Towards Automated Online Schema Evolution

Yu Zhu

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-218
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-218.html

December 14, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards Automated Online Schema Evolution

by

Yu Zhu

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Eric Brewer, Chair

Professor Joseph Hellestein
Professor Joshua Blumenstock

Fall 2017

Towards Automated Online Schema Evolution

Copyright 2017
by
Yu Zhu

Abstract

Towards Automated Online Schema Evolution
by
Yu Zhu
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Eric Brewer, Chair

Schema evolution studies the issue of moving a database from one version of
its schema to a new updated schema. Traditionally, database administrators per-
form these tasks offline and they involve large amounts of manual labor and custom
scripting. In today’s world where databases power many 24 /7 online services, schema
evolution can no longer be an offline process. Furthermore, application requirements
change much more rapidly today, causing more frequent changes in database schemas.
Because of these trends, it is critical for database administrators to have automated
tools to evolve database schemas in an online fashion that does not disrupt the
foreground services.

This thesis attempts to explore ways an administrator might automate this pro-
cess and provide some insight into building tools to help make this process easier,
faster and more reliable. The thesis makes the following contributions. First, it pro-
vides a complete system implementation, Ratchet, that a database administrator can
use to perform efficient schema evolution on supported platforms (PostgreSQL). The
system uses various techniques such as improved fine-grained locking and a delayed-
copy strategy to improve its schema evolution performance. Second, it analyzes the
characteristics of schema evolution for a five-year period for Wikimedia, one of the
most widely used websites. Third, using Ratchet, the thesis recreates five years of
schema evolution automatically. Finally, the thesis provides a mechanism of rollback
in schema evolution.

To my family

i

Contents

Contents ii
[List of Figures| iv
[List_of Tables v
1__Introduction| 1
(1.1 Challenges in Schema Update] 2
(.2 Previous work and Contributionl 7
M3 Outlind. 8
2 Background| 9
[2.1 Materialized views and their roles in schema upgrades|. 9
[2.2 Database Triggers|. o 10
[2.3 PostgreSQL’s Materialized View Retresh| 11
[2.4 Database Locking| 0. 11
[2.5 Locking mechanism in PostgreSQL|{ 12
[3__Architecturel 14
[3.1 Design Goals and Requirements| 14
[3.2 Schema Modification Operator|. 15
(3.3 Overall Architecturel oo 16
3.4 Proxyl e 18
[3.5 Client Access Libraryl. 20
3.6 Server Side Modificationl L. 20
[4 Life of a Schema Evolution Operation| 23
4.1 SMO Class Structurel 23
4.2 Lite of a Simple SMO|. 0. 25

(4.3 Life of a Complex SMO| 26

[b__FEvaluationl

[7__Conclusion|
Appendices|

[A Grammar Rules for Parsing Schema Modification Statement|

(B SMOs for Major Schema Change in Wikimedia|

(Bibliography|

il

37
37
41
49

57

61

62

64

67

v

List of Figures

2.1 Row Locking Modes| 13
[3.1 System Architecture| Lo 18
(4.1 Class Diagram| 24
4.2 Timeline for Complex SMOs|. 26
[>.1 Histogram: Number of SMOs in the Schema Change| 39
6.2 Database Restructurel.o 45
(5.3 Visual Diff Between Initialization Scripts| 46
[b.4 Experiment Setup|. 49
[b.0 Read Mostly Query QPS under Schema Evolution|. 51
[b.6 Read Write Query QPS under Schema Evolution| 52
5.7 Read Mostly Query QPS with Direct Trigger while Merging] 53
[b.8 Read Mostly Query QPS with Delayed Trigger while Mergingl 54
5.9 Read Write Query QPS with Direct Trigger under Schema Evolution| . . 55

[5.10 Read Write Query QPS with Delayed Trigger Update under Schema Evo-

List of Tables

(1.1 Employee Table[. 3
(1.2 Department Table, 3
(1.3 Employee Table| oo oo 3
[3.1 Schema Modification Operator Description| 17
[3.2 Schema Modification Operator Strategy| 19
4.1 Propagation Rules for Forward Triggers| 29
4.2 Propagation Rules for Reverse Iriggers| 30
(4.3 History Log Schemal, 31
4.4 Reversibility of Complex SMOs| 33

vi

Acknowledgments

I would like to thank my advisor Eric Brewer for all his help throughout my graduate
career.

Chapter 1

Introduction

A database schema describes a structure of the database in a formal language. Like
the real world it models, database schema can change over time as the needs of appli-
cations change. The database community has been interested in the problem of how
to change schemas in a structured, scalable and safe manner for many years. They
coined the term schema evolution to describe this process of constantly changing
database schemas.

Schema evolution is a challenging problem for several reasons. First, schema
changes vary greatly in complexity, so consequently the solution must be general
enough to handle these different cases. In addition, large amounts of data often need
to move from table to table as a result of a schema change, which causes stress on
the system and can be error prone. Moreover, applications need to understand this
schema change and they often need to be updated to adapt to the new schema.

In the past, online services often have maintenance windows, where they shut
down to perform maintenance tasks such as schema changes. The benefit of this kind
of approach is its safety and reliability, since no data change other than those related
to the schema change can occur while the service is offline. When the database
change is complete, the service comes back online with both the client and the
database updated, so any new application associated with the new schema is in
place. However, the obvious drawback of taking down a service in today’s online
world is simply unacceptable to many organizations and their customers. These
services need to not only be online, but maintain a reasonable level of service quality
while the schema evolution is taking place.

As online services become more prevalent, schema changes are also more frequent
and more complex. For example, the software powering Wikipedia MediaWiki has
undergone several hundreds of schema changes since its inception[17]. TripAdvisor
regularly has half a dozen schema changes per week|27]. These frequent changes

CHAPTER 1. INTRODUCTION 2

demand the schema upgrade process to be efficient and automated and in case of
failure, easy to recover. We need effective tool support for database administrators
to maintain the availability of the online services.

For this purpose, we created a tool designed to help with the process of online
schema evolution, called Ratchet. In this work, we specifically focus on the problem of
online schema evolution, where the administrators upgrade the schema while keeping
both the database and the applications running. We will be using PostgreSQL as
our database platform. While the majority of our tool is deployed outside of the
database, we will be making a few important modifications to PostgreSQL. We have
a number of objectives of the project:

e The database must be online and be sufficiently available to ensure a certain
level of service quality for the applications using the database.

e The database must provide tools for the administrator to manage the upgrade
process. In the unlikely event of failure, the administrator should be able to
revert back to previous versions of the database schema:

e The upgrade process must be general enough to handle different schema up-
grade scenarios from simple to complex multi-table joins and merges.

e The upgrade process for the application and the database need to be decou-
pled, as different organizations are likely managing the database and the ap-
plications.

With these four goals in mind, we will take a deeper look at the problem of
schema evolution. We will examine the kind of work involved in upgrading a schema
for a database.

1.1 Challenges in Schema Update

In this section, we look at a few reasons why schema update itself is challenging. One
of the top reasons is the complexity of schema change. Administrators often change
schemas for different reasons, and they change schema in different ways. There are
broadly two reasons an administrator may want to change the database schema.

1. The schema changes because the underlying system it tries to model is con-
stantly changing. For example, when a new feature is added to an application,
the database that supports the application often needs a new column or even
a new table to model the additional objects and their attributes.

CHAPTER 1. INTRODUCTION 3

Employee ID Salary Dept id Dept id Dept Name

1 1000 1 1 Sales

2 2000 1 2 Engineering

3 1000 2 3 Accounting
Table 1.1: Employee Table Table 1.2: Department Table

Employee ID Salary Dept id Dept Name

1 1000 1 Sales
2 2000 1 Sales
3 1000 2 Engineering

Table 1.3: Employee Table

2. Schema changes for performance. In this case, there is often no visible feature
change. Performance is the primary reason for the schema change. For ex-
ample, through profiling, we might have discovered that two tables are often
joined together in most queries the system answers, and they are rarely up-
dated independently. It would improve the performance of the queries if these
two tables are represented as one table.

Not only do schema changes vary in the purpose they serve, they also differ in the
complexity. Our solution needs to be general enough to address all kinds of complex
schema changes. Next we will go through a number of examples of schema change,
showing the work necessary to complete these schema changes, and why they might
be challenging to complete online.

Let’s take the following simple tables as an example. Table and Table are
two tables describing two entities Employee and Department, and the relationship
between them.

In the example case, the database administrator would like to add a column to the
end of a table. The most obvious approach is to use ALTER TABLE SQL command to
achieve this. For example, the following SQL command would add a column address
to a table named Employee.

ALTER TABLE Employee ADD COLUMN address character varying(50);

Since this query only changes the metadata of the table, but does not touch the
data in the table, changes can be done very quickly and efficiently. In fact, efficient

CHAPTER 1. INTRODUCTION 4

support for this kind of operation is included in recent versions of DB2, and do not
require locking the table. However, being able to update the table while altering a
table structure in general remains an unsolved problem.

If the change causes data change in addition to metadata change, the size of the
table will usually determine how long the change takes. Larger tables will cause
more conflicts between updating each row as part of schema evolution and serving
incoming requests from other sources such as web servers.

ALTER TABLE Employee ADD COLUMN address character varying(50)
DEFAULT ‘Berkeley’;

For example, in the above case, if we require the new field to be initialized to a
default value, most databases would need to go through the table to change each row
to reflect this requirement. The above SQL command executes this change. This
operation can incur a large cost in read and write performance when the table is very
large. Moreover, the modifications made to the tables can potentially acquire locks
to resources and prevent other requests’ timely access to the database. This causes
performance degradation and unpredictable performance.

What we described above can be classified as an in-place update strategy, and
it is most commonly used strategy today. In this strategy, the background task
modifies the tables directly to achieve the desired resulting table structure. This
strategy has the benefit of being efficient and is directly supported by simple SQL
DML statements. However, the drawback is also significant. In the general case, it
can cause interference with the foreground process that is also accessing the table.
The two main reasons of intereference are locking and IO contention. Modification
of each row in the table requires an exclusive lock on the table, which prevents others
from using the table. Writing large amounts of data to the table also requires a lot
of 1O operation, which affects other concurrent 10 operations.

Alternatively, in certain complex cases, it might be preferable to choose a copy-
based strategy. In this case, the schema modification process does not change the
original table. It simply creates a new copy with the desired table structure, and
starts to copy data over to the new table. This approach also introduces background
copying tasks. However, since it does not modify the original table, it does not need
to exclusively lock any resources such as rows or indexes on that table. Instead
of random access and writes on the original table, it writes out sequentially entire
new tables. The drawback of this approach is its complexity. It often takes several
steps and many SQL commands to achieve desired effect. Since it works above the
database level, other applications are protected from seeing the intermediate results

CHAPTER 1. INTRODUCTION)

of this process. However, changes to the original table need to be propagated to the
copy, otherwise inconsistencies will occur.

Next, we look at a case where the change in schema is necessary for performance
reasons. In this case, the administrator may notice that the salary of an employee
always changes with the department, and they are always accessed together anyways.
She/he may choose to denormalize the tables, and convert the two tables into a single
one, as shown in Table This change is more complicated than adding a column,
and can not be performed using a single command such as ALTER. The administrator
normally needs to create the new table, and start issuing SQL commands to migrate
data from the old table into the new tables. However, while the data migration is
happening, the original table could be changed if it is not locked as we did in ALTER
TABLE. So, the administrators will need to continue to monitor what has changed in
the original tables and propagate them to the new table. Moreover, any application
relying on these tables needs to be updated to query the correct table, depending
on the stages of the evolution process. When the evolution process started, the
application was reading the Employee and Department Table. By the end of the
evolution process, it should be reading and writing the combined Employee Table.
These steps can quickly grow in complexity and without the proper support, this
process can be error prone.

In addition, because different groups are typically responsible for management of
databases and applications, they may not be updated at the same time. Hence the
database needs to support potentially an older version of the application operating
on its data. This separation of update processes creates additional difficulties in
evolving database schema online effectively.

Challenges in Online Schema Evolution

There are several reasons why the background workload such as schema upgrade op-
eration may interfere with foreground operation such as query answering. First, the
database has internal locking mechanisms to ensure correct transaction semantics,
and two different workloads could be accessing the same resource protected by the
same lock, and therefore the schema upgrade operation could completely stop the
foreground query answering. Second, database operations ultimately require hard-
ware resources such as CPU and disk access. Workloads must share these resources.
Contention on these resources is another reason why background operation may slow
down query answering. The following sections dive into these two topics and explore
why existing solutions may run into problems.

CHAPTER 1. INTRODUCTION 6

Locking causes Blocking

Unlike contention on disk and CPU resources, which merely slows down a particu-
lar query, locking can completely block a query from executing. PostgreSQL, like
many other databases, supports transactions and ACID semantics [6]. Internally,
these features are implemented using a hierarchy of locks. In fact, most PostgreSQL
commands will automatically acquire appropriate locks in order to ensure data con-
sistency. In PostgreSQL, there are two main levels of locking, table-level locking
and row-level locking. These locks, when acquired, will prevent other queries or
commands from making progress.

Schema evolution steps move a large amount of data around, and therefore can
cause locking conflicts with the foreground queries and stall them. In Section [2.5] we
will go into more detail on locking in PostgreSQL and how we avoid blocking caused
by locks.

Contention in Hardware Resources

Besides the aforementioned locking, contention in hardware resources can also lead
to performance degradation for the live traffic we are serving while we carry out back-
ground maintenance tasks such as schema evolution. Previous work has proposed
many techniques to address this issue. Some of these techniques are client-based,
some are server-based.

Client-based techniques include dividing up the workload and rate-limiting. If
we can divide up one large background task into many small pieces, we can limit
the rate we issue these requests to the database server. This allows database enough
resources to process the more important foreground tasks in a timely manner. In
schema upgrade processing, dividing up the work is not always easy, often it comes
at the cost of increased complexity. Previous work has used this technique to create
copies of a table (as mentioned in the previous section). If the schema upgrade
operation involves multiple tables, this technique is less practical simply because
of complexity. The advantage of these client-based approaches are the servers can
remain unmodified.

Server-based techniques mainly center around priority-based scheduling. Because
in our scenario, we have a clear preference for performing the foreground queries well,
and we can tolerate slowdowns in the background schema changes, we can use this
technique quite effectively. Unfortunately, PostgreSQL only supports CPU-based
priority through the prioritize extension module. In schema upgrade, we are more
likely bottlenecked by I/O performance. Ringer wrote a blog post that provides some
workarounds in using linux ionice facility to simulate priority [22]. McWherter et al.

