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Abstract


Data-e�cient Analytics for Optimal Human-Cyber-Physical Systems


by


Ming Jin


Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences
and the Designated Emphasis in


Communication, Computation and Statistics


University of California, Berkeley


Professor Costas J. Spanos, Chair


The goal of this research is to enable optimal human-cyber-physical systems (h-CPS) by data-
e�cient analytics. The capacities of societal-scale infrastructures such as smart buildings and
power grids are rapidly increasing, becoming physical systems capable of cyber computation
that can deliver human-centric services while enhancing e�ciency and resilience. Because
people are central to h-CPS, the first part of this thesis is dedicated to learning about the
human factors, including both human behaviors and preferences. To address the central
challenge of data scarcity, we propose physics-inspired sensing by proxy and a framework
of “weak supervision” to leverage high-level heuristics from domain knowledge. To infer
human preferences, our key insight is to learn a functional abstraction that can rationalize
people’s behaviors. Drawing on this insight, we develop an inverse game theory framework
that determines people’s utility functions by observing how they interact with one another
in a social game to conserve energy. We further propose deep Bayesian inverse reinforcement
learning, which simultaneously learns a motivator representation to expand the capacity
of modeling complex rewards and rationalizes an agent’s sequence of actions to infer its
long-term goals.


Enabled by this contextual awareness of the human, cyber, and physical states, we in-
troduce methods to analyze and enhance system-level e�ciency and resilience. We propose
an energy retail model that enables distributed energy resource utilization and that exploits
demand-side flexibility. The synergy that naturally emerges from integrated optimization of
thermal and electrical energy provision substantially improves e�ciency and economy. While
data empowers the aforementioned h-CPS learning and control, malicious attacks can pose
major security threats. The cyber resilience of power system state estimation is analyzed.
The envisioning process naturally leads to a power grid resilience metric to guide “grid hard-
ening.” While the methods introduced in the thesis can be applied to many h-CPS systems,
this thesis focuses primarily on the implications for smart buildings and smart grid.
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Chapter 1


Introduction


In the coming century, societies collectively face enormous challenges, including massive ur-
banization, aging and unreliable infrastructure, natural resource depletion and cyber space
security.1 None of these challenges can be met without finding ways to overcome the social
and economic barriers to change. Progress in technologies such as the Internet of Things
(IoT), machine learning and advanced computation has caused the world to become more
inclusive, more connected, and more productive. However, to meet the challenges, our
societal-scale systems must become not only more technologically advanced, but also more
sustainable, safer, and form healthier and happier places for people. Consider, for example,
buildings, which consume about 40% of total U.S. energy consumption and provide working
and living spaces for people.2 There is a huge potential for solutions to improve the comfort,
health and productivity of people inside these buildings. From environmental sensors that
monitor indoor environmental quality to wearables that track people’s activities, diverse
sources of information can be fused and filtered to tailor the indoor environment for optimal
worker performance (for example, by creating individualized “environmental bubbles”, by
shifting the color “temperature” of o�ce LED lights, and by dynamically controlling venti-
lation and air conditioning systems in response to both CO2 levels, temperature, and levels
of airborne particulate matter). Ultimately, the goal is to transform human resources (for
example, by revealing communication patterns, engaging workers in organic collaboration,
and by configuring work areas to increase knowledge transfer and prevent knowledge silos).


A human-cyber-physical system (h-CPS) is a physical system with a “cyber brain”
that engages humans in myriad aspects from system operation to service delivery.


Driven by the fundamental push for energy e�ciency, resilience, and human-centric values,
this thesis focuses on using data analytics to achieve optimal h-CPS performance.


Integrating and coordinating the human, cyber and physical components in an h-CPS
is the key to enabling cross-layer design, testing, certification, operation, maintenance, ren-


1“NAE Grand Challenges for Engineering”, National Academy of Engineering, 2008
2“How much energy is consumed in U.S. residential and commercial buildings?”, The U. S. Energy


Information Administration, 2017



http://www.engineeringchallenges.org/challenges.aspx

https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
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ovation and upgradability (Fig. 1.1). Each layer, nevertheless, has its own functions and
characteristics. How do we model and learn about each layer, in particular the human fac-
tor, which can be stochastic, complex and not directly observable? Learning in h-CPS is
often constrained by data availability, how to learn e�ciently in a low data regime? And
how to leverage the learned knowledge to improve the functionality of the overall system?
A typical h-CPS can be viewed as a system of systems (e.g., a building is a system that
includes lighting, heating, ventilation, and air conditioning subsystems, and an energy grid
is a system that includes natural gas, electricity and thermal energy subsystems). How to
exploit the synergy from a system-level integration point of view to improve e�ciency? Last
but not least, with the increasing reliance on data and data analytics, h-CPSs have become
vulnerable to malicious cyberattacks. How to evaluate the vulnerability of the data analytics
and enhance cyber resilience?


Efficiency


Resilience


SecuritySustainability


Agility


Figure 1.1: A human-cyber-physical system organically engages human factors with cyber-
physical infrastructure, creating a cross-layer design and operation to improve overall e�-
ciency, resilience, agility, security and sustainability.
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1.1 Thesis approach


This thesis bridges ideas from machine learning, control theory and optimization
from two distinctive aspects: a focus on human factor learning and human-centric
operation, and the development of data-e�cient algorithms for h-CPSs.


The human factor


In societal-scale systems like buildings and power grids, the human factor refers to the
relevant aspects of people as “users” who receive services, “agents” and “operators” who
influence or operate the system, and “sensors” that monitor the context (Fig. 1.2). Due to
the central role that people occupy, investigating the human factor can potentially provide
in-depth knowledge to identify the root causes of ine�ciency, support the tuning of system
controls, and assess the performance of h-CPS. We adopt a “human-centric design”—a
holistic approach to infer the needs of people, optimize their experiences, and enable the
system to respond to their feedback.


Operator Agents


Users Sensors


! Power system operator
! Remote rescue/control in
hazardous environment
! Semi-autonomous control
for automotive/plant


! Assistive robotics
! Grid demand response
and EV charging
! Urban mobility and road
automation


! Smart building and
indoor environmental
quality control
! Smart city services
! Healthcare


! Crowdsensing
! Social network
interaction and mining
! Citizen science


h-CPS


Figure 1.2: People are central to h-CPS, and play diverse roles in its operation.


The human factor is remarkably distinct from the cyber and physical components of the
system: people are social beings, privacy-sensitive, risk-averse, and non-stationary. Their be-
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haviors can be patterned, yet their individual di↵erences remain unpredictable. With respect
to these special characteristics, the learning approach needs to be tailored accordingly:


• Sensing needs to be simple and non-intrusive to minimize both collection e↵ort and
interference. This idea motivated the proposal of the sensing by proxy paradigm
(Chap. 2);


• Learning needs to be indirect, data-e�cient and in-vivo to reduce bias and cost. This
led to the development of learning under weak supervision (Chap. 3), inverse game
theory (Chap. 4) and deep Bayesian inverse reinforcement learning (Chap. 5);


• Control needs to be soft and incentivized to encourage participation. This underlies
the e�ciency via gamification concept (Chap. 4) and the economic incentive design
for optimal energy retail and dispatch (Chap. 6).


The overall thesis approach to understand, model, infer and influence the human factor
employs inter-disciplinary tools that combine cyber, physical and physiological measurements
with user engagement and behavior (surveys, interactions, simulated performance activities)
to perform commensurate analysis and control development.


The paradigm shift of data-e�cient analytics


Machine learning has risen in part because of big data collection in areas like computer vision,
machine translation, search and advertising. However, in many domains, particularly h-CPS,
data is significantly limited due to availability, cost, and privacy and security concerns. There
is a broad agreement that new techniques are needed that are capable of working with less
data; thus, we are witnessing the emergence of many lines of research in estimation and
prediction [11], [184], [193], computer vision [208], [235], and reinforcement learning [55],
[65], [115], [224].


From the perspective of data analytics in h-CPS, this thesis adopts an approach to tackle
the data e�ciency issue at key steps in the analytics pipeline, from experimental design, data
collection and analysis to model learning, evaluation and online adaptation (Fig. 1.3):


• In an optimal experimental design, the goal is to apply domain knowledge to determine
what data to collect, and where and when to collect it, as well as to determine the
duration of the experiment. For instance, we proposed a method to determine the
duration of an experiment for observing (just) enough samples to test a hypothesis
with a certain level of confidence [106];


• During data collection, instead of relying on a fixed sensor network, we proposed an
“automated mobile sensing” strategy based on a mobile robot that actively takes sam-
ples to infer an event [104];
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• For data analysis, we pursued several approaches to alleviate the need for additional
data, such as incorporating explicit domain knowledge to design e↵ective features [35],
[76], [90], [99], and to make robust estimations via bootstrapping [132];


• The main part of the thesis is dedicated to discussing data-e�cient model learning such
as sensing by proxy, which uses inspirations from physics (Chap. 2), weak supervision,
which leverages high-level heuristic rules (Chap. 3), and a deep Bayesian network,
which achieves simultaneous representation learning and inverse reinforcement learning
(Chap. 5);


• Model adaptation is often needed to generalize knowledge across domains (e.g., we
employed transfer learning to use an existing dataset in new but similar scenarios for
occupancy sensing [99]), and to adapt to changing environments (e.g., we designed
a non-parametric algorithm that exploits both historical data and online samples for
indoor positioning [249]);


• During evaluation, methods like multi-modal fusion and prediction pooling can be used
to leverage heterogeneous data sources and improve accuracy [93], [94], [107], [109].


Online learning
Transfer learning


Evaluation Experiment
design


D
at


a
co


lle
ct


io
n


Data analysis
Model
learning


M
od


el
ad


ap
ta


tio
n


Optimal/reliable
experiment design


Active learning
Bayesian optimization


Explicit domain knowledge
Feature engineering
Exploit structural data knowledge
Bootstrapping
Causal analysis


Weak supervision
Sensing by proxy


Non-parametric methods
Bayesian deep learning


Semi-supervised learning
Data augmentation/fusion


One-shot learning


Prediction pooling
Multi-modal fusion


Data-
efficient
analytics


Figure 1.3: Data e�ciency can be enhanced throughout the analytics pipeline, from experi-
mental design, data collection and analysis to model learning, adaptation and evaluation.
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Overall, the expectations are that a paradigm shift in data-e�cient analytics will enable
a control system to adapt to changing circumstances, detect regime changes with agility,
draw actionable insights from limited amounts of information, and extend the applications
of data-driven analytics to more vital services in h-CPS.


1.2 Contributions


The goal of this thesis is to develop data-e�cient analytics to improve the optimal
performance of human-cyber-physical systems.


Human factor determination by proxy sensing:


Data analytics research for learning about the human factor is in its relative infancy. It
is a challenging task, not just because the accuracy and reliability of sensing depends on
sensor types, locations, data fusion and processing, and so on but also becuase human
perceptions of the sensing system (e.g., that it is non-intrusive and non-interruptive) are
critically important for practical implementation. One key contribution of my thesis is that
it investigates a range of “proxies” for human factor determination, from environmental
parameters (e.g., CO2, magnetic field) [75], [94], [95] and in-vivo feedback (e.g., control
actions) [96], to personal devices (e.g., smartphones) [90], [249] and bio-markers (e.g., skin
temperature and heart rate) [109], as illustrated in Fig. 1.4.


By exploring the wide spectrum of proxies, we can extend the possibilities of hu-
man factor sensing, thus enabling a flexible and customized trade-o↵ among cost,
accuracy, availability, information granularity and privacy.


To derive actionable information from proxy measurements, we have designed data-analytic
algorithms that overcome some inherent drawbacks of proxy sensing, such as delayed re-
sponse to, and indirect/time-changing relations with human factors. Consider occupancy
determination (i.e., people counting in a room) in the context of smart buildings as an ex-
ample. Indoor CO2 is shown to be a good proxy for human presence because people naturally
exhale CO2; however, previous determination methods using CO2 are slow in response to
occupancy changes because CO2 takes time to accumulate or dissipate. Sensing by proxy, as
proposed in [95], is a sensing paradigm based on constitutive models that takes sensor delays
into account and abstracts the underlying physical dynamics to make fast and reliable infer-
ences (Chap. 2). In addition, works like the non-parametric algorithm, which can overcome
the drift in “WiFi fingerprint” signals for robust and persistent indoor positioning [249], and
sensor fusion frameworks based on wearable devices, which can overcome the limitations of
individual sensors for human activity recognition [109], share a common theme of developing
algorithmic solutions to address practical limitations, thus enabling accurate and reliable
proxy sensing.







CHAPTER 1. INTRODUCTION 7


Bio-markers


Survey


In-vivo feedbackEnvironment


Personal device


Example: skin
temperature, humidity,
conductance, heart rate,
HRV, EEG
Characteristics: fine
granularity, personalized,
rich details, real-time


Example: smart phones,
wearable device,
personal computers
Characteristics:
available, personalized,
real-time


Example: self-reported
perception, satisfaction,
well-being, work quality
Characteristics:
sporadic, expensive,
accurate


Example: IEQ, weather,
occupancy density,
events, meta-data
Characteristics: non-
personalized, available


Example: objectively
measured work outputs,
device control actions,
complaints
Characteristics:
informative, real-time,
actionable, accurate


Data


Cost


PrivacyAvailability


Granularity Accuracy


Figure 1.4: Human factors can be revealed through multiple channels and data sources, that
achieve trade-o↵s among cost, accuracy, granularity, availability and privacy.


Label-free learning under weak supervision:


Previous learning methods for human factors predominantly involve supervised learning,
which requires the collection of a su�ciently large labeled dataset for representation of com-
mon scenarios and generalization to unknown situations. This poses a practical challenge,
particularly in the case of human factor determination, because people may be reluctant to
label their data due to privacy concerns or simply be too busy to do so. To overcome this
bottleneck, we have developed algorithms that can be trained with high-level heuristic rules
rather than low-level labels, a form known as “weak supervision.”


By incorporating domain knowledge in the form of high-level heuristics, we can
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alleviate the need to collect low-level labels from people, thus enabling scalable
human factor learning.


Learning under weak supervision is related to—but clearly distinguished from—unsupervised
or semi-supervised learning, particularly in the aspect that it leverages higher level heuristics
as guidance. For example, the multi-view iterative training proposed in [100] uses heuris-
tics to initialize noisy labels for an unlabeled dataset, iteratively refines the “weak” labels,
and rules out absurd predictions to drive down the label noise until a termination condition
is met or the learning converges. The high-level rules often stem from domain knowledge,
and because people’s behavior is fundamentally patterned and structured, such heuristics
abound in numerous applications, from indoor positioning and occupancy detection to ther-
mal comfort monitoring and activity recognition, thus significantly expand the possibilities
of learning while requiring minimal user e↵ort.


Inverse game theory and incentive design:


Previous approaches to designing and operating h-CPS treat people either as siloed agents
or simply neglect the human factors. However, such neglect leads to ine�cient operation
and unexplored potential, because people are an integral part of the h-CPS nexus, and
social interactions are central to human behaviors (see Fig. 1.1). We introduce the idea of
gamification to h-CPS operation by wrapping services (e.g., lighting and temperature control
in a building) as a game among people that explores and exploits the social dimensions
(i.e., peer-pressure, collaboration, risk aversion and reward probability distortion) of human
decision making. We also developed an inverse game theory framework to infer the strategies
encoded in people’s utility functions, further facilitating the design of incentives to nudge
people in the desired direction.


By gamifying the parts of h-CPS operation that closely involve people and by
learning their strategies in a game context, we can tap into the human factor
potential—and further—tailor the incentives to enhance the system’s e�ciency
and resilience.


We lay the foundation for computational gamification by formulating the hierarchical control
architecture as a Stackelberg game, where the participants are modeled as non-cooperative
utility maximizers, and the leader can issue incentives to encourage desired behaviors [190].
Our contributions to inverse game theory include the parametric utility learning frame-
work [190], and its robust version that employs constrained feasible generalized least squares
estimation enhanced by bootstrapping to improve the forecasting capability [132]. We also
extended the framework to model players with multiple modes of strategies using a proba-
bilistic interpretation that combines multiple utility functions. This approach allows us to
capture the fact that players’ utility functions are not static but depend on their current
states [134]. Motivated by observations during the test period, we further analyzed situation
in which people naturally form “coalitions” during a game. This analysis led to proposing
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utility learning frameworks for the coalition game, which is shown to e↵ectively capture the
community dynamics within players [133]. Social games in the h-CPS context can be fun
and also substantially improve energy e�ciency, as our game for lighting controls in a smart
o�ce demonstrates [135], [190]. Furthermore, the utility functions learned during the game
about users can be leveraged for socialized automation even after the game period.


Preference inference from behavior demonstrations:


When attempting to automate a physical system that matches people’s desires, the tradi-
tional approach is to first solicit people’s preferences and then encode them in the system’s
control logic. However, this approach is ine↵ective because there are myriad potential sit-
uations to enumerate, and people’s survey responses contain implicit biases. A learning
system that considers in-vivo feedback is clearly preferable because it can directly observe
how people interact with the system and infer their preferences from their actual behaviors
in specific contexts. This concept is commonly known as inverse reinforcement learning.
However, previous algorithms are either limited in the representational power of complex
preference functions or they require substantial amounts of demonstrations. Our proposal
leverages a deep Bayesian network capable of representing highly complex functions while
retaining trainability.


By simultaneously learning a good representation of the context and a preference
function that rationalizes the behaviors, we can automate the system to match
people’s preferences after observing only limited demonstrations.


Specifically, we model the agent in a Markov decision process using a reward function (i.e.,
preference) that depends on the current state. The agent takes a sequence of actions to
maximize its total reward. Given a set of demonstrations that consist of state-action pairs, as
well as the underlying dynamics of state transitions, the task of inverse reinforcement learning
is to infer the reward function. Our contribution is to employ a deep Gaussian process to
model the reward [96]. Because training the deep Gaussian process involves maximizing the
likelihood function, which is intractable in its exact integral form, we propose an innovative
variational training method that results in a tractable lower bound. The latent layers in
the deep Gaussian process can capture complex feature dynamics and learn an e↵ective
representation, while the Bayesian training procedure acts to regularize the process to prevent
overfitting and improves the generalization performance from limited demonstrations.


Leveraging flexibility and synergy from system integration:


Existing methods have treated subsystem control and optimization as “siloes” where people
are treated as consumers with rigid demands. For example, consider energy systems. We
envision transformations of both electrical and thermal energy into an integrated energy
supply that optimizes its diverse resources from renewables, natural gas and power grid and
leverages local demand flexibility.
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By breaking the traditional “silos” in services and integrating subsystems during
design and operation, we can leverage the flexibility and synergy that naturally
emerge from optimization to improve overall system e�ciency.


This methodology has been employed for both smart building design [92] and microgrid
operation [97], [98]. For smart building technology investment, we propose a platform-based
design approach that abstracts building subsystems (e.g., lighting, HVAC, security, etc.) into
several layers (functional design, module design, and implementation design) to facilitate a
holistic design space exploration [92]. For microgrid operation, we model an integrated energy
system (i.e., electrical and thermal) where diverse energy resources can be interconnected
and coordinated to exploit the synergistic potential. Building owners are modeled as either
utility maximizers who derive satisfaction from energy use [97] or as responsive consumers
whose energy use portfolio consists of both critical demand and curtailable demand that
is sensitive to price changes [98]. By formulating the dispatch problem as a mixed integer
program, synergy and flexibility are naturally encoded in the optimized strategy, which
results in improved e�ciency and economy.


Cyber resilience analysis of h-CPS data analytics:


Data lie at the core of h-CPS and are used ubiquitously for estimation, optimization and
control. Yet existing data analytics are seldom designed to be resilient to adversarial in-
jections, rendering h-CPSs vulnerable to potential cyberattacks. Consider power grid state
estimation, a key procedure conducted on a regular basis to filter and fuse various mea-
surements collected from grid sensors to estimate the complex voltages at system buses. At
present, bad data detection can filter invalid data due to sensor faults, but the filters can be
evaded by systematically injected adversarial noise. Such attacks on data integrity may lead
to system failure and financial loss; thus, they are worthy of analysis.


By envisioning the possible ways in which the integrity of data analytics can be
attacked, we can evaluate a system’s vulnerability and design e↵ective counter-
measures to enhance the resilience of h-CPSs to attacks.


Specifically, we investigate the cyber resilience of power system AC-based state estimation
[102], [103]. It was commonly held that due to the nonlinear physics and nonconvex for-
mulation, it was di�cult (if not impossible) to attack such systems using sparse injections
without being detected. However, our analysis indicated that under convex relaxation by
semidefinite programming, a sparse and stealthy attack can indeed be formed in polynomial
time that can evade the current bad data detector. We thus propose to solve such programs
to evaluate the cyber resilience of existing power systems against potential data integrity
attacks. Our methodological contributions also include the design of a rank-1 penalty matrix
and the derivation of performance bounds for the convexified problem.
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1.3 Thesis overview


Learning about the human factor


People are an integral part of h-CPSs. Consider buildings as an example, where people spend
about 90% of their time in various activities. People assume multiple roles in buildings, from
“users” who simply enjoy building services to “operators” who control building lighting or
temperature, to active “agents” who work and collaborate with colleagues, and “sensors” who
provide feedback about current events. Human-centric values such as comfort, productivity,
health and well-being are high-priorities for building managers.


The goal is to e�ciently and reliably learn about the human factor to improve
human-centric values in the design and operation of h-CPSs.


Specifically, we examine the human factors in the context of a smart building, where people
are engaged in di↵erent activities, and meanwhile relate to/interact with the building en-
vironment, system and other occupants, as illustrated in Fig. 1.5. A common theme that
threads the aspects of learning is the process of deriving actionable intelligence from limited
data and resources (e.g., time, labor and cost).


People-people
Game strategy
Social interactions
Collaboration/coordination


People-self
Activity


Comfort
Productivity


People-environment
Indoor environmental quality


Occupancy determination
Indoor positioning


People-system
Usage behaviors
Demand elasticity
Needs/preferences


Figure 1.5: The multiple dimensions of human factors, delineated by people’s interactions
with the environment, the system, other people and themselves.


People in a built environment: The convergence of ubiquitous sensing and information
technology enhances the awareness of the environment and the activities of people in the
buildings. Traditional approaches rely on static sensor networks deployed at preselected
locations, which often require tedious setup, calibration and maintenance.


We innovate sensing technology, making it more portable and agile.
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Along this line of research, our idea of a Building-in-Briefcase (BiB) is that “everything is in
the briefcase, including the sensors and the router, and you can take the briefcase wherever
you go” [228]. The BiB system is “trivially” easy to deploy in almost any building envi-
ronment, making it easier than ever to monitor building conditions.3 Indoor environmental
quality is critical to people’s comfort, health and well-being, but its measurements often re-
quire expensive sensors that are not scalable to cover a large area. Our proposed “automated
mobile sensing” paradigm solves this issue by leveraging the mobility of a navigation-enabled
sensor-rich robot to actively survey the indoor space [110]. The platform is agile to the dy-
namic changing environment due to its simultaneous localization and automatic mapping
capability, which drives down the sensing infrastructure cost and frees users from laborious
sensor calibration e↵orts. This line of work is based on collaboration with Kevin Weekly,
Shichao Liu, Stefano Schiavon, Alexandre M. Bayen, and Costas J. Spanos.


Managed by the building operating system, data can be collected, stored and processed
for building operation and fault diagnosis. Going beyond controls based on low-level data
alone (such as temperature and illuminance), sensor measurements can be pooled and fused
to reveal high-level human factors.


We enhanced the contextual awareness of buildings by sensing where people are,
what they are doing, and to some extent, how they are feeling.


Along this line of research, we investigated non-intrusive methods to determine room oc-
cupancy, people’s indoor positions, activities and thermal comfort using wireless sensors
(e.g., CO2, smart meters) and mobile sensors (e.g., smart phones, wearables). For occupancy
determination, we proposed sensing by proxy, a system that uses an ordinary di↵erential
equation coupled with a partial di↵erential equation to sense indoor CO2 concentration.
This approach a has faster response rate and higher reliability than previously used machine
learning models, and could be used to improve the e�ciency of demand-controlled venti-
lation systems currently in use [94], [95].4 We also explored the use of smart meter data
to detect home occupancy without any initial information from a home owner [99], [100].
Using a weak supervision approach, the proposed algorithm can tease out detailed power
consumption characteristics when a home is occupied; subsequently, it can determine when
someone is home—even when that person’s patterns are outside the norm.5 The methods
used for this aspect are discussed in Chaps. 2 and 3, and are based on joint work with Kevin
Weekly, Nikos Bekiaris-Liberis, Ruoxi Jia, Alexandre M. Bayen, and Costas J. Spanos.


The WiFi signals from smartphones can be utilized to sense people’s indoor positions ;
however, such signals often su↵er from signal drift and are unstable. To address these
issues, we developed a nonparametric method to adapt to the signal dynamics online [249],
optimize the locations of WiFi routers [101], and investigated incorporating the floorplan to
regularize the estimation [93], all of which have been demonstrated to improve the positioning


3“Brains for buildings, packaged in a smart briefcase”, Berkeley Engineering magazine, Oct, 2017
4‘CO2 sensor occupancy detection”, CO2Meter.com, Feb, 2017
5“What does your smart meter know about you?”, IEEE Spectrum, Jun, 2017



http://engineering.berkeley.edu/2017/10/brains-buildings-packaged-smart-briefcase

https://www.co2meter.com/blogs/news/co2-sensor-occupancy-detection

https://spectrum.ieee.org/view-from-the-valley/energy/the-smarter-grid/what-does-your-smart-meter-know-about-you?
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accuracy. In addition, we proposed a new system based on sound that is essentially a
form of echolocation. The system can identify di↵erent rooms based on a relatively small
dataset gathered in advance [90].6 Regarding the determination of people’s indoor activities
and thermal comfort, we pioneered the work of tapping into the physiological signals of
human body such as skin temperature and heart rate collected by wearable devices, and
demonstrated prototypes that can make reliable inferences about indoor activities (e.g.,
sitting, running, climbing the stairs) and thermal comfort (i.e., individual responses to the
current temperature conditions) [109]. While this part of our work, in collaboration with
Han Zou, Ruoxi Jia, Shichao Liu, Stefano Schiavon, Lihua Xie and Costas J. Spanos, is not
included in detail in this thesis, it is closely related to the methods introduced in Chaps. 2
and 3.


Utility learning in a social game: People are social beings who naturally interact with
one another to connect, compete or collaborate. When immersed in an entertaining, real-
world game, people tend to adopt a strategy that arises from their preferences and social
inclinations and leads to certain actions. Economists have long studied and applied “nudges”
such as default e↵ect and distorted perception of reward probability to tap into social di-
mensions for marketing and policy making purposes. Utility functions are abstractions of
individual preferences that have been widely used to rationalize people’s behaviors.


In a social game designed to improve energy e�ciency, we learned people’s utility
functions as a means to identify their strategies, predict their actions, and gently
“nudge” them toward a desired outcome.


A social game platform consisting of an intelligent lighting system and an online web portal
was set up in the Center for Research in Energy Systems Transformation at UC Berkeley,
where a group of about 20 people participated in a game to reduce lighting usage with a
probability of winning a monetary reward. Chap. 4 of this thesis is dedicated to describing
the theoretical framework of inverse game theory that rationalizes the observations we made
during the game. We also introduce a hierarchical control structure based on a Stackelberg
game and an incentive design scheme to advance building manager’s goal [190]. This part
of the thesis involved joint work with Ioannis C. Konstantakopoulos, Lillian J. Ratli↵, S.
Shankar Sastry, and Costas J. Spanos.


Preferences revealed from interactions: People interact with the system on a regular
basis, such as adjusting the indoor lighting and temperature setpoint, or playing music that
matches their mood while making a Doppio Espresso. Our key insight in Chap. 5 is to exploit
the unique data resulting from personalized interactions with the system to gain insight into
individuals’ likes and dislikes, without explicitly querying them for such information.


6“An indoor positioning system based on echolocation”, MIT Technology Review, Jul, 2014



https://www.technologyreview.com/s/529176/an-indoor-positioning-system-based-on-echolocation/
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We rationalized an agent’s actions by modeling its preferences using a deep Bayesian
network trained with inverse reinforcement learning.


In our approach, the world is modeled as a Markov decision process, where the next state
depends on the current state and action, and an agent takes a sequence of actions to collect
rewards. Reinforcement learning solves for an optimal policy that maximizes the reward
and assumes that the reward is given. Inverse reinforcement learning solves the opposite
problem—reward specification, given the set of demonstrations. The advantage of using a
deep Bayesian network to model the reward is that it can handle complexity through its
representation power, while remaining sample-e�cient due to the Bayesian regularization.
Together with Andreas Damianou, Pieter Abbeel, and Costas J. Spanos, we introduced the
deep Gaussian process for inverse reinforcement learning (DGP-IRL) algorithm and proposed
a novel training method based on variational inequality [96].


Sensing by proxy [Ch.2]


Weak supervision [Ch.3]


Deep Bayesian IRL [Ch.5]


Sensing &
control


Inverse game theory [Ch.4]Leverage synergy [Ch.6]


Cyber vulnerability analysis [Ch.7]


Efficiency


Resilience


Awareness


Figure 1.6: Thesis overview: chapters are organized with respect to the four key h-CPS
modules: sensing and control, awareness, e�ciency, and resilience.
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System-level e�ciency and resilience


Advancing from a traditional cyber-physical system view to one that respects the human
factor in its design and operation, the first part of the thesis focuses on learning about the
human factor and developing high sample-e�ciency methods that enhance contextual aware-
ness from ubiquitous sensing. This naturally leads to a quest for approaches that further
enhance the e�ciency and resilience, two important metrics of h-CPS optimal performance.


Our key insight is to address the e�ciency and resilience of h-CPS from a holis-
tic perspective that weaves the cyber, physical and human factors into a single
tapestry.


Thus, the second part of the thesis centers on the analysis and optimization of system-
level e�ciency and resilience, completing the four pillars of h-CPS performance, namely
sensing and control, awareness, e�ciency and resilience. The logical connections of the
thesis chapters are illustrated in Fig. 1.6. Overall, we identify the four pillars as general
modules in h-CPS operation.


E�ciency via flexibility and synergy: E�ciency stems from the use of the best avail-
able resources. In a typical h-CPS like a smart grid, e�ciency means the ability to consume
renewable energy when it is abundant, the ability to switch between di↵erent fuel sources
such as coal and natural gas, and the ability to store surplus energy for use during peak
hours—an operation called economic dispatch or unit commitment. However, renewable en-
ergy is stochastic and intermittent, and the system is limited by its capacity. In Chap. 6,
we identify strategies to tap into the potentials of human factors through economic incen-
tives, namely to price energy for the retail market, and of the synergy that stems from
amalgamating the electricity market with the thermal energy market [97], [98], [105].


In a foreseeable energy retail market, we exploit the flexibility of end-user demand
and the synergy from thermal-electrical coordination to promote renewable energy
integration and system economy.


For example, our strategy capitalizes on the so-called “spark spread,” which is the di↵erence
between the prices of natural gas and electricity. When the electricity price from the grid
peaks, the district energy system operator can rely on its combined heat and power plant,
which burns natural gas to produce electricity. Waste heat can be recycled to provide heating
capacity or channeled to an absorption chiller to provide cooling. Our district system model
is capable of exploring such interconnected energy flows among distributed energy resources
and central plants; synergistic dispatch arises naturally from the optimization. Based on
the economic theory of demand elasticity, we also optimize retail rates to achieve mutual
benefits for both the customers and the retailer. This portion of the thesis contributes to the
toolset that I developed while I was working at the Lawrence Berkeley National Laboratory
with Wei Feng, Chris Marnay, Ping Liu and Costas J. Spanos.
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Vulnerability of data analytics against cyberattacks: h-CPS operation has become
increasingly reliant on data analytics results. Up to this point, the thesis has discussed
approaches to enhance contextual awareness and system e�ciency under an implicit as-
sumption of trustworthy data. However, incoming data might be insecure at its source,
during transmission, or at the point of analysis. If data integrity were to be compromised
by an adversary, the vulnerability of the data analytics currently in use is unknown.


We analyzed the vulnerability of power grid state estimation against potential
cyberattack as a means to evaluate cyber resilience of the grid.


First, we showed that to conduct such an attack with limited numbers of sensor modifications
and without being detected, the adversary needs to solve an optimization problem that is
non-linear, non-convex and discrete, implying the computational barrier that naturally exists
for state estimation based on an AC model. But it is far from the truth that such problem
is tenable; we showed that an innovative relaxation based on semidefinite programming was
able to provide a near-global stealthy and sparse solution to the original attack problem.
For any grid topology and sensing infrastructure, the solution (e.g., the feasibility of the
problem, or the number of sensors that need to be altered) can therefore serve as a realistic
metric for power grid cyber resilience [102], [103]. The materials presented in Chap. 7 are
based on joint work with Javad Lavaei and Karl H. Johansson.
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Part I


Learning about the human factor
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Chapter 2


Sensing by proxy


Human behaviors are often not directly observable. Nevertheless, the influences of humans
on the environment can often be characterized and measured. Thus, by obtaining ambient
information (such as those listed in Fig. 1.4), it is possible to non-intrusively discern the
hidden factors without interfering with people’s daily routines. To this end, we propose
sensing by proxy, a sensing paradigm based on constitutive models that capture the physical
processes of human influences on environmental parameters in order to infer the human
factors.


2.1 System model with distributed sensor delays


Sensing by proxy employs a state observer applicable to multiple-input, multiple-output
(MIMO), linear time-invariant (LTI) systems, where the sensor output channels have dis-
tributed delays. We consider the following system:


ẋ(t) = Ax(t) +Ku(t) (2.1)


yi(t) =


Z Di


0


Qi(�)x(t� �)d�, for i = 1, ...,m (2.2)


where x(t) 2 Rn is the state at time t > 0, u(t) 2 Rp is the input, yi(t) is the i-th sensor
output (out of m in total) with delay Di > 0, and A 2 Rn⇥n, K 2 Rn⇥p and Qi 2 R1⇥n are
coe�cient matrices.


Such a system can be viewed as the dual of a predictor-based controller for a system whose
input has a delayed e↵ect on the state, a problem that has been studied in population dy-
namics [10] and liquid mono-propellant rocket motors [237] to name just a few. In this realm
of research, delay compensation for linear [10], [137], [237] and nonlinear systems [120], [157]
has been achieved using predictor-based techniques. Sensing by proxy employs an observer
equivalent to the predictor feedback design for the case of distributed sensor delays, and
the exponential convergence of the estimation error is guaranteed (see Theorem 2.1). The
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main di↵erence of our approach and prior work is the use of infinite-dimensional forwarding-
backstepping transformation of the infinite-dimensional actuator states, because the tradi-
tional backstepping method is inapplicable for both single-input systems with distributed
input delays and for multi-input systems with di↵erent delays. This enables us to apply
an ordinary di↵erential equation (ODE) coupled with a partial di↵erential equation (PDE)
system to capture the temporal and spatial dynamics and e↵ectively regularizes the inference
output.


