
Towards Improved Mitigations for Two Attacks on Memory
Safety

Thurston Dang
David Wagner
Petros Maniatis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-209
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-209.html

December 13, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thanks to Nicholas Carlini, Ulfar Erlingsson, Mathias Payer, and David Fifield
and the anonymous reviewers for helpful comments. This dissertation was
supported by Intel through the ISTC for Secure Computing, by the AFOSR
under MURI award FA9550-12-1-0040, the Hewlett Foundation through the
Center for Long-Term Cybersecurity, the National Science Foundation under
grants CCF-0424422 and CNS-1514457, and BEARS.

A special thank you to Google for allowing Petros Maniatis to serve as my
co-advisor.

Towards Improved Mitigations for Two Attacks on Memory Safety

by

Thurston Hou Yeen Dang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Wagner, Co-chair
Dr Petros Maniatis, Co-chair

Professor Vern Paxson
Professor John Chuang

Fall 2017

Towards Improved Mitigations for Two Attacks on Memory Safety

Copyright 2017
by

Thurston Hou Yeen Dang

1

Abstract

Towards Improved Mitigations for Two Attacks on Memory Safety

by

Thurston Hou Yeen Dang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Co-chair

Dr Petros Maniatis, Co-chair

C, C++ and most other popular low-level languages delegate memory management to the
programmer, frequently resulting in bugs. Accordingly, a longstanding problem in computer
security is efficient, backwards-compatible prevention of the data and control-flow exploits
that arise from writing past the end of a buffer or using memory after it has been freed.

In the first part of this dissertation, we consider protection schemes against the most
popular form of control-flow hijacking: return-oriented programming (ROP), which depends
on misusing RET instructions. Control-flow defenses against ROP either use strict, expen-
sive, but strong protection against redirected RET instructions with shadow stacks or other
dual-stack schemes, or much faster but weaker protections without. We study the inherent
overheads of shadow stack schemes (≈10%). We then design a new scheme, the paral-
lel shadow stack, with significantly less overhead (≈3.5%) and better compatibility. Our
measurements suggest it will not be easy to further improve software-only shadow stack per-
formance on current x86 processors, due to inherent costs associated with RET and memory
load/store instructions.

Next, we consider defenses against heap use-after-free, which is an increasingly important
class of memory safety errors. We show that, in principle, page permissions should be the
most desirable approach. We then validate this experimentally by designing, implementing,
and evaluating Oscar, a new protection scheme based on page permissions. Oscar does
not require source code, is compatible with standard and custom memory allocators, works
correctly with programs that fork, and performs favorably — often by more than an order of
magnitude — compared to recent proposals: overall, it has similar or lower runtime overhead,
and lower memory overhead than competing systems.

Yesteryear’s page-permissions-based allocators, including Oscar, all place one object per
virtual page, to allow physical memory to be reclaimed as soon as the object is freed. We re-
visit this principle in Oscar++: we place multiple objects per page, with a secure quarantine
for freed objects on pages that still have other live objects, and efficient inline metadata.
On average, this more than halves the overhead for allocation-intensive benchmarks. We

2

also consider the use of object lifetime, to prevent comingling of short-lived and long-lived
objects on the same virtual page; this shows some promise for reducing memory overhead
from quarantine.

In the last chapter, we conclude with some lessons and common themes from the three
projects.

i

To my parents, Co and Tinh

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Memory Safety . 1
1.2 Direct defenses: enforcing memory safety . 4
1.3 Partial defenses . 4
1.4 This Work . 4

2 The Performance Cost of Shadow Stacks and Stack Canaries 6
2.1 Introduction . 6
2.2 Background . 7
2.3 Related Work . 10
2.4 Challenges . 15
2.5 Design . 16
2.6 Aims . 19
2.7 Method . 20
2.8 Results . 22
2.9 Discussion . 23
2.10 Conclusion . 43

3 Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dan-
gling Pointers 44
3.1 Introduction . 44
3.2 Related Work . 46
3.3 Lock-and-Key Schemes . 50
3.4 Baseline Oscar Design . 57
3.5 Lowering Overhead Of Shadows . 61
3.6 Performance Evaluation . 64

iii

3.7 Extending Oscar for Server Applications . 72
3.8 Discussion . 80
3.9 Limitations and Future Work . 83
3.10 Conclusion . 84

4 Oscar++: Extending Oscar with Multiple Objects per Alias 85
4.1 Introduction . 85
4.2 Implementation . 86
4.3 Results . 94
4.4 Oscar++LP: Oscar++ with Lifetime Prediction 94
4.5 Future Work: Hotness . 100

5 Conclusion 103

A Shadow Stacks 104
A.1 Traditional Shadow Stacks . 104
A.2 Parallel Shadow Stacks . 104

Bibliography 123

iv

List of Figures

1.1 Objects subdividing physical memory across space and time. 1
1.2 Two variables — an 8-byte character array and a 4-byte integer — spatially

adjacent in memory. 2
1.3 The two variables after name has been initialized with Fred. 2
1.4 The two variables after setting name[8], which is beyond the bounds of name. . 2
1.5 Setting name[-2]. 3
1.6 A pointer to name. 3
1.7 counts has been allocated the memory previously allocated to name. 3
1.8 f calls g which calls h. 4

2.1 Traditional shadow stacks. Rx refers to Routine #x. 8
2.2 Possible locations for instrumentation. 8
2.3 Prologue for traditional shadow stack. 9
2.4 Epilogue for traditional shadow stack (overwriting). 9
2.5 Epilogue for traditional shadow stack (checking). 9
2.6 Assembly and machine code of Return Flow Guard (left) and parallel shadow

stack (right) prologues. 14
2.7 Epilogue for traditional shadow stack with checking and popping until a match. 16
2.8 Parallel shadow stack. Rx refers to Routine #x. Compare to the traditional

shadow stack of Figure 2.1. 17
2.9 Prologue for parallel shadow stack. 17
2.10 Epilogue for parallel shadow stack. 17
2.11 Benchmarks for x86, -O3 with RETs (left) or indirect jumps (right) in the epi-

logues. Baseline runtimes are in seconds. Highest overheads are in red, and
lowest overheads are in green. SPEC overheads are geometric means of median
individual benchmark overheads. 24

2.12 Benchmarks for x86, -O2 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of median individual benchmark overheads. 25

2.13 Benchmarks for x64, -O3 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of median individual benchmark overheads. 26

v

2.14 Benchmarks for x64, -O2 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of median individual benchmark overheads. 27

2.15 Benchmarks for x86, -O3 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of minimum individual benchmark overheads. 28

2.16 Benchmarks for x86, -O2 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of minimum individual benchmark overheads. 29

2.17 Benchmarks for x64, -O3 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of minimum individual benchmark overheads. 30

2.18 Benchmarks for x64, -O2 with RETs (left) or indirect jumps (right) in the epi-
logues. Baseline runtimes are in seconds. SPEC overheads are geometric means
of minimum individual benchmark overheads. 31

2.19 Benchmarks for x86, -O3 with RETs (left) or indirect jumps (right) in the epi-
logues. This table shows the standard deviation (in seconds) of each benchmark.
. 32

2.20 Benchmarks for x86, -O2 with RETs (left) or indirect jumps (right) in the epi-
logues. This table shows the standard deviation (in seconds) of each benchmark.
. 33

2.21 Benchmarks for x64, -O3 with RETs (left) or indirect jumps (right) in the epi-
logues. This table shows the standard deviation (in seconds) of each benchmark.
. 34

2.22 Benchmarks for x64, -O2 with RETs (left) or indirect jumps (right) in the epi-
logues. This table shows the standard deviation (in seconds) of each benchmark.
. 35

2.23 Correlation between the percentage of RET instructions and the overhead. . . . 36
2.24 Epilogue for parallel shadow stack, augmented to save and restore %ecx. 37
2.25 Epilogue for parallel shadow stack, augmented to save and restore %ecx, and loop

in the event of a mismatch. 37
2.26 Epilogue for parallel shadow stack, augmented to save and restore %ecx, loop in

the event of a mismatch, and load/update the pseudo-shadow stack pointer. . . 38
2.27 Benchmarks for x86, -O3 with our hybrid traditional/parallel shadow stacks. . 38
2.28 Unsafe prologue (left) and safe prologues (right). 42
2.29 Sometimes unsafe vanilla (left) and peephole optimized (middle) prologues, and

a very unsafe peephole optimized prologue (right). 43
2.30 Safe (left) and very unsafe peephole optimized (right) epilogues. 43

3.1 Top: someFuncPtr and callback refer to the function pointer, stored on the heap.
Bottom: userName reuses the freed memory, formerly of someFuncPtr/callback. 45

vi

3.2 The code from Figure 3.1, instrumented with explicit lock-and-key and changing
the lock. 51

3.3 Each pointer has a key, each object has a lock. 51
3.4 Lock change (see Figure 3.3 for the ‘Before’). 52
3.5 Key revocation (see Figure 3.3 for the ‘Before’). 52
3.6 After pointer nullification (see Figure 3.1 for the ‘Before’), object space can be

reused safely. 52
3.7 The code from Figure 3.1, instrumented with explicit lock-and-key and revoking

the keys. 53
3.8 The virtual page has been made inaccessible: accesses to objects A, B or C would

cause a fault. 54
3.9 With one object per page, we can selectively disable object B.

. 55
3.10 Each object has its own shadow virtual page, which all map to the same physical

frame. 55
3.11 SPEC CPU2006 C/C++ benchmarks, showing the overhead as we reach the full

design. 60
3.12 Predicting syscall overhead. See Figure 3.13 for a magnified view of the bottom-left. 61
3.13 Predicting syscall overhead, magnifying the bottom-left of Figure 3.12. 61
3.14 Left: Simplified lifecycle of a chunk of memory. Right: The destroyShadow

syscall has been modified to simultaneously destroy the old shadow and create a
new one. 63

3.15 SPEC CPU2006 C/C++ benchmarks, showing the benefits of our optimizations. 65
3.16 The 4 allocation-intensive benchmarks. Note that the first two columns are near

zero for each benchmark. 66
3.17 Runtime overhead of SPEC benchmarks against DangSan, DangNull, FreeSentry,

and CETS. Some overheads are based on results reported in the papers, not
re-runs (see legend). ’?’ indicates that FreeSentry did not report results for
libquantum. 67

3.18 Runtime overhead of the remaining SPEC benchmarks. The y-axis differs from
Figure 3.17. Results were reported by DangSan and DangNull, but not FreeSentry
or CETS. Some overheads are based on results reported in the papers, not re-runs
(see legend). ’?’ indicates that DangNull did not report results for dealII, om-
netpp, or perlbench, and we could not re-run DangSan on omnetpp or perlbench. 68

3.19 Memory overhead on CPU2006. DangNull reported a baseline of 0MB for libquan-
tum, so an overhead ratio is not calculable. 70

3.20 Memory overhead on CPU2006 (continued). ’?’ indicates that DangNull did
not report memory usage for dealII, omnetpp, or perlbench, and we could not
re-run DangSan on the latter two. 71

3.21 Throughput of Oscar on memcached. 79

4.1 Oscar++ linked list . 91

vii

4.2 Oscar++ metadata for head (left) and tail (right) objects. A = truly aliased (see
Section 4.2.3), L = live object, H = head. 92

4.3 Oscar++ runtimes for the six higher-overhead non-Fortran SPEC CPU2006 bench-
marks. n = maximum lifetime number of additional allocations per alias, for
Oscar++. 95

4.4 Oscar++ runtimes for the non-Fortran SPEC CPU2006 benchmarks, other than
the six higher-overhead benchmarks of Figure 4.3. n = maximum lifetime number
of additional allocations per alias, for Oscar++. The y-axis is different from
Figure 4.3. 96

4.5 Oscar++ runtimes: geometric means. n = maximum lifetime number of addi-
tional allocations per alias, for Oscar++. The y-axis is different from previous
figures. 97

4.6 Runtime and user-mode memory of Oscar++ with and without lifetime prediction
on the 1st perlbench benchmark. Individual data points show different values of
n (maximum lifetime number of additional allocations per alias). 99

4.7 Access patterns: short-lived, long-lived cold, and long-lived hot objects. 101
4.8 Access patterns: a finer-grained look at long-lived cold objects. 102

viii

List of Tables

2.1 Security properties of each mechanism.
RA = return address, Data = any data in the stack above the canary/return
address of the current frame. Y = protected, N = vulnerable to overwrite. . . . 10

2.2 Reported overheads of shadow stacks. Schemes are roughly sorted by the modi-
fications involved. 10

2.2 Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by
the modifications involved. (cont.) . 11

2.2 Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by
the modifications involved. (cont.) . 12

2.2 Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by
the modifications involved. (cont.) . 13

3.1 Comparison with Dhurjati and Adve. Green and a tick indicates an advantageous
distinction. ∗ Oscar unmaps the shadows for freed objects, but Linux does not
reclaim the PTE memory (see Section 3.9). 47

3.2 Comparison of lock-and-key schemes. Green and a tick indicates an advantageous
distinction. 57

3.3 Illustrated guide to laundering. 74

4.1 Illustration of how malloc and free() events are handled by Oscar++. 86

A.1 Instrumented prologue before peephole optimization. 113
A.2 Instrumented prologue after peephole optimization. 115
A.3 Instrumented epilogue before peephole optimization. “retaddr from PSS” refers

to return address from parallel shadow stack. 117
A.4 Instrumented epilogue after peephole optimization. “retaddr from PSS” refers to

return address from parallel shadow stack. 119

ix

Acknowledgments

Thank you to my co-advisors David Wagner and Petros Maniatis, for being exceptionally
patient, kind, and supportive mentors. Thank you for giving me a chance when I was just
a lost computational biology student without a klee-r direction (sorry!), and guiding me on
the long and windy road that is my grad school journey; from the abyss of bochs, through
the dark valley of formal verification, to this dissertation. You both rekindled my interest
in computer security, and taught me the joys and challenges of systems security research. I
feel exceptionally fortunate and privileged to have been able to learn from you.

Thank you to all the faculty who served on my committees and generously gave their
time and expertise:

• John Chuang: dissertation committee

• Vern Paxson: qualifying exam and dissertation committees. Thanks as well for your
Network Security class; it was a highly engaging and influential course, that cemented
my interest in computer security.

• Dawn Song: qualifying exam committee

• Allan Sly: masters thesis, qualifying exam, and dissertation committees. Thanks for
your Probability for Applications class, which laid the groundwork for my statistics
masters.

• Satish Rao: masters thesis committee. Thanks for your Algorithms class, and for
always being friendly and approachable even when I wasn’t “your” student.

• last but not least, Elchanan Mossel. Thanks for being my masters thesis advisor, PhD
temporary advisor, and a strong advocate and mentor for me throughout grad school.

Thanks to all the wonderful and helpful staff, especially La Shana Porlaris (doubly so:
as grad student services advisor in CS, and then statistics), Xuan Quach, Audrey Sillers,
Angela Waxman, and Shirley Salanio (Center for Student Affairs), and Angie Abbatecola
and Lena Lau-Stewart (to paraphrase the plaque on the 7th floor of Soda, it definitely is
home to top-shelf staff).

This PhD — and my academic journey to follow — would not have been possible without
my mentors from before grad school. Thanks to Catherine Suter, Jennifer Cropley, Vanessa
Venturi, and Miles Davenport, for giving me the opportunity to do computational biology
research after undergrad. While I did not quite get the computational biology PhD that
I envisioned, you have all been excellent role models through your inquisitive and rigorous
approach to research. Thanks to Richard Buckland and Julie Henry for being my undergrad
honors thesis advisors and inspiring instructors for many courses. I am also grateful to
Richard for having ignited my interest in computer security (over a decade ago!), and for
introducing me to the ways of teaching.

x

Thank you to my office mates, David Fifield, Michael McCoyd, and Richard Shin, for
good company and interesting discussions.

Thanks for my parents Co and Tinh, and my siblings Lawrence, Clarence, Jennifer,
Evelyn and Jocelyn, for their love and support.

Thanks to my friends for fun times and for keeping me sane during grad school. Special
mentions to:

• Berkeley: Aditya Nandy (the god/infinite being of chemistry), Allen Chen, Shur
Batmunkh, Michelle Leung (POTATOES POTATOES POTATOES), Cinyi Mao (the
NiCEst), Yuu Ohno, Sarah Almubarak, Aziz Asaly, Chris Yamamoto, Tommy Wu

• UCLA: Ai Ohno, Julia Feng (the OG meme queen), Elena Pulkinen

• UCSD: Natalie McLain, the nugget brigade (Kerk Ang, Katie Chandra, Elodie San-
draz), Rachel Miller (best wishes for your future PhD; I trust that Elodie will find
you a nice, warm volcano), Delaram Sadaghdar, Shelby Nelipovich, Jen Sun, Astrea
Villarroel, Jake Shields, Megan Hayes

• Sydney: Rupert Shuttleworth, Nathania Astria Tan-Shuttleworth, YinLin Ooi, John
Garland

Thanks to Tony Howard for sharing their knowledge and wisdom.
Thank you to Nicholas Carlini, Úlfar Erlingsson and the anonymous reviewers for helpful

comments and suggestions on the shadow stacks and Oscar projects. These projects were
supported by Intel through the ISTC for Secure Computing and by the AFOSR under MURI
award FA9550-12-1-0040.

For the shadow stack project, we also thank Mathias Payer for comments, and the Na-
tional Science Foundation for support under grant CCF-0424422.

For the Oscar project, we also thank David Fifield for comments, and gratefully acknowl-
edge support from the Hewlett Foundation through the Center for Long-Term Cybersecurity,
the National Science Foundation under grant NSF CNS-1514457, and BEARS.

A special thank you to Google for allowing Petros Maniatis to serve as my co-advisor.

1

Chapter 1

Introduction

1.1 Memory Safety

Computer systems have a finite amount of physical memory, from which allocations can
be made, with a specific size and time-limited validity. Figure 1.1 illustrates how memory,
spanning the space [s1, s3) during the time [t1, t3) can hypothetically be shared by objects
a, b, c and d; for example, object b spans the space [s2, s3) during the time [t1, t2). Any
memory outside of those space and time limits does not belong to object b, and accessing
such memory via a pointer to b is a memory safety violation. While many modern languages
such as Java and Python enforce memory safety, other languages – notably C and C++ –
rely on the programmer to use memory correctly, leaving C/C++ programs prone to spatial
and temporal memory errors.

1.1.1 Spatial Memory Safety

A spatial memory error occurs when code accesses memory outside of the space allocated
for an object. Suppose that two variables, an array of characters name and an integer age,
are located contiguously in memory (Figure 1.2).

It is intended that the array name be accessed only between its spatial bounds name[0]

and name[7]; for example, the valid operations:

Figure 1.1: Objects subdividing physical memory across space and time.

a
b

c d

s1 s2 s3
t1

t2

t3

Space

Ti
m

e

CHAPTER 1. INTRODUCTION 2

Figure 1.2: Two variables — an 8-byte character array and a 4-byte integer — spatially
adjacent in memory.

0 0 0 0

char name[8]; int age;

Figure 1.3: The two variables after name has been initialized with Fred.

0 0 0 0

char name[8]; int age;

F r e d \0

Figure 1.4: The two variables after setting name[8], which is beyond the bounds of name.

42 0 0 0

char name[8]; int age;

F r e d \0

1 name [0] = ‘F ’ ;
2 name [1] = ‘ r ’ ;
3 name [2] = ‘ e ’ ;
4 name [3] = ‘d ’ ;
5 name [4] = ‘\0 ’ ; // Null−terminator to i n d i c a t e end o f s t r i n g

would result in Figure 1.3.
However, it is also possible to access beyond the end of the array, thereby using the

variable name to access memory that belongs to age (Figure 1.4):

1 name [8] = ‘42 ’ ;

Many functions in C/C++ can access beyond the bounds of an array; for example:

1 ge t s (name) ;

is given only the starting address of the string/array; in the absence of information on the
size of the array, this function will store as many characters as typed in a line, even if this
means writing past the end of the array. Similarly,

1 s t r cpy (src , name) ;

will copy every character of the string src into name, even if src exceeds the space allocated
for name.

It is also possible to access beyond the start of the array:

1 name[−2] = ‘ x ’ ;

CHAPTER 1. INTRODUCTION 3

Figure 1.5: Setting name[-2].

0 0 0 0

char name[8]; int age;

F r e d \0 x

Figure 1.6: A pointer to name.

name F r e d \0

Figure 1.7: counts has been allocated the memory previously allocated to name.

name 42 \0

counts

which would overwrite whatever variable may coincidentally be located there (Figure 1.5):

1.1.2 Temporal Memory Safety

A temporal memory error occurs when code uses memory that was formerly allocated, but
since free()’d (and therefore possibly reused for another allocation), i.e., an object is ac-
cessed outside of the time during which it was allocated.

Suppose we begin by allocating name from the heap (Figure 1.6):

1 char ∗ name = a l l o c a t e (8 ∗ s i z e o f (char)) ; // Assume we s e t the name to
F r e d

Now suppose the space is freed via:

1 f r e e (name) ;

Note that the value of name has not changed. A future allocation may, by chance, reuse
the same memory:

1 i n t ∗ counts = a l l o c a t e (2 ∗ s i z e o f (i n t)) ; // Rece ives same address as ‘name ’
2 counts [0] = 42 ;

resulting in name and counts being aliased to the same memory (Figure 1.7).
If we printed the value of name as a character array following the write to counts[0],

it would no longer be Fred. Conversely, any updates to name would change the value of
counts.

CHAPTER 1. INTRODUCTION 4

Figure 1.8: f calls g which calls h.

f

g

h call call

return return

1.2 Direct defenses: enforcing memory safety

For spatial memory safety, it suffices to perform bounds checking; for example, to ensure
that 0 ≤ index ≤ 7 when accessing name[index] in Figure 1.2.

For temporal memory safety, a sufficient defense is not let users free() any memory, but
rather to automatically free() when it is safe to do so. For example, after Figure 1.6, the
run-time (as in Java) could detect that name still pointed to the object, and therefore would
not allocate that memory to counts (or any other live allocation). If, however, there were
no longer any pointers to that memory region (e.g., after name = NULL;), then its former
object could be reused.

1.3 Partial defenses

Implementing memory safety is conceptually simple, but can have high run-time and/or
space overhead and have compatibility issues with legacy code. Hence, many defenses have
focused on limiting the damage from memory safety violations. In the above examples, we
changed “non-control data”, such as someone’s age; these are roughly the inputs to functions.
Attackers can often do more damage if they change the “control” data, i.e., influence what
functions/code are run. One defense against these is control-flow integrity (CFI).

Consider a program where the function f may call g, which calls h (Figure 1.8). An
attacker may manipulate the forward edges to call another function. Alternatively, they may
manipulate the backward edges - making the functions return to code of their own choosing
(rather than from h to g, and from g to f). The latter — “return oriented programming” is
more common, and is Turing-complete [91].

1.4 This Work

Chapter 2, “The Performance Cost of Shadow Stacks and Stack Canaries”, is concerned
with efficient ways to protect the return address of functions on the stack, without hardware
extensions.

CHAPTER 1. INTRODUCTION 5

Protecting return addresses is easy in principle — since they are (mostly) well-defined
at run-time as the counterpart to CALL instructions — but protecting indirect jumps/calls
is harder, since the correct target is hard to determine or even ambiguous. Recently, Carlini
et al. [18] demonstrated that, even with the best possible control-flow integrity, “control
flow bending” is still possible in some cases. Additionally, hardware advancements have
made memory safety cheaper. Collectively, these developments make it worthwhile to revisit
memory safety. We focus on heap temporal memory safety in Chapters 3 and 4.

6

Chapter 2

The Performance Cost of Shadow
Stacks and Stack Canaries

Control flow defenses against ROP either use strict, expensive, but strong protection against
redirected RET instructions with shadow stacks, or much faster but weaker protections with-
out. In this work we study the inherent overheads of shadow stack schemes. We find that
the overhead is roughly 10% for a traditional shadow stack. We then design a new scheme,
the parallel shadow stack, and show that its performance cost is significantly less: 3.5%. Our
measurements suggest it will not be easy to improve performance on current x86 processors
further, due to inherent costs associated with RET and memory load/store instructions. We
conclude with a discussion of the design decisions in our shadow stack instrumentation, and
possible lighter-weight alternatives.

2.1 Introduction

One classic security exploit is to redirect the control flow by overwriting a return address
stored on the stack [78]. Although various mitigations (e.g., No-Execute/Data Execu-
tion Prevention [70]) have made this attack and some simple refinements (e.g., return-to-
libc [36]) infeasible, the current state of the art in exploitation — return-oriented program-
ming (ROP [91]) — continues to depend on misusing RET instructions, this time by chaining
together short sequences of instructions (“gadgets”) each of which ends in a RET.1

These attacks could largely, in principle, be prevented using control-flow integrity (CFI)
schemes [1], but CFI has not been widely adopted, in part due to its non-trivial over-
head [106]. Some authors [108, 106] have proposed coarse-grained CFI policies, which greatly
reduced the overhead, as well as making it possible to apply CFI directly to binaries, with-
out requiring source code or recompilation. One notable relaxation is they adopt a more

1The generalizations of ROP — jump-oriented programming [13], or ROP without returns [21] — are
not commonly used in practice [19] and will not be considered further.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 7

permissive policy for RET instructions.2, rather than tracking the return addresses precisely
using a shadow stack (as had been proposed in Abadi et al.’s original formulation [1]) Un-
fortunately, such weaker policies were soon shown to be insecure [46, 33, 19]. Control-flow
defenses against ROP either use strict, expensive, but strong protection against redirected
RET instructions with shadow stacks or other dual-stack schemes such as allocation stacks
[42], or much faster but weaker protections without. However, it is not clear whether the
overhead seen in CFI with shadow stacks is inherent in the shadow-stack functionality, or
an artifact of particular implementations. Since shadow stacks are indispensible to a strong
CFI solution, one goal of this paper was to measure their inherent cost.

There is substantial literature on stand-alone shadow stacks. Some papers report low
overheads, but each paper makes subtly different design decisions and/or does not use stan-
dard benchmarks (see Section 2.3), which makes it difficult to estimate the cost of adding a
traditional shadow stack to coarse-grained CFI.

We do not consider schemes that have dual stacks, but which do not store the return
address in a shadow stack (see Section 2.3). To our knowledge, they have only been imple-
mented in recompilation-based schemes — thus negating the binary-rewritability benefits of
coarse-grained CFI.

2.2 Background

2.2.1 Traditional Shadow Stacks

The purpose of a shadow stack is to protect return addresses saved on the stack from tamper-
ing. Figure 2.1 illustrates a traditional shadow stack, in a scenario where there are currently
four nested function calls. In the main stack, each stack frame is shown with parameters, the
return address, the saved frame pointer (EBP), and the local variables. In the traditional
shadow stack, there is a shadow stack pointer (SSP) — which contains the address of the
top of the shadow stack — and the shadow stack itself, which contains copies of the four
return addresses.

In shadow stack schemes, when a function is called, the new return address is pushed
onto the shadow stack.

When the function returns, it uses the return address stored on the shadow stack to
ensure the integrity of the address where execution returns. This can be done by either
checking that the return address on the main stack matches the copy on the shadow stack,
or by overwriting the return address on the main stack with the copy on the shadow stack
(equivalently, by indirectly jumping to the address stored on the shadow stack).

There are some implementation choices of where to save or check the return addresses.
The return address can be saved before the CALL instruction (“Prologue #1” in Figure 2.2)
or at the prologue of the called function (“Prologue #2”). The return address can be

2There are a variety of relaxed policies for forward-edges, such as allowing indirect calls/jumps to target
any valid instruction boundary, or any location in the relocation table. [108]

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 8

Parameters for R1

Return address, R0

First caller's EBP

Parameters for R2

Return address, R1

EBP value for R1

Local variables

Parameters for R3

Return address, R2

EBP value for R2

Local variables

Return address, R3

EBP value for R3

Local variables

0x8000000

Return address, R0

Return address, R1

Return address, R2

Return address, R3

Main stackTraditional shadow stack

%gs:108

0xBEEF0048

Figure 2.1: Traditional shadow stacks. Rx refers to Routine #x.

Body of foo

Location #3

RET

Location #2

Location #1

Location #4

CALL foo

Figure 2.2: Possible locations for instrumentation.

checked/overwritten before the RET instruction (“Epilogue #1”); alternatively, if we ensure
that every RET instruction can only return to a call-preceded location that is not an unin-
tended instruction (this is the coarse-grained return policy of BinCFI [108]), we can check
the return address at the return site (“Epilogue #2”).

Typically, schemes that propose changes to the hardware (e.g., Ozdoganoglu et al. [81])
find it convenient to modify the CALL instruction to save the return address on the shadow
stack (similar to “Prologue #1”), while binary-rewriting schemes often instrument func-
tion prologues and epilogues by replacing them with “trampolines” (indirect jumps) to the
replacement code[6, 48, 76, 82, 86].

Figure 2.3 illustrates a sample prologue. We assume the shadow stack pointer (SSP) is

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 9

1 SUB $4 , %gs :108 # Decrement shadow stack po in t e r (SSP)
2 MOV %gs :108 , %eax # Copy SSP in to %eax
3 MOV (%esp) , %ecx # Copy return address i n to
4 MOV %ecx , (%eax) # shadow stack v ia %ecx

Figure 2.3: Prologue for traditional shadow stack.

1 MOV %gs :108 , %ecx # Copy SSP in to %ecx
2 ADD $4 , %gs :108 # Increment SSP
3 MOV (%ecx) , %edx # Copy return address from
4 MOV %edx , (%esp) # shadow stack v ia %edx
5 RET

Figure 2.4: Epilogue for traditional shadow stack (overwriting).

1 MOV %gs :108 , %ecx # Copy shadow stack (SS) po in t e r i n to %ecx
2 ADD $4 , %gs :108 # Increment SSP
3 MOV (%ecx) , %edx # Copy return address from SS in to %edx
4 CMP %edx , (%esp) # Compare re turn addre s s e s from SS and main stack
5 JNZ abort
6 RET
7

8 abort :
9 HLT

Figure 2.5: Epilogue for traditional shadow stack (checking).

stored in an arbitrary memory location, %gs:108.3 The code decrements the SSP 4, copies
it into a scratch register (%eax), and then uses the SSP to copy the return address from the
main stack into the shadow stack, using %ecx as another scratch register.

Figure 2.4 illustrates a sample overwriting-style epilogue. The code largely reverses the
prologue: it copies the SSP into a scratch register, increments the SSP, then copies the return
address from the shadow stack into the main stack, using %edx as another scratch register.
The checking-style epilogue (Figure 2.5) is similar, but compares the return addresses on the
main stack and shadow stack, aborting if they mismatch.

3Offset 108 from the segment register %gs; this is similar to how the stack canary is stored on Linux[49]
4We could also decrement the SSP at the end of the prologue, if we moved incrementing SSP to the start

of the epilogue

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 10

Scenario -fstack-protector-all Parallel shadow stack
(fixed offset)

Parallel shadow stack
(randomized offset)

Protected traditional
shadow stack

Check Overwrite Check Overwrite Check Overwrite Check Overwrite

RA Data RA Data RA Data RA Data RA Data RA Data RA Data RA Data

Contiguous writes,
no info disclosure

Y Y N N Y Y Y N Y Y Y N Y Y Y N

Contiguous writes,
with info disclosure

N N N N Y N Y N Y N Y N Y N Y N

Arbitrary writes,
no info disclosure

N N N N N N N N Y N Y N Y N Y N

Arbitrary writes,
with info disclosure

N N N N N N N N N N N N Y N Y N

Table 2.1: Security properties of each mechanism.
RA = return address, Data = any data in the stack above the canary/return address of the
current frame. Y = protected, N = vulnerable to overwrite.

