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Abstract


Node-Pore Coded Coincidence Correcting Microfluidic Channel Framework: Code Design
and Sparse Deconvolution


by


Michael Kellman


Master of Science in Electrical Engineering and Computer Science


University of California, Berkeley


Professor Michael Lustig, Chair


We present a novel method to perform individual particle (e.g. cells or viruses) coincidence
correction through joint channel design and algorithmic methods. Inspired by multiple-
user communication theory, we modulate the channel response, with Node-Pore Sensing,
to give each particle a binary Barker code signature. When processed with our modified
successive interference cancellation method, this signature enables both the separation of
coincidence particles and a high sensitivity to small particles. We identify several sources
of modeling error and mitigate most e↵ects using a data-driven self-calibration step and
robust regression. Additionally, we provide simulation analysis to highlight our robustness,
as well as our limitations, to these sources of stochastic system model error. Finally, we
conduct experimental validation of our techniques using several encoded devices to screen a
heterogeneous sample of several size particles.
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Chapter 1


Introduction


The Coulter principle [1] is a ubiquitous method for accurately measuring the number and
size of particles in a solution [2]. The method is based on detecting and measuring a current
pulse generated by a particle (e.g. cells or viruses), suspended in an electrolyte solution,
as it flows through an aperture or channel that has an applied voltage potential across it.
Since its inception in the 1950’s, the Coulter principle has been used in a number of diverse
applications, from biomedical (e.g. automated red blood cell counting [3]–[5], viral/pathogen
detection [6]–[11], DNA detection [12]–[17]) to industrial applications (e.g. food [18], cos-
metics [19]). Key to many of these applications is that the size of the aperture or channel
width must be commensurate to that of the particles to be measured in order to ensure a
high signal-to-noise ratio (SNR). In the case of measuring a heterogeneous mixture, when
too small of an aperture or channel width is used, larger-sized particles can lead to clogging.
Conversely, when too large an aperture or channel width is used, smaller-sized particles may
go undetected due to low SNR. Thus, despite the overall simplicity and wide utility of the
Coulter principle, challenges still exist.
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Figure 1.1: Illustration of Coincidence Events: (a) a single particle transiting the channel, (b)
horizontal coincidence of two particles, (c) partial coincidence of two particles, (d) vertical
coincidence of two particles.
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Another well-recognized design challenge for any appropriately sized aperture or channel
width is that arising from coincidence events[3], [20]–[22], i.e. when two or more particles
enter the sensing region simultaneously. Such events lead to errors whose level of severity
depends on the degree at which coincidence occur: almost no overlap, horizontal coincidence
(Fig. 1.1b), to partial overlap (Fig. 1.1c), to extreme overlap, vertical coincidence (Fig.
1.1d). In general, coincidence events lead to ambiguities in detection, error in size (and,
in turn, incorrect size distributions in a population), and missed rare events. Coincidence
corrections range from simple removal of the particular detection to complex algorithms [20],
[21], [23]–[25].


Correction of these errors can be compensated statistically by estimating the expected
number of detection counts that were coincident events. This is achieved by modeling the
expected number of particles in the sensing region as a Poisson process, parametric with the
volume of the sensing region and number of detections [20], [21], [23]. Another correction
involves screening the same sample at several known dilutions and then computing the actual
count as well as the rate of coincidence events [24], [25]. Today, commercial Coulter counters
utilize the first method to statistically perform coincidence correction [26]–[28], based on the
number of particles detected and volume of the sensing region. While these methods might
be accurate for correcting distributions, they do not resolve individual coincidence events.
This is problematic when detecting specific and small sub-populations or rare cell events [6].


With the goal of achieving individual particle coincidence correction for applications of
high-throughput screening, several impedance-based multi-channel designs have been pro-
posed, each of which relies upon a unique signal-encoding mechanism (e.g. individual sensing
electrodes [29], frequency-division multiplexing [30], orthogonal-code-division multiplexing
with co-planar electrodes [31], [32]) that ultimately gives each channel of the device a signa-
ture enabling separation. While these designs allow the detection and separation of particles
simultaneously transiting di↵erent channels, they fail to provide adequate coincidence correc-
tion when two or more particles transit the same channel simultaneously. Then to achieve
the goal of a higher sensitivity to smaller particles, that would otherwise have SNR too
low to detect, several single-channel designs have been proposed, each relying upon, again,
a signal-encoding mechanism (e.g. channel sidewall modulation [33], electrodes on top and
bottom of the channel [34], co-planar electrodes [35]). However, these methods do not enable
individual particle coincidence correction.


Recently, a work by Liu et al.[31], [32] developed an approach that can perform the
separation of coincidence particles transiting spatially-multiplexed channels based on the
principles of code-division-multiple-access (CDMA) from communication theory. Their solu-
tion is part enabled by their electrode-encoding mechanism that di↵erentially encodes each
channel with a quasi-orthogonal signature and in part by their iterative interference cancella-
tion algorithm. Their method is successful in separating coincidence corrections, but requires
complex circuit-system modeling to properly calibrate the system [32] and their choice of bi-
nary codes have sub-optimal separation properties for coincidence correction within a single
channel.


Here, we propose a joint channel design and processing framework that achieves high
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sensitivity for small particles and individual particle coincidence correction, while maintain-
ing only a single external measurement and a single channel configuration. By modeling the
single microfluidic channel as a communication system that encodes passing particle signals
like packets of information, we can apply the signal processing from multi-user communi-
cation theory [36] to detect and separate particles in coincidence settings. Specifically, we
achieve this by amplitude modulating our channel response with Node-Pore Sensing [37],
[38] (NPS) to generate a modified Barker [39] binary-code sequence. The Barker code’s
structure allows us to take advantage of its optimal quasi-orthogonal properties to resolve
coincidences. Furthermore, with its special filtering properties, we can also achieve a gain in
SNR, thereby providing a higher sensitivity to smaller particles.


