [HT
1 ,HT

2 , ... HT
n ]

T 2 R6n⇥16(n+1) (18)

Accordingly the measurements, zi, are stacked identically:

z = [zT1 , zT2 , ... zTn ]T 2 R7n⇥1 (19)

The corresponding overall observation noise is calculated by diagonalizing the uncorrelated relative pose
estimate covariances from Eq. 10:

Q = diag(Q1,Q2, ... Qn) 2 R6n⇥6n (20)

The correction for both observer and picket robots are calculated as:

�x = Kr (21)

For a single-robot, the correction has the form:

�xi = [�✓T
i ,�pT

i ,�vTi ,�bT
ig ,�bT

ia ]
T

�x = [�xT
O,�xT1 , ...�xTi ]T

(22)

The non-quaternion states from the multi-robot state vector utilize standard additive correction. The orientation
components of the correction are converted to quaternion corrections. Quaternion multiplication is applied to
the quaternion states and corrections to complete the state update for the multi-robot team:

ˆxo =

2

666664

O
Gˆq ⌦ �qO
G
ˆp +�pO

G
ˆv +�vO

ˆbg +�bOg

ˆba +�bOa

3

777775
, ˆxi =

2

666664

B
Gˆq ⌦ �qi
G
ˆp +�pi

G
ˆv +�vi

ˆbg +�big
ˆba +�bia

3

777775

ˆx = [

ˆxTO, ˆx
T
1 , ˆx

T
2 , ... ˆx

T
i ]

T

(23)

2.5 Asynchronous System

Multi-robot systems have asynchronous data processing by nature. Kalman Filter approaches require mea-
surements to be in synchronous order. A sensor data buffer that is emptied periodically is a viable solution
to this problem. Shown in Algorithm 2 the buffer goes through a period of time collecting data and then
processes the data on a constant period. When a IMU measurement or relative pose estimate is received, it is
put into the sensor data buffer with insertion sort. Data that precedes the EKF’s current time is discarded. The
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buffer is emptied periodically at which point the data is processed synchronously according to Algorithm 1
and the buffer is cleared. The sensor data buffer is designed to handle the time delay between receiving IMU
measurements from picket robots and the computation delay from receiving an image to producing relative
pose estimates.

Period selection represents a tradeoff between discarding measurements and delays in feedback control.
Shorter periods discard more measurements because the time and computation delay approaches the period.
Longer periods delay feedback control as the EKF propagate and update are only computed when the buffer is
emptied. In practice 10 Hz was used as the sensor data buffer frequency for a 3 robot team.

Algorithm 2: Asynchronous Sensor Data Buffer
while True, Rate = ⌧ do

wait()
compute_messages()
sensor_buffer.empty()

end
Function message_callback(message)

if data.timestamp > filter_time then
sensor_buffer.insertion_sort(data)

end
Function compute_messages()

foreach each measurement in sensor_buffer do
if data.type == IMU then

IMU_buffer.add(data.value)
propagate_imu_state(IMU_buffer)

else if data.type == RELATIVE_POSE then
update_camera(data.value)

end

The IMU model from Section 2.2 uses trapezoidal integration for the accelerometer and Runge Kutta for the
gyroscope [18], [19] which both require the two most recent IMU messages. When the buffer is emptied and
the measurements are processed, the two most recent IMU measurements for each robot are stored.
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3 Results

3.1 Experimental Approach

We apply the localization technique described above to data collected from a team of three small, low-
cost, mobile robots. The Zumy robot1 is a decimeter-scale tracked robot running ROS on board a Linux
computing system with networking and vision processing capability. The observer Zumy supports a Microsoft
Lifecam 3000 webcam with 640⇥ 480 pixels2 at 30 Hz, InvenSense MPU-6050 MEMS IMU at 30 Hz, and
supports WiFi wireless communication. This robot is designed to be easily built from commercially available
off-the-shelf parts for a total cost of ⇡ $350.

The robotic team consists of one observer and two picket robots shown in Figure 2. A Zumy robot with a
camera serves as the observer, and to represent the inexpensive and less capable picket robots, we use Zumy
robots without cameras. Each picket robot is outfitted with an LED “hat” so that it can be visually tracked
by the observer robot. Infrared markers are attached to each Zumy for ground truth from a VICON motion
capture system. The robots are manually driven.