2.2.2 Stack Canaries

Stack canaries are special values stored in stack frames between the return address and local
variables. A contiguous stack buffer overflow would overwrite the stack canary, which is
checked for integrity before the RETs of vulnerable functions [101].

Shadow stacks are sometimes argued to be a type of stack canary: instead of checking
whether an added canary value has been corrupted, the return addresses (and sometimes
the saved frame pointers) are used as canaries [82, 6]. For completeness, we investigated the
overhead of stack canaries.

2.3 Related Work

Table 2.2 summarizes the overheads reported for various software-based shadow-stack schemes.
Many of the papers use an older benchmark suite, SPEC2000; note that SPEC specifically
cautions against comparing individual benchmarks between CPU2000 and CPU2006 [29].
We have omitted a number of studies where the shadow stack is a component of a security
solution, for which we could not infer the cost of the shadow stack alone [85, 84, 79].

Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by the modi-
fications involved.

Reference Scheme Modifications Overhead on macro-benchmarks
Compiler

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 11

Table 2.2: Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by
the modifications involved. (cont.)

Reference Scheme Modifications Overhead on macro-benchmarks
Chiueh & Hsu [25] Shadow stack

(checking)
Compiler Only macro-benchmarks are

short-lived programs (0.63s real-
time for their ctags benchmark,
and <5s for gcc).

Szekeres et al.
[98] Shadow stack

(?)
Compiler
(LLVM plugin)

5% on SPEC2006.

Mashtizadeh et al.
[66] Misc Compiler with

ABI changes
45% on SPECint 2006 when us-
ing an optimization for leaf func-
tions.5.
Cost of stand-alone shadow stack
is only shown in graph form; as
an indication, for xalancbmk, it
is 2.5x baseline for un-optimized.

Assembler file
processor

Vendicator [100] Shadow stack
(checking)

Assembler file
processor

Unknown

Binary rewriting
Prasad & Chi-
ueh [86]

Shadow stack
(checking)

Binary rewriting
with trampo-
lines

1–3% overhead on BIND, DHCP
server, PowerPoint and Outlook
Express.

Baratloo et al.
[6] Shadow stack

(checking)
Binary rewriting
with trampo-
lines

9.5% for quicksort, which they
deemed to be CPU-bound. They
also measured imapd (network
bound), xv (CPU and video
bound), tar (I/O).
All execution times were <6s.

Abadi et al.

5Omitting gcc and perlbench due to compilation issues

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 12

Table 2.2: Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by
the modifications involved. (cont.)

Reference Scheme Modifications Overhead on macro-benchmarks
[1] CFI +

shadow stack
(overwriting)

Binary rewriting
with Vulcan

� 5% on SPEC2000 for the
shadow stack component; >50%
for one benchmark.6

Gupta et al.
[48] Shadow stack

(checking)
Binary rewriting
with trampo-
lines

No macro-benchmarks.

Park et al.
[82] Shadow

stacks
(checking and
overwriting)

Binary rewriting
with trampo-
lines

Checking: 2.56% and 2.58% for
bzip2 and gzip.
Overwriting: 1.56% and 1.7% re-
spectively.
Doesn’t state whether this is com-
press or decompress.7

Corliss et al.
[26] Shadow

stacks
(checking)

Binary rewriting Average not reported, but non-
trivial (overheads exceeds 40% for
some SPEC2000 benchmarks)

Nebenzahl et al.
[76] Shadow stack

(checking)
Binary rewriting
with trampo-
lines

4.33% on bzip2, 4.36% on
gzip, and 7.09% on mcf from
SPEC2000

Dynamic instru-
mentation

Davi et al.
[34] Shadow stack

(checking)
Pin tool 2.17x for SPECint2006, 1.41x for

SPECfp. Run-time of Pin alone
is 1.58x and 1.15x respectively.

Sinnadurai et al.
[95] Shadow stack

(checking)
DynamicRIO 18.21% for SPECint 2000 on

Linux; 24.82% (with compatibil-
ity issues) on Windows.

6CFI + ID check on returns cost 21%, while CFI + shadow stack (without ID check) cost 16%. But
in some benchmarks (e.g., crafty), the shadow stack is cheaper than the ID check (roughly 45% vs. 18%).
Hence, 5% is grossly underestimating the cost of a shadow stack.

7In our own experience, the overhead of instrumented compress is far higher than instrumented decom-
press.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 13

Table 2.2: Table 2.2: Reported overheads of shadow stacks. Schemes are roughly sorted by
the modifications involved. (cont.)

Reference Scheme Modifications Overhead on macro-benchmarks
Zhang et al.
[107] General se-

curity instru-
mentation +
shadow stack
(checking)

PSI 18% overhead on a subset of
SPEC2006.

There are also many hardware assisted schemes [26, 81, 53, 104, 63]; those papers all
report low overheads on SPEC2000 (or a subset thereof), when using the SimpleScalar
simulator. StackGhost [45] was a proposal for a shadow stack on SPARC. We chose to
benchmark instrumentation schemes that could be deployed on today’s hardware.

Ozdoganoglu et al. [81] observed that SPECint programs had higher overhead from in-
strumentation than SPECfp, which they attributed to the higher call frequencies of the
integer benchmarks. They did not calculate a correlation, nor consider the percentage of
memory loads and stores.

Corliss et al. [26] assumes that the stack pointer cannot be modified by an attacker. Such
an assumption would remove the main weakness of our parallel shadow stack (compared to a
traditional shadow stack); however, it is unrealistic given the increasing prevalence of stack
pivots [40].

The choice of checking vs. overwriting the return address is similar to the “ensure, don’t
check” philosophy of SFI schemes [68, 102].

The memory-safety community, besides providing a somewhat heavy-weight solution to
data- and control-flow integrity, has extensively studied how to implement shadow memory.
In the parlance of AddressSanitizer [90], the address mapping used by traditional shadow
stacks is similar to a single-level translation, while the parallel shadow stack is a direct offset
(without scaling).

An ideal shadow stack would be protected from any writes by the attacker. Chiueh
and Hsu’s [25] Read-Only RAD accomplishes this through memory protection, albeit at a
substantial overhead. Abadi et al.’s [1] protected shadow stack has much lower overhead
than Chiueh and Hsu through the use of segmentation (which is not possible on 64-bit) and
the security guarantees of CFI, though the overhead is still not trivial (� 5%; see Table
2.2). While our shadow stacks are unprotected, Szekeres et al. [98] observe that even an
unprotected shadow stack that checks for a match renders an attack “much harder”, since
an attacker would have to modify the return address in two distinct locations. With a shadow
stack that overwrites the return address, an attacker would only have to modify the return
address stored in the shadow stack, but this is somewhat harder than modifying the copy in
the main stack (e.g., a contiguous buffer overflow would not suffice).

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 14

1 mov rax , [r sp]
2 mov f s : [r sp] , rax

1 mov rax , [r sp]
2 mov [rsp+0x1000000] , rax

1 48 8b 04 24
2 64 48 89 04 24

1 48 8b 04 24
2 48 89 84 24 00 00 00 01

Figure 2.6: Assembly and machine code of Return Flow Guard (left) and parallel shadow
stack (right) prologues.

Some schemes use two stacks but do not duplicate the return address, hence we do not
consider them to be shadow stacks, e.g., address space randomization (which uses their
“shadow stack” to store buffer-type variables) [10] and XFI [42] (possibly with hardware
support [16]). Importantly, due to the change in stack layout, they require significantly
more code rewriting than shadow stacks. Xu et al. [104] have separated control and data
stacks (essentially a shadow stack approach, but without the return address on the main
stack). Their compiler implementation had up to 23% overhead on one of the SPECint 2000
benchmarks, and non-negligible overheads on most other benchmarks; they did not quote
an average overhead. Kuznetsov et al. [61] have a “safe stack” that contains the return
address, spilled registers, and other provably safe variables, and a separate unsafe stack.
They benefit from improved locality of frequently used variables on the safe stack, thereby
incurring negligible overhead on SPEC CPU2006, and can even improve performance in some
cases. Dahn et al. [31] and Sidiroglou et al. [93] move stack-allocated buffers to the heap.
Some non-x86/x64 architectures, such as Itanium [57], have a separate register stack.

2.3.1 Return Flow Guard

Microsoft’s “Return Flow Guard” (RFG) [103] appeared in a Windows beta in October
2016. RFG is similar to parallel shadow stacks (to be discussed in Section 2.5) insofar as the
“control stack” is placed at a fixed offset to the main stack, but they store the offset inside
the FS segment register. Figure 2.6 compares the assembly and machine code of RFG and
parallel shadow stacks, with the latter rewritten to highlight the similarities.

The disadvantages of RFG, compared to parallel shadow stacks, is that RFG requires use
of a scratch register as well as the FS segment register. These disadvantages can be overcome
by Microsoft, since they control the compiler and operating system.

RFG’s use of the segment register does have advantages of being able to use a different
offset per thread, and having a shorter instruction encoding. RFG may also have better
information-hiding, by simply not exposing FS in regular application code (similar to the
“safe region” in Code Pointer Integrity [61]), whereas parallel shadow stacks requires a
randomized offset and non-readable code. It is unclear which scheme has lower overhead.

Unfortunately, RFG does have a “design-level bypass” [103] — though it is unclear what
it is — resulting in RFG’s removal. Due to RFG’s similarities with parallel shadow stacks,

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 15

it is natural to be concerned whether parallel shadow stacks shares a similar vulnerability.
Note, however, that Microsoft assumes a very strong threat model for RFG, while parallel
shadow stacks are not claimed to be safe in the presence of information disclosure (Figure
2.1).

2.4 Challenges

In this section, we discuss two issues that make implementing shadow stacks securely chal-
lenging: time of check to time of use (TOCTTOU) vulnerabilities in multi-threaded pro-
grams, and deliberate mismatches between CALLs and RETs.

2.4.1 Time of Check to Time of Use Vulnerability

Epilogues that use the RET instruction in multi-threaded programs are vulnerable to time-
of-check-to-time-of-use (TOCTTOU) attacks: the return address may be correct at the time
of the shadow stack epilogue validation, but be modified by the attacker before the RET

executes. This attack can be prevented by storing the return address inside a register (e.g.,
ecx), performing the validation on ecx, and converting the RET into jmp *%ecx [1].

A similar vulnerability exists for any shadow stack scheme that instruments the prologue,
since between the CALL (when the correct return address is placed on the stack by the CPU)
and the shadow stack prologue, the attacker can modify the return address. This can be
avoided by instrumenting the CALL site, to compute and store the return address in the
shadow stack [1, 84]. Some non-x86 architectures are immune, as they pass the return
address using a “link register” [4].

Nonetheless, many shadow stack schemes (see Table 2.2) do instrument the prologue and
epilogue (with a check performed before the RET); this may be because of its convenience for
binary rewriting with trampolines, incremental deployability on a per-function basis, or the
perceived performance impact of replacing RETs, since it is highly recommended to match
CALLs with RETs [96, 55]. Zhang et al. [106] argue that the TOCTTOU vulnerability with
their use of RET is difficult to exploit (due to the precise timing required), and outweighed
by the benefits of return address prediction. BinCFI [108] goes to great lengths to maintain
the CALL-RET matching despite TOCTTOU exploits, even adding extra stub function calls
rather than using indirect jumps.

2.4.2 Mismatches Between CALLs and RETs

Perhaps the best known violation of CALL-RET matching is setjmp/longjmp, whereby a
function may unwind multiple stack frames. For traditional shadow stacks, a typical solution
(e.g., binary RAD [86]) is to pop the shadow stack until a match is found, or the shadow
stack is empty (denoted with a sentinel value of zero). Figure 2.7 is our hand-compiled
version of the C code from PSI [107].

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 16

1 MOV %gs :108 , %ecx # Copy shadow stack po in t e r (SSP) in to %ecx
2 MOV (%esp) , %edx # Copy return address i n to %edx
3

4 non match :
5 CMP $0 , (%ecx) # I s the shadow stack empty?
6 JZ abort
7 ADD $4 , %ecx # Increment cached copy o f SSP
8 CMP %edx , −4(%ecx) # Check return address
9 JNZ non match # Loop u n t i l match (or shadow stack empty)

10

11 MOV %ecx , %gs :108 # Synchronize SSP
12 RET
13

14 abort :
15 HLT

Figure 2.7: Epilogue for traditional shadow stack with checking and popping until a match.

This is already considerably more complicated than the vanilla traditional shadow stack
epilogue, yet might not even be completely secure in obscure circumstances: if the same
function is called multiple times before longjmp. This can be solved by storing both the
return address and stack pointer [95, 81, 26].

2.5 Design

We devised parallel shadow stacks as a minimal, low-cost implementation of the principle of
shadow stacks, albeit with some security trade-offs.

2.5.1 Parallel Shadow Stacks

As we will show later in Section 2.8, the traditional shadow stack has a non-trivial perfor-
mance overhead. Our results indicate that the overhead comes mainly from the per-execution
cost of the instrumentation we add, multiplied by the frequency of RET instructions in the
program that we are protecting (we do not expect this to be a perfect predictor, due to e.g.,
dependencies resulting in pipeline stalls). Thus, an instrumentation with a lower execution
cost would nearly directly translate into lower overhead.

We introduce a new variant on traditional shadow stacks, which we call a parallel shadow
stack. The main idea is to place it at a fixed offset from the main stack, avoiding the overhead
of maintaining the shadow stack pointer and copying it to/from memory. For example, in
Figure 2.8, the shadow stack is 0x1000000 bytes above the main stack, and the return
addresses in the main stack are parallel to the return addresses in the shadow stack. Single
guard pages (e.g., a page marked non-present in the page table) at the top and bottom of
the shadow stack protect it from contiguous buffer overflows.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 17

Parameters for R1

Return address, R0

First caller's EBP

Parameters for R2

Return address, R1

EBP value for R1

Local variables

Parameters for R3

Return address, R2

EBP value for R2

Local variables

Return address, R3

EBP value for R3

Local variables

0x8000000

Return address, R0

Return address, R1

Return address, R2

Return address, R3

0x9000000

Main stack Parallel shadow stack

Figure 2.8: Parallel shadow stack. Rx refers to Routine #x. Compare to the traditional
shadow stack of Figure 2.1.

1 POP 999996(% esp) # Copy return address to shadow stack
2 SUB $4 , %esp # Fix up stack po in t e r (undo POP)

Figure 2.9: Prologue for parallel shadow stack.

1 ADD $4 , %esp # Fix up stack po in t e r
2 PUSH 999996(% esp) # Copy from shadow stack

Figure 2.10: Epilogue for parallel shadow stack.

Our instrumentation for overwriting the return address can be as simple as adding two
instructions to each uninstrumented prologue (Figure 2.9) and two instructions to each
uninstrumented epilogue (Figure 2.10).

With peephole optimizations (see Appendix A.2.4), the net instruction count can be as
few as one and zero instructions added to each prologue and epilogue, respectively. Note,
however, that instruction count is not the sole, or even necessarily the major determinant of
CPU overhead.

The instrumentation in Figures 2.9 and epilogue (Figure 2.10 does not clobber (overwrite)
any registers and can be easily modified to preserve the flags (through replacing SUB/ADD

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 18

with LEA8), thus making it transparent to the rest of the program, without incurring the
expense of saving/restoring any registers or EFLAGS.

All parallel shadow stacks, by definition, automatically handle any unusual changes to
%esp: for example, when longjmp unwinds the stack, it also implicitly unwinds the shadow
stack appropriately.

Some library functions may use PUSH-RET to jump to an arbitrary address. This is
sometimes used to implement longjmp or setcontext. [87] In the general case where the
“return” address does not match a function call, both the traditional and parallel shadow
stacks would identify it as anomalous.

There are two main disadvantages compared to a traditional shadow stack: memory/-
cache utilization, and the threat of modifying the shadow stack pointer.

Return addresses on the main stack are often separated by function parameters and local
variables. This means that return addresses on the parallel shadow stack will likewise not be
contiguous, and each return address may even use up an entire cache line; the overhead of
this depends on the calling patterns of the program. The gaps in parallel shadow stacks also
mean they generally use more memory than a traditional shadow stack, but as the stack is
small (on our test system, the maximum stack size is 8MBulimit -s) in comparison to the
heap (which can use up to the 12GB of RAM on our system), and the shadow stack pages
do not even consume physical memory until they are first accessed (i.e., the maximum stack
size is an upper-bound, not a lower-bound, on the shadow stack size), we do not consider
this a major limitation.

Due to the shadow stack pointer synchronization, an attacker who is able to pivot the
stack (modify the stack pointer to point elsewhere) can choose any return address in the
call stack. For example, suppose function f called g which calls h. The call stack contains
[f,g] (specific instruction addresses in the functions omitted for clarity), which means the
correct return address will be g. An attacker could change the stack pointer (and, implicitly,
the shadow stack pointer) so that, at the point of the return instruction, the return address
will be f. Furthermore, if we do not “zero out” (or corrupt) old shadow stack frame entries,
then the attacker could even choose “expired” return addresses. Suppose function h returns
correctly, which means the next return address is f. However, the call stack is still initialized
with [f,g], and an attacker could change the stack pointer (and shadow stack pointer) to
use the return address g. A more insidious attack is to change %esp such that the parallel
shadow stack region — say, 0xa0000000(%esp) — is under the attacker’s control; we can
prevent this, at the cost of limiting the address space, by ensuring that 0xa0000000(%esp)

is mapped to the process address space only for valid values of %esp.

8This replacement can affect runtime performance, as it is not guaranteed that CPU execution units can
all interchangeably be used for SUB/ADD and LEA.[43]

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 19

2.5.2 Security Benefits

We consider four threat models, based on the attacker’s ability to write to the stack and to
read important secrets.

The weakest write vulnerability we consider is a contiguous stack buffer overflow. For
example, the vulnerable code may contain code:

1 s t r cpy (a t t a c k e r c o n t r o l l e d , b u f f e r o n s t a c k) ;

which copies an attacker-controlled input into a buffer on the stack, without any bounds
checks; the input can be crafted to exceed the length of the buffer on the stack, thereby
overwriting other stack variables, including the return address.

A stronger write vulnerability is where the attacker can perform arbitrary (including
indexed) writes into the stack (e.g., repeated uses of buffer on stack[i] = s, where i and
s are under their control).

The write vulnerabilities above do not, in general, convey the ability to read the stack
contents — such as the stack canary value or return value9, although we assume that attackers
always know the general stack layout. We further bifurcate the two write vulnerability cases
above based on whether the attacker has information disclosure that allows them to read
the stack contents or infer the fixed shadow stack offset, though in all cases we assume the
vulnerability is insufficient to defeat randomization.

Figure 2.1 summarizes, for each of these threat models, whether each mechanism can
protect the return address and/or any data stored above the canary (or return address).

All these mechanisms restrict the use of gadgets that end with an instrumented RET,
and all the parallel shadow stacks provide some limited protection against large-scale stack
pivots (since they will write to the shadow stack region).

2.6 Aims

2.6.1 Research Questions

Our overarching research question is: what are the performance costs of using a shadow stack,
as seems to be necessary for security when using CFI schemes? It is obvious that there is
greater than zero overhead since it requires additional operations; our aim is to quantify it.

To address this question, we evaluated the overhead of: a traditional shadow stack; a no-
frills parallel shadow stack; checking vs. overwriting the return address; zeroing out expired
shadow stack entries (for a parallel shadow stack); -fstack-protector-all (which adds
stack canaries to every function, instead of a shadow stack for every call); and replacing
RETs with indirect jumps (to avoid TOCTTOU; see Section 2.4.1).

9In the limited cases where a program restarts with an identical memory layout after a crash — such
as a web server that fork()s – it is possible to convert the write vulnerability into a read vulnerability, by
repeatedly overwriting individual bytes and observing if the program executes correctly. [12]

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 20

The overhead can be made arbitrarily low by constructing test programs that perform
a significant amount of computation for every function call; conversely, the overhead would
be artifically high if we instrumented empty functions [86, 25]. To provide a meaningful
estimate of the overhead, it is important to use a standardized benchmark suite.

2.6.2 Assumptions

We assume that we have a tool similar to BinCFI [108] that 1) does not have access to the
source code; 2) but can identify the prologue and RETs of every function (at the assembly
level); and can insert code without the need for additional trampolines (cf., Prasad and
Chiueh [86]).

Compiler-based shadow stack schemes generally fulfill condition 2 but not 1, and vice-
versa for binary-rewriting based shadow stack schemes. In contrast, by leveraging the address
translation that is already required for BinCFI, adding a shadow stack to CFI does not
require more trampolines.

Our assumptions are similar to Stack Shield [100], though that is intended to be deployed
as an assembly preprocessor in the ordinary build process.

2.7 Method

We ran SPEC CPU200610, excluding any Fortran programs, on Ubuntu 12.04, running on a
Dell Precision T5500 (Intel Xeon X5680, with 12GB of RAM). All code was compiled with
gcc 4.6.3, using the standard configuration files (Example-linux64-amd64-gcc43+.cfg) and
Example-linux64-ia32-gcc43+.cfg), with the exception that we disabled stack canaries
entirely (i.e., -fno-stack-protector) since they are mostly redundant when a shadow stack
is available. We tested both 32-bit and 64-bit, as they are the dominant modes; 32-bit per-
formance may differ from 64-bit, due to the larger integers (which may affect cache/memory
pressure) and increased number of general-purpose registers (R8 to R15) for the latter. We
chose the -O2 optimization level, the default setting for SPEC CPU, plus the more aggres-
sive -O3. With -O3, inlining reduces the number of function calls (and thereby the amount
of instrumentation required), though the function bodies are also faster (which makes the
prologue/epilogue instrumentation relatively more expensive). Since both are reasonable
optimization options, we wished to empirically compare their overhead.

We also tested apache httpd 2.4.1011, using apachebench12 on the same machine. We
chose this as a more realistic scenario, whose performance may not be entirely CPU-bound.

As per Tice et al. [99], we disabled Turbo Boost (dynamic CPU frequency scaling) and
ASLR to reduce variance in the run-times. Additionally, we observed that the SPEC bench-
marks tended to run more slowly if the system had been in use for a prolonged period,

10https://www.spec.org/cpu2006/
11https://httpd.apache.org/
12https://httpd.apache.org/docs/2.4/programs/ab.html

https://www.spec.org/cpu2006/
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 21

possibly due to disk-caching effects. To avoid these carryover effects, we rebooted the sys-
tem before each batch of benchmarks.

We used the following instrumentation (see Appendix A.2.1): a traditional shadow stack
that checks the return address (for compatibility with longjmp, it pops the shadow stack
until a match with the return address); a parallel shadow stack that checks the return
address; a parallel shadow stack that overwrites the return address, zeroing out expired
shadow stack entries; a parallel shadow stack that overwrites the return address, without
zeroing; -fstack-protector-all, i.e., stack canaries applied to every function.

We tested multiple versions of each instrumentation, and selected the code that performed
best in a pilot study.

We tried both RETs and indirect jumps for each of the instrumention schemes except
-fstack-protector-all. We did not implement a traditional shadow stack (overwriting),
due to its inability to protect programs using longjmp.

Our parallel shadow stacks used a fixed offset, for ease of implementation. However,
the overhead should be similar when using a random offset, except for the time required to
rewrite the offsets at load-time, which should be negligible: the number of offsets that need
to be rewritten is equal to the number of function prologues and RETs. This is less than for
relocations, which must relocate both data and functions.

In general, our implementation is intended to provide a reasonable estimate of the over-
head, not production use. We discuss deployment issues in Section 2.9.3.

2.7.1 Implementation Details

We make no claim that our implementation will be robust enough to deploy widely. Nonethe-
less, since much of the overhead is due to inherent memory loads/stores (see Section 2.8),
we believe we have implemented each of these schemes in sufficient detail to let us measure
their performance overhead on SPEC CPU.

For C programs, we call setupShadowStack at the beginning of main. The setupShad-

owStack function allocates a memory region at a fixed offset from the stack (for the parallel
shadow stack) or at a random location (for the traditional shadow stack). For the latter
case, we copy this location into %gs:108.

For C++ programs, we identified which initialization function would run first, by using
gdb: the function would crash in the prologue, as the instrumentation would attempt to
write to an unallocated shadow stack region. We then prepended our own shadow stack
class and instance in the same file, thus again ensuring that the shadow stack is set up prior
to other function calls.

This means that we cannot instrument the prologue of functions that run before the
shadow stack is set up (e.g., main and setupShadowStack for C programs). It is possible
to modify the compiler to create high priority constructor init functions [99], but this would
not affect the overhead since the uninstrumented functions are only called once.

The SPEC CPU build process compiles and assembles individual source files into sep-
arate object files. We wrote a wrapper script to compile each source file, then instrument

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 22

the prologues (conveniently denoted by gcc as .cfi startproc) and RETs in the assembly,
before assembling into the expected object file. This simulates the capabilities available (and
overhead obtained) of a binary CFI rewriter that has access to the (dis-)assembly but not
source code. It is possible, but laborious, to add setupShadowStack at the assembly level;
we “cheated” by adding it at the source-code level, since this would not substantially affect
the overhead.

Since we are instrumenting the prologue for ease of implementation, the instrumented
prologue has a TOCTTOU vulnerability in the presence of concurrency (e.g., multi-threaded
programs). One could avoid the TOCTTOU vulnerability by instrumenting the CALL instruc-
tions instead of function prologues. We expect this would have similar performance, but we
have not implemented it.

2.8 Results

2.8.1 Cost of Instrumentation Schemes

Figures 2.11, 2.12, 2.13, and 2.14 show the overheads for x86 -O3, x86 -O2, x64 -O3, and x64
-O2, based on the medians of at least 9 runs per benchmark. We do not expect our instru-
mentation to make any programs faster; any negative overheads are likely to be experimental
noise.

As the overheads (though not baseline times) were roughly the time, we we will only
discuss the x86 -O3 results (Figure 2.11, left), as they are marginally lower, and therefore
provide a lower bound.

Overheads are only estimates ; they do not meet certain technical requirements for “re-
portable” SPEC CPU2006 results (for example, modifying the source files to add the se-

tupShadowStack function violates the requirements), even though we can reliably reproduce
these results (minima are mostly within 1% of the medians, and standard deviations are
generally low). Figures 2.15, 2.16, 2.17, and 2.18 show the overheads for x86 -O3, x86 -O2,
x64 -O3, and x64 -O2, based on the minima. Figures 2.19, 2.20, 2.21, and 2.22 show the
standard deviations (in seconds) of the runtimes.

Two of the programs (perlbench, gcc) did not work with the traditional shadow stack
instrumentation (for x86 with -O2 or -O3); we suspect it may be related to forking and our
(mis-)use of %gs:108 to store the shadow stack pointer (i.e., an artifact of our implementa-
tion, rather than a fundamental limitation of traditional shadow stacks).13 To provide a fair
comparison with the other schemes, we calculated the overhead of each scheme, with and
without these two programs.

On SPEC CPU, excluding Fortran, perlbench and gcc, the average overhead of each
scheme was as follows: a traditional shadow stack cost 9.69% overhead in CPU time; a no-
frills parallel shadow stack cost 3.51%; checking the return address cost 0.8% extra, compared

13Interestingly, Mashtizadeh et al. [66] omitted (only) these two benchmarks; they reported that they
could not compile them with the vanilla GCC or clang compilers.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 23

to the no-frills parallel shadow stack; zeroing out expired shadow stack entries (for a parallel
shadow stack) cost 0.16%; stack canaries cost 2.54%. See the bottom row of Figure 2.11 for
details.

For apache, the parallel shadow stack (overwriting, no zeroing out) had 2.73% overhead.
Had our test been network-bound or I/O-bound, we would expect the CPU overhead to be
even lower.

Replacing RETs with indirect jumps incurs much higher overhead, except for the checking
version of the parallel shadow stack, which had comparable overhead. See Figure 2.11 (right).

2.9 Discussion

2.9.1 Determinants of overhead

As a first-order approximation, we expected the overhead of the instrumentation to depend
on the frequency of function calls/returns (to avoid collinearity, we only consider RETs); while
Abadi et al.[1] reported that their overhead was “not simply correlated with the frequency of
executed computed control-flow transfers”, their CFI instrumentation is much more extensive
than a shadow stack. Our hypothesis was supported by the data (correlation coefficient
r = .73, which is very high). Figure 2.23 shows the overhead of the parallel shadow stack
(overwriting, zeroing out) compared to the dynamic counts of RET instructions (from Isen
and John [56]). We excluded dealII from our analyses, as it is an outlier with 5.3% RETs
(over twice as many as any other program).

Since our instrumentation uses cache and memory bandwidth, we hypothesized that the
overhead would depend on the percentage of load and store instructions multiplied by the
percentage of RET instructions. For example, we would expect that a program with few RET

instructions but many load/store instructions would still have low overhead. Using data
from Bird et al. [11], a linear regression of the form:

Overhead = 10.184× (% RETs)

+(−38.697)× (% RETs×% loads)

+74.822× (% RETs×% stores)

+0.002

(2.1)

had a correlation of 0.86. This is a surprisingly high correlation, considering the complexity
of modern CPUs.

Interestingly, our regression shows that the percentage of loads has a negative coefficient.
We interpret this to mean that stores are expensive, but once a value has been stored, it is
very cheap to load it due to caching.

Although correlation does not imply causation, we believe simple causality is the most
parsimonious explanation.

