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Abstract


Human Modeling for Autonomous Vehicles: Reachability Analysis, Online Learning, and
Driver Monitoring for Behavior Prediction


by


Vijay Govindarajan


Master of Science in Electrical Engineering and Computer Sciences


University of California, Berkeley


Professor Ruzena Bajcsy, Chair


In order to design safe and effective human-in-the-loop systems, developing robust and
useful models of human behavior is absolutely vital. However, this problem is highly difficult
to address, given that humans often act unpredictably. We look at two approaches to model
the human agent: one motivated by safety and capturing the likely behaviors across a wide
range of human agents, and another motivated by personalization and adapting control to
the specific human user.


In the first approach, we investigate the problem of determining prediction sets for human-
driven vehicles using Hamilton-Jacobi reachability analysis and empirical observations from
driving datasets. Given evaluation metrics of accuracy, precision, and risk, we optimize
disturbance bounds to construct forward reachable sets with high precision that satisfy
accuracy and risk constraints. To demonstrate the approach, we apply our framework to
a lane changing scenario to provide set predictions that provide safety guarantees without
being over-conservative. We show an example of this method that allows us to construct a
reachable set with over 85% accuracy and under 25% risk.


In the second modeling approach, we seek to model the human as a collaborator and
use the state of the driver to develop an adaptive assistance system. We focus on the prob-
lem of measuring the driver state under varying levels of cognitive workload using affective
(i.e. emotion) sensing, including facial analysis and electroencephalography (EEG). This
information is then used to help predict the brake reaction time of the driver, a key input
in designing forward collision warning systems. We use online learning methods, as a way
for the autonomous system to gradually learn from examples and improve predictions over
time. We then demonstrate the results in a pilot study, which shows that while detecting the
cognitive task is challenging, affective sensing can be used directly to reduce prediction error
or speed up learning of brake reaction time for some individuals. We then end with some im-
provements that can be made to further strengthen the quality of the affective sensing-based
prediction models in future work.
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Chapter 1


Introduction


A key challenge in human-robot interaction is developing high fidelity models for the human
agent. Without these models, the robot agent cannot properly predict human behaviors and
respond appropriately. This problem is difficult, however, given the unpredictability of the
human agent. Thus, there is a tradeoff between trying to be robust to all possible sets of
human behavior, or focusing solely on the most likely actions. Another challenge is that
each human is different. Each person has varying physical and cognitive capabilities and
different preferences and expectations from the robot agent. In addition, they may change
preferences over time, based on their affective (emotional) state. This problem is especially
relevant in the intelligent vehicle domain, where autonomous vehicles must collaborate with
human passengers and other human drivers.


This thesis consists of two approaches to modeling the human agent in the intelligent
vehicle setting. Chapter 2 discusses how an empirical approach using large scale driving
datasets can be used with reachability analysis to provide prediction sets on human behavior
that balance accuracy, risk, and precision constraints. This approach is suitable for modeling
a wide variety of human agents. In contrast, Chapter 3 focuses on personalization of driver
assistance systems using online learning and affective (emotion) state monitoring to develop
a tailored human behavior model. This approach can be used to design systems that not
only take into account the specific human user but also adapt control behavior as a function
of the affective state.
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Chapter 2


Data-Driven Reachability Analysis for
Human-in-the-Loop Systems


2.1 Introduction


A crucial problem in human-robot interaction and human-in-the-loop control is designing
control algorithms that are both safe and effective [11]. In order to design such control
frameworks, rigorous models of human behaviors and dynamics are required. This, however,
is rather challenging, as humans are unpredictable and describing their behavior via standard
dynamical methods is often difficult [46].


Intelligent vehicles are a key application of human-in-the-loop control, as human drivers
directly influence the system on many different levels. From one perspective, drivers interact
directly with active safety systems that intervene and assist the driver to maintain safe
behaviors [7]. From the autonomous perspective, human drivers will be influencing and
cooperating with autonomous vehicles on the road, meaning their anticipated actions must
be integrated into autonomous vehicle control [10].


While autonomous vehicle technology has advanced rapidly, there still remain obstacles
to full integration on current roadways. Eventually, communication protocols like V2V or
V2I will facilitate this process [45]. However, in the short term, autonomous vehicles will
have to operate in mixed environments, with both human-driven and autonomous vehicles
on the road. The challenge is how to seamlessly introduce autonomy into such environments
[9].


This work presents a method for modeling the likely behaviors of humans as reachable
sets that are chosen based on empirical observations from driving datasets. The motivating
example for this work is shown in Figure 2.1. This example reveals an inherent trade-
off. We can be conservative and capture all likely behaviors, or we can try to make a
more informative prediction by only capturing the most likely behaviors. In this work, we
investigate this trade-off by constructing and evaluating forward reachable sets for vehicles
based on Hamilton-Jacobi reachability analysis and observations from a driving dataset. In







CHAPTER 2. DATA-DRIVEN REACHABILITY ANALYSIS FOR
HUMAN-IN-THE-LOOP SYSTEMS 3


Figure 2.1: We wish to find the correct reachable set to model the behaviors of vehicle B. Here,
the yellow set is over-conservative with respect to vehicle A’s trajectory (green). In contrast, the
dark blue set does not fully capture the behavior of vehicle B, as evidenced by vehicle’s B actual
trajectory (light orange) leaving the set. Thus, the light blue set is the best balance.


addition, we investigate how to maximize precision of the reachable set given accuracy and
risk constraints.


This chapter is organized as follows. The following section highlights related studies in
human modeling and human-in-the-loop control. Section 2.3 describes the problem formu-
lation, evaluation metrics, and optimization approach.The methods used to compute the
reachable sets are detailed in Section 2.4. Section 2.5 presents the evaluation metrics for
the computed reachable sets and provides an example implementation of the aforementioned
optimization problem. Finally, Section 2.6 includes discussion and future work.


2.2 Related Works


In order to have safe and interactive systems, predictive modeling is incredibly important
[10]. There is a rich body of literature on human prediction and human-in-the-loop control.
We aim to find a balance between informativeness and conservativeness as it applies to
predictive modeling.