We formulate the coincidence correction problem as a sparse deconvolution inverse prob-
lem and exploit the channel design and sparsity of particles flowing through the channel to
provide an e�cient solution via a successive interference cancellation (SIC) algorithm. With
analysis, we highlight the robustness, as well as the limitations, of our method to several
sources of stochastic system model error and experimental error. Additionally, we propose
modifications to the SIC algorithm, which include a data-driven system model calibration
step and a robust particle size estimate step, to mitigate the e↵ects of system model error.
Experimental validation is performed via the fabrication and measurement of several encoded
devices and subsequent screening of heterogeneous samples. Finally, we discuss how to pick
which length code to use, other coding schemes, and other sources of system modeling error.







4


Chapter 2


Methods


2.1 Coding Microfluidic Channels


Balakrishnan et al. [37], [38] previously demonstrated that impedance measurements of a
microfluidic channel can be modulated by fabricating channels with locally wider (nodes)
and narrower (pores) regions in specific sequences (Fig. 2.1a), hereafter referred to as NPS
channels. As a particle transits from a node to a pore, the impedance response will increase
proportionally to the ratio between the particle’s volume and the pore’s cross sectional area
[40] as described in Equation 2.1 where R is the baseline impedance, �R is the increase in
impedance, d is the diameter of the particle, L is the length of the channel, and D is the
e↵ective diameter of the channel.


�R


R


=
d


3


LD


2


1


1� 0.8( d


D


)3
(2.1)


Because a node’s cross sectional area is much larger than the particle, as a particle transits
from a pore to a node, the impedance response will nearly return to baseline (Fig. 2.1b),
thus enabling the impedance response’s binary amplitude modulation. Similar to the binary
amplitude modulation used in communication systems [41], NPS coding can be used as
the general encoding mechanism to provide structure in the system response of microfluidic
channels[38].


We utilize the flexibility of NPS channel encoding to amplitude modulate our channel’s
response with the Barker coding scheme: a binary sequence ubiquitous in communication
systems (e.g. Direct Sequence Spread Spectrum in 802.11b Wi-Fi [41] and in radar for high-
resolution detection and ranging [42]). To describe the encoding scheme’s unique properties,
it is useful to draw on analogies between Barker-coded NPS channels and classic commu-
nication theory. Thus, in the terminology of communication theory, the measured signal
response of a single node or pore, with its associated transit time (⌧), is a symbol and the
bandwidth (BW ) of the channel’s encoding or symbol-rate is one over the symbol’s transit
time (i.e. BW = 1


⌧


).
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Figure 2.1: Device and Code Design: (a) A photograph of a pair of polydimethylsiloxane
(PDMS) channels encoded with wider (nodes) and narrower (pores) regions bonded to a
glass substrate with a pair of electrodes. The zoomed in region of photograph highlights a
portion of the computer aided design schematic of the two channels’ interleaved nodes and
pores. (b) The top view of a channel as a single particle transits and the expected impedance
signature from the Manchester-Barker length 13 encoding sequence. Vertical dashed lines
highlight the correspondence between segments of the channel and the binary code. (c)
Quasi-orthogonality (pulse compression) properties of the transitional Barker length 13 se-
quence and the Manchester-Barker length 13 sequence we utilize to encode our channels.


The central appealing property of the Barker-coding scheme is its quasi-orthogonality
(referred to as pulse compression in communication theory), such that when correlated with
its model, the response gives a focused high-energy peak at the point of perfect overlap and
a minimal response at all other shifts (side-lobes) (Fig. 2.1c). The full width half max
(FWHM) of the peak, referred to as the temporal resolution, is proportional to the transit
time of a single symbol and represents the minimum distance by which two particles can be
separated. Additionally, the height of the peak represents the gain in SNR we expect and
is proportional to the square root of the number of symbols divided by the bandwidth (i.e.


gain =
q


# symbols


BW


). The bandwidth of our encoding scheme can be controlled via the speed
of particles flowing through the channel and by the dimensions of the channel.


Due to the one-sided nature of our amplitude modulated impedance signal, we took a
similar approach to Levanon et al. [43] and adapted the Barker code by encoding its bit-
values in signal transitions, Manchester encoding [44] (i.e. +1 as high-to-low transition,
-1 as low-to-high transition). Impedance transitions from high-to-low are achieved with a
pore-node sequence and low-to-high with a node-pore sequence. The combined Manchester-
Barker code, hereafter referred to as MB codes, is shown in Figure 2.1b. The result is a
binary sequence that is double in length and has similar properties in terms of the quasi-
orthogonality and SNR gain to that of the traditional Barker code when correlated with the
model, hereafter referred to as matched filtering (highlighted in Figure 2.1c).
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Figure 2.2: Coincidence Event and Forward Model Construction: (a) a traditional Coulter-
counter channel and (b) a Coulter-counter MB length 13 encoded channel and their resultant
impedance signals during coincidence event. In this coincidence event, a smaller faster
particle #1 travels at a speed of v1 and generates a pulse with height ↵1 and duration ⌧1


and a larger slower particle #2 travels at a speed of v2 and generates a pulse with height
↵2 and duration ⌧2. (c) An illustration of the decomposition of the signal resulting from
the coincidence event in (a) into Equation 2.3: a forward model, A, a sparse vector, x, a
baseline, b, and a noise term, n. The forward model is a dictionary of channel response
signals parametrized by arrival and transit-time. x is a sparse vector representing individual
particle’s amplitudes at indices representing the arrival and transit time of these particles.