The traditional shadow stack likely has higher overhead than the parallel shadow stack
because of the extra memory transfer instructions needed for additional scratch registers and

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 24

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
5

4
9

.2
%

7
.3

%
6

.7
%

4
.2

%
7

.9
%

8
.6

%
5

.5
%

4
0

1
.b

zi
p

2
5

8
5

2
.2

%
1

.9
%

1
.6

%
1

.7
%

-2
.8

%
8

.2
%

2
.7

%
2

.9
%

2
.5

%

4
0

3
.g

cc
3

0
0

4
.9

%
4

.5
%

4
.2

%
3

.9
%

7
.8

%
9

.7
%

7
.2

%

4
2

9
.m

cf
2

1
1

6
.2

%
0

.0
%

-0
.1

%
-0

.1
%

-0
.1

%
7

.6
%

-0
.1

%
1

.5
%

0
.0

%

4
4

5
.g

o
b

m
k

4
4

9
1

2
.7

%
5

.1
%

5
.0

%
4

.0
%

5
.0

%
2

6
.3

%
1

0
.5

%
1

0
.9

%
9

.2
%

4
5

6
.h

m
m

er
5

1
6

0
.2

%
0

.0
%

-0
.1

%
0

.0
%

-0
.2

%
4

.3
%

-0
.1

%
0

.9
%

0
.0

%

4
5

8
.s

je
n

g
5

1
8

1
6

.9
%

5
.2

%
5

.0
%

4
.4

%
2

.0
%

2
8

.6
%

9
.8

%
8

.8
%

8
.5

%

4
6

2
.li

b
q

u
an

tu
m

6
6

9
-1

.7
%

-0
.5

%
-0

.7
%

-0
.6

%
3

.7
%

0
.2

%
-1

.2
%

-0
.8

%
-1

.0
%

4
6

4
.h

2
6

4
re

f
7

1
6

1
9

.5
%

8
.7

%
6

.4
%

6
.4

%
3

.2
%

2
3

.2
%

8
.0

%
8

.2
%

5
.1

%

4
7

1
.o

m
n

et
p

p
3

1
9

2
5

.2
%

7
.3

%
1

1
.0

%
9

.2
%

5
.1

%
3

3
.7

%
6

.3
%

1
6

.0
%

6
.3

%

4
7

3
.a

st
ar

4
5

3
7

.2
%

3
.5

%
2

.5
%

3
.9

%
0

.8
%

9
.1

%
1

.2
%

2
.7

%
1

.0
%

4
8

3
.x

al
an

cb
m

k
2

2
1

3
3

.1
%

1
6

.6
%

1
2

.5
%

1
3

.7
%

9
.5

%
5

2
.5

%
1

9
.6

%
2

1
.4

%
1

7
.6

%

4
3

3
.m

ilc
5

6
5

4
.6

%
1

.9
%

1
.9

%
2

.2
%

1
.6

%
4

.8
%

1
.0

%
2

.7
%

1
.5

%

4
4

4
.n

am
d

5
1

3
-0

.1
%

0
.0

%
0

.0
%

0
.2

%
0

.1
%

3
.1

%
-0

.1
%

0
.9

%
-0

.1
%

4
4

7
.d

ea
lII

3
6

0
1

6
.2

%
9

.4
%

7
.3

%
7

.0
%

5
.1

%
1

8
.8

%
7

.5
%

5
.6

%
5

.3
%

4
5

0
.s

o
p

le
x

2
8

1
0

.2
%

1
.1

%
-0

.5
%

-0
.1

%
-0

.6
%

2
.1

%
0

.1
%

1
.9

%
0

.4
%

4
5

3
.p

o
vr

ay
2

1
8

2
9

.3
%

1
3

.0
%

1
1

.0
%

9
.7

%
1

0
.5

%
3

1
.0

%
1

1
.6

%
1

1
.1

%
8

.7
%

4
7

0
.lb

m
4

1
6

0
.0

%
-0

.3
%

-0
.4

%
-1

.1
%

0
.4

%
-0

.9
%

-1
.1

%
-0

.1
%

-0
.3

%

4
8

2
.s

p
h

in
x3

4
7

1
1

.9
%

2
.5

%
1

.5
%

0
.6

%
0

.8
%

7
.2

%
0

.4
%

2
.8

%
3

.1
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

5
3

1
2

5
.1

%
4

.5
%

4
.4

%
2

.8
%

5
.9

%
7

.4
%

5
.0

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

6
5

7
1

1
.6

%
4

.7
%

4
.2

%
4

.2
%

2
.6

%
1

8
.4

%
5

.5
%

7
.0

%
4

.8
%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

8
2

3
7

.0
%

3
.8

%
2

.9
%

2
.6

%
2

.5
%

9
.0

%
2

.7
%

3
.5

%
2

.6
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
8

1
3

5
4

.6
%

3
.9

%
3

.7
%

2
.7

%
4

.7
%

5
.9

%
4

.1
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

7
4

8
0

9
.7

%
4

.3
%

3
.7

%
3

.5
%

2
.5

%
1

4
.4

%
4

.3
%

5
.6

%
3

.9
%

x8
6

, -
O

3

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

B
as

e
lin

e

F
ig

u
re

2.
11

:
B

en
ch

m
ar

k
s

fo
r

x
86

,
-O

3
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

H
ig

h
es

t
ov

er
h
ea

d
s

ar
e

in
re

d
,

an
d

lo
w

es
t

ov
er

h
ea

d
s

ar
e

in
gr

ee
n
.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

ed
ia

n
in

d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 25

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
5

5
8

.7
%

7
.9

%
9

.5
%

5
.1

%
9

.0
%

7
.0

%
6

.9
%

4
0

1
.b

zi
p

2
5

9
9

2
.3

%
1

.8
%

1
.3

%
1

.5
%

-2
.7

%
4

.6
%

3
.0

%
2

.5
%

2
.8

%

4
0

3
.g

cc
3

2
0

6
.2

%
4

.5
%

4
.7

%
3

.6
%

8
.7

%
8

.1
%

7
.2

%

4
2

9
.m

cf
2

1
4

6
.8

%
0

.5
%

0
.5

%
0

.2
%

0
.2

%
6

.8
%

0
.5

%
0

.6
%

0
.4

%

4
4

5
.g

o
b

m
k

4
6

1
1

7
.3

%
4

.3
%

4
.8

%
4

.1
%

3
.4

%
2

5
.5

%
1

0
.7

%
9

.2
%

9
.7

%

4
5

6
.h

m
m

er
5

1
7

0
.4

%
0

.2
%

0
.1

%
0

.2
%

0
.0

%
0

.4
%

0
.1

%
0

.3
%

0
.3

%

4
5

8
.s

je
n

g
5

4
2

1
6

.1
%

4
.6

%
3

.5
%

1
.9

%
3

.0
%

2
3

.7
%

9
.1

%
8

.4
%

7
.9

%

4
6

2
.li

b
q

u
an

tu
m

6
8

1
-0

.1
%

0
.1

%
0

.1
%

0
.7

%
-0

.2
%

0
.6

%
-0

.2
%

0
.1

%
0

.3
%

4
6

4
.h

2
6

4
re

f
7

3
3

1
9

.9
%

8
.3

%
6

.2
%

6
.0

%
3

.7
%

2
3

.4
%

7
.4

%
6

.2
%

4
.9

%

4
7

1
.o

m
n

et
p

p
3

2
4

2
8

.0
%

9
.0

%
1

3
.2

%
1

2
.5

%
8

.6
%

2
9

.2
%

1
0

.5
%

1
4

.1
%

9
.4

%

4
7

3
.a

st
ar

4
7

5
8

.8
%

5
.1

%
1

.9
%

3
.8

%
0

.0
%

9
.2

%
2

.6
%

0
.9

%
0

.7
%

4
8

3
.x

al
an

cb
m

k
2

3
8

4
1

.2
%

1
6

.8
%

1
3

.3
%

1
1

.9
%

1
0

.5
%

4
7

.7
%

1
5

.7
%

1
7

.4
%

1
3

.4
%

4
3

3
.m

ilc
5

8
3

4
.6

%
1

.0
%

1
.9

%
1

.5
%

1
.1

%
4

.0
%

0
.6

%
0

.7
%

1
.0

%

4
4

4
.n

am
d

5
1

8
-0

.3
%

-0
.1

%
-0

.2
%

-0
.1

%
-0

.1
%

-0
.1

%
-0

.2
%

-0
.2

%
-0

.2
%

4
4

7
.d

ea
lII

3
9

2
1

4
.1

%
8

.1
%

5
.2

%
5

.8
%

5
.5

%
1

4
.5

%
6

.0
%

3
.8

%
4

.1
%

4
5

0
.s

o
p

le
x

2
9

3
0

.2
%

1
.4

%
0

.8
%

0
.1

%
-1

.3
%

2
.4

%
0

.7
%

-1
.1

%
0

.1
%

4
5

3
.p

o
vr

ay
2

3
5

3
5

.6
%

1
3

.2
%

1
2

.7
%

1
1

.5
%

1
0

.3
%

3
7

.1
%

1
1

.7
%

9
.8

%
9

.2
%

4
7

0
.lb

m
4

1
6

0
.0

%
-0

.2
%

-0
.4

%
-0

.5
%

-0
.2

%
-0

.2
%

-1
.2

%
-0

.3
%

-0
.4

%

4
8

2
.s

p
h

in
x3

4
8

7
4

.0
%

-0
.1

%
-3

.0
%

-2
.2

%
-3

.0
%

-0
.5

%
-3

.0
%

-2
.0

%
-3

.0
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

5
4

6
1

5
.4

%
4

.7
%

4
.7

%
2

.9
%

6
.3

%
6

.1
%

5
.2

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

7
8

5
1

3
.4

%
5

.0
%

4
.4

%
4

.2
%

2
.6

%
1

6
.3

%
5

.8
%

5
.8

%
4

.9
%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

9
2

4
7

.7
%

3
.2

%
2

.3
%

2
.2

%
1

.7
%

7
.5

%
2

.0
%

1
.5

%
1

.5
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
8

3
8

4
4

.6
%

3
.8

%
3

.8
%

2
.4

%
4

.7
%

4
.4

%
3

.8
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

7
7

0
9

1
1

.0
%

4
.2

%
3

.5
%

3
.4

%
2

.2
%

1
2

.6
%

4
.2

%
4

.0
%

3
.5

%

x8
6

, -
O

2

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

F
ig

u
re

2.
12

:
B

en
ch

m
ar

k
s

fo
r

x
86

,
-O

2
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

ed
ia

n
in

d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 26

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
4

4
8

.7
%

9
.0

%
7

.8
%

8
.0

%
9

.8
%

8
.9

%
7

.8
%

4
0

1
.b

zi
p

2
5

0
2

0
.7

%
-0

.9
%

0
.8

%
-1

.2
%

-1
.2

%
2

.7
%

2
.3

%
-0

.1
%

-1
.2

%

4
0

3
.g

cc
3

1
9

4
.3

%
4

.0
%

3
.7

%
4

.2
%

8
.8

%
7

.7
%

3
.6

%

4
2

9
.m

cf
2

8
2

3
.7

%
-0

.4
%

-0
.2

%
-0

.4
%

-0
.2

%
3

.6
%

-0
.1

%
-0

.2
%

-0
.4

%

4
4

5
.g

o
b

m
k

4
3

8
1

2
.2

%
4

.7
%

5
.1

%
3

.7
%

4
.4

%
2

1
.2

%
1

1
.2

%
1

0
.9

%
3

.8
%

4
5

6
.h

m
m

er
4

1
2

0
.2

%
0

.0
%

0
.0

%
0

.0
%

0
.1

%
0

.3
%

1
.2

%
0

.0
%

0
.0

%

4
5

8
.s

je
n

g
4

9
3

1
6

.0
%

4
.3

%
5

.5
%

4
.3

%
3

.8
%

1
8

.6
%

6
.8

%
6

.7
%

4
.2

%

4
6

2
.li

b
q

u
an

tu
m

4
8

9
1

.4
%

1
.3

%
-0

.7
%

0
.5

%
0

.8
%

1
.4

%
0

.8
%

-0
.2

%
1

.0
%

4
6

4
.h

2
6

4
re

f
5

8
5

2
5

.9
%

1
1

.1
%

9
.3

%
9

.5
%

7
.2

%
3

3
.2

%
1

2
.2

%
1

1
.6

%
9

.5
%

4
7

1
.o

m
n

et
p

p
3

7
4

1
1

.0
%

1
4

.0
%

9
.5

%
1

0
.2

%
1

0
.4

%
9

.2
%

9
.5

%

4
7

3
.a

st
ar

4
0

4
1

0
.7

%
4

.9
%

4
.4

%
2

.9
%

3
.6

%
1

0
.6

%
4

.1
%

3
.8

%
3

.8
%

4
8

3
.x

al
an

cb
m

k
2

4
4

8
.7

%
6

.3
%

1
0

.2
%

1
0

.6
%

1
1

.8
%

1
0

.3
%

1
0

.8
%

4
3

3
.m

ilc
5

2
7

1
.2

%
1

.2
%

1
.2

%
0

.8
%

6
.0

%
1

.1
%

1
.2

%

4
4

4
.n

am
d

4
3

7
0

.0
%

0
.1

%
0

.1
%

0
.1

%
0

.1
%

0
.1

%
0

.7
%

0
.1

%
0

.1
%

4
4

7
.d

ea
lII

3
3

8
2

4
.6

%
1

0
.5

%
7

.6
%

8
.0

%
4

.9
%

2
6

.8
%

8
.3

%
5

.5
%

8
.0

%

4
5

0
.s

o
p

le
x

2
7

7
1

.9
%

1
.8

%
1

.7
%

-0
.5

%
1

.4
%

1
.2

%
-0

.6
%

4
5

3
.p

o
vr

ay
2

0
3

3
6

.3
%

1
0

.2
%

9
.3

%
8

.3
%

6
.3

%
3

7
.6

%
9

.4
%

6
.8

%
7

.5
%

4
7

0
.lb

m
4

0
0

-0
.1

%
-0

.1
%

-1
.3

%
-0

.1
%

0
.1

%
-0

.2
%

0
.0

%
-0

.3
%

-0
.2

%

4
8

2
.s

p
h

in
x3

5
8

6
3

.5
%

1
.8

%
1

.0
%

1
.3

%
1

.1
%

4
.3

%
1

.3
%

1
.7

%
2

.1
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

4
8

8
6

4
.7

%
4

.7
%

4
.1

%
4

.2
%

6
.5

%
5

.6
%

4
.3

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

2
2

3
8

.5
%

4
.4

%
4

.4
%

3
.8

%
3

.9
%

1
0

.9
%

6
.0

%
5

.1
%

4
.0

%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

7
6

8
1

1
.9

%
3

.6
%

2
.7

%
2

.9
%

1
.8

%
1

2
.7

%
3

.8
%

2
.3

%
2

.5
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
7

6
5

4
4

.3
%

4
.0

%
3

.7
%

3
.3

%
5

.5
%

4
.4

%
3

.6
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

6
9

9
1

9
.8

%
4

.0
%

3
.7

%
3

.4
%

3
.0

%
1

1
.6

%
5

.1
%

3
.9

%
3

.4
%

x6
4

, -
O

3

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

F
ig

u
re

2.
13

:
B

en
ch

m
ar

k
s

fo
r

x
64

,
-O

3
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

ed
ia

n
in

d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 27

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
5

3
9

.2
%

7
.8

%
8

.1
%

3
.0

%
8

.4
%

6
.6

%
6

.7
%

4
0

1
.b

zi
p

2
4

9
2

3
.0

%
3

.1
%

1
.1

%
0

.7
%

0
.5

%
6

.8
%

3
.1

%
2

.6
%

2
.8

%

4
0

3
.g

cc
3

3
0

4
.0

%
3

.8
%

3
.4

%
4

.1
%

7
.2

%
6

.6
%

7
.3

%

4
2

9
.m

cf
2

8
3

0
.0

%
0

.0
%

0
.2

%
0

.3
%

-0
.1

%
-0

.2
%

0
.3

%

4
4

5
.g

o
b

m
k

4
4

4
1

6
.4

%
5

.4
%

5
.5

%
4

.2
%

4
.5

%
2

5
.9

%
1

2
.3

%
1

2
.1

%
1

1
.0

%

4
5

6
.h

m
m

er
4

2
9

0
.3

%
0

.0
%

0
.0

%
0

.0
%

0
.1

%
0

.4
%

0
.0

%
0

.1
%

0
.1

%

4
5

8
.s

je
n

g
5

1
9

1
7

.6
%

5
.2

%
4

.0
%

3
.8

%
4

.2
%

2
4

.1
%

7
.9

%
7

.4
%

6
.4

%

4
6

2
.li

b
q

u
an

tu
m

4
9

6
-1

.0
%

-1
.0

%
-1

.0
%

0
.2

%
0

.6
%

-0
.3

%
-1

.7
%

-0
.7

%
-0

.9
%

4
6

4
.h

2
6

4
re

f
6

0
9

2
6

.2
%

9
.8

%
8

.4
%

8
.6

%
7

.3
%

2
9

.5
%

1
0

.1
%

7
.9

%
7

.7
%

4
7

1
.o

m
n

et
p

p
3

7
5

3
2

.1
%

1
2

.5
%

1
4

.0
%

1
1

.5
%

9
.2

%
3

3
.8

%
1

3
.7

%
1

0
.5

%
1

3
.0

%

4
7

3
.a

st
ar

4
4

0
1

1
.7

%
6

.2
%

4
.0

%
4

.7
%

4
.0

%
1

0
.7

%
3

.1
%

1
.9

%
2

.3
%

4
8

3
.x

al
an

cb
m

k
2

5
1

1
0

.9
%

1
3

.8
%

1
0

.0
%

1
5

.2
%

1
3

.2
%

1
6

.5
%

1
2

.6
%

4
3

3
.m

ilc
5

3
2

0
.8

%
0

.8
%

0
.8

%
1

.5
%

0
.9

%
0

.8
%

0
.9

%

4
4

4
.n

am
d

4
3

7
0

.0
%

0
.0

%
0

.0
%

0
.0

%
0

.1
%

0
.0

%
0

.0
%

0
.0

%
0

.0
%

4
4

7
.d

ea
lII

3
5

1
2

9
.2

%
1

0
.8

%
9

.3
%

8
.7

%
6

.6
%

3
3

.1
%

9
.5

%
6

.3
%

6
.3

%

4
5

0
.s

o
p

le
x

2
8

0
0

.8
%

0
.5

%
1

.1
%

-1
.4

%
0

.9
%

1
.1

%
1

.1
%

4
5

3
.p

o
vr

ay
2

0
3

4
7

.8
%

1
5

.7
%

1
4

.5
%

1
3

.6
%

1
2

.7
%

5
0

.2
%

1
3

.8
%

1
2

.9
%

1
0

.9
%

4
7

0
.lb

m
4

0
1

-0
.2

%
-0

.4
%

-0
.4

%
-0

.3
%

-0
.4

%
-0

.3
%

-0
.5

%
-0

.3
%

-0
.3

%

4
8

2
.s

p
h

in
x3

5
9

2
1

.8
%

1
.0

%
0

.5
%

0
.8

%
0

.8
%

2
.6

%
0

.1
%

0
.9

%
0

.3
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

5
0

2
1

5
.3

%
5

.0
%

4
.6

%
4

.3
%

6
.3

%
5

.8
%

5
.7

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

3
3

7
1

2
.7

%
5

.1
%

4
.9

%
4

.3
%

4
.5

%
1

5
.7

%
6

.0
%

5
.7

%
5

.4
%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

7
9

7
1

4
.2

%
3

.9
%

3
.5

%
3

.4
%

2
.7

%
1

5
.4

%
3

.4
%

3
.0

%
2

.7
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
7

8
1

8
4

.8
%

4
.4

%
4

.1
%

3
.7

%
5

.2
%

4
.8

%
4

.6
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

7
1

3
4

1
3

.3
%

4
.6

%
4

.3
%

3
.9

%
3

.8
%

1
5

.6
%

4
.9

%
4

.6
%

4
.3

%

x6
4

, -
O

2

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

F
ig

u
re

2.
14

:
B

en
ch

m
ar

k
s

fo
r

x
64

,
-O

2
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

ed
ia

n
in

d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 28

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
5

4
9

.0
%

7
.1

%
6

.9
%

4
.3

%
7

.7
%

7
.6

%
5

.3
%

4
0

1
.b

zi
p

2
5

8
5

2
.1

%
1

.9
%

1
.6

%
1

.7
%

-2
.9

%
5

.9
%

2
.7

%
2

.6
%

2
.4

%

4
0

3
.g

cc
2

9
9

4
.9

%
4

.7
%

4
.4

%
3

.3
%

7
.9

%
9

.2
%

7
.2

%

4
2

9
.m

cf
2

1
1

6
.1

%
-0

.1
%

-0
.2

%
-0

.2
%

-0
.1

%
6

.9
%

-0
.2

%
0

.1
%

-0
.1

%

4
4

5
.g

o
b

m
k

4
4

9
1

2
.8

%
5

.0
%

4
.9

%
4

.0
%

5
.1

%
2

3
.2

%
1

0
.6

%
1

0
.4

%
9

.1
%

4
5

6
.h

m
m

er
5

1
6

0
.1

%
0

.0
%

-0
.1

%
0

.0
%

-0
.2

%
1

.5
%

-0
.1

%
0

.2
%

0
.0

%

4
5

8
.s

je
n

g
5

1
8

1
7

.0
%

5
.2

%
5

.0
%

4
.4

%
2

.0
%

2
6

.7
%

9
.9

%
8

.2
%

8
.5

%

4
6

2
.li

b
q

u
an

tu
m

6
6

6
-1

.5
%

-0
.3

%
-0

.6
%

-0
.7

%
4

.0
%

0
.2

%
-1

.1
%

-0
.7

%
-1

.0
%

4
6

4
.h

2
6

4
re

f
7

1
5

1
9

.5
%

8
.5

%
6

.4
%

6
.4

%
3

.2
%

2
3

.1
%

8
.0

%
6

.9
%

5
.0

%

4
7

1
.o

m
n

et
p

p
3

1
7

2
3

.4
%

7
.4

%
1

1
.4

%
9

.3
%

5
.0

%
2

6
.3

%
6

.8
%

1
4

.4
%

6
.5

%

4
7

3
.a

st
ar

4
5

3
5

.9
%

3
.5

%
1

.9
%

3
.8

%
0

.6
%

7
.2

%
1

.1
%

0
.7

%
0

.9
%

4
8

3
.x

al
an

cb
m

k
2

2
0

3
3

.4
%

1
6

.7
%

1
2

.6
%

1
3

.6
%

7
.8

%
4

3
.8

%
1

6
.7

%
1

7
.2

%
1

6
.0

%

4
3

3
.m

ilc
5

6
5

4
.6

%
1

.9
%

1
.9

%
2

.2
%

1
.6

%
4

.7
%

1
.0

%
2

.5
%

1
.5

%

4
4

4
.n

am
d

5
1

3
-0

.1
%

0
.0

%
0

.0
%

0
.2

%
0

.1
%

0
.6

%
0

.0
%

0
.1

%
-0

.1
%

4
4

7
.d

ea
lII

3
5

9
1

6
.3

%
9

.4
%

7
.3

%
7

.0
%

5
.1

%
1

7
.3

%
7

.4
%

5
.0

%
5

.3
%

4
5

0
.s

o
p

le
x

2
8

0
0

.0
%

1
.1

%
-0

.7
%

-0
.4

%
-1

.0
%

1
.3

%
-0

.9
%

0
.6

%
0

.2
%

4
5

3
.p

o
vr

ay
2

1
8

2
9

.3
%

1
2

.9
%

1
0

.9
%

9
.6

%
1

0
.4

%
3

0
.9

%
1

1
.5

%
1

1
.0

%
8

.7
%

4
7

0
.lb

m
4

0
9

1
.3

%
1

.1
%

0
.9

%
0

.0
%

0
.5

%
-0

.2
%

0
.3

%
0

.5
%

0
.1

%

4
8

2
.s

p
h

in
x3

4
6

6
2

.3
%

2
.8

%
1

.8
%

0
.8

%
1

.0
%

4
.3

%
0

.5
%

0
.9

%
1

.3
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

5
3

0
3

5
.0

%
4

.5
%

4
.4

%
2

.6
%

5
.7

%
6

.2
%

4
.9

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

6
5

0
1

1
.4

%
4

.7
%

4
.2

%
4

.1
%

2
.4

%
1

5
.7

%
5

.3
%

5
.8

%
4

.6
%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

8
1

0
7

.2
%

4
.1

%
3

.1
%

2
.7

%
2

.5
%

7
.9

%
2

.7
%

2
.9

%
2

.4
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
8

1
1

3
4

.7
%

4
.0

%
3

.8
%

2
.6

%
4

.6
%

5
.0

%
4

.0
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

7
4

6
0

9
.6

%
4

.4
%

3
.7

%
3

.5
%

2
.4

%
1

2
.5

%
4

.2
%

4
.6

%
3

.7
%

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

x8
6

, -
O

3

F
ig

u
re

2.
15

:
B

en
ch

m
ar

k
s

fo
r

x
86

,
-O

3
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

in
im

u
m

in
d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 29

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
5

4
8

.4
%

8
.0

%
9

.4
%

5
.2

%
8

.9
%

7
.0

%
6

.8
%

4
0

1
.b

zi
p

2
5

9
9

2
.3

%
1

.8
%

1
.3

%
1

.5
%

-2
.7

%
4

.6
%

3
.0

%
2

.5
%

2
.8

%

4
0

3
.g

cc
3

1
9

6
.5

%
4

.8
%

4
.9

%
4

.0
%

9
.1

%
8

.5
%

7
.5

%

4
2

9
.m

cf
2

1
4

6
.7

%
0

.5
%

0
.4

%
0

.3
%

0
.1

%
6

.7
%

0
.5

%
0

.5
%

0
.4

%

4
4

5
.g

o
b

m
k

4
6

1
1

7
.3

%
4

.2
%

4
.6

%
4

.1
%

3
.4

%
2

5
.5

%
1

0
.6

%
9

.2
%

9
.6

%

4
5

6
.h

m
m

er
5

1
7

0
.4

%
0

.2
%

0
.1

%
0

.2
%

0
.0

%
0

.4
%

0
.1

%
0

.2
%

0
.3

%

4
5

8
.s

je
n

g
5

4
2

1
6

.2
%

4
.6

%
3

.5
%

1
.9

%
3

.0
%

2
3

.7
%

9
.1

%
8

.4
%

7
.8

%

4
6

2
.li

b
q

u
an

tu
m

6
7

8
-0

.1
%

0
.4

%
0

.3
%

1
.0

%
-0

.2
%

0
.4

%
-0

.4
%

-0
.3

%
-0

.2
%

4
6

4
.h

2
6

4
re

f
7

3
2

1
9

.9
%

8
.3

%
6

.2
%

6
.0

%
3

.5
%

2
3

.4
%

7
.4

%
6

.2
%

4
.9

%

4
7

1
.o

m
n

et
p

p
3

2
4

2
8

.0
%

9
.0

%
1

0
.7

%
1

0
.8

%
7

.9
%

2
9

.2
%

8
.0

%
9

.2
%

9
.4

%

4
7

3
.a

st
ar

4
7

4
8

.8
%

5
.1

%
1

.3
%

3
.4

%
-1

.4
%

9
.2

%
1

.5
%

0
.1

%
0

.7
%

4
8

3
.x

al
an

cb
m

k
2

3
8

4
0

.7
%

1
7

.0
%

1
2

.9
%

1
2

.0
%

1
0

.5
%

4
7

.9
%

1
5

.8
%

1
4

.2
%

1
3

.5
%

4
3

3
.m

ilc
5

8
2

4
.6

%
1

.0
%

1
.8

%
1

.5
%

1
.1

%
3

.8
%

0
.5

%
0

.7
%

0
.7

%

4
4

4
.n

am
d

5
1

8
-0

.3
%

-0
.1

%
-0

.2
%

-0
.1

%
-0

.1
%

-0
.1

%
-0

.2
%

-0
.2

%
-0

.2
%

4
4

7
.d

ea
lII

3
9

2
1

4
.2

%
8

.1
%

5
.2

%
5

.8
%

5
.5

%
1

4
.5

%
6

.0
%

3
.8

%
4

.1
%

4
5

0
.s

o
p

le
x

2
8

9
1

.2
%

2
.3

%
1

.0
%

1
.2

%
-0

.5
%

2
.5

%
0

.5
%

0
.1

%
-0

.3
%

4
5

3
.p

o
vr

ay
2

3
4

3
5

.8
%

1
3

.3
%

1
2

.8
%

1
1

.6
%

1
0

.5
%

3
7

.3
%

1
1

.7
%

1
0

.0
%

9
.2

%

4
7

0
.lb

m
4

0
9

1
.4

%
1

.4
%

0
.4

%
0

.4
%

0
.1

%
0

.6
%

-0
.1

%
0

.8
%

0
.5

%

4
8

2
.s

p
h

in
x3

4
7

1
5

.3
%

1
.4

%
-0

.3
%

0
.5

%
-0

.2
%

1
.8

%
-0

.4
%

0
.3

%
-1

.3
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

5
4

5
2

5
.4

%
4

.4
%

4
.6

%
2

.7
%

6
.0

%
5

.4
%

5
.2

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

7
7

9
1

3
.4

%
5

.0
%

4
.0

%
4

.0
%

2
.3

%
1

6
.2

%
5

.4
%

4
.9

%
4

.8
%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

8
9

5
8

.3
%

3
.8

%
2

.9
%

2
.9

%
2

.3
%

8
.0

%
2

.5
%

2
.2

%
1

.8
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
8

3
4

7
4

.8
%

3
.9

%
3

.9
%

2
.6

%
4

.7
%

4
.2

%
3

.9
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

7
6

7
4

1
1

.2
%

4
.5

%
3

.6
%

3
.6

%
2

.3
%

1
2

.8
%

4
.2

%
3

.8
%

3
.5

%

x8
6

, -
O

2

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

F
ig

u
re

2.
16

:
B

en
ch

m
ar

k
s

fo
r

x
86

,
-O

2
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

in
im

u
m

in
d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 30

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
4

3
8

.5
%

9
.0

%
7

.9
%

8
.0

%
1

0
.0

%
9

.2
%

7
.8

%

4
0

1
.b

zi
p

2
5

0
2

0
.8

%
-0

.9
%

0
.9

%
-1

.2
%

-1
.2

%
2

.6
%

2
.3

%
0

.0
%

-1
.2

%

4
0

3
.g

cc
3

1
8

4
.3

%
3

.8
%

4
.0

%
4

.2
%

8
.9

%
7

.7
%

3
.5

%

4
2

9
.m

cf
2

8
0

3
.8

%
-0

.1
%

-0
.2

%
-0

.2
%

0
.1

%
3

.6
%

0
.1

%
-0

.1
%

-0
.2

%

4
4

5
.g

o
b

m
k

4
3

7
1

2
.0

%
4

.8
%

5
.0

%
3

.6
%

4
.4

%
2

1
.2

%
1

1
.1

%
1

0
.8

%
3

.7
%

4
5

6
.h

m
m

er
4

1
2

0
.2

%
0

.0
%

0
.0

%
0

.0
%

0
.0

%
0

.3
%

0
.0

%
0

.0
%

0
.0

%

4
5

8
.s

je
n

g
4

9
3

1
6

.0
%

4
.3

%
5

.5
%

4
.2

%
3

.8
%

1
8

.6
%

6
.8

%
6

.6
%

4
.2

%

4
6

2
.li

b
q

u
an

tu
m

4
8

5
0

.9
%

1
.0

%
-0

.8
%

0
.1

%
1

.0
%

1
.4

%
1

.2
%

-0
.8

%
0

.7
%

4
6

4
.h

2
6

4
re

f
5

8
4

2
5

.9
%

1
1

.1
%

9
.4

%
9

.6
%

7
.3

%
3

3
.2

%
1

2
.2

%
1

1
.7

%
9

.6
%

4
7

1
.o

m
n

et
p

p
3

7
2

7
.2

%
1

3
.9

%
9

.8
%

1
0

.7
%

1
0

.2
%

9
.4

%
9

.6
%

4
7

3
.a

st
ar

4
0

3
1

0
.7

%
3

.7
%

4
.3

%
2

.8
%

3
.7

%
1

0
.5

%
3

.9
%

3
.1

%
3

.8
%

4
8

3
.x

al
an

cb
m

k
2

3
9

7
.0

%
8

.4
%

1
2

.5
%

8
.3

%
1

0
.1

%
1

2
.6

%
9

.4
%

4
3

3
.m

ilc
5

2
7

1
.2

%
1

.2
%

1
.2

%
0

.8
%

6
.0

%
1

.1
%

1
.1

%

4
4

4
.n

am
d

4
3

7
0

.0
%

0
.1

%
0

.1
%

0
.1

%
0

.1
%

0
.1

%
0

.2
%

0
.1

%
0

.1
%

4
4

7
.d

ea
lII

3
3

8
2

4
.8

%
1

0
.7

%
7

.8
%

8
.2

%
5

.1
%

2
6

.7
%

7
.9

%
5

.4
%

8
.1

%

4
5

0
.s

o
p

le
x

2
7

6
1

.9
%

1
.8

%
1

.5
%

-0
.6

%
-0

.6
%

1
.3

%
-0

.7
%

4
5

3
.p

o
vr

ay
2

0
2

3
6

.0
%

9
.7

%
8

.3
%

7
.7

%
6

.3
%

3
7

.2
%

9
.2

%
6

.2
%

7
.4

%

4
7

0
.lb

m
3

9
7

-0
.8

%
-0

.7
%

-0
.9

%
-0

.7
%

-0
.4

%
0

.2
%

0
.3

%
-0

.6
%

-0
.6

%

4
8

2
.s

p
h

in
x3

5
8

3
3

.2
%

1
.4

%
0

.8
%

1
.3

%
0

.5
%

3
.8

%
1

.6
%

1
.3

%
1

.5
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

4
8

6
8

4
.2

%
4

.8
%

4
.4

%
4

.1
%

6
.3

%
5

.7
%

4
.2

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

2
0

7
8

.5
%

3
.7

%
4

.5
%

4
.0

%
3

.7
%

1
0

.9
%

5
.7

%
5

.2
%

3
.9

%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

7
6

0
1

1
.7

%
3

.4
%

2
.7

%
2

.7
%

1
.7

%
1

2
.6

%
3

.4
%

2
.1

%
2

.4
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
7

6
2

8
3

.9
%

4
.0

%
3

.7
%

3
.2

%
5

.2
%

4
.4

%
3

.5
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

6
9

6
7

9
.7

%
3

.6
%

3
.8

%
3

.5
%

2
.9

%
1

1
.6

%
4

.8
%

3
.9

%
3

.3
%

x6
4

, -
O

3

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

F
ig

u
re

2.
17

:
B

en
ch

m
ar

k
s

fo
r

x
64

,
-O

3
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

in
im

u
m

in
d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 31

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0

0
.p

er
lb

en
ch

3
5

3
9

.2
%

7
.4

%
7

.9
%

2
.8

%
8

.3
%

6
.6

%
6

.5
%

4
0

1
.b

zi
p

2
4

9
2

2
.2

%
3

.1
%

1
.1

%
0

.7
%

0
.5

%
6

.8
%

3
.1

%
2

.6
%

2
.8

%

4
0

3
.g

cc
3

2
9

4
.0

%
3

.4
%

3
.5

%
4

.2
%

7
.5

%
7

.0
%

7
.5

%

4
2

9
.m

cf
2

8
2

0
.0

%
0

.1
%

0
.3

%