Ideally, for each obstacle in the environment, the exact future trajectory would be known.
This precise trajectory would be maximally informative. However, given the randomness of
human motion, it is unlikely that the precise trajectory will be uncovered uniquely [46]. In
the realm of intelligent vehicles, many works have developed models that attempt to predict
the exact trajectory, but either do not generalize well or cover unknown situations [19].
Stochastic models have also been developed, but make many assumptions on the underlying
model of human behavior (e.g. Markov Decision Processes assume humans satisfy the Markov
property [1]) or on the distribution on human actions [9].


In contrast to informative models, reachable sets maximize the conservativeness of the
prediction by capturing worst-case behavior under specified disturbance bounds. Reachabil-
ity analysis is a well developed tool that provides guarantees on safe behaviors for control
systems [47]. This methodology has been effectively used in many settings for provably
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correct control, optimal control for hybrid systems, and multi-agent applications.
Further, these and related methods can provide certificates that give an exact proof of


safety [39]. By using such approaches, which rely on dynamical models, many issues with
discretization and the common “signal to symbol” problem are mitigated [44]. In order
to utilize these techniques, many assumptions must be made on the model being used.
For instance, typically the dynamics and model parameters must be known (and relatively
simple to address complexity issues) and the disturbance bounds must be predetermined
[31]. There has been a great deal of work aiming to address these issues by considering
stochastic reachability or by applying safe learning techniques.


Many stochastic reachability approaches rely on discretization by modeling the system
as a Markov Decision Process [18]. This has been successfully applied to traffic scenarios
to guarantee safe maneuvers on the road [3]. Similarly, stochastic reach-avoid formulations
have shown promising results in multi-agent autonomous settings [22]. In [27], stochastic
reachable sets were used in a path planning framework, assuming discrete modes of behavior
for each obstacle. While this work is promising, the approach lacks the generality of the
continuous domain and requires assumptions that might not hold for human-in-the-loop
systems [9].


For human-controlled systems, disturbances are often difficult to model and use in control
frameworks [43]. The selection of disturbance bounds, however, is crucial–if the assumed
bounds do not globally capture the true disturbance, reachability analysis can no longer
guarantee safety. On the other hand, if the disturbances are over-approximated, the resulting
control will be over-conservative [10].


To address this, there has been growing interest in learning these disturbances online
to reduce the conservativeness of these methods [13]. These concepts have been used in
safe online learning frameworks that learn control policies via reinforcement learning while
simultaneously learning disturbances and modeling errors [2].


In this work, we aim to relax the assumptions required to develop safe, interactive human-
in-the-loop systems by using empirical methods in order to (1) learn disturbances and (2)
balance informativeness and conservativeness. This approach allows us to capture the wide
variety of human behaviors and express these observations succinctly using reachability anal-
ysis, which provides a certificate on safety.


We aim to empirically optimize the disturbance bounds used to generate useful forward
reachable set predictions. When forward reachable sets are used to predict sets of possible
trajectories, they provide nice safety guarantees, subject to some assumptions on disturbance
input bounds that might not hold in practice. To address this, we evaluate the effective-
ness of these sets for predicting human driven vehicles trajectories, identifying the correct
disturbances for conservative and informative predictions.


In addition, supposing we have an accurate prediction that provide safety bounds for
interaction, we assess how these are violated by other agents on the road. This gives us
a measure of how over-conservative the prediction set is with respect to interaction. By
applying empirical analysis to reachability analysis, we can generate useful set predictions
while maintaining a certificate on safety.
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2.3 Methodology


This section presents the formalization of how we aim to model the human and the interaction
with other vehicles. We outline how the parameters of this model can be optimized to
generate useful reachable set predictions, using empirical evaluation metrics as constraints.


Problem Formulation


Suppose we have a human driven vehicle, which we will represent with a simplified kinematic
model:


ẋ = v cos(θ)
ẏ = v sin(θ)


θ̇ = ω
v ∈ Dv


ω ∈ Dω


(2.1)


where x and y denote the vehicle’s position, θ denotes the vehicle’s heading, v denotes the
vehicle’s speed, and ω is the vehicle’s steering rate. As this is a human driven vehicle, we
suppose that there is uncertainty in the control of the vehicle, denoted Dv and Dω, which
are compact sets in R. It is assumed that all other sources of noise and uncertainty are
encompassed by these disturbance sets.


Further, we assume we are able to compute the forward reachable set for a fixed time
horizon, T , which will be denoted ∆(Dv, Dω) or ∆ for simplicity. Given that methods
for computing this set are well-studied, we focus our attention on identifying the tunable
parameters, i.e. the disturbances.


In order to properly assess and optimize this set, we assume the existence of a human-
in-the-loop dataset of driving behaviors and interactions. We focus on scenarios similar to
Figure 2.1, where vehicle A seeks to merge in front of vehicle B. The reachable set is used to
model possible actions of vehicle B, and risk is measured by evaluating the level of intrusion
by vehicle A into this set. Thus, we have a set of trajectories representing the in-lane vehicle
XB and the other vehicle XA. Given our motivating example (Figure 2.1), we will denote an
instance of a lane change execution and the corresponding reaction as a pair of trajectories,
denoted xAl ∈ XA and xBl ∈ XB.


By relaxing strict bounds on safety and interaction, we are able to sacrifice conservative-
ness for informativeness. However, this is a difficult problem to solve in general, given that
(1) computing the reachable set is difficult; (2) these constraints are not easily written as
simple constraints; and (3) these constraints are at odds with one another. The following
sections describe how we use empirical methods and an iterative optimization procedure to
address this problem.
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Set Evaluation Metrics


We introduce three metrics to evaluate the results and provide empirical constraints for
optimization.
1) Accuracy Metric: Does the actual trajectory lie within the prediction set?
2) Precision Metric: How informative is this predictive set when compared to a generic set
prediction?
3) Risk Metric: How frequently is this set violated by the other agent?


In essence, we would like to verify that we are reliably predicting driver behavior, that
we are using a set prediction that is relatively small and informative, and that the set is not
over-conservative with respect to interaction.


We formalize these metrics in the following equations. Accuracy is defined as:


A = 1
L


∑L
l=1 I{xBl ∈ ∆} (2.2)


where L is the number of lane changes, I is the indicator function, xBl is element l in a library
of trajectories XB, and ∆ is the reachable set generated to predict the possible behaviors of
vehicle B.