The following subsections address the IMU characteristics, baseline performance of the relative pose estimator,
and filter initialization procedure for the Zumy team.

3.1.1 IMU Characteristics

The IMU noise characteristics of the MPU 6050 2 on board the Zumy are shown in Table 1 with a comparison
to we used in the filter. The same noise parameter was used for all 3-axis of the gyroscope and accelerometer
in the motion model. For example, ng = [�2

g ,�
2
g ,�

2
g ]

T and nwa = [�2
wa,�

2
wa,�

2
wa]

T . The parameters used in
our filter were ⇡ 2⇥, 2.5⇥ the datasheet values to accomodate additional noise of having the IMU directly on
the board without additional dampening. �wg and �wa are equivalent to those used on mobile devices [18]
[19].

Table 1: IMU Parameters
MPU 6050 Datasheet Filter Values

�g (
rad/s) .050 .100

�a (
m/s2) .0039 .0100

�wg (
rad/s2) - .0001

�wa (
m/s3) - .0001

3.1.2 Relative Pose Estimation

One of the primary requirements of relative pose estimation is the ability to work in a variety of lighting
conditions. LEDs are very bright relative to the background of images. False detection rates and computation
time can be improved by setting the webcam exposure to low because of the higher contrast between the
LEDs and background of the image. Camera images from datasets with and without lighting are barely
distinguishable as demonstrated by Figure 6. The performance of the relative pose estimators is identical under
both lighting conditions. Pose measurements were dropped past the range of 3m. For 5 LEDs, there is a 60
times theoretical improvement in LED correspondence step as shown in Eq. 9. In practice, this causes an
approximately 5 times speedup in the multi-color approach as compared to the single-color approach.

The general LED layout of the baseplate on picket-1 is shown in Figure 7 and dimensions with respect to the
center of the baseplate in Table 2. Our setup has a slightly lower baseline, lower resolution camera and less

1

2
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Figure 6: Example image from a dataset with the lights off in (a). Example image from a dataset with lights on
in (b). Lighting condition does not have a noticeable effect on the pose estimator performance.

Figure 7: LED layout for picket-1 shown in Figure 2. The colored circles on the baseplate correspond to the
appropriate color LED. A summary of the exact dimensions relative to the baseplate is in Table 2.

Table 2: LED Placement Picket-1
Purple LED Yellow LED Red LED Blue LED Green LED

x (cm) 7.9 7.5 1.7 -7.4 -7.4
y (cm) 8.7 -9.6 -0.9 4.9 -5.5
z (cm) 7.8 6.9 9.8 5.1 2.2
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accurate LED centroids from the difference in RGB vs infared LEDs. A direct comparison between the system
setup in [20] and our system setup is in Table 3.

For the purposes of our experiments, most inchworm increments were done at pose depth of approximately
2m. This means that when the observer starts moving, the stationary picket robot is approximately 2m away.
At a distance of 2m away the pose tracker position and orientation errors were approximately 5-8cm and 1-4
degrees respectively. The higher uncertainty range as compared to [20] is due to having non-uniform baselines
in each axis. This causes variations in performance depending on pose geometry between the observer and
picket.

3.1.3 Filter Initialization

The multi-robot team initialization was done with a “burn in” approach with the robots at rest. The observer is
defined to start at the origin unless specified otherwise. The velocity of each robot is assumed to be identically
zero for the specified time. The IMU measurements for each robot are averaged. This initializes the bias of the
gyroscope and accelerometer in the state vector in Eq. 1. The initial pose of the picket robots relative to the
observer are found by averaging relative pose estimates. The initial covariance of the bias is given by the Table
1 and the uncertainty of the pose is computed during pose estimation in Eq. 10.

3.2 Planar Base Case

The baseline experimental task was a cooperative U-turn in planar 3-DOF with one observer and two pickets.
The robots were manually driven in the dark. Although the data set was recorded in a 3-DOF environment, the
filter was not constrained with environmental priors.