0

.5
%

0
.1

%
0

.1
%

0
.4

%

4
4

5
.g

o
b

m
k

4
4

3
1

6
.5

%
5

.6
%

5
.6

%
4

.4
%

4
.8

%
2

6
.0

%
1

2
.4

%
1

2
.3

%
1

1
.0

%

4
5

6
.h

m
m

er
4

2
9

0
.3

%
0

.0
%

0
.0

%
0

.0
%

0
.1

%
0

.4
%

0
.0

%
0

.1
%

0
.1

%

4
5

8
.s

je
n

g
5

1
9

1
7

.6
%

5
.3

%
3

.9
%

3
.8

%
4

.2
%

2
4

.1
%

8
.0

%
7

.4
%

6
.5

%

4
6

2
.li

b
q

u
an

tu
m

4
8

8
-0

.8
%

0
.1

%
-1

.2
%

1
.0

%
0

.6
%

0
.8

%
-0

.7
%

-1
.1

%
-0

.3
%

4
6

4
.h

2
6

4
re

f
6

0
9

2
6

.2
%

9
.8

%
8

.4
%

8
.6

%
7

.3
%

2
9

.6
%

1
0

.0
%

7
.9

%
7

.7
%

4
7

1
.o

m
n

et
p

p
3

7
3

3
1

.9
%

1
2

.6
%

1
4

.3
%

1
1

.5
%

9
.5

%
3

3
.4

%
1

2
.4

%
1

0
.3

%
9

.1
%

4
7

3
.a

st
ar

4
3

6
1

2
.1

%
6

.3
%

4
.7

%
4

.3
%

4
.8

%
1

1
.6

%
3

.8
%

2
.7

%
2

.0
%

4
8

3
.x

al
an

cb
m

k
2

4
1

1
5

.0
%

1
3

.8
%

1
4

.1
%

1
5

.2
%

1
7

.5
%

1
9

.2
%

1
5

.3
%

4
3

3
.m

ilc
5

3
1

0
.8

%
0

.7
%

0
.8

%
1

.4
%

0
.9

%
0

.9
%

0
.8

%

4
4

4
.n

am
d

4
3

7
0

.0
%

0
.0

%
0

.1
%

0
.0

%
0

.2
%

0
.0

%
0

.0
%

0
.0

%
0

.0
%

4
4

7
.d

ea
lII

3
5

0
2

9
.3

%
1

1
.1

%
9

.5
%

9
.0

%
6

.9
%

3
3

.4
%

9
.7

%
6

.5
%

6
.3

%

4
5

0
.s

o
p

le
x

2
7

9
0

.5
%

-0
.2

%
1

.2
%

-1
.5

%
1

.0
%

1
.2

%
1

.1
%

4
5

3
.p

o
vr

ay
2

0
3

4
7

.4
%

1
5

.6
%

1
4

.4
%

1
3

.5
%

1
2

.6
%

5
0

.0
%

1
3

.7
%

1
2

.8
%

1
0

.7
%

4
7

0
.lb

m
3

9
6

-0
.3

%
0

.6
%

-0
.3

%
0

.6
%

0
.5

%
0

.7
%

-0
.4

%
0

.8
%

-0
.1

%

4
8

2
.s

p
h

in
x3

5
8

8
2

.3
%

0
.7

%
-0

.1
%

-0
.1

%
0

.5
%

2
.9

%
0

.2
%

0
.8

%
0

.6
%

SP
EC

in
t:

 a
ll

b
en

ch
m

ar
ks

4
9

9
2

5
.8

%
5

.0
%

4
.9

%
4

.5
%

6
.7

%
6

.1
%

5
.6

%

 -
 w

it
h

o
u

t
p

er
l o

r
gc

c
4

3
1

1
1

2
.7

%
5

.7
%

5
.0

%
4

.8
%

4
.7

%
1

5
.9

%
6

.5
%

6
.0

%
5

.3
%

SP
EC

fp
: e

xc
ep

t
Fo

rt
ra

n
2

7
8

4
1

4
.2

%
4

.0
%

3
.3

%
3

.5
%

2
.8

%
1

5
.7

%
3

.5
%

3
.2

%
2

.7
%

SP
EC

 C
P

U
: e

xc
ep

t
Fo

rt
ra

n
7

7
7

7
5

.2
%

4
.4

%
4

.4
%

3
.9

%
5

.5
%

5
.0

%
4

.5
%

 -
 a

n
d

 w
it

h
o

u
t

p
er

l o
r

gc
c

7
0

9
5

1
3

.3
%

5
.0

%
4

.3
%

4
.2

%
3

.9
%

1
5

.8
%

5
.2

%
4

.8
%

4
.2

%

x6
4

, -
O

2

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

F
ig

u
re

2.
18

:
B

en
ch

m
ar

k
s

fo
r

x
64

,
-O

2
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
B

as
el

in
e

ru
n
ti

m
es

ar
e

in
se

co
n
d
s.

S
P

E
C

ov
er

h
ea

d
s

ar
e

ge
om

et
ri

c
m

ea
n
s

of
m

in
im

u
m

in
d
iv

id
u
al

b
en

ch
m

ar
k

ov
er

h
ea

d
s.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 32

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0
0
.p
er
lb
en

ch
3
.4

5
.6

3
.1

0
.4

0
.5

0
.7

7
.2

3
.1

4
0
1
.b
zi
p
2

0
.2

2
0
.1

0
.1

0
.2

0
.1

0
.5

7
.0

1
.4

6
.7

5
.0

4
0
3
.g
cc

1
.1

1
.1

0
.6

0
.3

1
.3

0
.6

2
.1

0
.7

4
2
9
.m

cf
0
.1

0
.3

0
.1

0
.1

0
.1

0
.1

2
.9

0
.1

1
.9

0
.1

4
4
5
.g
o
b
m
k

0
.3

0
.4

1
.0

0
.5

0
.6

0
.4

1
2
.0

0
.3

1
1
.5

3
.4

4
5
6
.h
m
m
er

0
.1

0
.3

1
2
.9

3
4
.1

0
.1

1
.0

9
.7

0
.0

1
0
.3

0
.2

4
5
8
.s
je
n
g

0
.2

0
.1

1
.6

4
.9

0
.1

0
.5

1
6
.5

0
.1

4
.9

0
.2

4
6
2
.li
b
q
u
an
tu
m

2
.1

3
.8

4
.1

1
.7

2
.6

4
.0

1
.8

2
.0

2
.9

2
.7

4
6
4
.h
2
6
4
re
f

0
.3

4
.4

7
.0

4
.7

0
.4

0
.1

1
7
.7

0
.1

5
.7

0
.3

4
7
1
.o
m
n
et
p
p

1
.1

2
.8

1
.4

3
.6

1
.3

7
.5

1
4
.9

2
.7

9
.9

1
.9

4
7
3
.a
st
ar

0
.3

2
.5

0
.8

1
.6

0
.4

0
.9

5
.6

1
.5

3
.0

1
.7

4
8
3
.x
al
an
cb
m
k

0
.4

1
.5

0
.3

2
.3

0
.5

3
.4

9
.8

2
.5

7
.8

1
.7

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

4
3
3
.m

ilc
2
.7

0
.8

0
.4

0
.5

0
.6

0
.3

3
.0

0
.4

2
.2

0
.4

4
4
4
.n
am

d
2
.6

0
.1

0
.1

0
.3

0
.1

1
.1

1
3
.2

0
.0

2
.7

0
.1

4
4
7
.d
ea
lII

0
.4

0
.4

0
.2

0
.1

0
.1

0
.2

1
0
.7

0
.2

2
.7

0
.1

4
5
0
.s
o
p
le
x

0
.3

1
.1

0
.4

0
.6

0
.9

1
.9

1
.2

1
.3

2
.2

1
.1

4
5
3
.p
o
vr
ay

0
.2

0
.3

0
.2

0
.5

0
.3

0
.2

0
.3

0
.7

0
.3

0
.2

4
7
0
.lb
m

2
.9

0
.8

1
.3

1
.3

1
.2

2
.2

2
.0

0
.7

1
.6

2
.2

4
8
2
.s
p
h
in
x3

2
.9

1
1
.1

6
.7

4
.4

1
.7

1
.8

2
0
.5

1
.4

6
.2

7
.4

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

x8
6

, -
O

3

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

F
ig

u
re

2.
19

:
B

en
ch

m
ar

k
s

fo
r

x
86

,
-O

3
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
T

h
is

ta
b
le

sh
ow

s
th

e
st

an
d
ar

d
d
ev

ia
ti

on
(i

n
se

co
n
d
s)

of
ea

ch
b

en
ch

m
ar

k
.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 33

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0
0
.p
er
lb
en

ch
1
3
.7

1
3
.8

0
.7

1
3
.8

1
.8

2
.3

2
.2

3
.2

4
0
1
.b
zi
p
2

6
.6

1
1
.4

1
8
.0

0
.3

0
.1

5
.5

7
.5

1
9
.0

1
1
.8

0
.1

4
0
3
.g
cc

3
.3

3
.2

0
.7

4
.4

1
.7

1
.9

2
.1

1
.0

4
2
9
.m

cf
0
.1

2
.5

0
.1

3
.0

0
.1

0
.1

0
.4

0
.3

0
.1

0
.2

4
4
5
.g
o
b
m
k

0
.3

0
.3

0
.3

0
.5

1
.6

0
.3

4
.1

5
.2

9
.4

0
.4

4
5
6
.h
m
m
er

0
.1

0
.1

0
.1

0
.3

1
1
.3

0
.2

0
.1

1
8
.3

1
9
.5

0
.0

4
5
8
.s
je
n
g

0
.4

0
.4

0
.3

0
.4

1
.4

0
.2

0
.3

0
.5

0
.2

0
.4

4
6
2
.li
b
q
u
an
tu
m

3
.4

2
.3

2
.6

2
.1

3
.0

7
.9

2
.4

6
.8

4
.5

3
.1

4
6
4
.h
2
6
4
re
f

1
.8

0
.2

0
.1

0
.2

0
.1

6
.6

0
.1

1
.3

3
.3

0
.1

4
7
1
.o
m
n
et
p
p

1
.3

3
.4

0
.8

4
.4

2
.2

1
.9

0
.6

2
.8

6
.0

0
.4

4
7
3
.a
st
ar

0
.5

1
.5

0
.4

3
.0

0
.9

3
.8

0
.2

1
.9

1
.7

0
.2

4
8
3
.x
al
an
cb
m
k

0
.9

3
.0

0
.3

3
.8

3
.0

3
.7

2
.7

3
.0

2
.9

0
.5

4
3
3
.m

ilc
0
.4

0
.5

1
.2

2
.6

0
.8

0
.4

0
.6

1
.0

1
.3

1
.7

4
4
4
.n
am

d
0
.1

1
0
.6

0
.1

1
.3

0
.2

0
.1

0
.2

2
.5

6
.2

2
.4

4
4
7
.d
ea
lII

0
.3

9
.7

0
.1

0
.3

0
.2

0
.5

0
.1

0
.1

1
.9

2
.4

4
5
0
.s
o
p
le
x

1
.5

3
.6

1
.1

1
.6

1
.2

0
.9

1
.2

1
.9

1
.9

1
.6

4
5
3
.p
o
vr
ay

0
.3

0
.2

0
.4

0
.2

0
.1

0
.2

0
.5

0
.2

0
.2

0
.7

4
7
0
.lb
m

2
.4

0
.8

1
.1

2
.2

2
.8

2
.5

2
.1

3
.1

1
.4

2
.1

4
8
2
.s
p
h
in
x3

7
.3

6
.0

8
.3

1
.4

1
2
.4

1
.8

6
.6

2
.3

2
.0

4
.2

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

x8
6

, -
O

2

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

F
ig

u
re

2.
20

:
B

en
ch

m
ar

k
s

fo
r

x
86

,
-O

2
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
T

h
is

ta
b
le

sh
ow

s
th

e
st

an
d
ar

d
d
ev

ia
ti

on
(i

n
se

co
n
d
s)

of
ea

ch
b

en
ch

m
ar

k
.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 34

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0
0
.p
er
lb
en

ch
4
.4

7
.4

0
.9

1
.1

2
.2

0
.9

0
.6

0
.9

4
0
1
.b
zi
p
2

5
.8

1
1
.5

1
7
.3

0
.5

2
.7

1
1
.4

1
6
.2

0
.5

6
.2

0
.2

4
0
3
.g
cc

0
.8

1
.0

0
.9

0
.5

1
.5

1
.1

2
.1

1
.6

4
2
9
.m

cf
0
.9

0
.6

0
.4

1
.5

0
.9

0
.5

0
.8

0
.6

0
.6

0
.7

4
4
5
.g
o
b
m
k

6
.4

1
3
.5

0
.9

1
.1

1
.0

0
.4

9
.7

1
.2

4
.3

0
.6

4
5
6
.h
m
m
er

2
3
.6

2
7
.8

0
.0

0
.5

0
.1

0
.2

1
6
.9

1
.7

2
.7

0
.4

4
5
8
.s
je
n
g

0
.7

0
.5

0
.3

0
.1

0
.1

0
.3

0
.7

7
.4

1
.7

0
.2

4
6
2
.li
b
q
u
an
tu
m

3
.4

5
.0

4
.4

2
.9

4
.4

2
.8

2
.7

2
.8

3
.6

3
.1

4
6
4
.h
2
6
4
re
f

6
.6

7
.8

0
.1

0
.2

0
.3

0
.5

0
.2

0
.2

0
.2

0
.2

4
7
1
.o
m
n
et
p
p

3
.7

8
.1

1
.5

4
.8

0
.5

1
.2

3
.2

8
.7

4
7
3
.a
st
ar

2
.5

0
.5

3
.0

0
.9

1
.5

0
.6

1
.1

1
.8

1
.2

1
.5

4
8
3
.x
al
an
cb
m
k

2
.6

3
.0

0
.3

0
.3

4
.4

4
.7

3
.5

4
.6

4
3
3
.m

ilc
0
.6

0
.5

0
.6

0
.7

0
.4

1
.4

1
3
.9

1
0
.4

4
4
4
.n
am

d
0
.2

5
.6

0
.3

0
.3

0
.2

0
.3

0
.6

1
.2

5
.2

7
.3

4
4
7
.d
ea
lII

0
.7

0
.3

0
.6

0
.3

0
.1

0
.2

0
.7

1
.0

0
.4

0
.3

4
5
0
.s
o
p
le
x

1
.1

0
.8

0
.5

0
.7

1
.1

2
.2

0
.7

3
.2

4
5
3
.p
o
vr
ay

0
.3

0
.9

0
.8

1
.3

0
.9

0
.4

0
.6

1
.1

0
.8

1
.7

4
7
0
.lb
m

1
.0

1
.7

2
.5

0
.4

2
.1

1
.6

0
.8

0
.6

2
.2

2
.1

4
8
2
.s
p
h
in
x3

5
.4

3
.4

1
6
.3

1
.7

2
.1

9
.2

8
.1

4
.5

3
.6

5
.0

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

x8
6

, -
O

3

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

F
ig

u
re

2.
21

:
B

en
ch

m
ar

k
s

fo
r

x
64

,
-O

3
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
T

h
is

ta
b
le

sh
ow

s
th

e
st

an
d
ar

d
d
ev

ia
ti

on
(i

n
se

co
n
d
s)

of
ea

ch
b

en
ch

m
ar

k
.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 35

C
h

e
ck

in
g

O
ve

rw
ri

ti
n

g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g
C

h
e

ck
in

g
O

ve
rw

ri
ti

n
g,

ze
ro

in
g

o
u

t

O
ve

rw
ri

ti
n

g,

n
o

 z
e

ro
in

g

4
0
0
.p
er
lb
en

ch
0
.1

1
.5

1
4
.6

1
0
.2

3
.0

5
.4

9
.4

2
.2

4
0
1
.b
zi
p
2

0
.1

1
.5

1
8
.7

0
.4

3
0
.3

0
.4

9
.6

0
.2

2
7
.3

2
1
.6

4
0
3
.g
cc

0
.2

2
.0

1
.9

1
.9

1
.4

1
.7

1
.8

1
.3

4
2
9
.m

cf
0
.2

1
.0

0
.6

0
.7

0
.7

0
.4

1
.0

0
.7

4
4
5
.g
o
b
m
k

1
2
.7

0
.3

4
.5

1
6
.1

5
.8

0
.3

2
.6

6
.8

1
0
.1

2
.7

4
5
6
.h
m
m
er

1
7
.4

0
.2

0
.1

0
.1

0
.2

0
.1

0
.1

2
8
.7

1
7
.0

0
.1

4
5
8
.s
je
n
g

1
.3

0
.4

1
.9

0
.6

0
.2

0
.3

0
.2

0
.3

1
.3

4
.4

4
6
2
.li
b
q
u
an
tu
m

3
.6

3
.6

1
.9

3
.9

4
.8

4
.3

3
.0

4
.2

4
.6

3
.7

4
6
4
.h
2
6
4
re
f

3
.6

0
.4

0
.5

0
.2

3
.1

8
.9

0
.1

7
.6

5
.4

5
.7

4
7
1
.o
m
n
et
p
p

2
.7

2
.8

8
.2

4
.4

1
.3

5
.7

1
.8

2
.3

7
.1

5
.2

4
7
3
.a
st
ar

1
.9

2
.3

2
.1

1
.4

2
.4

2
.1

2
.2

0
.5

3
.1

1
.6

4
8
3
.x
al
an
cb
m
k

0
.6

2
.6

5
.9

2
.0

4
.5

0
.8

1
.9

1
.7

4
3
3
.m

ilc
0
.0

0
.7

0
.4

0
.6

0
.4

1
0
.4

1
0
.5

0
.5

4
4
4
.n
am

d
0
.4

0
.1

0
.1

0
.1

0
.1

0
.1

0
.4

5
.4

5
.4

0
.1

4
4
7
.d
ea
lII

0
.8

0
.4

0
.1

0
.4

0
.1

0
.2

0
.2

0
.9

4
.7

0
.3

4
5
0
.s
o
p
le
x

1
.6

1
.5

1
.7

0
.4

2
.3

0
.6

0
.5

0
.6

4
5
3
.p
o
vr
ay

0
.3

0
.6

1
.1

0
.8

0
.6

0
.5

0
.9

0
.8

0
.3

0
.4

4
7
0
.lb
m

2
.0

2
.7

0
.6

2
.2

0
.6

1
.3

0
.4

2
.1

0
.4

1
.4

4
8
2
.s
p
h
in
x3

3
.3

1
.7

3
.4

6
.1

4
.7

7
.8

1
.3

1
.7

3
.3

7
.1

B
as

e
lin

e

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

-f
st

ac
k

-p
ro

te
ct

o
r

-a
ll

Tr
ad

it
io

n
al

sh
ad

o
w

st
ac

k

P
ar

al
le

l s
h

ad
o

w
 s

ta
ck

x6
4

, -
O

2

W
it

h
 R

ET
 in

 e
p

ilo
gu

e
s

W
it

h
 in

d
ir

e
ct

 ju
m

p
s

in
st

e
ad

 o
f

R
ET

 in
 e

p
ilo

gu
e

s

F
ig

u
re

2.
22

:
B

en
ch

m
ar

k
s

fo
r

x
64

,
-O

2
w

it
h
R
E
T
s

(l
ef

t)
or

in
d
ir

ec
t

ju
m

p
s

(r
ig

h
t)

in
th

e
ep

il
og

u
es

.
T

h
is

ta
b
le

sh
ow

s
th

e
st

an
d
ar

d
d
ev

ia
ti

on
(i

n
se

co
n
d
s)

of
ea

ch
b

en
ch

m
ar

k
.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 36

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

433.milc

444.namd

450.soplex

453.povray

470.lbm

482.sphinx3

y = 4.7924x + 0.0078
R² = 0.5395

-1.00%

1.00%

3.00%

5.00%

7.00%

9.00%

11.00%

13.00%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

O
ve

rh
ea

d

% RET instructions

Figure 2.23: Correlation between the percentage of RET instructions and the overhead.

the shadow stack pointer. This is strongly supported by an experiment where we augmented
the parallel shadow stack with those extra instructions: the overhead approached that of
the traditional shadow stack. Figures 2.24, 2.25, and 2.26 show the epilogues for the parallel
shadow stack where we have incrementally added instructions to save and restore %ecx, loop
in the event of a mismatch, and load/update the pseudo-shadow stack pointer. Note that
Figure 2.26 is not the same as a traditional shadow stack, because it still uses the parallel
shadow stack; it simply incurs the cost of maintaining and updating a traditional shadow
stack pointer, which is not meaningfully used. Figure 2.27 shows the overhead of these three
augmented parallel shadow stack schemes.

This model suggests that the overheads of different instrumentation schemes should be
correlated with each other: the programs that incur high overhead with one instrumentation
scheme, will also tend to incur relatively high overhead on other instrumentation schemes
as well. This appears to be supported by our data; for example, xalancbmk and povray

have the highest overheads for every instrumentation scheme. The overhead of the schemes
we investigate also appears to be correlated with that of other published shadow stack

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 37

1 MOV %edx , %gs :104
2

3 MOV −0xa0000000(%esp) , %edx
4

5 CMP %edx , (%esp)
6 JNZ abort$$
7

8 MOV %gs :104 , %edx
9

10 RET
11

12 abort$$:
13 HLT

Figure 2.24: Epilogue for parallel shadow stack, augmented to save and restore %ecx.

1 MOV %edx , %gs :104
2

3 MOV −0xa0000000(%esp) , %edx
4

5 non match :
6 CMP %edx , (%esp)
7 JNZ non match
8

9 MOV %gs :104 , %edx
10

11 RET

Figure 2.25: Epilogue for parallel shadow stack, augmented to save and restore %ecx, and
loop in the event of a mismatch.

schemes [34, 107] and instrumentation schemes [84, 108, 107]. Thus, our discussion of avenues
for improvement is generalizable to other shadow stack implementations and to CFI.

2.9.1.1 Omitted Benchmarks

We omitted the Fortran benchmarks due to the engineering effort required, relative to their
relevance in a security context. These benchmarks have an extremely low percentage of RET
instructions: 6 out of 10 have ≤ 0.02%, and the maximum is 0.21%. Our model suggests
that shadow stacks will have low overhead on the Fortran benchmarks. Thus, our results
overestimate the overhead for SPECfp and SPEC CPU.

We were not able to instrument perlbench and gcc with a traditional shadow stack. We
anticipate their overhead with a traditional shadow stack would be substantial, as 0.81%
and 0.77% of their instructions are RETs, respectively. These programs have relatively high

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 38

1 MOV %edx , %gs :104
2

3 MOV %gs :108 , %ecx
4 MOV −0xa0000000(%esp) , %edx
5

6 non match :
7 ADD $4 , %ecx
8 CMP %edx , (%esp)
9 JNZ non match

10

11 MOV %ecx , %gs :108
12

13 MOV %gs :104 , %edx
14

15 RET

Figure 2.26: Epilogue for parallel shadow stack, augmented to save and restore %ecx, loop
in the event of a mismatch, and load/update the pseudo-shadow stack pointer.

+ save/restore

scratch register

+ pseudo-loop

until match

+ load/update

pseudo-SSP

400.perlbench 354 14.2% 13.4% 18.1%

401.bzip2 585 0.9% 0.9% 2.2%

403.gcc 300 8.1% 8.7% 12.5%

429.mcf 211 0.3% 0.2% 0.4%

445.gobmk 449 7.3% 7.2% 10.6%

456.hmmer 516 -0.1% -0.1% 0.1%

458.sjeng 518 8.5% 9.6% 13.8%

462.libquantum 669 -1.0% -1.2% -0.4%

464.h264ref 716 12.4% 12.6% 17.8%

471.omnetpp 319 17.5% 17.6% 21.1%

473.astar 453 5.8% 4.6% 6.5%

483.xalancbmk 221 19.6% 21.6% 30.8%

433.milc 565 2.8% 2.6% 3.4%

444.namd 513 -0.1% -0.1% 0.0%

447.dealII 360 12.6% 12.4% 18.5%

450.soplex 281 0.8% 1.3% 1.1%

453.povray 218 19.9% 19.5% 26.0%

470.lbm 416 -1.0% -0.3% -0.3%

482.sphinx3 471 2.1% 2.0% 2.4%

Baseline
x86, -O3

With RET in epilogues

Parallel shadow stack

Figure 2.27: Benchmarks for x86, -O3 with our hybrid traditional/parallel shadow stacks.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 39

overheads when instrumented with the parallel shadow stack or -fstack-protector-all.
There are a number of other CFI or shadow stack studies that omit some of the SPEC

CPU benchmarks, as we have. However, in some cases, their omitted benchmarks are those
which we would predict to be expensive (based on the percentage of RETs, and our own
measurements); thus, their omission suggests that their estimate of performance overhead
might be overly optimistic.

2.9.1.2 Indirect Jumps vs RETs

With indirect jumps, the CPU can no longer predict the return address using its internal
stack. While there is still dynamic branch prediction for indirect jumps, our results show
that this is noticeably imperfect. This is not surprising: we expect, for example, that
printf will be called from many different functions (foo, bar, baz); and each time printf

may “return” to any of those functions. This is somewhat similar to BinCFI [108], where
its “trampoline” (address translation) routine would “return” (with an indirect jump) to
many different functions. This arguably supports the prioritization of performance over
TOCTTOU protection, as done by many CFI and shadow stack schemes [108]. In the context
of software fault isolation (not a shadow stack), PittSFIeld [68] reported that replacing RETs
with indirect jumps increased the overhead on SPECint2000 from 21% to 27%.

2.9.2 Avenues for improvement

The traditional shadow stack has close to 10% overhead — which is unlikely to be acceptable
for widespread deployment [98] — and even a minimalist parallel shadow stack has roughly
3.5% overhead. However, these were obtained by measuring the overhead of (a) our hand-
coded assembly, for (b) a traditional shadow stack, when we instrumented (c) 100%
of (d) the (intended) RETs normally emitted by the compiler. We can potentially
improve performance by modifying each of those aspects:

(a) Equivalent but faster prologues and epilogues: we already tried many functionally
equivalent prologues and epilogues, and even super-optimization [67] can provide only
limited savings, as the overhead depends in part on the percentage of memory loads
and stores, which are mostly unavoidable; for the limited case of leaf functions (those
that make no calls), Crypto CFI [66] uses XMM4 (an SSE register) to store the return
instruction pointer and frame pointer.
For the traditional shadow stack, we could modify the setjmp/longjmp functions or
instrument their call sites (as done by Kuznetsov et al. [61] for their dual stacks), to
maintain the invariant that the top of the shadow stack is always the correct return
address. This means that, rather than using a loop to check the return address, we
could use simpler instrumentation similar to the parallel shadow stack (albeit still with
another layer of indirection in the form of the shadow stack pointer).

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 40

(b) Relaxations or variations of a shadow stack: for example, the parallel shadow stack
scheme, a shadow set (which keeps track of which return addresses are valid, but
does not enforce the ordering of return addresses) rather than a shadow stack [32], or
monitoring the taintedness of the return address in only the most recent one or two
stack frames [59]. All of these, to some extent, trade off some security for performance.

(c) Selectively instrumenting functions: choosing a random subset of functions to instru-
ment would greatly sacrifice security — if we randomly selected 1/nth of functions to
instrument, then the expected overhead is 1/nth (even if the function run-times are
not uniform). A better choice might be identifying (in-)frequently called functions, us-
ing profiling [99]. Alternatively, SecondWrite’s [79] return address check optimization
omits the shadow stack instrumentation from functions that do not have indexed array
writes.14 They noted that small leaf functions and recursive functions, which benefit
the most from this optimization, are also the most frequently called. Crypto CFI [66]
also optimizes leaves, instead by storing the return address in a register rather than
encrypting.

(d) Reducing the number of RETs through inlining (e.g., our use of -O3, or with link-time
optimization [66])

Although reducing the number of RETs or selectively instrumenting functions (chosen ap-
propriately) are valuable contributions, these are orthogonal to improving the prologues/epi-
logues or relaxations of the shadow stack paradigm. We should beware of conflating the speed
of an instrumentation scheme with the advantage gained from a particular optimization: al-
though shadow stack scheme A, run on benchmarks with aggressive inlining, may appear to
have lower overhead than shadow stack scheme B, this might be attributable to the inlining
rather than the merits of scheme A, in which case the “best” solution would be scheme B
with aggressive inlining.

Since software-only shadow stacks are expensive — even with the aforementioned incre-
mental improvements — many authors [26, 81, 48, 104] have proposed hardware shadow-
stack support. These are distinct from the return-address stack already present in modern
processors for branch prediction [96, 55], which are not secure: if there is a mismatch be-
tween them, the hardware reverts to using the main stack. Hardware shadow stack schemes
are usually extremely fast, instrument all RETs (even unintended RETs), and do not require
recompilation, but introduce complications for code that intentionally violates CALL-RET

matching.
Davi et al. [32] proposed a hardware-assisted CFI scheme that includes a shadow set ;

this requires the addition of new labels/instructions to the code. Kao and Wu [59] proposed
new registers for the Intel architecture, to store the location of the current return address,
and the old value of %ebp. In June 2016, Intel announced their Control-flow Enforcement

14Unfortunately, the claim of “not sacrificing any protection” is incorrect, e.g., a bufferless function foo

that calls bar could have its return address overwritten by bar, if bar has a vulnerable indexed array write.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 41

Technology (CET) [54], which includes both coarse-grained forward-edge CFI, and a precise
shadow stack.