This averages the instances in which the vehicle B’s trajectory was correctly predicted
as falling within the set.


Precision is defined as:


P = 1− λ(∆)


λ(Λ)
(2.3)


where λ(·) is the Lebesgue measure that gives the size of the set, ∆ is the predicted set for
vehicle B, and Λ represents a generic prediction set for the vehicle. In this case, the reachable
set generated using the largest disturbance bounds investigated (refer to Table 2.1) was used
as Λ.


Precision gives us an idea of how informative the set ∆ is by assessing how much we are
shrinking the set from the set prediction using the largest confidence bounds.


If the precision metric is 1, the size of the prediction set is 0, meaning that we have
precisely predicted the exact trajectory. If the precision metric is 0, then we are not reducing
the size of the set and we can surmise that this prediction is not informative.


The reachable set formulation provides a set of states that the vehicle of interest (i.e.
vehicle B) may visit in a given time horizon. The boundaries of this set provide safety
guidelines that can be used by adjacent vehicles (i.e. vehicle A) on the road for planning,
given that disturbance bound assumptions on vehicle B hold. However, humans often violate
these safety boundaries. For example, in a high traffic situation, there simply may not be
enough space to maintain a large lane gap and still make a lane change. To quantify how
risky a human behaves with respect to a given reachable set, we develop interaction metrics
that capture how much a given trajectory intrudes on the reachable set. Here, we focus on
a risk metric, R, defined analogously to the accuracy metric:


R = 1
L


∑L
l=1 I{xAl ∩∆ 6= ∅} (2.4)
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where xAl is the trajectory of the adjacent vehicle (A) that merges and ∆ is the set of
predictions for vehicle in lane (B). We wish to see if the adjacent vehicle enters the reachable
set for the vehicle in lane. The risk metric determines, for the given dataset, how often the
adjacent vehicle intrudes on the reachable set.


If the risk metric is 0, then the set ∆ is never intruded on by vehicle A and can be treated
as a hard safety bound for planning by vehicle A. In contrast, if the risk metric is 1, then
that implies the set ∆ is over-conservative, as the adjacent vehicle never avoided this set.


Set Optimization Problem


We would like to find the set that maximizes precision (i.e. informativeness) subject to
constraints on accuracy (i.e. conservativeness) and risk. We formalize this as the following
optimization problem:


maximize
Dv⊂R,Dω⊂R


P (∆(Dv, Dω))


subject to A(∆(Dv, Dω)) ≥ ā
R(∆(Dv, Dω)) ≤ r̄


(2.5)


where ∆(Dv, Dω) ⊂ Rn is the reachable set prediction generated using disturbance
bounds Dv and Dω. P (·), A(·), and R(·), are as defined in Section 2.3.


To make this problem well-posed, we optimize over one constraint at a time. We write
this nested problem as follows:


(D∗v, ω
∗
1)← argmax


Dv⊂R,ω1∈R
P (∆(Dv, Dω))


subject to A(∆(Dv, Dω)) ≥ ā
Dω = [ω1, ω


∗
2]


ω∗2 ← argmax
ω2∈R


λ(Dω)


subject to R(∆(D∗v, Dω)) ≤ r̄
Dω = [ω∗1, ω2]


(2.6)


where the steering disturbance is separated into its bounds Dω = [ω1, ω2], and size of the set
is given by the Lebesgue measure λ(·) and all other variables are as previously defined.


The separation of disturbance sets and constraints simplifies the optimization program
and allows for the competing objectives to be optimized iteratively, depending on what metric
is influenced (e.g. risk is mostly influenced by lateral motion in the direction of vehicle A).


This cost function is motivated by the fact that the reduction in the disturbance range
will lead to a smaller reachable set, thus improving precision, as was proven in [2]. At
the same time, the resulting reachable set will be large enough to capture the most likely
behaviors at an acceptable level of risk. While the proposed optimization procedure would
take too long for real-time implementation, solutions could be precomputed and stored in a
look-up table for real-time planning and control.
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2.4 Implementation


The following sections present the methods used for computing ∆(Dv, Dω) via Hamilton-
Jacobi reachability analysis and for calculating the optimal disturbance bounds.


Reachable Sets


To capture the likely driving behaviors, we use forward reachable sets to determine the likely
positions the vehicle may occupy in T=3 seconds. This time horizon was chosen based on
the following distance often used in practice [34].


The definition of forward reachable set used in this paper is the maximal forward reach-
able tube described in [29]. Specifically, we define the forward reachable set, ∆ as:


∆ , {x ∈ X | ∃d ∈ D,∃x0 ∈ X0,∃t ∈ [0, T ], s(t, 0, x0, d) = x} (2.7)


where X is the state space, D is the space of possible disturbance input trajectories, X0 is
the set of initial states, and s(t, 0, x0, d) is the state at time t ≥ 0 starting at initial state x0
subject to disturbance d that arises from the dynamics in Equation 2.1.


The forward reachable set is computed based on a Hamilton-Jacobi Partial Differential
Equation (HJ PDE) formulation using the Level Set Toolbox [30]. In particular, the forward
reachable set at time t is the zero sublevel set of J(x, t), the solution to the following PDE:


∂J
∂t


+ max
v,ω


∂J
∂x
· f(x, v, ω) = 0


subject to J(x, 0) = g(x)
v ∈ Dv, ω ∈ Dω


(2.8)


Here, g(x) is a implicit surface function for which the zero sublevel set is the initial condition
set, and f(x, v, ω) is the system evolution ODE in Equation 2.1.


The Level Set Toolbox, which uses numerical methods to approximate the solution to
Equation 2.8, requires an initial set and a grid resolution to be provided. For analysis,
the initial set was an uncertainty region about the state (0, 0, π


2
), i.e. x ∈ [−1.5, 1.5], y ∈


[−1.5, 1.5], θ ∈ [π
2
− 0.02, π


2
+ 0.02]. In addition, the grid for the solver was chosen to achieve


roughly 0.5 m resolution in x and y and 0.005 rad resolution in θ. The uncertainty in the
initial set captures possible localization error and is large enough relative to the resolution
for accurate numerical computation of the reachable set.