CHAPTER 1. INTRODUCTION 7

provided a detailed analysis of different workloads [16] and how they implemented
lock-queue priority and CPU priority for PostgreSQL.

Our work does not focus on addressing hardware resource contentions. All of the
techniques mentioned above can be applied to our system, and further improve the
foreground query performance.

1.2 Previous work and Contribution

Before our attempt, there has been several efforts to address the issue of online
upgrades of schema by others, both in industry and in academia.

Oracle 10g [19] supports online schema evolution by using an edition-based schema
system. Each schema has a version number associated with it. Database clients can
specify which edition the current connection is using. Additionally, the database
provides a mechanism called cross-view triggers that can take changes in one version
of the schema and apply them to tables in another version of the schema. There
are several steps to a schema evolution process in this setting. First, the database
administrator creates a new schema version and design the desired schema with the
new version. In the meanwhile, the older version of the database continues to serve
live traffic. Using cross-version triggers, the database can propagate any changes to
the older version of the database to the newer version schema, and therefore keeping
the newer version of the database consistent.

Facebook has used a similar copy-based strategy and applied it to MySQL database.
They created a suite of php scripts and released it in a blog post[5]. It converts AL-
TER TABLE SQL commands into non-blocking operations by creating a copy of
the table being changed. It uses database triggers to copy over the changes to the
original table.

Compared to Oracle’s and Facebook’s solutions, our solution is different in the
following ways. First, our solution uses a logical operation unit SMO that is higher
level than ALTER TABLE commands. A single SMO often contains both how the
table is changed and the data movement associated with that change. Because of
this, SMOs serve as a convenient unit for rollback and commit operations. Second,
it utilizes some very well supported database facilities in views and materialized
views. This allows those DBMS that support incremental update to benefit even
more from these new features. It also allows us to easily port our solution to other
DBMS in the future because views are so widely supported. Third, it adds the ability
to convert from materialized views into tables. This allows post-upgrade views to
break away from the constraint of views and be truly independent from the tables
on which they are based. Fourth, it breaks large, difficult-to-reverse schema upgrade

CHAPTER 1. INTRODUCTION 8

operations into more manageable Schema Modification Operators. These operators
can always rollback, and in most cases the rollback operation keeps all the data
consistent as well. In the cases where we do not support rollback, we warn the
administrator before committing the changes. For a detailed discussion of rollback
and reversibility of SMOs, please see Section Fifth, it combines simple DDL-
based changes with more complex view-based changes and uses a common interface
in schema operator. Consequently, we can add additional implementation strategies
based on specific database support without changing the interface the administrator
or the application uses.

1.3 Outline

The rest of the dissertation is organized as follows. In Chapter 2, we will introduce
some database facilities such as views and materialized views that are fundamental to
our approach to schema evolution. In Chapter[3], we introduce the overall architecture
of Ratchet, explaining the major components of the system and how they interact
with each other. In Chapter [4, we follow how a single schema modification operator
travels through our system and how the database upgrades its schema in response to
a modification statement. In Chapter 5] we evaluate our system both qualitatively
and quantitatively. Qualitatively, we evaluate to see how it handles a diverse set
of commands and real-life upgrade scenarios. Quantitatively, we generate different
workloads to examine the quality of service of foreground queries in the presence of
schema upgrade operations. We continue to examine other related work in Chapter 6],
and we conclude in Chapter

Chapter 2

Background

This section introduces some background on the different aspects of database systems
we chose to build on when we implemented Ratchet. We will introduce them here,
with the reasons why we chose to use them.

2.1 Materialized views and their roles in schema
upgrades

The database “view”, as a concept, has been around for a very long time[6, [26]. In
Ingres, a view was defined as a virtual relation defined in terms of relations that
physically exist. As implemented today, it often represents an object in a database
that is defined by the result set of a stored query. Sometimes it is referred to as a
virtual table, because it does not contain data but rather relies on the database’s
query engine to supply it with data on demand. When the system tries to answer a
query involving one or more views, it first translates the query into a more complex
query using the definition of the view.

A “materialized view”, on the other hand, builds on this concept of view. Instead
of having the database engine repeatedly executing the query to generate data for
this virtual table, it stores the result of these queries, so they are pre-computed when
needed. This can lead to more efficient query execution and avoid repeated work in
the database.

However, because this materialization represents a different view of the data
from the original table and it contains cached results, it is possible these results are
outdated. For this reason, databases provide many different mechanisms to update
this cached data to reflect the latest changes. This is called “view maintenance”.

CHAPTER 2. BACKGROUND 10

The simplest and the safest way to refresh a materialized view is to re-execute the
stored query. This ensures that the resulting materialized view is consistent with the
latest version of the data in the original tables. This method can be quite expensive
in terms of computational cost though. Three factors ultimately determine how
expensive this process is, 1) refresh frequency, 2)the size of the tables referenced in
the query and 3) the complexity of the query. Refresh frequency is usually determined
by the application requirements and tolerance for stale information. If the application
can tolerate very old data being part of the query result, then refresh via re-execute
is perfectly fine. The size of the tables and the complexity of the query determines
the running time of the query.

Incremental maintenance of views has been studied extensively by the database
community[12, |14]. Instead of re-executing the stored query to obtain the latest
result for the materialized view, incremental maintenance seeks to algorithmically
derive the changes that need to be applied to the last version of the materialized
view, based on the changes applied to the tables referred in the query. This often
has the desired effect of lower refresh time and lower burden on the database server
that needs to maintain these materialized views. We do not go into details on the
algorithms of incremental maintenance. However, we show that the same algorithms
can be very useful in keeping the data in an updated schema consistent with data in
the older schema.

Now that we have introduce views and materialized views, let us take a look
how they relate to schema evolution. In schema evolution, there are two versions
of the schema, the initial version V1, and the post-upgrade version V2. They both
represent the same set of data. Each table in V2 can be expressed as the result of
a query referencing tables in V1. Because of this, we can conveniently use all the
facilities databases have implemented using views and any support for incremental
update if they exist. Conceptually, it also makes it easier to reason about these
schema upgrades, and should any error occur during the upgrade process, we simply
go back to a previous version.

2.2 Database Triggers

A database trigger is a user defined function that runs whenever a certain event or
trigger occurs. The most common types of event that can trigger such a function
to run include addition, modification or deletion from a certain table. For example,
when a new record is added to a table that has a trigger defined on the row addition
event, this particular function will be called to perform some maintenance function
for the record that was just inserted. Triggers are often used for audit and logging.

CHAPTER 2. BACKGROUND 11

PostgreSQL started supporting database triggers in 1997 and we use them ex-
tensively in our schema update process.

2.3 PostgreSQL’s Materialized View Refresh

In this section, we discuss how the DBMS we chose to implement our system handles
materialized views and how they are refreshed.

In PostgresSQL, materialized views are implemented very much like tables. This
gives us the additional ability to convert a materialized view that no longer needs
refreshing into an actual table object. Details of this can be found in Chapter [4]
When the user calls REFRESH MATERIALIZED VIEW command on a view object, it
builds an entire temporary table from the query result. This process is very expensive
and will take a long time if the resulting table is very large. In addition, this command
acquires an exclusive lock on the entire materialized view while it is refreshing it, so
it blocks any other queries that need access to the materialized view.

Recent versions of PostgreSQL have added an option to allow queries to read
from the old versions of the materialized view while it is being refreshed. This is
accomplished by creating a new copy of the table and atomically switching the two
versions when it is done. However, the method which it employs to refresh the
materialized view is still re-executing the query, not using any of the incremental
view maintenance techniques. We are not using this concurrent update option in
Ratchet, instead we use triggers to simulate incremental update behaviors for the
schema operations that we support. Details of this can be found in Chapter

2.4 Database Locking

ACID properties in database refer to a set of properties that a database transaction
must have to ensure the correctness of database in the event of failure and errors.
The acronym ACID stands for Atomicity, Consistency, Isolation and Durability. To
implement these properties for transactions, databases often employ different kinds of
locking mechanisms. Gray et al. described in his seminal paper|11] the importance of
database locking and how to efficiently implement locks so that they do not impede
concurrent processes’ progress. Omne of the paper’s central ideas is that different
access patterns in the database require locks of different granularity to be efficient.
Locking at record level allows concurrent transactions to proceed without interfering
with each other. However, the frequent locking/unlocking operation may become the

CHAPTER 2. BACKGROUND 12

main overhead if the transactions involve many records. Hence, taking a lock at the
table level might be more appropriate for those transactions.

Next section, we will discuss how locking mechanisms work in PostgreSQL, and
how these locking mechanisms are used by Ratchet to achieve good concurrency for
the schema evolution process.

2.5 Locking mechanism in PostgreSQL

The first mechanism we consider is table-level locking. There are eight locking modes
at the table level. The following summary are from the PostgreSQL manual and de-
tails which SQL command would acquire which lock level for each table it references.

ACCESS SHARE

The SELECT command acquires a lock of this mode on referenced tables. In
general, any query that only reads a table and does not modify it will acquire this
lock mode.

ROW SHARE

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a
lock of this mode on the target table(s) (in addition to ACCESS SHARE locks on
any other tables that are referenced but not selected FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the
target table (in addition to ACCESS SHARE locks on any other referenced tables).
In general, this lock mode will be acquired by any command that modifies data in a
table.

SHARE UPDATE EXCLUSIVE

Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX CON-
CURRENTLY, and some forms of ALTER TABLE.

SHARE

Acquired by CREATE INDEX (without CONCURRENTLY).

SHARE ROW EXCLUSIVE

This lock mode is not automatically acquired by any PostgreSQLQL command.

EXCLUSIVE

This lock mode is not automatically acquired on tables by any PostgreSQLQL
command.

ACCESS EXCLUSIVE

Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX,
CLUSTER, and VACUUM FULL commands. This is also the default lock mode for
LOCK TABLE statements that do not specify a mode explicitly.

CHAPTER 2. BACKGROUND 13

Current Lock Mode

Requested Lock Mode pccess ROW ROW SHARE UPDATE SHARE ROW ACCESS
SHARE SHARE EXCLUSIVE EXCLUSIVE SHARE £y cLUSIVE EXCLUSIVE ey cLusive

ACCESS SHARE X
ROW SHARE
ROW EXCLUSIVE X

SHARE UPDATE
EXCLUSIVE

SHARE

SHARE ROW EXCLUSIVE

EXCLUSIVE X
ACCESS EXCLUSIVE X X

X X X X

X X X X X

X X X X X X
X X X X X X X
X X X X X X X

Figure 2.1: Row Locking Modes

Table shows how each of these locking mode may conflict with each other.
Notice a number of commands often used to modify schema such as ALTER TABLE,
DROP TABLE acquire the most strict of the locks ACCESS EXCLUSIVE. This means
while these commands are executing, none of the other commands referencing the
same table can make any progress. This is also why simply using DDL commands
to change database schema would likely result in unacceptable performance for any
foreground queries, because any queries referencing those tables would be blocked.
Thus, we must find alternative ways to ensure the access to the original table is still
allowed while the schema modification is going on.

The strategy we employ is to modify a copy of the table. All the locking would
be done on this copy, while foreground queries continue to operate on the original
table, which has no locks acquired on it. Once we are done with schema modification,
we atomically switch the role of the two copies. Operating on a copy is one of the
central ideas we build Ratchet around. This is discussed in detail in Chapter [4]

Whenever we have copies of data, how to keep the copies consistent becomes the
most important task. Here we use a combination of two techniques, trigger-based

updates and delayed updates to address this concern. These will be discussed in
detail in Chapter []

14

Chapter 3

Architecture

In this chapter, we will explain our key design goals and requirements. Later, we
will explain the high-level architecture of the proxy-based schema evolution system
Ratchet.

3.1 Design Goals and Requirements

In this section, we will try to summarize several design goals and requirements of
the system.

First, for this to be considered an online system, it must remain responsive when
the schema evolution is under way. The system must continue to maintain a certain
level of service quality. We will measure the system to ensure the background task
does not unduly interfere with the foreground traffic, and when possible, gives priority
to the serving of foreground requests.

Second, the system must be general enough to support all the schema changes
that are possible in the offline scenario. Previous work in column-oriented databases
has shown that certain schema changes, such as adding a column can be achieved
much more efficiently by using a different way of storing data[l5]. However, this
does not work for the general problem of online schema change. More complex
schema upgrades may require several statements to achieve a desired change. In
these cases, it may be more efficient to simply create another table and copy data
in as needed. The solution must be able to take advantage of both efficient ALTER
implementations when possible and be general enough to support complex joins and
merges.

Third, the system should support an undo operation in case of a failed upgrade.
The system should able to return itself to a stable and self-consistent state. Updates

CHAPTER 3. ARCHITECTURE 15

during the transition period should be preserved in some form, which can be later
extracted automatically or manually.

Fourth, the system should support independent upgrade processes for the database
tables and the database clients. Upgrading the database should not stop the client
from working completely. There should be a window where older versions of the client
and the new version of the client can co-exist. They will operate on the database
and produce results consistent with the schema upgrade process. In cases where this
is not possible, the older client should retire and the new version of the client can
take over without shutting the database down or causing disruption in the database
services.

Before we describe each system component in detail, and how they fulfill these
requirements, we first introduce the notion of a schema modification operator, as it
is a key concept used throughout our system.

3.2 Schema Modification Operator

Schema Modification Operators (SMOs) are a set of operations originally proposed
by Curino et al. In this work, they proposed a set of operators that describe a
possible set of schema changes. In their work, they also validated this set of SMOs
by describing a list of historical changes to MediaWiki using SMOs only.

Because we want to support rolling back of schema changes, we want to break
down the schema changes into small and manageable components. This aspect of
SMOs are related to the work of Sagas proposed by Garcia-Molina and Salem [10].
Sagas were used to address long-running transactions holding on to database re-
sources for too long. Instead they are a series of short-running transactions that can
be interleaved with other database transactions. However, if this series of transac-
tions encounters an error in the middle of execution, the database executes additional
compensating transactions to logically bring the database to a consistent state.

Similarly, we use and implement SMOs in this fashion. A transformation is
composed of several SMOs, and indeed other changes and transactions can happen
between these SMOs. However, with the addition of rollback, what we are really
doing is executing compensating SMOs to negate the effect earlier partial execution
of SMOs in the schema evolution. The majority of SMOs support reverse operations
that can be used as undo operations. Hence, we use SMOs in our system as the unit
of schema change.