New hardware features that are not security specific can also improve performance. For
example, Crypto CFI [66] uses multiple XMM registers. Anecdotally, our parallel shadow
stack appears to have lower overhead on a newer processor (a 2011 Intel Core i7-3930K) —
perhaps because of an improved stack engine [44]. However, we expect that non-security
specific hardware improvements will not significantly change the overheads, since there are
the memory load/store costs, and there is little room for improvement with branch prediction
(the indirect jumps in the RET variants of the shadow stacks are only taken if a return-address
mismatch occurs, and therefore can be predicted dynamically; the overheads of the indirect
jump variants are lower-bounded by the RET variants, which have nearly perfect branch
prediction).

2.9.3 Deployment issues

The parallel shadow stack variants have lower overhead than the traditional shadow stack,
but not sufficiently low that widespread deployment would be an obvious decision. Even
faster is -fstack-protector-all, but its attractiveness is tempered by its strictly weaker
security properties (as per Figure 2.1). Additionally, -fstack-protector-all was applied
at the compiler level, though it is possible to add it through binary rewriting (e.g., Second-
Write [79]).

Our implementation is designed only to provide accurate estimates of the overhead of
shadow stacks, not shelf-ready code. Nonetheless, some seemingly tricky cases are actually
non-issues. For example, consider tail call elimination (e.g., suppose function f calls g which
calls h, and function h; there are some limited cases where the compiler can convert the
CALL to h into a jump); this does not change the assumption that the top of the stack in the
prologue is the expected return address. Another case is the get-EIP idiom (a CALL followed
by a POP can be used to obtain the instruction pointer, as required for position-independent
code; this idiom is commonly used on 32-bit x86, which lacks an instruction to directly read
EIP [55]): this still works because we instrument neither the CALL nor POP.

For other corner cases (e.g., exceptions, multi-threading), we defer to Szekeres et al.’s [98]
assessment that compatibility issues can be avoided through careful engineering.

2.9.4 Generalizability

Mytkowicz et al. [71] demonstrated that a narrow set of environment and compilation options
may lead to invalid results. Nonetheless, we are confident in our calculated overheads due to
1) the consistency of results across a variety of parameters (x86/x64, -O2/-O3, ad-hoc tests
on a different CPU); 2) the strong correlation of per-program overheads between different
instrumentation options, and with the static RET instruction counts; 3) other steps in our
methodology (disabling Turbo Boost, disabling ASLR, and rebooting between each batch of
benchmarks).

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 42

1 POP 999996(% esp)
2 # s i g n a l could happen here
3 SUB $4 , %esp

1 POP 999996(% esp)
2 # s i g n a l could happen here
3 PUSH 999996(% esp)
4 # but t h i s r e s t o r e s the re turn address

1 XCHGL (%esp) , %ecx
2 MOVL %ecx , 1000000(% esp)
3 XCHGL (%esp) , %ecx

Figure 2.28: Unsafe prologue (left) and safe prologues (right).

2.9.5 Signal/interrupt handlers for 32-bit

Some choices of assembly code for parallel shadow stack prologues adjust the stack pointer
to above where we have useful data. This is, in general, unsafe for 32-bit binaries because
signal or interrupt handlers may corrupt the stack.15 Consider, for example, the prologue
in Figure 2.28 (left). The POP instruction moves the stack pointer so that it is above the
return address. If a signal occurs, the signal handler may write to the stack, overwriting the
return address. The analogous prologue for 64-bit Linux is safe because of the “red zone”
[52], which states that the 128-bytes beyond %rsp are considered reserved. We therefore only
discuss the 32-bit case in the rest of this section.

Figure 2.28 (right) we show examples of prologues that are always safe. The top-right
prologue is safe because, even if the return address is corrupted by a signal handler after the
POP, the following PUSH operation will restore the return address with the pristine copy from
the shadow stack. The bottom-right prologue is safe because it does not move the stack
pointer above where the return address is stored.

The “unsafe” prologues are actually safe when combined with an overwriting-style epi-
logue. This is because the correct return address was copied from the main stack to the
shadow stack before the main stack possibly got corrupted, and the overwriting-style epi-
logue solely uses the (correct) return address on the shadow stack. With a checking-style
epilogue, it is unsafe because it will be detected as a mismatch/attack, resulting in a false
alarm.

Our epilogues are safe because the potentially trashed return address on the main stack
will be replaced afterwards with the correct return address:

1 ADD $4 , %esp
2 # s i g n a l could happen here
3 PUSH 999996(% esp) # but c o r r e c t re turn address wr i t t en here

Peephole optimizations.

15We thank Matthew Fernandez of Intel Labs for pointing this out.

CHAPTER 2. THE PERFORMANCE COST OF SHADOW STACKS AND STACK
CANARIES 43

1 POP 999996(% esp)
2 SUB $4 , %esp
3 PUSH %ebp
4 MOV %esp , %ebp
5 SUB <X>, %esp

1 POP 999996(% esp)
2 SUB <X+8>, %esp
3 MOV %ebp , +X(%esp)
4 LEA +X(%esp) , %ebp

1 POP 999996(% esp)
2 MOV %ebp , −8(%esp)
3 % s i g n a l could happen here
4 LEA −8(%esp) , %ebp
5 % s i g n a l could a l s o happen here
6 SUB <X+8>, %esp

Figure 2.29: Sometimes unsafe vanilla (left) and peephole optimized (middle) prologues, and
a very unsafe peephole optimized prologue (right).

1 MOV %ebp , %esp
2 POP %ebp
3 ADD $4 , %esp
4 PUSH 999996(% esp)
5 RET

1 LEA 8(%ebp) , %esp
2 # s i g n a l could happen

here
3 MOV −8(%esp) , %ebp
4 PUSH 999996(% esp)
5 RET

Figure 2.30: Safe (left) and very unsafe peephole optimized (right) epilogues.

These can sometimes introduce or exacerbate the signal/interrupter-handler issue for
prologues and epilogues. For example, Figure 2.29 (left) shows a sometimes unsafe prologue,
and Figure 2.29 (center) shows a peephole-optimized variant. The “very unsafe” prologue
in Figure 2.29 (right), risks corrupting the frame pointer as well as the return address, since
the stack pointer is sometimes up to 8 bytes above where there is useful data stored. We
consider it very unsafe, because instead of only resulting in a false alarm (terminating the
program), a corrupted frame pointer may lead to attacks. A simple, but not inexpensive,
fix would be to store both the return address and frame pointer on the shadow stack (this
is done, for different security reasons, by some shadow stack schemes [82, 6]).

Figure 2.30 shows an analogous risk of frame pointer corruption during the epilogue, with
the same fix possible (restoring the frame pointer from the shadow stack).

2.10 Conclusion

In this chapter, we considered the performance costs of using a shadow stack. Our results
suggest that a shadow stack, even when pared to its bare minimum (the overwriting, non-
zeroing version of the parallel shadow stack), has non-negligible performance overhead, due to
increased memory pressure. Achieving low-overhead protection against control-flow attacks
will likely require alternative paradigms, such as the Code Pointer Separation (CPS) and
Safe Stack techniques proposed by Kuznetsov et al. [61] — which unfortunately currently
requires recompilation, unlike coarse-grained CFI [108, 106] — or hardware support.

44

Chapter 3

Oscar: A Practical
Page-Permissions-Based Scheme for
Thwarting Dangling Pointers

Using memory after it has been freed opens programs up to both data and control-flow
exploits. Recent work on temporal memory safety has focused on using explicit lock-and-
key mechanisms (objects are assigned a new lock upon allocation, and pointers must have
the correct key to be dereferenced) or corrupting the pointer values upon free(). Placing
objects on separate pages and using page permissions to enforce safety is an older, well-
known technique that has been maligned as too slow, without comprehensive analysis. We
show that both old and new techniques are conceptually instances of lock-and-key, and
argue that, in principle, page permissions should be the most desirable approach. We then
validate this insight experimentally by designing, implementing, and evaluating Oscar, a
new protection scheme based on page permissions. Unlike prior attempts, Oscar does not
require source code, is compatible with standard and custom memory allocators, and works
correctly with programs that fork. Also, Oscar performs favorably — often by more than an
order of magnitude — compared to recent proposals: overall, it has similar or lower runtime
overhead, and lower memory overhead than competing systems.

3.1 Introduction

A temporal memory error occurs when code uses memory that was allocated, but since freed
(and therefore possibly in use for another object), i.e., when an object is accessed outside of
the time during which it was allocated.

Suppose we have a function pointer stored on the heap that points to function Elmo()

(see Figure 3.1) at address 0x05CADA. The pointer is used for a bit and then de-allocated.
However, because of a bug, the program accesses that pointer again after its deallocation.

This bug creates a control-flow vulnerability. For example, between the de-allocation

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 45

1 void (∗∗ someFuncPtr) () = mal loc (s i z e o f (void ∗)) ;
2 ∗someFuncPtr = &Elmo ; // At 0x05CADA
3 (∗ someFuncPtr) () ; // Correct use .
4 void (∗∗ c a l l b a c k) () ;
5 c a l l b a c k = someFuncPtr ;
6 . . .
7 f r e e (someFuncPtr) ; // Free space .
8 userName = mal loc (. . .) ; // Rea l l o ca t e space .
9 . . . // Overwrite ob j e c t with &Grouch at 0

x05DEAD.
10 (∗ c a l l b a c k) () ; // Use a f t e r f r e e !

0 5 C A D A 0 0

0 5 D E A D 0 0

someFuncPtr

callback

someFuncPtr
userName

callback

Figure 3.1: Top: someFuncPtr and callback refer to the function pointer, stored on the
heap. Bottom: userName reuses the freed memory, formerly of someFuncPtr/callback.

(line 7) and faulty re-use of the pointer (line 10), some other code could allocate the same
memory and fill it from an untrusted source — say a network socket. When the de-allocated
pointer is faultily invoked, the program will jump to whatever address is stored there, say
the address of the ROP gadget Grouch() at address 0x05DEAD, hijacking control flow.

Heap temporal memory safety errors are becoming increasingly important [62, 105].
Stack-allocated variables are easier to protect, e.g., via escape analysis, which statically
checks that pointers to a stack variable do not outlive the enclosing stack frame, or can be
reduced to the heap problem, by converting stack allocations to heap allocations [77]. Stack
use-after-free is considered rare [105] or difficult to exploit [62]; a 2012 study did not find
any such vulnerabilities in the CVE database [17]. We therefore focus on temporal memory
safety for heap-allocated objects in the rest of this work.

Various defenses have been tried. A decade ago, Dhurjati and Adve [37] proposed using
page permissions and aliased virtual pages for protection. In their scheme, the allocator
places each allocated object in a distinct virtual page, even though different objects may
share the same physical page; when an object is deallocated, the corresponding virtual
page is rendered inaccessible, causing pointer accesses after deallocation to fail. Although
a combination of the technique with static analysis led to reasonable memory economy and
performance, critics found faults with evaluation and generality, and — without quantitative
comparison — summarily dismissed the general approach as impractical [75, 105], or without
even mentioning it [60]. Since then, researchers have proposed more elaborate techniques
(CETS [75], DangSan [60], Dangling Pointer Nullification [62] (“DangNull”) and FreeSentry

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 46

[105]), relying on combinations of deeper static analysis and comprehensive instrumentation
of heap operations such as object allocation, access, and pointer arithmetic. However, these
schemes have yielded mixed results, including poor performance, partial protection, and
incompatibility.

In this work, we first study past solutions, which we cast as realizations of a lock-and-key
protection scheme (Section 3.3). We argue that using page permissions to protect from dan-
gling pointers, an implicit lock-and-key scheme with lock changes, is less brittle and complex,
and has the potential for superior performance. We then develop Oscar, a new protection
mechanism using page permissions, inspired by Dhurjati and Adve’s seminal work [37]. We
make the following contributions:

• We study in detail the overhead contributed by the distinct factors of the scheme —
shared memory mappings, memory-protection system calls invoked during allocation
and deallocation, and more page table entries and virtual memory areas — using the
standard SPEC CPU 2006 benchmarks (Section 3.4).

• We reduce the impact of system calls by careful amortization of virtual-memory oper-
ations, and management of the virtul address space (Section 3.5).

• We extend Oscar to handle server workloads, by supporting programs that fork chil-
dren and the common case of custom memory allocators other than those in the stan-
dard C library (Section 3.7).

• We evaluate Oscar experimentally using both SPEC CPU2006 and the popular mem-

cached service, showing that Oscar achieves superior performance, while providing
more comprehensive protection than prior approaches.

Our work shows, in principle and experimentally, that protection based on page permis-
sions — previously thought to be an impractical solution — may be the most promising
for temporal memory safety. The simplicity of the scheme leads to excellent compatibil-
ity, deployability, and the lowest overhead: for example, on SPEC CPU2006, CETS and
FreeSentry have 48% and 30% runtime overhead on hmmer respectively, vs. our 0.7% over-
head; on povray, DangNull has 280% overhead while ours is < 5%. While DangSan has
runtime overhead similar to Oscar, DangSan’s memory overhead (140%) is higher than Os-
car’s (61.5%). Also, our study of memcached shows that both standard and custom allocators
can be addressed effectively and with reasonable performance.

3.2 Related Work

3.2.1 Dhurjati and Adve (2006)

Our work is inspired by the original page-permission with shadows scheme by Dhurjati and
Adve [37]. Unlike Dhurjati and Adve’s automatic pool allocation, Oscar can unmap shad-
ows as soon as an object is freed, and does not require source code. Oscar also addresses

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 47

 One object per
physical page frame

One object per shadow virtual page
(core technique of Dhurjati & Adve)

e.g., Electric Fence Vanilla
Automatic pool allocation

(Dhurjati & Adve)
Our

work

Physical memory
overhead

User-space memory 0 – 4KB per object
(page align)

 Low overhead (O(sizeof(void*)) per object)

Page table entry
for live objects

1 page table entry per object

Page table entry
for freed objects

<Depends on
implementation>

1 PTE per
object

1 PTE per object in live pools 0 PTEs*

VMA struct
for live objects

1 VMA struct per object

VMA struct
for freed objects

<Depends on
implementation>

1 VMA struct per object  None

Application source/
recompilation needed?

 No  No
Yes: needs source +

recompilation
 No

Compatible with fork()  Yes No; changes program semantics  Mostly

Table 3.1: Comparison with Dhurjati and Adve. Green and a tick indicates an advantageous
distinction. ∗ Oscar unmaps the shadows for freed objects, but Linux does not reclaim the
PTE memory (see Section 3.9).

compatibility with fork, which appears to be a previously unknown limitation of Dhurjati
and Adve’s scheme.1 They considered programs that fork to be advantageous, since vir-
tual address space wastage in one child will not affect the address space of other children.
Unfortunately, writes to old (pre-fork) heap objects will be propagated between parent and
children (see Section 3.7.1), resulting in memory corruption.

While Dhurjati and Adve did measure the runtime of their particular scheme, their
measurements do not let us break down how much each aspect of their scheme contributes to
runtime overhead. First, their scheme relies upon static analysis (Automatic Pool Allocation:
“APA”), and they did not measure the cost of shadow pages without APA. We cannot simply
obtain “cost of syscalls” via “(APA + dummy syscalls) − APA”, since pool allocation affects
the cost of syscalls and cache pressure. Second, they did not measure the cost of each of
the four factors we identified. For instance, they did not measure the individual cost of
inline metadata or changing the memory allocation method; instead, they are lumped in
with the cost of dummy syscalls. This makes it hard to predict the overhead of other
variant schemes, e.g., using one object per physical page frame. Finally, they used a custom
benchmark and Olden [88], which make it harder to compare their results to other schemes
that are benchmarked with SPEC CPU; and many of their benchmark run-times are under
five seconds, which means random error has a large impact. For these reasons, in this work

1We inspected their source http://safecode.cs.illinois.edu/downloads.html and found that they
used MAP SHARED without a mechanism to deal with fork.

http://safecode.cs.illinois.edu/downloads.html

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 48

we undertook a more systematic study of the sources of overhead in shadow-page-based
temporal memory safety schemes.

To reduce their system’s impact on page table utilization, Dhurjati and Adve employed
static source-code analysis (Automatic Pool Allocation) — to separate objects into memory
pools of different lifetimes, beyond which the pointers are guaranteed not to be derefer-
enced. Once the pool can be destroyed, they can remove (or reuse) page table entries (and
associated vm area structs) of freed objects. Unfortunately, there may be a significant lag
between when the object is freed, and when its containing pool is destroyed; in the worst
case (e.g., objects reachable from a global pointer), a pool may last for the lifetime of the
program. Besides being imprecise, inferring object lifetimes via static analysis also intro-
duces a requirement to have application source code, making it difficult and error-prone to
deploy. Oscar’s optimizations do not require application source code or compiler changes.

Oscar usually keeps less state for freed objects: they retain a page table entry (and
associated vm area struct) for each freed object in live pools — some of which may be
long-lived — whereas Oscar munmaps the shadow as soon as the object is freed (Table 3.1).
Dhurjati and Adve expressly target their scheme towards server programs — since those
do few allocations or deallocations — yet they do not account for fork or custom memory
allocators.

If we are not concerned about the disadvantages of automatic pool allocation, it too
would benefit from our optimizations. For example, we have seen that using MAP PRIVATE

greatly reduces the overhead for mcf and milc, and we expect this benefit to carry over when
combined with automatic pool allocation.

3.2.2 Other Deterministic Protection Schemes

The simplest protection is to never free() any memory regions. This is perfectly secure,
does not require application source code (change the free function to be no-op), has excellent
compatibility, and low run-time overhead. However, it also requires infinite memory, which
is impractical.

With DangNull [62], when an object is freed, all pointers to the object are set to NULL.
The converse policy — when all references to a region are NULL (or invalid), automatically
free the region — is “garbage collection”. In C/C++, there is ambiguity about what is a
pointer, hence it is only possible to perform conservative garbage collection, where anything
that might plausibly be a pointer is treated as a pointer, thus preventing free()’ing of the
referent. This has the disadvantages of false positives and lower responsiveness.

The Rust compiler enforces that each object can only have one owner [80]; with our
lock-and-key metaphor, this is equivalent to ensuring that each lock has only one key, which
may be “borrowed” (ala Rust terminology) but not copied. This means that when a key
is surrendered (pointer becomes out of scope), the corresponding lock/object can be safely
reused. std::unique ptr provides similar semantics in C++11. It would be impractical to
rewrite all legacy C/C++ software in Rust (or C++11), let alone provide Rust’s guarantees
to binaries that are compiled from C/C++.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 49

MemSafe [94] combines spatial and temporal memory checks: when an object is de-
allocated, the bounds are set to zero (a special check is required for sub-object temporal
memory safety). MemSafe modifies the LLVM IR, and does not allow inline assembly or
self-modifying code. Of the five SPEC 2006 benchmarks they used, their run-times appear to
be from the ‘test’ dataset rather than the ‘reference’ dataset. For example, for astar, their
base run-time is 0.00 seconds, whereas the base run-time against which we compare Oscar is
408.9 seconds. Their non-zero run-time benchmarks have significant overhead — 183% for
bzip2, 127% for gobmk, 124% for hmmer, and 120% for sjeng — though this includes spatial
and stack temporal protection.

Dynamic instrumentation (e.g., Valgrind’s memcheck [69]) is generally too slow other
than for debugging.

Undangle [17] uses taint tracking to track pointer propagation. They do not provide
SPEC results, but we expect it to be even slower than DangNull/FreeSentry, because Undan-
gle determines how pointers are propagated by, in effect, interpreting each x86 instruction.

Safe dialects of C, such as CCured [77], generally require some source code changes,
such as removing unsafe casts to pointers. CCured also changes the memory layout of
pointers (plus-size pointers), making it difficult to interface with libraries that have not been
recompiled with CCured.

3.2.3 Hardening

The premise of heap temporal memory safety schemes, such as Oscar, is that the attacker
could otherwise repeatedly attempt to exploit a memory safety vulnerability, and has dis-
abled or overcome any mitigations such as ASLR (nonetheless, as noted earlier, Oscar is
compatible with ASLR). Thus, Oscar provides deterministic protection against heap use-
after-free (barring address space exhaustion, which might necessitate reuse, as discussed in
Section 3.8.1).

However, due to the high overhead of prior temporal memory safety schemes, some papers
trade off protection for speed.

Many papers, starting with DieHard [8], “M-approximate” the infinite heap (using a heap
that is M times larger than normally needed) and randomize where objects are placed on
the heap. This means even if an object is used after it is freed, there is a “low” probability
that the memory region has been reallocated. Archipelago [65] extends DieHard but uses
less physical memory, by compacting cold objects. Both can be attacked by making many
large allocations to exhaust the M-approximate heap, forcing earlier reuse of freed objects.

AddressSanitizer [90] also uses a quarantine pool, though with a FIFO reuse order, among
other techniques. PageHeap [50] places freed pages in a quarantine, with the read/write page
permissions removed. Attempted reuse will be detected only if the page has not yet been
reallocated, so it may miss some attacks. These defenses can also be defeated by exhausting
the heap.

Microsoft’s MemoryProtection consists of Delayed Free (similar to a quarantine) and
Isolated Heap (which separates normal objects from “critical” objects) [41]. Both of these

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 50

defenses can be bypassed [35].
Cling [3] only reuses memory among heap objects of the same type, so it ensures type-safe

heap memory reuse but not full heap temporal memory safety.

3.2.4 Limiting the Damage from Exploits

Rather than attempting to enforce memory safety entirely, which may be considered too
expensive, some approaches have focused on containing the exploit.

Often the goal of exploiting a use-after-free vulnerability is to hijack the control flow, such
as by modifying function pointers per our introductory example. One defense is control-flow
integrity (CFI) [1], which in its strongest form restricts the forward edges to an (often im-
precise) statically computed set, and protects the backward edges using a shadow stack.
However, recent work on “control-flow bending” [18] has observed that indirect branches
often have many valid targets, which frequently makes it possible for an attacker to manip-
ulate (using a memory corruption vulnerability) the indirect branches – without violating
the CFI policy — to perform arbitrary computation.

Code pointer integrity (CPI) is essentially memory safety (spatial and temporal) applied
only to code pointers [61]. Code pointer separation (CPS) is a weaker defense than CPI,
because it does not protect pointers to code pointers, but is still stronger than CFI. Both
CPI and CPS require compiler support.

CFI, CPS and CPI do not help against non-control data attacks, such as reading a session
key or changing an ‘isAdmin’ variable [22]; recently, “data-oriented programming” has been
shown to be Turing-complete [51].

3.3 Lock-and-Key Schemes

Use of memory after it has been freed can be seen as an authorization problem: pointers grant
access to an allocated memory area and once that area is no longer allocated, the pointers
should no longer grant access to it. Some have therefore used a lock-and-key metaphor
to describe the problem of temporal memory safety [75]. In this section, we show how
different published schemes map to this metaphor, explicitly and sometimes implicitly2, and
we argue that page-permission-based protection may be the most promising approach for
many workloads (see Table 3.2 for a summary).

3.3.1 Explicit Lock-and-Key: Change the Lock

In this scheme, each memory allocation is assigned a lock, and each valid pointer to that allo-
cation is assigned the matching key. Figure 3.2 shows the code from Figure 3.1, instrumented
such that in line 1, the allocated object gets a new lock (say 42), and the matching key is

2A convenient but inaccurate simplification is to consider explicit lock-and-key to mean hardware-based
pointer dereferencing checks, and implicit lock-and-key to mean software-based pointer deferencing checks.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 51

1 void (∗∗ someFuncPtr) () = mal loc (s i z e o f (void ∗)) ;
2 setLock (someFuncPtr , 42) ; // Assume hash t a b l e or s i m i l a r
3 long someFuncPtr key = 42 ;
4

5 i f (someFuncPtr key != getLock (someFuncPtr) abort () ;
6 ∗someFuncPtr = &Elmo ; // At 0x05CADA
7 i f (someFuncPtr key != getLock (someFuncPtr) abort () ;
8 (∗ someFuncPtr) () ; // Correct use .
9

10 void (∗∗ c a l l b a c k) () ;
11 c a l l b a c k = someFuncPtr ;
12 setKey (ca l lback , getKey (someFuncPtr)) ;
13 . . .
14 f r e e (someFuncPtr) ; // Free space .
15 setLock (someFuncPtr , INVALID LOCK) ;
16

17 userName = mal loc (. . .) ; // Rea l l o ca t e space .
18 setLock (userName , 43) ;
19 long userName key = 43 ;
20

21 . . . // Overwrite ob j e c t with &Grouch at 0x05DEAD.
22

23 i f (c a l l b a c k k e y != getLock (c a l l b a c k) abort () ;
24 (∗ c a l l b a c k) () ; // Use a f t e r f r e e !

Figure 3.2: The code from Figure 3.1, instrumented with explicit lock-and-key and changing
the lock.

0 5 C A D A 0 0someFuncPtr

callback

lock: 42key: 42

key: 42

Figure 3.3: Each pointer has a key, each object has a lock.

linked to the pointer (see Figure 3.3). Similarly, in line 11, the key linked to someFuncPtr

is copied to callback. The code is instrumented so that pointer dereferencing (lines 6, 8,
and 24) is preceded by a check that the pointer’s key matches the object’s lock.

When the space is deallocated and reallocated to a new object, the new object is given
a new lock (say, 43), and userName receives the appropriate key in line 8. The keys for
someFuncPtr and callback no longer match the lock past line 7, avoiding use after free
(Figure 3.4).

Since this scheme creates explicit keys (one per pointer), the memory overhead is pro-

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 52

someFuncPtr

callback

lock: 43key: 42

key: 42
userName

key: 43

0 5 D E A D 0 0

Figure 3.4: Lock change (see Figure 3.3 for the ‘Before’).

someFuncPtr

callback

lock: 42key: XX

key: XX
userName

key: 42

0 5 D E A D 0 0

Figure 3.5: Key revocation (see Figure 3.3 for the ‘Before’).

someFuncPtr

callback

userName

NULL

Figure 3.6: After pointer nullification (see Figure 3.1 for the ‘Before’), object space can be
reused safely.

portional to the number of pointers. The scheme also creates one lock per object, but the
number of objects is dominated by the number of pointers.

Example Systems: Compiler-Enforced Temporal Safety for C (CETS) [75] is an example
of this scheme. Although in our figure we have placed the key next to the pointer (similar
to bounds-checking schemes that store both the pointer plus the size [58], called plus-size
pointers) and lock next to the object, this need not be the case in implementations. Indeed,
one of the key advances of CETS over prior lock-and-key schemes is that it uses a disjoint
metadata space, with a separate entry for each pointer that stores the key and the lock
location; this avoids changing the memory layout of the program.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 53

1 void (∗∗ someFuncPtr) () = mal loc (s i z e o f (void ∗)) ;
2 long someFuncPtr key = getLock (someFuncPtr) ;
3 r eg i s t e rKey (someFuncPtr ,&someFuncPtr) ;
4

5 i f (someFuncPtr key != getLock (someFuncPtr) abort () ;
6 ∗someFuncPtr = &Elmo ; // At 0x05CADA
7 i f (someFuncPtr key != getLock (someFuncPtr) abort () ;
8 (∗ someFuncPtr) () ; // Correct use .
9

10 void (∗∗ c a l l b a c k) () ;
11 c a l l b a c k = someFuncPtr ;
12 setKey (ca l lback , getKey (someFuncPtr)) ;
13 r eg i s t e rKey (ca l lback ,& c a l l b a c k) ;
14 . . .
15 f r e e (someFuncPtr) ; // Free space .
16 f o r key in getReg i s teredKeys (someFuncPtr) {
17 setKey (key , INVALID KEY) ;
18 }
19

20 userName = mal loc (. . .) ; // Rea l l o ca t e space .
21 long userName key = getLock (someFuncPtr) ;
22 r eg i s t e rKey (userName ,&userName key) ;
23

24 . . . // Overwrite ob j e c t with &Grouch at 0x05DEAD.
25

26 i f (c a l l b a c k k e y != getLock (c a l l b a c k) abort () ;
27 (∗ c a l l b a c k) () ; // Use a f t e r f r e e !

Figure 3.7: The code from Figure 3.1, instrumented with explicit lock-and-key and revoking
the keys.

3.3.2 Explicit Lock-and-Key: Revoke the Keys

Instead of changing the lock, one could revoke all keys upon reallocation. This requires
tracking of keys throughout memory; for example, freeing either someFuncPtr or callback

should revoke the keys for both pointers (Figure 3.5).
Figure 3.7 shows the code from Figure 3.1, instrumented accordingly. Upon allocation

(line 1) instrumentation must maintain global metadata tracking all pointers to a given
object, and this index must be updated at every relevant assignment (line 11). Deallocation
(line 15) must be followed by looking up all pointers to that object, revoking (nullifying or
otherwise invalidating) their keys. Revoking keys is harder than changing the lock, since it
requires keeping track of where all the pointers/keys copied.

Example Systems: To our knowledge, revoking the keys has not been used for any pub-
lished explicit lock-and-key scheme; but, it segues to the next idea that has been used in
prior work: revoking the keys with implicit lock-and-key.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 54

ptr2

 C B A

C B A

 Virtual page

 Physical page frame

Figure 3.8: The virtual page has been made inaccessible: accesses to objects A, B or C would
cause a fault.

3.3.3 Implicit Lock-and-Key: Revoke the Keys

We can view a pointer as the key, and the object as the lock. Thus, instead of revoking a
key from a separate explicit namespace, we can change the pointer’s value [62]. The relevant
code instrumentation is similar to the explicit case. Upon allocation or pointer assignment,
we update a global index tracking all pointers to each object. Upon deallocation, we find and
corrupt the value of all pointers to the deallocated object (Figure 3.6), say by setting them
to NULL. Pointer dereferences need not be instrumented, since the memory management unit
(MMU) performs the null check in hardware.

Although this scheme does not need to allocate memory for explicit lock or key fields, it
does need to track the location of each pointer, which means the physical memory overhead
is at least proportional to the number of pointers.3

Example Systems: DangNull’s dangling pointer nullification [62] is an example of this
scheme. FreeSentry [105] is similar, but instead of nullifying the address, it flips the top bits,
for compatibility reasons (see Section 3.8.3). DangSan [60] is the latest embodiment of this
technique; its main innovation is the use of append-only per-thread logs for pointer tracking,
to improve runtime performance for multi-threaded applications.

3.3.4 Implicit Lock-and-Key: Change the Lock

Implicit lock-and-key requires less instrumentation than explicit lock-and-key, and changing
locks is simpler than tracking and revoking keys. The ideal scheme would therefore be
implicit lock-and-key in which locks are changed.

One option is to view the object as a lock, but this lacks a mechanism to “change the
lock”. Instead, it is more helpful to view the virtual address as the lock.

3DangSan can use substantially more memory in some cases due to its log-based design.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 55

 A

A

 B

B

 C

C

Virtual page

 Physical page frame

Figure 3.9: With one object per page, we can selectively disable object B.

 C

 B

 A

 B A C C B A

 Shadow virtual
pages

 Canonical virtual
page

Physical
page frame

Figure 3.10: Each object has its own shadow virtual page, which all map to the same physical
frame.

Recall that objects (and physical memory) are accessed via virtual addresses, which are
translated (by the MMU) into physical addresses. By removing the mapping or changing the
page permissions, we can make a virtual page inaccessible; the underlying physical memory
can then be mapped to a different virtual address (changed lock) for reuse. A drawback
is that making a virtual page inaccessible renders all objects on that page – often a non-
trivial number, since pages are 4KB or larger while many objects are small [7] — inaccessible
(Figure 3.8). Additionally, since this scheme requires fresh virtual page addresses, there is
additional pressure on the translation-lookaside buffer (TLB; a cache of the mapping from
virtual to physical addresses).