2.2 Algorithmic Methods


System Modeling


As a particle transits the channel at constant pressure, it generates an impedance signal
response that depends on the node-pore encoding, the length of the channel, and the velocity
of the particle. If a similar particle transits the channel at another time with the same
velocity, it will produce a similar impedance signal response. If a particle has a di↵erent
velocity, from following a di↵erent velocity streamline or due to interactions with the channel
sides, the impedance response will have a similar shape, but will be dilated or compressed
in time. Furthermore, if in a coincidence event, the impedance signal response will be
the superposition of their respective impedances had each particle transited the channel
individually. Thus, the impedance measurement of the channel response (y


t


) for particles
passing through the channel can be well approximated as a linear time-invariant (LTI) system
that is parametrized by each particle’s transit time. This allows particles transiting the
channel to be modeled as a convolution of a time-dilated system response (h


⌧


) with a series
of scaled impulse functions (x


t


) (Fig. 2.2a-b). Each impulse represents the arrival time
and the signal amplitude that is proportional to the associated particle’s size. In addition, a
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time-varying a�ne term is added to account for slow time-varying baseline drift (b
t


). Finally,
we include an additive Gaussian noise term (n


t


), which we assume to have zero mean and
variance corresponding to sensor noise.


y


t


= h


⌧


⇤ x
t


+ b


t


+ n


t


(2.2)


A discretization of the problem can be formulated in matrix form as


y = Ax+ b+ n, (2.3)


where the columns of A consist of unit-amplitude shifted and dilated dictionary of channel
responses for a range of transit-times and x a sparse vector in which each non-zero element
represents the signal amplitude of an individual particle and which indices represent an
individual particle’s arrival-time and transit-time. This system model is illustrated in Figure
2.2c.


Inverse Problem Formulation


The problem of estimating particles’ signal amplitudes, arrival times, and transit times can
be viewed as a deconvolution. While unconstrained deconvolution is in general a di�cult
problem, in this case, the number of particles passing through the channel is statistically
bounded by the channel length and the particle concentration within the solution. Therefore,
we can pose the deconvolution as the following cardinality constrained linear inverse problem,


min
x,b


||Ax+ b� y||2 + �||Db||2 (2.4)


s.t. cardinality{x 2 range(t, ⌧)} < k


in which the number of particles transiting the channel, cardinality{x 2 range(t, ⌧)}, in a
fixed period of time is constrained by k. We solve Equation 2.4 for approximately sparse
entries in x which correspond to arrival and transit time with amplitude proportional to
the size of the particle. We also simultaneously solve for the baseline term, b, which is
constrained to be smooth using the `2 regularization of its second-order di↵erence. This
di↵erence operator is represented by D. The parameter � controls the bandwidth of the
estimated baseline and is empirically tuned to penalize the high-frequency spectrum of the
baseline signal to not allow cross-talk between the values of x


i


and b.


Implementation of Successive Interference Cancellation


To reduce the computational complexity of the process, we break the input signal into
overlapping blocks. Each block is processed separately, and the results are consolidated
at the end. For each block, we solve the sparse deconvolution using a greedy successive
interference cancellation algorithm, similar to orthogonal matching pursuit [45]. Figure
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Figure 2.3: Successive Interference Cancellation Method: (a) Flow chart of our iterative
SIC algorithm that solves the sparse deconvolution problem posed in Equation 2.4. (b)
Illustration of coincidence event of a larger particle (#1) with two smaller particles (#2,#3)
and a piece of experimental data (outlined in Section 2.4) from a MB length 13 encoded
channel. (c) Step-by-step figures of three iterations of our algorithm applied to experimental
data in part b, (top row) correlation with MB length 13 code’s matched filter bank and circled
(red) detection of peak at arrival and transit time of the current iteration’s detected particle.
Small black arrows indicate undetectable particles in first iteration. (middle row) overlaid
fitted detected model components to experimental data, (bottom row) cancelled interference
from iteration’s current model fit. The cancelled interference signal from previous iteration
is used as input to the next iteration.


2.3a illustrates our method. It is outlined by iterating a sequence of correlations with a
matched filter-bank (i.e., the dictionary), detection, model fitting, and cancellation steps.
Over the iterations we construct a list of the strongest detections, referred to as the list
of detected signal components. We grow the list by adding the strongest unique detection
every iteration. Each iteration we jointly fit all detected signal model components and a
smooth baseline term to the data to estimate the particles’ impedance signal amplitudes.
By cancelling/peeling the strongest signal in each iteration, we allow for the impedance
response of smaller particles to be detected in successive rounds. Figure 2.3b is one example
of experimental data (outlined in Section 2.4) of a coincidence of three particles (one of size
15µm and two of size 10µm) transiting through a MB length 13 encoded channel and Figure
2.3c illustrates three iterations of the SIC algorithm.
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Basic Methodology


In this section, we first describe a basic approach for implementing the SIC algorithm. Figure
2.3c demonstrates several iterations of the algorithm on a block of experimental data. First,
we apply the transpose, i.e. A


T , matrix to the data, hereafter referred to as the matched
filter-bank response, or correlation map c(t, ⌧) parametrized by arrival times t and transit
times ⌧ . This operation is equivalent to filtering with a matched filter-bank of time-dilated
and time-contracted MB codes. The filter bank is comprised of normalized filters each
with a unique transit time parameter such that the continuous parameter space is linearly
discretized over a range of plausible particle transit times. The number of filters in the
filter bank determines the resolution of transit-time parameter estimate and thus e↵ects
the computation complexity as well as accuracy of our method, this is discussed further
in Section 3.1. The top row of Figure 2.3c shows the filter-bank response, in which the
dominating peak indicates a particle’s presence, and red circle indicates its detection. The
small black arrow-heads indicate peaks that are initially obscured by the signal interference
from the large particle, to be later revealed through the peeling process.