Sample reachable sets are shown in Figure 2.2 for varying disturbance bounds. The
computed 3D (i.e., x, y, θ) reachable sets are projected down to 2D (i.e., x, y) for analysis.


Dataset for Empirical Validation


In order to compute the metrics and validate our approach, we require a dataset of interac-
tions, XA and XB, as detailed in Section 2.3. To get these sample trajectories, we use the
NGSIM dataset, which has been used to do microscopic traffic modeling [16]. From the full
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(a) Reachable sets generated with Dv


fixed at D5
v and Dω varied from D1


ω to
D5
ω. As the turning rate increases, so


does lateral deviation.


(b) Reachable sets generated with Dw


fixed at D5
w and Dv varied from D1


v to
D5
v . As speed increases, both lateral


and longitudinal deviation increase.


Figure 2.2: Sample forward reachable sets, T = 3s, based on varying Dv and Dw bounds detailed
in Table 2.1.


dataset from the US Highway 101, we select lane change scenarios that match the scenario
presented in Figure 2.1, resulting in 65 samples.


Using this data, we can compute the precision, accuracy, and risk for various disturbance
bounds. The predetermined sets were chosen using disturbance bounds consistent with the
empirical distributions in the data. The resulting bounds that were selected are shown in
Table 2.1. These bounds reflect the fact that, in the dataset, there was more variation in
the longitudinal velocity than there was in turning rate.


Table 2.1: Disturbance bounds on Dv and Dω used to generate reachable sets.


v(m/s) ω(rad/s)
D1


v (32.5, 37.5) D1
ω (−0.01, 0.01)


D2
v (30.0, 40.0) D2


ω (−0.02, 0.02)
D3


v (25.0, 45.0) D3
ω (−0.04, 0.04)


D4
v (20.0, 50.0) D4


ω (−0.06, 0.06)
D5


v (15.0, 55.0) D5
ω (−0.08, 0.08)
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(a) Accuracy vs. Precision Trade-off Curves.
Each curve shows, for a fixed Dω-bound, how ac-
curacy and precision change with the Dv-bound.
As precision increases, accuracy is sacrificed.


(b) Accuracy vs. Risk Curves. For a fixed Dω-
bound, we observe how accuracy and intrusion
change with the Dv-bound. As the set size be-
comes larger, risk increases.


Figure 2.3: Set Evaluation Metric Curves.


2.5 Evaluation and Results


Given the reachable sets, we characterize conservativeness and informativeness via accuracy
and precision metrics. We also determine the level of set violation based on the risk metric.
Finally, we describe an example solution to the optimization problem detailed in Equation
2.6. These results are discussed in the following sections.


Empirical Metrics


The trade-off between accuracy and precision is demonstrated in Figure 2.3a. The key result
is that we can choose between high accuracy and high precision; achieving both objectives is
not feasible. Figure 2.3b shows that as the size of the reachable set increases and accuracy
goes up, so does the risk level with respect to that set. D4


ω and D5
ω have similar accuracy


vs. risk profiles with high risk, suggesting that D5
ω may be over-conservative.


It is important to note that these are a sample of reachable sets based on preselected
disturbance bounds. While this sample is adequate to illustrate the relationships between
accuracy and precision and between accuracy and risk, it does not demonstrate how to
actually construct a set that solves the optimization problem detailed in Equation 2.6. We
next discuss how to get a suitably precise set to meet accuracy and risk requirements.
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Prediction Set Optimization with Empirical Constraints


So far, we have constructed reachable sets based on disturbance bounds that offer varying
levels of accuracy and precision. We then saw that humans violate these safety sets in
practice. The question then becomes how to choose the right set given these relationships.
Given a risk profile of a given driver in vehicle A, we wish to pick the reachable set for vehicle
B that has high precision but also satisfies constraints on accuracy and risk.


To solve this problem, we look at the optimization framework outlined in Equation 2.6.
The key changes are that we start with a collection of precomputed reachable sets based on
bounds in Table 2.1, for simplicity. We use a greedy approach to solve the problem.


For analysis, we choose disturbances such thatDω = [ω1, ω2], where ωi ∈ Wi, i = 1, 2. The
sets are partitioned into positive and negative turning rates, i.e. W1 = {−0.01,−0.02,−0.04,−0.06,−0.08}
and W2 = {0.01, 0.02, 0.04, 0.06, 0.08}. For this choice of W1, it was noted that ω1 did not
impact risk, as the dataset involved lane changes from the right. Thus, Dv and ω1 were cho-
sen to optimize precision subject to the accuracy constraint in the first step. In the second
step, ω2 was maximized subject to a risk constraint. The final result is a precise set that is
sufficiently accurate but not too risky.


Figure 2.4 shows an example of how the set is morphed to achieve constraints on accuracy
and risk level.


Figure 2.4: Sample set optimization with r̄ = 0.25 and ā = 0.85. (1) The initial set is chosen at
random. The accuracy (0.846) is just under the constraint. (2) Dv and ω1 are optimized subject
to accuracy while holding ω2 constant. To achieve the accuracy constraint, the set is enlarged. (3)
Next, ω2 is optimized subject to risk holding the other two variables constant, shrinking the set. (4)
The final set is chosen by increasing the bound on Dv but shrinking ω1. No further improvement
in risk is possible in the next step, so the algorithm converges.
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2.6 Discussion and Future Work


We looked at the problem of constructing reachable sets for a given vehicle based on accuracy
and risk constraints. The disturbances used to generate these sets were informed by empirical
observations from a driving dataset. The trade-off between conservative, accurate sets and
informative, useful sets was also investigated. An advantage of the present approach is
interpretability: given bounded disturbance inputs, we have safety guarantees based on the
resulting reachable set. However, we have little idea of how likely the vehicle is to occupy a
given subset of the state space. Thus stochastic reachable sets would be an interesting point
of comparison for future work.