In Figures 8 and 9, we show the resulting trajectories of this planar U-turn set as compared to ground truth. We
plot the results of using only one picket while discarding the measurements from other, and then the results of
using both pickets. Note that the observer trajectory is not as smooth as that of picket-1 or picket-2, because
the motion of the observer has un-modeled vibration effects that cause motion blur and temporary changes to
the “static” camera transform.

This data set consisted of 10 inchworm increments. End-position drift for using a single picket vs. using two
pickets are shown in Table 4. Fusion refers to the camera and IMU approach described in Section2. Fusion
one picket in Table 4 refers to the case where the filter is run only with the observer and picket-1. In this case,
picket-2 does not exist and the corresponding values in the table are left blank. The other case, the filter is run
on picket-2 and observer is omitted because it does not meet the stationary robot requirement of the inchworm
strategy. The angular drift, which causes error in the future, for the two picket fusion case was less than the one
picket case. The position drift was slightly less for the two picket case, but otherwise consistent with the one
picket case. Although unconstrained to a plane, the angular drift was almost exclusively in yaw. Performing
right or left turns with the robot team introduces more rotational drift than forward or backwards motions. One
source of rotational error is latent biases in the system. The second source of rotational error is correlated
errors in pose estimates when only picket-1 was visible and picket-2 was experiencing temporary line of sight

Table 3: Pose Tracker Comparison
Faessler et al. [20] Our System

Resolution (pixels2) 752x480 640x480
Baseline Radius (cm) 10.9 10.6

LEDs/Robot 5 5
LED Type Infared RGB

⇡ error at 2 m depth 5 cm, 1-2 deg 5-8 cm, 1-4 deg
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Figure 8: A plot of the XY projection of the team’s pose estimates from the EKF along with the ground truth
trajectories. Shown for the base case of the planar U-turn where a single picket is used to perform localization.

Figure 9: A plot of the XY projection of the team’s pose estimates from the EKF along with the ground truth
trajectories. Shown for the base case of the planar U-turn where both pickets are used to perform localization.
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Figure 10: Camera only approach: A plot of the XY projection of the team’s pose estimates along with
the ground truth trajectories, using a camera only approach. Performs notably worse in yaw drift than the
IMU-camera fusion approach shown in Figures 8, 9.

Table 4: Planar Drift Analysis
Camera Only Fusion Fusion
Two Pickets One Picket Two Pickets

O
bs

er
ve

r x (cm) -8.14 0.67 -0.80
y (cm) 16.64 2.58 -1.46
z (cm) 4.09 -5.42 3.07

Angle (�) 9.33 1.89 1.54

Pi
ck

et
-1 x (cm) -13.38 -4.25 -6.23

y (cm) 28.97 -1.79 -1.70
z (cm) 4.53 -7.91 4.39

Angle (�) 4.72 2.64 1.36

Pi
ck

et
-2 x (cm) -1.35 - 9.92

y (cm) 25.40 - -5.65
z (cm) 4.56 - 5.18

Angle (�) 4.56 - 1.88

Table 5: Line of Sight (LoS) Failure Analysis
Fusion Fusion

One Picket Two Pickets
Picket-1 (% images in LoS) 91.6 91.6
Picket-2 (% images in LoS) - 57.5

max LoS failure (sec) 38.10 9.28

(LoS) failure. Without external features or global correction, the yaw errors persist until the end of experiment,
but adding more picket robots helps to mitigate these effects. The jagged regions of the trajectory correspond
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to the observer and picket robots starting or stopping motion. The LED mount and the robots shake during
these transient motions.

A camera only filtering approach was evaluated in Figure 10 as a baseline and it performed significantly worse
with four times as much yaw drift than the IMU plus camera fusion approach. The camera only approach uses
the same formulation of the measurement derived in Section 2.3.2 but without a motion model. Without the
gyroscope, the inchworm localization performs significantly worse in orientation estimation. Using IMU for
dead-reckoning produced drifts of over 100 m for each of the 3 robots. Additionally, removing the stationary
constraint and always propagating the IMU state, produced errors of over 30 m for each of the 3 robots. The
inchworm stationary constraint is essential because the team operates without global correction.