Sensing by proxy is clearly di↵erent from the discriminative models in ML widely used to
infer human behaviours, which assume that measurements are independent and identically
distributed—and perhaps more markedly, that a su�ciently large dataset of labeled data
is available for model training [138], [140], [147], [242]. Compiling such labeled datasets is
often impractical because they require substantial human labor and cost to record the ground
truth data, whose collection processes inevitably raise privacy concerns [88]. To reduce the
data-labeling costs, sensing by proxy is derived from physical models that capture the human
influence through succinct representations (i.e., the parameters can be identified with a small
amount of data), and are thus more accurate and reliable for inference.


2.2 Sensing by proxy methodology


Sensing by proxy is a physics-inspired inference method capable of real-time detection. The
core is an observer-based detector for a MIMO, LTI system with distributed sensor delays.


Proxy design and modeling


A proxy is a phenomenon that reveals about human factors to some extent. To steamline
the presentation, we will focus on environmental parameters, such as temperature, humidity,
and CO2, but the framework is applicable (can be extended) to other phenomena. We model
the dynamics of the proxy parameters using a MIMO, LTI system with distributed delays
in the sensing channels.


The source term, x(t) 2 Rm, comprises m proxy measurements at time t in their respec-
tive units. The state x(t) is the output of an LTI system whose input, v(t) 2 Rm represents
the (unknown) humans’ e↵ect. The relation is characterized by the following ODE:


ẋ(t) = �Ax(t) + v(t), (2.3)


where the matrix A 2 Rm⇥m characterizes the inertia of proxy phenomena. The human
factors change at discrete events, and remain relatively constant between two adjacent events.
This is represented by the form of a piece-wise constant signal,


v̇(t) = 0, (2.4)


which is congruent with our experimental observation that the response of the proxy param-
eters due to changes of the human’s presence has some similarities with the step response of
a low-pass filter.
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The ODE is coupled with a PDE that models the evolution of the proxy variables:


ut(s, t) = �Bus(s, t) +BXx(t) (2.5)


u(0, t) = U0(t) (2.6)


u(1, t) = U1(t) (2.7)


where u(s, t) 2 Rm denotes the proxy at time t � 0 and for 0  s  1, ut(s, t),us(s, t) are
standard notations for partial derivatives with respect to t and s, and U0(t),U1(t) 2 Rm


are the sensor measurements at time t. For a physical process, parameter matrix B =
diag(b1, . . . , bm) represents the speed of convection, and BX 2 Rm⇥m is the rate of dispersion.


Proxy inference


The latent human factors v(t) can be inferred by proxy measurements U0(t) and U1(t). For


compactness, define z(t) =



x(t)
v(t)


�
2 R2m, and rewrite (2.3) and (2.4) as:


ż(t) = Āz(t), (2.8)


where Ā =



�A Im⇥m


0m⇥m 0m⇥m


�
with A from (2.3). Similarly, (2.5) can be recasted as:


ut(s, t) = �Bus(s, t) +BZz(t), (2.9)


where BZ =
⇥
BX 0m⇥m


⇤
is the augmented matrix of BX . Consider the following observer:


ût(s, t) = �Bûs(s, t) +BZ ẑ(t) + r(s)L (U1(t)� û(1, t)) (2.10)


û(0, t) = U0(t) (2.11)


˙̂z(t) = Āẑ(t) + L
�
U1(t)� û(1, t)


�
(2.12)


where r(s) 2 Rm⇥2m, L 2 R2m⇥m are yet to be determined, and U0(t), U1(t) are the
measurements of environmental parameters at two separate locations. We use [B̂X ]i,: to


denote the i-th row of B̂X , and the hat notation to indicate estimated quanity. The following
result guarantees the exponential convergence rate of human factor estimation error [17] [94]:


Theorem 2.1. Consider the system (2.10)–(2.12), where


r(s) =
⇥
r1(s) · · · rm(s)


⇤>
(2.13)


ri(s) =


 
Ci �


Z (1�s)/bi


0


[BZ ]i,:e
�Āydy


!
eĀ(1�s)/bi (2.14)


Ci =


Z 1/bi


0


[BZ ]i,:e
�Ā�d�, i = 1, ...,m (2.15)
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Let the pair (Ā, C̄) be observable, where C̄ =


2


64
C1
...


Cm


3


75 2 Rm⇥2m, and choose L such that


the matrix Ā � LC̄ is Hurwitz. Then, for any z(0) 2 R2m, ui(s, t), ûi(s, t) 2 L2(0, 1),
i = 1, ...,m, where ui is the i-th component of u, there exist positive constants � and  such
that the following holds for all t � 0


⌦(t)  ⌦(0)e��t, (2.16)


where


⌦(t) =


Z 1


0


ku(s, t)� û(s, t)k2ds+ kz(t)� ẑ(t)k2. (2.17)


Proof. See Appendix A.1.


2.3 Application: occupancy detection in buildings


Intelligent buildings are conscious about both its occupants and environments in order to
optimize user comfort and energy e�ciency. Occupancy information (i.e., how many people
in each room) can be used in several value-added ways:


• To monitor occupant-specific energy usage: total energy consumption can be assigned
to individuals using occupancy data [32], and information such as individual energy
e�ciency and entropy can be used to classify occupants consumption behaviors [77];


• To improve occupant behavior modeling : study how the connectivity and interaction
among people can be used to improve energy saving [33], or use the data to validate
existing or future occupancy models for di↵erent types of buildings [84], [91];


• To drive real-time building automatic controls and adaptive services, such as demand-
controlled ventilation, and “geo-fencing” [5], [48], [61], [183], [201].


Occupancy can be detected in various ways, such as passive infrared (PIR) [4], [5], cam-
era [28], [48], [61], [85], sound [90], [213], [220], pressure sensors [170], electricity meters [100],
[130], and environmental measurements like particulate matters (PM2.5), CO2, temperature,
and humidity [24], [50], [227], [139], and even wireless tra�cs [21], [155], [201], [250]. They
can be broadly categorized based on the information granularity (as listed in Table 2.1):


• Level 1 and 2 – presence (whether the room is occupied or not) and count (how many
people are inside). Almost all the sensors can provide presence information, but several
methods fail to provide counts, such as PIR, which can only sense the motion.


• Level 3 – activity (what the occupants are engaged in, e.g., having a meeting or working
on a computer). This can be provided by, for example, ambient sound or PC usage.
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• Level 4 and 5 – identity and tracking (of each occupant), such as using camera, sound
and WiFi signal for indoor localization.


Based on this taxonomy, we provide a simple, working definition of “non-intrusiveness”:


Occupancy sensors are non-intrusive if they can provide information up to the
activity level (Level 3) but not the identity or tracking levels (Level 4 and 5).


Table 2.1: Survey of occupancy sensing methods and their capability of providing di↵erent
levels of information granularity.


Ref. Presence Count Activity Identity Tracking


CO2 [24], [25], [50], [139], [161] 3 3 7 7 7


PIR [4], [5] 3 7 7 7 7


Power meter [100], [130] 3 7 3 7 7


Pressure [170] 3 3 7 3 7


Camera [28], [48], [61], [85] 3 3 3 3 3


Sound [90], [213], [220] 3 3 3 3 3


Wireless signal [21],[155], [201], [250] 3 3 7 3 3


PC usage [215] 3 3 3 3 7


Sensing by proxy for occupancy detection


Among all the “non-intrusive” sensing parameters, indoor CO2 represents a good proxy for
occupancy, as humans naturally exhale CO2 and are the main source of its indoor varia-
tions. CO2 concentration is a good indicator for indoor air quality, which has been found
to influence productivity [66], [70]. CO2 sensors have also been integrated in some commer-
cial sensors and heating, ventilation, and air conditioning (HVAC) systems. However, CO2


based detection might be influenced by people’s individual characteristics like gender and
physiques, or opening/closing of windows. And previous methods have slow response rate
to occupancy changes (e.g., when the air feels “stu↵y”, the occupants might be there for at
least some time) [24], [25], [50], [139], [161]. Sensing by proxy represents a new category of
methods 1,


The proposed “Sensing by proxy” model is more accurate than previously used
machine learning models, and could be used to improve the e�ciency of Demand-
Controlled Ventilation systems (DCV) currently in use.


1‘CO2 Sensor Occupancy Detection”, CO2Meter.com, Feb, 2017 [Accessed: 12/1/2017]



https://www.co2meter.com/blogs/news/co2-sensor-occupancy-detection
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Sensing by proxy is based on a physical model that captures the dynamics of CO2 con-
centration inside a typical room, where the fresh air is brought in at the supply vent and
exhausted at the return vent on the ceilings (see Fig. 2.1a). As people breath, the warm air
that contains CO2 rises like a bubble to the ceilings through mixing and convection e↵ects.
A CO2 sensor is placed at the exhaust vent to measure the occupancy e↵ects. More specif-
ically, as reduced from (2.3) – (2.6), an ordinary di↵erential equation coupled with partial
di↵erential equation is used to capture the CO2 dynamics:


ẋ(t) = �ax(t) + v(t) (2.18)


v̇(t) = 0 (2.19)


ut(s, t) = �bus(s, t) + bXx(t) (2.20)


u(0, t) = U0(t) (2.21)


u(1, t) = U1(t) (2.22)


where both x(t) and v(t) are scalars. As illustrated in Fig. 2.1b, the ODE (2.18) is used to
model human’s CO2 production on the concentration in their local vicinity, and the e↵ect
rate is specified by the time constant, a (unit is 1/second). As delineated in the PDE, the
highly concentrated air of CO2 then di↵uses to the environment at rate bX (1/second), and
is exhausted by the return vent through convection at rate b (1/second).


The corresponding observer can be obtained by the general result in Theorem 2.1:


ût(s, t) = �bûs(s, t) +
⇥
bX 0


⇤ x̂(t)
v̂(t)


�
+ r(s)



L1


L2


� �
U1(t)� û(1, t)


�
(2.23)


û(0, t) = U0(t) (2.24)

˙̂x(t)
˙̂v(t)


�
=



�a 1
0 0


� 
x̂(t)
v̂(t)


�
+



L1


L2


� �
U1(t)� û(1, t)


�
(2.25)


where r(s) =
⇥
⇡1(s) ⇡2(s)


⇤
, and


⇡1(s) =
bX
a


�
e


a
b
s � 1


�
(2.26)


⇡2(s) =
bX
ba


s+
bX
a2
�
1� e


a
b
s
�


(2.27)


Corollary 2.1. Consider the system (2.18)–(2.22) and the observer (2.23)–(2.27). Let bX 6=
0 and choose L1, L2 such that the matrix Ā�



L1


L2


�
C1 is Hurwitz, where Ā =



�a 1
0 0


�
, and


C1 =
⇥
⇡1(1) ⇡2(1)


⇤
. Then for any x(0), x̂(0), v(0), v̂(0) 2 R, there exists positive constant


� and  such that the following holds for all t � 0,


⌦(t)  ⌦(0)e��t (2.28)


⌦(t) =


Z 1


0


�
u(s, t)� û(s, t)


�2
ds+


�
x(t)� x̂(t)


�2
+
�
v(t)� v̂(t)


�2
(2.29)
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Proof. See Appendix A.1.


The corresponding occupancy detection algorithm is illustrated in Fig. 2.2. To implement
Sensing by proxy, the CO2 concentration is measured at the exhaust vent, and applied
the observer (2.23) – (2.25) to obtain the CO2 production rate v̂(t) (unit is ppm/second).
This rate is then passed through a median filter for smoothing, and normalized by human
breathing rate (0.183ppm/(second·person)) to obtain occupancy estimation.2


U1(t) U0(t)


u(s,t), 0<s<1


v(t)


Warm CO2 air “bubble”


u(1,t) u(0,t)


(a) Physical representation of a typical room.


CO2 gen. rate
from breath: v(t)


CO2 in local
vicinity: x(t)


Diffusion rate: bx


Fresh air
CO2 : U0(t)


Exhaust air
CO2 : U1(t)


Environment
CO2 : u(s,t)


Convection rate: b


(b) Illustration of human CO2 e↵ect.


Figure 2.1: Physical illustrations of the model. Fresh air with CO2 level U0(t) = 400 ppm
enters the room from the supply vent, and exits the room after convection and mixing with
human breath v(t). The condition of the air at the return vent U1(t) is measured.


PDE-ODE
Observer


Exhaust
vent CO2


Occupancy
Median
Filter


v(t) Normalize by
breath rate


Figure 2.2: Sensing by proxy algorithm illustration.


Experimental evaluation


The testbed is set up in a conference room at UC Berkeley, where a single CO2 sensor is
placed at the return vent (Fig. 2.3). To conduct the experiment, we asked several people to
stay in and out of the room following a predefined schedule, and measured the indoor CO2


2The source code and data can be accessed at: https://github.com/jinming99/Sensing-by-proxy



https://github.com/jinming99/Sensing-by-proxy
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concentration continuously. Fig. 2.4a shows how the CO2 concentration evolved over time.
We can notice that when the number of occupants was high, there was a high rate of increase
and also a high level of concentration of CO2. But, it took time for CO2 to accumulate or
deplete in space. Consequently, di↵erent occupancy levels can correspond to similar CO2


concentration, and vice versa, which fundamentally limits most ML methods or rule-based
methods that rely on CO2 concentration level.


On the contrary, Sensing by proxy captured the indoor CO2 dynamics, as shown in
Fig. 2.4a. Given the occupancy (input v(t)), the PDE–ODE model (2.18) – (2.22) accurately
predicted about the CO2 concentration in the space (output u(1, t), see the “simulated
return” vent CO2 in Fig. 2.4a). This consequently results in better estimation of occupancy,
as shown in Fig. 2.4b. Sensing by proxy has a fairly fast response to occupancy changes, and
the inference is quite close to the ground truth. This method is also robust to non-uniformity
of physiques, as exhibited in the subject group. We also evaluated Sensing by proxy (SbP)
against other ML methods, such as Bayes Net, Multi-layer Perceptron (MLP), and found
that the performance is much better on average according to the root mean squared error
metric. Fig. 2.5 compares the actual estimation by Sensing by proxy with Bayes Net, which
is best among ML methods, where we plot the percentage of the estimated occupancy vs.
the true occupancy. While Bayes Net sometimes made large errors, as confounded by the
CO2 levels (for example, when the room is full of people, it indicates that the room is vacant,
so the ventilation is actually turned o↵), Sensing by proxy is reliable almost all the time,
and the error is typically bounded by 1 person. This is important for e�cient ventilation
strategies to ensure occupant comfort.


Air supply


Air return (sensor location)
(a)


(b)


Figure 2.3: (a) The testbed is a conference room of size 14⇥ 10⇥ 9 ft3, equipped with a full
ventilation system including an air return vent and air supply vent, as illustrated in Fig. 2.1a.
(b) CO2 sensor up close, which is placed at multiple locations (supply vent, return vent, and
blackboard); however, for occupancy detection in real-time, we only need to measure the
CO2 level at the return vent.
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(a) Given occupancy, simulate return vent CO2.
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(b) Given CO2 measurement, infer occupancy.


Figure 2.4: Simulation result and occupancy detection by SbP for Exp. C. Parameters:
a = 0.06 sec�1, b = 2.5 sec�1, bX = 1.5 sec�1. The response time is less than few minutes.
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Figure 2.5: Visualization of confusion matrix for Bayes Net (left) and SbP (right), where
the position of blue circles represents the true occupancy (x-axis) and estimated occupancy
(y-axis), and the size indicates occurrence frequency. Bayes Net makes nonnegligible errors
(red rectangle), whereas SbP performs reliably with errors bounded within the ±1 region.


Table 2.2: Comparison of root mean-squared error of estimation with other models in occu-
pants experiments. Details for Exp. A, B, C and ML methods can be found in [94].


Näıve Bayes Bayes Net MLP RBF Logistic SMO AdaBoost SbP


Exp. A 1.3 1.2 1.0 1.1 1.1 1.2 1.6 0.6
Exp. B 0.7 0.7 0.6 0.7 0.6 0.6 0.7 0.5
Exp. C 1.7 1.5 1.6 1.6 1.5 1.6 2.4 0.6
Average 1.2 1.1 1.1 1.1 1.1 1.1 1.6 0.6
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2.4 Chapter summary


The sensing by proxy paradigm described in this chapter is a latent variable determination
method based on proxy measurements governed by constitutive models. Because physical
phenomena often require time to take e↵ect, we model the system with ordinary di↵erential
equations with sensing delays and show that it is equivalent to an ordinary di↵erential
equation coupled with a partial di↵erential equation. A system observer is designed that
uses multiple time series of sensor measurements as input and outputs an estimate of the
latent state—which is the goal of inference.


We demonstrated an application for occupancy determination in a built environment.
Occupancy determination is critical for enabling demand-controlled ventilation and lighting
and to enhance the contextual awareness of building automation systems. The results showed
that by monitoring the CO2 concentration inside a room, sensing by proxy can reliably and
quickly determine the number of people inside the room. The system outperformed typical
machine learning algorithms, particularly with regard to its robustness in the presence of
large errors; sensing by proxy managed to limit the magnitude of error to 1 person, while the
comparison algorithms resulted in large errors that can directly lead to ine�cient operations.


One key aspect in which sensing by proxy di↵ers from other data-driven algorithms is its
sample e�ciency. Because sensing by proxy requires only a few model parameters, training
the model is relatively easy and fast. Because the model is constitutive and physics-based, the
parameters can be also estimated using simulation programs. Another promising approach
to estimate the model is to employ methods of learning under weak supervision as discussed
in Chap. 3. The idea behind this approach is to use high-level heuristic rules to initialize
the occupancy data. For example, a rule might indicate high occupancy when the CO2 level
exceeds 3,000 ppm, or a rule might use intrinsic information such as meeting calendars to
indicate the number of people in the conference room. Using such heuristics can substantially
reduce the need to collect occupancy ground truth and simplify practical implementations.
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Chapter 3


Learning under weak supervision


We switch gears to take a di↵erent approach to data-e�cient analytics that can poten-
tially reduce or even eliminate the need for labeled data by leveraging weak supervision
heuristics/constraints (such as human behavioral patterns, physical rules and biological con-
straints). Contemporary supervised learning algorithms (such as deep learning) rely on
various strategies to search for an empirical risk minimizer (ERM) [19]:


f̂ = argmin
f2F


1


n


nX


i=1


l(f(xi), yi), (3.1)


where F is a function space, l : Y ⇥ Y ! R is a loss function (such as the 0-1 loss
l01(y, f(x)) = 1(y 6= f(x)) for classification), xi 2 X and yi 2 Y are the input (a fea-
ture vector) and output (a label) of the i-th data point, which together form an n-point
dataset S = {(x1, y1), · · · , (xn, yn)}. The regret characterizes how “poorly” the learner has
performed compared to the performance of the best learner in the class:


�Rl,F(f) = Rl,F(f)| {z }
risk of f


� inf
f 02F


Rl,F(f
0),


| {z }
risk of the best detector


(3.2)


where Rl,F(f) = Ef2F [l(y, f(x))] is the risk of model f , which is empirically minimized in
ERM (3.1). A tight upper bound on the regret suggests that the algorithm has performance
guarantee when used in practice. While breakthroughs in AI thus far are highly dependent
on the availability of massive datasets (such as IBM Watson winning at Jeopardy! (2011)
after 8.6M documents were made accessible by Wikipedia and Project Gutenberg (2010) and
Google’s GoogLeNet (2014) after the release of 1.5M labeled images by ImageNet (2010)),
there is an emerging consensus among ML researchers that acquiring labeled data is a major
bottleneck to further advances. This chapter is dedicated to describing a new learning
paradigm based on weak supervision. We also describe algorithms to enable learning under
weak supervision.
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3.1 Overview of weak supervision


The idea of learning under weak supervision is simple:


Rather than soliciting low-level, accurate, but expensive labels from users or
domain experts, one can employ higher-level, noisier—but cheaper (even free)—
heuristics to initialize an unlabeled dataset.


In its general form a heuristic appears as conditional probability distribution P(ỹ|t(x)), where
t(·) is any transformation on the feature x 2 X (such as taking a subset or low-dimensional
embedding). Throughout this section, we use ỹ to denote a weak label generated from
heuristics, and y to refer to a ground-truth label. By accepting and recognizing the noise
in the “weak labels”, we can then modify the methods used to train the algorithm (such
as the iterative training procedure in Sec. 3.2 or the surrogate loss approach in Sec. 3.3) to
construct a more refined and customized model.


By and large, many lines of ML research have shared the fundamental goal of making
e↵ective use of scarce labeled data and abundant unlabeled data (see Fig. 3.1). A broad cat-
egory of methods termed unsupervised learning aims at uncovering the hidden structures in
data by learning compressed yet informative representations. Typical examples are principle
component analysis [112], the EM algorithm for clustering [27], low-dimensional embed-
ding [199] causal analysis [244], and, more recently, the auto-encoder [126] and generative
adversarial nets [73]. Another broad category is semi-supervised learning, which leverages
unlabeled data (as a regularizer during training, or to learn a compact representation) to
improve the e�cacy of labeled data (see [29] for a good overview). Active learning also
recognizes the di�culty of obtaining high-quality labels; instead, it solicits only the most
valuable labels to improve the model’s decision-making capability [54]. Transfer learning
tackles the data e�ciency issue by transferring data or models across several datasets, or
by jointly learning several tasks to regularize the model [26], [180]. Various methods have


Domain
expert


Labeled data ( ±1 classes)
Un-labeled data


Traditional
supervision


Hand label


Semi-supervised
learning


Structural
assumptions


Source data from a
different domain


Transfer
learning


Target


Source


Weak
supervision


Heuristics


Weakly
labeled data


Figure 3.1: Overview of four lines of ML to tackle the data scarsity issue.







CHAPTER 3. LEARNING UNDER WEAK SUPERVISION 30


generalized supervised learning to allow for more label possibilities. In multiple-instance
learning, a label is provided for a group of objects that holds for at least one object in the
group [46]. Labels can be also expressed as ranks among candidates, such as the use of
clickthrough data to improve the retrieval quality of search engines [111]. While the bound-
aries of these categories are blurry and hybrid approaches are possible (and often beneficial
in practice), the main di↵erence of learning under weak supervision is the incorporation of
high-level knowledge into the learning process.


An emerging body of literature has employed weak supervision rules in learning. The
use of explicit constraints on the output space to force it to have a particular meaning or
semantics or to follow certain physical laws have been demonstrated to significantly reduce
the need for labeled training data [208]. Data programming uses a labeling function to
automatically process unlabeled data and learns a generative model to resolve the output of
these labeling functions [193]. A probabilistic framework has been described to model the
noise simultaneously during training [235]. In the following, we will describe both a multi-
view iterative training (MIT) algorithm that refines noisy labels during each iteration until
convergence (Sec. 3.2), and a surrogate loss approach that accounts for noisy distributions
by modifying the loss function to be unbiased in expectation (Sec. 3.3).


Because human behaviors are fundamentally patterned and structured [114], learning
under weak supervision has wide applications to h-CPSs. We will present a use case involving
smart meter data analytics that automatically learns occupant behaviors from raw smart
meter data streams.


3.2 Multi-view iterative training


We assume that a task can be partitioned into several “views”, each carries some relevant
information: X = X1⇥· · ·⇥Xk, where X is the entire information space and Xj is the
j-th view (out of k in total). For instance, to infer about the individual thermal acceptance
(i.e., whether the user feels the thermal condition is acceptable or not [35]), one “view”
can be the time of the day, one “view” can be the set of physiological signals collected
from personal wearables, one “view” can be the activity picked up by smart phones, yet
another “view” can be the control signals issued to the user’s personal fans/heaters (in-vivo
feedback). We recognize that some views might be easier to support heuristics than others
(for example, when the personal heater is turned on, it is likely that the user is discontented
with the current condition. And the person might regularly feel hot or cold during the early
morning/late night.) Define the set of heuristics as H, which consists of rules hj for view Xj


that can be in the form of a conditional probability hj(ỹ,x) = P(ỹ|tj(x)) for tj(x) 2 Xj that
processes the relevant view for each data point. The combined heuristic is thus


h(ỹ,x) =


Q
hj2H hj(ỹ,x)P


ỹ


Q
hj2H hj(ỹ,x)


. (3.3)
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The key idea of multiview-iterative training (MIT) is to initialize the unlabeled data
points probabilistically with heuristic rules, and iteratively refine the labels until convergence
or some stopping signals [99]. For each iteration, we resolve the conflicts by the majority
rule and probabilistic update. To streamline the presentation, we focus on the case of binary
classification (the label y is either +1 or �1), but the procedure is applicable to the general
multi-class classification:


1. Initialization: Initialize training set labelsby the multi-view heuristics h in (3.3).


2. Multiview training: For rounds t 2 {1, 2, ...}, train the classifier using all the views
(either in a single classifier or multiple classifiers pooled by the majority rule), and
determine the new “guesses” for the data, partitioned into L̂�1 = {(xi, ỹi)|ỹi = �1}
and L̂+1 = {(xi, ỹi)|ỹi = +1} for data with weak labels of �1 and +1, respectively.


3. Weak label updates: Perform the following update:


Lt+1
y = {Lt


y \ L̂y} [ Sample{Lt
y�L̂y;↵y}, for y 2 {�1,+1} (3.4)


where Lt
y = {(xi, ỹi)|ỹi = y} is the set of data whose weak labels are y in the current


round t, Lt
y�L̂y is the symmetric di↵erence set operation, and ↵y 2 (0, 1) is the


sampling rate for label y 2 {�1,+1} that controls the probabilistic update.


4. Stopping condition: Stop the iteration whenever the labels do not change, or the
condition (3.8) in Theorem 3.2 is satisfied.


The weak label update rule (3.4) keeps the weak labels that are “agreed upon” in two
successive rounds {Lt


y \ L̂y}, and resolves the conflicts by randomly sampling ↵y portion of


the weak labels from the “controversial” set {Lt
y�L̂y}. The parameter ↵y thus controls the


trade-o↵ between “learning speed” and “weak label noise”. The stopping condition (3.8)
is triggered when it seems unlikely that additional iterations can improve the accuracy, as
proved in Theorem 3.2. MIT operates in an environment where the noise in the training set
can not be ignored, which has been studied in the probably approximately correct (PAC)
framework [221].


Theorem 3.1. [221] If we draw a sequence of


n � 2


✏2 (1� 2⌘)2
log


✓
2N


�


◆
(3.5)


samples from a distribution and find any hypothesis f̂ 2 F that minimizes disagreement
with the training labels, where ✏ is the hypothesis worst-case classification error rate, ⌘ is the
upper bound on the training noise rate, N is the number of possible hypotheses in the class
F , and � is the desired confidence level, then the following PAC property is satisfied:


P
⇣
d
�
f̂ , f ⇤� � ✏


⌘
 � (3.6)
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where d(·, ·) is the sum over the probability of elements from the symmetric di↵erence set
labeled by hypothesis f̂ and the optimal decision f ⇤.


The above theorem provides a high probability bound on the classification error ✏ that
depends on the training noise rate ⌘ to be estimated. We partition the weak labeled set
Lt


�1 = Lt
�1,X [ Lt


�1,⇥ by the correctly-labeled set Lt
�1,X (true negative) and incorrectly-


labeled set Lt
�1,⇥ (false negative), and similarly we partition Lt


+1 = Lt
+1,X [ Lt


+1,⇥ by the
correctly-labeled set Lt


+1,X (true positive) and incorrectly-labeled set Lt
+1,⇥ (false positive).


Let U t = U t
�1 [ U t


+1 be a partition of the unlabeled dataset. Then the training noise rate ⌘t
exhibited in the weakly labeled dataset Lt


+1 [ Lt
�1 is given by:


⌘t =
|Lt


�1,⇥|+ |Lt
+1,⇥|


|Lt
�1|+ |Lt


+1|
, (3.7)


where |Lt
+1| denote the set cardinality. Let ✏t be the error rate of the current classification


model to be estimated. Then the training noise rate ⌘t and model classification error rate ✏t
in the t-th iteration can be estimated as follows.


Lemma 3.1. The training noise rate ⌘t and classification error rate ✏t can be estimated with
the access to any two of the following (approximated) quantities:


1. The number of negative samples in the dataset |Lt
�1,X|+ |Lt


+1,⇥|+ |U t
�1|


2. The number of negative samples in the labeled set |Lt
�1,X|+ |Lt


+1,⇥|


3. The number of positive samples in the dataset |Lt
+1,X|+ |Lt


�1,⇥|+ |U t
+1|


4. The number of positive samples in the labeled set |Lt
+1,X|+ |Lt


�1,⇥|


5. The misclassification rate for the positive samples |Lt
�1,⇥|/


�
|Lt


�1,⇥|+ |Lt
+1,X|


�


6. The misclassification rate for the negative samples |Lt
+1,⇥|/


�
|Lt


+1,⇥|+ |Lt
�1,X|


�


Proof. See Appendix A.2.


Based on Lemma 3.1, we can estimate the classification noise rate ⌘t in the t-th round,
which can be then used in the stopping rule to guarantee that the performance of the
classification can only improve in each round before program termination.


Theorem 3.2. The gap between the learned and optimal hypotheses in the PAC property
(3.6) will decrease with high probability in each iteration with suitable sampling rates, ↵�1


and ↵+1, whenever the following condition is satisfied:
�
|Lt+1


�1 |+ |Lt+1
+1 |


�
(1� 2⌘t+1)


2 >
�
|Lt


�1|+ |Lt
+1|


�
(1� 2⌘t)


2 (3.8)


where
�
|Lt+1


�1 |+ |Lt+1
+1 |


�
is the total number of weakly labeled samples in round t+1, and ⌘t+1


is the (estimated) training noise rate.
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Proof. See Appendix A.2.


Theorem 3.2 suggests a stopping indicator as follows:


I
��


|Lt+1
�1 |+ |Lt+1


+1 |
�
(1� 2⌘t+1)


2 
�
|Lt


�1|+ |Lt
+1|


�
(1� 2⌘t)


2 (3.9)


which evaluates to 1 when the condition in (3.8) is violated. This can be evaluated during
training time after each iteration. Frequent violations of (3.8) might be a strong indication
to stop the algorithm and avoid potential deterioration, since it is no longer guaranteed that
the weak labels are better in the next iteration. It is possible to apply this result to other
iterative algorithms with weak supervision.


3.3 Learning with surrogate loss


The MIT algorithm proposed in Sec. 3.2 modifies the training procedure to be iterative in
order to improve the high-level heuristics provided by weak supervision. Another approach
is to modify the loss function directly to account for the presence of label noise. Let ⇢�1 =
P(ỹ = +1|y = �1) and ⇢+1 = P(ỹ = �1|y = +1) denote the conditional label noise, where
y is the truth label and ỹ is the weak label. We can design the loss function as a substitute
for the original loss to “clean up” the noise in expectation. The procedure of learning with
surrogate loss is described below (details can be found in [99]):


1. Initialization: Initialize training set labels by the multi-view heuristics h in (3.3).


2. Cross-validation: For each candidate ✓ 2 ⇥CV (the hyperparameter ✓ can be (⇢+1, ⇢�1)
in (3.10) or � in (3.11)), obtain the empirical risk following the standard cross-validation
procedure using the surrogate loss, then select the best candidate ✓̂.


3. Learning with surrogate loss: Using the surrogate loss, train the model with labels
initialized by h and obtain the predicted labels.


The initialization step is the same as MIT. The cross-validation step is used to select the
best candidate in the set ⇥CV , since the conditional noise rates of weak labels ⇢+1 and ⇢�1


are unknown. Once the best hyperparameters are identified, the corresponding surrogate
loss function can be minimized during training. We consider two surrogate loss functions –
one depends on the conditional noise rates [196]:


l̃(f(x), ỹ) =
(1� ⇢�ỹ)l(f(x), ỹ)� ⇢ỹl(f(x),�ỹ)


1� ⇢+1 � ⇢�1
(3.10)


where ⇢ỹ is the conditional noise rate, and l(·, ·) is the original loss function; and one depends
on the average label noise [171]:


l�(f(x), ỹ) = (1� �)I{ỹ = +1}l(f(x), ỹ) + �I{ỹ = �1}l(�f(x), ỹ) (3.11)
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where � is the weight chosen according to the conditional noise rates 1�⇢+1+⇢�1


2 , and I{}
is the identity function which evaluates to 1 when the inside condition is satisfied. The
surrogate loss functions are designed such that the procedure of seeking the empirical risk
minimizer (3.1) under the weakly supervised distribution is as if we are working with the
original loss function under the “clean” distribution, where the labels are the ground truth
(the derivation of (3.10) is obtained in the Appendix A.2). The next theorem provides an
upper bound on the regret (3.2) using the surrogate loss function (3.10).


Theorem 3.3 ([171]). Let l(t, y) be L-Lipschitz in t for every y, then with probability at
least 1� �, and f̂ = argminf2F


1
n


Pn
i=1 l̃(f(xi), yi) be the ERM with the weakly-labeled data,


�Rl,F(f̂)  4L⇢R(F) + 2


r
log(1/�)


2n
(3.12)


where R(F) = E
xi,✏i


⇥
supf2F


1
n


Pn
i=1 ✏if(xi)


⇤
is the Rademacher complexity of the function


class F with ✏i as the i.i.d. Rademacher (symmetric Bernoulli) random variables [14], and
L⇢  2L/(1� ⇢+1 � ⇢�1) is the Lipschitz constant of l̃ given in (3.10).


Theorem 3.3 suggests that the upper bound on regret decreases as we have more sam-
ples, whose infimum depends on the Lipschitz constant and complexity of the function class
only. As the proposed procedure acts like “exploration in the darkness”, the result o↵ers
performance guarantee; nevertheless, the precondition is specified that neither ⇢±1 is greater
than 0.5. Indeed, the bound improves as the conditional noise rates reduce. We will refer
to (3.10) as the unbiased loss (U. L.), since the expectation of the original loss l(·, ·) under
the true label distribution is identical to that of the surrogate loss l̃(·, ·) under the weak
label distribution [196]. The �-weighted label-dependent loss is designed in a similar fashion,
except that the risk Rl� ,F(f) now is an a�ne transformation of the original risk Rl,F(f):


Lemma 3.2 ([171]). There exists a constant B that is independent of f such that by choosing
� = 1�⇢+1+⇢�1


2 and A⇢ =
1�⇢+1�⇢�1


2 , and for all functions f 2 F ,


Rl� ,F(f) = A⇢Rl,F(f) + B (3.13)


Intuitively, the loss puts more weights on data with labels that have higher confidence of
being correct. With the chosen �, optimization with l̃� is equivalent to that with the original
loss due to the a�ne relation (3.13). The next theorem gives performance guarantee.