In addition, there is room to tie in the optimization problem more directly into the
reachable set computation. Rather than precomputing a collection of sets, one can use the
optimization framework to iteratively tune the disturbance parameters and recompute the
reachable set with these updated values. Additionally, one can look at examining the state
of the driver (e.g. drowsy, distracted) and tying in this information to tune levels of risk and
accuracy. Incorporating sensing into the set prediction procedure will enable more adaptable
human-in-the-loop systems.
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Chapter 3


Driver State Monitoring and Online
Learning for Personalized Driver
Assistance Systems


3.1 Introduction


In the previous chapter, we developed a prediction model for the human agent that traded
off some accuracy and accepted some risk in the hope of achieving higher precision and more
useful sets from an human-robot collaboration perspective. This approach has benefits: it
provides a certificate on safety subject to accuracy and risk levels, allowing us to design
human-robot control algorithms for a wide variety of human users and collaborators.


However, this method does not include personalization. The algorithms are not tuned
to the human actually using the autonomous system, which can result in suboptimal per-
formance for a specific human user. As an example, if a collision warning system provides
alerts too early or too late, then the driver may find the system either annoying or not trust-
worthy. Consequently, he or she may not use the system, eliminating any potential safety
benefits of the alert system. To address this limitation, we decided to explore the problem
of personalization for advanced driver assistance systems (ADAS). The motivation was to
use the state of the driver, as captured through a variety of physiological sensors, to devise
an adaptive control framework tailored for that individual.


There is current work in industry involving the application of AI and improved driver
monitoring for personalized ADAS. Honda’s Automated Network Assistant (HANA) is a
project to analyze and respond to the driver’s behavior. For example, HANA will adjust
control performance as a function of the driver’s level, acting more conservatively for begin-
ners and allowing more flexibility for advanced drivers. In addition, HANA will include an
“emotion engine” that measures parameters like the driver’s facial expressions, voice, and
heart rate to detect anxiety and stress and adapt its response accordingly [15]. Similarly,
the Jaguar Land Rover “Sixth Sense” project aims to monitor the driver’s heart rate, respi-
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ration rate, and brain activity to detect stress and alertness. It will include haptic feedback
through the steering wheel and/or pedals to help the driver refocus when the attention level
is low [33].


There has also been work on developing personalized driver assistance systems. [5] use
tunable control parameters to construct a lane change module that takes into account the
driver’s preference for longitudinal adjustment and gap acceptance. Similarly, [24] devel-
oped a human behavior prediction model to provide acceleration reference inputs to a MPC
controller, resulting in human-like velocity control.


Given this interest, as well as the potential improvements in trust and safety with person-
alized systems, developing effective and tailored assistance systems is an important problem
to address.


We focus on the problem of measuring the driver state under varying levels of cogni-
tive workload using affective (i.e. emotion) sensing, including facial analysis and electroen-
cephalography (EEG). This information is then used to help predict the brake reaction time
of the driver, a key input in designing forward collision warning systems. We use online
learning methods, as a way for the autonomous system to gradually learn from examples
and improve predictions over time.


This chapter is organized as follows. The following section provides a literature review
of online learning, affective sensing in driving, and forward collision warning alert systems.
Section 3.3 outlines the experimental design, detailing the driving scenarios and how cognitive
workload is varied. Section 3.4 discusses feature generation and the algorithms investigated
for reaction time regression and cognitive task classification. Section 3.5 details the results
for the regression and classification algorithms. Finally, Section 3.6 ends with a discussion
of limitations and opportunities for future work.


3.2 Literature Review


Motivation for Online Learning


To develop effective personalized models of human behavior, it helps to understand how
humans learn and approach tasks and mimic these learning mechanisms.


In the human cognition literature, there has been a distinction made between procedural
and episodic memory. The idea is that procedural memory refers to skills that are developed
slowly with practice. In contrast, episodic memory corresponds to memory of past instances
that is learned quickly. Reinforcement learning has been used to model procedural memory,
while instance-based learning approaches have been used to model episodic memory. There
may be a shift from episodic memory to procedural memory, as enough experience is gained
over time [6].


Gonzelez et. al have proposed that the instance-based learning approach is the key
learning mechanism in dynamic decision making. The idea is that when humans are faced
with interdependent, time-constrained, and real-time decisions that have consequences on
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the environment, they shift from a heuristic approach to past experience to make decisions.
This led to the development of a cognitive architecture with instance-based learning theory
used to explain human behavior[14].


With respect to human-robot interaction, instance-based learning approaches have been
successfully used to transfer task knowledge from a human agent to a robot companion [37].


In this work, we focus on the case where the human provides examples incrementally, and
the amount of examples collected is relatively low, making reinforcement learning approaches
less effective. Thus, the online, instance-based learning approach is used to model human
behavior.


Affective Sensing


A key part of human cognition is their affective (i.e. emotional) state. [26] argued that the
affective state can impact driving performance and developed a system to identify the driver’s
affective state using sensing like galvanic skin response, heart rate, and skin temperature.


While there is a large body of work on trying to predict the emotion from a variety of
physiological sensors, we focus our attention on electroencephalography (EEG) and thermal
facial analysis in this work. There are several related papers on sensing with EEG and
thermal analysis. We highlight a couple of representative papers here.


EEG has been used to monitor attention levels and drowsiness. Most studies apply the
Fast Fourier Transform to capture the frequency power-spectrum, which are then quantized
into bands (e.g. alpha, beta, etc.). These powers are then used as features for classification
or regression. [4] constructed a classifier to detect if the user was performing a psychomotor
vigilance task (i.e. attentive) or relaxed with eyes open (i.e. not attentive). In addition,
[25] looked at the problem of detecting driver drowsiness from EEG measurements, using
the driver lane deviation as a proxy for drowsiness level.


Thermal imaging is a promising non-contact method to characterize the behavior of the
autonomic nervous system (ANS). It has been used to measure perspiration, temperature
variation in the skin, blood flow, cardiac pulse, and respiration patterns [20]. Thermal
imaging can provide non-intrusive measurement of emotional behaviors that are difficult to
spoof [38]. This approach has been used in a variety of applications, ranging from remote
health monitoring to detect heart rate irregularities and sleep apnea [38] to stress detection
[40].