We adopt an adaptive threshold detection scheme [42] that is performed on the matched
filter-bank response to localize a particle’s arrival and transit time parameters. The large
dynamic range of particle sizes could yield di↵erent levels of ‘true-peaks’ corresponding to
actual particles, and ‘false-peaks’ corresponding to sidelobes of the matched filter-bank re-
sponse. Therefore an adaptive scheme is necessary to manage false alarms and mis-detections
in a signal with a wide dynamic range of particle sizes. Our adaptive detection scheme is
motivated by the constant false alarm rate criteria [46], where each correlation value c(t, ⌧) is
evaluated against a threshold derived from an estimate of the surrounding signal energy. Let
E(t0, ⌧0) be a function that computes a surrounding signal energy of the correlation function
c(t, ⌧) in a window around t = t0 and ⌧ = ⌧0. In this case, the criteria for detection at point
(t0, ⌧0) is set to be


c(t0, ⌧0) > ↵E(t0, ⌧0), (2.5)


where ↵ is a tuning parameter. Robust estimates of the surrounding signal energy function
as well as selections of ↵ are further discussed in Appendix B.


The detection scheme chooses a list of possible candidate detections, from which a single
unique detection, corresponding to the greatest correlation value, is selected for each itera-
tion. The transit-time and arrival-time estimates for a detection are chosen to correspond
to that of the best correlating filter in the matched filter bank and the time point when that
matched filter response is maximum. Once a detection is added to the list, the amplitude of
all the detected particles are re-evaluated using a least-square regression. The middle row
of Figure 2.3c shows examples of resulting fits. More formally, we define Ã


i


, to be a subset
of columns of A corresponding to signal responses of detected particles by the i


th iteration,
and x̃


i


2 Ri to be the unknown signal amplitudes of the subset of detected peaks by the i


th


iteration. In this case, the entire least-squares fit at the i


th iteration is formulated as,
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min
x̃i,b


kÃ
i


x̃


i


+ b� yk2 + �kDbk2 (2.6)


In each iteration we only solve for a few variables and the baseline and hence the com-
putation complexity of this portion of the algorithm is low.


Finally, the time signals of the detected particles are computed and subtracted from the
acquired signal by computing r = y � Ã


i


x̃


i


. This is illustrated in the bottom row of Figure
2.3c. This residual is used as an input to the next iteration for the purpose of possibly
detecting other particles of equal or lesser size.


This process is repeated until either of the stopping conditions, i.e., no more significant
detections in the block or the process reaches the k


th iteration of SIC are met. The second
stopping criteria enforces the cardinality constraint from Equation 2.4. Finally, in post-
processing, the particle sizes are computed as a function of channel dimensions and pulse
height [40] via Equation 2.1.


2.3 Sources of Model Error


The bottom row of Figure 2.3c illustrates that the interference cancelled signals at each it-
eration have sparse outlier residuals. The presence of sparse residual outliers could possibly
introduce biases into the least-square particle size estimates, errors in the arrival-time and
transit-time estimates, and detections errors. These sparse outlier residuals cannot be fit
by varying the amplitude or transit time of the signal components and thus are a result of
modeling error (discrepancies between the ideal and measured MB signals). The discrepan-
cies can be separated into two components; average and a stochastic. The average deviation
a↵ects all particles equally and could result from channel geometry variation or be due to
miscalculations between the ideal code and the actual device. The stochastic deviations
are small deviations from the model and could arise from random interactions between the
particle and the channel. This could be caused by particles travelling along streamlines with
di↵erent flow-rates; such streamlines could be the result of parabolic flow e↵ects[47].


System Model Calibration


To model the average deviation e↵ect, we use a data-driven calibration step in which we
empirically recalculate the symbol lengths of our MB code to match the average impedance
response of particles that go through the channel. The calibration is achieved by performing
a first pass of detecting high SNR particles (15µm particles in our experiments outlined in
Section 2.4) using the ideal matched filter bank. For each of the detected signatures, we
look at the transit time of each node and pore of the MB code, specifically the number of
samples between signal transitions normalized by the total number of samples of the MB code
signature. This scale invariant measure is then used to compare between the detected particle
signatures and to generate a calibrated model through regression. In our list of detections, a
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small number of the high SNR signals are also coincidence events, thus introducing possibly
incorrect symbol timing measurements into the calibration. To enable our calibration to be
robust to these outlier events, we perform a robust regression [48] rather than a least-squares
regression, by utilizing an `1-norm rather than an `2-norm as seen in equation 2.7.


argmin
zcal


N�1X


i=0


kz
i


� zcalk1. (2.7)


Where z


i


is the vector of normalized symbol timings for the i


th detection and we solve for
the calibrated MB code timings, zcal. Once the calibrated MB code model is estimated, a
new matched filter bank is generated.


Robust Regression Formulation of SIC


Even with the steps described above, we will still have stochastic variation in the transit
of particles that would result in model mismatches between our data and calibrated MB
codes. These mismatches will manifest as outlier residuals, which can be seen clearly in Fig.
2.3c. These sparse outliers can introduce bias into the estimation of the pulse amplitudes.
To reduce this bias, we turn again to a robust regression [48] approach with the following
formulation,


min
x̃i,b


kÃ
i


x̃


i


+ b� yk1 + �kDbk2. (2.8)


In our implementation we solve the robust regression via an iterative re-weighted least-
squares (IRLS) [49] approach (See App. C).


2.4 Experimental Methods


Device Fabrication


Similar to those outlined in Balakrishnan’s et al.[38], we employed standard micro-fabrication
techniques to fabricate planar electrodes onto glass substrates. These electrodes allow us
to perform a four-probe measurement to sense the current through the entire MB-coded
NPS device. Further, we employed standard soft-lithographic techniques to embed our MB-
coded channel in polydimethylsiloxane (PDMS) slabs (See App. D). We implemented three
di↵erent MB-length codes: 7, 11, and 13. We chose the channel height to be 20µm and
overall length as 4 mm. We varied the width of the pores and nodes to maintain a 2.5
ratio of node-to-pore width to ensure the signal would return to baseline when particles
transit from pore to node. Specifically, pores are designed to be 20µm wide and nodes are
designed to be 50µm wide. We also kept a 2.5 pore-to-node length ratio to maintain an equal
transit time of particles in nodes and pores (illustrated in Figure 3.4). This ensures that the
recorded pulses have an equal number of samples in the impedance response for each symbol
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of a particle’s signature (illustrated in Figure 2.1b). To seal the devices, we exposed both
the PDMS slabs and glass substrates with the pre-fabricated electrodes (See App. D) to
oxygen plasma (300mT, 80W, 30sec), aligned the two together, and then permanently bond
the PDMS and glass substrate by heating at 80�C for 30 minutes.