Theorem 3.4 ([171]). Let L be the Lipschitz constant for l(·, ·) as before, and let


f̂ = argmin
f2F


1


n


nX


i=1


l̃�(f(xi), yi), (3.14)


then with probability at least 1� �,


�Rl̃� ,D̃,F(f̂)  4LR(F) + 2


r
log(1/�)


2n
(3.15)


where R(F) is the Rademacher complexity.
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There are two keys for using the surrogate loss approach in the weak supervision frame-
work. First, the initialization of the training set is based on a common occupancy schedule,
which provides useful information for human behavior mining. Secondly, the surrogate loss
is designed such that the expectation of the objective under the weak label distribution is
equivalent to that of the original problem. Hence, the solution is una↵ected by the noise
introduced in the weak heuristic rules.


3.4 Application: smart meter data analytics


Utility companies had installed 65 million smart meters as of 2015, covering more than half
of U.S. households, and the number was projected to reach 90 million by 2020 [216]. Smart
meter data contain rich and useful information, and have been anlyzed to carry out tasks like
load disaggregation [89], [119], [182], household activity recognition [31], [100], [108], user
segmentation for demand response [9], [118], and electricity theft detection [43], to name
just a few. Among all the applications, knowing whether the user is at home is useful not
just for home automation and intrusion detection [159], but also for utilities, who can call
or show up to perform necessary maintenance when knowing that the user is home, and not
waste personnel time trying to reach the user (see Fig. 3.2 for an overview of the smart meter
presence detection system).
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Figure 3.2: Smart meter data for household presence detection.


While previous works that employed power measurements for home occupancy detection
assumed abundant labeled data from households [30], [50], [129], [130], [167], [238], collecting
the occupancy data is laborious and di�cult (if not impossible). A systematic approach that
relaxes the requirement of occupancy data collection is desirable for practical reasons. The
method “PresenceSense” was the first to infer home occupancy without collecting any labeled
data from users [100], based on three main observations (see Fig. 3.3):


1. Energy consumption di↵ers markedly when a building is occupied or vacant.


2. O�ce (residential) buildings are usually vacant (present) during non-business hours.
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Figure 3.3: Daily power consumption of (a) an occupant in a commercial building, and (b)
a household. The red color indicates user presence.


3. As noted by Nobel laureate Kahneman in his book “Thinking, Fast and Slow” [114],
people’s behaviors are patterned (the “slow” system) with spontaneous deviations (the
“fast” system). These patterns are consistent over time.


The above observations imply a high-level weak supervision heuristic that assigns high prob-
ability of vacancy (occupancy) during non-business hours for commercial (residential) build-
ings, and high probability of occupancy (vacancy) during the rest of the day. This eliminates
the need to collect presence data for an extended period of time to train the algorithms, as
has been done in most previous studies [30], [50], [129], [130], [238]. As reported by an IEEE
Spectrum article on our work,1


In a recent paper, Jin and his colleagues demonstrated that machine learning
systems can be trained to detect occupancy without any initial information from
a home owner. “You just need a smart meter that listens over time,” he says,
“as well as the basic assumption that di↵erent types of buildings have di↵erent
occupancy patterns, for example, commercial buildings are typically occupied
during the day and not the night and homes are the opposite.” Using this
assumption, the machine learning algorithms were able to tease out more detailed
characteristics about power consumption when a home is occupied; they then are
able to tell when someone is home or not, even when that person’s patterns are
outside the norm.


Experimental evaluation


To conduct experiments of learning under weak supervision, we used the publicly available
Electricity Consumption and Occupancy (ECO) dataset, which consists of fine-grained elec-
tricity and occupancy measurements for five Swiss households (id: r1, ..., r5) during summer


1“What Does Your Smart Meter Know About You?”, IEEE Spectrum, Jun, 2017 [Accessed: 12/1/2017]



https://spectrum.ieee.org/view-from-the-valley/energy/the-smarter-grid/what-does-your-smart-meter-know-about-you?
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of 2012 [130]. We also employed the UMass Smart* home dataset [30] from two homes during
the summer in western Massachusetts, and the personal cubicle (PC) dataset for 5 users in
a campus building [100]. Aggregate power was collected by o↵-the-shelf digital electricity
meters at a sampling rate of 1 Hz for ECO and Smart*. Occupancy information was entered
manually by residents using the tablet mounted near the main entrance. Details about the
households (number of occupants, types of devices, etc.) and data preprocessing techniques
were described in [30], [100], [130].


Results for PC and ECO are reported in Figs. 3.4 and 3.5 for MIT, unbiased loss (U. L.,
(3.10)), and �-weighted loss (3.11). As illustrated in Fig. 3.6, we implemented Näıve Bayes
in each iteration of MIT, and terminated the iteration based on the stopping conditions.
LibSVM was used to realize the �-weighted loss with radial basis function (RBF) kernel.
The logistic loss was selected for the unbiased loss, optimized by Nesterov’s accelerated
gradient method [174]. For comparison, we implemented simple threshold models are based
on magnitudes (Mag/Th), changes in power magnitude (Chg/Th), and changes in percentage
(Prc/Th), where the thresholds can be optimized over the training set as detailed in [100].
We also used the static schedule as the baseline, which indicates occupancy (vacancy) from
8am to 6pm for the PC (ECO), and vacancy (occupancy) for the rest of the day.


We employed the Matthews correlation coe�cient (MCC), as suggested in [130] as a
balanced measure of the prediction quality to overcome the di�culties in comparing di↵erent
sizes of positive and negative instances:


MCC =
TP ⇥ TN � FP ⇥ FNp


(TP + FP )(TP + FN)(TN + FP )(TN + FN)


where TP, TN, FP, FN are the numbers of true positive instances, true negative instances,
false positive instances (estimation is occupancy when the ground truth vacancy, ), and false
negative instances (estimation is vacancywhen the ground truth is occupancy). The MCC
returns a value between -1 and +1: a coe�cient of +1 represents a perfect prediction, a
coe�cient of 0 represents random prediction, and a coe�cient of -1 indicates total disagree-
ment between prediction and observation. The true positve rate (TP/(TP + FN)) and
true negative rate (TN/(TN + FP )) were also calculated. Generally, all methods deliver
satisfactory performances compared to the static schedule and threshold models. However,
due to the occupancy variability and device diversity, ECO is more challenging than PC.
According to the true negative rate (TNR) and true positive rate (TPR), the �-weighted
loss seems to be a better absence detector, and unbiased loss excels at presence detection
(Fig. 3.5). Overall, the proposed NL methods significantly outperformed the baseline models
in the PC dataset, but only slightly exceeded the baseline models in the ECO dataset. The
TNR/TPR rates report for ECO (Fig. 3.5) indicates that the weak supervision methods
had relatively low TNR, implying that more mistakes were made when the households are
vacant. This is mainly due to: (1) user behavior – sometimes the power consumption was
high or has considerable fluctuations despite user absence, (2) the balance of dataset – users
in some ECO households tended to be present in late mornings or early afternoons, as shown
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in the example traces (Figs. 3.3 and 3.7), resulting in more instances of occupancy than va-
cancy data [130]. While (1) illustrates the fundamental limitation in the proposed approach
of using only power data to indicate user presence, (2) can be resolved by using existing
methods such as putting a larger penalty on vacancy misclassification to improve the TNR
performance [149].


Learning under weak supervision: u17


Figure 3.4: Results for user u17 in the PC dataset by 10-fold cross-validation, including
baseline methods, MIT, �-weighted, and unbiased losses.


Learning under weak supervision: r3


Figure 3.5: Results for household r3 in the ECO dataset by 10-fold cross-validation.


Examples of real-time occupancy detection are demonstrated in Fig. 3.7 for both com-
mercial and residential buildings. The results suggest that power-based detectors mainly
relied on power magnitudes, power transient features (short-term fluctuation captured by
standard deviation) and power transition features (changes in power magnitudes in a sus-
tained period of time). Compared to thresholding methods, the weakly supervised models
were more e↵ective in occupancy detection, especially for the ECO dataset where periodic
power surges and diversified device usage patterns were common. In Fig. 3.8, we further
evaluated the weak supervision model by plotting the estimated and true occupancy profile,
which consists of the probability of the user being present at each hour throughout the day.
Closely following the ground truth, the learned occupancy schedule significantly improved
over the weak heuristics provided by for initialization.


Furthermore, we compared the best results from previous work that also used the ECO
and Smart* datasets for evaluation [30], [129], [130]. For supervised learning, the methods
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MIT misclassification rate: u17


Figure 3.6: Misclassification rate during training iterations of MIT for u17 in PC. As the user
can only observe the stopping conditions (red region), the user can terminate the training
to avoid deterioration [100].


Table 3.1: Comparison of our results with prior art [30], [129], [130], showing the overall
accuracy metric. The best performances in the weak supervision category are underlined.


Supervised learning Weak supervision


HMM[130] SVM-PCA[129] HMM-PCA[129] NIOM[30] MIT �-weighted U. L.


r1 0.83 0.83 0.83 0.74 0.83 0.83
r2 0.82 0.92 0.90 0.74 0.75 0.77
r3 0.81 0.83 0.82 0.76 0.78 0.77
hA 0.79 0.81 0.78 0.84
hB 0.91 0.85 0.84 0.89


include hidden Markov model (HMM) [130], HMM-PCA, and SVM-PCA [129], which em-
ployed principal component analysis (PCA) for feature selections. For unsupervised learning,
a threshold-based non-intrusive occupancy monitoring (NIOM) algorithm has been proposed,
which assumed constant presence during nighttime, and then clustered the occupancy based
on the deviation from nighttime power features [30]. One drawback with this approach is
that the nighttime power usage used to set the thresholds may not be an accurate indicator
for occupancy. We addressed this problem by two distinct ideas: MIT used a rough occu-
pancy schedule to initialize the data, and then refined the labels by exploiting the power
information; the surrogate loss methods recognized the noisy labels in initialized data, and
customized loss functions to reduce the adverse e↵ects. Table 3.1 indicates that MIT and sur-
rogate loss methods outperformed NIOM for Home A (hA), but slightly underperformed for
Home B (hB). Further, they remained consistently competitive for ECO dataset as compared
to supervised learning methods [30], [129], [130].
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(a) Commercial building occupancy detection.
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(b) Residential building occupancy detection.


Figure 3.7: Examples of presence detection for (a) u17 and (b) r2 with MIT and �-weighted
loss, respectively. The power traces are shown on the top, whereas the bottom plots the true
(red) and estimated (blue) occupancy, for comparisons.
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Figure 3.8: Occupancy schedules for NL include the shared profile (green), the learned one
by MIT (blue), and the ground truth (red) for u17 in PC.
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3.5 Chapter summary


Weak supervision is motivated by the fundamental need of learning a data-driven algorithm
for h-CPS with limited data. It represents a new category of learning, where training la-
bels are inherently noisy. While conventional supervised learning methods are misled by the
training label inconsistencies, weak supervision methods resolve the conflicts algorithmically
and have proved generalization properties. This chapter introduced two distinct methods
of weak supervision: multi-view iterative training aims at refining the weak labels in each
iteration while avoiding performance deterioration by checking for stopping conditions; sur-
rogate loss method modifies the loss function to account for the training label noises that
can be applied directly to existing data-driven algorithms.


To demonstrate the weak supervision paradigm, the proposed approaches were evaluated
for occupancy detection with smart meter power data. By leveraging only high-level heuris-
tics, accuracy rates of 74 to 89% for residential buildings and about 90% for o�ces can be
obtained without accessing any labeled data. However, a main challenge for weak supervision
is the reliable estimation of training noises. The key insight from multiview-iterative training
(i.e., Lemma 3.1) is to estimate the noise by examining the label consistencies between two
iterations . A Bayesian approach can be also adopted to utilize prior knowledge (e.g., [184]).
While existing weak supervision methods are designed for classification problems, it will be
meaningful to extend the framework to regression tasks. Since human behaviors are funda-
mentally patterned, a wide range of weak heuristics are available to enable innovative h-CPS
applications.
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Chapter 4


Gamification meets inverse game
theory


The main goals of this chapter are to present the “inverse game theory,” which infers and
rationalizes player utilities in a gamified context, and subsequently, to design and adapt
incentives after learning the utilities to maximize system-level benefits. More specifically, we
consider a non-cooperative game in which multiple players repeatedly make decisions with
the aim of optimizing their individual utility functions without regard for the objectives of
the other players [15]. We focus on the following question:


Given the players’ equilibrium actions in a non-cooperative game, what are the
utility functions that could motivate each player?


The problem of discerning people’s intentions given their actions has been under examination
in multiple disciplines. In economics, the area of revealed preference studies the purchasing
behavior of an agent over time to reveal more information about its utilities [222]. The iden-
tification literature in econometrics focuses on the rationalization problem in arbitrary games
in which utilities are exponentially-sized [12]. In robotics, the problem of inverse reinforce-
ment learning infers the hidden reward function of an agent in a long-horizon Markovian
setting; however, these do not directly apply to a game that involves interactions among
multiple agents (see Chap. 5 for more details). Last but not least, the problem of inverse
optimization aims at recovering the objective function of an optimization program from its
solution [6]. Di↵erentiated from existing works, our study estimates utilities to rationalize
players’ equilibrium behaviors based on a convex program that can be solved in polynomial
time with limited data points. Moreover, we design a hierarchical control architecture in
gamified services based on a Stackelberg game, which allows the game manager to induce
desired behaviors by issuing incentive signals.
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4.1 Overview of gamification


Gamification is defined as “the use of game design elements in non-game contexts” [44].
Gamification emerged as a promising method to support user engagement and enhance
positive patterns in service uses and has been predicted by Gartner to have a significant
impact on innovation, the design of employee performance, globalization of higher education,
and emergence of customer engagement platforms [22]. Numerous contexts have reaped
benefits as a result of positive, intrinsically motivating “gamified” experiences, including
education and learning [42], [51], commerce [80], intra-organizational systems [63], engaging
workplaces [194], sustainable consumption [79], and innovation/ideation [113], to name just
a few.


Gamification typically consists of three main parts: implemented motivational a↵or-
dances, resulting psychological outcomes, and further behavioral outcomes [80]. Specifically,
the term “motivational a↵ordances” means that motivation is a↵orded when the relations
between game features and user abilities satisfy a user’s needs when interacting with the
service (examples of some commonly employed tactics are points, leaderboards and badges)
[44]. While gamification can provide positive e↵ects, the e↵ects are highly dependent on the
context in which the game is implemented and on its user community [80]. To e↵ectively
invoke desired psychological experiences and induce subsequent behavioral outcomes, the
key is to understand and infer the users’ psychological responses to design useful schemes
and incentives, as illustrated in Fig. 4.1. In fact, one of the central and earliest questions in
game theory is how to predict the behavior of an agent under certain incentives and game
setup (for example, Nash equilibrium is used to determine the players’ actions from their
utilities). These predictions, in turn, may be used to inform and improve gamification design
and to construct models of human behaviors.
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Figure 4.1: Gamification consists of three main parts: motivational a↵ordance, psychological
outcome, and behavioral outcome. The key idea of this chapter is to combine gamification
with inverse game theory to learn about people’s preferences in real context, and to enable
customized incentive design to meet‘ overall h-CPS objectives.
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4.2 Game-theoretic formulation


We model the interaction between the service provide (leader) and the users (followers) in a
Stackelberg game [74]. In this model the followers are utility maximizers that play in a non-
cooperative game, and the leader is also a utility maximizer with a utility that is dependent
on the choices of the followers. The leader can influence the equilibrium of the game among
the followers through the use of incentives which impact the utility and thereby the decisions
of each follower.


A p-player game is described in terms of the strategy spaces and utility functions for
each player. Consider a succinct game where the utility function of player i, denoted as
fi (which is usually exponentially-sized object), can be represented by a small number of
parameters ✓i 2 ⇥. We denote by I = {1, . . . , p} the index set for players. Let Xi 2 Rmi


denote the Euclidean strategy space of dimension mi for player i and xi 2 Xi denote its
strategy vector. Define m =


P
i mi and denote by X = X1 ⇥ · · · Xp the joint strategy space


and x = (x1, . . . ,xp) the joint strategy. Each player’s strategy vector xi is constrained
to a convex set Ci ⇢ Xi. Let `i be the number of constraints on player i’s problem and
let ` =


Pp
i=1 `i. Denote C = C1 ⇥ · · · ⇥ Cp as the constraint set which we can explicitly


characterize in terms of mappings hi : Xi ! Ci where each component hi,j(x), j = 1, . . . , `i
is a concave function of xi: Ci = {xi|hi(xi) � 0}. It is assumed that Ci is non-empty and
bounded. Furthermore, the formulation can be extended for coalition games, where players
form groups to jointly optimize their utilities when incentivized to do so (see [133] for further
details).


In each round of the game, the player solves their individual optimization problem


max
xi2Ci


fi(xi,x�i;�), (4.1)


where x�i = (x1, . . . ,xi�1,xi+1, . . . ,xp) is the marginal strategy vector for all players exclud-
ing player i, and � 2 � is the game incentive signal (omitted in expressions if it does not
cause confusions). To wit, the agents are non-cooperative players in a continuous game with
convex constraints. We model their interaction using the Nash equilibrium concept:


Definition 4.1 (Nash Equilibrium). A point xi 2 Ci is a Nash equilibrium for the p–player
non-cooperative game (f1, . . . , fp) on C if for each i 2 I,


fi(xi,x�i) � fi(x
0
i,x�i), 8 x0


i 2 Ci. (4.2)


It is well known that Nash equilibria exist for concave games [197, Thm. 1]. The definition
can be relaxed as follows:


Definition 4.2 (✏–approximate Nash equilibrium). Given ✏ > 0, a point xi 2 Ci is a ✏–
approximate Nash equilibrium for the game (f1, . . . , fp) if for each i 2 I,


fi(xi,x�i) � fi(x
0
i,x�i)� ✏, 8 x0


i 2 Ci. (4.3)
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Define the Lagrangian of each player’s optimization problem as follows:


Li(xi,x�i,µi) = fi(xi,x�i) +
X


j2Ai(xi)


µi,jhi,j(xi), (4.4)


where Ai(xi) is the active constraint set at xi, and define


!(x,µ) =
h


@
@x1


L1(x1,x�1,µ1)
> · · · @


@xp
Lp(xp,x�p,µp)


>
i>


2 Rm. (4.5)


We further define a di↵erential Nash equilibrium as follows:


Definition 4.3 ([188]). A point x⇤ 2 C is a di↵erential Nash equilibrium for the game
(f1, . . . , fp) if the following conditions are satisfied:


• !(x⇤,µ⇤) = 0,


• z> @2


@x2
i
fi(x⇤


i ,x
⇤
�i,µ


⇤
i )z < 0 for all z 6= 0 such that @


@xi
hi,j(x⇤


i )
>z = 0,


• µi,j > 0 for j 2 Ai(x⇤
i ) and i 2 I.


Proposition 1. A di↵erential Nash equilibrium of the p-person concave game (f1, . . . , fp)
on C is a Nash equilibrium.


Proof. See Appendix A.3.


A su�cient condition guaranteeing that a Nash equilibrium x is isolated is that the
Jacobian of !(x,µ) is invertible [197]. We refer to such points as being non-degenerate.


4.3 Reverse Stackelberg game – incentive design


A reverse Stackelberg game is a hierarchical control problem in which sequential decision
making occurs; in particular, the leader announces an incentive signal to the followers, after
which the followers determine their optimal strategies [74]. Both the leader and the followers
wish to maximize their pay-o↵ functions fL(x,�) and {f1(x,�), . . . , fn(x,�)} respectively.
We now consider each of the follower’s utility functions to be a function of the incentives
� 2 � chosen by the leader.


The basic approach to solving the reversed Stackelberg game is as follows. Let � and x
take values in � and C, respectively and let fL, fi : C ⇥ � ! R for each i 2 I. We define the
desired choice for the leader as


(x⇤,�⇤) 2 argmax
x,�


�
fL(x,�)|� 2 �,x 2 C is a di↵erential Nash under �}. (4.6)


By ensuring that the desired agent action x⇤ is a non-degenerate di↵erential Nash equilibrium
(i.e., structural stability), we can make the solution robust to measurement and environmen-
tal noise [189]. Further, it establishes that it is (locally) isolated – it is globally isolated if
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the followers’ game is concave. This indicates that the solution of the reversed Stackelberg
game is obtained by a bi-level optimization problem. To solve the inner level of the bi-level
optimization problem, we replace the condition that the occupants play a Nash equilibrium
with the dynamical system determined by the gradients of each player’s utility with respect
to their own choice variables, i.e.,


ẋi =
@


@xi


fi(xi,x�i,�), xi 2 Ci, 8 i 2 I. (4.7)


It has been show that the solution obtained by a projected gradient descent method for com-
puting stationary points of the dynamical system in (4.7) converges to Nash equilibria [67].
We can also add the constraint to the leader’s optimization problem that at the stationary
points of this dynamical system (i.e. the Nash equilibria), the matrix � @2


@x2! is positive
definite, thereby ensuring that each of the equilibria is non-degenerate and isolated.


Denote the set of non-degenerate stationary points of the dynamical system ẋ in (4.7) as
Stat(ẋ). The leader then solves the following problem:


max
�2�


fL(x,�)


s.t. x 2 Stat(ẋ).
(4.8)


The bi-level optimization can be solved by methods like trust-region method [153] and evo-
lutionary approaches [36], [203].


4.4 Inverse game theory framework


Consider a succinct game where the i–th player’s utility function is parameterized as follows:


fi(xi,x�i) = 'i,0(xi,x�i) +
PNi


j=1 'i,j(xi,x�i)✓ij, (4.9)


where {'i,j}Ni
j=0 is a set of non-constant, concave basis functions and ✓i = [✓i1 · · · ✓iNi


]> 2 ⇥i


are the parameters, which are assumed unknown thus to be learned. Let ni denote the
number of data points for player i and define nd =


Pp
i=1 ni be the total number of data points.


We assume that each observation x(k) corresponds to an ✏–approximate Nash equilibrium
where the superscript notation (·)(k) indicates the k–th observation. We define residual


functions capturing the amount of suboptimality of the observations x(k)
i [122]. Indeed, let


the residual of the stationarity and complementary conditions for player i’s optimization
problem be given by, respectively,


r(k)s,i (✓i,µi) =
@


@xi


fi(x
(k)) +


`iX


j=1


µi,j
@


@xi


hi,j(x
(k)
i ) (4.10)


and
r
j,(k)
c,i (µi) = µi,jhi,j(x


(k)
i ), j 2 {1, . . . , `i}, (4.11)
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where ✓i 2 ⇥ is the utility function parameter and µi = (µi,j)
`i
j=1 are Lagrange multipliers.


Define
r(k)s (✓,µ) = [r(k)s,1 (✓1,µ1)


> · · · r(k)s,p (✓p,µp)
>]> 2 Rm, (4.12)


and
r(k)c (µ) = [r(k)c,1(µ1)


> · · · r(k)c,p(µp)
>]> 2 R`, (4.13)


where ✓ = (✓i)
p
i=1, µ = (µi)


p
i=1 and r(k)c,i (µi) = [r


1,(k)
c,i (µi) . . . r


`i,(k)
c,i (µi)]


>. Given the obser-
vations of the agents’ decisions, we solve the following convex optimization problem:


min
µ,✓


Pnd


k=1 �(r
(k)
s (✓,µ), r(k)c (µ))


s.t. ✓i 2 ⇥i,µi � 0, 8 i 2 I
(IGT)


where � : Rm ⇥ R` ! R+ is a nonnegative, convex penalty function satisfying �(z1, z2) = 0
if and only if z1 = 0 and z2 = 0 (i.e. any norm on Rm ⇥ R`), the inequality µi � 0
is element-wise and the ⇥i’s are constraint sets for the parameters ✓i that collect prior
information about the utility functions fi. For learning utilities in a game theoretic context,
we would like to ensure that the observations are ✏–approximate Nash equilibria for the
estimated game; hence, we select ⇥i such that each player’s parameterized utility function
is concave. As indicated in [122], it is important to select each ⇥i such that it encodes
enough prior information about each fi so as to prevent trivial solutions; we ensure this
by selecting the set of basis functions {'i,j}Nj=1 for each player to be non-constant, concave


functions and assuming 'i,0 6⌘ 0 in our parameterization. As an example, if {'i,j}Ni
j=0 are


all concave, then ⇥i = RNi
+ ensures that fi is concave. The optimization (IGT) can be


converted to a standard regression problem, as detailed in [190]. Furthermore, robustness
can be enhanced by assuming heteroskedasticity [69, Chap. 5] which also allows for inference
of correlated errors in the resulting regression model. These correlated errors can then be
used to determine the relationship between players’ decision-making processes, as detailed
in [132], [133].


4.5 Energy e�ciency via gamification


We have designed a social game for energy savings where occupants in an o�ce building
vote according to their usage preferences of shared resources and are rewarded with points
based on how energy e�cient their strategy is in comparison with other occupants. Earning
more points increases the likelihood of the occupant winning the weekly lottery. The prizes
in the lottery consist of Amazon gift cards. We have installed a Lutron system in the o�ce,
which allows us to precisely control the lighting level within the lighting zones. We use it to
set the default lighting level as well as to implement the average of the votes each time the
occupants change their lighting preferences. There are twenty-two occupants in the o�ce,
which is divided into five lighting zones, each with four occupants (see Fig. 4.2a). We have
developed an online platform in which the occupants can log in and participate in the game.
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Zone A


Zone B
Zone CZone DZone E


(a) Gamified lighting zones. (b) Voting UI.


Figure 4.2: (a) The o�ce at UC Berkeley campus where social game was carried out. The
space has five lighting zones, each can be controlled separately. (b) User interface for occu-
pants to view and vote for the lighting level.


In the platform, the occupants can cast their lighting dim level votes (e.g., Fig. 4.2b shows
the user interface for an occupant to select their lighting preference), view point balances of
all occupants, and observe the voting patterns of all occupants.


An occupant’s vote xi can change the lighting level in their zone as well as for neighboring
zones. The lighting setting that is implemented in each zone is the average of all the votes
weighted according to location proximity to that zone. In addition, there is a default lighting
setting d 2 [0, 100] selected by the leader. An occupant can leave the lighting setting as the
default after logging in or they can change it to some other value in the interval [0, 100]
depending on their preferences. There are three di↵erent states for an occupant in the
lighting game. Each day when an occupant logs into the online platform after they enter the
o�ce, they are considered present for the remainder of the day. If they actively change their
votes from the default to some other values, we consider them active. On the other hand,
if they choose not to change their vote from the default setting, then they are considered
default for the day. If they do not enter the o�ce on a given day, then they are considered
absent.1 To reduce the complexity of computing the expectation for the joint distribution
across player states for p = 22 players, we currently restrict the set of admissible incentive
mechanisms to be a constant map � = (d, ⇢), where d is the default light level and ⇢ � 0 is


1We implemented a presence detection algorithm based on plugload power data [100].
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the incentive point, such that the i-th player’s utility is


fi(xi, x�i, ⇢) = �
 
xi �


1


p


pX


j=1


xj


!2


| {z }
Taguchi loss


�✓i⇢
⇣ xi


100


⌘2


| {z }
Desire to win


, (4.14)


where the Taguchi loss function is interpreted as modeling occupant dissatisfaction in such a
way that it increases as variation increases from their desired lighting setting [212], and ⇢ is
the total number of points distributed by the building manager that a↵ects each occupant’s
desire to win. In addition, the nature of default setting d 2 [0, 100] is that it is an option
provided to the followers; they must actively vote in order for this value not to be taken as
their current vote when they are present in the o�ce. In a sense, it is the outside option.
Thus, the leader only selects the incentives (d, ⇢), as shown in Fig. 4.3. For the social game,
the leader’s utility function is given as follows:


fL(x, ⇢) =E

K � g(x)| {z }


energy


� c2p(⇢)| {z }
effort


� c1


nX


i=1


�ifi(xi, x�i, y)


| {z }
benevolence


�
(4.15)


where K is is the maximum consumption of the Lutron lighting system in kilowatt-hours
(kWh), g(x) is the is the energy consumption in kWh at a given x (see Fig. 4.4a), p(·) is
a cost-for-e↵ort function on the points ⇢ and c1, c2 2 R+ are scaling factors for the last
two terms describing how much utility and total points respectively the leader is willing to
exchange for 1 kWh. The last term is the benevolence term where the �i’s are the benevolence
factors. This term captures the fact that the leader cares about the followers’ satisfaction
which is related to their productivity level [7]. The expectation is taken with respect to
the joint distribution defined by distributions across the player states absent, active, default.
By drawing from this joint distribution, we simulate the game using the estimated utility
functions. In Fig. 4.4b, we can see that our model captures most of the variation in the
true votes. Since the prize in the lottery is currently a fixed monetary value delivered to the
winner through an Amazon gift card, varying the points does not cost the leader anything
explicitly. However, we model the cost of giving points by a function p(·) which captures the
fact that after some critical value of ⇢ the points no longer seem as valuable to the followers.
The followers’ perceive the points that they receive as having some value towards winning
the prize. The leader’s goal is to choose ⇢ and d so they induce the followers to play the
game and choose the desired lighting setting.


Currently we do not add individual rationality constraints to the leader’s optimization
problem which would ensure that the players’ utilities are at least as much as what they
would get by selecting the default value. The impact being that this constraint would ensure
players are active. With respect to economics literature, the default lighting setting is similar
to the outside option in contract theory. It is interesting to note that in the current situation
the leader has control over the outside option.
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Figure 4.3: Inverse game theory and incentive design in a social game.


The particle swarm optimization (PSO) method was employed for the leader incentive de-
sign, which is a population based stochastic optimization technique in which the algorithm
is initialized with a population of random solutions and searches for optima by updating
generations [121]. The potential solutions are called particles. Each particle stores its coor-
dinates in the problems space which are associated with the best solution achieved up to the
current time. The best over all particles is also stored and at each iteration the algorithm
updates the particles’ velocities. For each particle in the PSO algorithm, we sample from
the distribution across player states and compute Nash for the resulting game via simulation
of the dynamical system (4.7). We compute the mean of the votes at the Nash equilibrium
to get the lighting setting. We repeat this process and use the mean of the lighting settings
over all the simulations to compute the leader’s utility for each of the particles. To estimate
the energy consumption function, we collected data for di↵erent lighting settings and created
a piecewise a�ne map from the lighting dim level to energy consumption in kilowatt–hours
(kWh) (see Fig. 4.4a). Using this map, we formulate a utility for the leader which takes
the average lighting votes as the input and returns the di↵erence between the maximum
consumption in kWh, i.e. 25 kWh, and the piecewise a�ne map for energy saving of the
lights.


Using the past data, i.e. data collected for default settings {10, 20, 60, 90}, and ✓i esti-
mates for each occupant, we created a piecewise a�ne map for interpolating the parameters
of the occupants utility functions for di↵erent default settings. Similarly, we interpolated
the joint distribution across player states (absent, active, default) as a function of the default
setting. This enabled the optimization of the leader’s utility function, given in (4.15), over
both the total points ⇢ and the default setting d.


In the implementation of the leader’s optimization problem in this example we make the
following choices for the parameters and scaling of the leader’s utility function. For each
particle in the PSO algorithm, we map each follower’s true utility fi to an interpolated utility
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(a) Energy vs. light level.
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(b) Nash equilibria prediction.


Figure 4.4: (a) Energy consumption data for the Lutron lighting system in kWh as a function
of the lighting setting. (b) Prediction of lighting votes, showing the true mean of the lighting
votes for each day over the duration of the experiment (blue dots), the predicted Nash
equilibria with the estimated utilities (solid black line), and one standard deviation of the
prediction (dashed black lines).


f̂i taking a value in the range [0, 100] by finding the global maximum and minimum of their
utility under the current particle to determine an appropriate a�ne scaling of their original
utility. We use f̂i in place of fi in the leader’s utilty. We use c1 = 1/2 to reflect the fact that
the leader is willing to exchange 1 kWh savings for a utility value of 2 in the total sum of
the followers’ utilities


P
i �if̂i under the current particle value for y = (d, ⇢). Similarly, we


use c2 = 1/500 to indicate that the leader is willing to exchange 500 points in return for 1
kWh of savings.


Examining each of the occupant’s estimated utility functions has given us a sense of which
occupants are the most sensitive to changes in ⇢ and d. For instance, occupant id2 was quite
inflexible to changes in the points ⇢ and appeared to care less about winning and more about
his comfort level (see Fig. 4.5). This fact is also reflected in the very low parameter estimate
for ✓2. It is also the case that occupant id2’s behavior was largely a↵ected by others’ votes.
In addition, occupants in the set Sc = {2, 6, 8, 14, 20} were the most active players in a
probabilistic sense. As a result, we gave non-zero benevolence terms to players in this set.
We refer to this set as the leader’s care-set. For all i 2 {1, . . . , 20}\Sc, we set �i = 0. Further,
we normalized


P
j2Sc


�j = 1. Since occupant id2 exhibited particularly interesting behavior,


we varied �2, and let �j = (1� �2)
1


|Sc| for all j 2 Sc and where |Sc| is the cardinality of Sc.
Table 4.1 contains the energy savings in dollars per day for the leader given the energy cost
of the lights and how much of the occupants’ utility that the leader is willing to exchange for
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1 kWh.2 The optimal incentives were computed by solving the leader’s optimization problem
via the PSO method where we simulated the game of the occupants via the dynamic system
(4.7). Table 4.1 lists the leader’s utility in dollars for previous values of (d, ⇢) after the
start of the social game, as well as the values after optimizing over (d, ⇢) for some given
benevolence factors � = (�1, . . . , �n). We can see that by computing even the local optimal
(d, ⇢) of the leader’s bi-level optimization problem, the leader has a much higher utility.
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Figure 4.5: Utility of occupant id2 as a function of (d, ⇢) at the mean Nash equilibrium after
running 1000 simulations. Notice that for fixed values of d the utility value is near constant
in ⇢. Also, occupant 2 has very large utility when the default setting is around 70.


Table 4.1: Leader’s utility in dollars for previously implemented (d, ⇢)and benevolence factors
� = (�2,


P
j2Sc


�j) where Sc = {6, 8, 14, 20}. We also show the results for optimized leader
incentives (d, ⇢) by solving the leader’s optimization problem (4.8) using PSO. The value
is interpreted as the energy saved in dollars by the leader plus the utility as measured in
dollars. We use a rate of $0.12 per kWh as this is the approximate rate in California.