Here, we give some background on these operators. A Schema Modification Op-
erator is defined as a function that receives as input a relational schema and the un-

CHAPTER 3. ARCHITECTURE 16

derlying database and produces as output a (modified) version of the input schema
and a migrated version of the database.

Table lists a complete set of operations that we support. These operators vary
in complexity, information preservation, uniqueness of the inverse, and redundancy.
Here, we focus on how these operators may be implemented in an online fashion.
One feature that greatly expands the expressibility of SMOs is custom functions.
We see examples of that in the ADD COLUMN operator. In Section we use some
examples from MediaWiki to explain why custom functions are important and the
caveat in using them.

3.3 Overall Architecture

There are three main components to Ratchet: the client side, the proxy itself and
the various modifications we make on the server side. These components could be
co-located on the same machines or distributed across several machines, depending
on the deployment scenario.

On the client side, we provide the database clients with a JDBC-compatible
driver. It is a type III JDBC driver. This means it will connect to another JDBC
driver that interacts directly with the database server. Alternatively, we could have
modified a JDBC driver for a particular database to fit out needs, which likely would
have resulted in better performance. Instead, we chose this approach because we do
want to keep the option to support a variety of different database servers.

In this approach, clients can interact with the database using our JDBC driver. It
provides all the familiar interfaces such as resultset, query interface, and the ability
to iterate through the resultset. However, in this case, the client does not directly
connect to the database, but rather it connects to the proxy that interposes between
the client and the server.

The proxy acts as the orchestrator of the schema upgrade process. It forwards the
requests from the client to the database, and more importantly coordinates schema
change operations between different clients. During the schema change operation,
the proxy may rewrite certain queries to handle updates.

Finally, the database server, in this case PostgreSQL, is modified to support
features such as an updatable views and converting views to tables.

Figure is an architectural diagram of the system. Applications connect
through a client-access library, which is a modified JDBC driver, to the proxy, which
then connects to the database. When an administrator would like to make a schema
change, it issues a schema change command that is passed through to the proxy.
The proxy determines the exact SQL commands that should be executed on behalf

CHAPTER 3. ARCHITECTURE

17

Schema Modfication Operator

Description

CREATE TABLE R(a,b,c)

DROP TABLE R
RENAME TABLE R INTO T

COPY TABLE R INTO T

MERGE TABLE R, S INTO T

PARTITION TABLE R INTO S WITH cond, T

DECOMPOSE TABLE R INTO S(a,b), T(a,c)

JOIN TABLE R,S INTO T WHERE cond

ADD COLUMN d [AS const— func(a, b, ¢)] INTO R

DROP COLUMN ¢ FROM R

RENAME COLUMN b IN R TO d

Introduces a new, empty table R
into the database

Removes an existing table R
Changes a table’s name from R to
T

Creates a duplicate of table R as
T

Takes two tables with the same
schema R and S and creates a ta-
ble T storing their union

Takes source table R and dis-
tribute into two tables S and T
according to specified condition
Creates two tables S and T with a
subset of columns from the origi-
nal table R

Joins two tables R and S accord-
ing to a specified condition and
store it in T

Introduces a new column into the
specified table. The new column
is filled with values generated by a
user-defined constant or function
Removes an existing column c
from table R

Changes the name of a column in
table R from b to d.

Table 3.1: Schema Modification Operator Description

CHAPTER 3. ARCHITECTURE

Database

App Server 1 DB Query L

Table V1

Access ——| Translation
App Server 2 Layer Proxy <

App Server 3 \

View V2

Schema
Modification

Operators

Figure 3.1: System Architecture

18

of the client. The server side is modified to support certain view-based operations

that are not available in standard PostgreSQL.

3.4 Proxy

At the heart of Ratchet is a coordinator that mediates accesses to the database,
and guides the schema upgrade process. It sits between clients and the database,

and functions as an RPC service for the client. It uses the GRPC protocol[13] and
protocol buffers to service these RPCs. Functionally, this component is responsible

for coordinating the schema upgrade process, and to ensure the right clients reach

the right tables in period of transition.

CHAPTER 3. ARCHITECTURE 19

Schema Modfication Operator Schema Upgrade Strategy
CREATE TABLE R(a,b,c) Direct
DROP TABLE R Direct
RENAME TABLE R INTO T Direct
COPY TABLE R INTO T Direct
MERGE TABLE R, S INTO T Copy-based
PARTITION TABLE R INTO S WITH cond, T Copy-based
DECOMPOSE TABLE R INTO S(a,b), T(a,c) Copy-based
JOIN TABLE R,S INTO T WHERE cond Copy-based
ADD COLUMN d [AS const— func(a, b, ¢)] INTO R Direct
DROP COLUMN ¢ FROM R Direct
RENAME COLUMN b IN R TO d Direct

Table 3.2: Schema Modification Operator Strategy

rpc
rpc
rpc
rpc
rpc
rpc
rpc

getConn (ConnRequest) returns (ConnReply) {}
execQuery (QueryRequest) returns (QueryReply) {}
resultSetLoad (RSRequest) returns (RSReply) {}
readRow (RowRequest) returns (RowReply) {}

execSMO (SMORequest) returns (SMOReply) {}

execUpdate (UpdateRequest) returns (UpdateReply) {}
execSMOString (SMOStringRequest) returns (SMOReply) {}

Listing 3.1: RPC Inteface for OSEProxy

List is a listing of the RPC interfaces provided by this component. getConn
is responsible for obtaining a connection to the database. execQuery, resultSetLoad,
readRow are used to execute queries and navigate the result set. execSMO and exec-
SMOString are the key interfaces to send parsed and string-based SMO commands.

Once the SMO is issued by the client and reaches the proxy, the proxy interprets
the request and sends appropriate commands to the database to implement the
schema change. These changes could be a simple ALTER command to update in-
place or a series of commands to create a new table and copy data over (i.e. copy-
based strategy) to avoid locking the original data table. Table shows the strategy
we currently employ for each of the SMOs listed. Of course, depending on the
underlying database, this can be adapted if there are more efficient implementation
for certain operations.

CHAPTER 3. ARCHITECTURE 20

3.5 Client Access Library

The Client Access Library is a relatively thin JDBC-compatible library that allows
clients to connect to the database. The client has the option to specify which proxy
to connect through. Under normal operation, the client behaves exactly like a JDBC
client. It can issue SQL queries, and explore the returned result set using standard
SQL commands. The JDBC functionalities are implemented using the RPC calls
listed in B.11

Additionally, given the right credentials, it has the capability of issuing SMO calls
to the proxy. It can issue the SMO in one of two formats, as a string or as a list of
keywords that are already parsed. The exact steps of transition will be covered in
later chapters.

3.6 Server Side Modification

Ideal Database Server

Before we talk about the server-side modifications, we first discuss what an ideal
database server would support. We believe support for the following features would
make online schema update easy to implement in a safe and efficient fashion. Later,
we will evaluate the current database systems and bridge the gap between the ideal
support and what is currently available.

As mentioned above, we use both in-place update and copy-based schema up-
dates. In this section, we specifically discuss copy-based schema updates, as they are
the more complex approach and require more support from the underlying database
beyond standard SQL support. In-place updates are well supported by standard
SQL, and only serve as an optimization. So we can always fall back on copy-based
schema updates if the database does not support in-place updates well.

e The underlying database must certainly support the creation of views and in
particular materialized views.

Unlike previous copy-based strategies where brand new tables are used, and a
lot of manual copying is required between the tables, our copy-based strategy
relies heavily on the use of views. There are two reasons for this. First, most
databases already support views well. Second, a view of a table is essentially a
different way of representing the same underlying data, which is exactly what
we need to do in the process of upgrading a database schema. Hence, the
database we select should have efficient support for views and materialized
views.

CHAPTER 3. ARCHITECTURE 21

e Materialized views should support incremental update.

Incremental update is a well-studied topic in Database Management. It allows
views to update themselves without repopulating the entire view, but rather
only change those parts that are affected by the updates in the original table.
In our case, for majority of our SMO operations, having this feature allows us
to efficiently propagate changes from the original table to a new table with-
out reading through the entire original table again. During our search for a
database platform, we found that most databases lack this feature, but we
believe it is an important feature to add, especially if it facilitates efficient on-
line schema upgrade. The next section talks about a few changes we made to
address the lack of this feature in PostgreSQL.

e A Materialized view should be convertable into a normal table, and support
all the operations a table would normally support.

Materialized Views are essentially tables with a source table that dictates how
the view should be updated when the source table is updated. Because we use
a materialized view to create our new table, when we decide to commit the
change of schema, ideally we would like to operate on that materialized view
as a normal table from that point on. Most systems we surveyed have similar
implementations for materialized views and tables. In the case of PostgreSQL,
we had to modify around a hundred lines of code to be able to convert a
materialized view into a table.

Modifying PostgreSQL

We chose PostgreSQL as the database server to support, for a number of reasons.
First, it is open source and easy to modify/enhance to fit our needs. During our
search, it was clear to us that none of the existing database systems supported all
the criteria that we needed. So we needed to ensure whatever we chose was easily
modifiable and adaptable to fit our needs. Second, it has some support for views,
materialized views and view updates, all of which are important in our implementa-
tion of the copy-based strategy. However, we needed to make a few modifications to
PostgreSQL 9.6 source code in order to fully support the features we need.

First, we added a command CONVERT in the PostgreSQL client console to
convert a materialized view into a regular table. This was done so that we can use
the view maintenance facility of the PostgreSQL database to propagate changes from
the original table to the view that we create. After we commit the change, we would
like to operate on a regular table instead of a materialized view, so this command is
created to achieve that.

CHAPTER 3. ARCHITECTURE 22

To achieve this, we changed the parser to recognize the CONVERT keyword and
correctly identify the materialized view that needs to be converted. We also updated
the database system catalog to change the appropriate row to have the class id
matching that of a table instead of a materialized view. In addition, we modified
the dependency graph in the system so that the materialized view no longer depends
on the original tables. This allows independent modification to the original table
and the newly converted table. This is necessary because in many instances, we
choose to drop the original table after the schema update is completed. Having this
dependency link would prevent PostgreSQL from dropping the original table.

Second, because PostgreSQL does not support incremental update of materialized
views, we chose to simulate this functionality using triggers and updatable views.

In normal operations, when a user calls to refresh a materialized view, PostgreSQL
takes the original table and completely regenerates the view when the refresh com-
mand is called. This is the only way to update a materialized view from a user’s
point of view. We instead allow users to directly manipulate the data that is already
in a materialized view. This is done by changing a boolean flag to indicate to the
database that user is in a context where updates of materialized view are allowed.

We enable triggers on materialized views in a similar fashion. PostgreSQL nor-
mally disables triggers on materialized views because users normally do not have the
ability to update the materialized views. Since we enabled users to update materi-
alized views, it makes sense to allow them to create triggers for materialized views
as well.

In total, the modification to PostgreSQL was about two hundred lines of code.
It allowed us to simulate incremental update of materialized views and use them in
our schema update operation, specifically for copy-based strategies.

23

Chapter 4

Life of a Schema Evolution
Operation

Last chapter, we gave an overall view of the different components of the system. In
this chapter, we will follow the life cycle of a schema evolution operator and describe
in detail how it is handled by each part of the system. Specifically, we will discuss
parsing, view and trigger creation, incremental update, rolling back of operators, and
how the updates are committed in the system.

4.1 SMO Class Structure

In Ratchet, administrators input schema change operators through a command line
console. These commands are parsed and converted into our internal representations,
which we discuss in this section. We used Antlr parser generator[2] to define the
grammar for these input commands. For the detailed listing of the grammar, please
see the attached grammar description in Appendix A. We create an SMO object for
each command. This object encapsulates a command’s parameters and its associated
execution state, and is passed from the client to the proxy via RPC calls.

Figure 4.1 shows a class inheritance diagram of the related classes. All SMO ob-
jects implement the ISMOCommand interface, but can be subclasses of AbstractSimpleCommand
or AbstractComplexCommand. SMOCommand defines the basic steps for an SMO to
execute, including, connect, execute, rollback and whether or not it is reversible.
Subclasses of AbstractSimpleCommand can be executed with a few lines of SQL
command that do not require a large amount of execution time, and do not block
other queries from accessing the database. Because of this, we can issue queries
to modify the table in-place rather than making a copy and modifying the copy.

« Interface »
SMOCommand

(53 cmd: Command

4 connect()

4} executeSMO()

3 commitSMO(): Boolean
43 rollbackSMO(): Boolean
4} isReversible(): Boolean

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION

«use»
... >

24

« Enumeration »
Command

= CREATE_TABLE

= DROP_TABLE

=1 RENAME_TABLE

= MERGE_TABLE

= COPY_TABLE

= PARTITION_TABLE
=1 DECOMPOSE_TABLE
=1 JOIN_TABLE

= ADD_COLUMN

=1 DROP_COLUMN
= RENAME_COLUMN

AbstractCc r lexC d
(53 tables: List<String>

(55 views: List<String>

4} setupTriggers()

4} dropTriggers()

4} createViews()

4} dropViews()

AbstractSimpleCommand
[stmt: String
(5 rollbackStmt: String

SMOMergeTable SMOPartitionTable

SMODropTable SMORenameColumn

Figure 4.1: Class Diagram

These simple SMOs are discussed in Section
RenameTable as examples of this.

The abstract class AbstractComplexCommand includes skeleton code that cre-
ates views and triggers to propagate data to keep old and new tables consistent,
and is discussed in more detail in Section [4.3] Examples of its subclasses include
SMOMergeTable and SMOPartitionTable.

Most commands are similar to SQL Data Definition Language (DDL) commands,
and it is fairly easy to convert between them. However, DDL statements only change
the schema and do not change or move the data in the tables. A single schema change
operator can change both at the same time. This creates a link between the schema
change and the intended use of the change shown through data movement.

This is important because SMOs create a link between data movement with
schema change, which helps with rolling back changes. For example, we have a

Figure lists DropTable and

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 25

COPY_COLUMN operator that copies a column from one table to another table. Using
DDLs, this would be accomplished by an ALTER COLUMN statement and an UPDATE
command. During rollback, these two statements are considered independent, and
individually an UPDATE statement is difficult to undo because of its expressiveness.
Coupled with the insertion of a column, it becomes rather easy to undo, we simply
remove the new column that was added. A difficult data movement statement is now
easier to rollback because it is coupled with a simpler schema change statement.