Experimental Setup


We applied a 1V DC voltage across the device and passed the measured current signal
through a current preamplifier (DL Instruments 1211, Brooktondale, NY, USA) to a data
acquisition (DAQ) board (National Instrument PCI-6035E, Austin, TX, USA). The DAQ
sampled the analog signal at a rate of 50 kHz.


We screened a 1 : 1 : 1 ratio mixture of polystyrene microspheres with mean and standard
deviation diameter: µ = 4.9µm, � = 0.44µm (Interfacial Dynamics 1-5000), µ = 9.98µm, � =
1.12µm (Polysciences Inc. 64130), and µ = 14.73µm, � = 1.36µm (Polysciences Inc. 64155)
in phosphate-bu↵ered saline at a concentration of 5⇥ 105 particles/mL. In addition, Bovine
Serum Albumin is mixed into the particle solution at a final concentration of 1% to coat
particles and prevent against clogging and multiparticle aggregates from forming. We flowed
this mixture of microspheres through three device designs (Fig. 3.4 row one): MB length
7, MB length 11, and MB length 13. A flow controller (Elveflow OB1 MK3) was used
to apply 70 mbar of pressure through the channel, resulting in a flow rate of ⇠ 2µl/min.
Prior to applying our methods outlined in Section 2.2, we apply Ohm’s law to our current
measurements to obtain the impedance response. We low pass filter and down-sample our
signal by a factor of 15 to get samples at an equivalent rate of 3.33 kHz.
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Chapter 3


Results & Analysis


3.1 Simulations and Estimator Analysis


In this section we analyze our processing system in terms of the bias and variance of the
estimated pulse heights and transit-times of particles. In addition, we study how reliably
our system can detect particles in a coincidence event. The practical issues governing these
parameter estimators’ performance are the various system model errors present in the mea-
sured signal as well as noise. These result in bias in the pulse-height estimates, variance in
transit-time estimates, and decreased dynamic range of reliable detections as compared to
an ideal system. To evaluate the performance of our system for the di↵erent non-idealities,
we created a tool for simulating the system response of our NPS experimental setup.


Our simulation tool focuses on mimicking both the deterministic and stochastic compo-
nents of our system. The tool is parametric with deterministic channel specific parameters
(z


geo


, a vector containing the node pore ordering and the length of each node or pore in
the channel encoding) and experimental specific parameters (pulse height, ↵, transit time
through the channel, ⌧). The resulting ideal system model simulation, x(↵, ⌧, z


geo


), is sam-
pled at 50kHz. In addition, smooth transition response from nodes to pores (node-pore) and
visa versa is accounted for by convolving x(↵, ⌧, z


geo


) with a normalized Hanning window, k,
with a length that is a percentage of the total length of the system response.


Stochastic system model components for additive noise and random particle-channel in-
teractions are included. Additive white Gaussian noise (AWGN) with zero mean and unit
variance is scaled to experimentally observed levels, �


exp


, and added to the simulation.
Particle-channel interactions manifest by manipulating the channel geometry, now repre-
sented z


stoch


, which is a random vector according to a uniform distribution with mean z


geo


and spread ± a percentage of the total length of the system response. These factors are
summarized below in Equation 3.1.


y


t,sim


= k ⇤ x(t,↵, ⌧, z
stoch


) + �


exp


n


t


(3.1)
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Figure 3.1: Pulse-Height Estimator Analysis: E↵ects of ideal (blue curves) versus simulated
(red curves) system-model error on least-squares (LS) pulse-height estimation compared to
the e↵ects of simulated system-model error on the robust regression (yellow curves) pulse-
height estimation. Estimator bias in percent error from the simulated is plotted as a function
of the particle’s SNR (dB) for MB length 7, 11, 13 encoded channels. This is the observed
range of SNR for the particles in our experiments outline in Section 2.4. Error bars represent
one standard deviation of variability in the error of our estimate.


Pulse-Height Analysis


To isolate and analyze the e↵ect of MB code non-idealities, which we attempt to mitigate
via robust regression, we performed a simulation experiment mimicking our experimental
system. We simulated instances of non-overlapping particles going through MB length 7,
11, 13 encoded channels of the same length that yield a transit time of 150 ms (the average
observed transit time for our experiments outlined in Section 2.4). The random particle-
channel interactions are accounted by uniformly varying the channel geometry, z


geo


by 1% the
total response length and the node-pore transition kernel has length 0.5% the total response
length. The simulated pulses were evaluated at 50KHz sampling rate and down-sampled to
a rate of 3.333kHz. A range of relevant particle sizes were simulated by varying the pulse
height of signatures simulated. In order to match our experimental data, the AWGN is
scaled to have a standard deviation matching that of the experiments, �


exp


= 1.24 ⇥ 10�4


such that the range of pulse heights correspond to a range of SNRs from 0-30 dB. This is
the observed range of SNR for the particle sizes in our experiments outlined in Section 2.4.
Baseline drifts were not simulated here, as their e↵ect is isolated in the regression performed
in Equation 2.6 and Equation 2.8. For each particle size, a 1000 signatures were generated,
from which the pulse heights were estimated with both the least-squares and the robust
regression techniques. The sample bias and variance of the estimates were then computed.