Benevolence factors �
(d, ⇢) (0.9,0.1) (0.75,0.25) (0.6,0.4) (0.45,0.55) (0.3,0.7) (0.2,0.8)


(10, 7000) $2.01 $2.10 $2.19 $2.28 $2.37 $2.42
(20, 7000) $1.98 $2.01 $2.06 $2.08 $2.10 $2.13
(60, 7000) $1.70 $1.67 $1.66 $1.65 $1.65 $1.64
(90, 7000) $1.35 $1.33 $1.32 $1.31 $1.31 $1.30
Optimized $4.56 $4.73 $4.67 $4.69 $5.07 $5.43


We have not yet factored in the cost of the prize in the lottery, which was $100 per week.
The values we report in Table 4.1 represent per day savings on weekdays. More substantial
savings can be achieved by scaling up the social game. For example, we are in the process


2The electricity cost is $0.12 per kWh based on the California rate.
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of implementing a social game in an entire building in Singapore with more than 1, 000
occupants. This social game will include options for the consumer to choose lighting settings,
HVAC and personal cubicle plug-load consumption. In addition, we plan to implement a
social game of this nature in Sutarja Dai Hall on the UC Berkeley campus. At this scale,
with a lottery cost of $100 the building manager can potentially save a considerable amount.


4.6 Chapter summary


This chapter introduced a theoretical framework of inverse game theory and incentive design
in a gamified environment. The key insight is to design gamification (i.e., motivational a↵or-
dance, psychological outcome and behavioral change) as an enabler for simultaneous learning
and influence of people’s preferences and behaviors, which are revealed and reinforced in their
interactions with others in the game. In a gamified context, utility functions can be used to
capture social dimensions of people-people interaction and individual preferences for comfort
and incentives; even “indi↵erence” and “inaction” common to real-world game (due to lack
of engagement or motivation) can be naturally encoded. By rationalizing people’s behaviors
using ✏-approximate Nash equilibrium, the proposed inverse game theory can learn the pa-
rameters of people’s utility functions with high data-e�ciency. The estimated utilities are
used in a reverse Stackelberg game to design the optimal incentives, which can be issued by
the leader as a signal to “nudge” people in the desired directions, thereby “closing the loop”.


We applied the theory to improve energy e�ciency in buildings via gamification. The re-
sults are promising: just by introducing the social game without optimizing the incentive, we
obtained about $2.00/day savings for a small o�ce (⇠1/20-th of the building). By optimizing
the incentives, we achieved a 150% increase in the savings (⇠$5/day). The scaled-up game
has a potential for even more substantial savings. Furthermore, the game o↵ered valuable
data about people’s preferences, which can be respected in automated building control after
the game period. However, due to complexity and uncertainty of people’s behaviors, it is
meaningful to examine action uncertainty (e.g., the mixture model of utility function [134]),
as well as di↵erent forms of game (e.g., coalition game [133], polymatrix game [72]). While
this chapter considers actions within a short time span (i.e., Nash equilibrium), the next
chapter discusses preference learning that spans multiple time scales to account for people’s
long-term planning capability.
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Chapter 5


Deep Bayesian inverse reinforcement
learning


Inverse reinforcement learning (IRL) aims at inferring the latent reward function that the
agent subsumes by observing its demonstrations or trajectories in the task. It has been
successfully applied to tackle practical challenges, e.g., navigation [1], [191], [247], and
robotics [2], [131], [175]. As people’s actions often involve long-term planning and their moti-
vations depend on factors that cannot be known a priori, human behavior learning needs to
span multiple time scales and account for complex reward. However, existing IRL methods
have limited representation power due to the linearity assumption [2], [191], [211], [247].


The success of deep learning in a wide range of domains has drawn the community’s
attention to its structural advantages that can improve learning in complicated scenarios,
e.g., [163] recently achieved a deep reinforcement learning (RL) breakthrough. Nevertheless,
most deep models require massive data to be properly trained and can become impractical
for human preference learning. A deep Gaussian process (deep GP) is a deep belief network
comprising a hierarchy of latent variables with Gaussian process mappings between the lay-
ers. Analogous to how gradients are propagated through a standard neural network, deep
GPs aim at propagating uncertainty through Bayesian learning of latent posteriors. This
constitutes a useful property for approaches involving stochastic decision making and also
guards against overfitting by allowing for noisy features. More importantly, it can not only
learn abstract structures with smaller data sets, but also retain the non-parametric proper-
ties which has been demonstrated to be important for IRL. However, previous methodologies
employed for approximate Bayesian learning of deep GPs fail when diverging from the sim-
ple case of fixed output data modeled through a Gaussian regression model [37], [156]. In
particular, in the IRL setting, the reward (output) is only revealed through the demonstra-
tions, which is guided by the policy given by the reinforcement learning. In light of this
contemplation, we propose a deep Bayesian inverse reinforcement learning in this chapter.
We introduce a non-standard variational approximation framework to extend previous in-
ference schemes for deep GPs, which allows for approximate Bayesian inference to learn the
complex reward functions.
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5.1 Introduction of inverse reinforcement learning


The Markov Decision Process (MDP) is characterized by {S,A, T , �, r}, which represents the
state space, action space, transition model, discount factor, and reward function, respectively.
Take robot navigation as an example. The goal is to travel to the goal spot while avoiding
stairwells. The state describes the current location and heading. The robot can choose
actions from going forward or backward, turning left or right. The transition model specifies
p(st+1|st, at), i.e., the probability of reaching the next state given the current state and
action, which accounts for the kinematic dynamics. The reward is +1 if it achieves the goal,
-1 if it ends up in the stairwell, and 0 otherwise. The discount factor, �, is a positive number
less than or equal to 1, e.g., 0.9, to discount the future rewards. The optimal policy is then
given by maximizing the expected reward,


⇡⇤ = argmin
⇡


E


" 1X


t=0


�tr(st)|⇡
#
, (5.1)


where the expectation is taken over the stochastic state transitions and policy actions.
The IRL task is to find the reward function r⇤ such that the induced optimal policy


is in alignment with the demonstrations, given {S,A, T , �} and M = {⇣1, ..., ⇣H}, where
⇣h = {(sh,1, ah,1), ..., (sh,T , ah,T )} is the demonstration trajectory consisting of state-action
pairs. Under the linearity assumption, the feature representation of states forms the linear
basis of reward, namely r(s) = w>�(s), where �(s) : S 7! Rm0 is the m0-dimensional
mapping from the state to the feature vector. From this definition, the expected reward for
policy ⇡ is given by


E


" 1X


t=0


�tr(st)|⇡
#
= w>E


" 1X


t=0


�t�(st)|⇡
#
= w>µ(⇡),


where µ(⇡) = E [
P1


t=0 �
t�(st)|⇡] is the feature expectation for policy ⇡. The reward param-


eter w⇤ is learned such that


w⇤>µ(⇡⇤) � w⇤>µ(⇡), 8⇡ (5.2)


a prevalent idea that appears in the maximum margin planning (MMP) [191] and feature
expectation matching [211].


Motivated by the perspective of expected reward that parametrizes the policy class, the
maximum entropy (MaxEnt) model considers a stochastic decision framework, where the
optimal policy randomly chooses the action according to the associated reward [247]:


p(a|s) = exp{Q⇤(s, a; r)� V ⇤(s; r)} (5.3)


where V (s; r) = log
P


a exp(Q(s, a; r)) follows the Bellman equation, Q(s, a; r) and V (s; r)
are measures of how “desirable” the corresponding state s and state-action pair (s, a) are
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under rewards r. In principle, for a given state s, the best action corresponds to the highest
Q-value Q(s, a; r), which represents the “optimality” of the action considering the accumu-
lated rewards in the future. Assuming independence among state-action pairs from demon-
strations, the likelihood of the demonstration is equal to the joint probability of taking a
sequence of actions ah,t under states sh,t, as indicated by the Bellman equation:


p(M|r) =
HY


h=1


TY


t=1


p(ah,t|sh,t) = exp


 
HX


h=1


TX


t=1


�
Q(sh,t, ah,t; r)� V (sh,t; r)


�
!
. (5.4)


Though directly optimizing the above criteria with respect to r is possible, it does not lead to
generalized solutions transferrable in a new test case where no demonstrations are available;
hence, we need a “model” of r. MaxEnt assumes linear structure for rewards, while GPIRL
uses GPs to relate the states to rewards [143].


5.2 Deep GP for inverse reinforcement learning


We first discuss the reward modeling through GP, proceed to incorporate the representation
learning modules, and introduce a variational framework to train the model for IRL.


Gaussian Process reward modeling


We consider the setup of discretizing the world into n states. Let the observed state-action
pairs (demonstrations) M = {⇣1, . . . , ⇣h} be generated by a set of m0-dimensional state
features X 2 Rn,m0 through the reward function r. Throughout this chapter we denote
points (rows of X) as [X]i,: = xi, features (columns of X) as [X]:,m = xm and single elements
as [X]i,m = xm


i .
In this modeling framework, the reward function r plays the role of an unknown mapping,


thus we wish to treat it as latent and keep it flexible and non-linear. Therefore, we model it
with a zero-mean GP prior [143], [187]:


r ⇠ GP(0, k✓),


where k✓ is the covariance function, e.g., k✓(xi,xj) = �2
ke


� ⇠
2 (xi�xj)>(xi�xj) with parameters


✓ = {�k, ⇠}. Given a finite amount of data, this induces the probability r|X,✓ ⇠ N (0, K
XX


),
where r , r(X) is a vector of rewards evaluated for each row of X and the covariance matrix
is obtained by [K


XX


]i,j = k✓(xi,xj) for each entry. The GPIRL training objective is the
likelihood function, which comes from integrating out the latent reward (see Fig. 5.1a):


p(M|X) =


Z
p(M|r)p(r|X,✓)dr (5.5)


and the maximizing parameter is ✓, which we drop from our expressions from now on. The
above integral is intractable, because p(M|r) has the complicated expression of (5.4) (this
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Figure 5.1: Comparison of the GPIRL and DGP-IRL architectures. GPIRL models the
reward function as a Gaussian process, while DGP-IRL stacks latent spaces (Bl and Dl)
connected through GPs to form a deep GP representation.


is in contrast to the tranditional GP regression where M|r is a Gaussian or other simple
distribution). This can be alleviated using the approximation of [143]. We will describe this
approximation in the next section, as it is also used by our approach. Notice that all latent
function instantiations are linked through a joint multivariate Gaussian. Thus, prediction of
the function value r⇤ = r(x⇤) at a test input x⇤ is found through the conditional
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As can be seen, the prediction r(x⇤) is reliant on the e↵ectiveness of feature representation:
states with features close in Euclidean distance are assumed to be associated with simi-
lar rewards. This motivates our novel deep GP method which is obtained by considering
additional layers to increase the feature expressiveness.


Incorporating the representation learning layers


The traditional model-based IRL approach is to learn the latent reward r that best explains
the demonstrationsM. In this chapter we aim at additionally and simultaneously uncovering
a highly descriptive state feature representation. To achieve this, we introduce a latent state
feature representation B =


⇥
b1, ...,bm1


⇤
2 Rn,m1 , where B constitutes the instantiations of


an introduced function b which is learned as a non-linear GP transformation from X. To
account for noise we further introduce D as the noisy versions of B, i.e., dmi = bmi + ✏ where
✏ ⇠ N (0,��1). Together, B and D form a hidden layer, and the layer can be repeated
several times, as illustrated in Fig. 5.1b. To streamline the presentation, we will illustrate
the method with a 2-layered deep GP, but the method can be applied to deeper structures.


Importantly, rather than performing two separate steps of learning (for the GPs on r and
on b), we nest them into a single objective function, to maintain the flow of information during
optimization. This results in a deep GP whose top layers perform representation learning
and lower layers perform model-based IRL (Fig. 5.1b), called Deep Gaussian Process for
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Inverse Reinforcement Learning (DGP-IRL). By using xm, dm, bm to represent the m-th
column of X, D, B respectively, the full generative model can be written as:


p(M, r,D,B|X) = p(M|r)| {z }
IRL


p(r|D)| {z }
GP(0,kr(di,dj))


p(D|B)| {z }
Gaussian noise


p(B|X)| {z }
GP(0,kb(xi,xj))


= e
PH


h=1


PT
t=1


�
Q(sh,t,ah,t;r)�V (sh,t;r)


�
N (r|0, K


DD


)


m1Y


m=1


N (dm|bm,��1I)N (bm|0, K
XX


), (5.6)


where the IRL term p(M|r) takes the form of (5.4), K
XX


and K
DD


are the covariance
matrices in each layer, constructed with covariance functions kb and kr, respectively. Com-
pared to GPIRL, the proposed framework has substantial gain in flexibility by introducing
the abstract representation of states in the hidden layers B and D.


We can compress the statistical power of each generative layer into a set of auxiliary
variables within a sparse GP framework [204]. Specifically, we introduce inducing outputs and
inputs, denoted by f 2 R↵ and Z 2 R↵,m1 respectively for the lower layer and by V 2 R↵,m1


andW 2 R↵,m0 for the top layer (as illustrated in Fig. 5.2). The inducing outputs and inputs
are related with the same GP prior appearing in each layer. For example, f |Z ⇠ N (0, K


ZZ


)
withK


ZZ


= kr(Z,Z). By relating the original and inducing variables through the conditional
Gaussian distribution, the auxiliary variables are learned to be su�cient statistics of the GP.
The augmented model, shown in Fig. 5.2, has the following full distribution:


p(M, r,f ,B,D,V|X,Z,W)


= p(M|r)p(r|f ,D,Z)p(f |Z)p(D|B)p(B|V,X,W) (5.7)


= p(M|r)N (r|K
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where we adopt the fully independent training conditional (FITC) to preserve the exact vari-
ances in ⌃B = diag
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, and the deterministic training conditional


(DTC) in ⌃r = 0 as in GPIRL to facilitate the integration of r in the training objective [185].
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Figure 5.2: Illustration of DGP-IRL with the inducing outputs f ,V and inputs Z,W.


In the following, we will omit the inducing inputs W,Z in the conditions, with the
convention to treat them as model parameters [37], [117]. By selecting the number of inducing
points ↵ ⌧ n the complexity reduces from O(n3) to O(n↵2). While DGP-IRL resolves
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the case when the outputs have complex dependencies with the latent layers, the training
of the model based on variational inference requires gradients for the parameters, as in
backpropagation in deep neural network training, whose convergence can be improved by
leveraging advancements in deep learning. Additionally, in DGP-IRL, the role of auxiliary
variables goes further than just introducing scalability. Indeed,the auxiliary variables play
a distinct role in our model by forming the base of a variational framework for Bayesian
inference.


Variational inference and transfer learning


For model training, our task is to optimize the model evidence


p(M|X) =


Z
p(M,f , r,V,D,B|X)d(f , r,V,D,B). (5.8)


However, this quantity is intractable. Firstly because the latent variables D appear nonlin-
early in the inverse of covariance matrices. Secondly because the latent rewards f , r relate
to the observation M through the reinforcement learning layer; the choice of ⌃r = 0 in (5.7)
does not completely solve this problem because in DGP-IRL there is additional uncertainty
propagated by the latent layers. This indicates that Laplace approximation is not practical,
neither is the variational method employed for deep GP, where the output is related to the
latent variable in a simple regression framework [37], [117].


To this end, we show that we can derive an analytic lower bound on the model evi-
dence by constructing a variational framework using the following special form of variational
distribution Q = q(f)q(D)q(B)q(V), where


q(f) = �(f � f̃) (5.9)


q(B) = p(B|V,X) (5.10)


q(D) =


m1Y
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ṽm
�


(5.11)


q(V) =


m1Y


m=1


N (vm|ṽm,Gm) (5.12)


where f̃ , ṽm, Gm are variational parameters. The delta distribution is equivalent to tak-
ing the mean of normal distributions for prediction, which is reasonable in the context of
reinforcement learning. Also note that the delta distribution is applied only in the bottom
layer and not repeatedly ; therefore, representation learning is indeed being manifested in
the latent layers. In addition, q(B) matches the exact conditional p(B|V,X) so that these
two terms cancel in the fraction of (5.14) and the number of variational parameters is mini-
mized, as in [219]. As for q(D), it is chosen as delta distributions such that, in tandem with
⌃r = 0, the IRL term p(M|r)p(r|f ,D) in (5.13) becomes tractable and information can
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flow through the latent layers B,D. The variational marginal q(V) is factorized across its
dimensions with fully parameterized normal densities. Notice that f̃ and ṽ are the mean of
the inducing outputs, corresponding to pseudo-inputs Z and W, where Z (initialized with
random numbers from uniform distributions [210]) can be learned to further maximize the
marginaliked likelihood, and W is chosen as a subset of X. Further, the variational means
of D can be augmented with input data X to improve stability during training [57].


The variational lower bound, L, follows from the Jensen’s inequality, and can be
derived analytically due to the choice of variational distribution Q (see Appendix A.4 for
detailed derivation):


log p(M|X) = log


Z
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LM is the term associated with RL, LG is the Gaussian prior on inducing outputs f , and
LKL denotes the Kullback–Leibler (KL) divergence between the variational posterior q(V)
to the prior p(V), acting as a regularization term. The lower bound L can be optimized
with gradient-based method like backpropagation. In addition, we can find the optimal fixed-
point equations for the variational distribution parameters ṽm,Gm for q(V) using variational
calculus, in order to raise the variational lower bound L further (refer to Appendix A.4
for this derivation). Notice that the approximate marginalization of all hidden spaces in
(5.15) approximates a Bayesian training procedure, according to which model complexity
is automatically balanced through the Bayesian Occam’s razor principle. Optimizing the
objective L turns the variational distribution Q into an approximation to the true model
posterior.


The inducing points provide a succinct summary of the data by the property of FITC,
which means only the inducing points are necessary for prediction [185]. Given a set of new
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states X⇤, DGP-IRL can infer the latent reward through the full Bayesian treatment:


p(r⇤|X⇤,X) =


Z
p(r⇤|f ,D⇤)q(f)p(D⇤|B⇤)p(B⇤|V,X⇤)q(V)d(f ,B⇤,D⇤,V) (5.20)


Given that the above integral is computationally intensive to evaluate, a practical alternative
adopted in our implementation is to use point estimates for latent variables; hence, the
rewards are given by:


r⇤ = K
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where D⇤ = [d1
⇤, ...,d
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ṽm. The above formulae suggest that
instead of making inference based onX layer directly as in [143], DGP-IRL first estimates the
latent representation of the states D⇤, then makes GP regression using the latent variables.


5.3 Experiments on benchmarks


For the experimental evaluation, we employ the expected value di↵erence (EVD) as a metric
of optimality,


E
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t=0


�tr(st)|⇡⇤
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� E
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�tr(st)|⇡̂
#
, (5.22)


which is the di↵erence between the expected reward earned under the optimal policy, ⇡⇤,
given by the true rewards, and the policy derived from the IRL rewards, ⇡̂.1


Binary world (BW) is a benchmark whose reward depends on combinatorics of fea-
tures [234]. More specifically, in a N ⇥N gridworld where each block is randomly assigned
with either a blue or red dot, the state is associated with the +1 reward if there are 4 blues
in the 3 ⇥ 3 neighborhood, -1 if there are 5 blues in the neighborhood, and 0 otherwise
(illustrated in Fig. 5.3a). The feature represents the color of the 9 dots in the neighborhood.
The agent maximizes its expected discounted reward by following a policy which provides
the probabilities of actions (moving up/down/left/right, or stay still) at each state, subject
to a transition probability.


The objective of the experiment is to compare the performances of various IRL algorithms
to recover the latent rewards given limited demonstrations. Candidates that have been
evaluated include Learning to search (LEARCH) [192], MaxEnt [247], and MMP [191], which
assume a linear reward function, and GPIRL [143], which is the state-of-the-art method for
IRL. BW sets up a challenging scenario, where states that are maximally separated in feature
space can have the same rewards, yet those that are close in euclidean distance may have
opposite rewards. While linear models were limited by their capacity of representation,
the results of GPIRL also deviated from the latent rewards as it could not generalize from
training data with the convoluted features. DGP-IRL, nevertheless, was able to recover the
ground truth with the highest fidelity, as shown in Fig. 5.3.


1The software implementation can be accessed at: https://github.com/jinming99/DGP-IRL.



https://github.com/jinming99/DGP-IRL
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(a) Ground Truth (b) DGP-IRL (c) GPIRL


(d) LEARCH (e) MaxEnt (f) MMP


Figure 5.3: BW benchmark evaluation with 128 demonstrated traces for DGP-IRL,
GPIRL [143], LEARCH [192], MaxEnt [247], and MMP [191].
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(a) Input space X and rewards.
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(b) Latent space D and rewards.


Figure 5.4: Visualization of points (features of states) along two arbitrary dimensions in the
(a) input space X and (b) latent space D of DGP-IRL. The rewards are entangled in the
input space X but separated in the latent space D.
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By successively warping the original feature space through the latent layers, DGP-IRL
could learn an abstract representation that revealed the reward structure. As illustrated
in Fig. 5.4, though the points were mixed up in the input space, making it impossible to
separate those with the same rewards based on the input features X alone, their positions
in the latent space clearly formed clusters when viewed from latent features D, implying
that DGP-IRL had remarkably uncovered the mechanism of reward generation by simply
observing the traces of actions.


Additionally, the transferability test was carried out by examining EVD in a new world
where no demonstrations were available, which required the ability of knowledge transfer
from the previous learning scenario. As the features were interlinked not only with the
reward but also with themselves in a very nonlinear way, this scenario was particularly chal-
lenging for linear models like LEARCH, MaxEnt and MMP. The advantage of simultaneous
representation and inverse reinforcement learning was demonstrated in Fig. 5.5, where DGP-
IRL outperformed GPIRL and other models in both the training and transfer cases, and the
improvement was obvious as more data became accessible.


For another benchmark, highway driving behavior modeling is a concrete example to
examine the capacity of IRL algorithms in learning the underlying motives from human
demonstrations [142], [143]. In a three-lane highway, vehicles of specific class (civilian or
police) and category (car or motorcycle) are positioned at random, driving at the same
constant speed. The autonomous car can switch lanes and navigate at up to three times the
tra�c speed. The state is described by a continuous feature which consists of the closest
distances to vehicles of each class and category in the same lane, together with the left, right,
and any lane, both in the front and back of the robot car, in addition to the current speed
and position.


0


10


20


30


4 8 16 32 64 128
Samples


Ex
pe


ct
ed


 v
al


ue
 d


iff
er


en
ce


DGPIRL


GPIRL


LEARCH


MaxEnt


MMP


(a) Training EVD.
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(b) Transfer task EVD.


Figure 5.5: Plots of EVD in the training (a) and transfer (b) tests for the BW benchmark
as the number of training samples varies. The shaded area indicates the standard deviation
of EVD among independent experiments.
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(b) Speeding risk.


Figure 5.6: Plots of EVD in the training (a) and the risk of speeding (with 64 demonstrations)
(b) in the highway driving simulation benchmark, with three lanes and 32 car lengths.


The goal is to navigate the robot car as fast as possible, but to avoid speeding by checking
that the speed is no greater than twice the current tra�c when the police car is 2 car lengths
nearby. As the reward is a nonlinear function determined by the current speed and distance
to the police, linear models were outrun by GPIRL and DGP-IRL. Performance generally
improved with more demonstrations, and DGP-IRL remained to yield the policy closest to
the optimal in EVD, and with minimal risk of speeding, as illustrated in Fig. 5.6a and 5.6b,
respectively.


5.4 Chapter summary


In this chapter we proposed deep Bayesian inverse reinforcement learning to infer an agent’s
intention from its behaviors. By extending the deep GP framework to the IRL domain, we
enabled learning latent rewards with more complex structures from limited data. As training
the network involves evaluating a likelihood that is intractable, we derived a variational lower
bound using an innovative definition of the variational distributions. This methodological
contribution enables Bayesian learning in our model and can be applied to other scenarios
where the observation layer’s dynamics cause similar intractabilities. We compared the
proposed DGP-IRL with existing approaches in benchmark tests as well as highway driving
tasks with human demonstrations, and verified its capability of handling complex reward
with scarce data. This represents a new category of human preference learning in h-CPS
with in-vivo observations.
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Part II


System-level e�ciency and resilience
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Chapter 6


Enabling optimal energy retail in a
microgrid


The conventional approach of h-CPS system operator to improve system e�ciency and re-
silience is by optimizing physical control and operations (for example, the unit commitment
task for the electricity grid). When the system is under unusual stress, this strategy tends
to compromise economy to ensure reliability and safety (e.g., oversized equipment and ex-
cessive reserves). Enabled by the contextual awareness of human factors and system states
in the first part of this thesis, this chapter employs “behavioral nudges” as a “nexus point”
between end-users and system operations, and exploits end-use demand flexibility to further
enhance e�ciency and reliability. We focus on designing energy retail rates and dispatch
generators in a microgrid, which is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid. We leverage the demand elasticity concept from economics to model
the end-users’ responses to price signals. By modeling an integrated energy system that pro-
vides both thermal and electrical power, synergy naturally emerges from the optimization
for generation dispatch and optimal rate design, enabling enhanced system e�ciency and
substantial savings for both the energy provider and end-use customers.


6.1 Microgrid and optimal energy retail


The transition from an economy that relies heavily on fossil fuels to one that is powered
primarily by renewable energy has been accelerating in recent years, bolstered by mounting
concerns over climate change and falling prices of solar and wind energy [178]. However, the
penetration of volatile, distributed renewable resources can potentially destablize the grid.
Furthermore, grid resilience and rapid self-recovery in the face of natural disasters and mali-
cious attacks are extremely necessary features [172]. Driven by the evolution of technologies
and markets, there is a fundamental push across the industry to update utility rate struc-
tures as the existing tari↵ becomes less and less e�cient [60]. Meanwhile, the emergence
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Figure 6.1: Schematic of MR-POD that jointly optimizes energy retail and dispatch by
considering demand flexibility and generator synergy.


of electricity retail services enables customers to choose providers [168]. Increased competi-
tion exposes retailers to greater risks, while not necessarily reducing customers’ bills [168].
Clearly, a systematic strategy for rate design and resource management is central to the
ongoing transformation of the system. This paradigm shift can be further driven by demand
response (DR) by the institution of time-di↵erentiated retail pricing, e.g., time-of-use (TOU)
and real-time pricing (RTP), which reflect fluctuating wholesale prices and explore end-user
demand flexibility [116], [125], [168], [223]. Currently, RTP is most popular in the wholesale
market, while being experimented on a few sites like the Illinois Power Company on the
retail side. However, with the increasing penetration of internet-of-things (IoT) devices and
occupancy-aware building controls, buildings’ responsiveness can be significantly enhanced
through automated services. Thus, study on DR at the retail level that finds its optimal pric-
ing scheme and relationship with local distributed energy resources adoption and operation
becomes increasingly important [71].


On the supply side, the division of the grid into productive sub-systems, microgrids
(MGs), that integrate distributed generation (DG) and storage to serve local demand, has
been proposed to increase manageability, energy e�ciency, and resilience [141], [240]. The
rapid development of integrated energy systems (IESs), which exploit the synergistic poten-
tial of thermal and electrical provision, is crucial for flexibility enhancement, carbon dioxide
(CO2) reduction, and renewable integration [150]. Nevertheless, in places like Jilin province
in northeastern China, about 89% of the total wind power curtailment is caused by oper-
ating conventional CHP at full load to satisfy high heat demands and lack of curtailable
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supply [233]. The central task for a retailer with generation capacity is thus to design energy
rates and operate the facility to gain profits and preserve system stability. Previous works
on MG operation often treat it as a non-profit entity that does not price its energy output,
which confines its application to campuses and other situations where the total bill is paid by
the MG owner [16], [34], [47], [78], [82], [97], [176], [177], [179], [223]. As a result, DR in a MG
is limited to contracts [176] or a mutual agreement where the MG operator has central con-
trol over DR-enabled loads [71], [97], [124]. This often requires the integration of advanced
communication infrastructure and might raise security and privacy issues. Furthermore, the
scope is predominantly within electricity provision, rather than exploiting synergies of IESs
[40], [81], [124], [176]. We focus on future smart MG with time-di↵erentiated pricing on the
retail side and propose a Microgrid Retailer Pricing and Operation strategy with Demand
response, namely MR-POD, to capture the new opportunity (see Fig. 6.1).


MG modeling and dispatch. Previous work has been undertaken on modeling high-level
system design for MGs to study their profitability and optimal technology selection [16], [49],
[82], [154], [177]. The dispatch of MG has been attempted through a variety of approaches,
including mixed integer linear programming (MILP) [41], dynamic programming [49], sim-
ulated annealing [223], particle swarm optimization [16], evolutionary algorithms [177] and
game theoretic agent-based formulations [47]. An empirical comparison of LP, MILP, and
non-linear programming (NLP), had been conducted, and the study concluded that MILP
is the most appropriate model from the viewpoints of accuracy and runtime [179]. In com-
parison, our formulation of the dispatch problem as MIQP also addresses the uncertainty in
renewable generation and the flexibility in demand that facilitates DR.


Demand response. Demand response (DR) is becoming a cost-e↵ective balancing re-
source in power systems. According to the US Department of Energy, DR is “a tari↵ or
program established to motivate changes in electric usage by end-use customers, in response
to changes in the price of electricity over time, or to give incentive payments designed to
induce lower electricity usage at times of high market prices or when grid reliability is
jeopardized” [60]. There are mainly two groupings of DR programs: price-based DR and
incentive-based DR, with the key di↵erence that the former o↵ers customers time-varying
or localized prices, while the latter grants fixed or time-varying payments under specific
contracts [62]. The e�cacies of price-based DR have been empirically examined in several
studies [62]. This work focuses on the design of rate signals for price-based DR, with a
special focus on retailers who own distributed generation system and can price the energy for
profits and DR.


Optimal rate design. Smart pricing plays a vital role in DR to increase system reliabil-
ity, reduce generation costs, and lower consumers’ bills [166]. To determine the consumer
response, price-elastic load models were proposed [165], [239], where the elasticity is often es-
timated using panel data [8], [64]. Methods based on mixed-integer stochastic programming
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[81], [176] and noncooperative games [116] have been proposed to determine the optimal
sale price of electricity and the electricity procurement policy of a retailer. However, these
works only focus on electricity supply and profit maximization for the retailer without pro-
viding DR incentivization to enroll customers in the programs, which are often voluntary in
practice. Di↵erentiated from the previous studies, MR-POD is aimed at providing guidance
on optimal MG operation and pricing on a district level with integrated energy provision.
By leveraging the e�ciency of energy coupling and demand flexibility, the model provides a
cost-e↵ective and grid-cooperative strategy in a competitive and uncertain market.


6.2 Integrated energy retail model


The MG dispatch and retailer pricing with DR problem is formulated within an optimization
framework. Key components, including the MG generator and building loads, are shown in
Fig. 6.2, where flows of cash, energy, and information within the MG are illustrated.
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Figure 6.2: Overview of the retailer model, incorporating generator dispatch and energy
retailing to serve a community. The microgrid can optionally connect to the utility grid for
electricity procurement and participate in ancillary services like DR.


Problem formulation


The key problem that MR-POD solves is: “How should energy prices be set and the micro-
grid operated to maximize retailer profit while satisfying building demand and grid require-
ments?” Two prominent factors are involved:


• Price elasticity of loads for individual buildings under the DR scheme
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• Uncertainty and fluctuation of energy demand, electricity and thermal tari↵s, and
weather conditions


Price elasticity refers to the change in energy demand in response to a change in product
price [62], [128], which can be used by the retailer to estimate peak demand reduction
potential, and provision of ancillary services to the grid. The uncertainty aspect, inherent
for all planning problems, is addressed by forecasting, as discussed in Section 6.3.


The basic MR-POD problem is formulated as follows (see Fig. 6.3 for an illustration):


max
{xt,pt}Tt=1


TX


t=1


fRev
t (dt,pt)� fOpe


t (xt, zt, ⇠t)� �envf
Env
t (xt, zt)


s.t. xt 2 Xt(zt,dt, ⇠t),dt 2 Dt(pt),pt 2 Pt, 8t = 1, ..., T (MR-POD)


where xt is the dispatch proposal at time t, which includes variables in three categories: gen-
eration from on-site power plants, storage charging/discharging, and grid import/export. The
energy demand of buildings dt is a function of retail prices and DR incentives pt determined
by MR-POD. The state variable zt captures the state-of-charge (SOC) of the storage as gov-
erned by the previous state and any actions. The external quantities, e.g., solar irradiation
Irrt and electricity price cgridt , are summarized in ⇠t.
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Figure 6.3: Illustration of the optimization framework of MR-POD.
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Objective function. Driven by both economic gains and environmental consciousness,
the retailer tries to maximize its profit fRev


t (dt,pt)� fOpe
t (xt, zt, ⇠t), and at the same time,


minimize its environmental impact fEnv
t (xt, zt). The revenue collected by selling energy to


buildings fRev
t (dt,pt) depends on retail prices pt and building loads dt. This is a quadratic


function of the retail prices pt, since the building demand dt depends linearly on the price
as in (6.6). The operational cost fOpe


t (xt, zt, ⇠t) is the expenditure on fuel imports net of any
revenue from energy sold back, in addition to maintenance expenses for facilities with on-
site personnel. On top of the former commonly adopted economic incentives [40], [81], [97],
[124], [176], the environmental impact fEnv


t (xt, zt), measured by the amount of carbon dioxide
(CO2) emissions, is incorporated to encourage the use of renewable energy and natural gas in
favor of grid electricity.1 Through the parameter �env controlling trade-o↵s such as a carbon
tax2, MR-POD is able to o↵er guidance to balance the economic and environmental benefits
for the retailer.


Constraints. There are two main groupings of constraints in MR-POD related to pricing
and operation. The pricing constraints pt 2 Pt ensure regulatory compliance, market com-
petitiveness, and customer satisfaction. The operation constraints include (1) power balance
between load and generation, xt 2 Xt(zt,dt, ⇠t), for heating, cooling, and electricity, (2) feasi-
bility for dispatch variables xt and storage states zt delineated by the generation and storage
technologies, e.g., CHP partial loads, PV output, and storage charge/discharge rate limits,
(3) the building load identity dt 2 Dt(pt), based on the price elasticity model, (4) system
resilience requirements, as prescribed in either the cap on the total imported power from the
grid [124], [164], [177], or the spinning reserve limits on the storage resources [164], [177], as
well as (5) DR targets like peak load reduction, which can be achieved through energy price
setting. Due to the involvement of integer variables like discrete on/o↵ decisions for CHP
and charging/discharging for storage, in addition to quadratic coupling between prices and
building loads, the resulting problem requires MIQP.


MG energy pricing


The key to a sustainable pricing policy should align the incentives of the retailer, its cus-
tomers, and its regulators, and ensure reliability, customer equity, and social welfare max-
imization [39], [168]. In the following, we introduce the guiding principles of day-ahead
rate setting for electricity (pE


t ), heating (pH
t ), and cooling (pC


t ) services (see Fig. 6.4 for an
illustration).