LoS failure occurs when a picket robot is not observed in a camera image regardless of cause. LoS failure
occurs most commonly when a picket robot leaves the field of view of the camera, errant observer trajectories,
partial LED occlusions, or on rare occasions the pose estimator fails to converge. A LoS failure analysis is
shown in Table 5. Note the camera only and fusion two pickets have the same line of sight failure characteristics.
The LoS of Picket-1 was prioritized when manually driving the robots. Picket-2 was frequently out of LoS
only during the turning sections. As noted by the maximum continuous time of LoS failure times, the filter
is able to provide accurate localization during prolonged LoS failure because at least a single robot remains
stationary throughout the duration.

3.3 Non-planar Terrain with Ramp

The second experiment was conducted in an environment featuring non-planar terrain, obstacles, and occlusions.
The robots were manually driven in the environment shown in Figure 11. The 6-DOF planar data set consisted
of 10 inchworm increments: 3 for the rock garden and 7 for the right turn and ramp. Temporary line of sight
failure of both pickets occurred during the rock garden because the pose estimator failed to converge, as the
observer was moving on the rocks. Wheel slippage occurred during the rock garden section. After the rock
garden, picket-2 was deliberately left behind to simulate a hole in the environment and a loss of a robot.

The ground truth trajectories and the EKF pose estimates of the data set are shown in Figures 13 and 14. The
end point drift analysis is shown in Table 6 with a comparison against a camera only approach. The fusion
approach outperformed the camera only for the observer and picket-1. The most critical improvement is the
orientation error of the observer which persists without correction. Picket-2 traveled mostly in a straight line
except during the rock garden, and the endpoint errors of both approaches are almost identical. The drift is
predominately in pitch for each robot. Temporal plots with ground truth are in Figures 15, 16,17 and 18. The
observer’s trajectory is visually less smooth because of motion blur and vibration of the camera, non-static
transform. The EKF position and orientation estimate of the observer stabilizes when it becomes stationary.
The orientation and position drift about each leapfrog increment are similar to random walk processes.
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Figure 11: 6-DOF environment for testing: Robot team is on the right, rock garden is center-right), the green
patch on the bottom-left is a “hole”, and the ramp is on top left.

Figure 12: Starting position of the robot team with view of the rock garden section. The origin is defined as
the starting position of the observer.
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Figure 13: Ground truth trajectories of the multi-robot team are compared against the estimates of the EKF for
the non-planar environment. Axes are scaled equally

.

Figure 14: 2D projection of ground truth trajectories of the multi-robot team are compared against the estimates
of the EKF for the non-planar environment.
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Table 6: Non-Planar Drift Analysis
Camera Only Fusion
Two Pickets Two Pickets

O
bs

er
ve

r x (cm) -4.03 -5.35
y (cm) 13.36 12.67
z (cm) 1.01 0.04

Angle (�) 3.12 2.18
Pi

ck
et

-1 x (cm) -2.11 -4.48
y (cm) 17.9 16.76
z (cm) 1.72 0.10

Angle (�) 6.22 4.29

Pi
ck

et
-2 x (cm) 0.28 0.32

y (cm) -0.20 0.15
z (cm) 5.37 5.37

Angle (�) 3.58 3.59

Figure 15: Position along the x-axis versus time.
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Figure 16: Position along the y-axis versus time.

Figure 17: Position along the z-axis versus time.
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Figure 18: Orientation error versus time.
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4 Conclusion

A heterogeneous team which consists of a single “observer” and multiple “picket” robots is able to navigate a
visually featureless, unknown, non-planar environment as a unit, using only relative pose observations and
IMU measurements to estimate the motion of the team. The IMU and camera fusion approach presented
in this thesis has clear advantages over a simpler camera only approach that outweigh the cost of having
asynchronous communication. This follows from Figures 8, 9, and 10. Although calibration of an IMU
adds many complications, it is a natural choice for environments in which wheel encoders are unreliable. A
camera-only approach heavily relies on line of sight at all times, which is restricting and potentially very
hard to maintain. In addition, motion-model based approaches for EKF propagation allow for the rejection of
errant camera pose estimates from faulty LED detections or P3P correspondence matching. Most importantly,
with a camera only approach, each inchworm increment consisting of picket and observer movement has
an associated positional and rotational drift in 6-DOF. The calibration of the IMU allows the fusion based
approach of using the stationary robots’ gravity vectors to reduce and bound the pitch and roll drift leading to
drift in only 4-DOF.