Figure 3.1 highlights the imperfections’ e↵ects on the bias and variance estimator metrics
of the least-square pulse-height estimate side-by-side with our proposed robust regression
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pulse-height estimate. The blue curves in Figure 3.1 show the bias and variance for ideal
responses with varying noise and without stochastic and node-pore transition e↵ects. In that
case, a least-square regression would be suitable for pulse-height estimation. However, in the
presence of the system model imperfections, the least-squares fit would induce significant
additional bias and variance in pulse height estimates, as visualized by the red curves in
Figure 3.1. In contrast, our method of robust regression (yellow curves in Figure 3.1) provides
a reduction in estimation bias and variance over the least-square pulse height estimates on
simulated signals with imperfections over a relevant range of SNR, which correspond to
particle size. Another important observation that is seen in Figure 3.1 is that the robust
regression plays a more important role in the longer codes, MB length 11 and 13. These
more complex codes are more susceptible system model error as they exhibit many more
node-pore transitions.


Transit-Time Analysis


To analyze the e↵ect of MB code non-idealities on our ability to estimate the transit time
through the device, we perform a simulation to empirically measure this estimator’s bias
and variance. Again, we simulated instances of non-overlapping particles going through
MB length 7, 11, 13 encoded channels, but now rather with the transit time of 150.0 ms,
25% faster (112.5 ms), and 25% slower (187.5 ms) (the observed range of transit time for
our experiments outline in Section 2.4). The random particle-channel interactions and node-
pore transitions are accounted for with the same parameters as in Section 3.1. The simulated
pulses were evaluated at 50KHz sampling rate and down-sampled to a rate of 3.333kHz. The
pulse height simulated was set be 4m⌦, corresponding to 15µm particles and held constant,
as this parameter minimally e↵ects the estimate of transit time. Again, baseline drifts were
not simulated here because their e↵ects are isolated in the regression performed in Equation
2.6 and Equation 2.8. The simulated signals’ transit times (a 1000 signatures per transit
time) were then estimated by applying a matched filter bank with 500 filters evenly spaced
from 30ms to 270ms and selecting the transit time corresponding to the matched filter with
the maximum response.


Figure 3.2 highlights the variability of the transit-time estimator through histograms. As
visualized, all encoding configurations have similar shaped distributions of error. Much as in
the case for amplitude estimation, the longer codes demonstrated slightly more sensitivity
to the stochastic variations, highlighted by the increased variances (upper right of each
subplots). Additionally, we observe that slower particles have a greater absolute error in
transit time than faster particles, but have the same relative error. This estimator analysis
helps us to choose the correct number of filters to discretize our transit time parameter space.
The variability due to non-idealities determines the upper bound on our estimator’s accuracy
resolution, thus telling us the fewest number of filters we need to accurately estimate transit
time. It also suggests that the transit time resolution of the filter bank can be coarser for
slow transit time and finer for the faster transit times.
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Figure 3.2: Histograms of Transit-Time Error: Histograms of transit-time error as a percent
of true transit time for a range of transit times: 187.5 ms (left column), 150.0 ms (middle
column), and 117.5 ms (right column) for each channel encoding: MB-length 7 (top row), 11
(middle row), 13 (bottom row). This is the observed range of transit times in our experiments
outline in Section 2.4. The sample mean and variance of each distribution are as indicated.


Dynamic Range Analysis in Coincidence events


Any model mismatch in the SIC process would yield a residual error that could inhibit the
detection of signals from smaller particles. The level of this residual, which could be modeled
as stochastic interference in the correlations with the matched filter-bank would e↵ectively
determine the lower bound on the dynamic range of reliable detections in coincidence events.
For example, the residuals from a mismatched estimate of a 15µm particle could potentially
mask-out the peak correlation of particles smaller than a colloquial 5µm particle – thus lim-
iting the dynamic range in a coincidence event with the 15µm particle to detecting particles
larger than 5µm. Alternatively, the same residual energy could correlate with the matched
filter bank and cause a false alarm detection of a 5µm.


To analyze the e↵ect of MB code non-idealities on our ability to detect particles in
coincidence settings, we manually selected 10µm and 15µm non-coincident detections from
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Figure 3.3: Histograms of True Detections and False Alarms: Normalized histograms of
false-alarm detections, orange, in the presence of manually selected experimental 10µm, and
15µm true detections, blue, for MB length 7, 11, and 13 encoded channels. Sample mean
and sample standard deviation of false-alarm distributions are as indicated. Black dashed
vertical dashed lines represent denote two standard deviations greater than the mean of the
false-alarm distributions.


each experimental setup: MB length 7 (32 and 14 counts respectively), 11 (30 and 37 counts
respectively), and 13 (27 and 29 counts respectively) in post processing. We perform the same
processing as outlined in algorithmic methods on each selected detection with a stopping
criteria of 6 SIC iterations. From the processing we expect exactly a single true detection
to be present. All successive detections that are found are false alarms and can be used to
estimate a distribution of false alarms.


Figure 3.3 shows the histogram of detections from an MB length 7 (top row), 11 (middle
row), and 13 (bottom row) experiments for selected 10µm (left column) and 15µm (right
column) particles. The mean and standard deviations for the false-alarm distributions are
listed within each subplot and thresholds, marked by black dashed vertical lines, denote two
standard deviations above the mean particle size of the false-alarm distribution (a false alarm
probability of 2.275%). These thresholds represent possible lower bounds on the dynamic
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Figure 3.4: Experimental Microsphere Results: (a-c) coded channel designs for MB length 7,
11, 13, respectively, (d-f) single particle detections for MB length 7, 11, 13, respectively, (g-i)
coincidence particle detections for MB length 7, 11, 13, respectively, (j-l) pruned coincidence
particle detections for MB length 7, 11, 13, respectively.


range of particle sizes that we can detect in coincidence settings with an acceptable number
of false alarms detections.