Time-di↵erentiated rate structure. While the DA prices of RTP can vary from hour to
hour, TOU typically has three levels corresponding to o↵-, mid-, and on-peak hours, i.e.,


1Based on the statistics from the U.S. Energy Information Administration, electricity generated from
coal (0.98kgCO2/kWh) emits more carbon dioxide than that generated from natural gas (0.55kgCO2/kWh).
Since coal combustion accounts for 71% of CO2 emissions of the grid electricity while natural gas only
accounts for 28%, it is cleaner to generate electricity from natural gas than import from the grid in the U.S.


2For example, a carbon tax of $0.026/kgCO2 is levied in Denmark, while the tax is $0.131/kgCO2 in
Sweden: “Where Carbon Is Taxed?”, Carbon tax center, Jun, 2017 [Accessed: 12/1/2017].



https://www.carbontax.org/where-carbon-is-taxed/
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Figure 6.4: Overview of the pricing strategy, including the time-di↵erentiated rates structure
and energy price coupling. The strategy considers customer retention, price competitiveness,
rate e↵ectiveness, and DR incentivization for energy pricing.


pE
t1


= pE
t2


if t1, t2 are in the same time group. To avoid “response fatigue” due to price
variation [13], it is enforced that the hourly price change and the di↵erence between average
rates of o↵-, mid-, and on-peak are limited,
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where no↵, nmid, non are the sizes of each group, and �di↵ is capped at 0.1$/kWh for electricity.
Rate competitiveness. Both hourly and daily average limits are imposed on thermal and


electricity rates:


rmin
t  pE


t  rmax
t , rmin


avg  1


24


24X


t=1


pE
t  rmax


avg (6.2)


where typical values of rmax
t and rmin


avg are 0.3$/kWh and 0.05$/kWh, respectively, while rmin
t


and rmax
avg can be chosen as the forecasted wholesale market tari↵/the flat rate in the area


to protect the retailer/customers. Further, to hedge consumers against high prices, the K-
factor is introduced, K, as the upper bound on the ratio between the bills under the new
rate (pE,pH ,pQ) and the flat rate (pEflat, p


H
flat, p


Q
flat):


24X


t=1


✓
pE
t Et,b+pH


t Ht,b+pQ
t Qt,b


◆
 K


24X


t=1


✓
pEflatEt,b+pHflatHt,b+pQflatQt,b


◆
, 8b 2 {1, ..., B} (6.3)
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where Et,b, Ht,b, Qt,b are the electricity/heating/cooling loads of building b. Setting the K-
factor less than one implies that the new rates will reduce customers’ bills relative to the
incumbent utility. But, this would often result in a loss of profits for the retailer. A K-factor
slightly larger than one allows more flexibility, and can, interestingly, lead to a win-win
situation in tandem with the DR mechanism.


Integrated energy coupling. The co-existence of multiple energy vectors in the system
indicates the potential coupling between electricity and thermal loads. For a hypothetical
consumer with a heat pump, competitive thermal rates could make it more cost-e↵ective to
purchase thermal energy from the retailer than self-generate(Fig. 6.4):


pH
t  pE


t


COPH
, pQ


t  pE
t


COPQ
(6.4)


where COPH ,COPQ are the coe�cients of performance (COP) for heat pumps, which can
be as high as 4 for some commercial brands.


DR e↵ectiveness. It is desirable to shape the loads during DR events, such as for peak
load reduction, which can be incorporated in rate optimization. The key is to di↵erentiate
the price elasticity of demands, as discussed in the following section.


It is worth mentioning that electricity rates often include the commodity costs, trans-
mission/distribution infrastructure charges, and public purpose programs, such as energy
e�ciency and low-income subsidies, which can be either fixed or variable [168]. Demand
charges are also sometimes applied on maximum demand over a certain time. This study
focuses on variable operational costs that arise from generation and fuel imports, though it
could be combined with other fixed charges in practice.


Energy demand and supply


The e↵ectiveness of price setting depends on the price sensitivity of energy demands. The
load profiles of buildings in a MG, such as in residential and commercial buildings, hospitals,
and public services, can be characterized as critical or curtailable loads.


Critical load. For electricity usage in data centers and ICUs of hospitals, for example, it
is of utmost importance that critical loads are satisfied, i.e.,


Ecritic
t,b = Ecritic


t,b (6.5)


where b 2 {1, ..., B} for a building within the community, and t denotes an hourly time step.
Curtailable load. Apart from critical loads, demands like heating, cooling, ventilation,


and lighting usually fall as the energy price increases. A consumer’s sensitivity to price
changes is measured by the coe�cient of elasticity, ✏, which indicates a ✏% change in energy
demands due to a 1% change in price. The curtailable load, therefore, is modeled as:


Ecurt
t,b = Ecurt,ref


t,b


✓
1 + ✏t,b


pEt � pE,reft + �DR
t


pE,reft| {z }
% change in price


◆
(6.6)
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where ✏t,b is the elasticity coe�cient for building b at time t, Ecurt,ref
t,b is the curtailable load


under the price pE,reft , which usually corresponds to historical data [64], [128], [165].
The elasticity coe�cient ✏t,b is typically negative, indicating the reciprocal relationship


between demand and price; its value depends on (1) time of the day: the load is usually more
price responsive during on-peak than o↵-peak hours [60], (2) rate structures: it is found that
loads under TOU rates are less elastic than those under RTP rates [64], and (3) planning
horizon: the elasticity is usually greater in the long-run when customers can react to a price
increase by purchasing more energy e�cient appliances [20], [64]. For instance, the elasticity
of electricity demands for residential buildings in the US ranges from -0.20 to -0.35 in the
short-run, and -0.30 to -0.80 in the long-run [8]. Di↵erentiated from more complex non-linear
models based on logarithm or potential [239], the linear model simplifies the optimization
and is also more accurate and reliable [239]. We focus our attention on own-price elasticity,
which limits the influence of price on demands in the same time period, since it is su�cient
for capturing how customers adjust their consumption to price changes [62].


As for the supply side, we consider an integrated energy system to satisfy the build-
ings’ electric and thermal loads. By exploiting synergies and complementarities of various
energy vectors, this approach can improve energy e�ciency, reduce CO2 emissions, and fa-
cilitate renewable integration [233]. Apart from CHP and conventional thermal generators
like electric/natural gas/absorption chillers/boilers and heat pumps, renewable resources like
solar thermal and photovoltaics (PV) are included in the retailer’s facility to harness solar
energy and reduce carbon footprints. Electric and thermal storage with dynamic charg-
ing/discharging behaviors are available to enable smooth operation and exploit time-shifting
opportunities. Maintaining a minimum amount of stored energy, typically 5% of the total
capacity, i.e., state-of-charge (SOC), is referred to here as the spinning reserve requirement
[164], [177]. Modeling details can be found in [97].


6.3 Optimal rate design and operation strategy


This section introduces MG planning under uncertain market and weather conditions, as
well as the DR incentivization scheme.


Planning under uncertainty


Using MR-POD for strategizing, the operator can optimize the energy dispatch and retailing
in five critical steps, as illustrated in Fig. 6.5: Before the actual day of dispatch (day 0 ), data
related to weather, energy demands, and MG status are acquired from installed sensors and
meters (step 1 ); this is used to predict and estimate key quantities such as DR potentials,
renewable energy, and electricity wholesale tari↵s (step 2 ). Based on the prediction, MR-
POD produces the optimal dispatch plan and retail rates (step 3 ), which are announced
to generation facilities and consumers (step 4 ). The plan is executed on the actual day of
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Figure 6.5: System overview of MR-POD, illustrating key components: data acquisition,
estimation and prediction, planning and optimization, and control and actuation.


dispatch (day 1 ), and repaired to adjust to unaccounted for fluctuations in demand and
renewable generation (step 5 ).


Prediction of uncertain variables. Methods for solar and load forecasting can be grouped
into data-driven or model-based methods [45]. A comprehensive review of price prediction
approaches has been recently conducted [230]. Specifically, we employ the “forecast combi-
nation” method based on ordinary least squares (OLS[c]), which combines M forecasts from
a committee of predictors, ŷm,t, according to


yOLS
t = cOLS +


MX


m=1


wmŷm,t (6.7)


where constant cOLS and weights {wm}Mm=1 are learned from past performance of the fore-
casts [230]. Its performance is shown to be superior among an array of candidates for solar
and tari↵ prediction [97].


Generator dispatch and energy retailing. As with electricity market bidding, upon receiv-
ing predictions on day 0, the retailer performs MR-POD optimization to prepare a day-ahead
dispatch plan and its energy retail rates and announces them to the generation facility and
building owners. The original dispatch proposal is amended for actual execution on day 1 by
exploiting the cheapest sources/destinations of energy immediately available, e.g., storage
(if any) or grid, to maintain the power balance.


Setting the DA retail rates is common practice, such as the DA RTP tari↵ used by the
Illinois Power Company, pilots in California, Idaho, and New Jersey, and the three-level
TOU pricing in Ontario, Canada. And it reaps several benefits [13]. First, the DA prices
like RTP can best reflect the costs of energy procurement incurred by the retailer. Also, it
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can handle exceptional days, for instance, by declaring DA CPP when the forecasted loads
are high. Importantly, it allows consumers su�cient time to schedule their consumption,
while not being “fatigued” by hourly rate changes [123].


DR incentivization


Time-di↵erentiated rates bring about changes in customers’ energy consumption by di↵eren-
tiating prices during peak and o↵-peak hours. The targeted change patterns, or load shaping,
are described by:


atminE
curt,ref
t,b  Ecurt


t,b  atmaxE
curt,ref
t,b (6.8)


where atmin and atmax are design parameters indicating the ranges of actual loads when the
retail rates are in e↵ect; for instance, normal load conditions typically correspond to atmin =
0.85 and atmax = 1.1 [53], while load reduction requires atmin < atmax < 1. Occasionally, in
response to unusual events, the retailer can employ additional incentive/penalty terms, �DR


t ,
in tandem with the regular retail rates to induce further changes in loads, as predicted by
the curtailable load model (6.6).


While the success of DR relies on customer engagement, in practice, interest in switching
to RTP rates wane due to a lack of financial incentives and increased exposure to market
volatility [127]. One viable strategy is to motivate DR participation by o↵ering guarantees
of energy bill reduction. This can be achieved by dictating the “K factor” to be less than
one when setting the rates (MR-POD); however, experiments show that this strategy often
yields ine�cient pricing, and even leads to a significant loss of profits for the retailer.


Our proposal (Fig. 6.6) allows an initial increase in customer energy payments, but later
compensates the customers with performance-based dividends, which serve several purposes:
1) alignment of the financial interests of stakeholders; 2) incentivization of DR; 3) protection
of customers, e.g., low-income families, by reducing their bills.


Customer 
energy bills


Fuel & 
generatio
n


Profits


Dividends
DR incentivesBill saving


DR
distributor


Figure 6.6: The mechanism of DR incentivization with performance-based dividends, which
uses a portion of the retailer’s profits as rewards to buildings based on their peak load
reduction performance.
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The performance-based dividends are calculated relative to a baseline, which is usually
the flat rate pricing. First, assuming baseline loads, any increase in energy bills due to
RTP is compensated. This ensures non-increasing bills for customers who opt for RTP over
flat rates. Second, a share of retailer’s total fuel cost savings is distributed among DR
participants. The amount that each building receives is proportional to its contribution to
total peak load reduction of the community, though it is possible to factor customer type
and income levels into the distribution weights.3 As ancillary services are usually scheduled
by the ISO a day ahead and called upon as needed on short notice, the scheme is able to
introduce added flexibility to MG load responses, thus improving services to the grid [127].


6.4 Scenario analysis and case study


This section studies the impact of optimal dispatch and pricing on system economy and
reliability. First, the scenario without DR is examined with fixed retail rates. The DR
option is enabled by jointly optimizing rates and dispatch.


Experimental setup


We first present the data for solar irradiation, building loads, and energy prices. We also
specify six (6) campus scale MGs with di↵erent generators to serve three buildings with
electricity, cooling and heating.


Figure 6.7: Electricity load profiles (left), which display the critical loads (red) and curtail-
able loads (green), for three buildings (di↵erent shadings). Cooling demands (right) for the
buildings in a stacked plot.


3For instance, if the bill for a customer enrolled in RTP is $92 but would be $90 under the flat rate, then
he would be compensated by $2 to bring down the bill. If, in addition, the building contributes 50kW out
of 1000kW of total peak load reduction of the community, and the cost savings of the retailer is $200, then,
with a sharing rates of 0.5, an additional $5 rebate will apply, leading to a reduced bill of $85.
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Figure 6.8: Electricity and natural gas tar-
i↵s, where the spark spread is mainly driven
by the daily fluctuation of electricity prices.
Data sources: see footnotes 7 and 8.


Figure 6.9: Solar irradiation measured by the
GHI index (kWh/m2) on several days of the
study period, which clearly exhibits diurnal
patterns.


Table 6.1: Building elasticity parameters for o↵-peak hours (12am-7am, 7pm-12am), mid-
peak hours (7am-11am, 5pm-7pm), and on-peak hours (11am-5pm) in the summer period,
where cooling loads are dominant.


o↵-peak mid-peak on-peak
elec. heat cool elec. heat cool elec. heat cool


Bld:1 -.1 -.2 -.2 -.3 -.3 -.3 -.46 -.4 -.4


Bld:2 -.12 -.22 -.2 -.32 -.35 -.3 -.48 -.45 -.4


Bld:3 -.15 -.24 -.2 -.34 -.4 -.3 -.5 -.5 -.4


Dataset. The TMY3 dataset [231] is queried for the Global Horizontal Irradiance (GHI)
index 4 in Oakland, California (Fig. 6.9) to determine PV outputs.


The load data is retrieved from the Open Energy Information (OpenEI) for a research fa-
cility (Bld:1) 5, a large hotel (Bld:2), and a commercial building (Bld:3) 6. During the period
of study, i.e., May, the thermal loads are predominantly for cooling (Fig. 6.7). The elastic-
ity parameters (Table 6.1), prudently derived from [8], [53], [60], di↵erentiated responses in
o↵-/mid-/on-peak hours and building types.


The electricity spot price is accessed from the National Grid Online Database7 and
adapted to be similar to the California wholesale market and to reflect the time of use
rates (Fig. 6.8). The natural gas price, which according to the U.S. Energy Information


4GHI, measured in 1 kWh/m2, is the total amount of direct and di↵use solar radiation received on a
horizontal surface during the 60-minute period.


5NREL RSF Measured Data 2011, accessed: 12/2017
6OpenEI Load Profiles, accessed: 12/2017
7National Grid Online Database, accessed: 12/2017



https://en.openei.org/datasets/dataset/nrel-rsf-measured-data-2011

https://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states

https://www9.nationalgridus.com/niagaramohawk/business/rates/5_hour_charge_a.asp
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Administration experiences less fluctuations throughout the month, is assumed to be at a
constant level of 0.03$/kWh.8


MG specification. We have prototyped six (6) MGs with di↵erent generation capacities
(Table 6.2). MG1 is considered as the baseline, which imports electricity from the grid and
provides heating and cooling energy by a NG boiler and an electric chiller. The aim of the
rest of the prototypes is to study the e↵ects of energy storage (MG2 vs. MG1), renewables
(MG3 vs. MG1), CHP and absorption chiller (MG5 vs. MG4), and grid imports (MG6 vs.
MG5) on operations.


The core MIQP programs (MR-POD) are built in Python and solved by Gurobi. The
following experiments are performed on a MacBook with a 2.8 GHz Intel Core i7 CPU and
16 GB RAM memory.


Table 6.2: MG specifications. The storage capacities follow the format of heating stor-
age/cooling storage/electric battery. Four discrete CHP plants are considered. The model-
ing and specifications of generator technologies can be found in [97]. For those MGs with
grid imports, they can also function as islands.


NG
boiler


Electric
chiller


Storage PV
Solar


thermal
Absorption


chiller
CHP


Grid
import


MG1 5MW 10MW Yes


MG2 5MW 10MW 1/1/4MW Yes


MG3 5MW 10MW 1.5MW .75MW Yes


MG4 5MW 10MW 1/1/4MW 1.5MW .75MW Yes


MG5 5MW 10MW 1/1/4MW 1.5MW .75MW 10MW 1.5/2/3/4MW Yes


MG6 5MW 10MW 1/1/4MW 1.5MW .75MW 10MW 1.5/2/3/4MW No


Energy dispatch and uncertainty e↵ect


This section demonstrates the optimal energy dispatch planning of MR-POD while keep-
ing retail prices fixed. Several observations can be made about the energy dispatch plan
(Fig. 6.10) for MG4, which includes CHP, storage, and PVs: 1) the predicted spot price
follows the trend of the true spot price9; as a result, 2) the battery takes advantage of its
variation by charging during the night (o↵-peak) and discharging during the afternoon (on-
peak); also, 3) CHP and the absorption chiller are dispatched for electricity and cooling
generation to exploit the spark spread.


By comparison (Table 6.4, “Daily” columns), given the same revenue from customer bills,
MG1–or the baseline–earns the least profit, whereas MG5 brings in the most profit, which


8U.S. Energy Information Administration, accessed: 12/2017
9To reduce uncertainty in the spot market and solar irradiation, an OLS forecast combination scheme


based on an array of forecasters (Gaussian process, support vector regression, multi-layer perceptron, etc.)
is employed, which use a month of data for training and to make day-ahead predictions.



http://www.eia.gov/naturalgas/
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Figure 6.10: Electricity and cooling balances with daily flat rates. The graph also shows the
forecasted and true wholesale price, as well as the natural gas rates. Since the experiment
is conducted during the summer, the heat balance is not shown due to insignificant loads.
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Figure 6.11: Top panel: scatter plots of the profit loss against electricity tari↵ (left) and
solar (right) forecast error. The baseline is an oracle that uses true electricity tari↵ and solar
irradiation for dispatch and pricing. Bottom panel: Pearson correlation between profit loss
and forecast error. A positive number closer to 1 occurs when the two random variables
follow similar trend.


exceeds MG6 that operates in “island-mode.” This illustrates the energy cost reduction
o↵ered by storage, renewables and CHP.


The uncertainty e↵ect of solar and electricity prices is studied by collating the daily profit
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loss with the forecasting error10 (Fig. 6.11). We can see that there is a positive correlation
between profit loss and forecasting error. Since the dispatch of CHP relies on accurate
prediction of the spark spread, the e↵ect of wholesale spot price forecasting error is more
pronounced for MG5 than both MG2 and MG4. This result is in alignment with the findings
from [41]; however, their studies incorporated the situation with only electricity loads and
no distributed generation capacity, and the forecasting errors were simulated from a noise
model rather than derived for state-of-the-art predictors.


Optimal retail pricing strategies


The central question in this section is: “How can the retailer strategize its operation and
retailing to promote mutual benefits for its customers and the grid.”


Firstly, we investigate the benefits of time-di↵erentiated rate structures with elastic build-
ing loads (Table 6.1) and practical-oriented pricing constraints (Table 6.3). The DA elec-
tricity and thermal rates are evaluated over a month during the summer, as illustrated in
Fig. 6.12 for MG4 and Fig. 6.13 for MG5 (which di↵er by the installation of CHP plants),
where the monthly average and 90% confidence interval of the retail prices and true/predicted
spot prices are shown. While the optimal RTP and TOU rates share similar trends, RTP
exhibits more flexibility for accommodating hourly fluctuations in loads and spot prices.
Prices are relatively stable over the month, which reduces customers’ risks of exposure to
the wholesale market volatility. One crucial di↵erence between the rate profiles of MG1 to
MG4 and that of MG5 and MG6 is focused on the peak hours (see Figs. 6.12 and 6.13). For
MGs that rely on grid imports for electricity provision, the retail price peaks along with the
spot price to reflect the increased cost of generation, while this increase in rates is absent for
MGs that can use natural gas as an alternative source. Indeed, as is shown in the previous
section, CHP is dispatched when the grid electricity is expensive (Fig. 6.10).


Figure 6.12: Optimized electricity (left) and thermal (right) retail rates under di↵erent
pricing structures (Daily, TOU, RTP) for MG4. The shading indicates 90% confidence
interval. Both the predicted and true wholesale electricity tari↵s are shown.


10The forecasting error is measured by the root mean squared error (RMSE), given by
q


1
n


Pn
i=1(yi � ŷi)2,


with yi and ŷi denoting the true and predicted values at time i 2 {1, ..., n}.
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Figure 6.13: Optimized electricity (left) and thermal (right) retail rates under di↵erent
pricing structures for MG5.


Table 6.3: Parameters of optimal rate design. Each parameter category is followed by the
equation reference. For hourly rates limits, ŷEt is the predicted wholesale tari↵ at hour t.
The unit for rates-related quantities is $/kWh.


Electricity Thermal


Hourly change cap (6.1) �di↵E = 0.2 �di↵H,Q = 0.1


Hourly rates limits (6.2) rmax
t = 0.3, rmin


t = min(0.05, ŷEt ) rmax
t = 0.05, rmin


t = 0.01


Daily rates limits (6.2) rmax
avg = 0.15, rmin


avg = 0.05 rmax
t = 0.15/COP, rmin


t = 0.01


K factor (6.3) K = 1.2 (unless otherwise specified)


Energy coupling (6.4) COP = 3.0 for both heating and cooling


Reference rates (6.6) pE,reft = 0.15 pH,ref
t = 0.036, pQ,ref


t = 0.028


DR requirements (6.8) atmin = 0.85, atmax = 1.1


TOU groupings o↵-peak: 7pm-7am, mid-peak: 7am-11am, 5pm-7pm, on-peak: 11am-5pm


DR dividends customer share 50% of retailer profits


The economic and environmental impacts are assessed (Fig. 6.14 and Table 6.4), illus-
trating increased daily profits and reduced total energy and CO2 emission.11 To gain insights
into the impact on MG-level e�ciency, we study the measures of peak electricity usage, peak-
to-valley distance and load factors, which indicate the average peak loads (11am – 5pm),
the di↵erence between peak loads and valley loads (7pm – 7am), and the ratio between the
average loads and peak loads, respectively. The RTP scheme is shown to significantly bring
down peak loads and peak-to-valley distance while raising the load factors, which lessens the
burden of the MG to invest in peak capacity and improves resource management and system
reliability. Above all, RTP is shown to improve the economics more significantly over the
daily rates when CHP is not present, due to the substantial reduction in peak hour loads


11The profit is calculated as the revenue minus the fuel cost, e.g., electricity from the grid or natural
gas, which also include the dividends for the buildings due to DR. The total energy consumption includes
daily electricity and thermal energy demands. The CO2 emission is estimated from the use of grid electricity
(0.98kgCO2/kWh) and natural gas (0.55kgCO2/kWh).
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Table 6.4: Scenario analysis result summary. The reported daily values for the cost of
generation, profits, and CO2 emissions are averaged over 30 days period. Compared to the
baseline model that uses flat daily retail rates, the percentage di↵erences are shown in the
parenthesis. Graphical illustrations for other indicators, such as peak electricity and load
factors, are shown in Fig. 6.14.


Cost of generation (k$) Profits (k$) CO2 emissions (ton)
Daily TOU RTP Daily TOU RTP Daily TOU RTP


MG1 11.9 11.0(-7.6%) 10.9(-8.4%) 8.4 9.3(+10.3%) 9.4(+11.9%) 134 133(-0.7%) 129(-3.7%)


MG2 11.7 10.8(-7.7%) 10.7(-8.5%) 8.6 9.5(+10.5%) 9.6(+11.6%) 135 134(-0.7%) 130(-3.7%)


MG3 11.0 10.1(-8.2%) 10.0(-9.1%) 9.3 10.2(+9.7%) 10.3(+10.8%) 125 124(-0.8%) 120(-4.0%)


MG4 10.8 9.9(-8.3%) 9.8(-9.3%) 9.6 10.4(+8.3%) 10.6(+10.4%) 127 124(-2.4%) 121(-4.7%)


MG5 6.8 6.6(-2.9%) 6.5(-4.4%) 13.5 13.7(+1.5%) 13.9(+3.0%) 128 127(-0.8%) 123(-3.9%)


MG6 7.3 7.3(0%) 7.1(-2.7%) 13.0 13.1(+0.8%) 13.2(+1.5%) 133 133(0%) 128(-3.8%)
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Figure 6.14: Comparison of di↵erent dynamic rate structures (Daily, TOU, RTP) for MGs,
based on the economic (daily profits), environmental (CO2 emission, total energy), and
reliability (peak electricity, peak-valley distance, load factors) indicators.


that lowers the cost of generation (see Table 6.4 for MG1 – MG4).
Next, we evaluate the performance-based dividend strategy to promote customers’ par-


ticipation in RTP and demand response. Three rate settings (K factors 0.95, 1.0, 1.2) are
considered. Fig. 6.15 illustrates the percentages of customer bill savings, energy production
cost saving, and retailer profit increase for MG4 before (denoted as A) and after (B) the







CHAPTER 6. ENABLING OPTIMAL ENERGY RETAIL IN A MICROGRID 84


dividend. Customers achieve the most significant bill saving under the price setting with
K-factor of 0.95; however, the conservative pricing does not induce peak load shedding in
order to reduce the retailer generation cost, causing a considerable loss of profits. On the
contrary, by allowing more flexibility in pricing (K factor of 1.2), the time-di↵erentiated
rates become more e↵ective to reduce peak loads (Fig. 6.16), whose benefits can be shared
among buildings (1 to 5% bill saving) and the retailer (3 to 6% profit increase) through the
dividend mechanism. Since most RTP programs in the U.S. are voluntary [13], this o↵ers
economic incentives for enrollment. From the above results, customers with more elastic
demands (Bld:2 and Bld:3) are more likely to save, since they tend to reduce more usage
when the price is high. To assess the e↵ects of energy load elasticity, four types of profiles
are examined, namely, “very rigid”, “rigid”, “elastic”, and “very elastic”, which correspond
to -100, -50, 0, 100% changes of elasticity parameters in Table 6.1 for all buildings.12 There
seems to be a positive correlation between the elasticity of customers and energy bill sav-
ings, retailer profit increase, and peak load reductions (Fig. 6.17), indicating the potential
benefits of programs like openADR that aim at improving responsiveness to price through
building automation [71], [160].
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Figure 6.15: Economic indicators of building bill savings, cost savings, and profits increase
(percentage) for di↵erent K factors (0.95, 1.0, 1.2). Scheme A and B represent the indicators
before and after the performance-based dividends are rewarded to each building (Fig. 6.6).
With K factor of 0.95, while buildings can enjoy substantial bill savings, the retailer incurs a
profit loss of -8%. By introducing more flexibility in rate setting, e.g., K factors of 1.2, both
consumer bill savings and retailer profits will improve after the performance-based dividends.


12For instance, the electricity elasticity for B1 during o↵-peak hours would be �0.1 ⇤ (1 � 0.5) = �0.05
for a “rigid” profile, and �0.1 ⇤ (1 + 1) = �0.2 for a “elastic” profile.
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Figure 6.16: Overall electricity reduction with RTP rates. During peak hours, the original
thermal and electricity loads are reduced (shaded bars) due to the high rates, while some of
the loads are shifted to o↵-peak hours.
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Figure 6.17: The economic and system indicators for four di↵erent customer profiles (elastic,
baseline: elasticity in Table 6.1, very elastic: elasticity is 2 times the baseline, very rigid:
elasticity is 0, rigid: elasticity is 50% of baseline). The performance of the system with
elastic demands under daily rates is identical to that with very rigid consumers under RTP.
Both indicators are improved with the customers being more elastic.


Microgrid case study


Due to the increasing penetration of renewables and heightened environmental awareness, it
is crucial to ensure economic and environmental viability and system stability. This section
demonstrates the capability of MR-POD in addressing the following issues:


• Case 1: Environmentally aware pricing and operation


• Case 2: Demand response for PV over-generation
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The operation of a clean MG that aims to reduce the environmental impact, such as that
of greenhouse gas emissions, is often pursued as a positive externality for society. According
to a recent report by the World Bank, about 40 national jurisdictions worldwide put a
price on carbon, a.k.a. carbon tax, which spans from less than 1$/tCO2e to 131$/tCO2e.


13


Case 1 focuses on the design of environmentally aware pricing and operation strategies.
More specifically, the cost of CO2 emission can be considered by setting the �Env parameter
in the optimization (MR-POD), which acts as a “virtual carbon tax.” The tradeo↵ between
profits and carbon dioxide emission is demonstrated for di↵erent MG infrastructures (Fig.
6.18), which illustrates the Pareto frontier in a multi-objective optimization.


Figure 6.18: The trade-o↵ between daily profits and CO2 emission in MG operations and
pricing. The square, diamond, and circle markers indicate �env being 0, 40, and 1000$/tCO2e.
Clearly, MG5 is at the Pareto frontier, which can achieve more profits with less emissions
due to the capability of fuel switching.


The results indicate that there is a limited range of trade-o↵ for MGs with a single fuel
source (MG1, 2, 3, 4, 6) that can only control through the price signal, as compared to MG5
that can also perform fuel switching. At a reasonable level of carbon taxes, or 40$/tCO2e,
MG5 can substantially reduce CO2 emissions while maintaining a high profit. As can be seen
in Fig. 6.19, the use of an electric chiller and grid electricity is replaced by the absorption
chiller and CHP at hours 11pm-2am, except during hours when the grid electricity price is
relatively low to save generation cost. Indeed, the proportion of natural gas consumption
significantly rises for environmentally aware operations during mid- and on-peak hours as
the spark spread widens (Fig. 6.20).


By leveraging the natural gas fired, electricity powered devices, and renewable sources
within a MG, it is possible to perform fuel switching as circumstances dictate. In particular,


13“State and trends of carbon pricing 2016”, World Bank report, 2016 [Accessed: 12/1/2017]



https://openknowledge.worldbank.org/handle/10986/25160
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Figure 6.19: Electricity and cooling balances with a reasonable level of carbon taxes at
40$/tCO2e. For comparison, the plot is presented for the same day as in Fig. 6.10, which
adopts a flat rate but does not include carbon tax equivalence in its operation.
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Figure 6.20: Fuel mixing during o↵-, mid-, on-peak hours for a schemes with �env being 0
and 40$/tCO2e. The latter results in more natural gas usage during mid- and on-peak hours
for clean operations. However the usage of natural gas does not change significantly due to
o↵-peak hours, due to the lower price of grid electricity.


Case 2 focuses on the problem of curtailed electric energy [144], when some of the renewable
energy generation must be wasted to keep real-time power balance.


To simulate the case of PV over-generation, MG5 is assumed to have a high level of
renewable generation (solar panels with 15MW rated capacity). Consequently, the problem
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often arises during a sunny day, when the supply of electricity far exceeds the demand.
However, due to the prediction of the event, the retailer can promptly respond by lowering
the electricity rates to encourage consumption, in addition to coordinating the charging of
battery to shift the excessive generation to the night, which avoids the destabilization of the
system and reduces customer bills (Fig. 6.21). In light of the upward tendency of renewable
adoptions, this illustrates the added flexibility of MG enabled by optimal coordination and
retail rates setting.


Figure 6.21: Electricity and cooling balances under RTP. When there is a PV surplus during
the noon, the rates are set lower to encourage flexible consumption while the storage is
charged, which reduces the amount of PV curtailment.


6.5 Chapter summary


With the increasing penetration of renewables and the advent of electric vehicles as mobile
batteries, fundamental changes in utility rate structures and energy system operation are
vital. In this chapter, an optimal strategy for energy dispatch and pricing was investigated,
which was shown experimentally to promote energy e�ciency and retailer profitability, bill
savings for the customers, and demand response for the grid. The key insight is that “behav-
ior nudges” like retail prices can be co-optimized with integrated energy dispatch to leverage
demand flexibility (e.g., by incentivizing load curtailment during on-peak hours, the DR
scheme ensures both reliability and economy) and system synergy (e.g., the most significant
reduction in operational costs is brought by the CHP plant, which performs fuel switching
by exploiting the spark spread when the electricity wholesale tari↵ is high). However, while
data-driven planning is shown in this chapter to improve h-CPS e�ciency, it also makes
the system more vulnerable to potential attacks that could compromise security. We will
examine such a scenario in power grid in the next chapter for cyber resilience analysis, which
is equally important (if not more so) for h-CPS operation.
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Chapter 7


Cyber resilience of power grid state
estimation


Human-cyber-physical systems continually face variable operational conditions caused by
both internal and external factors. In Chap. 6, we explored data-driven strategies to im-
prove system e�ciency in a dynamic and uncertain environment. This chapter focuses on
the aspect of resilience—the capability to predict, absorb, and recover from disturbances.
With the growing concerns about the e↵ects of potential cyberattacks on critical infrastruc-
tures like power grid, we analyze the vulnerability of a key procedure known as power grid
state estimation against potential cyberattacks on data integrity, also known as a false data
injection attack (FDIA). A general form of FDIA can be formulated as an optimization
problem whose objective is to find a stealthy and sparse data injection vector on the sen-
sor measurements that cause the state estimate to be spurious and misleading. Due to the
nonlinear AC measurement model and the cardinality constraint, the problem includes both
continuous and discrete nonlinearities. To solve the FDIA problem e�ciently, we investigate
a novel convexification framework based on semidefinite programming (SDP) and prove that
the attack can be stealthy and sparse.


7.1 Power grid resilience and state estimation


The convergence of automation and information technology has enhanced reliability, e�-
ciency, and agility of the modern grid. Managed by supervisory control and data acquisition
(SCADA) systems, a wealth of sensor data from transmission and distribution infrastructures
are collected and filtered in order to facilitate a key procedure known as power system state
estimation (SE), which is conducted on a regular basis (e.g., every few minutes), as shown in
Fig. 7.1 [3], [214]. The outcome presents system operators with essential information about
the real-time operating status to improve situational awareness, make economic decisions,
and take contingency actions in response to potential threat that could engander the grid
reliability [172].
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Figure 7.1: Illustration of power system operation and its vulnerability to cyberattacks
(adapted from [158]). With unfettered access to the communication network and grid infor-
mation system through cyber-intrusion, an adversary would be able to stage an attack on the
system without any physical sabotage by simply injecting false data to the state estimator
to impact the decision making for the system.


In smart grid where information is sent via remote terminal units (RTUs), maintaining
the security of the communication network is imperative to guard against system intrusion
and ensure operational integrity [214], [226], [229], [245]. However, traditional approaches
such as security software, firewalls, and “air gaps”, i.e., no connection between systems, are
recognized as inadequate in the face of growing likelihood of breaches and cyber threat, such
as the 2016 cyberattack on Ukraine’s electricity infrastructure [23], [145]. In a recent report
from the National Academies of Sciences, Engineering, and Medicine, titled “Enhancing the
resilience of the nation’s electricity system”, the committee concluded that the United States’
electric grid is vulnerable to a range of threats, among which terrorism and cyberattacks are
most severe and could potentially cause long-term and widespread blackouts [172]. A process
called “envisioning process” is recommended to improve the cyber security and resilience,
which stresses the importance of “anticipating myriad ways in which the system might be
disrupted and the many social, economic, and other consequences of such disruptions”.