Forward Collision Warning Alert Systems


The application domain we are interested in personalizing is forward collision warning (FCW)
alert systems. The timing of the alert is critical to the driver’s acceptance of the FCW alert
system, so tuning the timing for a specific driver may help boost acceptance and usefulness
of the system.
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Standard FCW approaches use either the time-to-collision (TTC) or a distance threshold
to determine when an alert should be given. [8] provides an example of a vision-based FCW
system using a fixed TTC threshold of 2 seconds.


In contrast to the standard FCW approach, [21] suggests that an adaptive FCW system
may be preferable. With the standard approach, the alert is not tuned to a specific driver. If
the alert is mistimed, the driver may lose confidence in the system. Consequently, the driver
may not stop as quickly as expected or may turn off the alert for being too irritating. So
any benefits of the FCW system would then be reduced. To solve this problem, the adaptive
FCW approach uses the driver reaction time to tune the distance threshold used in the Stop
Distance Algorithm (SDA) for collision warnings. A limitation of the adaptive FCW system
used is the assumption that the reaction time is fixed for a given driver.


Our goal is to extend the adaptive FCW method by developing an online, adaptive FCW
system that takes into account the driver affective state and improves over time with more
data.







CHAPTER 3. DRIVER STATE MONITORING AND ONLINE LEARNING FOR
PERSONALIZED DRIVER ASSISTANCE SYSTEMS 17


3.3 Experimental Design


This section provides an overview of the experiments run to assess the impact of cognitive
workload on driver reaction time. Subjects were asked to drive in a simple braking scenario,
where secondary cognitive tasks were added to increase workload. The goal of these exper-
iments was to vary the workload level, measure the impact on the state of the driver with
affective sensing, and use these measurements to help predict the driver’s reaction time.


Driving Scenarios


The braking scenarios were developed using PreScan simulation software 1, which enables
development and testing of driver assistance systems. A Force Dynamics 401cr driving
simulator was used to simulate forces experienced due to lateral (i.e. steering) or longitudinal
(i.e. braking) acceleration 2.


The driving environment consisted of two vehicles, a lead and ego vehicle. The lead
vehicle’s behavior was programmed, as detailed in Section 3.3. The ego vehicle was driven
by the subject. An aerial view of the environment, along with the driver view, is provided
in Figure 3.1.


Procedure


Six subjects were recruited for the driving study, including three males and three females.
The age range varied from 23 to 36, and driving experience varied from less than 1 year to
over 10 years.


1https://tass.plm.automation.siemens.com/prescan
2https://www.force-dynamics.com/401


(a) Aerial View of Driving Environment. (b) Driver view of Driving Environment.


Figure 3.1: Driving Environment developed in PreScan. The subject drives the ego vehicle and
follows a programmed lead vehicle. The driver’s view also includes a speedometer and a task
indicator to indicate the secondary cognitive task being evaluated.
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Each subject was instructed to fill out surveys that assessed their driving experience.
Then, a practice experiment trial was run to familiarize the subject with the driving simulator
and the cognitive tasks. The subjects were given the following instructions:


• Try to maintain a constant speed (55 mph) if possible and stay in your lane with
driving safely being your priority.


• At the start of each scenario, please release the steering wheel and place your foot over
the accelerator.


• You may be given a secondary task to complete while driving. Please prioritize the
driving task, but try to finish the secondary task as efficiently as you safely can.


• We’ll be testing a series of different scenarios, which will occur in quick succession,
meaning that after you have driven for about 25 seconds, a new scenario will automat-
ically start under new conditions.


Ten trials, as detailed in Section 3.3, were conducted, with a short break (5-10 min) after
every few trials. Each trial took roughly 8 minutes to complete.


At the end of the experiment, subjects filled out a post-experiment survey and the NASA
TLX survey [17] to provide a self-reported measure of workload for the secondary cognitive
tasks.


Factors


Each trial consisted of four secondary tasks and four lead vehicle velocities, resulting in
sixteen scenarios per trial. Ten trials were conducted for each subject. The two factors
investigated are explained further below.


Cognitive Workload Secondary Task


The primary factor varied was the cognitive workload secondary task. The focus on driver
cognitive workload stems from the fact that the effect of cognitive workload on driver per-
formance has been well-studied. The workload has been shown to impact both physiolog-
ical measurements (e.g. heart rate, skin conductance, respiration rate) and driving perfor-
mance [28].


The four secondary tasks given were:


1. No task


2. 0-back number recall task: subject simply repeats numbers as they are presented


3. 2-back number recall task: subject must say number two prior in the sequence as each
new number is presented
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4. Stroop visual task: subject must ignore word text and simply list the colors of each
word in a table.


The n-back number tasks involve listening to a sequence of numbers played over a speaker,
and then repeating the number n prior in the sequence. The n-back test was chosen due to
its use in prior simulation and driving studies to adjust driver workload [28]. The N-backer
implementation developed by Monk et al. was used to generate the number sequences and
play the audio [32]. The same sequences were used for each subject, and each number was
presented to the subject after a 2-second pause.


The Stroop task involves response inhibition and has been used for stress induction [41].
A set of color words (e.g. red, green , cyan, etc.) are presented in a window, but the color
and text are incongruent. The task is to ignore the text of the given words and only say
the colors of the words [42]. The Stroop task was conducted using a Matlab implementation
developed by George Papazafeiropoulos 3. The window was located on the same monitor as
the driving visualization, so the subject could switch attention between the words and the
driving scenario. An example is shown in Figure 3.2.


Figure 3.2: Stroop Effect Example. Note the incongruence between the color and text of the
words.


Lead Vehicle Braking Profile


In addition to the cognitive task given, the lead vehicle behavior was varied and presented
in random order to avoid the subject anticipating the braking behavior. The following
parameters were changed, resulting in 4 braking profiles:


• Brake Application Time: The lead vehicle started braking at t = 10 seconds or 15
seconds, in each 25-second driving scenario.


3http://www.mathworks.com/matlabcentral/fileexchange/46596-stroop-test
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(a) Lead Vehicle Velocity. (b) Lead Vehicle Acceleration.


Figure 3.3: Lead Vehicle Velocity and Acceleration for Braking Profiles Tested. The brake start
time and max deceleration rates are indicated for each profile.