3.2 Experimental Microsphere Results


Experiments were conducted as outlined in Section 2.4, raw data was processed with meth-
ods outlined in Section 2.2, and results are presented in Figure 3.4d-l. We separated the
detections to those with and without coincidence events. In the non-coincidence detections,
visualized in Figure 3.4d-f, distinctive clusters of three di↵erently sized particles are de-
tected. In the coincident setting, visualized in Figure 3.4g-i, the lower range of particle
sizes is flooded with spurious false alarms and only two of the larger distinctive clusters are
present. Motivated by the unreliable detection of smaller particles, detection pruning based
on pulse-height amplitude is performed on coincidence event detections, according to anal-
ysis in Section 3.1 and with results displayed in Figure 3.4j-l. Coincidence detections in the
presence of 10µm and 15µm particles are pruned if their amplitude is less than thresholds
derived from analysis in Section 3.1. From Figure 3.4, we report 5µm, 10µm, and 15µm di-
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Impedance Domain SNR (dB) Matched-Filter Domain SNR (dB)
Particle Size (µm) 5 10 15 5 10 15


MB length 7 1.77 18.89 30.52 22.93 39.98 51.55
MB length 11 1.61 19.33 30.94 24.10 39.69 51.08
MB length 13 2.18 18.47 30.33 23.08 39.57 51.23


Table 3.1: Signal to Noise Ratio Analysis: Average experimental impedance-domain SNR for
5µm, 10µm, 15µm diameter particles for each encoding configuration, experimental matched-
filter domain SNR for 5µm, 10µm, 15µm diameter particles for each encoding configuration.
Particles from non-coincident and coincident events are included in these averages and counts
are reported in Section 3.2.
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Figure 3.5: Experimental Matched Filtering: Example impedance responses from 5µm,
10µm, 15µm particles transiting a MB length 13 encoded channel (from experiments out-
lined in Section 2.4) and their matched-filter response. Red arrows emphasize the scale at
which match filtering is able to boost SNR.


ameter non-coincidence and coincidence event detected particle counts for MB length 13 (27,
161, 86), MB length 11 (78, 228, 116), and MB length 7 (100, 158, 34). Further highlighted
in Figure 3.4 is the wider spread of transit time for 5µm and 10µm particle distributions.
This could be due to the parabolic flow profile [47] across the cross section of the channel.
This would cause the flow-rate to vary from the central axis of the channel, so while the
larger particles remain in the center, smaller particles could move o↵-axis and experience
slower flow-rates.


As discussed earlier, the gain in SNR is due to the properties of matched filtering, and
is specifically helpful when detecting 5µm diameter particles. These particles have low SNR
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Figure 3.6: Experimental Temporal Resolution: Experimental channel responses (from ex-
periments outlined in Section 2.4) for 15µm particles for MB length 7 (a), 11 (b), 13 (c) codes
and the overlay of their matched filter responses (d). Curve colors in panel d correspond to
the di↵erent code’s colors in panels a through c.


(⇠ 1 dB) in the measured signal and show improved SNR (⇠ 23 dB) after matched filtering.
Average SNR for the detected 5µm, 10µm, and 15µm particles (Fig. 3.4) are reported in
Table 3.1 in the measured impedance domain and in the matched-filter domain (counts for
these averages were reported above). Further, Figure 3.5 visualizes this SNR gain with
experimental impedance signatures in the left column and matched-filtered responses of the
same experimental data in the right column. In addition, the left column of Figure 3.5
highlights the wide dynamic range of pulse heights we observe for particles of 5µm (top
row), 10µm (middle row), 15µm (bottom row) diameters transiting our channels.


The gain in temporal resolution due to matched filtering is discussed theoretically in
Section 2.1 and is observed experimentally and highlighted in Figure 3.6. For a constant
length channel, MB length 7, 11, and 13 have increasingly finer temporal resolution inversely
proportional to their code’s BW. Specifically, the FWHM of each correlation peak in Figure
3.6 decreases as their respective code’s BW increases.
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Chapter 4


Discussion & Conclusion


4.1 Discussion


Our MB codes can be characterized by their temporal resolution and number of symbols. The
temporal resolution of a code is determined by the symbol transit time and is controlled by
the flow speed and channel’s dimensions. These specifications are often application specific
parameters, thus special consideration is required when deciding which code to use in a
specific instance.


For a device of fixed length, the MB 13 encoding will have the finest temporal resolution.
The minimum symbol length is limited by the diameter of the particles that are being sized.
The symbol length must be several times longer than the particles’ diameter, such that
modulation of the signal when transiting from node to pore still occurs. Failure to do so
will result in symbol pulses that are not sharp and pronounced, leading to induced system-
modeling error. When the minimum symbol length cannot be met and shorter device are
desired, then shorter MB codes (i.e. MB length 7 and MB length 11) should be used to
encode the channel.


As channel length further increases and the proposed set of MB codes are dilated to fit
the longer channels, desired temporal resolution will decrease and an increased number of
coincidence events could be observed. Applications requiring significantly longer channels
will require a new set of more advanced codes to achieve the same temporal resolution, as the
longest known Barker sequence has length 13. These longer codes will have less favorable
quasi-orthogonality properties than our proposed set of codes, but could still be e↵ective
in providing both gain a in SNR and temporal resolution. Possible candidates for longer
sequences with similar but sub-optimal properties [50] include maximum length sequences
[51], Gold sequences [52], and sequences that are comprised of non-binary symbols [50].


Experimental data has validated our methods and has driven important modifications
and analysis to our algorithmic methods. We observed that decreased bias due to the robust
regression (in agreement with our simulation) is the most important factor in mitigating
the e↵ect of system modeling error. Without this component, significant energy is left in
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the residual signal that well correlates with the system model resulting in false alarms.
We believe, based on our analysis in Section 3.1, that false alarms determine the dynamic
range’s lower limit of detectable particle size in coincidence events and are the limiting factor
of channel-encoding methods for individual particle coincidence correction.


Our analysis, based on simulations with experimentally relevant parameters, suggests
several trends that could influence code selection. While more complex codes (i.e. MB
length 11 and 13) provide a finer temporal resolution and a less pronounced sidelobes than
MB length 7 encoding, they are more susceptible to channel and flow non-idealities due to
the increased number of node-pore transitions. These non-idealities manifest themselves as a
combination of errors: increased pulse height estimator bias, increased transit time estimator
variance, and an increased number of false alarm detections.