In this chapter, we analyze power grid vulnerability against cyberattack – more specif-
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ically, one critical class of threat known as false data injection attack, which attempts to
stealthily modify data to introduce error into grid SE (Fig. 7.1) [148]. To stage an FDIA,
the attacker needs to compromise power measurements by hacking the communication with
SCADA. Previous works [38]. [136], [148], [181], [198], [205], [236], [241] have demonstrated
that a stealthy FDIA is possible to evade bad data detection (BDD) by the control center,
and can cause potential damages of load shedding [241], economic loss [145], [225], and even
blackouts [146]. While these works have primarily studied a simplified power flow model, i.e.,
DC model [38], [83], [136], [148], [181], [198], [206], [236], [241], an FDIA based on a more
accurate AC model is within the realm of possibility [3]. In a system where measurements
are nonlinear functions of the state parameters, it is usually not easy to construct a state
that evades BDD. Indeed, DC-based FDIA can be easily detected by AC-based BDD [186],
[226]. On the other hand, the nonlinearity of equality power-flow constraints also makes
the co-existence of multiple states and spurious solutions possible, which is a fundamental
reason why an AC-based FDIA with sparse attacks is feasible and perhaps more detrimen-
tal than an DC-based FDIA. Once constructed, this new class of attacks could be hard
to detect by existing methods. Thus, it is vital to understand its mechanism and devise
protection/detection methods to thwart such attacks.


Adversarial FDIA. Potential adversarial FDIA strategies have been addressed in previ-
ous works on power system vulnerability analysis [86], [136], [148], [186], [241]. The negative
impacts and possible defense mechanisms have also been studied [136], [146], [198], [241].
From a practitioner’s point of view, there are mainly two categories, based on either DC or
AC models [145], [225]. For DC-FDIA, an unobservability condition was derived and the
attack was numerically shown to be sparse [136], [148], [241]. Distributed DC-FDIA with
partial knowledge about the topology was considered in [181] ,[226]. The vulnerability was
quantified by the minimum number of sensors needed to compromise in order to stage stealth
FDIA [38], [136], [198]. This can be formulated as a minimum cardinality problem, where
di↵erent algorithms have been proposed for e�cient computation [83], [206]. As for the
attack impact, FDIA has been studied on the electric market [236] and load redistribution
[241] to show significant financial losses.


Only a few works have been published on AC-based FDIA, due to the recognized com-
plexity of nonlinear systems [186], [214]. The paper [86] introduced a graph-based algorithm
to identify a set of compromised sensors that su�ces to construct an unobservable attack;
however, this only o↵ers an upper bound on the cardinality, rather than resource-constrained
sparsity. The work [186] studied AC-based FDIA based on linearization around the target
state under the assumption that SE is obtained by a specific algorithm, which could be too
stringent in practice.


Contributions. Di↵erentiated from prior literature, this study is the first of its kind to
solve a general FDIA for the AC-based SE, with theoretical guarantees of sparsity and
unobservability. Motivated by the theoretical challenges of continuous nonconvexity and
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discrete nonlinearity posed by AC-based FDIA, we propose a novel convexification framework
using SDP, and prove conditions on stealth attack and performance bounds. This broadens
the perspectives on power system security and vulnerability analysis. By investigating the
least-e↵ort strategy from the attacker’s perspective, this study provides a realistic metric for
the grid security based on the number of individual sensors required to thwart an FDIA.
The results also motivate protection mechanisms for AC-based SE, such as the redesign of
BDD [207].


Notations


Set notations. We use R and C as the sets of real and complex numbers, and Sn and Hn to
represent the spaces of n⇥n real symmetric matrices and n⇥n complex Hermitian matrices,
respectively. A set of indices {1, 2, ..., k} is denoted by [k]. The set cardinality Card(·) is
the number of elements in a set. The support of a vector x, denoted as supp (x), is the set
of indices of the nonzero entries of x. For a set S ⇢ Rn, we use Sc = Rnm \ S to denote its
complement. The notation int � is used to represent the interior of the set �.


Matrix notations. Vectors are shown by bold letters, and matrices are shown by bold
and capital letters. The symbols 0n, 1n, 0m⇥n, In⇥n denote the n ⇥ 1 zero vector, n ⇥ 1
one vector, m ⇥ n zero matrix, and n ⇥ n identity matrix, respectively. Let [x]i denote the
i-th element of the vector x. For an m⇥ n matrix W, let W[X ,Y ] denote the submatrix of
W whose rows are chosen from X 2 [m] and whose columns are chosen from Y 2 [n]. The
notation W ⌫ 0 indicates that W is Hermitian and positive semidefinite (PSD), and W � 0
indicates that W is Hermitian and positive definite.


Operator notations. The symbols (·)> and (·)⇤ represent the transpose and conjugate
transpose operators. We use <(·), =(·), trace (·), and det(·) to denote the real part, imaginary
part, trace, and determinant of a scalar/matrix. The dot product is represented by x1 ·x2 =
x>
1 x2, for x1,x2 2 Rn. The imaginary unit is denoted as . The notations \x and |x| indicate


the angle and magnitude of a complex scalar; moreover, \x and |x| are defined based on
the angles and magnitudes of all entries of the vector x. For a convex function g(x), we
use @g(x) to denote its subgradient. The notations kxk0, kxk1, kxk2 and kxk1 show the
cardinality, 1-norm, 2-form and 1-norm of x.


Power system modeling


We model the electric grid as a graph G := {N ,L}, where N := [nb] and L := [nl] represent
its set of buses and branches. Denote the admittance of each branch l 2 L that connects
bus s and bus t as yst. The mathematical framework of this work applies to more detailed
models with shunt elements and transformers; but to streamline the presentation, these are
not considered in the theoretical analysis of this paper. The grid topology is encoded in the
bus admittance matrix Y 2 Cnb⇥nb , as well as the from and to branch admittance matrices
Yf 2 Cnl⇥nb and Yt 2 Cnl⇥nb , respectively (see [248, Ch. 3]).







CHAPTER 7. CYBER RESILIENCE OF POWER GRID STATE ESTIMATION 93


The power system state is described by the bus voltage vector v =
⇥
v1, ..., vnb


⇤> 2 Cnb ,
where vk 2 C is the complex voltage at bus k 2 N with magnitude |vk| and phase \vk. Given
the complex nodal vector, the nodal current injection can be written as i = Yv, and the
branch currents at the from and to ends of all branches are given by if = Yfv and it = Ytv,
respectively. Define {e1, ..., enb


} and {d1, ...,dnl
} as the sets of canonical vectors in Rnb and


Rnl , respectively. We can derive various types of power and voltage measurements as follows:


• Voltage magnitude. The voltage magnitude at bus k is given by |vk|2 = trace (Ekvv⇤),
where Ek := eke>k .


• Nodal power injection. The power injection at bus node k consists of real and reactive
powers, pk + qk, where:


pk = < (i⇤kvk) = trace
�
1
2 (Y


⇤Ek + EkY)vv⇤�


qk = = (i⇤kvk) = trace
�


1
2 (Y⇤Ek � EkY)vv⇤�.


• Branch power flows. Given a line l 2 L from node s to node t, the real and reactive
power flows in both directions are given by:
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Thus, each common measurement in power systems that belongs to one of the above mea-
surement types can be written as:


fi(v) = trace (Mivv
⇤), (7.1)


where Mi 2 Hnb is the Hermitian measurement matrix for the i-th noiseless measurement
(it is straightforward to include linear PMU measurements in our analysis as well).


AC-based state estimation


The SE problem aims at finding the unknown operating point of a power network, namely v,
based on a given set of measurements. During the operation, a set of measurements v 2 Rnm


are acquired:
v = f(v) + e+ b, (7.2)


where f : Cnb 7! Rnm is the measurement function whose scalar elements are designated in
(7.1), e 2 Rnm denotes random noise, and b 2 Rnm is the bad data error that accounts for
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sensor failure or adversarial injection. In the case of no bad data error, the common strategy
for solving SE is to form the nonlinear weighted least squares problem:


min
v̂2V


nmX


i=1


wi(mi � fi(v̂))
2, (7.3)


where V is the region of potential operating points, wi is the inverse variance of sensor i,
and fi(v̂) is given in (7.1).


In the case that the sensor measurements are not corrupted by bad data and noise,
i.e., b = e = 0, we describe a condition under which a state is “observable” based on
the measurement types (matrices) M = {M1, ...,Mnm} [151]. First, we introduce some
notations. Let O denote the set of all buses except the slack bus. The complex vector
v 2 Cnb can be represented by its real-valued counterpart:


v =
⇥
<
�
v[N ]>


�
=
�
v[O]>


�⇤> 2 R2nb�1.


Accordingly, any n⇥ n Hermitian matrix M can be characterized by a (2n� 1)⇥ (2n� 1)
real skew-symmetric matrix:


M =



< (M[N ,N ]) �= (M[N ,O])
= (M[O,N ]) < (M[O,O])


�
2 R(2n�1)⇥(2n�1).


Based on (7.1) and the above notations, the vector-valued function f(v) maps the state to a
set of noiseless measurements:


f(v) =


2


64
v⇤M1v


...
v⇤Mnmv


3


75 =


2


64
v>M1v


...
v>Mnmv


3


75 2 Rnm , (7.4)


whose Jacobian matrix is given by:


J(v) = 2
⇥
M1v · · · Mnmv


⇤
. (7.5)


Motivated by the inverse function theorem, which states that the inverse of the function f(v)
exists locally if J(v) has full row rank, an “observability” definition is introduced below.


Definition 7.1 (Observability). A state v 2 Cnb is observable from a set of measurement
types M if the Jacobian J(v) has full row rank. For a given set of measurement types M,
the observable set V(M) is the set of all observable states.


In practice, the SE problem (7.3) can be solved e�ciently using first-order methods such
as the Gauss-Newton algorithm or a recent method based on SDP relaxation [151], [243].
Furthermore, as implied by the observability property and the Kantorovich theorem, if the
state v is observable, then we can find it using the Gauss-Newton method by starting from
any initial point su�ciently close to v.
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As captured by the bad data vector b, the sensor measurements might be corrupted by
aberrant data. The common practice is to employ a BDD based on statistical hypothesis
testing [214]. Under the null hypothesis that no bad injection exists, namely bi = 0, the
residual (mi � fi(v̂))


2 should follow the chi-squared distribution, where v̂ is the estimated
state and the random error ei is assumed to be normally distributed. A threshold value is set
based on confidence levels to detect large residuals, whose corresponding data are discarded
and a new iteration of SE starts. This procedure is able to sift out randomly occurring bad
data; however, it can be ine↵ective to guard against systematically fabricated bad data, a
type of cyberattack known as FDIA.


7.2 Vulnerability of AC-based state estimation


FDIA is a cyberattack on the data analytic process, where a malicious agent intentionally
injects false data b 2 Rnm into the nm grid sensors to make system operators believe in
an operating state, namely ṽ, other than the true state v [145], [226]. As an illustrative
example (Fig. 7.2), the operator would be “tricked” if the attacker manages to tamper with
certain power flow measurements to generate a fake state estimate of the system.
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q12 q21 q23 q32 q45 q54 q56 q65 q26 q62 q35 q53 q36 q63


.757 -.705 .189 -.207 -.372 .674 -.319 .347 .151 -.177 .309 -.302 -.054 .010


Spurious system state


Spurious sensor measurements


Figure 7.2: An example of a 6-bus system, where the nodal voltage magnitudes and power
injections as well as branch power flows are measured (p.u.). The attacker injects false data
(red) to influence the bus state estimates (shown on the right side of each bus). The per
unit bases for power and voltage are 100MW and 240KV, respectively. The line admittance
values are identical to 1+1 . The FDIA injection is solved by (SDP-FDIA), with parameters
shown in Table 7.1. Note that pij and qij show the active and reactive power flows over the
line (i, j).


FDIA di↵ers from randomly occurring bad data in its stealth operation to evade BDD.
Existing works have investigated stealth conditions for FDIA on DC-based SE [136], [148].
The following definition of “stealth” is provided to include cases of both DC- and AC-based
models.
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Definition 7.2 (Stealth). An attack b is stealthy under state v if, in the absence of the
measurement noise e, there exists a nonzero vector c such that f(v) + b = f(v + c).


The following lemma provides a su�cient condition for AC-based attacks to remain
stealthy.


Lemma 7.1 (Su�cient condition for stealth attack). An attack b is stealthy if there exists
a nonzero vector c such that Mic = 0 for every i 2 [nm] that is not in the support of b.


Proof. See Appendix A.5.


Lemma 7.1 implies that an attack is unobservable if the state deviation c lies in the null
space of the measurement matrices of those sensors the attacker does not tamper with. This
is applicable to the situation discussed in [86] for a single bus attack. To better understand
this, consider a vector c that has zeros everywhere except at location j. Since the j-th
column of Mi, denoted as [Mi]:j, is zero unless Mi corresponds to the measurement of a
branch that connects to bus j, this delineates a “superset” of sensors needed to hack to
guarantee a stealth attack.


An upper bound on the minimum number of compromised sensors can be derived for
a multi-bus attack; however, the su�cient condition could be too stringent because the
attacker only needs to satisfy bi = trace (Micc⇤) + trace (Micv⇤) + trace (Mivc⇤) = 0 for
all i 62 supp (b) to remain stealthy. For instance, consider the system in Fig. 7.2. Since
the bus states are all under attack, the upper bound on the minimum number of sensors to
infiltrate is 40, or all the measurements, according to [86] and Lemma 1. But due to the
“clever” design, FDIA is conducted successfully by tampering with only 18 sensors, which
is a sparser subset of the upper bound. It is also worthwhile to note that one can think of a
strategy that o↵sets the phases of bus voltages at bus 2, 3, 5 and 6 by a constant. This will
keep the real power flows the same as before and only change the reactive flows. However,
even with this ad hoc strategy, the number of sensors to tamper with is 19. This indicates
the e�ciency of the demonstrated strategy. However, to find such an attack vector, a general
strategy can be formulated as an optimization problem to maximize sabotage with limited
resources and to evade detection:


min
ṽ2Cnb ,b2Rnm


h(ṽ)


s. t. f(ṽ) = v + b


kbk0  c


(NC-FDIA)


where f(·) is the AC-model measurement function (7.1), ṽ is the spurious state, h(·) is an
optimization criterion to be specified later, and c is a constant number. The constraints
amount to the unobservability condition (Definition 7.2) and the sparsity requirement. The
following assumption is made on the adversary attack capability:


Assumption 1. The attacker can form a strategy after accessing the grid topology and the
measurement vector v.
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The above assumption depicts a powerful adversary and a completely adversarial scenario.
Using the full set of measurements, the attacker can perform SE to estimate the true state
v, and tailor the attack to be stealthy. However, if this assumption is violated, the attacker
risks being detected by the BDD [226]. The analysis provided in this paper is based on
Assumption 1 because it helps understand the behavior of the system under the worst attack
possible (using the full knowledge of the system) and simplifies the mathematical treatment.


Several objectives are possible for the attacker to fulfill various malicious goals, such as:


• Target state attack: h(ṽ) = kṽ � vtgk22 to misguide the operator towards vtg


• Voltage collapse attack: h(ṽ) = kṽk22 to deceive the operator to believe in low voltages


• State deviation attack: h(ṽ) = �kṽ�vk22 to yield the estimated state ṽ to be maximally
di↵erent from the true state v


An FDIA attack can be formed by solving (NC-FDIA) with one of the above objectives;
however, the problem is challenging due to: 1) a possibly nonconvex objective function, e.g.,
concave for the state deviation attack, 2) nonlinear equalities, and 3) cardinality constraints.
The next section develops an e�cient strategy to deal with these issues.


7.3 SDP convexification of the FDIA problem


Since the original attack problem (NC-FDIA) is nonconvex and di�cult to tackle, we propose
a convexification method based on SDP, which can be solved e�ciently. Based on this
framework, an “attackable region” of system states is characterized, where a strategy is
guaranteed to exist and can be found e�ciently. To streamline the presentation, we focus
the analysis on the case of “target state attack,” where h(ṽ) = kṽ � vtgk22 with vtg chosen
by the adversary a priori. The results hold for many other objective functions as well.


SDP convexification


By introducing an auxiliary variable W 2 Hnb and the associated function h̄(ṽ,W) =
trace (W)� ṽ⇤vtg � v⇤


tgṽ, (NC-FDIA) can be reformulated as:


min
ṽ2Cnb ,b2Rnm ,


W2Hnb


h̄(ṽ,W)


s. t. trace (MiW) = mi + bi, 8i 2 [nm]


kbk0  c


W = ṽṽ⇤


(NC-FDIA-r)
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A cardinality-included SDP relaxation of the above nonconvex problem can be obtained by
replacing W = ṽṽ⇤ with a general PSD constraint:


min
ṽ2Cnb ,b2Rnm ,


W2Hnb


h̄(ṽ,W)


s. t. trace (MiW) = mi + bi, 8i 2 [nm]


kbk0  c

1 ṽ⇤


ṽ W


�
⌫ 0


(NC-FDIA-c)


To study the relationship between the nonconvex problem (NC-FDIA-r) and its cardinality-
included relaxation (NC-FDIA-c), we define an augmented matrix:


Ẑ =



1 v̂⇤


v̂ Ŵ


�
, (7.6)


where (v̂,Ŵ) is a solution of (NC-FDIA-c). It is straightforward to verify that if rank(Ẑ)
is equal to 1, then we must have Ŵ = v̂v̂⇤. Thus, (v̂,Ŵ) is feasible for (NC-FDIA-r)
and consequently optimal since the objective value of (NC-FDIA-c) is a lower bound for
(NC-FDIA-r). In fact, by exploring the special features of the problem, we can derive a
milder condition to guarantee the equivalence. This will be elaborated next.


Assumption 2a. Given a solution (v̂,Ŵ, b̂) of (NC-FDIA-c), v̂ and vtg point along the
same “general direction” in the sense that:


v̂⇤vtg + v⇤
tgv̂ > 0. (7.7)


Note that the objective function of (NC-FDIA-c) helps with the satisfaction of Assump-
tion 2a, since the objective aims at making v̂ and vtg be as close as possible to each other.


Theorem 7.1. The relaxation (NC-FDIA-c) recovers a solution of the nonconvex problem
(NC-FDIA) and finds an optimal attack if it has a solution (v̂,Ŵ, b̂) satisfying Assump-
tion 2a such that rank(Ŵ) = 1.


Proof. See Appendix A.5.


Theorem 7.1 ensures that if rank(Ŵ) = 1, then rank(Ẑ) = 1 (even though it could theo-
retically be 2), in which case (NC-FDIA-c) is able to find an optimal attack. Nevertheless,
the optimal solution of (NC-FDIA-c) is not guaranteed to be rank-1, and in addition the
cardinality constraint kbk0  c in this optimization problem is intractable. We introduce a
series of techniques to deal with each issue.


To enforce (NC-FDIA-c) to possess a rank-1 solution, we aim at penalizing the rank
of its solution via a convex term. The literature of compressed sensing suggests using the
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nuclear norm penalty trace (W) [52]. However, this penalty is not appropriate for power
systems, since it penalizes the voltage magnitude at each bus and may yield impractical
results. Instead, a more general penalty term in the form of trace (M0W) will be used in
this paper:


min
ṽ2Cnb ,b2Rnm ,


W2Hnb


h̄(ṽ,W) + trace (M0W)


s. t. trace (MiW) = mi + bi, 8i 2 [nm]


kbk0  c

1 ṽ⇤


ṽ W


�
⌫ 0,


(NC-FDIA-p)


where M0 is to be designed. Similar to Lasso [218], we can replace the cardinality constraint
in the above problem with an l1-norm penalty added to the objective function to induce
sparsity, which leads to the convex program:


min
ṽ2Cnb ,b2Rnm ,


W2Hnb


h̄(ṽ,W) + trace (M0W) + ↵kbk1


s. t. trace (MiW) = mi + bi, 8i 2 [nm]
1 ṽ⇤


ṽ W


�
⌫ 0


(SDP-FDIA)


where ↵ is a constant regularization parameter. After this convexification, (SDP-FDIA) is
thus an SDP (after reformulating the l1-norm term in a linear way), which can be solved
e�ciently using standard numerical solvers (e.g., SeDuMi and SDPT3) [232]. On the other
hand, we recognize that by including penalty terms for rank and sparsity, we inevitably
introduce bias to the optimization problem. Thus, the result obtained by (SDP-FDIA)
should be described as “near-optimal,” in comparison to a global minimum of (NC-FDIA).
This is an artifact that arises from the computational complexity of the problem, and can
be only remedied by a careful selection of the penalty coe�cients.


Assumption 2b. Given a solution (v̂,Ŵ, b̂) of (SDP-FDIA), v̂ and vtg have the same
general direction in the sense of (7.7).


Lemma 7.2 (Stealth attack). Let (v̂,Ŵ, b̂) be a solution of (SDP-FDIA) satisfying As-
sumption 2b. The attack b̂ is stealthy if rank(Ŵ) = 1.


Proof. See Appendix A.5.


Attackable region


In this section, we first introduce and characterize the set of voltages that the attacker
can achieve by solving (SDP-FDIA) for the malicious data injection. Then, we analyze the
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sabotage scale under the studied FDIA. Throughout this section, let (v̂,Ŵ, b̂) denote an
optimal solution of (SDP-FDIA). Given any stealth attack b, we define an optimization
problem based on (SDP-FDIA) to minimize over (v,W) with a fixed b, and denote its
optimal objective value as g(b):


g(b) = min
ṽ2Cnb ,
W2Hnb


h̄(ṽ,W) + trace (M0W)


s. t. trace (MiW) = mi + bi, 8i 2 [nm]
1 ṽ⇤


ṽ W


�
⌫ 0


(FDIA-SE)


In the following, we will use g(b) as a proxy for the sabotage scale.1 Now, we define an
“attackable” state below.


Definition 7.3 (Attackable state). A state vat is attackable if (vat,W = vatv⇤
at) is the


unique and optimal solution of (FDIA-SE) for some stealth attack vector b 2 Rm.


Definition 7.4 (Attackable region). The attackable region A(M, ⇢) for a given set of mea-
surement types M is the set of states vat that is attackable for some M0 with bounded norm
kM0k2  ⇢.


In other words, for any state vat 2 A(M, ⇢) in the attackable region, there exists a
stealth attack b such that (vat,W = vatv⇤


at,b) is a feasible solution of (SDP-FDIA) and
that (vat,W = vatv⇤


at) is optimal if we fix the attack b. The size of A(M, ⇢) also depends
on ⇢; more specifically, we have A(M, ⇢1) ✓ A(M, ⇢2) for ⇢1  ⇢2. In what follows, we will
characterize the attackable region.


Theorem 7.2. If A(M, ⇢) is non-empty for some ⇢ > 0, the intersection of the attackable
region and the observable set, i.e., A(M, ⇢) \ V(M), is an open set.


Proof. See Appendix A.5.


For some special cases, we can have a more explicit characterization of the attackable
region, as explained later.


Theorem 7.3. Consider the “target state attack” with h̄(ṽ,W) = trace (W)� ṽ⇤vtg �v⇤
tgṽ,


where vtg 2 V(M) is chosen to be observable. Then, vtg 2 A(M, ⇢) for some ⇢ > 0, i.e.,
vtg is attackable.


Proof. See Appendix A.5.


1For an optimal solution of (SDP-FDIA), the term trace
⇣
M0Ŵ


⌘
can be bounded within limited ranges;


as a result, g(b) acts as a “proxy” for h̄(v̂,Ŵ).
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Note that the proof of Theorem 7.3 allows computing ⇢ explicitly. Define a set of voltages
R(Y) ⇢ Cnb such that v 2 R(Y) if and only if, for each line l 2 L that connect nodes s
and t, we have:


�⇡  \vs � \vt � \yst  0 (7.8)


0  \vs � \vt + \yst  ⇡ (7.9)


where yst is the branch admittance between buses s and t. Since real-world transmission
systems feature low resistance-to-reactance ratios, the angle of each line admittance yst is
close to�⇡/2 [3], and thus a realistic vector v would belong toR(Y) under normal conditions
where the voltage phase di↵erence along each line is relatively small. The following result
gives an explicit form for a region that is attackable, in the case where the set of measurement
types includes only the branch power flows and nodal voltage magnitudes, but not the nodal
bus injections. Henceforth, we will refer to this case as the “special case” (compared to the
“general case” where nodal bus injections can also be included in the measurements).


Theorem 7.4. Let V(M) ⇢ Cnb denote the set of observable states for a given set of
measurement types M including the branch power flows and nodal voltage magnitudes, but
not the nodal bus injections. Then, we have V(M) \R(Y) ✓ A(M, ⇢) for some ⇢ > 0.


Proof. See Appendix A.5.


The attackable region is an important concept that characterizes the outcome of solving
(SDP-FDIA), meaning that if a state is in the attackable region, then it is a candidate attack
strategy as well as the unique solution of (FDIA-SE) for some stealth attack. However, this
does not imply that no stealth attack exists for a state ṽ that is not in the attackable
region; in fact, we can always construct a stealth data injection b = f(ṽ) � v, where v
is the true state. For example, if the measurement set M is so small that a part of the
grid remains unobservable (see Definition 7.1), then (FDIA-SE) does not have a unique
solution for any stealth attack b. In that case, the attack-targeted state ṽ does not belong
to A(M, ⇢). In light of Theorem 7.2, if a state vat is attackable, then any state in its
small neighborhood is also attackable. Since we do not know the outcome of (SDP-FDIA)
a priori, it is helpful to design a particular rank penalty matrix M0; indeed, as shown in
Theorem 7.3, this can guarantee that a desired observable state is attackable. Further,
Theorem 7.4 indicates that any observable state is attackable over a set of branch power flow
measurements. In fact, we will give an explicit formula for M0 in this case (see the proof of
Theorem 7.4 in Appendix A.5) such that the solution to (SDP-FDIA) is unique and in the
form of (v̂,W = v̂v̂⇤, b̂).


Performance bounds for (SDP-FDIA)


The main objective of this section is to compare the solution of (SDP-FDIA) to an “oracle
attack” to be defined later, and provide guarantees for stealthy solutions (Lemma 7.2). First,
we focus on the properties of the sabotage scale g(b) defined in (FDIA-SE).
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Lemma 7.3. g(b) is convex and sub-di↵erentiable.


Proof. See Appendix A.5.


To proceed, we consider an “oracle attack” that is able to solve (NC-FDIA-p).


Definition 7.5 (Oracle attack). The oracle attack b? 2 Rnm is a global minimum of the
nonconvex program (NC-FDIA-p). Define B ✓ Rnm as the set of all vectors in Rnm with the
same support as b?.


Let �B = argmin
�t2B k� ��tk22 be the projection of a vector � onto the set B. The


deviation of the solution of (SDP-FDIA) from the oracle, namely �̂ = b̂� b?, belongs to a
cone.


Lemma 7.4. For every ↵ � 2k@g(b?)k1, the error �̂ = b̂ � b? belongs to the cone
C(B,Bc;b?) = {� 2 Rnm |k�Bck1  3k�Bk1}.


Proof. See Appendix A.5.


For a general set of measurements that might include an arbitrary set of voltage magni-
tudes, nodal injections, and branch power flows, the following theorem provides performance
bounds and a condition for stealthy attack using (SDP-FDIA).


Theorem 7.5. Consider (SDP-FDIA) for a “target state attack” with h̄(ṽ,W) = trace (W)�
ṽ⇤vtg � v⇤


tgṽ, where vtg 2 V(M) is chosen to be observable. Let (v̂,Ŵ, b̂) denote an opti-
mal solution of (SDP-FDIA) for an arbitrary ↵ greater than or equal to 2k@g(b?)k1. The
di↵erence between the sabotage scale of the solved attack and the oracle attack satisfies the
inequalities:


�2↵k�̂Bk1g(b̂)�g(b?)↵
⇣
k�̂Bk1�k�̂Bck1


⌘
,


where �̂ = b̂� b? is the di↵erence with the oracle b?.


Proof. See Appendix A.5.


According to Theorem 7.5, there is a trade-o↵ between attack sparsity and outcome in
the sense that a tighter bound can be achieved with more entries outside the oracle sparse set
B. However, this also means that the attacker needs to tamper with more sensors. Moreover,
the matrix M0 in (SDP-FDIA) can be constructed systematically using the Gram-Schmidt
process (as detailed in the proof of Theorem 7.3).
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7.4 Experiments on IEEE standard systems


This section numerically studies the vulnerability of power system AC-based SE under FDIA.
More specifically, the objective is to validate whether the solution of (SDP-FDIA) is sparse
and stealthy.


We first study the 30-bus system provided in MATPOWER [248] (Fig. 7.3). The states
of this system are randomly initialized with magnitudes close to 1 and small phases. We
consider a comprehensive measurement portfolio, which includes nodal voltage magnitudes,
power injections, and branch real/reactive power flows. To streamline the presentation, we
will focus on the target state attack, i.e., h(ṽ) = kṽ � vtgk22, where the entries of the target
vtg have been deliberately chosen to have low magnitudes (around 0.9), and phases identical
to their counterparts in the true state. This would often trigger misguided contingency
response, in an attempt to recover from the voltage sag [23]. Throughout the experiments,
we assume that the sensor noise has a standard deviation of 1% of the measurement value.


Figure 7.3: The IEEE 30-bus test case [248].


An FDIA injection is obtained in Fig. 7.4 by solving (SDP-FDIA) with parameters listed
in Table 7.1. There are 222 measurements in total, which are organized in Fig. 7.4a by
voltage magnitudes (indices 1–5), nodal real and reactive power injections (indices 5–58),
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(a) Full set of original measurements.


(b) FDIA on nodal power and voltages. (c) FDIA on branch power flows.


Figure 7.4: There are 222 measurements in total, which are organized in Figure (a) by voltage
magnitudes (indices 1–5), nodal real and reactive power injections (indices 5–58), branch real
power flows (indices 58–140), and branch reactive power flows (indices 140–222). The FDIA
injections for nodal measurements are shown in Figure (b), where indices 1–5 and 5–58
correspond to voltage magnitudes and bus injections, respectively. The FDIA injections for
branch measurements are provided in Figure (c), where indices 1–82 and 82–164 correspond
to real power flows and reactive power flows, respctively.


branch real power flows (indices 58–140), and branch reactive power flows (indices 140–222).
The FDIA injections for nodal measurements and branch measurements are also shown in
Fig. 7.4. It can be observed that the injection values are relatively sparse, especially for
real power flows over branches (indices 1–82 in Fig. 7.4c). This is due to the fact that
they depend mainly on the phase di↵erences between buses, but the target voltages have
identical phases as the true state. The geographic locations of the attacked sensors include
the locations of buses under attack (buses 12, 14 and 15) and the locations of the adjacent
power lines, as confined within the superset used to calculate the upper bound [86]. In
addition, the spurious measurements against the original values are depicted in Fig. 7.5.
Given the presence of innate sensor noise, it is di�cult to identify the attack on the raw
measurement values by observation. In other words, the attack is “hidden” among the
sensor noises.


Assume that the FDIA visualized in Fig. 7.4 is successfully implemented by the adversary
on the set of measurements, and then the system operator solves the SE problem using
the Gauss-Newton algorithm implemented in MATPOWER (note that the attack is SE-
algorithm-agnostic). The obtained spurious states are plotted against the true states for the
voltage magnitudes and phases in Fig. 7.6. Even though the system operates in a normal
state with magnitudes in the prescribed interval [0.98, 1.02], FDIA “tricks” the operator
to believe in a potential voltage sag where some of the voltage magnitudes are outside of
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Table 7.1: Simulation experiments, lists of the regularization parameters ↵ and ✏, the rank
of Ẑ, and the cardinality of b̂, as well as the upper bound given by [86].


system ↵ ✏ rank(Ẑ) Card(b̂) upper bound buses attacked* pass BDD


6-bus† .4 1/6 1 18 40 [2,3,5,6] Yes


14-bus .2 1/14 1 16 46 [2,3,4] Yes


30-bus 1.16 1/30 1 21 54 [12,14,15] Yes


39-bus 1.82 1/39 1 18 36 [26,28,29] Yes


57-bus 0.5 1/57 1 30 92 [6,7,8] Yes


* The attacked bus numbers are identical to the MATPOWER description.
† The 6-bus system is described in Fig. 7.2.
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Figure 7.5: This plot shows the spurious values against the original values for all the mea-
surements. The identity relation y = x is illustrated by the dotted line. It can be observed
that, given the presence of innate sensor noise, the spurious values are almost identical to
the original measurements.


the above interval (green area in Fig. 7.6). Consequently, the operator may take harmful
contingency actions. It is worthwhile to note that since the phases of the designed target
states vtg are identical to those of the true states by design, the spurious states estimated
by the operator change insignificantly in phases, as shown in the right plot of Fig. 7.6.


To examine the e↵ect of the regularization parameter ↵ on the solution sparsity, we have
run ten independent experiments with random sensor noise values and plotted the cardinality
of b̂ with respect to ↵, as shown in Fig. 7.7. While the absence of k · k1 penalty (i.e.,
↵ = 0) results in a dense solution, as ↵ increases, the attack x̂a becomes significantly sparser
compared to the upper bound provided by [86]. However, as ↵ continuously increase, since
the attack becomes sparser, its e↵ect on SE reduces. This fact is reflected in the performance
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Figure 7.6: These plots depict spurious state estimation against true state for voltage mag-
nitude (left) and voltage phases (right). In both plots, the dotted line indicates the y = x
relationship. For the magnitude plot, the green region specifies the normal operating interval
[098, 1.02]. Observe that some spurious voltage magnitudes fall out of this prescribed operat-
ing region, while all of the spurious states have almost the same phases as their counterparts
in the true states, due to the specifications by the FDIA target voltage vector.
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Figure 7.7: This plot shows the cardinality of the solution b̂ with respect to ↵. The upper
bound is derived according to [86]. Ten independent experiments were performed to obtain
the mean (red line) and min/max (shaded region).


bounds in Theorem 7.5.
As for the choice of M0, we set M0 = �I+ ✏vtgv⇤


tg+L0, for a matrix L0 that satisfies the
following properties: 1) L0 ⌫ 0, 2) 0 is a simple eigenvalue of L0, 3) the vector vtg belongs to
the null space of L0 (outlined in the proof of Theorem 7.3). The matrix L0 is obtained via
the standard Gram-Schmidt procedure by starting with the target vtg. For the choice of ✏,
the proof of Theorem 7.3 (Appendix A.5) provides a guideline to use the equation ✏ = 1


v


⇤
tgv̂


;


while v̂ cannot be known a priori, it is desirable to be close to v⇤
tg. Therefore, for the 30-bus


system, a value of ✏ that leads to a rank-1 solution is close to 1/30⇡0.033. In addition,
the algorithm has been tested on several other power systems, with parameters listed in







CHAPTER 7. CYBER RESILIENCE OF POWER GRID STATE ESTIMATION 107


Table 7.1. According to the results, the constructed FDIA attack can always evade BDD
detection with ✏ close to 1/nb. Indeed, the measurement residuals are all on the order of
0.001, which are much lower than the BDD detection threshold. As for the sparsity, we have
found that the cardinality Card(b̂) is lower than the upper bound by [86] at the obtained
scale of attack.