In the future, we will develop exploration strategies for larger robot teams where of more than 10 robots.
Design considerations in exploration include motions that mitigate yaw drift and team formations for effectively
passing over hazards. Autonomous control with increasing number of robots is far more effective than manual
driving. Simple proportional-integral-derivate (PID) position controllers are insufficient in dealing with
obstacles because the robots are easily flipped upside down or on their sides. A more advanced control scheme
that factors in collaboration of robots is needed for effective exploration in hazardous environments.

Another direction of future interest is multi-team exploration. Picket robots are designed to be cheap and
disposable by nature. They can be left stationary for an indefinite amount of time to create permanent
landmarks. Permanent landmarks are very effective at creating loop closures and finding when independently
exploring teams path cross. However, by leaving a picket robot behind a team operates with less capabilities.
The long term behavior of picket robots, whether leaving them behind as landmarks or keeping them with their
respective team, is an open optimization problem.
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A JPL Quaternion Reference

In this section we define the quaternion, unit quaternion, quaternion functions, and the small angle linearization
used for indirect EKF propagation and update steps [18] [19] [32].

Quaternion definition:

q =

2

6664

qx
qy

qz

qw

3

7775

Unit quaternion definition:

¯q =

q
||q|| =

2

6664

kx sin(✓/2)

ky sin(✓/2)

kz sin(✓/2)

cos(✓/2)

3

7775
=

"
k sin(✓/2)

cos(✓/2)

#

Quaternion Inverse:

¯q�1
=

2

6664

�qx
�qy
�qz
qw

3

7775

Quaternion product:

q ⌦ p =

2

6664

qwpx + qzpy � qypz + qxpw
�qzpx + qwpy + qxpz + qypw

qypx � qxpy + qwpz + qzpw
�qxpx � qypy � qzpz + qwpw

3

7775

Skew operator:

bq⇥c =

2

64
0 �qz qy
qz 0 �qx
�qy qx 0

3

75

Cross product:

q ⇥ p = bq⇥cp =

2

64
qypz � qzpy

qzpx � qxpz
qxpy � qypx

3

75

Convert quaternion to rotation matrix:

R = C(

¯q) =

2

64
q2x � q2

y � q2z + q2
w 2(qxqy + qzqw) 2(qxqz � qyqw)

2(qxqy � qzqw) �q2x + q2y � q2
z + q2w 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz � qxqw) �q2x � q2
y + q2z + q2

w

3

75
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Small angle linearization:
A small angular error, �¯q, in axis angle form can be approximated with the following:

�¯q =

"
k sin(

˜✓/2)

cos(

˜✓/2)

#
⇡

"
1
2
˜✓

1

#

Equivalently in rotation matrix form:

R = C(�¯q) ⇡ I3 � b˜✓⇥c

The linearization stems from cos(x) ⇡ 1, sin(x) ⇡ x for small x.
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B EKF Reference

In this section we list the standard prediction and update equations for an Extended Kalman Filter.

Prediction:
ˆxk|k�1 = f(ˆxk�1|k�1, uk)

⌃k|k�1 = Fk�1⌃k�1|k�1FT
k�1 + Sk

Update:
Kk = ⌃k|k�1HT

k (Hk⌃k|k�1HT
k + Qk)

�1

ˆxk|k =

ˆxk|k�1 + Kk(zk � h(ˆxk|k�1))

⌃k|k = (I � KkHk)⌃k|k�1

Definitions:
ˆxk = state vector
⌃k =covariance matrix
z = measurement vector
u = control input
f = state transition model
h = observation model
F =

@f

@x

����
x̂k�1|k�1,uk

= Jacobian of state transition model

Hk =

@h

@x

����
x̂k|k�1

= Jacobian of observation model

K = Kalman gain
Q = observation noise covariance
S = process noise covariance
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