4.2 Life of a Simple SMO

Roughly half of the schema modification operators fall into this category of simple
SMOs. Many of these schema changes, such as RENAME COLUMN and RENAME TABLE
only modify table metadata, so they are rather quick to execute, even if they ac-
quire some small locks in the process. Here we discuss a few SMOs that do modify
data, but are implemented using Simple SMOs. Note these choices assume the un-
derlying database uses Multi-Version Concurrency Control(MVCC), which is what
PostgreSQL uses by default. COPY_TABLE creates an additional copy of a table, and
can take some time to complete. However, other queries can still access the original
table while the copying is taking place. Hence, we can still consider it a simple SMO.
ADD_COLUMN also changes the data in the original table. However, as long as it does
not need to initialize the column, the process is quite efficient and does not take very
long. This is because PostgreSQL stores a null bitmap for each row of the table to
record which of the column is null. Any newly added column is going to be defaulted
to null in this null bitmap. Thus adding a nullable column defaulted to null is very
efficient in PostgreSQL and does not require changing the tuples. For this reason,
we use simple SMO to implement ADD_COLUMN. The benefit of using SMO is that
we can change the implementation strategy depending on the underlying database
implementation. For a different platform, we might have chosen a different strategy.

For these simple SMOs, we extend the class SMOSimpleCommand, which itself
is an implementation of SMOCommand Interface, and override the implementation of
methods such as commitSMO, executeSMO and rollbackSMO. This class structure
allows us to have some shared implementation between these commands such as
maintaining the database connection.

We use COPY_TABLE as an example to explain the operations in more detail. When
executeSMO is called, it issues SQL commands such as Create Table to create a new
table and Select to copy old data from the old table to the newly created table.
rollbacksSMO reverses these changes, so it would issue Drop Table command to drop
the newly created table. commitSMO means the user is satisfied with the change and

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION

A
Initial View Creation Incremental 7| Compatible Evolved
Update Loop o | Mode
SMO —1 - '\I"
C
V1 o —— - = = -
|l L L w
V2 I A)
Forward Trigger Forward Trigger T Reverse Trigger
C
H
Read / Write to V1 Use Log to Old Client Drops V1
Log Writes Update V2 relies on V1 when Client is
also evolved

26

Figure 4.2: Timeline for Complex SMOs

will not rollback. This call is more meaningful and will be explained in more detail
in Section (4.3

4.3 Life of a Complex SMO

Similar to the aforementioned simple SMO, complex SMOs also implement the same
set of interfaces, such as commitSMO, executeSMO and rollbackSMO. However, the
internals are quite different and much more complex. Complex SMOs often create
new tables that are views of the original tables, and operate on these views. In
addition, complex SMOs use triggers to make sure any changes to the original tables
are propagated to the views we created. In some cases, reverse triggers are also
created to propagate changes from views back to the original tables.

To support these common operations, we created an abstract base class from
which all complex SMOs extend. This base class provides operations such as setting
up triggers, tearing down triggers, and setting up and removing of views. The entire
process of copy-based schema change can be divided into four stages. Figure 4.2
shows the complete timeline for a complex SMO. The process starts by creating views
and triggers, and continues to receive more updates from the foreground operations,
while migrating data in the background. After several iterations of data migration,

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 27

the process undergoes an atomic switch where the two copies of the data switch
their roles. The DBMS continues to maintain the consistency of the copies by using
reverse triggers. The following sections walk through these stages in more detail.

View and Trigger Creation

Complex SMOs all produce a table or multiple tables as an end result. In our system,
we use views to simulate the tables and convert the views into tables after we are
satisfied with the result. The first stage is view and trigger creation. Using our
running example, the MERGE operator has the following syntax:

MERGE_TABLE ID COMMA ID INTO ID

It merges two tables with the same schema into one table. Thus, the very first step
is to create the view that will hold the result of the query. The query depends on
the SMO. Here, it is a select query of the following form:

CREATE MATERIALIZED VIEW table3 AS
select *, 1 as srctable FROM tablel UNION ALL select *, 2 as srctable FROM table2

Here, we are essentially creating a second view of the same data that was originally
stored in table 1 and table 2. Note that we generated an additional column to record
whether the row came from table 1 or table 2 originally. This column will be useful
when we propagate changes between the source tables and the view. We are using
the copy and modify idea to avoid lock contention. As mentioned before, we need
some mechanism to keep the data consistent between the original two tables and the
new table we create. Normally we would be taking advantage of any incremental
update features the database may support, since we are using a materialized view.
However, since PostgreSQL does not support incremental updates of materialized
views, we simulate incremental update by using triggers. When the original table is
modified while the materialized view is being created, we need to propagate these
changes to the merged materialized view. The ability to be able to insert into and
update a materialized view becomes critical here, because without this capability we
would not be able to propagate these changes individually, and would have to rely
on the database to update the materialized view automatically.

There are two types of triggers, forward triggers and reverse triggers. As the name
suggests, forward triggers propagate information from source tables to destination
tables. Reverse triggers propagate information from destination tables back to the
source tables. Some operations do not have reverse triggers; we call those irreversible
operations. These will be covered in more detail in Section 4.4} Back to our example,

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 28

we have three triggers in total. One forward trigger on each of the source tables,
and one reverse trigger on the newly created materialized view. For each insertion
on the source table, the forward trigger inserts the same row into the merged table.
We also record which table caused this change in the srctable field. For each deletion
on the source table, the forward trigger deletes the same row from the merged table
if the srctable field also matches where the deletion is happening. For each update
on the source table, the forward trigger updates all rows matching the criteria in
the merged materialized view. Similarly, reverse trigger propagates changes back to
the source tables. Table details the propagation rules of all the forward triggers
used to implement complex SMOs. Table details the propagation rules of all the
reverse triggers used to implement complex SMOs.

There are two methods we use to propagate changes from the original tables to
the new materialized views, direct trigger propagation and indirect propagation.

Direct Trigger Propagation

The most straightforward solution would be to install triggers on the original table so
that for each insert, update, delete issued to the original tables, we will immediately
modify the materialized view accordingly to reflect those changes.

However, this would not work while the database system is building the mate-
rialized view, because building of the materialized view acquires an exclusive lock
on the entire materialized view. All these trigger actions would have to wait for the
building of the materialized view to complete in order to proceed. This essentially
stalls any updates to the original table, if these direct triggers were used.

We use direct trigger propagation in Ratchet once the materialized view has
completed its initialization.

Indirect Trigger Propagation

As its name suggests, indirect trigger propagation uses an intermediate table to store
any trigger actions, and later apply them to the materialized view. In this case, we
use a table called history_log to store this information. Its schema is detailed in
Table (4.3l

Each history entry contains a trigger id, the source of the trigger stored as schema
name and table name, the type of the trigger stored as insert, update or delete trigger,
the old and the new data stored as hstore type in PostgreSQL, and the iteration,
which records the number of times we have processed the history log.

HStore is a new datatype introduced in PostgreSQL 9.0 that is very similar to
a key-value store. Here we use it to store a row of data in the database, with the

29

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION

L oPPd<=Y °PPd
Puod dIoYM § UIO[PI029Yy J, orepdn<y orepdn
PUOD 8I0YM § UIO[PIOIDY J, MOSU[<=Y Iosu]

puod IYIHM L OLNI S dT1dVL NIOr

T, 910 PUT S 9RPIE=1 9P
L orepdn pue g oyepdn <=y orepdn
(o'®) I, 110su] pue (q‘B)G JI0SU[<=Y] 1IoSU]

(o'®) 1 ‘(q'®)S OINI ¥ ATAVI ASOJINODAA

L ©1971(T 9S[0 ‘S 910[a(] ‘PU0d JI<=Y 9)9[o(]
I orepdp ospe ‘g oyepd ‘puod Ju <=y ojepdn
L 2I0SU] 9S[d ‘Q JI9SU] ‘PUOD JI <=} 1I6SU]

L ‘Puo® HLIM S OLNI ¥ dTdV.L NOILIIMVd

Y WOIJ pajeulsLio Jji J, oyepd) <y 9repdn
Y WO PoJRUISLIO JT T, 919[0(] < Y 919[P(Q
‘I, WOSUJ <= Y HosU]

G pue Y Ul seLIjus pajeordnp ou sewnssy

I OINI (SY) ATIV.IL ADUAN

SMOTIA 0} 9[qe] oske(q tWOIq

OINS

SIOSSLIT, pIremioy 10y so[ny uoryededord :1§ o[qe],

30

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION

[7 011085 908 UOISSIIOSIP PO[TRToP 10

Azyue urof gsel oy} st SIY JI §°Y WO 919[OP <= T, 919
‘A1yue urol 4se[oy} SI SIY} JT § “Y WOIJ SOLIJUD 9)9[o(]
"JSIX0 JOU JI § OJUI JIOSUI ‘G UL SUWN[0D pasueyod Ji
")SIX0 JOU JI

Y OJUI JI9SUL TS} “}Y Ul SUWN[0d pasgueyd Ji<=T, ayepdn
JSIXO J0U JI G JI9SU] PUR ISIXd JOU JI Y JIOSU<= T, 1I0SU]
qI09°S = Y[02 Y SI UOI}IPU0D 97} dIoym surol 10

puod HYHHM L OLNI SY dTdV.L NIOI

sonfeA [nu ym Y 2yepdn<=S 930
sonfeA Jmejop Yiim Y oyepdn<«=g orepdn
SoNTeA JNeJOP YIM Y HOSUJ<=G JIoSU]

(o)L ‘(q9"®)S OLNI ¥ ATdVL ASOdINODAA

ToUI ST pUoo JT {J 9P =S 9219
19 ST puod J1 Y oyepd<=g arepdn
V] MOSU[<=G JIosU]

I ‘Puod HIIM S OLNI ¥ dT19V.L NOLLLLYVd

S oTRR([PUR Y oRP(ET 9P
g orepd) pue Y oyepdn <7, 9repdn
Y ‘Y MOSUJ<= T, HosUf

L OLNI (SY) ATdV.L ADUAIN

So[qR) 9se(0} SMAIA WOL]

OIS

SIOGSLIT, 9SI0AdY 10] sony uoryesedoid 7' o[qR],

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 31

Table 4.3: History Log Schema

Column Type | Modifiers
op-id integer | not null, serial
schema_name | text not null
table_name text not null
action text not null
old_data hstore

new_data hstore

iteration integer

column heading as the key and the actual data as the value. For insertion, only the
new_data field is populated. For deletion, only the old_data field is populated. For
update, both new_data and old_data fields are present.

As PostgreSQL builds the materialized view, any modification to the original
table is stored in this history table, with an iteration number of 1. After the mate-
rialized view finishes building, we take these history entries and convert them into
modifications to the materialized view. While this is happening, it is possible that
there are more modifications to the original table, we again record these in the his-
tory table as iteration 2. This process continues until we ensure materialized view
and the original table represent the same data, with no pending history entries to
replay. If a schema update happens when the database is under heavy load, the
materialized view may not be able to catch up with the update rate of the original
table. Under this kind of conditions, the administrator may choose to throttle the
update rate to the table. However, it is normally not advisable to perform schema
update during peak hours.

This process of updating the materialized view is more complex than the direct
trigger propagation approach, but it has the additional benefit that we do not need
to update the materialized view while the system is holding an exclusive lock on
the view. Hence, we never block any updates to the original table because of these
triggers. In Section we show that this is necessary to make progress while the
query mix load concentrates on the tables that the materialized view depends on.

Incremental Update

After the triggers are created and attached to the views, and while the materialization
of the view is taking place, other applications can continue to modify the original

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 32

table. However, because we have installed forward triggers on these tables, those
changes are going to get propagated to views.

In this mode of operation, the proxy considers the original tables the primary
copies to which the reads and writes will go. The database itself propagates these
changes from the primary copies to the materialized views via triggers. As illustrated
in Figure 4.2 consider a transformation of V1 to V2, at this stage of the process, V1
is the primary copy, and we forward information to V2 via triggers. This will change
after the next step in the process.

Atomic Switch

This is not a stage of operation, but rather a critical point in ensuring correctness
of the system. Before this point, the primary copy of the data resides in the original
tables. In case of sudden disruption of the evolution process, we revert back to the
primary copy. However, after this point, the materialized views are considered to be
the primary copy and the older tables are there for undo purposes and backwards
compatibility.

This is also the point where the administrators can safely upgrade the client
versions from V1 to V2. V2 clients can now safely update the materialized view
and have the information propagated back to the original table via triggers. This
is so that we have the ability to roll back the upgrade process should something
unexpected happen.

As illustrated in Figure [£.2] the proxy ensures that the atomic switch happen for
all clients accessing the relevant tables at the same time. This is especially important
if the administrator deploys old and new versions of the clients simultaneously. This
often occurs when a group of application servers or clients start a rolling upgrade
process. In this case, we need a way to resolve any conflicts that may arise from the
new version and older version of the application. A reasonable default policy lets the
proxy designate the new version as the primary and the older version as a read-only
copy after the atomic switch point. Our choice of proxy-based solution allows for
such policies to be implemented easily.

Compatibility Mode

In this stage, the system continues to process incoming queries under the assumption
that both old and new versions of the client are both deployed and accessing the
database. Clients will start to change the newly created views, and as a result of
propagation, the older tables will be kept consistent with the new views. We call
this the compatibility mode.

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 33

Table 4.4: Reversibility of Complex SMOs

SMO Reversibility
Merge Yes
Partition Yes
Decompose Yes

Join No

During this period, the administrator can evaluate the effect of the changes to the
overall system, and conduct any performance or load tests. The administrator also
has the option to revert the change of schema if necessary. We will discuss rolling
back of schema upgrades in detail in Section [4.4]

Commit Evolution

This is the last stage of a complex SMO evolution. Through experiments and tests
in earlier stages, the administrator has determined the system is behaving as desired,
and thus the system commits the evolution.

As part of the process, the system purges all unnecessary tables that were kept for
rollback purposes. It also deletes the triggers that propagate changes back and forth
between new schema and old schema. From this point on, the old tables will cease
to exist, and the old clients will no longer be able to access them. Any materialized
views are converted into tables using the newly added CONVERT command, so that
the link between the materialized view and the original tables are taken down.

The system is now ready for future schema evolution. Note that we could also
remove the proxy from the path of the query system if we wish to at this point.