As the analysis shows, by having access to the sensor measurements, the adversary can
solve (SDP-FDIA) to obtain a sparse attack vector. To thwart FDIA, a set of security sensors
may need to be placed at locations under potential attack as indicated by b̂ of (SDP-FDIA).
For any power system, the cardinality of a potential FDIA stealth attack can be used to
indicate the vulnerability of the system against potential cyber threat [198].


7.5 Chapter summary


This chapter analyzed the vulnerability of power system AC-based state estimation against
a critical class of cyberattacks known as false data injection attack. Since constructing an
FDIA against AC-based state estimation requires solving a highly nonconvex problem, it is
often believed that such attacks could be easily detected. However, this study showed that
a near-globally optimal stealth attack can be found e�ciently for a general scenario through
a novel convexification framework based on SDP, where the measurement set could include
nodal voltage magnitudes, real and reactive power injections at buses, and power flows over
branches. We further analyzed the “attackable region” and derives performance bounds for
a given set of measurement types and grid topology, where an attacker can plan an attack
in polynomial time with limited resources.


The key insight from this chapter extends the spectrum of h-CPS data analytics in the
following aspect: to learn about people, we want to collect as little data as possible to
minimize sensor and labor costs (Part I of this thesis); to learn about system state, sensor
redundancy can guard against sensor faults and ensure estimation integrity; and from a grid
protection point of view, the results of this chapter can be used to design a security metric
for the current practice against cyberattacks, redesign the bad data detection scheme, and
inform proposals of grid hardening. Above all, the proposed convexification method and
its associated theoretical analysis can be applied to other large-scale nonconvex problems in
power systems and beyond.
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Chapter 8


Conclusion and future directions


By mutually strengthening and converging technological advancements in sensing, learning,
control and optimization, future human-cyber-physical systems will embody e↵ective mea-
sures to address pressing issues such as global warming, environmental pollution, poverty,
aging populations, and the fuel and food shortages collectively faced by human societies.
Productivity will be enhanced by the proliferation of robots and automation, complement-
ing and augmenting human forces to further improve e�ciency and cost-e↵ectiveness


(e.g., see Fig. 8.1a for a manufacturing system example). The paradigm shift towards ag-
ile operation vis-à-vis lean production meets the needs of less predictable environments
when volume is low and variability is high (e.g., customized services in smart buildings, as
illustrated in Fig. 8.1c). Similarly, flexibility enhanced by smart architecture supports fast
reconfiguration and response to changes (e.g., Fig. 8.1b for real-time pricing and automated
responses in a smart grid). Along with the trend of interdependence among critical in-
frastructures, decentralization is key to improving system robustness and e�ciency (e.g.,
distributed energy resources and the emergence of micro- and nano-grids). Safety and re-


silience have also become critical concerns as systems shift towards AI and data-driven
automation (e.g., 8.1d for safety-oriented design in roadways and autonomous vehicles).
Above all, because h-CPSs are fundamentally designed to serve people, human-centric


values such as comfort, health and well-being will be continually promoted and optimized.
This thesis comprises a key step towards envisioned future optimal human-cyber-physical


systems. Because people are central to an h-CPS, the first part of this thesis was dedicated
to learning about human factors, including human behaviors and preferences. The goal is
to deliver human-centric services and to facilitate interactive and cooperative controls while
keeping humans in the loop. However, a main challenge in the learning task is the lack
of labeled data due to cost and privacy concerns. To address this issue, we explored the
physics-inspired sensing by proxy approach in Chap. 2, which determines human occupancy
by measuring its impact on an indoor environment modeled by constitutive equations. On
one hand, the resulting algorithm alleviates the need for ground truth collection and re-
sponds more quickly than existing methods to changes in occupancy. On the other hand,
even without preexisting labels, data-driven algorithms can be employed under the frame-
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work of “weak supervision” discussed in Chap. 3. The core idea is to leverage high-level
heuristics from domain knowledge to create noisy “weak labels,” and algorithmically resolve
the inconsistencies by iterative refinement of the labels or by redesign of the loss function
to account for the noise. When inferring human intentions and preferences, data is tricky
to obtain due to survey biases and people’s internal inconsistencies. In this regard, our key
insight is to abstract people’s preferences as a function that can rationalize their behaviors.
Drawing on this insight, we developed an inverse game theory framework that determines
people’s utility functions by observing how they interact with one another in a social game
to conserve energy (Chap. 4). Because people’s actions often involve long-term planning and
their motivations depend on factors that cannot be known a priori, learning should span
multiple time scales and account for complex rewards. Along this aspect, we explored deep
Bayesian inverse reinforcement learning, which simultaneously learns the motivator repre-
sentation to expand the capacity of modeling complex rewards and rationalizes an agent’s
sequence of actions to infer its long-term goals (Chap. 5). While the methods in Chap. 4
and Chap. 5 work in di↵erent settings (i.e., a gamified environment and long-term planning,
respectively), both have been shown to have high data e�ciency, which can enable wider
applications in h-CPSs.


Enabled by the context awareness of the human, cyber-, and physical- components, the
second part of this thesis explored methods to analyze and enhance system-level e�ciency
and resilience. Chap. 6 explored the next-generation energy retail model to enable dis-
tributed resource energy utilization and to exploit demand-side flexibility. The synergy that
naturally emerges from integrated optimization of both thermal and electrical energy pro-
vision is able to substantially improve e�ciency and reduce generation costs. While data
empowers h-CPS learning and control to gain context awareness and to enhance e�ciency,
malicious attacks on data integrity can pose major security threats. Chap. 7 discussed the
cyber resilience of power system state estimation, a key procedure for power grid operation.
Although an adversarial attack on the more accurate AC-model state estimation is non-
convex, an approach based on semidefinite programming relaxation produces a near-global
optimal attack. The envisioning process naturally leads to a resilience metric for power grids,
and can inform upgrades of bad data detection schemes to enhance cyber resilience. In the
following, we discuss some key challenges in h-CPS data analytics as well as opportunities
and future directions to address these challenges.


8.1 Challenges and opportunities in h-CPS


Human-centric learning and control


Applications in h-CPS that consider user behaviors (e.g., a smart home assistant that learns
a user’s moods and activities) and preferences (e.g., utility companies that learn a user’s
response to economic incentives) and that are aimed at improving human-centric values
(e.g., comfort, well-being, health and productivity) are in increasing demand. Yet meeting
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(a) Next-generation manufacturing system.
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(b) Next-generation electricity grid.
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to traffic delays
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(d) Next-generation transportation system.


Figure 8.1: Societal-scale human-cyber-physical systems (e.g., smart building, power grid,
manufacturing and transportation) are under transformation to enhance e�ciency, cost-
e↵ectiveness, productivity, agility, flexibility, safety, resilience, and human-centric values.
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this demand often requires collecting a vast quantity of sensitive personal data and making
decisions that might a↵ect people on an individual level.


The challenge is to infer and respond to human intentions and preferences while
ensuring privacy, fairness and accountability.


In this thesis, we have taken a step toward human-centric learning and control through
the focus on data-e�cient analytics as described in Part I. Future directions include un-
derstanding and mitigating privacy concerns for sensitive information (e.g., using notions
of di↵erential privacy [58], pan-privacy [59], local privacy [56] and free privacy [87]) and
unintended discrimination in decision making [169]. To hold AI-enabled applications ac-
countable, the algorithms need to embrace openness, transparency and interpretability, and
they must work or interact e↵ectively with people while observing regulations and standards.


Learning in large-scale nonconvex optimization


Many control and planning problems in h-CPSs involve large numbers of continuous and
discrete variables and constraints and must be solved regularly within a limited time budget.
For instance, the optimal power flow problem is a fundamental problem with thousands of
variables and constraints that needs to be solved every 5 to 15 minutes to balance the supply
and demand. However, due to the nonlinearity of the physics that relate the bus voltages
to complex powers, the problem is highly nonlinear and nonconvex and quickly becomes
formidable (even with the best state-of-the-art solvers), especially when N-1 contingency
planning is considered, which adds millions of constraints to an already di�cult problem.


The challenge is to solve highly nonlinear problems at much larger scale in a
much shorter time horizon with higher accuracy.


One important direction to pursue is lossless convexification, which transforms an original
nonconvex problem into a convex formulation with provable optimality guarantees, as dis-
cussed in Chap. 7 for the semidefinite programming relaxation technique. We can also
leverage learning techniques, both by simplifying the original problems (e.g., active con-
straint screening, linearization) and guiding the search for the optimal solution (e.g., learned
initialization, adaptive step size selection).


Adaptable and safe operation in dynamic environments


Because the real world changes continually—often rapidly and unexpectedly—h-CPS oper-
ation must adapt to dynamic environments in safe and reliable ways. For example, in a
power grid, when the environment changes because of either internal conditions (e.g., gen-
erator trips or line breaks, sensor failures) or external conditions (e.g., inclement weather,
malicious sabotage), the grid must coordinate and respond with respect to the particular
change. Similarly, a smart building should quickly respond to unexpected events (e.g., an
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emergency or a power outage) by learning and adapting in real time and by cooperating
with human operators.


The challenge is to make decisions with limited computational resources (e.g., on-
board chips) and within short time spans (e.g., seconds or microseconds) while
ensuring the safety and reliability of the subsequent actions.


To tackle this challenge, algorithms must support continual or life-long learning that con-
stantly evolves in response to and interacts with the environment [162], [202], [217]. It should
be able to generalize to multiple tasks, even previously unseen tasks, by e�ciently transfer-
ring and utilizing knowledge from already learned skills (e.g., model-agnostic meta-learning
[65], fast reinforcement learning via slow reinforcement learning [55], and learning to rein-
forcement learning [224]). Above all, such algorithms must be complex enough to address
complex situations (e.g., deep reinforcement learning [163]) yet simple enough to be imple-
mented on low-cost hardware and robust enough to provide theoretical safety guarantees.


Interactive and cooperative operation keeping humans in the loop


Depending on the task complexity and the requirements for safety, reliability and account-
ability, h-CPS applications range from being human-operated to semi-autonomous to fully-
autonomous. For example, while the power system state estimation has been automated, in
the face of a potential cyberattack (as discussed in Chap. 7), the system should warn a hu-
man operator of the possibility of intrusion and provide information regarding the intrusion
pattern so the human operator can assist with mitigation. Similarly, an automated system
should cooperate with human operators during emergencies to help steer people away from
the danger zone as quickly as possible.


The challenge is to seamlessly and interactively include humans in the control
loop, to augment and/or leverage human decision making capabilities.


To tackle this challenge, an AI system should be able to infer and respect human intention
and preferences, and it should occasionally explain its decisions to its human counterparts
to seek approval or guidance. The inverse game theory (Chap. 4) and deep Bayesian in-
verse reinforcement learning (Chap. 5) are steps toward more accurate preference inference.
Achieving explainable actions requires AI systems to go beyond black-box predictions and
decisions, reaching a level that can identify the features of inputs most responsible for partic-
ular decisions, support interactive analysis and answer counterfactual questions [209]. This
capability would dramatically increase the usability of AI in h-CPS operation and control.


Resilience of interdependent infrastructures


There is a trend to integrate critical infrastructures such as energy, water, agriculture, trans-
portation and communication systems to achieve higher e�ciencies. Even within an energy
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system, the integration of natural gas, electricity and thermal energy networks can dramat-
ically reduce energy generation costs, as discussed in Chap. 6.


The challenge is to ensure the resilience of critical infrastructures as they become
increasingly interdependent and reliant on shared data and services.


To enhance resilience, a systematic approach can be adopted that involves preparing the
system for possible stresses or attacks (e.g., resilience by design and the envisioning process
described in Chap. 7), relying on resources to ameliorate the consequences of an event after
it has occurred (e.g., a mitigation strategy), recovering as quickly as possible after the event
is over (e.g., black-start mechanism), and remaining alert to insights and lessons for future
events (e.g., hindsight evaluation) [68].


Robust and secure decision-making


Applications in h-CPSs involve components that interact through complex, coupled physical
environments. For example, decisions for a power grid must be made at multiple time scales
that account for stochastic behavior due to renewable energy resources, variable demand and
unplanned outages. In addition, modern analytics fuse not only information from trustworthy
central sources, but also data from untrusted crowd-sourced third-parties.


The challenge is to ensure the robustness and security of the decision-making
process in the face of uncertainty, faulty data and malicious attacks.


To tackle this issue, the first step is to understand the scenarios in which the decision
making is not robust or not secure (e.g., the envisioning of a potential cyberattack on the
state estimator in Chap. 7). Drawing from the insights gained in the envisioning process,
one can design systems that track data provenance, and combine both hardware (e.g., device
fingerprints) and software (e.g., bad data detection with contextual information) algorithms
to enhance the reliability of the results. Similarly, the system can rely on interactive and
cooperative decision making with humans to leverage the complementary capability.


8.2 Closing thoughts


The methods presented in this thesis attempt to combine sensing, learning, control, optimiza-
tion, game theory and robotics to empower data-e�cient analytics in h-CPSs. As discussed
in this chapter, many challenges remain to be addressed and ample opportunities remain to
be undertaken. To achieve the envisioned optimal h-CPS and provide a significant societal
impact, these challenges and opportunities will require strong collaboration among various
communities, disciplines and stakeholders, a thorough understanding of the social, economic
and regulatory barriers and implications, and a sustained e↵ort in education, research and
entrepreneurship.
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Appendix A


Main proofs and derivations


A.1 Chapter 2: Sensing by proxy


Theorem 2.1. Consider the system (2.10)–(2.12), where


r(s) =
⇥
r1(s) · · · rm(s)


⇤>
(A.1)


ri(s) =


 
Ci �


Z (1�s)/bi


0


[BZ ]i,:e
�Āydy


!
eĀ(1�s)/bi (A.2)


Ci =


Z 1/bi


0


[BZ ]i,:e
�Ā�d�, i = 1, ...,m (A.3)


Let the pair (Ā, C̄) be observable, where C̄ =


2


64
C1
...


Cm


3


75 2 Rm⇥2m, and choose L such that


the matrix Ā � LC̄ is Hurwitz. Then, for any z(0) 2 R2m, ui(s, t), ûi(s, t) 2 L2(0, 1),
i = 1, ...,m, where ui is the i-th component of u, there exist positive constants � and  such
that the following holds for all t � 0


⌦(t)  ⌦(0)e��t, (A.4)


where


⌦(t) =


Z 1


0


ku(s, t)� û(s, t)k2ds+ kz(t)� ẑ(t)k2. (A.5)


Proof. Consider the following MIMO, LTI system with distributed sensor delays:


ż(t) = Āz(t) (A.6)


yi(t) =


Z Di


0


Qiz(t� �)d�, for i = 1, ...,m, (A.7)
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where z(t) =



x(t)
v(t)


�
2 R2m, Ā =



�A Im⇥m


0m⇥m 0m⇥m


�
, Qi = [BZ ]i,: 2 R1⇥2m, yi(t) 2 R, and


Di 2 R+ is a delay. In the following we use !(i) to denote the i-th entry of the vector !.
System (A.6) and (A.7) can be written equivalently as


ż(t) = Āz(t) (A.8)


yi(t) = !(i)(0, t), for i = 1, ...,m, (A.9)


where


!
(i)
t (l, t) = !


(i)
l (l, t) +Qiz(t) (A.10)


!
(i)
t (Di, t) = 0, for i = 1, ...,m. (A.11)


One can see this by noting that the solution to (A.10) and (A.11) is


!
(i)
t (l, t) =


Z Di


l


Qiz(t+ l � �)d�.


We show next that system (2.3)–(2.7) can be written in the form of system (A.8)–(A.11),
and hence, one can apply the results of [17, Thm. 2]. Define the spatial variable l = 1�s


bi
,


Di = 1/bi, u
(i)(1� bil, t) = !(l, t), we can write system (2.3)–(2.7) as


ż(t) = Āz(t) (A.12)


!
(i)
t (l, t) = !


(i)
l (l, t) +Qiz(t) (A.13)


!
(i)
t (Di, t) = U


(i)
0 (t) (A.14)


!
(i)
t (0, t) = U


(i)
1 (t), for i = 1, ...,m. (A.15)


System (A.12)–(A.15) is of the form (A.8), (A.10) and (A.11) with the di↵erence of the
nonhomogeneous boundary condition at l = 0 and Di. However, the result in [17] applies
with the trivial modification to account for the additional measured inputs. The observer
(2.10)–(2.12) can be written in the !̂ variable as:


!̂
(i)
t (l, t) = !̂


(i)
l (l, t) +Qiẑ(t) + [r(1� lbi)L (U1(t)� !̂(0, t))]i (A.16)


!̂(i)(Di, t) = U
(i)
0 (t), for i = 1, ...,m, (A.17)


˙̂z(t) = Āẑ(t) + L
�
U1(t)� !̂(0, t)


�
. (A.18)


The stability proof of [17, Thm. 2] is based on the dynamics of the observer errors ! � !̂
and z � ẑ. Combining (A.12)–(A.15) with (A.16)–(A.18), and let !̃ = ! � !̂ denote the
observer error, we obtain that


!̃
(i)
t (l, t) = !̃


(i)
l (l, t) +Qiz̃(t)� [r(1� lbi)L!̃(0, t)]i (A.19)


!̃(i)(Di, t) = 0, for i = 1, ...,m, (A.20)


˙̃z(t) = Āz̃(t)� L!̃(0, t), (A.21)
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which is the same error system as [17]. Since the pair (Ā, C̄) is observable, one can choose
L such that the matrix Ā � LC̄ is Hurwitz. One can apply [17, Thm. 2] to show that the
observer (2.10)–(2.12) is stable.


Corollary 2.1. Consider the system (2.18)–(2.22) and the observer (2.23)–(2.27). Let bX 6=
0 and choose L1, L2 such that the matrix Ā�



L1


L2


�
C1 is Hurwitz, where Ā =



�a 1
0 0


�
, and


C1 =
⇥
⇡1(1) ⇡2(1)


⇤
. Then for any x(0), x̂(0), v(0), v̂(0) 2 R, there exists positive constant


� and  such that the following holds for all t � 0,


⌦(t)  ⌦(0)e��t (A.22)


⌦(t) =


Z 1


0


�
u(s, t)� û(s, t)


�2
ds+


�
x(t)� x̂(t)


�2
+
�
v(t)� v̂(t)


�2
(A.23)


Proof. Recap that r(s) =
⇥
⇡1(s) ⇡2(s)


⇤
, ⇡1(s) =


bX
a


�
e


a
b
s�1


�
, and ⇡2(s) =


bX
ba
s+ bX
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�
1�e


a
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s
�
.


We show that the observability condition of the pair


✓
Ā,


R 1/b1
0


⇥
bX 0


⇤
e�Ā�d�


◆
in Theorem


2.1 with only one sensor is equivalent to the observability condition of the pair (Ā,C1) in
this corollary. This follows by


Z 1/b1


0


⇥
bX 0


⇤
e�Ā�d� =


bX
a


Z 1/b


0


⇥
aea� 1� ea�


⇤
d�


=
bX
a


⇥
ea/b � 1 1


b
+ 1


a
(1� ea/b)


⇤
= C1


To show that (Ā,C1) is observable, note that the determinant of the observability matrix
O is det(O) = ⇡1(1)(⇡1(1) + a⇡2(1)). It follows that det(O) 6= 0 whenever bX 6= 0. The rest
of the proof follows by the proof of Theorem 2.1.


A.2 Chapter 3: Learning under weak supervision


Multi-view iterative training


Lemma 3.1. The training noise rate ⌘t and classification error rate ✏t can be estimated with
the access to any two of the following (approximated) quantities:


1. The number of negative samples in the dataset |Lt
�1,X|+ |Lt


+1,⇥|+ |U t
�1|


2. The number of negative samples in the labeled set |Lt
�1,X|+ |Lt


+1,⇥|


3. The number of positive samples in the dataset |Lt
+1,X|+ |Lt


�1,⇥|+ |U t
+1|


4. The number of positive samples in the labeled set |Lt
+1,X|+ |Lt


�1,⇥|
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5. The misclassification rate for the positive samples |Lt
�1,⇥|/


�
|Lt


�1,⇥|+ |Lt
+1,X|


�


6. The misclassification rate for the negative samples |Lt
+1,⇥|/


�
|Lt


+1,⇥|+ |Lt
�1,X|


�


Proof. According to the update rule:


Lt+1
y = {Lt


y \ L̂y} [ Sample{Lt
y�L̂y;↵y}, (A.24)


the expected number of elements in the labeled set of the next iteration depends on the
current iteration as follow:


|Lt+1
�1,X| = |Lt


�1,X|(1� ✏t) + (|Lt
+1,⇥|+ |U t


�1|)(1� ✏t)↵�1 (A.25)


|Lt+1
�1,⇥| = |Lt


�1,⇥|✏t + (|Lt
+1,X|+ |U t


+1|)✏t↵�1 (A.26)


|Lt+1
+1,X| = |Lt


+1,X|(1� ✏t) + (|Lt
�1,⇥|+ |U t


+1|)(1� ✏t)↵+1 (A.27)


|Lt+1
+1,⇥| = |Lt


+1,⇥|✏t + (|Lt
�1,X|+ |U t


�1|)✏t↵+1 (A.28)


Since we can observe the number of samples in |Lt
�1| = |Lt


�1,X|+ |Lt
�1,⇥|, |Lt


+1| = |Lt
+1,X|+


|Lt
+1,⇥|, and |U t| = |U t


�1|+ |U t
+1|, and also for those in round t+ 1, we can sum the pairs of


(A.25, A.26), also (A.27, A.28). Together with two of the quantities proposed in Lemma 3.1,
we can solve the system of equations for the estimation of ✏t and ⌘t.


As a general remark, the system of equations to be solved in Lemma 3.1 is non-linear,
which makes it computationally costly to solve. Since the problem is defined for 0  ✏t  1,
we can perform a line search of ✏t. Given the value of ✏t, the system becomes linear and
is very easy to solve by taking the inverse, or constrained quadratic programming. Then
the optimal ✏t that corresponds to the solution that best fits the remaining single equation
should be chosen.


Theorem 3.2. The gap between the learned and optimal hypotheses in the PAC property
(3.6) will decrease with high probability in each iteration with suitable sampling rates, ↵�1


and ↵+1, whenever the following condition is satisfied:
�
|Lt+1


�1 |+ |Lt+1
+1 |


�
(1� 2⌘t+1)


2 >
�
|Lt


�1|+ |Lt
+1|


�
(1� 2⌘t)


2 (A.29)


where
�
|Lt+1


�1 |+ |Lt+1
+1 |


�
is the total number of weakly labeled samples in round t+1, and ⌘t+1


is the (estimated) training noise rate.


Proof. (Sketch) Let c = 2µ log
�
2N
�


�
where µ is chosen to make the equality holds in the


PAC property (3.5), then we have nt =
c


✏2t (1�2⌘t)
, where nt = |Lt+1


�1 |+ |Lt+1
+1 | is the number of


samples in the labeled set. We introduce ut as follows for the simplicity of computation:


ut =
c


✏2t
= nt (1� 2⌘t)


2 (A.30)


Since ut is proportional to 1/✏2t , we have ✏t+1 < ✏t satisfied as long as ut+1 > ut, thus the
claim is proved.
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Derivation of the surrogate loss


The supervised learning is described by (l,F , en), where l : Y ⇥ Y ! R is the loss function
to penalize misdetection, F is the class of classifiers, en : D ! (X ,Y)n is the repetitive
experiments performed to acquire the dataset, S = {(x1, y1), · · · , (xn, yn)} ⇠ en(D), and D
is the data distribution.


To study the mechanism of weak label initialization, we introduce the corruption process
T : O ! Õ as a Markov kernel, which corrupts the outcome O of the experiments to be
Õ, i.e., ẽn = T (en). Each Markov kernel is associated with a linear mapping, T : (RO)


⇤ !
(RÕ)


⇤
, where (RO)


⇤
is the dual space of (RO) for linear functionals. Weakly supervised


learning is characterized by (l,F , ẽn), as compared to the supervised learning.


Definition A.1 (Reconstructible Markov kernel). The Markov kernel T : O ! Õ is recon-


structible if there exists a linear mapping Q : (RÕ)
⇤ ! (RO)


⇤
, such that QT = 1, where Q


is known as the reconstruction.


An immediate consequence of the reconstructible property is that we have:


hD, l(·, f(·))i = hQT (D), l(·, f(·))i = hD,Q⇤(l(·, f(·)))i (A.31)


where D is the original data distribution, T (D) is the corrupted distribution, Q⇤(l(·, f(·))) is
the corruption corrected loss function, and hD, l(·, f(·))i = E(x,y)⇠Dl(y, f(x)) is the expecta-
tion under the distribution D. The above property implies that working with the corrupted
data with Q⇤(l(·, f(·))) is equivalent to using the clean data with the original loss function
l(·, f(·)) associated with learner f 2 F .


Since we are starting with noisy labels estimated by the occupancy schedules, the cor-
ruption process is characterized by ⇢+1 = P(ỹ = �1|y = +1) and ⇢�1 = P(ỹ = +1|y = �1);
therefore, we can specify the Markov kernel T and Q⇤ as:


T =


✓
1� ⇢�1 ⇢+1


⇢�1 1� ⇢+1


◆
, (A.32)


Q⇤ =
1


1� ⇢�1 � ⇢+1


✓
1� ⇢+1 �⇢�1


�⇢+1 1� ⇢�1


◆
(A.33)


where Q⇤ is the conjugate transpose of Q, and it can be verified as the reconstruction of
T , i.e., QT = 1. With elementary calculations, the surrogate loss (3.10) in the main text
follows.


A.3 Chapter 4: Gamification meets inverse game
theory


Proposition 1. A di↵erential Nash equilibrium of the p-person concave game (f1, . . . , fp)
on C is a Nash equilibrium.
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Proof. Suppose the assumption holds that the constraints for each player do not depend on
other players’ choice variables. We can fix x⇤


�i and apply Proposition 3.3.2 [18] to the i-th
player’s optimization problem


max
xi2Ci


fi(xi,x
⇤
�i;�). (A.34)


Since each fi is concave and each C is a convex set, x⇤
i is a global optimum of the i-th player’s


optimization problem under the conditions of di↵erential Nash equilibrium. Since this is true
for each of the i 2 I players, x⇤ is a Nash equilibrium.


A.4 Chapter 5: Deep Bayesian inverse reinforcement
learning


Details of the DGP-IRL model


DGP-IRL extends the deep GP framework to the IRL domain. DGP-IRL learns an abstract
representation that reveals the reward structure by warping the original feature space through
the latent layers, D,B. For a set of observed trajectories M, our objective is to optimize
the corresponding marginalized log-likelihood given the states in the world X:


log p(M|X) = log


Z
p(M|r)p(r|D)p(D|B)p(B|X)d(r,D,B) (A.35)


where the integration is with respect to the latent layers, including the reward vector r.
As introduced in the main text, dm 2 Rn is the m-th column of the latent layer D =⇥
d1 · · · dm1


⇤
, and similarly for B =


⇥
b1 · · · bm1


⇤
:


p(M|r) =
hX


i=1


TX


t=1


�
Q(si,t, ai,t; r)� V (si,t; r)


�
(A.36)


p(r|D) = N (r|0, K
DD


) (A.37)


p(D|B) =


m1Y


m=1


N (dm|bm,��1I) (A.38)


p(B|X) =


m1Y


m=1


N (bm|0, K
XX


) (A.39)


where p(M|r) represents the reinforcement learning term, given by:


log p(M|r) =
X


i


X


t


(Q(si,t, ai,t; r)� V (si,t; r)) (A.40)


=
X


t


X


t


 
rsi,t,ai,t � V (si,t; r) +


X


s0


�T si,t,ai,t
s0 V (s0; r)


!
(A.41)
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The Q-value Q(si,t, ai,t; r) used above is a measure of how desirable is the corresponding
state-action pair (si,t, ai,t) under rewards r for all the world states, and is defined by:


Q(si,t, ai,t; r) = rsi,t,ai,t +
X


s0


�T si,t,ai,t
s0 V (s0; r)


where rsi,t,ai,t = r(si,t, ai,t) 2 R is the reward for (si,t, ai,t), � is the discount factor, T si,t,ai,t
s0 =


p(s0|si,t, ai,t) is the transition probability by the transition model, and V (si,t; r) is the value
associated with state si,t, obtained by the modified Bellman backup operator:


V (si,t; r) = log
X


a2A
exp


 
rsi,t,ai,t +


X


s0


�T si,t,a
s0 V (s0; r)


!


where we apply a soft-max function V (si,t; r) = log
P


a2A exp (Q(si,t, a; r)) for the Q-
values with all possible actions a 2 A. The value function V (s; r) for state s can be obtained
by repeatedly applying the above Bellman backup operator. For simplicity of notations, we
use V (si,t; r), Q(si,t, ai,t; r) to denote the solution after Bellman backup operators, unlike
some literature that uses V ⇤(si,t; r), Q⇤(si,t, ai,t; r) to denote the di↵erence. Detailed deriva-
tion of the above relationships can be found in [246].


Variational lower bound for DGP-IRL


It is intractable to perform the integration as in (A.35) for the marginal log-likelihood. In
addition to p(M|r), which involves the latent variable r in a way which requires Q-value
iterations, the term p(r|D) = N (r|0, K


DD


) has a nonlinear dependency on D in the kernel
matrix. To tackle this issue, we introduce inducing outputs f ,V and their corresponding
inputs Z,W, as shown in Fig. 5.2. The resulting model follows the main text:


p(M|r) =
hX


i=1


TX


t=1


�
Q(si,t, ai,t; r)� V (si,t; r)


�
(A.42)


p(r|f ,D,Z) = N (r|K
DZ


K�1
ZZ


f ,0) (A.43)


p(f |Z) = N (f |0, K
ZZ


) (A.44)


p(D|B) =


m1Y


m=1


N (dm|bm,��1I) (A.45)


p(B|V,X,W) =


m1Y


m=1


N (bm|K
XW


K�1
WW


vm,⌃B) (A.46)
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We also design the variation distribution as illustrated in the main text:


Q = q(f)q(D)p(B|V,X)q(V), with :


q(f) = �(f � f̃)


q(D) =


m1Y


m=1


�
�
dm �K


XW


K�1
WW


ṽm
�


q(V) =


m1Y


m=1


N (vm|ṽm,Gm) ,


where the variational distribution Q is to not be confused with the notation for Q-values,
Q. Using the above distribution Q, we can derive the variational lower bound as follows:


log p(M|X,Z,W) = log


Z
p(M, r,f ,V,D,B|Z,W,X)d(r,f ,V,D,B) (A.47)


= log


Z
p(M|r)p(r|f ,D,Z)| {z }


p(M|KDZK
�1
ZZf)


p(f |Z)p(D|B)p(B|V,W,X)p(V|W)d(r,f ,V,D,B) (A.48)


�
Z


q(f)q(D)p(B|V,W,X)q(V) log
p(M|K


DZ


K�1
ZZ


f)p(f |Z)p(D|B)p(V|W)


q(f)q(D)q(V)
(A.49)


= log p(M|K
D̃Z


K�1
ZZ


f̃) + log p(f = f̃ |Z)


+


Z
q(V)q(D)p(B|V,W,X) log


p(D|B)p(V|W)


q(V)
d(D,B,V). (A.50)


In the above derivation, the combination of p(M|r)p(r|f ,D,Z) in (5.13) uses the determin-
istic training conditional (DTC) assumption [185], i.e., p(r|f ,D,Z) = �(r � K


DZ


K�1
ZZ


f),
(5.14) applies Jensen’s inequality with the variational distribution Q, (A.50) is a direct con-
sequence of the choice of Q, and D̃ =


⇥
d̃1 · · · d̃m1


⇤
, with d̃m = K


XW


K�1
WW


ṽm.


Utility 1 (Gaussian identities). If the marginal and conditional Gaussian distributions
for f and v are in the form:


p(f |v) = N (f |Mv +m,⌃f )


p(v) = N (v|µ
v


,⌃
v


)


Then the marginal distribution of f is:


p(f) = N (f |Mµ
v


+m,⌃f +M⌃
v


M>) (A.51)
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Using the Gaussian identities, the derivation of
R
q(V)p(B|V,W,X)dV is as follows:


Z
q(V)p(B|V,W,X)dV =


Z m1Y


m=1


N (vm|ṽm,Gm)N (bm|K
XW


K�1
WW


vm,⌃
B


)dV


=


m1Y


m=1


N (bm|K
XW


K�1
WW


ṽm


| {z }
b̃


m


,⌃
B


+K
XW


K�1
WW


GmK�1
WW


K
WX| {z }


⌃̃


m
B


)


Therefore, we can obtained a closed form integration for the last term in (A.50) as follows:


Z
q(V)q(D)p(B|V,W,X) log p(D|B)d(D,B,V)


=


Z ✓Z
q(V)p(B|V,W,X)dV


◆
q(D) log p(D|B)d(D,B)


=


Z m1Y


m=1


N (bm|b̃m, ⌃̃m
B


) log


m1Y


m=1


N (dm = d̃m|bm,��1I)dB


=


Z m1Y


m=1


N (bm|b̃m, ⌃̃m
B


) log


m1Y


m=1


⇣
(2⇡)�n/2|��1I|�1/2e�


�
2 (d̃


m�b


m)>(d̃m�b


m)
⌘
dB


=


Z m1Y


m=1


N (bm|b̃m, ⌃̃m
B


)


 
�nm1


2
log(2⇡��1)� �


2


m1X


m=1


(d̃m � bm)>(d̃m � bm)


!
dB


= �nm1


2
log(2⇡��1)� �


2


m1X


m=1


⇣
Tr(⌃̃m


B


) + (d̃m � b̃m)>(d̃m � b̃m)
⌘


where ⌃̃m
B = ⌃B+K


XW


K�1
WW


GmK�1
WW


K
WX


, b̃m = K
XW


K�1
WW


ṽm, and d̃m = K
XW


K�1
WW


ṽm,
according to the variational distribution Q.