Placing one object per page (Figure 3.9) allows selectively disabling individual objects.
Unfortunately, it has a significant physical memory overhead, since even a small 8-byte object

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 56

would take up 4KB of physical memory; furthermore, it strains the cache (cache lines may
be 64-bytes each, which can often hold multiple objects; with one object per page, even an
8-byte object would take up an entire cache line) and the TLB (with one object per page,
there are even more virtual addresses introduced than in the basic scheme of the preceding
paragraph).

It is not strictly necessary to use page permissions to enforce page inaccessibility after
deallocation. In principle, we could maintain a hashtable of live pointers, and instrument
all the pointer dereferences to check that the pointer is still live, trading off instrumentation
for system calls. This would still have less overhead than an explicit lock-and-key scheme,
because we would not need to instrument pointer arithmetic.

Example Systems: Electric Fence [39] implements implicit lock-and-key with changing
the lock, by placing one object per physical frame. Its high physical memory usage renders
it impractical for anything other than debugging.

Dhurjati and Adve [37] overcame this shortcoming through virtual aliasing. Normally,
malloc might place multiple objects on one virtual page, which Dhurjati and Adve refer to
as the canonical virtual page. For each object on the canonical virtual page, they create
a shadow virtual page that is aliased onto the same underlying physical page frame. This
allows each object to be disabled independently (by changing the permissions for the cor-
responding shadow page), while using physical memory/cache more efficiently than Electric
Fence (Figure 3.10). However, this still requires many syscalls and increases TLB pressure.
Furthermore, creating shadows introduces compatibility issues with fork (Section 3.7.1).

The physical memory overhead — one page table entry, one kernel virtual memory area
struct, plus some user-space allocator metadata, per object — is conceptually proportional
to the number of live objects. We expect this to be more efficient than the other classes of
lock-and-key schemes, which have overhead proportional to the number of pointers (albeit
with a smaller constant factor). Some engineering is required to avoid stateholding of page
table entries for freed objects (see Section 3.9).

3.3.5 Summary of Lock and Key Schemes

Table 3.2 compares the plausible lock-and-key schemes.
Implicit lock-and-key schemes that change the lock (i.e., one object per virtual page) are

advantageous by having no overhead for any pointer arithmetic, and no direct cost (barring
TLB and memory pressure) for pointer dereferences. The core technique does not require
application source code: for programs using the standard allocator, we need only change
the glibc malloc and free functions. Extensions of this scheme may require source code;
for example, Dhurjati and Adve [37] requires application source code to apply their static
analysis optimization, which allows them to reuse virtual addresses when it is provably safe
(see Section 3.2.1).

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 57

 Explicit lock-and-key:
changing the lock e.g.,

Implicit lock-and-key:
revoking the keys e.g.,

Implicit lock-and-key:
changing the lock e.g.,

CETS DangNull/FreeSentry Electric Fence; D&A; Oscar

Instrumentation
malloc () Allocate lock address;

Issue key; Set lock
Register pointer

Syscall to create virtual
page

Simple ptr arithmetic:
p+=2

 No cost

General ptr arithmetic:
p=q+1

Propagate lock address and
key

Update ptr
registration

 No cost

Pointer dereference:
*p

Check key vs. lock value
(at lock address)

 No cost
<TLB and memory

pressure>
free ()

Deallocate lock address Invalidate pointers
Syscall to disable virtual

page

Application source/
recompilation needed?

Yes: needs source + recompilation
 In general, no. However,
needed by Dhurjati & Adve

Physical memory
overhead

O(# pointers) O(# pointers)  O(# objects)

Table 3.2: Comparison of lock-and-key schemes. Green and a tick indicates an advantageous
distinction.

3.4 Baseline Oscar Design

We will develop the shadow virtual pages idea in a direction that does not require source-
code analysis, with less stateholding of kernel metadata for freed objects, and with better
compatibility with fork. We focus on glibc and Linux.

While we have argued that page-permissions-based protections should require less instru-
mentation than newer schemes, there has been no good data on the overhead of shadows
(without reliance on static analysis), let alone quantitative comparisons with recent schemes.
In the first part of this chapter, we quantify and predict the overhead when using only shad-
ows. These measurements informed our approach for reducing the overhead, which are
described in the second part of this chapter.

To help us improve the performance of shadow-page-based schemes, we first measure
their costs and break down the source of overhead. Shadow-page schemes consist of four
elements: modifying the memory allocation method to allow aliased virtual pages, inline
metadata to record the association between shadow and canonical pages, syscalls to create
and disable shadow pages, and TLB pressure. We measure how much each contributes to
the overhead, so we can separate out the cost of each.

It is natural to hypothesize that syscall overhead should be proportional to the number
of malloc/free operations, as page-permissions-based schemes add one or two syscalls per
malloc and free. However, the other costs, such as TLB pressure, are less predictable, so
measurements are needed.

The baseline design, which is similar to Dhurjati and Adve’s [37], uses inline metadata
to let us map from an object’s shadow address to its canonical address. When the pro-

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 58

gram invokes malloc(numBytes), we call libc’s internal implementation of malloc with a
requested size of numBytes + sizeof(void*) to allocate an object within a physical page
frame. We then immediately perform a syscall to create a shadow page for the object. The
object’s canonical address is stored as inline metadata within the additional sizeof(void*)
bytes. This use of inline metadata is transparent to the application, unlike with plus-size
pointers. Conceivably, the canonical addresses could instead be placed in a disjoint meta-
data store (similar to CETS), improving compactness of allocated objects and possibly cache
utilization, but we have not explored this direction.

3.4.1 Measurement Methodology

We quantified the overhead by building and measuring incrementally more complex schemes
that bridge the design gap from glibc’s malloc to one with shadow virtual pages, one
overhead factor at a time.

Our first scheme simply changes the memory allocation method. As background, malloc
normally obtains large blocks of memory with the sbrk syscall (via the macro MORECORE),
and subdivides it into individual objects. If sbrk fails, malloc obtains large blocks using
mmap(MAP_PRIVATE). (This fallback use of mmap should not be confused with malloc’s special
case of placing very large objects on their own pages.) We cannot create shadows aliased to
memory that was allocated with either sbrk or mmap(MAP_PRIVATE); the Linux kernel does
not support this. Thus, our first change was MAP SHARED arenas: we modified malloc to
always obtain memory via mmap(MAP SHARED) (which can be used for shadows) instead of
sbrk. This change unfortunately affects the semantics of the program if it fork()s: the
parent and child will share the physical page frames underlying the objects, hence writes to
the object by either process will be visible to the other. We address this issue — which was
not discussed in prior work4 — in Section 3.7.1.

MAP SHARED with padding further changes malloc to enlarge each allocation by sizeof

(void*) bytes for the canonical address. We do not read or write from the padding space,
as the goal is simply to measure the reduced locality of reference.

Create/disable shadows creates and disables shadow pages in the malloc and free func-
tions using mremap and mprotect(PROT_NONE) respectively, but does not access memory via
the shadow addresses; the canonical address is still returned to the caller. To enable the
free function to disable the shadow page, we stored the shadow address inside the inline
metadata field (recall that in the complete scheme, this stores the canonical).

Use shadows returns shadow addresses to the user. The canonical address is stored inside
the inline metadata field. This version is a basic reimplementation of a shadow-page scheme.

4Independently of and roughly contemporaneously with our work, the LowFat scheme for stack spatial
memory safety [38] also encountered the fork() issue and described a workaround. We thank Roland Yap for
bringing our attention to their work. Their paper also has an interesting connection to our previous chapter:
they used aliasing to create multiple virtual stacks, with stack pointers defined implicitly in a manner which
they note is similar to parallel shadow stacks.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 59

All timings were run on Ubuntu 14.04 (64-bit), using an Intel Xeon X5680 with 12GB
of RAM. We disabled hyper-threading and TurboBoost, for more consistent timings. Our
“vanilla” malloc/free was from glibc 2.21. We compiled the non-Fortran SPEC CPU20065

benchmarks using gcc/g++ v4.8.4 with -O3. We configured libstdc++ with --enable-lib-

stdcxx-allocator=malloc, and configured the kernel at run-time to allow more virtual
memory mappings.6

We counted malloc and free operations using mtrace. We placed mtrace at the start of
main, which does miss a small number of allocations (e.g., static initializers and constructors
for global C++ objects), but these are insignificant: as will be shown in Figure 3.12, the
overhead is roughly proportional to the number of mallocs/frees, so the allocations we have
missed would not, if properly instrumented, add substantially to the overhead.

3.4.2 Results

The overhead measurements of the four incrementally more complete schemes are shown
in Figure 3.11 for 15 of the 19 SPEC CPU2006 C/C++ benchmarks. The remaining four
benchmarks (perlbench, dealII, omnetpp, xalancbmk) exhaust the physical memory on
the machine when creating/disabling shadows, due to the accumulation of vm area structs
corresponding to mprotect’ed pages of “freed” objects. We therefore defer discussion of
them until the following section, which introduces our improvements to the baseline design.
We ran at least 9 runs of each benchmark.

Even for the complete but unoptimized scheme (Use shadows), most benchmarks have low
overhead. gcc and sphinx have high overhead due to creating/destroying shadows, as well as
using shadows. astar and povray have a noticeable cost mainly due to using shadows, a cost
which is not present when merely creating/disabling shadows; we infer that the difference is
due to TLB pressure. Notably, mcf’s overhead is entirely due to MAP SHARED arenas, as is
most of milc’s. Inline padding is a negligible cost for all benchmarks.

In Figures 3.12 and 3.13, we plot the run-time of creating/disabling shadows, against
the number of shadow-page-related syscalls.7 We calculated the y-values by measuring the
runtime of Create/disable shadows (to ensure all benchmarks complete successfully, we used
an optimization – the “high water mark” optimization – which will be discussed later in
Section 3.5) minus MAP SHARED with padding: this discounts runtime that is not associated
with syscalls for shadows. The high correlation matches our mental model that each syscall
has an approximately fixed cost, though it is clear from omnetpp and perlbench that it is
not perfectly fixed. Also, we can see that perlbench, dealII, omnetpp and xalancbmk each
create over 100 million objects, which is why they could not run to completion using the
unoptimized implementation: they would require over 19 gigabytes of physical memory (see
Section 3.5.1).

5https://www.spec.org/cpu2006/
6sudo sysctl -w vm.max map count=100000000
7A realloc operation involves both creating a shadow and destroying a shadow, hence the number of

malloc/free operations is augmented with (2 * realloc).

https://www.spec.org/cpu2006/

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 60

-1
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%
Overhead (0% = Vanilla)

M
A

P
_

SH
A

R
ED

 a
re

n
as

M
A

P
_

SH
A

R
ED

 w
it

h
 p

ad
d

in
g

C
re

at
e/

d
is

ab
le

 s
h

ad
o

w
s

U
se

 s
h

ad
o

w
s

F
ig

u
re

3.
11

:
S
P

E
C

C
P

U
20

06
C

/C
+

+
b

en
ch

m
ar

k
s,

sh
ow

in
g

th
e

ov
er

h
ea

d
as

w
e

re
ac

h
th

e
fu

ll
d
es

ig
n
.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 61

perlbench

gcc

omnetpp

xalancbmk
dealII

y = 1.1091x
R² = 0.95

-200

0

200

400

600

800

1000

0 200 400 600 800R
u

n
-t

im
e

(s
)

o
f

cr
ea

ti
n

g/
d

es
tr

o
yi

n
g

(b
u

t
n

o
t

u
si

n
g)

 s
h

ad
o

w
s

malloc + free (+ 2 * realloc) (millions)

Figure 3.12: Predicting syscall overhead. See Figure 3.13 for a magnified view of the bottom-
left.

gcc

sphinx3

-20

0

20

40

60

80

0 20 40 60 80

R
u

n
-t

im
e

(s
)

o
f

cr
ea

ti
n

g/
d

es
tr

o
yi

n
g

(b
u

t
n

o
t

u
si

n
g)

 s
h

ad
o

w
s

malloc + free (+ 2 * realloc) (millions)

Figure 3.13: Predicting syscall overhead, magnifying the bottom-left of Figure 3.12.

3.5 Lowering Overhead Of Shadows

The previous section shows that the overhead is due to MAP SHARED, creating/destroying
shadows, and using shadows. The TLB pressure cost of using shadows can be reduced with
hardware improvements, such as larger TLBs (see Section 3.8.2). In this section, we propose,
implement, and measure three optimizations for reducing the first two costs.

3.5.1 High water mark

The näıve approach creates shadows using mremap without a specified address and disables
shadows using mprotect(PROT_NONE). Since disabled shadows still occupy virtual address
space, new shadows will not reuse the addresses of old shadows, thus preventing use-after-
free of old shadows. However, the Linux kernel maintains internal data structures for these

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 62

shadows, called vm area structs, consuming 192 bytes of kernel memory per shadow. The
accumulation of vm area structs for old shadows prevented a few benchmarks (and likely
would prevent many real-world applications) from running to completion: we observed that
the system was thrashing.

We introduce a simple solution. Contrary to conventional wisdom [37], with a small
design modification, Oscar can both unmap and prevent reuse of a virtual page. We use a
“high water mark” for shadow addresses: when Oscar creates a shadow, we specify the high
water mark as the requested shadow address, and then increment the high water mark by the
size of the allocation. This is similar to the sbrk limit of malloc. Oscar can now safely use
munmap to disable shadows and free kernel memory, without risk of reusing old shadows. As
we show in Section 3.8.1, virtual address space exhaustion is an unlikely, tractable problem.

Our scheme, including the high water mark, is compatible with address space layout
randomization (ASLR) [83]. At startup, we initialize the high water markat a fixed offset
to the (randomized) heap base address. To reduce variability in run-times, all benchmarks,
including the baseline, were measured without ASLR, as is typical in similar research [99].

3.5.2 Refreshing shadows

Figure 3.14 (left) depicts the simplified circle of life of a heap-allocated chunk of physical
memory. Over the lifetime of a program, that chunk may be allocated, freed, allocated, freed,
and so forth, resulting in syscalls to create a shadow, destroy a shadow, create a shadow,
destroy a shadow. Except for the very first time a chunk has been created by malloc, every
shadow creation is preceded by destroying a shadow.

Oscar therefore speculatively creates a new shadow each time it destroys a shadow, in
Figure 3.14 (right). This saves the cost of creating a new shadow, the next time an object is
allocated on that canonical page. The opportunistically renewed shadow is stored in a hash
table, keyed by the size of shadow (in number of pages) and the address of the canonical
page (not the canonical object). This means the shadow address can be used for the next
similarly-sized object allocated on the canonical page(s), even if the new object does not
coincide precisely with the old object’s size or offset within the page. It also improves the
likelihood that the shadow can be used when objects are coalesced or split by the allocator.

Up to now, we have used mremap to create shadows. mremap actually can be used to both
destroy an old mapping and create a new virtual address mapping (at a specified address)
in a single system call. We use this ability to both destroy the old shadow mapping and
create a new one (i.e., refresh a shadow) with one system call, thereby collapsing 2 system
calls to 1 system call. This optimization depends on the high water mark optimization: if
we called mremap with old_size = new_size without specifying a new_address, mremap
would conclude that there is no need to change the mappings at all, and would return the
old shadow virtual address.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 63

 malloc()

syscall:
Create

shadow

 free()

syscall:
Destroy

shadow

Not
alloc’ed;

no shadow

Allocated

(with
shadow)

 malloc()

syscall:
Create

shadow

 free()

syscall:
Refresh

shadow

Not
alloc’ed;
fresh

shadow

Allocated

(with
shadow)

Figure 3.14: Left: Simplified lifecycle of a chunk of memory. Right: The destroyShadow

syscall has been modified to simultaneously destroy the old shadow and create a new one.

3.5.3 Using MAP PRIVATE when possible

As mentioned earlier, MAP SHARED is required for creating shadows, but sometimes has non-
trivial costs. However, for large objects that malloc places on their own physical page
frames, Oscar does not need more than one shadow per page frame; in fact, Oscar can avoid
using shadow addresses at all — since the canonical addresses will never be reused — though
we use shadows for consistency of implementation. For these large allocations, Oscar uses
MAP_PRIVATE mappings.

Implementing realloc correctly requires care. Our ordinary realloc wrapper is, in
pseudo-code:

1 munmap(old shadow) ;
2 new canonica l = i n t e r n a l r e a l l o c (o l d c a n o n i c a l) ;
3 new shadow = create shadow (new canonica l) ;

This works when all memory is MAP SHARED. However, if the reallocated object new canoni-

cal is large enough to be stored on its own MAP PRIVATE pages, create shadow will allocate
a different set of physical page frames instead of creating an alias; this then necessitates
copying the contents of the object from new canonical to the new page frames for new -

shadow. It is possible to avoid this inefficient copying step if Oscar simply did not use the
(unnecessary) shadows for large allocations. Our prototype of Oscar incurs this copying cost,

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 64

but it does not substantially affect our results, since few of the SPEC CPU2006 benchmarks
use realloc extensively.8

The overhead reduction is upper-bounded by the original cost of MAP SHARED arenas.

3.5.4 Abandoned approach: Batching system calls

We tried batching the creation or deletion of shadows, but did not end up using this approach
in Oscar.

We implemented a custom syscall (loadable kernel module ioctl) to create or destroy
a batch of shadows. When we have no more shadows for a canonical page, we call our
batchCreateShadow ioctl once to create 100 shadows, reducing the amortized context switch
cost per malloc by 100x. However, this does not reduce the overall syscall cost by 100x, since
mremap’s internals are costly. In a microbenchmark, creating and destroying 100 million
shadows took roughly 90 seconds with individual mremap/munmap calls (i.e., 200 million
syscalls) vs. ≈80 seconds with our batched syscall. The savings of 10 seconds was consistent
with the time to call a no-op ioctl 200 million times.

In our pilot study, batching did not have a significant benefit. It even slowed down some
benchmarks, due to mispredicting which shadows will be needed in the future. For example,
we may create 100 shadows for a page that contains solely of a single object which is never
freed, wasting 99 shadows.

We also tried batch-disabling shadows: any objects that are free()’d are stored in
a “quarantine” of 100 objects, and when the quarantine becomes full, we disable all 100
shadows with a single batched syscall, then actually free those 100 objects. This approach
maintains temporal memory safety, unlike the standard use of quarantine (see Section 3.2).
Unlike batch-creating shadows, with batch-deletion we need not predict the future.

In our pilot study, batch deletion had mixed effects on runtime overhead. We hypothesize
this is due to disrupting favorable memory reuse patterns: malloc prefers to reuse recently
freed objects, which are likely to be hot in cache; quarantine prevents this.

Batch deleting could also replaced with batch refreshing; this inherits the misprediction
issues of both batch creation and refreshing.

3.6 Performance Evaluation

The effect of these improvements on the previous subset of 15 benchmarks is shown in Figure
3.15.

Our first two optimizations (high water mark, refreshing shadows) greatly reduce the
overhead for gcc and sphinx; this is not a surprise, as we saw from Figure 3.11 that much
of gcc and sphinx’s overhead is due to creating/destroying shadows. These two optimiza-
tions do not benefit mcf, as its overhead was entirely due to MAP SHARED arenas; instead,
fortuitously, the overhead is eliminated by the MAP PRIVATE optimization. The MAP PRIVATE

8We ran each benchmark while logging the realloc operations.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 65

-1
0

%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%
Overhead (0% = Vanilla)

U
se

 s
h

ad
o

w
s

U
se

 s
h

ad
o

w
s

w
/

h
ig

h
 w

at
er

 m
ar

k

R
ef

re
sh

in
g

sh
ad

o
w

s
R

ef
re

sh
in

g
sh

ad
o

w
s

p
lu

s
M

A
P

_P
R

IV
A

TE
 if

 o
k

F
ig

u
re

3.
15

:
S
P

E
C

C
P

U
20

06
C

/C
+

+
b

en
ch

m
ar

k
s,

sh
ow

in
g

th
e

b
en

efi
ts

of
ou

r
op

ti
m

iz
at

io
n
s.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 66

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

perlbench omnetpp xalancbmk dealII

O
ve

rh
ea

d
 (

0
%

 =
 V

an
ill

a)

MAP_SHARED arenas MAP_SHARED with padding

Create/disable shadows w/ high water mark Use shadows w/ high water mark

Refreshing shadows Refreshing shadows plus MAP_PRIVATE if ok

Figure 3.16: The 4 allocation-intensive benchmarks. Note that the first two columns are
near zero for each benchmark.

optimization also reduces the overhead on milc by roughly ten percentage points, almost
eliminating the overhead attributed to MAP SHARED.

The four allocation-intensive benchmarks (perlbench, omnetpp, xalancbmk, dealII)
are shown in Figure 3.16. Recall that for these benchmarks, the baseline scheme could
not run to completion, because of the excessive number of leftover vm area structs for
mprotect’ed shadows corresponding to “freed” objects. The high water mark optimization,
which permanently munmaps the shadows, allows Linux to reclaim the vm area structs,
reducing the memory utilization significantly and enabling them to complete successfully.
To separate out the cost of syscalls from TLB pressure, we backported the high water mark
change to Create/disable shadows.

For all four benchmarks, MAP SHARED and inline metadata costs (the first two columns) are
insignificant compared to creating/disabling and using shadows. Refreshing shadows reduces
overhead somewhat for perlbench and omnetpp but increases overhead for xalancbmk and
dealII.

The MAP PRIVATE optimization had a negligible effect, except for perlbench, which be-
came 30 percentage points slower. This was initially surprising, since in all other cases,
MAP PRIVATE is faster than MAP SHARED. However, recall that Oscar also had to change the
realloc implementation. perlbench uses realloc heavily: 11 million calls, totaling 700GB
of objects; this is 19× the reallocs of all other 18 benchmarks combined (by calls or GBs of
objects). We confirmed that realloc caused the slowdown, by modifying Refreshing shadows

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 67

?

95%

0%

10%

20%

30%

40%

50%

60%

70%

gobmk h264ref hmmer lbm libquantum milc sphinx3 sjeng

O
ve

rh
e

ad
 (

b
as

e
lin

e
 =

 0
%

)

Oscar DangSan (reported) DangSan (re-run)

DangNull (reported) FreeSentry (reported) CETS (reported)

Figure 3.17: Runtime overhead of SPEC benchmarks against DangSan, DangNull,
FreeSentry, and CETS. Some overheads are based on results reported in the papers, not
re-runs (see legend). ’?’ indicates that FreeSentry did not report results for libquantum.

to use the inefficient realloc but with MAP SHARED always; this was marginally slower than
refreshing shadows and using MAP PRIVATE where possible.

3.6.1 Runtime and Memory Overhead Comparison

Figure 3.17 compares the runtime overhead of Oscar against DangSan, DangNull, FreeSentry,
and CETS. Figure 3.18 shows the remaining SPEC benchmarks, for which results were
reported by DangSan and DangNull, but not by FreeSentry or CETS.

A caveat is that CETS’ reported overheads are based on providing temporal protection for
both the stack and heap, which is more comprehensive than Oscar’s heap-only protection.
However, since CETS must, to a first approximation, fully instrument pointer arithmetic
and dereferencing instructions even if only heap protection is desired, we expect that the
overhead of heap-only CETS would still be substantially higher than Oscar.

All other comparisons (DangSan, DangNull, FreeSentry) are based on the appropriate

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 68

? ?

672%

? ? ?

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

O
ve

rh
e

ad
 (

b
as

e
lin

e
 =

 0
%

)

Oscar DangSan (reported) DangSan (re-run) DangNull (reported)

Figure 3.18: Runtime overhead of the remaining SPEC benchmarks. The y-axis differs from
Figure 3.17. Results were reported by DangSan and DangNull, but not FreeSentry or CETS.
Some overheads are based on results reported in the papers, not re-runs (see legend). ’?’
indicates that DangNull did not report results for dealII, omnetpp, or perlbench, and we
could not re-run DangSan on omnetpp or perlbench.

reported overheads for heap-only temporal protection.
Comparison to DangSan

We re-ran the latest publicly available version of DangSan9 on the same hardware as
Oscar. DangSan re-run overheads were normalized to a re-run with their “baseline LTO”
script. We were unable to re-run perlbench due to a segmentation fault, or omnetpp due to
excessive memory consumption.10 As seen in the graphs, our re-run results are very similar
to DangSan’s reported results; thus, unless otherwise stated, we will compare Oscar against
the latter.

9March 19, 2017,
https://github.com/vusec/dangsan/commit/78006af30db70e42df25b7d44352ec717f6b0802

10We estimate that it would require over 20GB of memory, taking into account the baseline memory usage
on our machine and DangSan’s reported overhead for omnetpp.

https://github.com/vusec/dangsan/commit/78006af30db70e42df25b7d44352ec717f6b0802

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 69

Across the complete set of C/C++ SPEC CPU2006 benchmarks, Oscar and DangSan
have the same overall overhead, within rounding error (geometric means of 40% and 41%).
However, for all four of the allocation-intensive benchmarks, as well as astar and gcc,
the overheads of both Oscar and DangSan are well above the 10% overhead threshold [97],
making it unlikely that either technique would be considered acceptable. If we exclude those
six benchmarks, then Oscar has average overhead of 2.5% compared to 9.9% for DangSan.
Alternatively, we can see that, for five benchmarks (mcf, povray, soplex, gobmk, milc),
Oscar’s overhead is 6% or less, whereas DangSan’s is 10% or more. There are no benchmarks
where DangSan has under 10% overhead but Oscar is 10% or more.11

Comparison to DangNull/FreeSentry
We emailed the first authors of DangNull and FreeSentry to ask for the source code used

in their papers, but did not receive a response. Our comparisons are therefore based on
the numbers reported in the papers rather than by re-running their code on our system.
Nonetheless, the differences are generally large enough to show trends. In many cases, Os-
car has almost zero overhead, implying there are few mallocs/frees (the source of Oscar’s
overhead); we expect the negligible overhead generalizes to any system. Oscar does not in-
strument the application’s pointer arithmetic/dereferencing, which makes its overhead fairly
insensitive to compiler optimizations. We also note that DangSan – which we were able
to re-run and compare against Oscar — theoretically should have better performance than
DangNull because of DangSan’s optimized pointer tracking.12

Oscar’s performance is excellent compared to FreeSentry and DangNull, even though
DangNull provides less comprehensive protection: DangNull only protects pointers to heap
objects if the pointer is itself stored on the heap. Figure 3.17 (left) compares all SPEC
CPU2006 benchmarks for which DangNull and FreeSentry both provide data. FreeSentry
has higher overhead for several benchmarks (milc, gobmk, hmmer, h264ref) – especially
higher for the latter three. FreeSentry is faster on the remaining three benchmarks, but in
all those cases except for sphinx3, our overhead is negligible anyway. DangNull has much
higher overhead than Oscar for gobmk and sphinx3. For other benchmarks, DangNull often
gets zero overhead, though it is not much lower than Oscar’s, and comes with the caveat of
their weaker protection.

Our comparisons are based on our overall “best” scheme with all three optimizations.
For some benchmarks, using just the high water mark optimization and not the other two
optimizations would have performed better. Even the basic shadow pages scheme without
optimizations would often beat DangNull/FreeSentry.

Figure 3.18 shows additional SPEC CPU2006 benchmarks for which DangNull reported
their overhead but FreeSentry did not. For the two benchmarks where DangNull has zero
overhead (bzip2, namd), Oscar’s are also close to zero. For the other six benchmarks, Oscar’s
overhead is markedly lower. Two highlights are soplex and povray, where DangNull’s

11Of course, there is a wide continuum of “under 10%”, and those smaller differences may matter.
12However, DangSan’s empirical comparisons to DangNull and FreeSentry were also based on reported

numbers rather than re-runs.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 70

159% 1700% 373%

÷
0%

20%

40%

60%

80%

100%

M
e

m
o

ry
 o

ve
rh

e
ad

 (
va

n
ill

a
=

0
%

)

Oscar DangSan (re-run) DangSan (reported) DangNull (reported)Figure 3.19: Memory overhead on CPU2006. DangNull reported a baseline of 0MB for
libquantum, so an overhead ratio is not calculable.

overhead is 150%/280%, while Oscar’s is under 6%.
When considering only the subset of CPU2006 benchmarks that DangNull reports results

for (i.e., excluding dealII, omnetpp and perlbench), Oscar has a geometric mean runtime
overhead of 15.4% compared to 49% for DangNull. For FreeSentry’s subset of reported
benchmarks, Oscar has just 2.8% overhead compared to 18% for FreeSentry.
Comparison to CETS

We compare Oscar to the temporal-only mode of SoftBoundCETS [73] (which we will also
call “CETS” for brevity), since that has lower overhead and a more comprehensive dataset
than the original CETS paper.

The latest publicly available version of SoftBoundCETS for LLVM 3.413 implements
both temporal and spatial memory safety. We received some brief advice from the author of
SoftBoundCETS on how to modify it to run in temporal-only mode, but we were unable to
get it to work beyond simple test programs. Thus, our comparisons rely on their reported
numbers rather than a re-run.

We have omitted the bzip2 and mcf benchmarks, as CETS’ bzip2 is from the CPU2000

13September 19, 2014, https://github.com/santoshn/softboundcets-34/commit/

9a9c09f04e16f2d1ef3a906fd138a7b89df44996

https://github.com/santoshn/softboundcets-34/commit/9a9c09f04e16f2d1ef3a906fd138a7b89df44996
https://github.com/santoshn/softboundcets-34/commit/9a9c09f04e16f2d1ef3a906fd138a7b89df44996

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 71

? ? ? ? ?

13,365%

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

M
e

m
o

ry
 o

ve
rh

e
ad

 (
va

n
ill

a
=

0
%

)

Oscar DangSan (re-run) DangSan (reported) DangNull (reported)

Figure 3.20: Memory overhead on CPU2006 (continued). ’?’ indicates that DangNull did
not report memory usage for dealII, omnetpp, or perlbench, and we could not re-run
DangSan on the latter two.

suite [72] and we suspect their mcf is as well.14 SPEC specifically cautions that, due to
differences in the benchmark workload and/or source, the results on CPU2000 vs. CPU2006
might not be comparable [28].

Figure 3.17 shows the overhead of CETS vs. our overall best scheme. We are faster than
CETS for all benchmarks, often by a significant margin. For example, CETS has >48%
overhead on gobmk and hmmer, compared to less than 1% for Oscar. The geometric mean
across CETS’ subset of CPU2006 benchmarks is 2.8% for Oscar compared to 36% for CETS.

3.6.2 Memory Overhead Comparison

Figures 3.19 and 3.20 show the memory overhead of Oscar, DangSan (re-run and reported),
and DangNull (reported only). We did not find any reported data for FreeSentry, CETS or

14In any case, since CETS has 23% and 114% overhead on bzip2 and mcf respectively — compared to
less than 1.5% on each for Oscar – including them in the comparison would not be favorable to CETS.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 72

SoftBoundCETS temporal-only. The graphs have different y-axes to highlight differences in
overheads in the lower-overhead benchmarks of Figure 3.19.

We calculated the memory overhead based on the combined maximum resident set size
(RSS)15, size of the page tables16, and approximate size of the vm area structs17. Our
polling approach introduces some minor inaccuracies with regard to obtaining the maxima
and baseline values. For DangSan, which does not greatly increase the number of page table
entries or vm area structs, this is very similar to their maximum resident set size metric. It
is unclear what memory consumption metric DangNull used, so some care should be taken
when interpreting their overheads.