4.4 Rollback Process for Schema Evolution

In the unfortunate case where the schema upgrade is not successful, we can roll
back the schema change without the application changing any of its behaviors. We
will discuss how this works for simple SMOs, then complex SMOs, and finally how
rollback and recovery works for a series of SMOs composed together.

Note that not all SMOs are reversible. As mentioned before, for complex SMOs
that transition from V1 to V2, the system keeps them in sync by creating triggers on
both the original table and newly created views. However, some complex SMOs do
not have a way to map all the changes to V2 back to changes in V1. An example of an
inreversible operation is the general case of the JOIN operation. Later in this section,

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 34

we will discuss in more detail why JOINs are not reversible. For this set of SMOs, we
can force the reverse operation but we would suffer some data loss and inconsistency.
Hence, we made the decision to simply label these as irreversible operations, and
allow database administrators to manually reverse these operations or avoid these
operations entirely by choosing an alternative restructuring plan. Table lists all
the complex SMOs and whether they are reversible.

Simple SMO Rollback

Since simple SMOs usually have a single or a few lines of SQL code associated with
its action, it is relatively easy to reverse the effect of such actions. We implement
Rol1lbackSMO method in these SMO classes. To support the rollback operation, some
SMOs such as DROP_TABLE and DROP_COLUMN do not actually drop the table or the
column when first called, they merely rename them and render them hidden from
the clients. They are actually removed from the database when the schema change
is committed.

Complex SMO Rollback

The steps involved in a rollback for a complex SMO are actually not very complex.
This is mainly because the difficult part of keeping the older version and the newer
version consistent is already done in other stages of the operation.

Still, complex SMOs transitioning from V1 to V2 have several tasks to perform
when a rollback is initiated. To implement rollback, each complex SMO class has a
rollback method where it would implement the following logic. First, it must stop
any future updates to any tables in V2, in our system, this is done by removing the
associated tables. Also, it must remove the triggers placed on V1 and V2 tables.
After the rollback, the proxy also must ensure no more access to V2 is granted to
clients, because such requests would result in errors.

Cascading Rollback

In some cases, the administrator may wish to rollback to a certain point in a chain
of upgrade processes. In Ratchet, we have a tree that keeps track of all historical
operations and their dependencies. The administrator can specify that he/she wants
to go back to a particular node in this dependency graph. The system will traverse
the tree and undo any operation that happened after that particular operation.
However, as mentioned before, there are operations that can not be safely un-
done. When the system encounters this kind of operation it has three choices. It can

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 35

forbid such operations. This limits the expressiveness of the SMO, but guarantees
reversibility. The second choice is to automatically commits all the operations prior
to any irreversible operation. A third alternative is to give the database adminis-
trators an opportunity to manually undo those operations that can not be undone
automatically. The system can continue the rollback process when the manual undo
is complete.

Irreversible SMOs

Certain cases of JOIN operators do not have a suitable reverse operation. This is
mainly due to the complexity and the flexibility of joins. Because in the general
case, the join condition could be any arbitrary logic expression. This gives great
expressiveness to the join operation, however it makes reversing the general join
operation nearly impossible.

However, one of the most common uses of the JOIN operator is reversible. The
reason for its reversibility relates to the notion of lossless join decomposition. There
are two kinds of decompositions: Lossy decomposition and lossless join decomposi-
tion.

The decomposition of relation R into R1 and R2 is lossy when the join of R1
and R2 does not yield the same relation as in R. The join of R1 and R2 could miss
entries in R or produce spurious entries not found in R. If the original tables were a
lossy decomposition of the resulting join, writing a reverse propagation rule for our
JOIN operation becomes impossible, because there simply isn’t a corresponding R1
or R2 that would produce the JOIN result that we want.

However, when the original tables to be joined are the lossless join decomposition
of the resulting joined table. It is possible to find such R1 or R2 such that R1 join
R2 produces the modified view. To be a lossless join, the attributes involved in the
join must be a candidate key for one of the original tables. That is also the condition
for a JOIN, more specifically an equijoin to be reversible.

Example of such a join looks like this.

JOIN TABLE R,S INTO T WHERE R.colx = S.coly

In this case, either colx is a key for table R or coly is a key for table S. For any insert
entry E into T, we can divide E into Fr and Fg to indicate the subset of columns
coming from table R and table S. We insert Ey into R if it does not already exist in
R. Similarly we insert Eg into S if it does not already exist in S.

For any delete entry E from T, we can divide E into Er and Eg similarly. We
only remove Eg from R if there is no other entry in T that contains Fr. Also we
remove Fg from S if there is no other entry in T that contains Eg.

CHAPTER 4. LIFE OF A SCHEMA EVOLUTION OPERATION 36

For an update on T, it is simply a deletion followed by an insertion. We just
follow the reverse propagation rules of a deletion followed by an insertion.

37

Chapter 5

Evaluation

In this chapter, we evaluate Ratchet with respect to the goals we set out at the
beginning of this dissertation. Specifically, we evaluate how general our approach
to online schema update is, how it impacts foreground workload, and its rollback
functionalities.

5.1 Validating correctness and reliability

We first would like to evaluate the effectiveness of our system in automatically han-
dling various schema changes. For this, we are using a dataset that was published
by Curino et al. [9]. This dataset contained a total of 170 schema changes and de-
scribed them using SMOs. In our experiment, we are able to upgrade all 170 schema
changes with our tool. We discovered two bugs in the dataset. Of the 170 changes,
168 changes can be performed automatically. Initially, two changes required some
manual edits. This prompted us to add type information to SMOs. After the addi-
tion of type information, all upgrades were automated. In the following section, we
first give some background on the dataset that we are using, and then describe our
experience evolving these 170 schema changes using Ratchet.

Background on the dataset: Mediawiki and Wikipedia

MediaWiki is the underlying software powering many wiki sites, most notably Wikipedia.
Wikipedia has over 5 million articles in its English version alone and currently ranks
as the fifth most visited website in the world according to Alexa Rankings. Me-
diawiki, as its underlying platform, has gone under many changes in its history.
Because of its open-source nature, each version of its database schema is preserved

CHAPTER 5. EVALUATION 38

in its version control history. During its first 4 years and 7 months of life, MediaWiki
underwent 170 schema changes. Curino et al. extracted these changes and provided
the basis for our further analysis and evaluation. Their study, and consequently our
evaluation, consists of all the versions from MediaWiki’s initial public version of 1.1
to the version 1.11 published in November 2007. For a detailed study on the version
histories, please see their paper [§]. Here, we primarily focus on how our tool per-
formed the 170 schema changes, the challenges and the lessons learned from handling
these schema changes.

Published dataset on schema changes

First, we take a look at the schema changes published in the previous study. The
dataset includes MySQL initialization scripts that create the database schema for
each of the 171 versions. This was extracted from the version history of the Me-
diaWiki software. Along with these database commands, there are 170 sets of
commands that describe how the schema changes from one version to the next.
These schema changes are described using Schema Modification Operators, which
our system is based on. Thus, Ratchet can directly consume these as commands
and automatically evolve the schema versions. The following is an example of SMO
representation from version 36 to version 37. It consists of three SMO changes, all
of which are RENAME COLUMN changes.

Smo V(36,37) := {
RENAME COLUMN ur_id IN user_rights TO ur_user;
RENAME COLUMN ug_uid IN user_groups TO ug_user;
RENAME COLUMN ug_gid IN user_groups TO ug_group;

};

There are broadly two types of schema changes. Some modify the actual table
structure of the database schema, and therefore require changes to the queries. Some
simply modify the DBMS engines, indexes, data types, and while they often impact
performance of the queries, they do not require changes to the queries. Of the
170 schema changes, 94 or approximately 55% actually changed the table designs.
The other 76 changes either changed database indexes only, or were bug fixes or
documentation changes. We use NOP commands to represent these changes in our
input to the system.

These schema changes also vary greatly in terms of complexity. As mentioned
above, many schema version changes do not actually change the structure of the
tables. We label these as having 0 SMOs in the schema change. Figure [5.1] shows

CHAPTER 5. EVALUATION 39

Schema Change Histogram

|‘ll-l B
o 1 2 5

3 4 6 7 More
of SMOs in the Schema Change

Frequency
= N w S wu o)} ~ (o]
o o o o o o o o

o

B Frequency

Figure 5.1: Histogram: Number of SMOs in the Schema Change, showing a bimodal
pattern. Most of the schema changes are quite short, but a few can consist more

than 20 SMOs

CHAPTER 5. EVALUATION 40

a histogram of all 170 schema changes categorized by the number of SMOs in each
change. Most of them (83.5%) have zero or one SMOs. However, there are a number
of complicated changes, one of them having 96 SMOs in a single version change. In
the next section, we will see how Ratchet handles these different schema changes.

We further analyzed the 170 schema changes in terms of simple vs complex SMOs,
and found that only 3 of 170 contained complex SMOs. This indicates that most
of the changes are small changes or compositions of simple changes, as applications
develop from version to version.

We also found that 100% of the SMOs are reversible SMOs. This allows for fully
automated rollback should the administrator discover problems during the schema
upgrade process.

Performing schema changes using Ratchet

Since we are using PostgreSQL as our database, in order to initialize our database, we
took the initial version of the mysql initialization script and converted it into a Post-
greSQL compatible script. This translation involved converting Mysql-specific types
to PostgreSQL-specific types, such as converting auto increment types to SERIAL
types.

We also populated this database with some artificial data. Because we are using
a schema that is the very first version of MediaWiki (April 2003), none of the current
wikipedia dumps we can find fits this schema. Hence we are using generated data.

After the database is initialized, we feed the file containing all the SMOs to
Ratchet. In our experiment, Ratchet was able to handle all but two changes auto-
matically, and we were able to discover one error in the SMOs dataset. Both cases
requiring manual intervention were merge operations. To merge two tables together,
the tables must have exactly the same number of columns with the same types.
However, the existing ADD COLUMN operator of the SMO operation does not contain
any type information. This information is also not found in the dataset. So in ad-
dition to a merge operation, some explicit type casting is needed before the merge
could proceed. That required a total of five SQL statements to be entered into the
database interactive terminal.

To address this problem, we extended the Schema Modification Operator, specif-
ically the ADD COLUMN operator and CREATE TABLE operator with optional type in-
formation. Adding this information allows all the columns to have the correct type
information. Therefore merge becomes fully automatic. We searched through the
initialization scripts and found type information for all the columns being created
and added them using our extended SMOs. Thereafter, the merge operations were
successful automatically. In practice, when a database administrator uses Ratchet to

CHAPTER 5. EVALUATION 41

upgrade a schema, he or she would have access to that information, and be able to
specify that information in the SMOs.

We also found one error in the SMO dataset. For one of the merge operations, one
table has four columns and one table has three columns. By looking at the schema
initialization script, we determined that the dataset was missing a DROP COLUMN
operation. We fixed the error by adding the missing DROP COLUMN operation.

After these two changes, we were able to automatically evolve the database
schema from version 1 to version 170 without taking the system offline. This validates
our approach of using SMOs to automatically perform schema evolution.

5.2 Case study: a Major Change in MediaWiki
Schema

In this section, we take a look at the largest schema changes in the dataset that we
have for MediaWiki. This change was committed on Dec 19, 2004. The comment at
the time of the commit was as follows.

Merge SCHEMA_WORK into HEAD. Lots of changes, some things are probably broken:
* Page moves/overwrites are a little iffy

* Compression might not be working right

* Profit!

From the code history, it was clear that the developer worked on this schema
change on a separate branch of the code. Without a tool like Ratchet, the developer’s
only choice was to try it out and see if it works. In this section, we will dive deeper
into this particular schema change and see what was done at the time and what
could be done with a tool like Ratchet.

Schema Change Details

The approach that the Mediawiki developers took was a very sensible one considering
the impact of this schema change. There is always a version-controlled tables.sql file
under the maintenance directory. It is responsible for creating and initializing each
version of new mediawiki installations. So this file was modified to reflect this schema
change. In addition, the developers created documentation on a wiki to show how
the proposed change would take place. Thanks to the extensive documentation, we
are able to recreate this change and understand the intentions of the developers at
the time.

CHAPTER 5. EVALUATION

42

In the old version of the schema, each page of the wiki was represented using two
tables, a current version in the cur table and any historical versions of the articles
in the old table. The cur and old tables originally had the following schema.

e o o +
| Field | Type | Null |
e e L o +
| cur_id | int(8) unsigned |
| cur_namespace | tinyint(2) unsigned | I
| cur_title | varchar(255) binary |
| cur_text | mediumtext I
| cur_comment | tinyblob | |
| cur_user | int(5) unsigned I
| cur_user_text | varchar(255) binary | |
| cur_timestamp | varchar(14) binary | I
cur_restrictions	tinyblob	
cur_counter	bigint(20) unsigned	
cur_is_redirect	tinyint(1l) unsigned	
cur_minor_edit	tinyint(1) unsigned	
cur_is_new	tinyint(1) unsigned	I
cur_random	double unsigned	
inverse_timestamp	varchar(14) binary	I
cur_touched	varchar(14) binary	
e e e +		
o o o +		
Field	Type	Null
e o o +		
old_id	int(8) unsigned	
old_namespace	tinyint(2) unsigned	
old_title	varchar(255) binary	
old_text	mediumtext I	
old_comment	tinyblob	
old_user	int(5) unsigned I	
old_user_text	varchar(255) binary	
old_timestamp	varchar(14) binary	I
old_minor_edit	tinyint (1)	
old_flags	tinyblob I I	
inverse_timestamp	varchar(14) binary	
e e o +

MUL
MUL
MUL

MUL

<+
I
<+
I
I
|
I
|
I
I
I
I
I
I
I
I
|
I
|
+
<+
I
<+
I
I
I
I
|
I
|
I
I
I
I
+

O O O O O

+
I
+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+
+
I
+
I
I
I
I
I
I
I
I
I
I
I
+

auto_increment

auto_increment

As shown here, these two tables actually contained a lot of redundant informa-
tion. cur_id represents a unique index for a given article’s current version. old_id

CHAPTER 5. EVALUATION

43

represents an article’s past revisions. Information was frequently moved from the
cur table into the old table as pages were updated and the newer version of the

page became the current version.