We now express the variational lower bound of the log likelihood as follow:


L = LM + LG � LKL + LB � nm1


2
log(2⇡��1) (A.52)
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where


LM = log p(M|K
D̃Z


K�1
ZZ


f̃) (A.53)


LG = log p(f = f̃ |Z) = logN (f = f̃ |0, K
ZZ


) (A.54)


= �1


2
f̃>K�1


ZZ


f̃ � ninducing


2
log(2⇡)� 1


2
log |K


ZZ


| (A.55)


LKL = KL(q(V)||p(V|W)) =


m1X


m=1


KL(N (vm|ṽm,Gm)||N (vm|0, K
WW


)) (A.56)


=


m1X


m=1


1


2


✓
Tr(K�1


WW


(Gm + ṽmṽm>)� ninducing + log


✓
|K


WW


|
|Gm|


◆◆
(A.57)


LB = ��


2


m1X


m=1


Tr(⌃
B


+K
XW


K�1
WW


GmK�1
WW


K
WX


) (A.58)


which is also described in the main paper. The learning of the model involves optimizing
over the variational parameters, including f̃ , ṽm,Gm, inducing inputs Z, as well as hyper-
parameters for the kernel functions, which is performed through backpropagation based on
the gradients of the variational lower bound (A.52) with respect to these parameters.


Optimizing the variational distribution q(V)


As can be seen, the variational lower bound (A.52) depends on the parameters of the vari-
ational distribution q(V) =


Qm1


m=1 N (vm|ṽm,Gm), which can be optimized to improve the
lower bound further. For the last term in (A.50), we have


Z
q(V)q(D)p(B|V,W,X) log


p(D|B)p(V|W)


q(V)
d(D,B,V)


=


Z
q(V)


✓Z
q(D)p(B|V,W,X) log


p(D|B)p(V|W)


q(V)
d(D,B)


◆
dV


=


Z
q(V)


 Z
p(B|V,W,X) log


p(D = D̃|B)p(V|W)


q(V)
dB


!
dB


=


Z
q(V) log


ehlog p(D=D̃|B)ip(B|V,W,X)p(V|W)


q(V)
dV


where we have D̃ =
⇥
d̃1 · · · d̃m1


⇤
, with d̃m = K


XW


K�1
WW


ẽm, and ẽm for m = 1, ...,m1


are variational parameters to optimize. To maximize the above quantity, we can reverse the
Jensen’s inequality to obtin the condition that:


log q(V) = C + hlog p(D = D̃|B)ip(B|V,W,X) + log p(V|W)
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where C denotes a constant. Now for the term hlog p(D = D̃|B)ip(B|V,W,X), we have:


hlog p(D = D̃|B)ip(B|V,W,X) =


m1X


m=1


hlogN (dm = d̃m|bm,��1I)ip(B|V,W,X)


= C+


m1X


m=1


⌧
��


2
Tr


⇣
d̃md̃m> + bmbm> � 2d̃mbm>


⌘�


N (bm|KXWK�1
WWv


m,⌃B)


= C+


m1X


m=1


✓
��


2
Tr


⇣
d̃md̃m>+⌃


B


+vm>K�1
WW


K
WX


K
XW


K�1
WW


vm�2vm>K�1
WW


K
WX


d̃m
⌘◆


Therefore, we have:


log q(vm) = C� 1


2


⇣
�vm>K�1


WW


K
WX


K
XW


K�1
WW


vm�2�vm>K�1
WW


K
WX


d̃m+vm>K�1
WW


vm
⌘


Therefore by completing the squares we have q(vm) = N (vm|ṽm
⇤ ,⌃


m
v⇤):


⌃m
v⇤ = (K�1


WW


+ �K�1
WW


K
WX


K
XW


K�1
WW


)�1 = ��1K
WW


(��1K
WW


+K
WX


K
XW


)�1K
WW


ṽm
⇤ = �⌃m


v⇤K
�1
WW


K
WX


d̃m = K
WW


(��1K
WW


+K
WX


K
XW


)�1


| {z }
�


K
WX


d̃m


With the above optimized variational parameters for q(vm), we first obtain:
Z
q(vm)hlog p(dm = d̃m|bm)ip(bm|vm,W,X)dv


m = �n


2
log(2⇡��1)�


�


2
Tr


✓
d̃md̃m>+⌃


B


+K�1
WW


K
WX


K
XW


K�1
WW


(⌃m
v⇤+ṽm


⇤ ṽ
m>
⇤ )�2ṽm>


⇤ K�1
WW


K
WX


d̃m


◆


Next, we calculate
R
q(vm) log p(vm|W)dvm:


Z
q(vm) log p(vm|W) = �n


2
log(2⇡)� 1


2
log |K


WW


|� 1


2
Tr(K�1


WW


(⌃m
v⇤ + ṽm


⇤ ṽ
m>
⇤ ))


Finally we have:


H(q(vm)) = q(vm) log
1


q(vm)
=


n


2
log(2⇡) +


1


2
log |⌃m


v⇤| (A.59)


Summarizing, we have:
Z


q(V)q(D)p(B|V,W,X) log
p(D|B)p(V|W)


q(V)
d(D,B,V)



m1X


m=1



� n


2
log(2⇡��1)� 1


2
log |K


WW


|� 1


2
Tr(K�1


WW


(⌃m
v⇤ + ṽm


⇤ ṽ
m>
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1


2
log |⌃m


v⇤|


� �
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Tr


✓
d̃md̃m>+⌃


B


+K�1
WW


K
WX


K
XW


K�1
WW


(⌃m
v⇤+ṽm


⇤ ṽ
m>
⇤ )�2ṽm>


⇤ K�1
WW


K
WX


d̃m
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We now express the variational lower bound of the log likelihood as follow:


L = LM + LG + LDBV (A.60)


where


LM = log p(M|K
D̃Z


K�1
ZZ


f̃) (A.61)


LG = log p(u = ũ|Z) = logN (u = ũ|0, KZZ) (A.62)


= �1


2
ũ>K�1


ZZ ũ� K


2
log(2⇡)� 1


2
log |KZZ | (A.63)


LDBV =


m1X


m=1



�n


2
log(2⇡��1)� 1


2
log |K


WW


|� 1


2
Tr(K�1


WW


(⌃m
v⇤+ṽm


⇤ ṽ
m>
⇤ ))+


1


2
log |⌃m


v⇤|


��


2
Tr


✓
d̃md̃m>+⌃


B


+K�1
WW


K
WX


K
XW


K�1
WW


(⌃m
v⇤+ṽm


⇤ ṽ
m>
⇤ )�2ṽm>


⇤ K�1
WW


K
WX


d̃m


◆�
(A.64)


where d̃m = K
XW


K�1
WW


ẽm, � = (��1K
WW


+K
WX


K
XW


)�1,⌃m
v⇤ = ��1K


WW


�K
WW


. The
parameters we need to learn in this case include the variational parameters f̃ , and ẽm for
m = 1, ...,m1, inducing inputs Z, as well as hyperparameters for kernel functions.


Parameters learning by derivatives


In this section, we will obtain the derivatives of the marginal log likelihood L in (A.60) with
respect to the variational parameters f̃ , ẽm and inducing inputs Z. The derivative of the
reinforcement learning term, p(M|r) in (A.41), with respect to the reward r, is given by:


@


@r
log p(M|r) =


X


i


X


t


 
@


@r
rsi,t,ai,t �


@


@r
V r
si,t


+
X


s0


�T si,t,ai,t
s0


@


@r
V r
s0


!
(A.65)


The first term,
P


i


P
t


@
@rrsi,t,ai,t , is simply a vector that counts the number of state-action


pairs in the demonstrations µ̂, whose entry corresponding to (s, a) is given by: µ̂s,a =P
i


P
t 1si,t=s^ai,t=a. The second term involves the derivative of the value function at state


s with respect to rewards, as indicated in [246], equal to the expected visitation count of
each state-action pair when starting from state s and following the optimal stochastic policy,
i.e., @


@rV
r
s = E[µ|s], where µ is a vector with each entry µs,a corresponding to the expected


visitation count for (s, a). Therefore, (A.65) can be written as:


@


@r
log p(M|r) = µ̂�


X


i


X


t


E[µ|si,t] +
X


i


X


t


X


s0


�T si,t,ai,t
s0 E[µ|si,t]


= µ̂�
X


s


⌫̂sE[µ|s]
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where ⌫̂s =
P


a µ̂s,a�
P


i


P
t �T


si,t,ai,t
s0 . The term


P
s ⌫̂sE[µ|s] can be computed e�ciently by


a simple iterative algorithm described in [246], which we do not recount here. Note that the
above derivation follows from [143]. For the variational parameters f̃ , we need to consider
only two terms that involve it, i.e., LM,LG:


@LM


@f̃
=


@r


@f̃


@LM
@r


= K
D̃Z


K�1
ZZ


@ log p(M|r)
@r


@LG


@f̃
= �K�1


ZZ


f̃


where r = K
D̃Z


K�1
ZZ


f̃ is the reward vector that we use for reinforcement learning.
For the variational parameters ẽm, let D̃ =


⇥
K


XW


K�1
WW


ẽ1, ..., K
XW


K�1
WW


ẽm1
⇤
2 Rn⇥m1 ,


and E = [ẽ1, ..., ẽm1 ] 2 RK⇥m1 :


@LM
@E


=
@D̃


@E


@K
D̃Z


@D̃


@r


@K
D̃Z


@LM
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In addition, by applying matrix derivatives,
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✓
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em.


The gradients are provided to minFunc [200], which calls a quasi-Newton strategy, where
limited-memory BFGS updates with Shanno-Phua scaling are used in computing the step
direction, and a bracketing line-search for a point satisfying the strong Wolfe conditions is
used to compute the step direction.


A.5 Chapter 7: Cyber resilience of power grid state
estimation


Lemma 7.1 (Su�cient condition for stealth attack). An attack b is stealthy if there exists
a nonzero vector c such that Mic = 0 for every i 2 [nm] that is not in the support of b.


Proof. Since fi(v) = trace (Mivv⇤), we have


fi(v + c) = trace (Mi(v + c)(v + c)⇤) = fi(v),


for every i 2 [nm] that is not in the support of b.
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Proof of Theorem 7.1 and Lemma 7.2


Theorem 7.1. The relaxation (NC-FDIA-c) recovers a solution of the nonconvex problem
(NC-FDIA) and finds an optimal attack if it has a solution (v̂,Ŵ, b̂) satisfying Assump-
tion 2a such that rank(Ŵ) = 1.


Proof. First, we prove that the equation rank(Ŵ) = 1 implies that Ŵ = a2v̂v̂⇤, for some


a such that |a| � 1. Since



1 v̂⇤


v̂ Ŵ


�
⌫ 0, by Schur complement, we have Ŵ ⌫ 0, and


Ŵ� v̂v̂⇤ ⌫ 0. Due to rank(Ŵ) = 1, we can express Ŵ = ww⇤. Since ww⇤ � v̂v̂⇤ ⌫ 0, one
can write w = av̂, where |a| � 1 (otherwise, there exists a vector ⌫ 2 Cnb such that ⌫⇤w = 0,
but ⌫⇤v̂ 6= 0 and ⌫⇤ (ww⇤ � v̂v̂⇤)⌫ = �|⌫⇤v̂|2 < 0, which violates the PSD condition).


Now, we show by contradiction that the equation Ŵ = v̂v̂⇤ holds at optimality. Assume
that (v̂,Ŵ = â2v̂v̂⇤, b̂) is an optimal solution of (NC-FDIA-c) and that â > 1 (the case
â < �1 is similar). It is obvious that (âv̂,Ŵ = â2v̂v̂⇤, b̂) is also feasible. This gives rise to
the relation:


h̄(v̂, â2v̂v̂⇤) = trace
�
â2v̂v̂⇤�� (ṽ⇤vtg + v⇤


tgṽ)


> trace
�
â2v̂v̂⇤�� â(ṽ⇤vtg + v⇤


tgṽ)


= h̄(âv̂, â2v̂v̂⇤),


where the inequality follows from Assumption 2a. This contradicts the optimality of (v̂,Ŵ =
â2v̂v̂⇤, b̂). Therefore, we must have â = 1, implying that Ŵ = v̂v̂⇤.


Recall that (NC-FDIA-c) provides a lower bound for (NC-FDIA-r), which is a reformu-
lation of (NC-FDIA). Therefore, since (v̂,Ŵ = v̂v̂⇤, b̂) is feasible for (NC-FDIA-r), it is
optimal for (NC-FDIA).


Lemma 7.2 (Stealth attack). Let (v̂,Ŵ, b̂) be a solution of (SDP-FDIA) satisfying As-
sumption 2b. The attack b̂ is stealthy if rank(Ŵ) = 1.


Proof. Let (v̂,Ŵ, b̂) denote an optimal solution of (SDP-FDIA). If rank(Ŵ) = 1, then using
a similar reasoning as in the proof for Theorem 7.1, we have Ŵ = a2v̂v̂⇤ for every |a| � 1
due to the PSD constraint. Now, we show by contradiction that the relation Ŵ = v̂v̂⇤ holds
at optimality. Let (v̂,Ŵ = â2v̂v̂⇤, b̂) be an optimal solution of (SDP-FDIA), and â > 1
(the case â < �1 is similar). It is obvious that (âv̂,Ŵ = â2v̂v̂⇤, b̂) is also feasible. For a
fixed b̂, this gives rise to the relation:


h̄(v̂, â2v̂v̂⇤) + â2trace(M0v̂v̂
⇤)


= trace
�
â2v̂v̂⇤�� (ṽ⇤vtg + v⇤


tgṽ) + â2trace(M0v̂v̂
⇤)


> trace
�
â2v̂v̂⇤�� â(ṽ⇤vtg + v⇤


tgṽ) + â2trace(M0v̂v̂
⇤)


= h̄(âv̂, â2v̂v̂⇤) + â2trace(M0v̂v̂
⇤)
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where the inequality follows from Assumption 2b. This contradicts the optimality of (v̂,Ŵ =
â2v̂v̂⇤, b̂). Therefore, we must have â = 1, implying that Ŵ = v̂v̂⇤. Moreover, since


fi(v̂) = trace (Miv̂v̂
⇤) = trace


⇣
MiŴ


⌘
= mi + b̂i = fi(v) + b̂i, 8i 2 [nm],


the stealth condition is satisfied, implying that b̂ is stealthy.


Proof of Theorems 7.2 and 7.3


In the case of h̄(ṽ,W) = trace (W) � ṽ⇤vtg � v⇤
tgṽ, the dual of (FDIA-SE) can be written


as
min


⇠2Rnm ,q02R
⇠ · (v + b)


s. t.



q0 �v⇤


tg


�vtg I+M0 +
P


i ⇠iMi


�
⌫ 0,


where ⇠ is the vector of dual variables. The complementary slackness condition is given by:



q0 �v⇤


tg


�vtg I+M0 +
P


i ⇠iMi


� 
1 ṽ⇤


ṽ W


�
=



q0 � ṽ⇤


tgṽ q0ṽ⇤ � ṽ⇤
tgW


�ṽtg +Q0ṽ �ṽtgṽ⇤ +Q0W


�
= 0. (A.66)


Let (v̂,Ŵ) be an optimal solution of (FDIA-SE) and (q̂0, ⇠̂) be a dual optimal solution. It
follows from the above equation that q̂0 = ṽ⇤


tg
ˆ̃v. By defining


Q0 = I+M0 +
X


i


⇠iMi, (A.67)


L0 = � 1


q̂0
vtgv


⇤
tg + I+M0, (A.68)


H(⇠) = L0 +
X


i


⇠iMi, (A.69)


and using the Schur’s complement, the dual problem can be reformulated as


min
⇠2Rnm


⇠ · (v + b)


s. t. H(⇠) = L0 +
X


i


⇠iMi ⌫ 0.
(FDIA-SE-d)


The following lemma proves strong duality between (FDIA-SE) and its dual formulation.


Lemma A.1. Suppose that there exists a vector v 2 V(M) that is feasible for (FDIA-SE).
Then, strong duality holds between (FDIA-SE) and its dual formulation (FDIA-SE-d).


Proof. To prove the lemma, it su�ces to find a strictly feasible point for the dual problem.
Since there exists a vector v 2 V(M) that is feasible for (FDIA-SE), we have v>J(v) 6= 0
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due to the full row-rank property of J(v). Therefore, there exists an index i 2 [nm] such
that v⇤Miv 6= 0. Let {d1, ...,dnm} denote the standard basis vectors in Rnm . Then, we can
select ⇠̂ = ⇠ + � ⇥ di for any feasible dual vector ⇠, where � 2 R is a nonzero number with
an arbitrarily small absolute value such that � ⇥ v⇤Miv > 0. Therefore, one can write:


H(⇠̂) = L0 +
X


i


⇠̂iMi = H(⇠) + cMi � 0 (A.70)


if c is su�ciently small. Hence, ⇠̂ is a strictly feasible dual point and, by Slater’s condition,
strong duality holds.


Definition A.2. Define ⌦(L0,v) as a set of dual variables such that


J(v)⇠ = �2L0v, (A.71)


for every ⇠ 2 ⌦(L0,v), where J(v) 2 R(2nb�1)⇥nm is the Jacobian matrix in (7.5).


Since H(⇠) = L0 +
P


i ⇠iMi, we have


H(⇠)v = L0v +
X


i


⇠iMiv = L0v + 1
2J(v)⇠ = 0,


for all ⇠ 2 ⌦(L0,v), which indicates that v lies in the null space of H(⇠) 2 Snb for every
⇠ 2 ⌦(L0,v).


Lemma A.2. For every v 2 V(M) and nm � 2nb � 1, there is a vector ⇠ 2 Rnm such that
(A.71) is satisfied. Therefore, ⌦(L0,v) is nonempty for every observable state vector v.


Proof. Since v 2 V(M) is observable, J(v) has full row rank. This implies that, for every
L0, as long as the number of columns of J(v), namely nm, is greater than or equal to the
number of rows, namely 2nb � 1, there is a vector ⇠ satisfying (A.71).


Theorem 7.2. If A(M, ⇢) is non-empty for some ⇢ > 0, the intersection of the attackable
region and the observable set, i.e., A(M, ⇢) \ V(M), is an open set.


Proof. Define (H(⇠)) as the sum of the two smallest eigenvalues of the Hermitian matrix
H(⇠) 2 Snb . It can be shown that the intersection of the attackable region and observable
set, i.e., A(M, ⇢) \ V(M), can be represented as


{v 2 V(M)|(H(⇠)) > 0, ⇠ 2 ⌦(L0,v)}.


The proof is similar to the argument made in Theorem 3 of [151]. Now, consider a vector v
in {v 2 V(M)|(H(⇠)) > 0, ⇠ 2 ⌦(L0,v)}, and let � denote the second smallest eigenvalue
of H(M, ⇠). Due to the continuity of the mapping from a state v to a set ⌦(L0,v), there
exists a neighborhood T 2 Cnb such that there exists a ⇠t 2 ⌦(L0,vt) with the following
property:


kH(⇠)�H(⇠t)kF <
p
� (A.72)
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for every vt 2 V(M) \ T (note that k.kF represents the Frobenius norm). Using an eigen-
value perturbation argument (Lemma 5 in [152]), it can be concluded that H(⇠t) ⌫ 0 and
rank(H(⇠t)) = nb � 1, which imply that (H(⇠t)) > 0 and vt 2 {v 2 V(M)|(H(⇠)) >
0, ⇠ 2 ⌦(L0,v)}. Hence, A(M, ⇢) \ V(M) is an open set.


Theorem 7.3. Consider the “target state attack” with h̄(ṽ,W) = trace (W)� ṽ⇤vtg �v⇤
tgṽ,


where vtg 2 V(M) is chosen to be observable. Then, vtg 2 A(M, ⇢) for some ⇢ > 0, i.e.,
vtg is attackable.


Proof. LetM0 be chosen asM0 = �I+✏vtgv⇤
tg+L0, for some ✏ > 0 and a matrix L0 satisfying


the following properties: 1) L0 ⌫ 0, 2) 0 is a simple eigenvalue of L0, 3) the vector vtg belongs
to the null space of L0. Let ⇢ = kM0k2 defined above. Note that ⇠ = 0 is a feasible dual
point since H(0) = L0 ⌫ 0. Moreover, because of the equation H(0)vtg = L0vtg = 0, we
have 0 2 ⌦(L0,vtg). Since 0 is a simple eigenvalue of L0, it holds that (H(0)) = (L0) > 0.
Therefore, it can be concluded that vtg 2 {v 2 V(M)|(H(⇠)) > 0, ⇠ 2 ⌦(L0,v)}. By the
proof of Theorem 7.2, it follows that vtg is attackable.


Proof of Lemma 7.3


Lemma 7.3. g(b) is convex and sub-di↵erentiable.


For any two attacks b1 and b2, let the optimal states be denoted as (v̂(1),Ŵ(1)) and
(v̂(2),Ŵ(2)). For every number � 2 [0, 1], the point (�v̂+ (1� �)v̂(2),�Ŵ+ (1� �)Ŵ(2)) is
a feasible solution for the attack �b1 + (1� �)b2:


g(�b1 + (1� �)b2)  �g(b1) + (1� �)g(b2),


which proves the convexity. In what follows, in addition to proving the continuity of g(b),
we will derive a bound on the subgradient of g(b), which is used in Theorem 7.5. The
method is an extension of [232] to the primal formulation. In particular, our analysis is a
type of parametric programming, which characterizes the change of the solution with respect
to small perturbations of the parameters (see [232, Ch. 4]). Consider a disturbance � to the
vector b 2 Rnm in (FDIA-SE) along the direction b. The primal problem changes as


min
ṽ,W


h̄(ṽ,W) + trace (M0W)


s. t. trace (MiW) = mi + bi + �bi
1 ṽ⇤


ṽ W


�
⌫ 0


(P�)


and its dual formulation is given by:


min
⇠,q0


⇠ · (v + b+ �b)


s. t.



q0 �v⇤


tg


�vtg I+M0 +
P


i ⇠iMi


�
⌫ 0


(D�)
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Let � be the set of all vectors � for which (D�) has a bounded solution and is strictly
feasible. Assume that 0 2 �. It is straightforward to verify that � is a closed (and possibly
unbounded) interval. Due to duality, (P�) is feasible and has a bounded solution for every
� 2 �, and the duality gap is zero.


Let F� denote the feasible set of (D�), b(�) = v + b + �b, and ⇠(�) 2 {⇠� : ⇠� =
argmin{⇠� · b(�), ⇠� 2 F�}. Moreover, let �(�;b,b) = ⇠(�) · b(�) be the optimal value
function. Obviously, we have �(0;b,b) = g(b) by the Slater’s condition, and �(�;b,b) is
concave in �. We will use the shorthand notation �(�) henceforth.


Next, we derive the subdi↵erential of �(�), which is equivalent to @g(b) when � = 0 and
b is one of the canonical basis in Rnm . For any � 2 int �, choose d� small enough such that
the point ⇠(�+ d�) lies in a compact set. Let ⇠+(�) and ⇠�(�) denote the limit as d� ! +0
and �0, respectively.


Lemma A.3. The equations


lim
d�!+0


b(�) · (⇠(� + d�)� ⇠+(�))


d�
= 0


lim
d�!�0


b(�) · (⇠(� + d�)� ⇠�(�))


d�
= 0


hold for every � 2 int �.


Proof. It is straightforward to verfiy that ⇠+(�) is an optimal solution of (D�). Assume that


lim
d�!+0


b(�) · (⇠(� + d�)� ⇠+(�))


d�
� ✏ > 0.


There exists a sequence {d�k} ! +0 such that


b(� + d�k) · ⇠(� + d�k)


� b(� + d�k) · ⇠+(�) + ✏d�k + d�kb · (⇠(� + d�k)� ⇠+(�))o(d�k)


> b(� + d�k) · ⇠+(�)


if d�k is su�ciently small. This contradicts the optimality of ⇠(� + d�k) for (D�+d�k). Simi-
larly, assume that


lim
d�!+0


b(�) · (⇠(� + d�)� ⇠+(�))


d�
 ✏ < 0


Then, there exists {d�k} ! +0 such that


b(�) · ⇠(� + d�k)  b(�) · ⇠+(�) + ✏d�k + o(d�k)


< b(�) · ⇠+(�),


which contradicts that ⇠+(�) is optimal for (D�). A similar argument can be made in the
case where d� ! �0.
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We now derive the directional derivative of �(�).


Lemma A.4. The equations


lim
d�!+0


�(� + d�)� �(�)


d�
= ⇠+(�) · b


lim
d�!�0


�(� + d�)� �(�)


d�
= ⇠�(�) · b


holds for every � 2 int �.


Proof. Since b(�) · ⇠(�) = b(�) · ⇠+(�) = b(�) · ⇠�(�), one can write:


lim
d�!+0


�(� + d�)� �(�)


d�


= lim
d�!+0


⇠(� + d�) · b(� + d�)� ⇠(�) · b(�)
d�


= lim
d�!+0


⇠(� + d�) · b+
b(�) · (⇠(� + d�)� ⇠(�))


d�


= ⇠+(�) · b


according to Lemma A.3. The proof for the case d� ! �0 is similar.


Notice that �(�) is continuously di↵erentiable at � if and only if b · ⇠+(�) = b · ⇠�(�),
which occurs either when (D�) has a unique solution or any feasible direction of the optimal
face is orthogonal to b. To wrap up this section, we state the following lemma to bound the
subdi↵erential @g(b).


Lemma A.5. Let [⇠+(0)]i and [⇠�(0)]i denote the i-th entry of ⇠(d�) as d� ! +0 and �0
along the direction of the i-th canonical basis in Rnm. For every attack b, assume that 0 2 �.
The subdi↵erential of g(b) is bounded element-wise as


[⇠+(0)]i  [@g(b)]i  [⇠�(0)]i, 8i 2 [nm]


Proof. The proof follows from the strong duality between (P�) and (D�) at � = 0, the
concavity of �(�), and Theorem 24.1 in [195] on the monotonicity of subdi↵erential.


To summarize, we have shown that g(b) is continuous and convex (Lemma 7.3) with
subdi↵erential depending on the dual solution (Lemma A.5). These results are useful for
proving Theorem 7.5.
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Proofs of Theorems 7.4 and 7.5


Theorem 7.4. Let V(M) ⇢ Cnb denote the set of observable states for a given set of
measurement types M including the branch power flows and nodal voltage magnitudes, but
not the nodal bus injections. Then, we have V(M) \R(Y) ✓ A(M, ⇢) for some ⇢ > 0.


Proof. For every v̂ 2 V(M)\R(Y), we show that by choosing b = f(v̂)� v where fi(v̂) is
given in (7.1), the unique optimal solution of (FDIA-SE) is given by (v̂,Ŵ = v̂v̂⇤), hence
v̂ 2 A(M, ⇢) is attackable for some ⇢ defined below. Let M0 in (SDP-FDIA) be given by
the formula:


M0 = �I+ ✏vtgv
⇤
tg +


X


l2L
M̃(l)


pf +
X


l2L
M̃(l)


pt , (A.73)


where ✏ > 0 is a constant parameter, and M̃(l)
pf and M̃(l)


pt are arbitrary matrices in Hnb . For


every (s, t) 2 [nb] ⇥ [nb], assume that the (s, t) entries of M̃(l)
pf and M̃(l)


pt are equal to zero if
(s, t) 62 L and otherwise satisfy the following inequalities:


�⇡  \yst � \M̃ (l)
pf,st  0 (A.74)


⇡  \yst + \M̃ (l)
pt,st  2⇡. (A.75)


Choose ⇢ = M0 defined in (A.73) accordingly.


Let ⇠ 2 Rnm and Q =



q0 q⇤


q Q0


�
2 Hnb+1 be the dual variables. By the KKT conditions


for optimality, we have: a) the stationarity conditions: q = �vtg andQ0 = I+M0+
P


i ⇠iMi,
b) the dual feasibility condition: Q ⌫ 0, and c) the complementary slackness condition:


Q



1 v⇤


v W


�
= 0. Let H(⇠) = � 1


q0
vtgv⇤


tg +Q0 and q0 = v⇤
tgv. Based on a) and c), we have


H(⇠)W = 0. Due to b) and Schur complement, it is required that H(⇠) ⌫ 0.
By Slater’s condition, strong duality holds if one can construct a strictly feasible dual


solution ⇠̂, which is optimal if KKT conditions are satisfied. The rank-1 condition for W
follows if we can further show that rank(H(⇠̂)) = nb � 1 (since together with H(⇠̂)W = 0,
it implies that W lies in the null space of H(⇠̂), which is at most rank 1).


For the three types of measurements considered in this paper, the measurement matrices
are: 1) Mi = Ei for every i 2 N (associated with voltage magnitudes), 2) Mi+nb


= Y(l)
pf for


every i 2 L (associated with real power flow from the bus), and 3) Mi+nb+nl
= Y(l)


pt for every


i 2 L (associated with real power flow to the bus). By denoting ⇠̂ =
P


l2L ⇠̂
(l)
pf +


P
l2L ⇠̂


(l)
pt ,


we can write
H(⇠̂) =


X


l2L
H(l)


pf (⇠̂
(l)
pf ) +


X


l2L
H(l)


pt (⇠̂
(l)
pt ),


where


H(l)
pf (⇠̂


(l)
pf ) = M̃(l)


pf + ⇠̂
(l)
pf,sEs + ⇠̂


(l)
pf,tEt + ⇠̂


(l)
pf,l+nb


Y(l)
pf


H(l)
pt (⇠̂


(l)
pt ) = M̃(l)


pt + ⇠̂
(l)
pt,sEs + ⇠̂


(l)
pt,tEt + ⇠̂


(l)
pt,l+nl+nb


Y(l)
pt
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and
P


l2L M̃
(l)
pf +


P
l2L M̃


(l)
pt = I+M0 � 1


q0
vtgv⇤


tg. Define ⇠̂(l)pf in such a way that


⇠̂
(l)
pf,l+nb


= �
2=


⇣
v̂sv̂


⇤
t M̃


(l)⇤
pf,st


⌘


= (v̂sv̂⇤t y
⇤
st)


, ⇠̂
(l)
pf,t =


|v̂s|2=
⇣
M̃


(l)⇤
pf,styst


⌘


= (v̂sv̂⇤t y
⇤
st)


⇠̂
(l)
pf,s =


|v̂t|2
|v̂s|2


⇠̂
(l)
pf,t + <(yst)⇠̂(l)pf,l+nb


(A.76)


and ⇠̂(l)pt such that


⇠̂
(l)
pt,l+nb+nl


= �
2=


⇣
v̂sv̂


⇤
t M̃


(l)⇤
pt,st


⌘


= (v̂sv̂⇤t yst)
, ⇠̂


(l)
pt,t = �


|vs|2=
⇣
M̃


(l)
pt,styst


⌘


= (v̂sv̂⇤t yst)


⇠̂
(l)
pt,s =


|v̂t|2
|v̂s|2


⇠̂
(l)
pt,t + <(yst)⇠̂(l)pt,l+nb+nl


(A.77)


where v̂ is an optimal solution of the primal problem (FDIA-SE). It can be verified that


H(l)
pf v̂ = 0, H(l)


pt v̂ = 0, H(l)
pf ⌫ 0 and H(l)


pt ⌫ 0, as long as:


�⇡  \v̂s � \v̂t � \yst  0 (A.78)


0  \v̂s � \v̂t + \yst  ⇡ (A.79)


�⇡  \yst � \M̃ (l)
pf,st  0 (A.80)


⇡  \yst + \M̃ (l)
pt,st  2⇡. (A.81)


The inequalities (A.78) and (A.79) are satisfied since v̂ 2 R(Y). The inequalities (A.80) and


(A.81) require that M̃
(l)
pf,st and M̃


(l)
pt,st to lie in the second or third quadrants of the complex


plane, which is satisfied by the design in (A.74) and (A.75).
Our next goal is to show that rank(H(⇠̂)) = nb�1, or equivalently, dim(null(H(⇠̂))) = 1.


For every x 2 null(H(⇠̂)), since H(l)
pf ⌫ 0 and H(l)


pt ⌫ 0, we have H(l)
pfx = H(l)


pt x = 0. By
the construction of (A.76) and (A.77), for every line l with the endpoints s and t, it holds
that xs


v̂s
= xt


v̂t
. This reasoning can be applied to another line l0 : (t, a) to obtain xt


v̂t
= xa


v̂a
. By


repeating the argument over a connected spanning graph of the network, one can obtain:


xs


v̂s
=


xt


v̂t
=


xa


v̂a
= · · · = c (A.82)


which indicates that x = �v̂. As a result, dim(null(H(⇠̂))) = 1 and rank(H(⇠̂)) = nb � 1.
By the complementary slackness condition, it can be concluded that rank(Ŵ) = 1. By
Lemma 7.2, we have Ŵ = v̂v̂⇤. We also know that b is stealthy since trace (v̂⇤Miv̂) =
mi + bi, 8i 2 [nm] by choice.


Theorem 7.5. Consider (SDP-FDIA) for a “target state attack” with h̄(ṽ,W) = trace (W)�
ṽ⇤vtg � v⇤


tgṽ, where vtg 2 V(M) is chosen to be observable. Let (v̂,Ŵ, b̂) denote an opti-
mal solution of (SDP-FDIA) for an arbitrary ↵ greater than or equal to 2k@g(b?)k1. The
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di↵erence between the sabotage scale of the solved attack and the oracle attack satisfies the
inequalities:


�2↵k�̂Bk1  g(b̂)� g(b?)  ↵
⇣
k�̂Bk1 � k�̂Bck1


⌘
,


where �̂ = b̂� b? is the di↵erence with the oracle b?.


Proof. In what follows, we will derive performance bounds for x̂ compared to b?. By the
definition of g(b) in (FDIA-SE), we can rewrite (SDP-FDIA) only in terms of b as


max
b


g(b) + ↵kbk1 (P4)


Define r(�) = g(b?+�)� g(b?)+↵(kb?+�k1�kb?k1) and �̂ = b̂�b?. The separability
of the l1-norm yields that


kb? + �̂k1 � kb?
B + �̂Bck1 � kb?


Bc + �̂Bk1
= kb?


Bk1 + k�̂Bck1 � k�̂Bk1
= kb?k1 + k�̂Bck1 � k�̂Bk1.


Together with r(�̂)  0 that results from the optimality of b̂, we have proved the upper
bound. For the lower bound, one can write:


g(b̂)� g(b?) � h@g(b?), �̂i � �|h@g(b?), �̂i| (A.83)


� �k@g(b?)k1k�̂k1 (A.84)


� �↵


2


⇣
k�̂Bk1 + k�̂Bck1


⌘
(A.85)


� �2↵k�̂Bk1 (A.86)


where (A.83) is due to the convexity of g(b) (Lemma 7.3), (A.84) is by Hölder’s inequality,
(A.85) is due to the assumption of ↵, and (A.86) is due to Lemma 7.4 (see [173, Lem. 1]).
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