The RSS values reported in /proc/pid/status are misleading for Oscar because it
double-counts every shadow page, even though many of them are aliased to the same canon-
ical. We know, however, that the physical memory usage of Oscar — and therefore the
resident set size when avoiding double-counting — is essentially the same as the MAP -
SHARED with padding scheme (from Section 3.4.1). We therefore calculated the maximum
RSS for that scheme, but measured the size of the page tables and vm area structs for the
full version of Oscar. We were unable to measure the size of the hashtables used for caching
refreshed shadows, although our second-best scheme (omitting the refreshing shadows opti-
mization) has very similar runtime overhead while not requiring those hashtables.

For the complete suite of CPU2006 benchmarks, Oscar has 61.5% memory overhead,
far lower than DangSan’s 140%. Even if we omit DangSan’s pathological case of omnetpp

(reported overhead of over 13,000%), Oscar is still far more memory-efficient with 52%
overhead vs. 90% for DangSan. The only benchmarks on which Oscar performs substantially
worse than DangSan are sphinx3 and soplex. sphinx3 with Oscar has a maximum RSS
of ≈50MB (compared to a baseline of ≈45MB), maximum page-table size of ≈130MB, and
maximum vm area structs of ≈45MB. In Section 3.9, we propose methods to reduce the
memory overhead by garbage collecting old page table entries (which would reduce Oscar’s
overhead on sphinx3), and sharing inline metadata (which would reduce Oscar’s overhead
on soplex with its many small allocations).

DangNull has roughly 127% memory overhead, but, as also noted by the DangSan au-
thors, DangNull did not report data for many of the memory-intensive benchmarks. If we
use the same subset of SPEC benchmarks that DangNull reported, then Oscar has only 36%
memory overhead (vs. ≈75% for DangSan).

3.7 Extending Oscar for Server Applications

When applying Oscar to server applications — which are generally more complex than the
SPEC CPU benchmarks — we encountered two major issues that resulted in incompatibility

15VmHWM (peak RSS) in /proc/pid/status
16VmPTE and VmPMD in /proc/pid/status
17We counted the number of mappings in /proc/pid/maps and multiplied by sizeof(vm area struct).

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 73

and incomplete protection: forking and custom memory allocators. Additionally, we modified
Oscar to be thread-safe when allocating shadows.

3.7.1 Supporting shadows + fork()

Using MAP SHARED for all allocations is problematic for programs that fork, as it changes
the semantics of memory: the parent and child’s memory will be shared, so any post-fork
writes to pre-fork heap objects will unexpectedly be visible to both the parent and child. In
fact, we discovered that most programs that fork and use glibc’s malloc will crash when
using MAP SHARED. Surprisingly, they may crash even if neither the parent nor child read or
write to the objects post-fork.18

Oscar solves this problem by wrapping fork and emulating the memory semantics the
program is expecting. After fork, in the child, we make a copy of all heap objects, unmap
their virtual addresses from the shared physical page frames, remap the same virtual ad-
dresses to new (private) physical page frames (with MAP SHARED), and repopulate the new
physical page frames with our copy of the heap objects. The net effect is that the shadow
and canonical virtual addresses have not changed — which means old pointers (in the appli-
cation, and in the allocator’s free lists) still work — but the underlying physical page frames
in the child are now separated from the parent.
Method.

Oscar instruments malloc and free to keep a record of all live objects in the heap
and their shadow addresses. Note that with a loadable kernel module, Oscar could avoid
recording the shadow addresses of live objects and instead find them from the page table
entries or vm area structs.

Then, Oscar wraps fork to do the following:

1. call the vanilla fork(). After this, the child address space is correct, except that the
malloc’d memory regions are aliased with the parent’s physical page frames.

2A. [näıve algorithm] in the child process:

a) map a new page at any unused address t

b) for each canonical page in the heap:

i. copy the contents of canonical page to t

ii. unmap canonical page

iii. allocate a new page at address canonical page using mmap(MAP SHARED |

MAP ANONYMOUS)

18We observed this behavior in glibc 2.21; we expect it to generalize to other versions, based on glibc’s
design whereby malloc stores the main heap state in a static variable (not shared between parent and child),
but also partly through inline metadata of heap objects (shared); thus, when the parent or child allocates
memory post-fork, the heap state can become inconsistent or corrupted. A program that simply malloc()s

64 bytes of memory, fork()s, and then allocates another 64 bytes of memory in the child, is sufficient to
cause an assertion failure.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 74

iv. copy the contents of t to canonical page

c) for each live object, recreate a shadow at the same virtual address as before (using
the child’s new physical page frames):

i. munmap (oldShadow, length);

ii. newShadow = mremap (canonical, 0, length, MREMAP MAYMOVE

| MREMAP FIXED, oldShadow);

d) unmap page t

2B. [optimized algorithm] in the child process:

a) for each canonical page in the heap:

i. allocate a new page at any unused address t using mmap(MAP SHARED | MAP -

ANONYMOUS)

ii. copy the contents of canonical page to t

iii. call mremap(old address=t,

new address=canonical page). Note that mremap automatically removes
the previous mapping at canonical page.

b) for each live object: as per corresponding step of the näıve algorithm

Compared to the näıve algorithm, the use of mremap in the optimized algorithm halves
the number of memory copy operations. We illustrate the algorithm in Figure 3.3.

Table 3.3: Illustrated guide to laundering.

parent:
canonical

parent:
shadow1

“set before

fork()”

parent:
shadow2

Virtual
addresses

Physical
page frames

Step 1: initial configuration.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 75

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

Virtual
addresses

Physical
page frames

Step 2: after the vanilla fork. The child’s canonical and shadow addresses are
aliased to the parent’s physical page frames.

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

uninitialized

child:
newobj

Virtual
addresses

Physical
page frames

Step 3: the child allocates a new page, newobj.

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

“set before

fork()”

child:
newobj

Virtual
addresses

Physical
page frames

Step 4: the child uses the canonical (or shadow1/shadow2) pointer to copy the
contents to newobj. After this step, the parent can resume execution.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 76

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

“set before

fork()”

child:
newobj

Virtual
addresses

Physical
page frames

Step 5: the child unmaps canonical.

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

“set before

fork()”

child:
newobj

Virtual
addresses

Physical
page frames

Step 6: the child remaps newobj to a “new” address, canonical.

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

“set before

fork()”

child:
newobj

Virtual
addresses

Physical
page frames

Step 7: the child unmaps shadow1 and shadow2.

parent:
canonical

parent:
shadow1

child:
canonical

child:
shadow1

“set before

fork()”

parent:
shadow2

child:
shadow2

“set before

fork()”

child:
newobj

Virtual
addresses

Physical
page frames

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 77

Step 8: the child maps shadow1 and shadow2 as aliases of canonical. After this
step, the child can resume execution.

We can further reduce the number of system calls by observing that the temporary
pages t can be placed at virtual addresses of our choice. In particular, we can place all the
temporary pages in one contiguous block, which lets us allocate them all using just one mmap

command.
The parent process must sleep until the child has copied the canonical pages (and physical

page frames). Fortunately, the parent does not need to wait while the child patches up the
child’s shadows, because although the child’s shadows are still transiently pointing to the
parent’s physical page frames, the child application code will not access those pointers until
after our wrapper has patched them. Oscar blocks signals for the duration of the fork()

wrapper.
This algorithm suffices for programs that have only one thread running when the program

forks. This covers most reasonable use cases; it is considered poor practice to have multiple
threads running at the time of fork [14]. For example, apache’s event multi-processing
module forks multiple children, which each then create multiple threads. To cover the
remaining, less common case of programs that arbitrarily mix threads and fork, Oscar
could “stop the world” as in garbage collection, or LeakSanitizer (a memory leak detector)
[47].

Our algorithm could readily be modified to be “copy-on-write” for efficiency. Addition-
ally, batching the remappings of each page might improve performance; since the intended
mappings are known in advance, we could avoid the misprediction issue that plagued regular
batch mapping. With kernel support we could solve this problem more efficiently, but our
focus is on solutions that can be deployed on existing platforms.
Results.

We implemented the basic algorithm in Oscar. In cursory testing, apache, nginx, and
openssh run with Oscar’s fork fix, but fail without. These applications allocate only a small
number of objects pre-fork, so Oscar’s fork wrapper does not add much overhead (tens or
hundreds of milliseconds).

3.7.2 Custom Memory Allocators

The overheads reported for SPEC CPU are based on instrumenting the standard mal-

loc/free only, providing a level of protection similar to prior work. However, a few of
the SPEC benchmarks [23] implement their own custom memory allocator (CMAs), which
we consider to be any memory allocator other than the glibc malloc/free.

Since standard schemes for temporal memory safety require instrumenting memory al-
location and deallocation functions, without special provisions none of them — including
Oscar — will protect objects allocated via arbitrary CMAs.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 78

There are two main reasons why CMAs are not automatically protected by Oscar. First,
Oscar does not know about the CMAs. For example, if the application uses a duplicate
copy of glibc’s allocator, but named malloc2/free2, this would be unknown to Oscar, and
therefore not instrumented with a “lock-and-key”. This can be addressed by manually iden-
tifying the CMAs (CMA identification could also be done automatically [24]) and wrapping
them with Oscar as well. Second, CMAs typically obtain a large block of memory (from
sbrk, mmap, or even malloc), and then partition (and even reuse) the block internally into
multiple allocations; from Oscar’s perspective, this is a single allocation, which means there
is only one “lock” assigned during the lifetime of the large block, which are then shared by
multiple allocations. CMAs that simply invoke and wrap a malloc call (for example, xmal-
loc calls malloc and aborts if the result is NULL) avoid this issue, and are automatically
protected by Oscar.

We found that CMAs seem to be even more common in server programs, such as apache19,
nginx20, and proftpd21. Prior work typically ignores the issue of CMAs.

If we do not wrap a CMA with Oscar, any objects allocated with the CMA would
obviously not be resistant to use-after-free. However, there are no other ill effects; it would
not result in any false positives for any objects, nor would it result in false negatives for the
non-CMA objects.

3.7.3 Case Study: malloc-like custom memory allocator in
memcached

memcached22 is a memory object caching system that exports a get/set interface to a key-
value store. We compiled memcached 1.4.25 (and its prerequisite, libevent) and bench-
marked performance using memaslap23.

When we wrapped only glibc’s malloc, the overhead was negligible: throughput was
reduced by 0–3%, depending on the percentage of set operations (Figure 3.21). However,
this is misleadingly low, as it fails to provide temporal memory safety for objects allocated
by the CMA. Therefore, we applied Oscar to wrap the CMA, in the same way we wrapped
glibc’s malloc/free.
Method

To support wrapping the CMA, we had to ensure that Oscar’s malloc always used MAP -

SHARED even for large objects. This covers the case where a CMA obtains a large block of
memory from Oscar’s malloc and partitions that block into multiple objects, each of which
Oscar must protect by creating individual shadows.

We partitioned the address space to use separate high water marksfor the malloc wrapper
and CMA wrapper.

19https://httpd.apache.org/
20http://nginx.org/
21http://nginx.org/
22http://memcached.org/
23http://docs.libmemcached.org/bin/memaslap.html

https://httpd.apache.org/
http://nginx.org/
http://nginx.org/
http://memcached.org/
http://docs.libmemcached.org/bin/memaslap.html

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 79

99.81% 99.10% 98.28% 98.07% 96.62% 95.80% 95.30% 93.07%

79.31%

65.76%

55.44%

48.10% 45.97% 45.63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 0.01% 1% 2% 3% 4% 5% 10% 30% 50% 70% 90% 99% 100%

Th
ro

u
gh

p
u

t
(v

an
ill

a
=

1
0

0
%

)

Percentage of "Set" operations

Protect malloc only Protect malloc + CMA

Figure 3.21: Throughput of Oscar on memcached.

We identified that allocations and deallocations via memcached’s slab allocator are all
made through the do item alloc and item free functions. Thus, it is sufficient to add
shadow creation/deletion to those functions.

For ease of engineering, we made minor changes directly to the slab allocator [15], similar
to those we applied to glibc’s malloc: inserting a canonical address field in the memcached
item struct, and modifying the allocation/deallocation functions. In principle, we only need
to override the CMA allocate/deallocate symbols, without needing to recompile the main
application.

With Oscar, the per-object metadata (e.g., the canonical address) is stored inline. This
works for CMAs with malloc-like interfaces, where, given an allocation request of size s,
Oscar can ask the CMA for an allocation of size s + sizeof(inline metadata). Some
CMAs may, however, make this less practical (for example, a CMA that only allocates
objects of a fixed size). If Oscar switched to a disjoint metadata store (e.g., a hashtable),
similar to CETS [75], it would be easy to extend Oscar to protect any custom memory
allocators that are identified: as with glibc’s malloc, the allocator function simply needs
to be wrapped to return a new shadow, and the deallocator function wrapped to destroy
the shadow. This would be a better long-term approach than individually dealing with each
CMA that is encountered.
Results

When set operations are 3% of the total operations (a typical workload [5]), the per-
formance overhead is roughly 4%. The overhead is higher for set operations because these
require allocations (via the CMA), which involves creating shadows. Get operations have

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 80

almost no overhead because they do not perform memory allocation or deallocation and con-
sequently do not require any system calls.24 Unlike SPEC CPU, which is single-threaded,
we ran memcached with 12 threads. This shows that Oscar’s overhead is low even for multi-
threaded applications, despite our näıve use of a mutex to synchronize part of Oscar’s internal
state (namely, the high water mark; see Section 3.9).

3.7.4 Special case: Region-based allocators

We have found several server programs that use region-based custom memory allocators [9].
Region-based allocators are particularly favorable for page-permissions-based schemes such
as Oscar.

Typically, region-based allocators obtain a large block of memory from malloc, which
they carve off into objects for their allocations. The distinguishing feature is that individual
objects within a region cannot be freed; only the entire region can be freed en masse.

Region-based allocators by themselves are not resistant to use after free, since the blocks
from malloc may be reused, but they provide temporal memory safety when the underlying
malloc/free is protected by a lock-and-key scheme. Thus, there is no need to explicitly
identify region-based CMAs; merely wrapping glibc’s malloc/free with Oscar suffices to
provide temporal memory safety for such programs, i.e., Oscar would provide full use-after-
free protection for a region-based allocator, without the need for any custom modifications.

Oscar’s performance is especially good for programs that use region-based allocators:
since there are few malloc()s or free()s to instrument, and correspondingly low memory
or TLB pressure, Oscar imposes negligible overhead. Other classes of lock-and-key schemes
also provide full protection to programs with region-based allocators, but they often have
high overhead, since they must instrument all pointer arithmetic operations (and possibly
pointer dereferences).

3.8 Discussion

Our results show that shadow-page-based schemes with our optimizations have low overhead
on many benchmarks. From Table 3.2, we argue that changing the lock is theoretically easier
than revoking all the keys, and implicit lock-and-key is better than explicit. Our experimental
results confirm that prediction: Oscar’s runtime overhead is lower than CETS, DangNull,
and FreeSentry overall and on most benchmarks, and comparable to DangSan (but with
lower memory overhead for Oscar), even though they all need source code while Oscar does
not.

24Technicality: memcached lazily expires entries, checking the timestamp only during the get operation.
Thus, the overhead of destroying shadows may be attributed to get operations. This means when there are
not “Get” operations, we might not be measuring the overhead of destroying shadows.

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 81

3.8.1 Virtual Address Space Considered Hard to Fill

A concern might be that Oscar would exhaust the 247B =128TB =32 billion 4K page user-
space virtual address space, necessitating reuse of addresses belonging to freed pages. This
is unlikely in common scenarios. Based on extrapolating the CPU2006 benchmarks, it would
take several days of continuous execution even for allocation-intensive programs. For exam-
ple, with perlbench, which allocates 361 million objects (>99% of objects fit in one page)
over 25 minutes, it would take 1.6 days (albeit less on newer, faster hardware) to exhaust the
address space. dealII, omnetpp and xalancbmk would take over 2.5 days each, gcc would
take 5 days, and all other CPU2006 benchmarks would take at least 2 weeks. An analysis of
memcached servers at Facebook shows between 5-60 billion requests (predominantly for very
small objects) per week [5], corresponding to between roughly 3.5 and 40 days to exhaust
the virtual address space. We expect that most programs would have significantly shorter
lifetimes, and therefore would never exhaust the virtual address space. It is more likely that
they would first encounter problems with the unreclaimed page-table memory (see Section
3.9). Nonetheless, it is possible to ensure safe reuse of virtual address space, by applying a
conservative garbage collector to old shadow addresses (note that this does not affect phys-
ical memory, which is already reused with new shadow addresses); this was proposed (but
not implemented) by Dhurjati and Adve [37].

Recently, Intel has proposed 5-level paging, enabling a 57-bit virtual address space [27];
implementation of Linux support is already underway [92]. This 512-fold increase would
make virtual address space exhaustion take years for every CPU2006 benchmark.

3.8.2 Hardware Extensions

Due to the high overhead of software-based temporal memory safety for C, some have pro-
posed hardware extensions (e.g., Watchdog [74]). Oscar is fast because it already utilizes
hardware – hardware that is present in many generations of x86 CPUs: the memory manage-
ment unit, which checks page table entries. We believe that, with incremental improvements,
shadow-page-based schemes will be fast enough for widespread use, without the need for spe-
cial hardware extensions. For example, Intel’s Broadwell CPUs have a larger TLB and also
a second TLB page miss handler [2], which are designed to improve performance for general
workloads, but would be particularly useful in relieving Oscar’s TLB pressure. Intel has also
proposed finer-grained memory write protection [89]; if future CPUs support write and read
protection on subpage regions, Oscar could be adapted to one-object-per-subpage, which
would reduce the number of shadows (and thereby TLB pressure).

3.8.3 Compatibility

Barring virtual address-space exhaustion (discussed in Section 3.8.1), Oscar will crash a
program if and only if the program dereferences a pointer after its object has been freed.
It does not interfere with other uses of pointers. Unlike other lock-and-key schemes, page-

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 82

permissions-based schemes do not need to instrument pointer arithmetic or dereferencing
(Table 3.2).

Accordingly, Oscar correctly handles many corner cases that other schemes cannot handle.
For example, DangNull/FreeSentry do not work correctly with encrypted pointers (e.g.,
PointGuard [30]) or with typecasting from non-pointer types. CETS has false positives
when casting from a non-pointer to pointer, as it will initialize the key and lock address to
invalid values.

Additionally, DangNull does not allow pointer arithmetic on freed pointers. For example,
suppose we allocate a string p on the heap, search for a character, then free the string:

char* p = strdup("Oscar"); // Memory from malloc

char* q = strchr(p, ’a’); // Find the first ’a’

free(p);

Computing the index of “a” (q - p == 3) fails with DangNull, since p and q were nullified.
It does work with DangSan and FreeSentry (since they only change the top bits) and with
Oscar.

DangSan, DangNull and FreeSentry only track the location of pointers when they are
stored in memory, but not registers. This can lead to false negatives: DangSan notes that
this may happen with pointers spilled from registers onto the stack during function pro-
logues, as well as race conditions where a pointer may be stored into a register by one thread
while another thread frees that object. DangSan considers both issues to be infeasible to
solve (for performance reasons, and also the possibility of false positives when inspecting the
stack). Oscar does not need to track pointers, and therefore does not have this vulnerability.

Benign use-after-free
There are two classes of use-after-free that are arguably benign, which we catch — though

so do most other schemes. If an object has been freed and reallocated to a new pointer, but
the new pointer has not yet accessed the memory:

char* old = malloc(...);

free (old);

char* new = malloc(...); // Assume ‘new’ aliases ‘old’

then it is safe to read/write with the old pointer. Alternatively, if we have read, but not
written, with the new pointer, then it is safe to read, but not write, using the old pointer.

We could change our implementation to catch only verifiably unsafe cases, as follows.
When the old object is freed, we do not change its shadow page permissions; this means
we still allow read/write using the old pointer, for the moment. When the new object is
allocated, we set the new shadow page permissions to no-read/no-write. If the new pointer
is used to read, it segfaults; we catch this with a custom signal handler that grants read
permissions to the new object’s shadow page, and removes write permissions from the old
object’s shadow page. Similarly, if the new pointer is used to write, it will segfault; our
signal handler can add read+write permissions to the new object’s shadow page, and remove

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 83

read+write permissions from the old object’s shadow page. We did not implement this, as
it requires roughly two to three times more syscalls than the ordinary approach — greatly
increasing the overhead — with a questionable benefit.

Nonetheless, should avoiding these somewhat benign cases be considered desirable, we
note that it is cheaper to add the above workaround to our scheme, than it is to patch alter-
native lock-and-key schemes (e.g., CETS, DangNull, FreeSentry). Our simple workaround is
possible only with page-permissions-based schemes, since it relies on each object having its
own virtual address.

3.9 Limitations and Future Work

Oscar is only a proof-of-concept for measuring the overhead on benchmarks, and is not ready
for production, primarily due to the following two limitations.

Reclaiming page-table memory takes some engineering, such as using pte free(). Al-
ternatively, the Linux source mentions they “Should really implement gc for free page table
pages. This could be done with a reference count in struct page.”25 Not all page tables
can be reclaimed, as some page tables may contain entries for a few long-lived objects, but
the fact that most objects are short-lived (the “generational hypothesis” behind garbage
collection) suggests that reclamation may be possible for many page tables. Note that the
memory overhead comparison in Section 3.6.2 already counts the size of paging structures
against Oscar, yet Oscar still has lower overall overhead despite not cleaning up the paging
structures at all.

We did not encounter any issues with users’ mmap requests overlapping Oscar’s region of
shadow addresses (or vice-versa) — which would overwrite the existing mapping — but it
would be safer to deterministically enforce this by intercepting the users’ mmap calls.

Currently, all threads share the same high water markfor placing new shadows, and
this high water markis protected with a global mutex. A better approach would be to
dynamically partition the address space between threads/arenas; for example, when a new
allocator arena is created, it could split half the address space from the arena that has the
current largest share of the address space. Each arena could therefore have its own high
water mark, and allocations could be made independently of other arenas. This could lower
the overhead of the memcached benchmarks, but not the SPEC CPU benchmarks (which are
all single-threaded).

We can vary the threshold of when an object is considered large enough to qualify for its
own sole-occupancy page(s) (and therefore MAP PRIVATE). If the threshold is too high, then
few objects will benefit; but if the threshold is too low, many small objects will each occupy
an entire physical page (with a zero-byte threshold, this devolves to the one object per
physical page frame approach). One of the reasons this threshold is set fairly high by glibc

is because that malloc and free would each require an additional syscall (mmap/munmap)

25http://lxr.free-electrons.com/source/arch/x86/include/asm/pgalloc.h

CHAPTER 3. OSCAR: A PRACTICAL PAGE-PERMISSIONS-BASED SCHEME FOR
THWARTING DANGLING POINTERS 84

for every object. However, each “small” object (sharing a page) would require these syscalls
anyway (for the shadows), which partly balances out the cost.

If we are willing to modify internal malloc, Oscar can be selective in how to refresh (or
batch-create) shadows. For example, objects that are small enough (among other conditions)
to fit in internal malloc’s “small bins” are reused in a first-in-first-out order, which means
that a speculatively created shadow is likely to be used eventually. Other bins are last-in-first-
out or even best-fit, which makes their future use less predictable. This optimization may
particularly benefit xalancbmk and dealII, for which the ordinary refresh shadow approach
was a net loss.

We could take advantage of the short-lived nature of most objects to experiment with
placing multiple objects per shadow; fewer shadows means lower runtime and memory over-
head. To further reduce memory overhead, we could change internal malloc to place the
canonical address field at the start of each page, rather than the start of each object. All
objects on the page would then share the canonical address field, which could drastically
reduce the memory overhead for programs with many small allocations (e.g., soplex). We
explore this direction in Chapter 4.

3.10 Conclusion

Efficient, backwards compatible, temporal memory safety for C programs is a challenging,
unsolved problem. By viewing many of the existing schemes as lock-and-key, we showed that
page-permissions-based protection schemes were the most elegant and theoretically promis-
ing. We built upon Dhurjati and Adve’s core idea of one shadow per object. That idea is
unworkable by itself due to accumulation of vm area structs for freed objects and incom-
patibility with programs that fork(). Dhurjati and Adve’s combination of static analysis
partially solves the first issue but not the second, and comes with the cost of requiring
source-code analysis. Our system Oscar addresses both issues and introduces new optimiza-
tions, all without needing source code, providing low overheads for many benchmarks and
simpler deployment. Oscar thereby brings page-permissions-based protection schemes to the
forefront of practical solutions for temporal memory safety.

85

Chapter 4

Oscar++: Extending Oscar with
Multiple Objects per Alias

4.1 Introduction

Oscar advanced the state of the art for heap temporal memory safety, but its overhead
was very high for some allocation-intensive programs (Figure 3.16). Oscar’s optimizations
reduced the overhead of MAP SHARED (by using MAP PRIVATE memory for large mappings)
and updating aliases (by using the high-water mark, and refreshing aliases), but did not
reduce TLB pressure.

To a first-order approximation, TLB pressure occurs because there are N objects, with
one object per alias resulting in N aliases, exceeding the TLB capacity of k objects. Increas-
ing the TLB size requires hardware changes, while decreasing the number of objects requires
application software changes; both are out of scope. This means the only lever to reduce the
TLB pressure is to place multiple objects per alias. Multiple objects per alias also reduces
the overhead of syscalls to maintain the mappings.

Page-permissions based schemes have historically used one object per page, so that the
resources associated with an object (physical memory on the canonical page, and the alias
mapping for alias-based schemes) can be reclaimed immediately when the object is freed by
the user. With multiple objects per alias, when the user frees an object, Oscar++ considers
it “quarantined” and does not call internal free(), nor does it unmap the alias. When
all the objects on the alias are in the quarantined state, Oscar++ unmaps the alias and
internal free() all the objects; this is similar to the abandoned approach of batching frees
in Section 3.5.4.

When using quarantine (more directly, when delaying the munmap of an alias), some at-
tempted attacks (e.g., writing to an object after it has been freed, but before the memory has
been reallocated to another object) may not be detected. However, this does not compromise
the security of the scheme, since the memory has not been reused for a fresh allocation: as
discussed in Section 3.8.3, it is reuse after free that is dangerous. We note that the infinite

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 86

heap (i.e., never free() objects) or garbage collection — which are both considered secure
— also do not detect these benign cases of use after free.

The main downside of quarantine is memory usage: in the worst case, it can increase
memory usage by over a hundred-fold due to stateholding. For example, consider an alias
that contains a small object (1-byte of user data plus 16 bytes of allocator metadata) and
a large object (4,000+16 bytes), where the large object is freed/quarantined but the small
object is not; on account of the 1-byte object, the 4,000 bytes of the large object cannot be
truly freed and reused. In practice, memory usage is not a concern because the vast majority
of objects are short-lived (the generational hypothesis in garbage collection), which means it
is rare that short-lived and long-lived objects will be placed on the same alias. Additionally,
placing multiple objects per alias reduces the number of aliases, and thereby the amount
of memory consumed by page table entries and vm area structs. Finally, the number of
objects per page is parameterizable, ranging from the low memory overhead of vanilla Oscar
(but high runtime overhead for allocation-intensive programs) to a higher level of memory
overhead with lower runtime overhead.

In the first half of this chapter, we implement and evaluate Oscar++, a basic multiple
objects per alias scheme, and demonstrate that it substantially reduces the runtime overhead
of allocation-intensive benchmarks. In the second half, we will consider using the lifetime
of an object (the time from which it is allocated to “freed”) to reduce the stateholding that
arises when objects of different lifetimes are placed on the same alias. We will conclude with
a discussion of directions for future work, such as using the “hotness” of an object (frequency
of memory accesses) to optimize TLB and data cache utilization.

4.2 Implementation

Oscar++ maintains the standard glibc malloc interface, receiving allocation requests (pos-
sibly interspersed with free() requests) individually. This means Oscar++ must be able
to incrementally allocate additional objects to an existing alias. Furthermore, Oscar++
must be able to keep track of which objects on the alias the user has previously requested to
free()— which can happen in any order — and then, when the alias has reached its lifetime
maximum number of additional objects, and all objects were free()’d by the user, unmap
the alias and internal free() all the objects. In Figure 4.1, we illustrate how a series of
malloc and free() events are handled by Oscar++.

Table 4.1: Illustration of how malloc and free() events are handled by Oscar++.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 87

Step 1: Object A allocated.
We assume 2 objects per
alias.

 A

 A A

 Shadow virtual
pages

 Canonical virtual
page

Physical
page frame

Step 2: Object B allocated;
it is assigned to the same
alias as object A.

 A

 B A A B

 Shadow virtual
pages

 Canonical virtual
page

Physical
page frame

 B

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 88

Step 3: Object C allocated;
requires a new alias.

 A

 C

 B A A B

 Shadow virtual

pages

 Canonical virtual
page

Physical
page frame

 B

 C C

Step 4: Object B freed by
the user; Oscar++ quaran-
tines it (glibc’s allocator
considers it still allocated).

 A

 C

 B A A B

 Shadow virtual

pages

 Canonical virtual
page

Physical
page frame

 B

 C C

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 89

Step 5: Object D allocated;
it is assigned to the same
alias as object C.

 A

 C D

 B A A B

 Shadow virtual

pages

 Canonical virtual
page

Physical
page frame

 B

 C D D C

Step 6: Object C freed by
the user; Oscar++ quaran-
tines it.

 A

 C D

 B A A B

 Shadow virtual
pages

 Canonical virtual
page

Physical
page frame

 B

 C D D C

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 90

Step 7: Object A freed by
the user.

 A

 C D

 B A A B

 Shadow virtual

pages

 Canonical virtual
page

Physical
page frame

 B

 C D D C

Step 8: The alias contain-
ing objects A and B can be
unmapped, and both canon-
icals are finally free()’d.

 C D

 Shadow virtual

pages

 Canonical virtual
page

Physical
page frame

 C D D C

For simplicity, we only consider objects that fit fully within one page. This is not a major

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 91

Figure 4.1: Oscar++ linked list

Head Tail Tail Tail Tail

restriction, as objects that span multiple pages are either larger than a page (and therefore
do not benefit from multiple objects per page) or are uncommon edge cases (spanning the
edge between two contiguous pages).

Oscar++ keeps track of all the objects on an alias by chaining them together in a singly-
linked list (Figure 4.1). It also stores inline metadata for each object, to indicate whether it
has been freed. The first object to be allocated on the alias, which becomes the head of the
list, maintains a counter of the number of additional objects that can be allocated on the
alias (“remaining allocation slots”), and a counter of the number of live objects (including
itself) on the alias.

When we allocate an object on an alias that already has a head, we attach the new object
to the linked list and decrement the number of remaining allocation slots. When we free
any object on the alias, we must decrement the counter of the number of live objects; since
this counter is stored on the head, all tail (non-head) objects store a pointer to the head,
allowing O(1) access to the counter. For the free() function call, Oscar++ is only given
the address of the object, and not whether it is a head or tail, so we use an additional bit to
indicate whether an object is the head or not.

4.2.1 Packing the metadata

Implemented naively, the above approach entails a significant amount of additional inline
metadata, especially for smaller objects. With some careful bitpacking, Oscar++ requires
only 8-bytes of inline metadata per object, the same as Oscar.