As of MediaWiki version 1.5, these two tables were restructured and merged into
a single page table and revision table. The structure of these tables looks like the

following.

o e o et fomm e +
| Field | Type | Null | Key | Default | Extra
e e e o et fommmm o +
| page_id | int(8) unsigned | NO | PRI | NULL | AUTO_INCREMENT |
| page_namespace | int(11) | NO | MUL | NULL |

| page_title | varchar(255) binary | NO | | NULL |

| page_restrictions | tinyblob | NO | | NULL |

| page_counter | bigint(20) unsigned | NO | | 0 |

| page_is_redirect | tinyint(1) unsigned | NO | | 0 |

| page_is_new | tinyint(1) unsigned | NO | | O |

| page_random | real unsigned | NO | MUL | NULL | I
| page_touched | char(14) binary | NO | | NULL |

| page_latest | int(8) unsigned | NO | | NULL |

| page_len | int(8) unsigned | NO | MUL | NULL |
o e o o= o o +
o e o et pommmm o Fomm +

| Field | Type | Null | Key | Default | Extra |
o e et o = e o +

| rev_id | int(8) unsigned | NO | PRI | NULL | AUTO_INCREMENT |

| rev_page | int(8) unsigned | NO | PRI | NULL I I

| rev_text_id | int(8) unsigned | NO | | NULL | |

| rev_comment | tinyblob | NO | | NULL I |

| rev_user | int(5) unsigned | NO | MUL | O | |

| rev_user_text | varchar(255) binary | NO | MUL | NULL I |

| rev_timestamp | char(14) binary | NO | MUL | NULL | |

| rev_minor_edit | tinyint(1l) unsigned | NO | | O I |

| rev_deleted | tinyint(1) unsigned | NO | | 0 | |
o Fomm e o - tommmm fomm +

Before the change, each revision of a page was either a row in cur table or a row
in old table. Now instead, it is a row in the revision table. Every page is a row in the
page table, and has a page_latest entry which is a foreign key into the revision

CHAPTER 5. EVALUATION 44

table. So that the current or the latest change can be easily looked up. At the same
time, each revision contains a back reference to the page via the rev_page entry.

In addition, the change creates a separate text table where all the text for the
revision is actually stored. This text table has only three columns and is structured
as follows. Revisions and text are linked together via rev_text_id which is a foreign
key into the text table.

Fmmm Fomm o e o o +
| Field | Type | Null | Key | Default | Extra |
Fmmm Fomm o = Fomm o +
| old_id | int(8) unsigned | NO | PRI | NULL | AUTO_INCREMENT |
| old_text | mediumblob | NO | | NULL I I
| old_flags | tinyblob | NO | | NULL | I
Fomm e o o Fo—mm o +

Because this was an important change to the core storage of the pages in medi-
awiki, we were able to find plenty of documentation on this. Figure |5.2| shows how
the columns from the old version map to the new version of the schema.

From this figure, it is clear that many columns were direct mappings from the old
schema to a new location in the new schema. However, their names were changed.
We believe this kind of additional documentation was necessary because the transfor-
mation itself did not contain this piece of information. The schema transformation
was documented with two different initialization scripts in the code base. Comparing
these two initialization scripts yields some information, but not enough to reconstruct
Figure 5.2l Figure 5.3 shows the differences between the two initialization scripts.

Additionally, MediaWiki developers provided a custom php script that will con-
vert a database from the old version to the newer version. This particular script
is 134 lines long and consists of mostly sql statements mixed with php code. This
script served as an important reference to construct SMOs for our system, since it
contained how data was transformed from one schema to the next.

In summary, when the developers carried out this particular schema upgrade,
there was lots of documentation to support it, indicating that the developers were
very careful and diligent about this schema upgrade. It is also a sign that these
kind of sweeping changes could potentially lead to a lot of additional work for the
developers without proper tooling support.

Schema Change with Ratchet

In this section, we walk through how we used Ratchet to achieve this particularly
complex schema upgrade.

CHAPTER 5. EVALUATION

cur:
cur—_id
cur_hamespace
cur_title
cur_text
cur_comment
cur_user
cur_user_text
cur_timestamp

cur_restrictions

cur_counter

cur—_is_redirect

cur_minor_edi t
Cur_is_neuw

45

page:
page_id
page_namespace
page_title
page_restrictions
page_counter
page_isredirect
page_is_new
page_random
page_touched
page_latest

cur_random revision:
cur_touched rev_id
inverse_timestamp rev_page
rev_comment
old: rey_user
old.id rev_user_text
old_namespace rev_timestamp
old_title inverse_timestamp
old_text rev_minor_edit
old_comment
old_user
old_user_text text:
old_timestamp old_id
old_minor_edit old_text
old_flags old_flags
inverse_timestamp
Before After

Figure 5.2: Database Restructure

Column colors in the old schema represent which table they belong to in the new

schema

Source: https://www.mediawiki.org/wiki/Proposed Database_Schema Changes/October_2004

CHAPTER 5. EVALUATION

7/10/2017

diff

v06696.sql

v06710.sql

+-- 31 lines: -- SQL to create the initial tabl
user_id int(5) NOT NULL default '0',
user_ip varchar(40) NOT NULL default '',
INDEX user_id (user_id),

INDEX user ip (user_ip)

-)i

CREATE TABLE /*$wgDBprefix*/cur (

cur id int(8) unsigned NOT NULL auto incremer|
cur_namespace tinyint(2) unsigned NOT NULL d¢
cur_title varchar(255) binary NOT NULL defaul
cur_text mediumtext NOT NULL default '',
cur_comment tinyblob NOT NULL default '',
cur_user int(5) unsigned NOT NULL default 'O
cur_user_text varchar(255) binary NOT NULL d¢
cur_timestamp char(14) binary NOT NULL defaul
cur_restrictions tinyblob NOT NULL default '/
cur_counter bigint(20) unsigned NOT NULL defq
cur_is_redirect tinyint(l) unsigned NOT NULL
cur_minor_edit tinyint(l) unsigned NOT NULL ¢
cur_is_new tinyint(1l) unsigned NOT NULL defai
cur_random real unsigned NOT NULL,
cur_touched char(14) binary NOT NULL default

+-- 31 lines: -- SQL to create the initial tabl
user_id int(5) NOT NULL default '0',
user_ip varchar(40) NOT NULL default '',
INDEX user_id (user_id),

INDEX user_ ip (user_ip)

-)i

CREATE TABLE /*$wgDBprefix*/page (
page id int(8) unsigned NOT NULL auto_ incremg
page_namespace tinyint NOT NULL,
page_title varchar(255) binary NOT NULL,
page_restrictions tinyblob NOT NULL default
page_counter bigint(20) unsigned NOT NULL def
page_is_redirect tinyint(l) unsigned NOT NULI
page_is_new tinyint(l) unsigned NOT NULL defg¢
page_random real unsigned NOT NULL,
page_touched char(14) binary NOT NULL default
page_latest int(8) unsigned NOT NULL,

PRIMARY KEY page_id (page_id),
UNIQUE INDEX name_title (page_namespace,page |
INDEX (page_random)

)i

CREATE TABLE /*$wgDBprefix*/revision (

rev_id int(8) unsigned NOT NULL auto_incremer|

rev_page int(8) unsigned NOT NULL,

rev_comment tinyblob NOT NULL default '',

rev_user int(5) unsigned NOT NULL default 'O

rev_user text varchar(255) binary NOT NULL dg

rev_timestamp char(14) binary NOT NULL defaul

inverse timestamp char(14) binary NOT NULL d¢
PRIMARY KEY cur id (cur_id),
UNIQUE INDEX name title (cur_namespace,cur_t]

rev_minor_edit tinyint(1l) unsigned NOT NULL c
inverse timestamp char(14) binary NOT NULL d¢

-- Is this one necessary?

INDEX cur_title (cur_title(20)),

INDEX cur_timestamp (cur timestamp),

INDEX (cur_random),

INDEX name_title_timestamp (cur_namespace,cul
INDEX user timestamp (cur_user,inverse_ timest
INDEX usertext_ timestamp (cur_user_ text,inve:
INDEX namespace_redirect_timestamp(cur_namesy

)i

CREATE TABLE /*$wgDBprefix*/old (

PRIMARY KEY rev_page_id (rev_page, rev_id),
UNIQUE INDEX rev_id (rev_id),

INDEX rev_timestamp (rev_timestamp),

INDEX page_timestamp (rev_page,inverse timest
INDEX user_timestamp (rev_user,inverse_timest
INDEX usertext_timestamp (rev_user_text,inve:

Holds text of individual page revisions.

old id int(8) unsigned NOT NULL auto incremer|

CREATE TABLE /*$wgDBprefix*/text (
old id int(8) unsigned NOT NULL auto incremer

old namespace tinyint(2) unsigned NOT NULL d
old title varchar(255) binary NOT NULL defaul

old_text mediumtext NOT NULL default '',
old_comment tinyblob NOT NULL default '',
old_user int(5) unsigned NOT NULL default 'O
old user text varchar(255) binary NOT NULL,

old_text mediumtext NOT NULL default '',

old timestamp char(1l4) binary NOT NULL defaul
old minor edit tinyint(l) NOT NULL default '(
old flags tinyblob NOT NULL default '',

file:///Users/yuzhu/src/smo/wikipedia-schema/schemata/Diff html

old_flags tinyblob NOT NULL default '',

12

Figure 5.3: Visual Diff Between Initialization Scripts

46

CHAPTER 5. EVALUATION 47

First, we obtained a series of SMOs derived from the pictorial representation of
the schema change and the upgrade script. This process was already done in the
dataset, but we modified it to add type information to columns. This resulted in a
total of 96 SMOs. A detailed listing can be found in Appendix B.

Analyzing these 96 SMOs, they roughly divide into seven major steps.

1. we construct cur_page from Table cur.

2. we construct cur_revision from the Table cur.
we construct cur_text from the Table cur.

we construct old_page from the Table old.
we construct old_revision from the Table old.

we rename the table old to old_text.

N A

we merge cur_text with old_text to get new Table text, merge cur_page with
old_page to get new Table page, and merge cur_revision with old_revision to
get new Table revision.

Most of these SMOs are quite simple. The first six steps are preparing tables to
have the exact same columns so they can be merged in Step 7. We will take a look
at a couple of complex SMOs to see how we expressed the schema transitions.
Custom Functions

There are four SMOs that used custom functions. They look like this:

ADD COLUMN page_id AS function4la(page_namespace, page_title) INTO cur_page;
ADD COLUMN rev_page AS function4lb(rev_id) INTO cur_revision;
ADD COLUMN page_id AS function4lc(page_namespace, page_title) INTO old_page;

ADD COLUMN rev_page AS function41ld(old_namespace,old_title) INTO old_revision;

Function4la is a function that looks up either the curr_id field or the old_id field
from the cur or old table based on page namespace and page_title. Function41b is a
function that takes rev_id, which is an id for a revision and looks up the page associ-
ated with that revision in the old table. Functiondlc is very similar to function4la,
and looks up the old_id field from the old table and inserts it into the old_page table.

CHAPTER 5. EVALUATION 48

Function41d looks up the revision page based on old_namespace and old_title from
the old table.

These custom functions essentially allow us to express these new columns as
expressions of existing columns and generate them on the fly. For example, func-
tion41b(rev_id) is actually just a table lookup where rev_page is the page id of the
page that rev_id revision is a part of. Allowing these kind of custom functions made
the syntax of SMOs relatively concise, yet very expressive, because we can perform
joins and table lookups to generate the new columns. Quite different from a regular
join to look up data, this particular operation is trivial to reverse. We simply drop
the column.

Merge Operation

Towards the end of this schema operation, we have three merge operations in which
we merge the current tables (the tables that reference the current revision of the wiki
pages) with the old tables (the tables that reference the historical revisions of the
wiki pages). These are expressed with these SMOs.

MERGE TABLE cur_text, old_text INTO text;
MERGE TABLE cur_page, old_page INTO page;

MERGE TABLE cur_revision, old_revision INTO revision;

As mentioned in earlier sections, for the merge operation to work, the columns of
the current and old versions of the tables must match exactly. Most of the SMOs be-
fore these three are preparation to get the columns to match by adding and removing
columns from old and current versions of the tables.

Summary

In this section, we walked through the experience of evolving the most complex
schema change in our dataset using our tool Ratchet. We showed how a complex
change may be broken into several logical steps and using a merge step at the end to
merge all the tables together. We were able to complete these changes automatically..
Using this example, we also explained techniques such as custom functions that allow
even more expressibility in the SMOs. This exercise demonstrates that Ratchet is
capable of handling the complexity found in real world scenarios.

CHAPTER 5. EVALUATION 49

SMO Client

AWS Machine #1 AWS Machine #2

Load
Generator

Postgres DB Server

Figure 5.4: Experiment Setup

5.3 Performance

In addition to being able to handle various schema upgrade requests, one important
aspect of our project is being able to handle them while the system is online. To
evaluate this aspect, we setup the experiment with a load generator that constantly
issue queries to the back end database. In the meantime, we issue several SMOs to
see how the throughput and latency is impacted by our background traffic. In the
following sections, we detail our experiment setup, load generation, and present the
results and lesson learned.

Experiment Setup and Load Generation

We first discuss how we set up our experiment. We use two similarly configured
machines in the AWS cluster. All of our following tests are conducted using Amazon
EC2 instance type m4.large machine hosting the PostgreSQL database server. The
version of PostgreSQL we are running is a modified version of PostgreSQL 9.5 release.
This particular type of instance has two virtual CPUs, and 8GBs of memory, with
450Mbps of dedicated EBS bandwidth.

As shown in Figure [5.4] one of the machines hosts the database server and our
proxy. The other one hosts the client and our load generator. The client takes SMO
inputs and initiates schema changes, while the background load generator constantly
issues request to the database backend. We then observe how our schema change
affects the serving speed measured in queries per second.

To examine how the database reacts to different types of workload, we generate
two mixes of query loads A and B. In query mix A, we simulate a read-mostly query

CHAPTER 5. EVALUATION 50

load, with reads being 90% of the total mix, and writes the remaining 10%. In query
mix B, we simulate a read/write query mix, with reads and writes each making up
50% of the query. In the next section, we will analyze the results of these experiment
and make recommendations on further improvements on online schema evolution.

Analysis of Decomposition Operation

In this section, we take a look at the DECOMPOSE TABLE operation. This operation
splits a table into two tables, each containing a subset of columns from the original
table. These two tables could also share some columns, usually the primary key of
the original table.