We have experimentally observed several other areas of deviation from the ideal system
model: large particles’ node responses do not completely return to baseline, pulse heights
can vary from pore to pore within a single particle response, and the node-pore transitions
are not instantaneous, but smooth. These issues are not completely handled by either of
the calibration or the robust regression steps, thus motivating future work in system model
design and calibration. Possible more complicated system models that could be incorporated
would have more degrees of freedom, which may result in over-fitting the data, thus special
consideration must be taken.


4.2 Conclusion


We have demonstrated that by encoding a microfluidic channel with a MB code arrange-
ment of nodes and pores, we have the ability to increase the sensitivity of the device to
smaller particles and to provide individual particle coincidence correction. Both are enabled
by the joint design of the channel and the sparse deconvolution algorithm. We identify
several sources of modeling error and mitigate most e↵ects via a data-driven system model
calibration step and robust model regression. We analyze the performance of our method to
estimate particle size and transit time as well as the e↵ective dynamic range of particle sizes
we can reliably detect in coincidence settings. Finally, we experimentally validate several
channel designs that fit in our framework by screening a heterogeneous sample of several size
particles through them.
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Appendix A


Code


Software for demonstration and reproducibility purposes are associated with this digital
object identifier:


10.5281/zenodo.861990


Some simulation and experimental results have a run-time that is on the order of hours.
Thus, preprocessed results have been included in the compressed folder labeled Results.


Datasets for demonstration and reproducibility purposes are associated with this digital
object identifier:


10.5281/zenodo.860191
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Appendix B


Adaptive Detection Scheme


Adaptive detection has been used for a wide range of applications in radar and is neatly
explained in the Detection Processing chapter of the book Fundamentals of Radar Signal
Processing [42]. Classic detection methods require the noise and interference statistics of the
signal to be known to select a detection threshold that guarantees a specific false alarm rate
and mis-detection rate. If the noise and interference statistics are unknown, then they can
be estimated from the signal to appropriately select the detection threshold. In addition if
the noise and interference statistics are time-varying then the estimate of the statistics must
be re-estimated often.


A common method to dynamically estimate the noise and interference statistics is cell-
averaging adaptive detection, where a range of samples around the detection being evaluated
are averaged to estimate the noise and interference energy. The energy is then scaled, ↵,
to determine the detection threshold for a specific false alarm rate. This method makes the
assumption that detections are isolated, however in coincidence settings this is not a valid
assumption, motivating an adaptive detection scheme that is robust to multiple detections.
Among several, Ordered Statistic (OS) adaptive detection is a method for robustly estimating
the surrounding signal energy when many detections may be present. The OS adaptive
detection [46] scheme takes the samples from the previously specified range around the
detection being evaluated, sorts them in ascending order, and takes the kth greatest value as
the noise and interference energy level around the detection. Similar to before, the energy
estimate is then scaled, ↵, to determine the detection threshold associated with a specific
false alarm rate.


Our detection scheme implements the OS adaptive detection where we use the median,
k = N


2 of the surrounding samples to be a robust estimate of the surrounding energy. We
then tuned the ↵ parameter to yield low false alarm rates over the dynamic range of particle
sizes we wish to detect. In practice the false alarm detections in the lower SNR regime are
considered for appropriate ↵ selection.
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Appendix C


Iterative Re-weighted Least-Squares


In our implementation, the robust regression performed to fit the data to the model is solved
via iterative re-weighted least-squares (IRLS) [49]. Specifically, by iterating between solving
a weighted least-squares problem (equation C.1) and update step where the weighting term,
W , is recomputed (equation C.2)


min
x̃,b


kW (Ãx̃+ b� y)k2 + �kDbk2 (C.1)


where,W(j,j) =
1


|Ã(j)x̃+ b(j) � y(j)|
(C.2)
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Appendix D


Channel and Electrode Fabrication


We use standard soft lithography to create a negative-relief master of our MB encoded mi-
crofluidic device using SU-8 resist (MicroChem, Santa Clara, CA, USA) on a polished silicon
wafer. We then cast a polydimethylsiloxane (PDMS) mold with the channel embedded.


To make the negative-relief master on the silicon wafer, we first treat the substrate with
hexamethyldisilazane (HMDS, Spi-Chem, West Chester, PA, USA) and then spin coat SU-8
photoresist. For a final height of 20µm, we use SU8 3025 at 4500 rpm for 30 seconds, with
a 5 seconds ramp at 500 rpm. We then place the wafer on a hot plate at 95�C for a 10
minute soft bake and expose it with a mylar mask, that has our device design, to UV light
(22 seconds at 9 mW


cm


2 ). After UV exposure, we place back the wafer on the hotplate for a
post exposure bake (1 minute at 65�C and 10 minutes at 95�C). We use SU-8 developer to
develop and obtain a negative-relief master of our desired design and measure the height of
the features using a profilometer.


The electrodes, to perform a four-point measurement, are patterned onto a glass sub-
strate (VWR, Radnor, PA, USA). We use photolithography to create a negative pattern
the electrodes on the glass substrate. First, we spin Shipley S1813 resist (Fisher Scientific,
Pittsburgh, PA, USA) at 3000 rpm for 30 seconds, bake it on a hot plate at 100�C for 1
minute and then expose the slides with a specific mask under UV light in the same mask
aligner (25 seconds at 9 mW


cm


2 ). We develop the photoresist in MF 321 and thoroughly rinse
it with deionized (DI) water. We perform a three layer deposition, titanium (100) platinum
(250) gold (250) with an electron-gun evaporator, and then an acetone lift-o↵ to remove
excess metal and photoresist. The last step is etching the gold layer on the primary part
of the electrodes. We use a gold etchant (Transene Company, Danvers, MA, USA) for 30s
to expose the platinum layer. Electrodes are then cleaned in a 1:1:10 RCA solution, rinsed
with DI water, and stored in methanol until used in order to ensure they stay clean.