• Brake Max Deceleration: The lead vehicle used a smooth deceleration profile in
PreScan to slow from 25 m/s to 10 m/s. The max deceleration allowed was either
0.75g or 1.5g.


Figure 3.3 shows the velocity and acceleration of the lead vehicle for the different braking
profiles tested.


Measurements


Affective State


To characterize the affective state, EEG measurements and facial expression analysis were
studied.


The EEG measurements were collected using a Muse 2014 EEG headband. This head-
band includes two forehead sensors (FP1 and FP2), two ear sensors (T9 and T10), and
three reference sensors. Using the research tools developed by Muse 4, the EEG data was
transmitted over Bluetooth to a remote laptop.


A MS Kinect v2 and FLIR A665sc camera were used to capture variations in facial
expression and temperature. The Kinect’s depth and infrared streams were synchronized
and calibrated with the thermal stream from the FLIR camera. Details on how these images
were processed to capture thermal variations will be discussed in Section 3.4.


Further details on sensor setup (including camera calibration) can be found at http:


//people.eecs.berkeley.edu/~govvijay/ms_supplement.html.


4http://developer.choosemuse.com/research-tools



http://people.eecs.berkeley.edu/~govvijay/ms_supplement.html

http://people.eecs.berkeley.edu/~govvijay/ms_supplement.html
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Perceived Workload


The NASA Task Load Index (TLX) survey was used to gauge how difficult subjects found
each task. Figure 3.4 shows that subjects found the 2-back task to be the most challenging.
On the other hand, the workload under 0-back was similar to having no secondary task.


Figure 3.4: Average NASA TLX Workload Scores. Subjects found the workload under no task
and 0-back conditions to be low, compared to the Stroop and 2-back tests. The 2-back test was
considered the most challenging task to complete.


Response


The response variable in this study was the brake reaction time of the subject, TRT :


TRT = tbrake − t∗ (3.1)


where t∗ is when the lead car starts to decelerate (10s or 15s) and where tbrake is the first
time the brake pedal is applied by the subject following t∗.


The reaction time, as well as relative kinematics, was determined using state information
of the lead and ego vehicles collected using the PreScan software running the driving scenario
simulations.
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3.4 Methodology


In this section, we provide details on how features are generated from the affective sensing
data and the relative kinematics between the lead and ego vehicles. We then give an overview
of the algorithms investigated to do classification of the cognitive state and regression onto
reaction time using these features.


Feature Generation


There were three categories of features generated from the driving data and the affective
sensing data: kinematic data, EEG data, and thermal facial data.


The relative kinematics between the lead and ego vehicle were determined using data
collected with the PreScan software. The relative distance drel(t


∗), velocity vrel(t
∗), and


acceleration arel(t
∗) at the lead vehicle’s brake start time t∗ were used as kinematic features,


xkin.
The second category of features, xEEG, came from the EEG data collected by the Muse.


The mean and standard deviation by channel for each of the band power ranges in the list
below was determined, using the 5-second window preceding the lead vehicle’s brake start
time, t∗. These statistics were computed for both absolute intensity levels (Bels) and relative
levels (normalized by the total signal power).5 In addition, the Singular Spectrum Analysis
(SSA) algorithm was applied to do a time-embedding of the 5-second time-series of relative
band power data (averaged over the four channels to produce one time-series) preceding
t∗. Principal Component Analysis (PCA) was then applied to reduce the SSA features to a
2-dimensional representation, using the code and approach developed by Ben Fulcher [12].


• delta (1-4 Hz)


• theta (4-8 Hz)


• alpha (7.5-13 Hz)


• beta (13-30 Hz)


• gamma (30-40 Hz)


The third category of features, xthermal, came from thermal facial analysis. Four regions
of interest (ROIs) was selected based on prior thermal face imaging studies [41, 35]. These
ROIs include the forehead, left eye, right eye, and nose. The Dlib face detector [23] was
used to identify 68 facial points in the IR Kinect image. The IR points were projected to
the thermal domain, using a pinhole camera model and camera calibration parameters found
prior to experiments. Finally, the ROIs were identified in the thermal image. For each ROI,
the mean of the top 10% of temperatures was recorded, to avoid capturing cooler elements
like hair or the EEG headband. Figure 3.5 shows an example of this process.


5http://developer.choosemuse.com/research-tools/available-data
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(a) Face (green) and ROI detection (blue) in IR
image using Dlib.


(b) ROI detection in thermal image. Blue points
represent the corners of each ROI. The red pix-
els indicate the location of top 10% temperatures
within each ROI. The mean of these red points
were used as thermal features.


Figure 3.5: Detection of Facial ROIs in IR domain and Projection to Thermal domain.


Algorithm Details


There were three general problems we sought to solve with the aforementioned features (xkin,
xEEG, and xthermal), as well as the cognitive task label (xcond ∈ {1, 2, 3, 4}, corresponding
to No task, 0-back, 2-back, and Stroop task, respectively).


The first was to predict the reaction time (ŷRT) using:


1. Kinematics Alone: x = xkin


2. Kinematics and Cognitive Task Label: x = [xkin,xcond]


3. Kinematics and Affective Sensing: x = [xkin,xEEG,xthermal]


The second was to see if the cognitive task label could be predicted with the affective
sensing data, i.e. use xthermal and xEEG to predict xcond.


The last problem was identical to the first problem, except that the predictions would be
done using an online learning approach. Rather than simply getting the full training dataset
of examples up front, the algorithm would get instances incrementally and update the model
fit over time.


To solve the first and second tasks, we used K Nearest Neighbors and Random Forest
algorithms. This was motivated by the observation of clustering and noise in the data that
would be challenging to fit with parametric learning models. An example of the noisy data
for one of the subjects is given in Figure 3.6.


To solve the third task, the K Nearest Neighbors algorithm was used but training data
was provided incrementally. This algorithm is an online, instance-based learning approach.
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For regression tasks, the mean squared error loss function was used to capture model fit.
For the classification tasks, the label accuracy was computed. Scikit-Learn 6 was used to
implement all the learning algorithms for the three problems of interest.


Figure 3.6: Noisy reaction time data for one of the subjects. Note the clustering and high variation
in reaction time, even for a fixed relative velocity at t∗.