In this experiment, we run the decompose operation on a large table, with 10
million rows of entries, so the operation itself will take some time to see the effect it
has on the foreground queries. As mentioned before, we run two sets of generated
queries against the database, at the same time. One is a set containing mostly
(90%) read queries, the other one is a set containing about half read queries and
half write queries. Note that these queries are issued against the same database, but
not necessarily the same table which is undergoing the decompose operation. We
measure the number of queries completed in the previous second, and report that as
the instantaneous QPS.

Figure |5.5| shows how read-mostly queries vary under the stress of a background
schema evolution. Schema evolution, in this case a decomposition of a table starts
around the 10 second mark and ends at the 39 second mark. Before 10 seconds, we
establish a baseline of about 12-13 queries per second. After the schema evolution
starts, it drops down to 6 queries per second at the lowest point. This represents a
drop of roughly 50% in query answering capacity.

Let us examine Figure next, which represents the read /write queries’ variation
under schema evolution. Similar to the first graph, the decomposition of the table
starts around 10 second mark and ends around 40 seconds. First, we notice the
baseline is higher, at above 20 gps. This is because the read queries are mostly
selection queries, and they are selecting from relatively large tables without indexes.
Thus we can conclude, in the base case, read queries are more expensive than the
write queries in our workload mix. However, as soon as schema evolution starts, the
gps rate of the read-write query mix is affected much more than the read-mostly
query mix, reaching an average qps of 7.5 while the view is materializing. The
likely reason for this is the write queries in the query mix acquires more locks in the
database and there is more contention of these locks as the schema evolution (itself
a write-heavy operation) is taking place.

CHAPTER 5. EVALUATION 51

16

QPS

6

\

. <—— Evolution

S}

0 10 20 30 40 50 60
Time

Figure 5.5: Read Mostly Query QPS under Schema Evolution

Direct vs Delayed Trigger Update

In this section, we evaluate the effectiveness of delayed trigger update vs direct
trigger update. As we mentioned before, creating materialized view automatically
acquires an exclusive lock on the materialized view object, and can therefore block
any triggers trying to update the materialized view. Consequently, any operations
that generate these triggers are also blocked.

This is far from ideal when the materialized view is being built, and building
materialized views can take quite a long time if the size of the original table is large,
as we show below.

Here we look at an example. The desired schema operation is to merge two
large tables with identical schema into one. The sizes of the tables are around 10
millions rows in total. Similar to before, we run two sets of generated queries against
the database, one set being read-mostly queries, and the other being read-write
queries. This time, however, all the queries are referencing one of the tables being
merged. This is considered the worst case, because all the modifications will need

CHAPTER 5. EVALUATION 52

25

20

QPS

Y

<—— Evolution

0 10 20 30 40 50 60

Time

Figure 5.6: Read Write Query QPS under Schema Evolution

to be propagated to the materialized view. We report the instantaneous queries per
second in the graphs below.

In Figure and Figure 5.8 both graphs start their schema upgrade at the
10 second mark. The merge opeartion with direct trigger immediately dropped to
zero QPS, and only recovered after the materialized view completely finish building
itself. This is consistent with our earlier analysis of locking mechanism. The lock
prevented any triggers from updating the materialized view, which in turn prevented
any update queries on one of the tables being merged.

Looking at Figure [5.8, the one where we implemented delayed trigger update
while the materialized view is building, the situation is much better. The foreground
queries were still able to make progress at around 7 QPS per second. This was
achieved without additional priority given to the foreground workload.

Figure [5.9] and Figure [5.10| show the QPS variance under a different type of
workload, this time with half of the workload being writes to one of the original
tables. Similar to the results we obtained above, when we are using Delay Trigger
Update, foreground queries are able to make progress without being blocked by the
background workload. When direct trigger update is used, everything comes to a
halt.

CHAPTER 5. EVALUATION 53

16
14
12

10

0 5 10 15 20 25 30 35 40

Figure 5.7: Read Mostly Query QPS with Direct Trigger while Merging

Lessons learned and Recommendations

We learned a number of important lessons from the above evaluation. First, read-
write workload gets affected more by schema evolution operations than read-mostly
workloads. This is understandable because writes likely run into more locking conflict
with the background operation and cause more disk accesses whereas read operations
can read information cached in memory. Second, the last set of experiments shows
that Delayed Trigger Update must be used when the materialized view is building
itself to avoid blocking. Once it is built, the simpler and more efficient Direct Trigger
Update can be used instead. Third, without priority levels, databases tend to split
their resources between foreground and background tasks fairly.

Because read-only workload are affected less, schema upgrade operations should
be done while the workload is read mostly and off-peak, to avoid heavy interference
between foreground queries and the background schema upgrade.

Using a combination of delayed trigger update and direct trigger update during
different stages of the upgrade process avoids unnecessary blocking due to locking.
This is exactly what we have done in Ratchet.

Without explicitly supporting different priority levels for different requests, Post-

CHAPTER 5. EVALUATION 54

16
14
12

10

(o]

0 d

0 5 10 15 20 25 30 35 40 45

Figure 5.8: Read Mostly Query QPS with Delayed Trigger while Merging

gres treats foreground traffic (our generated query mix) and the background traffic
(the schema evolution traffic) exactly the same. Hence, the foreground traffic is
likely going to be affected by online schema evolution operations on our database
schema with reasonable performance penalties. To further improve the performance
of the foreground queries, we can use some of the client-based or server-based priority
techniques as discussed in Section (1.1

CHAPTER 5. EVALUATION 55

30
25
20
15 L
10

5

)

0 5 10 15 20 25 30 35 40

Figure 5.9: Read Write Query QPS with Direct Trigger under Schema Evolution

CHAPTER 5. EVALUATION 56

30
25
20
15
10

5

.

0 5 10 15 20 25 30 35 40 45

Figure 5.10: Read Write Query QPS with Delayed Trigger Update under Schema
Evolution

o7

Chapter 6
Related Work

Schema Evolution in General

Schema change, in particular schema evolution, has been studied extensively in the
research community [23]. According to the survey papers published in 1995 and
in 2006, more than 300 hundred papers were published that are related to schema
evolution. They tend to cover different aspects of schema evolution. Some focus on
how to perform schema evolution on object-oriented databases[4] [20]. Some focus
on the core operations that address the blocking nature of DDL statements[5] [1].
Some focus on how to recover and revert changes should unexpected events occur
[3]. Some focus on how to keep each and every version history of the database, so
this evolution history can be studied later[24]. Our work focuses on a design and
implementation of a system that supports schema evolution online with acceptable
level of interference and rollback capabilities.

Oracle Edition-based Schema Evolution

Oracle 10g |19] supports online schema evolution by using an edition-based schema
system. Each schema has a version number associated with it. Database clients can
specify which edition the current connection is using. Additionally, the database
provides a mechanism called a cross-view trigger that can take changes in one ver-
sion of the schema and apply it to tables in another version of the schema. There
are several steps to a schema evolution process in this setting. First, the database
administrator creates a new schema version and designs the desired schema with the
new version. In the meanwhile, the older version of the database continues to serve
live traffic. Using cross-version triggers, the database can propagate any changes to
the older version of the database to the newer version schema, and therefore keeping

CHAPTER 6. RELATED WORK o8

the newer version of the database consistent.

This solution is quite similar to ours in principle, but has several differences.
Unlike our solution which builds on views, it is tightly integrated with the database,
and requires additional feature support from the DBMS. Because the notion of edi-
tions is rather database specific, the client that uses this feature is therefore database
specific. Additionally, it is rather heavyweight for simple changes such as adding and
removing a column to a table, whereas we hide the mechanism to accomplish our
schema transformation behind schema operators. This way, we can use simple SQL
DDLs when changes are simple and non-blocking.

Facebook OSC Script

Facebook has used a similar copy-based strategy and applied it to MySQL database.
They created a suite of php scripts and released it in a blog post here [5]. It converts
ALTER TABLE SQL commands into non-blocking operations by creating a copy of
the table being changed. It uses database triggers to copy over the changes to the
original table. Compared to this solution, our solution uses a logical operation unit
SMO that is higher level than ALTER TABLE commands. SMOs serve as a convenient
unit of rollback and commit.

We use the database’s internal support for materialized views when possible
rather than using a separate table. By using a combination of in-place modifica-
tion and copy-based strategies, we can more efficiently handle simple schema changes
to the database when the database supports it well.

Spanner

Spanner|7] uses its TrueTime API to enable it to assign globally meaningful commit
timestamps to its schema change transactions. Hence, it is able to atomically switch
schemas while handling reads and writes. Our work is orthogonal to Spanner’s work,
and can be applied to a distributed environment given Spanner’s ability to atomically
switch schema.

Vitess Schema Swap

Vitess[1§] is a database solution for scaling MySQL, and extends many of MySQL’s
features with scalability of a NoSQL database. It is the backend of all YouTube
database traffic. Vitess provides two ways of changing schema, a direct ApplySchema
command and a Schema Swap approach. The ApplySchema command is used for
short-running, simple schema changes, similar to our in-place update approach. The

CHAPTER 6. RELATED WORK 29

Schema Swap approach is recommended for long running schema changes, similar to
our copy-based approach.

At a high level, Schema Swap uses MySQL’s statement based replication and
backups to apply the changes to all tablets (replicas). It involves five basic steps.

1. Apply schema change to an offline replica
2. Let the offline replica catch up using replication, then creating a backup of it
3. Restore remaining replica but not the master from the backup

4. Failover the master to one of the replicas with the new schema, restore master
from the backup

5. At this point, all tablets have the new schema, and applications can start using
it.

Vitess’s solution is best applied in a distributed setting with many replicas. This
way, taking a replica offline would not drastically degrade the performance of the
overall system. Our method can be similarly applied in a distributed setting with
replication, and has the additional benefit of not taking a replica offline, but at the
cost of more complexity within each replica.

Compared to Vitess, we support different clients accessing the version of schema
before transition and the version of schema after transition simultaneously. We also
support rollback based on SMOs.

Amazon Aurora low-latency DDL

Amazon Aurora recently blogged about their approach to schema evolution [1]. Their
approach is slightly different from ours, and is complementary. The key idea of their
approach is to convert the synchronous action of updating schema and copying data
into an asynchronous copy-on-write process.

When Aurora executes a DDL statement such as adding a column, it modifies the
INFORMATION_SCHEMA table to reflect the change in the system meta table and
records the old schema into a new system table. As soon as these steps are completed,
the system returns control back to the users as if the DDL has completed.

Next, when any row of the table is modified, the system checks if there are any
pending DDLs affecting that row. If there is, the DDL and DML are applied to
the row at the same time. This essentially piggybacks the DDL operation on any
future DML operations, and gains efficiency as a result. There is a caveat. When
the relevant data is queried, the query engine modifies the row before returning it

CHAPTER 6. RELATED WORK 60

to the user, even though the underlying storage might have a mix of old and new
schema formats.

The approach taken by Aurora is orthogonal to the approach we are taking. While
they are reducing the perceived latency of the DDL operations, we are reducing the
locking of actually performing the DDL operations. Aurora ultimately needs to
perform the DDL operations if there simply are not enough DML operations to
piggyback onto. Aurora’s approach can be integrated into our system as well to
further improve SMO’s latency.

NoSQL system schema evolution

Recently, NoSQL systems have gained popularity due to their flexibility and scal-
ability. These datastores are often schemaless, often addressing database structure
at the application layer. Scherzinger, Klettke, and Storl proposed a language that
allows application developers to manage the schema evolution process on NoSQL
system in a more systematic fashion [25].

Other approaches have been attempted in the NoSQL space as well. Various tools
were developed to manage schema evolution and validate schema at application level
for NoSQL databases|21]. The benefit of doing this is that database evolution is
maintained in synchrony with code evolution, and version control systems maintain
a copy for both the code and database structure.

61

Chapter 7

Conclusion

Schema evolution is becoming more important and more frequent in real-life deploy-
ment of applications. This thesis proposes Ratchet, a first step towards automated
online schema evolution that offers both quality of service for the foreground appli-
cation queries, and safety and reversibility needed by the database administrators.

Built on the previous work on SMOs, and using a combination of techniques such
as in-place update and copy-based strategies, Ratchet handles all proposed SMOs in
an efficient manner. Furthermore, it provides a mechanism to rollback any changes
for all reversible SMOs and allows for combining manual reversal with automated
reversal for schema updates that contain irreversible changes.

To evaluate how Ratchet would handle real-life scenarios, we obtained five years of
schema change history of wikimedia, the underlying software for wikipedia. Ratchet was
able to handle all cases of schema update automatically, after we added type infor-
mation to our SMO implementation. In addition, we evaluated how the foreground
query performance is affected when we launch a schema evolution. We added addi-
tional optimization to remove large locks from schema change process, significantly
improved the foreground query performance during schema evolution.