6http://scikit-learn.org/
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3.5 Results


In this section, we show the results of tackling the three problems mentioned in Section 3.4:
offline regression of reaction time, offline classification of cognitive task, and online regression
of reaction time.


Offline Regression


Figure 3.7 shows the reaction time prediction error using kNN and RF algorithms. The
reaction time prediction errors are generated using 4-fold cross validation and taking the
average result. For the kNN algorithm, the number of neighbors (k) was varied from 1 to 10,
and the best result was kept. Similarly, for the RF algorithm, the max tree depth for a set
of 20 trees was varied from 1 to 10, and the best result was kept. The RF algorithm slightly
outperforms the kNN algorithm - reasonable given that RF uses an ensemble approach to
lower variance. The key takeaway is that the affective state data does help to reduce model
error for some of the subjects, although in general the affective state fit is slightly worse.


(a) Regression Results using kNN algorithm. (b) Regression Results using RF algorithm.


Figure 3.7: Offline Regression Results for kNN and RF algorithms. For each subject, the model
error is computed using kinematic features alone (black), kinematic features with the cognitive task
label (blue), and kinematic features with affective data (red).


Offline Classification


Figure 3.8 shows the results of trying to classify the cognitive task label using the affective
state data only. As with the offline regression, the errors represent the best performance
under 4-fold cross validation sweeping k from 1 to 10 and sweeping the depth of each tree in
the forest from 1 to 10. The RF algorithm outperforms the kNN algorithm here, although
classification accuracy is still quite low.
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Figure 3.8: Classification Results using kNN and RF algorithms. The models were trained to
predict the cognitive task label using affective state data only.


Online Regression


In practice, the data will be collected incrementally, so the online regression algorithm was
used to mimic that learning process. Figure 3.9 shows the learning curves on the data set as
examples are presented incrementally to the kNN algorithm.


In the offline regression case, the assumption was the 75% of the data was used to generate
the model (train set), and the model error was computed on the remaining 25% of the data
(test set). This was done 4 times (4-fold cross validation), and the average was used to
provide a model error estimate.


Here, we look at the regression problem from a different angle. Rather than splitting the
data into train and test sets and fitting the data on the train set, as was done in the offline
case, we assume there is only a train set. Examples from the train set are given sequentially
to the online regression algorithm, which adapts its fit as each new data point is given. At
each new example added, we compute the error on the full training set, given the subset of
examples in the training set presented up to that point. Hence, when all the examples in
the training set are given, the error goes to zero. Thus the focus here is not on the model
error itself, but rather the learning curves showing how fast the online algorithm is learning
to fit the training set.


Interestingly, for some subjects, the learning curve is quicker (i.e. lower error at a given
number of instances) using the affective state information. This shows that there may be
potential of using the affective state information to speed up online learning of the human
model.


3.6 Discussion


In this chapter, we looked at the problem of combining online learning methods with af-
fective sensing to develop personalized driver assistance systems. We focused on varying
the cognitive workload through a set of secondary tasks and used EEG and thermal facial
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(a) Subject 1. (b) Subject 2. (c) Subject 3.


(d) Subject 4. (e) Subject 5. (f) Subject 6.


Figure 3.9: Online Regression Results for kNN algorithm with incremental addition of instances.
Each plot corresponds to a different subject and shows the learning curve, i.e. how error on
predicting the train set reaction times decreases as more examples from that set are added to the
algorithm. For each subject, the learning curve is computed using kinematic features alone (black),
kinematic features with the cognitive task label (blue), and kinematic features with affective data
(red).


analysis to capture the driver’s affective state. We then developed algorithms to predict the
driver’s brake reaction time under the different levels of cognitive workload, including an
online version that improves as more instances or examples are given over time.


The results indicate the following:


1. Affective state information can help in some cases to reduce reaction time prediction
error.


2. Trying to classify the cognitive task label is challenging but may not be needed to
predict reaction time.


3. Affective state information can potentially speed up the reaction time prediction learn-
ing curve.


There are some limitations of the current approach. If these are addressed, the affective
state information may prove even more useful:


1. Curse of Dimensionality: As more features are added, the density of examples
reduces in the higher dimension space. This may be one of the key factors for why the
high-dimensional affective state information is tough to use with a naive kNN approach
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(i.e. using a Euclidean distance metric with uniform weights). Changing the distance
metric to weight the most useful features would help to improve finding more similar
neighbors, as in [36].


2. Use of Cleaned EEG Signal: The SSA algorithm was applied to the band power
EEG data, but perhaps the raw EEG signal can be used after artifact removal to see
if more informative EEG features can be generated.


3. Addition of a Heuristic: The kNN algorithm used didn’t include a heuristic func-
tion: the approach was simply to wait until 25 examples were collected, then try to
predict subsequent examples. Choosing an appropriate heuristic reaction time estimate
might help with reducing error at the start of the learning process.


In addition, the low accuracy of the cognitive task label prediction may be due to lim-
itations in the experimental design. Perhaps the driving scenario can be altered, so that
examples are only collected in the middle of a long driving session under a specified cogni-
tive task. With the current approach, a set of shorter, repeated driving scenarios were run,
but the resets in between each scenario might have given a cognitive break to each subject
and reduced the full impact of the cognitive secondary tasks.


Despite this fact, the affective state information still proved to be useful for predicting
reaction time: suggesting that mapping the sensor values to a discrete label and then pre-
dicting reaction time may not be the right approach. Instead, the sensor data can be used
directly to predict reaction time and avoid loss of information.


In terms of future work, there are several avenues that can be explored. The current
approach involved post-processing the data, but a fully online experiment could be run
where examples are stored as they are generated and the kNN algorithm updates in real-
time. In addition, a driver study can be run to evaluate the impact of the reaction time
estimate on the alert timing and whether it actually improves trust and acceptance of the
alert system. A key aspect of that system would be to allow for both positive and negative
feedback (i.e. the user can indicate whether the intervention was correct or not) and tune the
stored examples accordingly for better behavior in subsequent interventions. Finally, this
study involved measuring the affective state ahead of the intervention to predict the correct
response. However, measuring the impact on affective state after the intervention would
be an interesting way to characterize whether the intervention was good or bad, without
requiring direct human feedback.
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