62

Appendices

A Grammar Rules for Parsing Schema
Modification Statement

grammar SMO;
prog: smo_statement_plus_semi* EQF ;

swallow_to_semi

(5)

smo_statement_plus_semi : smo_statement ’;’ ;
smo_statement
:DROP_TABLE ID # droptable
|CREATE_TABLE ID (bracketlist)? # createtable
|RENAME_TABLE ID INTO ID # renametable
|COPY_TABLE ID INTO ID # copytable
IMERGE_TABLE ID COMMA ID INTO ID # mergetable
|PARTITION_TABLE ID INTO ID COMMA ID WHERE swallow_to_semi # partitiontable
|DECOMPOSE_TABLE ID INTO bracketlist COMMA ID bracketlist COMMA ID bracketlist # decomposetal
| JOIN_TABLE ID COMMA ID INTO ID WHERE swallow_to_semi #jointable
|ADD_COLUMN ID (AS expr)? INTO ID #addcolumn
|DROP_COLUMN ID FROM ID # dropcolumn
|RENAME_COLUMN ID IN ID TO ID #renamecolumn
|COPY_COLUMN ID FROM ID INTO ID (WHERE swallow_to_semi)? #copycolumn
|NOP #noop

b

columnlist: (ID) (COMMA ID)*;
bracketlist:’(’ columnlist ’)’;
paramlist:’ ()’ | bracketlist;

CHAPTER 7. CONCLUSION

expr : function | STRING_LITERAL | NULL;
function: ID paramlist;

STRING_LITERAL: ’"’ (~(>"> | >\r’ | ’\n’) | "> »m>

DROP_TABLE: ’DROP TABLE’;
CREATE_TABLE: °’CREATE TABLE’;
RENAME_TABLE: °RENAME TABLE’;
COPY_TABLE: ’COPY TABLE’;
MERGE_TABLE: ’MERGE TABLE’;
PARTITION_TABLE: ’PARTITION TABLE’;
DECOMPOSE_TABLE: ’DECOMPOSE TABLE’;
JOIN_TABLE: °’JOIN TABLE’;
ADD_COLUMN: ’>ADD COLUMN’;
DROP_COLUMN: °’DROP COLUMN’;
RENAME_COLUMN: °RENAME COLUMN’;
COPY_COLUMN: ’COPY COLUMN’;

NOP: °NOP’;

AS: ’AS’;

INTO: ’INTO’;
NULL: ’null’;
FROM: °FROM’;
IN: ’IN’;

TO: °TO’;
COMMA: °,’;
WHERE: °WHERE’;

1D
(SIMPLE_LETTER) (SIMPLE_LETTER | ’$’ | ’_’ |
SIMPLE_LETTER
: la’..’z?
I)AJ.')Z)
LINE_COMMENT
>//° ~“[\r\nl* -> skip

SPACES
[\t\n\rl+ -> skip

| NEWLINE)* °"’;

)#J

(;O;

L.797))%

63

CHAPTER 7. CONCLUSION 64

ANYCHAR : ("[\r\nl);
NEWLINE : [\r\nl+ ;

B SMOs for Major Schema Change in
Wikimedia

Smo V(41,42) := {

COPY TABLE cur INTO cur_page;

DROP COLUMN cur_text FROM cur_page;

DROP COLUMN cur_comment FROM cur_page;

DROP COLUMN cur_user FROM cur_page;

DROP COLUMN cur_user_text FROM cur_page;

DROP COLUMN cur_timestamp FROM cur_page;

DROP COLUMN inverse_timestamp FROM cur_page;

RENAME COLUMN cur_namespace IN cur_page TO page_namespace;
RENAME COLUMN cur_title IN cur_page TO page_title;

RENAME COLUMN cur_restrictions IN cur_page TO page_restrictions;
RENAME COLUMN cur_counter IN cur_page TO page_counter;

RENAME COLUMN cur_is_redirect IN cur_page TO page_is_redirect;
RENAME COLUMN cur_is_new IN cur_page TO page_is_new;

RENAME COLUMN cur_random IN cur_page TO page_random;

RENAME COLUMN cur_touched IN cur_page TO page_touched;

RENAME COLUMN cur_id IN cur_page TO page_latest;

ADD COLUMN page_id AS function4la(page_namespace, page_title) INTO cur_page;

COPY TABLE cur INTO cur_revision;

DROP COLUMN cur_namespace FROM cur_revision;
DROP COLUMN cur_title FROM cur_revision;

DROP COLUMN cur_text FROM cur_revision;

DROP COLUMN cur_restrictions FROM cur_revision;
DROP COLUMN cur_counter FROM cur_revision;

DROP COLUMN cur_is_redirect FROM cur_revision;
DROP COLUMN cur_is_new FROM cur_revision;

DROP COLUMN cur_random FROM cur_revision;

CHAPTER 7. CONCLUSION 65

DROP COLUMN cur_touched FROM cur_revision;

RENAME COLUMN cur_id IN cur_revision TO rev_id;

ADD COLUMN rev_page AS function4lb(rev_id) INTO cur_revision;
RENAME COLUMN cur_comment IN cur_revision TO rev_comment;
RENAME COLUMN cur_user IN cur_revision TO rev_user;

RENAME COLUMN cur_user_text IN cur_revision TO rev_user_text;
RENAME COLUMN cur_timestamp IN cur_revision TO rev_timestamp;
RENAME COLUMN cur_minor_edit IN cur_revision TO rev_minor_edit;

RENAME TABLE cur INTO cur_text;

DROP COLUMN cur_namespace FROM cur_text;
DROP COLUMN cur_title FROM cur_text;

DROP COLUMN cur_comment FROM cur_text;

DROP COLUMN cur_user FROM cur_text;

DROP COLUMN cur_user_text FROM cur_text;
DROP COLUMN cur_timestamp FROM cur_text;
DROP COLUMN cur_restrictions FROM cur_text;
DROP COLUMN cur_counter FROM cur_text;

DROP COLUMN cur_is_redirect FROM cur_text;
DROP COLUMN cur_minor_edit FROM cur_text;
DROP COLUMN cur_is_new FROM cur_text;

DROP COLUMN cur_random FROM cur_text;

DROP COLUMN cur_touched FROM cur_text;

DROP COLUMN inverse_timestamp FROM cur_text;
RENAME COLUMN cur_id IN cur_text TO old_id;
RENAME COLUMN cur_text IN cur_text TO old_text;
ADD COLUMN old_flags AS "" INTO cur_text;
DROP COLUMN cur_minor_edit FROM cur_page;

COPY TABLE old INTO old_page;

DROP COLUMN old_text FROM old_page;

DROP COLUMN old_comment FROM old_page;

DROP COLUMN old_user FROM old_page;

DROP COLUMN old_user_text FROM old_page;

DROP COLUMN old_timestamp FROM old_page;

DROP COLUMN inverse_timestamp FROM old_page;

DROP COLUMN old_minor_edit FROM old_page;

DROP COLUMN old_id FROM old_page;

DROP COLUMN old_flags FROM old_page;

RENAME COLUMN old_namespace IN old_page TO page_namespace;
RENAME COLUMN old_title IN old_page TO page_title;

CHAPTER 7. CONCLUSION 66

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

COPY

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

TABLE

page_id AS function4lc(page_namespace, page_title) INTO old_page;
page_restrictions INTO old_page;

page_counter INTO old_page;

page_is_redirect INTO old_page;

page_is_new INTO old_page;

page_touched INTO old_page;

page_latest INTO old_page;

page_random AS random(page_id) INTO old_page;

old INTO old_revision;

ADD COLUMN rev_page AS function41d(old_namespace,old_title) INTO old_revision;

DROP
DROP
DROP
DROP

COLUMN
COLUMN
COLUMN
COLUMN

old_namespace FROM old_revision;
old_title FROM old_revision;
old_text FROM old_revision;
old_flags FROM old_revision;

RENAME COLUMN old_id IN old_revision TO rev_id;

RENAME COLUMN old_comment IN old_revision TO rev_comment;
RENAME COLUMN old_user IN old_revision TO rev_user;

RENAME COLUMN old_user_text IN old_revision TO rev_user_text;
RENAME COLUMN old_timestamp IN old_revision TO rev_timestamp;
RENAME COLUMN old_minor_edit IN old_revision TO rev_minor_edit;

RENAME TABLE old INTO old_text;

DROP
DROP
DROP
DROP
DROP
DROP
DROP

MERG
MERG
MERG

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

E TABLE
E TABLE
E TABLE

old_namespace FROM old_text;
old_title FROM old_text;
old_comment FROM old_text;
old_user FROM old_text;
old_user_text FROM old_text;
old_timestamp FROM old_text;
inverse_timestamp FROM old_text;

cur_text, old_text INTO text;
cur_page, old_page INTO page;
cur_revision, old_revision INTO revision;

67

Bibliography

Amazon Aurora Under the Hood: Fast DDL. https://aws . amazon . com/
blogs/database/amazon-aurora-under-the-hood-fast-ddl/.

Antlr Parser Generator. http://www.antlr.org/.

Marcelo Arenas, Jorge Pérez, and Cristian Riveros. “The Recovery of a Schema
Mapping: Bringing Exchanged Data Back”. In: ACM Trans. Database Syst.
34.4 (Dec. 2009), 22:1-22:48. 15SN: 0362-5915. DOI: 10.1145/1620585. 1620589.
URL: http://doi.acm.org/10.1145/1620585.1620589.

Jay Banerjee et al. “Semantics and Implementation of Schema Evolution in
Object-oriented Databases”. In: Proceedings of the 1987 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’87. San Francisco,
California, USA: ACM, 1987, pp. 311-322. 1SBN: 0-89791-236-5. DOI:[10.1145/
38713.38748. URL: http://doi.acm.org/10.1145/38713.38748.

Mark Callaghan. Online Schema Change for MySQ)L. https://www.facebook.
com/notes /mysql - at - facebook /online - schema - change - for -mysql /
430801045932/.

Donald D Chamberlin et al. “A history and evaluation of System R”. In: Com-
munications of the ACM 24.10 (1981), pp. 632-646.

James C Corbett et al. “Spanner: Google’s globally distributed database”. In:
ACM Transactions on Computer Systems (TOCS) 31.3 (2013), p. 8.

Carlo A Curino et al. “Schema evolution in wikipedia: toward a web informa-
tion system benchmark”. In: In International Conference on Enterprise Infor-
mation Systems (ICEIS. 2008.

Carlo Curino et al. “Automating the database schema evolution process”. In:
The International Journal on Very Large Data Bases 22.1 (2013), pp. 73-98.

https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-fast-ddl/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-fast-ddl/
http://www.antlr.org/
http://dx.doi.org/10.1145/1620585.1620589
http://doi.acm.org/10.1145/1620585.1620589
http://dx.doi.org/10.1145/38713.38748
http://dx.doi.org/10.1145/38713.38748
http://doi.acm.org/10.1145/38713.38748
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/

BIBLIOGRAPHY 68

[10]

[11]

[17]

[18]
[19]

[20]

[21]

Hector Garcia-Molina and Kenneth Salem. “Sagas”. In: Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data. SIGMOD
'87. San Francisco, California, USA: ACM, 1987, pp. 249-259. 1SBN: 0-89791-
236-5. DOI: [10.1145/38713.38742. URL: http://doi.acm.org/10.1145/
38713.38742.

J. N. Gray et al. “Readings in Database Systems (2Nd Ed.)” In: ed. by Michael
Stonebraker. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994. Chap. Granularity of Locks and Degrees of Consistency in a Shared Data
Base, pp. 181-208. 1SBN: 1-55860-252-6. URL: http://dl.acm.org/citation.
cfm?1d=190956.190979.

Timothy Griffin and Leonid Libkin. “Incremental maintenance of views with

duplicates”. In: ACM SIGMOD Record. Vol. 24. 2. ACM. 1995, pp. 328-3309.
gRPC open-source universal RPC' framework. https://grpc.io/.

Ashish Gupta, Inderpal Singh Mumick, et al. “Maintenance of materialized
views: Problems, techniques, and applications”. In: IEEFE Data Eng. Bull. 18.2
(1995), pp. 3-18.

Ziyang Liu et al. “Efficient and scalable data evolution with column oriented
databases”. In: Proceedings of the 14th International Conference on Extending
Database Technology. ACM. 2011, pp. 105-116.

David T McWherter et al. “Priority mechanisms for OLTP and transactional
web applications”. In: Data Engineering, 2004. Proceedings. 20th International
Conference on. IEEE. 2004, pp. 535-546.

MediaWiki Code Repository. https://phabricator.wikimedia.org/source/
mediawiki/repository/master/.

Overview of Vitess. http://vitess.io/.

Performing Online Application Upgrade Using the Edition-Based Redefinition
Feature. http://www.oracle . com/webfolder/technetwork/tutorials/
obe/db/11g/r2/prod/appdev/ebr/ebr_otn.htm.

Young-Gook Ra and E. A. Rundensteiner. “A transparent schema-evolution
system based on object-oriented view technology”. In: IEEE Transactions on
Knowledge and Data Engineering 9.4 (July 1997), pp. 600-624. 1sSN: 1041-
4347. DOI: 10.1109/69.617053.

Dave Brondsema Rick Copeland Mark Ramm and Jonathan Beard. Model
FEvolution and Migrations. http : / /ming . readthedocs . io/en/ latest /
migrations.html.

http://dx.doi.org/10.1145/38713.38742
http://doi.acm.org/10.1145/38713.38742
http://doi.acm.org/10.1145/38713.38742
http://dl.acm.org/citation.cfm?id=190956.190979
http://dl.acm.org/citation.cfm?id=190956.190979
https://grpc.io/
https://phabricator.wikimedia.org/source/mediawiki/repository/master/
https://phabricator.wikimedia.org/source/mediawiki/repository/master/
http://vitess.io/
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/appdev/ebr/ebr_otn.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/prod/appdev/ebr/ebr_otn.htm
http://dx.doi.org/10.1109/69.617053
http://ming.readthedocs.io/en/latest/migrations.html
http://ming.readthedocs.io/en/latest/migrations.html

BIBLIOGRAPHY 69

[27]

Craig Ringer. Priorities. https://wiki.postgresql.org/wiki/Priorities.
John F Roddick. “A survey of schema versioning issues for database systems”.
In: Information and Software Technology 37.7 (1995), pp. 383-393.

John F. Roddick. “A survey of schema versioning issues for database systems”.
In: Information and Software Technology 37 (1995), pp. 383-393.

Stefanie Scherzinger, Meike Klettke, and Uta Storl. Managing Schema Evolu-
tion in NoSQL Data Stores. Aug. 2013.

Michael Stonebraker et al. “The Design and Implementation of INGRES”. In:
ACM Trans. Database Syst. 1.3 (Sept. 1976), pp. 189-222. 1sSN: 0362-5915.
DOI: 10.1145/320473.320476. URL: http://doi.acm.org/10.1145/320473.
320476l

Twitter - Merv Adrian. https://twitter.com/merv/status/667048388958011392.

https://wiki.postgresql.org/wiki/Priorities
http://dx.doi.org/10.1145/320473.320476
http://doi.acm.org/10.1145/320473.320476
http://doi.acm.org/10.1145/320473.320476
https://twitter.com/merv/status/667048388958011392

	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges in Schema Update
	Previous work and Contribution
	Outline

	Background
	Materialized views and their roles in schema upgrades
	Database Triggers
	PostgreSQL's Materialized View Refresh
	Database Locking
	Locking mechanism in PostgreSQL

	Architecture
	Design Goals and Requirements
	Schema Modification Operator
	Overall Architecture
	Proxy
	Client Access Library
	Server Side Modification

	Life of a Schema Evolution Operation
	SMO Class Structure
	Life of a Simple SMO
	Life of a Complex SMO
	Rollback Process for Schema Evolution

	Evaluation
	Validating correctness and reliability
	Case study: a Major Change in MediaWiki Schema
	Performance

	Related Work
	Conclusion
	Appendices
	Grammar Rules for Parsing Schema Modification Statement
	SMOs for Major Schema Change in Wikimedia

	Bibliography