In Oscar, the canonical address field stores a regular 64-bit pointer. Current implemen-
tations of x64 CPUs only support a 48-bit virtual address space, with the top 16 bits set to
zero.1 Additionally, we only need to store the start of the canonical page, which means the

1We can save one additional bit by observing that, on Linux, the top-half of the virtual address space is
reserved for the kernel.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 92

Figure 4.2: Oscar++ metadata for head (left) and tail (right) objects. A = truly aliased
(see Section 4.2.3), L = live object, H = head.

0 1 2 3 4 5 6 7

offsetToFirstTail

remainingAllocationSlots
 numLiveObjects

canonicalMiddle

- A? L? H?

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

-

A? L? H?

0

1

2

3

4

5

6

7

offsetToNextTail

ofsetToHead

bottom 12 bits are set to zero (assuming a 4KB page), freeing up a total of 28 bits per page.
This is similar to DangSan’s [60] “pointer compression”.

We can apply similar pointer compression to the linked-list of objects within an alias.
Since they are all within the same 4KB page, we only need to store the page offset (lower 12
bits); and with the assumption that objects are aligned to 16-byte addresses (which holds
for the version of glibc that we modified), we can omit the bottom 4 bits. Thus, each
linked-list node only requires 8 bits.2

With pointer compression, we can no longer NULL-terminate the linked list, since any
8-bit value is potentially the offset of a valid object on the page. Instead, we use the offset of
the head to indicate the end of the linked list (Figure 4.1), i.e., it is actually a ring, though
we refer to it as a linked list for simplicity.

We use 8-bit counters for the number of remaining allocation slots and the number of live
objects. This exceeds the maximum number of objects that can be placed on a 4KB page,
considering that the minimum object size (including glibc and Oscar’s inline metadata) is
24 bytes.

Oscar++ uses the least-significant bit of its inline metadata to store if it is the head;
this bit is in the same location for both head and tail objects. We also use single bits to
indicate whether the object is live, and one bit to store whether the “alias” virtual page is
truly aliased to the canonical virtual page, for implementation reasons described later. The
inline metadata fields are shown in Figure 4.2.

Intel has recently proposed a 57-bit virtual address space, which would require 9 addi-
tional bits for the canonical address. We currently only have 1 unused bit. To obtain the
remaining 8 bits, we could reduce the remainingAllocationSlots and numLiveObjects

fields to 4 bits each. As our results will show, a small maximum number (< 10) of objects
per alias generally provides optimal runtime.

2If we only assume 8-byte addresses, we require an additional bit, which we can afford. However, it is
more performant to load and store an 8-bit value.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 93

4.2.2 Caching partly filled aliases

As part of the “Refreshing shadows” optimization (Section 3.5.2), Oscar maintains a hashtable
that maps from each canonical page range (1 or more pages) to an array of empty aliases.
Oscar++ uses the same array to store partly-filled aliases (aliases that contain one or more
objects), i.e., when malloc is called, Oscar++ checks the hashtable for a cached alias. If it is
empty, then it initializes the head node. If it is a partly filled alias, it chains on a non-head
node. If no cached alias is available, it creates one on demand and initializes the head node.
In all three cases, it decrements the number of remaining allocation slots, and if that is still
non-zero, it stores the alias in the cache.

We us a last-in-first-out policy for reusing cached aliases. This can lead to the array of
cached aliases containing a mix of empty and partly filled aliases. For example, suppose
there is a maximum of two objects per alias lifetime, and we allocate three objects (A, B,
C). Objects A and B will be assigned to alias1, and object C will be assigned to alias2. If
objects A and B are freed, alias1 will be refreshed into alias3, which will be added to the end
of the cache; thus, the next object D will be assigned to alias3, not alias2. To distinguish
between the empty and partly filled aliases (an important distinction because it results in
a head or tail node respectively), we tag the least-significant bit of the alias address for the
latter case. There is no information loss since addresses are 16-byte aligned, which means
the bottom four bits are always zero. Alternatively, our hashtable could map to an array of
empty aliases, and a partly filled alias (possibly NULL). This scheme would ensure that there
is at most one partly filled alias per canonical page.

4.2.3 The isAliased bit

When an alias has exhausted its lifetime maximum number of objects, and all objects were
free()’d by the user, Oscar++ conceptually unmaps the alias and then traverses the linked
list using the canonical page to find and free() the objects. This does not work for the large
objects that are backed by MAP PRIVATE memory: since the canonical and “aliased” pages
are mapped to different sets of physical page frames, Oscar++’s metadata is only stored on
the “aliased” page, which is unavailable after we have unmapped the alias. This is similar to
the issue encountered with realloc (Section 3.5.3). We cannot defer unmapping the alias
until after free()’ing the objects, since that returns the canonical memory to the heap and
therefore permits use-after-free in multi-threaded applications.

Our workaround is to walk the linked list and make a local copy of Oscar++’s metadata,
unmap the alias, and then use that copy of the metadata to free the objects. This workaround
is correct even for properly aliased (MAP SHARED) memory3, but is unnecessarily slow, so we
only use it for MAP PRIVATE objects. The “isAliased” bit is set when the object is initially
allocated, so that in the common case (MAP SHARED), we can use the faster, näıve algorithm;

3When implemented as described. MAP PRIVATE implies it is a large, multi-page object, and therefore
does not share the alias with any other objects, so it is possible to simplify this algorithm for the MAP PRIVATE

case, i.e., to only handle a single object.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 94

it could also potentially be used to provide a fastpath for the realloc function. We determine
whether the pages are aliased by first principles (compare the first byte, set the first byte,
compare again) rather than using the specifics (“chunk is mmapped”) of the glibc allocator.
Some care is required to prevent the compiler from optimizing out the alias check.

4.3 Results

Figure 4.3 shows the runtime of the six SPEC CPU2006 benchmarks that had >10% overhead
with Oscar, for different settings of the maximum number of additional objects on an alias
over its lifetime (“n”). The y-axis is the runtime, normalized to vanilla glibc malloc. The
Oscar results are a rerun, so they differ slightly from the results in Chapter 3. They also
differ slightly from the n=0 case of Oscar++, due to minor implementation differences (e.g.,
different inline metadata management) and experimental error. Although “n” is a discrete
parameter, we have added dashed lines between data points to make it easier to view the
runtime trend when increasing “n”. The graph shows that the overhead drops significantly
even with just n=1, and decreases further for larger values of n, albeit with diminishing
returns. The diminishing returns is to be expected, since the remaining overhead of syscalls
for creating/disabling shadows is roughly 1

n+1
of the overhead of Oscar (or Oscar++ with

n=0). For example, with n=2, there are up to 3 objects per alias, so the overhead may be
as low as 1/3.

The best value of n differs for each benchmark, but n=5 provides close to optimal over-
head. The runtime overhead increases for very large values of n; this is to be expected
as many aliases will contain at least one long-lived object, preventing reuse of quarantined
objects and thereby disrupting locality of reference.

The remaining non-Fortran SPEC CPU2006 benchmarks, which all have <10% overhead,
are shown in Figure 4.4. sphinx3, milc or povray (the most expensive of this group) may
have some non-trivial benefits from Oscar++. The other benchmarks have very low Oscar
overhead and do not benefit from Oscar++.

Figure 4.5 shows the geometric mean overhead of the six higher-overhead benchmarks
from Figure 4.3, the remaining benchmarks from Figure 4.4, and combined. These graphs
show what overhead reduction is achievable if we set a single n value for all benchmarks,
rather than tailoring n to each benchmark. Overall, this graph shows the same trend as
Figure 4.3, with n=5 being approximately optimal, with runtime overhead of 24.7% for
Oscar++ compared to 39.4% for Oscar.

4.4 Oscar++LP: Oscar++ with Lifetime Prediction

Lifetime prediction has been proposed for general-purpose allocators [7], with simplified,
faster handling of short-lived objects. We adapt this idea to reduce stateholding in Oscar++
that we had identified in Section 4.1.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 95

Figure 4.3: Oscar++ runtimes for the six higher-overhead non-Fortran SPEC CPU2006
benchmarks. n = maximum lifetime number of additional allocations per alias, for Oscar++.

4.748

2.333

4.283

3.090

3.911

3.075 2.998

1.594
1.398

1.305

1.275 1.182 1

1.5

2

2.5

3

3.5

4

4.5

5

Oscar 0 1 2 3 4 5 6 7 8 9 10 20 30 50 100 150

R
u

n
ti

m
e

 (
va

n
ill

a
=

1
x)

Maximum lifetime number of additional allocations per alias (Oscar++)

perlbench omnetpp xalancbmk dealII astar gcc

1.13

Stateholding of memory occurs only because objects of different lifetimes are co-located
on the same alias. If an alias hosted only short-lived objects, or only long-lived objects,
the duration of stateholding would be greatly reduced, since all objects would be freed at
roughly the same time.4 In addition to preventing stateholding of memory on canonical
pages, this also reduces the number of live memory mappings (and therefore memory used
for vm area structs) and TLB pressure. For example, suppose objects S1 and S2 are short-
lived, while objects L1 and L2 are long-lived. If we placed objects S1,L1 onto alias1 and
S2,L2 onto another alias2, then both aliases would be needed. The placement of S1,S2 and
L1,L2 onto alias1 and alias2 respectively would allow alias1 to be retired earlier.

We cannot readily consolidate or migrate long-lived objects onto a different page, because
we would need to know where all the pointers to the object are, and update them accordingly.
This would necessitate a pointer tracking mechanism such as the compiler-based instrumen-
tation of DangNull/FreeSentry/DangSan [62, 105, 60] (which we have seen incurs significant
overhead) – or the Pintool-based instrumentation of RuntimeASLR [64] (which is extremely
slow when tracking pointers).

In this section, we consider the benefit of segregating objects/aliases by lifetime. We
assume we have access to an oracle that returns the lifetime of an allocation; this provides a

4The long-lived objects would, by definition, not be freed for a long time, regardless of whether we are
using Oscar++ or no aliases at all. Thus, Oscar++ does not induce much stateholding.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 96

Figure 4.4: Oscar++ runtimes for the non-Fortran SPEC CPU2006 benchmarks, other than
the six higher-overhead benchmarks of Figure 4.3. n = maximum lifetime number of addi-
tional allocations per alias, for Oscar++. The y-axis is different from Figure 4.3.

0.97

0.99

1.01

1.03

1.05

1.07

1.09

1.11

1.13

Oscar 0 1 2 3 4 5 6 7 8 9 10 20 30 50 100 150

R
u

n
ti

m
e

(v
an

ill
a

=
1

x)

Maximum lifetime number of additional allocations per alias (Oscar++)

sphinx3 milc povray soplex h264ref

sjeng mcf gobmk libquantum bzip2

namd hmmer lbm

loose upper-bound on the benefit of using lifetime, since practical systems can only approx-
imately predict lifetime.

4.4.1 Implementation

In this section, we describe how we obtain the allocation event log needed for the oracle,
how we use the log to implement the oracle, and how we store the cached aliases.

Obtaining the log for the oracle
In Section 3.4.1 of Oscar, we already obtained, using mtrace, a log of all allocation and

free events. We encountered some minor inconsistencies between mtrace’s log and the order
in which Oscar++ received malloc/realloc/free() calls (“allocator calls”); for example,
mtrace lists realloc as a free followed by a malloc, whereas Oscar++ implements it as
allocate new object — copy — free old object. To improve synchronization between the log
and the program run, we essentially reimplemented mtrace: we open a file for writing, mmap
it into memory, and then write to the log during each malloc/free() operation. We avoid
using any logging functions that would result in any Oscar++ memory allocations.
Using the log

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 97

Figure 4.5: Oscar++ runtimes: geometric means. n = maximum lifetime number of addi-
tional allocations per alias, for Oscar++. The y-axis is different from previous figures.

3.930

2.438
2.742

1.947

1.394
1.250

1

1.5

2

2.5

3

3.5

4

Oscar 0 1 2 3 4 5 6 7 8 9 10 20 30 50 100 150

R
u

n
ti

m
e

 (
va

n
ill

a
=

1
x)

Maximum lifetime number of additional allocations per alias (Oscar++)

Geomean (alloc-intensive) Geomean (alloc-intensive + gcc + astar) Geomean (all SPEC CPU)

Given the log of all alloc/free events and ample memory, it is trivial to calculate the
object lifetimes by storing all allocations in a hashtable, and printing the allocation and
lifetime when we encounter the matching free.

We modified malloc/realloc to call our oracle function, which reads the precomputed
lifetime from the log (mmap’ed into memory), to determine which alias to place the object on.
We add assertions to check that the parameters of allocator calls match the log. This is im-
portant because the allocation calls are highly sensitive to minor changes in the environment
(for example, perlbench calls getenv, so even an apparently inconsequential choice, such as
the previous working directory5 will affect the parameters), and seemingly non-deterministic
as well: we force recompilation and rerun until the assertions pass.
Storing the cached aliases

For any given canonical page, there are three types of cached aliases: aliases containing
1 or more short-lived objects, aliases containing 1 or more long-lived objects, and empty
aliases. Accordingly, we convert the array of cached aliases (which contained a mix of empty
and partly filled aliases) into a struct containing a partly filled alias (NULL if not present) for
short-lived objects, a partly filled alias for long-lived objects (NULL if not present), and an
array of cached empty aliases:

void** shadows_empty;

5OLDPWD

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 98

void* shadow_partlyFilled_shortLived;

void* shadow_partlyFilled_longLived;

When Oscar++ allocates an object, it preferentially selects the cached partly filled alias
of the appropriate lifetime. This means that, for any canonical page, there is only at most
one partly filled short-lived shadow and at most one partly filled long-lived shadow. If a
partly filled alias is not available, it selects a cached empty alias; and if those are also not
available, it creates an alias on demand. In all cases, if the number of additional objects
allowed on the alias is non-zero, it caches the partly filled alias in the slot of appropriate
lifetime.

4.4.2 Case Study: first perlbench benchmark

We found in a brief pilot study that it is surprisingly difficult, even given the lifetime oracle,
for Oscar++ to improve upon Oscar++. We present, as a case study, the first (of three)
perlbench benchmarks from SPEC CPU2006; this is one of the most promising benchmarks
because it was allocation-intensive (57.4 million allocations), with 6.8 million of size 1 and
lifetime 0 (i.e., allocate — use — free with no intervening allocations); a further 2.9 million
allocations have size between 2 and 99 and lifetime 0. We configured Oscar++ to consider
objects of lifetime 0 to be short-lived, and other objects to be long-lived. Figure 4.6 shows
the runtime (x-axis) and memory (y-axis; user-mode only) usage of Oscar++ with and with-
out lifetime prediction, for different values of n (maximum lifetime number of allocations per
alias). Both variants of Oscar++ show a similar runtime-memory tradeoff: more objects per
page result in more memory usage (due to stateholding of quarantined objects), with lower
runtime. For n=0 (one object per page), both Oscar and Oscar++ are theoretically equiva-
lent; the minor differences on the graph are due to experimental error. We did not explore
extremely large values of n, for which we would predict both runtime and memory would
be higher. For values of n between 1 and 10, Oscar++ with lifetime prediction generally
offers runtime similar to Oscar++, but with lower memory overhead (usually equivalent to
Oscar++ for n-1).

4.4.3 Discussion

The results for lifetime prediction are disappointing if we consider runtime: for example,
given a fixed memory budget of 420MB, Oscar++ runs in 288.7s (n=2, reads the lifetime
prediction data but does not use it6) or 274.9s (n=3, reads and uses the lifetime prediction
data), which is a roughly 4.8% speedup. We chose these n values because they show a
comparatively large runtime difference, with similar memory usage.

The runtime-memory curve does show, however, that it is simply very difficult to reduce
runtime beyond n=2; for example, n=10 only reduces the overhead by 12.5% (compared to

6This gives a comparison that solely evaluates the benefit of segregating allocations by lifetime, without
conflating the cost of lifetime prediction.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 99

Figure 4.6: Runtime and user-mode memory of Oscar++ with and without lifetime pre-
diction on the 1st perlbench benchmark. Individual data points show different values of n
(maximum lifetime number of additional allocations per alias).

10

9

8

7

6

5

4

3

2

1

0

9

10

8

7

6

5

4

3

2

1

0

250

350

450

550

650

750

850

250 270 290 310 330 350 370 390

M
ax

 m
em

o
ry

 u
sa

ge
 (

M
B

)

Runtime (s)

Oscar++ Oscar++ with lifetime

n=2), while increasing memory usage by 82%. The results are more favorable if we consider
memory usage while holding runtime constant: for example, if our runtime budget is 270s,
we can either use 551.6MB of memory (n=5, without using lifetime prediction) or somewhere
between 457.2-497.0MB of memory (n=4 or 5, using lifetime prediction), which is a memory
saving of between 9.9-17.1%.

These results assumed the presence of a lifetime oracle. A practical system could predict
lifetime using the allocation size and allocation site (including unwinding allocation wrappers,
similar to Cling [3]), under the assumption that allocations of the same type are likely to
have similar lifetimes. In the absence of a reliable oracle for predicting lifetime, there are two
techniques to mitigate the pathological memory stateholding scenario described in section
4.1. One method is to enforce that all objects on a particular alias are within a size range
[sizeMin, sizeMax]. With n objects per alias, in the worst case, (n-1) objects of sizeMax are
quarantined while one object of sizeMin is still live, resulting in a memory usage blowup of
(n−1)∗sizeMax

sizeMin
. This can be efficiently implemented in the cache of aliases, by changing the

array of aliases (some empty, some non-empty) to an array of empty aliases plus scalars
for partly-filled aliases for objects in different classes of allocation sizes (e.g., [0,15], [16,31],
[32,63], ...) i.e.,

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 100

void** shadows_empty;

void* shadow_partlyFilled_verySmall; // Size [0,15]

void* shadow_partlyFilled_small; // Size [16,31]

void* shadow_partlyFilled_med; // Size [32,63]

... // Can also use array: void** shadows_partlyFilled [...]

Another method is to avoid placing additional objects on an alias that contains live
objects, i.e., we wait until all objects on the alias are freed before we place a new object on
the alias. If the object on an alias is short-lived, then it will be freed and we can add another
object to it in due time; but if the object is long-lived, then we have avoided colocating
another object, which may be short-lived. There is still some remaining stateholding risk:
suppose we have cumulatively placed k (short-lived) objects on an alias, with each of them
having been sequentially freed/quarantined, and then we place another object which is long-
lived. Overall, this method roughly halves the amount of memory stateholding.7

4.5 Future Work: Hotness

Next, we discuss some possible directions for further improvement that we have not yet
explored.

The strategy of co-locating objects based on lifetime reduced the amount of stateholding
of memory, and also partly reduces TLB pressure. We might be able to further reduce TLB
pressure if we consider whether objects are “hot” (frequently accessed) or cold. For example,
suppose we have four long-lived objects, two of which are hot (H1, H2) and two are cold
(C1, C2). Since all objects are long-lived, the amount of physical memory usage is fixed
regardless of placement onto aliases; but if we place H1, H2 onto alias1 and C1, C2 onto
alias2, then we will rarely need to access alias2.

This generalizes when also considering short-lived objects. Suppose we have three access
patterns for objects: short-lived8, long-lived cold, and long-lived hot. Figure 4.7 shows
whether these objects are accessed during different epochs.

Epoch 1 imposes no constraints: all objects are in use, so any placement (onto a fixed set
of aliases) is optimal. In epoch 2, only the long-lived hot objects are accessed, so we want
all of them to share a set of aliases. Epoch 2 does not impose any constraint on short-lived

7Suppose there is a small probability p of an object being long-lived, and we place k objects per page.
Ordinarily with Oscar++, if there is a long-lived object, then there is stateholding of the other (k-1) objects.
If we use this sequential placement strategy, there is the same probability that a long-lived object exists,
but there is only stateholding of (k-1) objects if the long-lived object is the last to be added to the alias; if

it is the first object on the alias, there is zero stateholding. On average, there will be stateholding of (k−1)
2

objects. Since p is small, the probability of two or more long-lived objects is negligible.
8As a simplifying assumption, it is not necessary to distinguish between short-lived hot and short-lived

cold: a short-lived object is accessed at least once (during initialization), and does not live long enough for
hotness to matter.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 101

Figure 4.7: Access patterns: short-lived, long-lived cold, and long-lived hot objects.

Short-lived

Long-lived cold

Long-lived hot

Epoch 2 Epoch 1 Epoch 3
Time

← freed at end of epoch

and long-lived cold objects from sharing aliases. In epoch 3, long-lived cold and long-lived
hot objects can share aliases, while short-lived objects should be segregated. Under the
assumption that every type of object can be tightly packed onto the desired aliases, this
leads to the “obvious” conclusion that short-lived, long-lived cold, and long-lived hot objects
should be placed on aliases with their kindred objects.

The aforementioned is only a first-order approximation. A smarter algorithm could con-
sider which long-lived cold objects are accessed together in each epoch, e.g., in Figure 4.8,
objects A,C should be preferentially co-located, and B,D should be co-located. Long-lived
hot and short-lived objects require less analysis: long-lived hot objects are, by definition,
frequently accessed, so they are always accessed together (i.e., we can just arrange them
onto any hot alias); and for short-lived objects, a greedy algorithm (pack objects onto the
non-empty alias) would preferentially co-locate objects that are accessed within the same
epoch.

Unfortunately, recording all memory accesses with tools such as MadT, pinatrace, or
lackey/valgrind commonly introduces a 1,000–10,000x slowdown [20]. Since we only need to
determine hotness of an object, and not the precise number of accesses, a sampling approach
may suffice; this would require some adaptation of those tools.

We have not implemented any of the ideas in this section, but believe that they may
make interesting directions for future work.

CHAPTER 4. OSCAR++: EXTENDING OSCAR WITH MULTIPLE OBJECTS PER
ALIAS 102

Figure 4.8: Access patterns: a finer-grained look at long-lived cold objects.

Object B

Object C

Object D

Epoch 2 Epoch 1 Epoch 3
Time

Object A

103

Chapter 5

Conclusion

This dissertation tackled a subset of the longstanding, ongoing problem of memory safety
vulnerabilities in legacy programs: quantifying and reducing the cost of shadow stacks to
tackle the key attack vector of return-oriented programming, and reducing the cost of directly
enforcing heap temporal memory safety.

Our results show that “well-known”, old techniques may be worth revisiting: we devised
parallel shadow stacks, advanced page-permissions-based protection using Oscar, and then
further reduced the overhead with Oscar++ by changing the assumption of one object per
alias.

Our work on shadow stacks showed that instrumenting every instance of a large class of
operations (e.g., prologues and RETs) is expensive, despite our minimalist instrumentation.
Likewise, instrumenting every malloc and free() can be costly (for allocation-intensive
applications), but we are able to avoid instrumenting any pointer arithmetic or dereferencing
operations.

Both shadow stacks and Oscar are comparatively simple schemes, with less indirection
than many alternative schemes in the literature. This lends itself to lower overhead (shown
empirically) and better compatibility (e.g., with setjmp/longjmp for shadow stacks, and
typecasts and source-code requirements for heap protection).

Additionally, our work also shows that preventing instead of detecting attacks can be a
worthwhile trade-off, with checking vs. overwriting return values for shadow stacks, or using
quarantine for Oscar++.

104

Appendix A

Shadow Stacks

A.1 Traditional Shadow Stacks

For the traditional shadow stack epilogue, we can omit the comparison with the sentinel
value (CMP $0, (%ecx); JZ empty). This is secure if we assume that the logical bottom
of the shadow stack is filled with zeros (which would not be a useful return address for an
attacker) until a page boundary, below which is a guard page. Hence, if no match is found,
it will eventually hit the guard page and abort.

A.2 Parallel Shadow Stacks

A.2.1 Prologues

No scratch registers assumed:

• P1:1

1 POPL −0xb0000004(%esp) # Copy r e t addr to shadow stack
2 LEAL −4(%esp) , %esp # Fix up stack po in t e r

• P2:

1 XCHGL (%esp) , %ecx # Ret addr in %ecx ; o ld %ecx in s tack
2 MOVL %ecx , −0xb0000000(%esp) # Copy r e t addr to shadow stack
3 XCHGL (%esp) , %ecx # Restore r e t addr to main stack
4 # and r e s t o r e o ld %ecx

1Internal names

APPENDIX A. SHADOW STACKS 105

• P3:

– This is more complex than P1, but has the advantage of being safe in the presence
of signal/interrupt handlers on 32-bit Linux (see Section 2.9.5).

1 POPL −0xb0000004(%esp) # Copy r e t addr to shadow stack
2 PUSHL −0xb0000004(%esp) # Fix up stack po in t e r

• P4:

– SUB is a shorter and simpler alternative to prologue P1’s LEA, but this has the
disadvantage of setting flags.

1 POPL −0xb0000004(%esp) # Copy r e t addr to shadow stack
2 SUB $4 , %esp # Fix up stack po in t e r

• P5* (a näıve implementation that uses a scratch register, saving it to and restoring it
from the stack):

1 PUSHL %ecx
2 MOVL 4(%esp) , %ecx # Copy r e t addr to %ecx
3 MOVL %ecx , −0 x a f f f f f f c (%esp) # Copy r e t addr to shadow stack
4 POPL %ecx

Assumes %ecx is available (e.g., due to calling convention) as a scratch register:

• P6 (compare to P5):

1 MOVL (%esp) , %ecx # Copy r e t addr to %ecx
2 MOVL %ecx , −0xb0000000(%esp) # Copy r e t addr to shadow stack

APPENDIX A. SHADOW STACKS 106

A.2.2 Epilogues: Overwriting

No scratch registers assumed:

• E1/E4:

– The alternate epilogue is obtained by replacing $0 with %esp. With a non-
executable stack, %esp is an invalid return address, so it can be used for “zeroing-
out” the stack, with a shorter instruction encoding than $0.

1 PUSH −0xa0000000(%esp) # Copy r e t addr from shadow stack
2 MOVL $0 , −0 x 9 f f f f f f c (%esp) # Zero out ; or MOVL %esp , . . .
3 RET $4

• E2/E3:

1 ADDL $4 , %esp # Fix up stack po in t e r
2 PUSHL −0xa0000004(%esp) # Copy r e t addr from shadow stack
3 MOVL $0 , −0xa0000000(%esp) # Zero out ; or MOVL %esp , . . .
4 RET

• E5/E6:

– Prologue E2/E3’s ADD is a shorter and simpler alternative to LEA, but has the
disadvantage of setting flags.

1 LEAL 4(%esp) , %esp # Fix up stack po in t e r
2 PUSHL −0xa0000004(%esp) # Copy r e t addr from shadow stack
3 MOVL $0 , −0xa0000000(%esp) # Zero out ; or MOVL %esp , . . .
4 RET

• E7:

1 XCHGL −0xa0000000(%esp) , %ecx # Ret addr in %ecx ; o ld %ecx in shadow
2 MOVL %ecx , (%esp) # Main stack has c o r r e c t r e t addr
3 XOR %ecx , %ecx # Zero out %ecx
4 XCHGL −0xa0000000(%esp) , %ecx # Restore o ld %ecx ; shadow stack zeroed
5 RET

• E8 (a näıve implementation that uses a scratch register, saving it to and restoring it
from the stack):

APPENDIX A. SHADOW STACKS 107

1 PUSHL %ecx
2 MOVL −0 x 9 f f f f f f c (%esp) , %ecx # Copy r e t addr to %ecx
3 MOVL $0 , −0 x 9 f f f f f f c (%esp) # Zero out ; or MOVL %esp , . . .
4 MOVL %ecx , 4(%esp) # Copy r e t addr to main stack
5 POPL %ecx
6 RET

• E30 (identical to E2/E3 but uses an indirect jump instead of a RET):

1 ADD $4 , %esp # Fix up stack po in t e r
2 JMPL ∗−0xa0000004(%esp) # Use r e t addr from shadow stack

Assumes %ecx is available (e.g., due to calling convention) as a scratch register:

• E9/E10* (compare to E8):

1 MOVL −0xa0000000(%esp) , %ecx #
2 MOVL $0 , −0xa0000000(%esp) # Zero out ; or MOVL, %esp , . . .
3 MOVL %ecx , (%esp)
4 RET

• E10 jmp* (identical to E10 but uses an indirect jump instead of a RET):

1 MOVL −0xa0000000(%esp) , %ecx
2 MOVL %esp , −0xa0000000(%esp)
3 ADD $4 , %esp
4 JMPL ∗%ecx

• E16:

– We store the shadow stack address in %ecx.

1 LEAL −0xa0000000(%esp) , %ecx # Store address o f shadow stack entry
2 PUSHL (%ecx) # Copy shadow stack entry
3 MOVL %esp , 4(%ecx) # ‘ ‘ Zero out ’ ’ shadow stack entry
4 RET $4

• E20 (compare to E8):

APPENDIX A. SHADOW STACKS 108

1 MOVL −0xa0000000(%esp) , %ecx # Copy r e t addr to %ecx
2 MOVL %ecx , (%esp) # Copy r e t addr to main stack
3 RET

Assumes %ecx and %edx are available (e.g., due to calling convention) as scratch
registers:

• E11:

1 XORL %edx , %edx # %edx = 0
2 MOVL −0xa0000000(%esp) , %ecx # Copy r e t addr to %ecx
3 MOVL %edx , −0xa0000000(%esp) # Zero out shadow stack
4 MOVL %ecx , (%esp) # Copy r e t addr to main stack
5 RET

• E12:

– We store the shadow stack offset in %edx.

– (%esp,%edx,1) is equivalent to %esp + %edx i.e., the address of the shadow stack
entry.

1 MOVL $−0xa0000000 , %edx # Store shadow stack o f f s e t in %edx
2 MOVL (%esp ,%edx , 1) , %ecx # Copy r e t addr to %ecx
3 MOVL $0 , (%esp ,%edx , 1) # Zero out shadow stack
4 MOVL %ecx , (%esp) # Copy r e t addr to main stack
5 RET

• E13:

– We store the shadow stack address in %edx.

1 LEAL −0xa0000000(%esp) , %edx # Store address o f shadow stack entry
2 MOVL (%edx) , %ecx # Copy r e t addr to %ecx
3 MOVL $0 , (%edx) # Zero out shadow stack
4 MOVL %ecx , (%esp) # Copy r e t addr to main stack
5 RET

• E14:

– We store the shadow stack address in %edx.

APPENDIX A. SHADOW STACKS 109

1 LEAL −0xa0000000(%esp) , %edx # Store address o f shadow stack entry
2 MOVL (%edx) , %ecx # Copy r e t addr to %ecx
3 MOVL %ecx , (%esp) # Copy r e t addr to main stack
4 XORL %ecx , %ecx # %edx = 0
5 MOVL %ecx , (%edx) # Zero out shadow stack
6 RET

• E15:

– We store the shadow stack address in %edx.

1 LEAL −0xa0000000(%esp) , %edx # Store address o f shadow stack entry
2 MOVL (%edx) , %ecx # Copy r e t addr to %ecx
3 MOVL %esp , (%edx) # ‘ ‘ Zero out ’ ’ shadow stack entry
4 MOVL %ecx , (%esp) # Copy r e t addr to main stack
5 RET

APPENDIX A. SHADOW STACKS 110

A.2.3 Epilogues: Checking

No scratch registers assumed:

• E101:

– abort$$ is a placeholder.

1 PUSH %ecx
2 MOV 4(%esp) , %ecx # Store r e t addr in %ecx
3 CMP %ecx , −0 x 9 f f f f f f c (%esp) # Compare to shadow stack
4 POP %ecx
5 JNZ abort$$
6 RET
7 abort$$:
8 HLT

• E102:

1 XCHG −0xa0000000(%esp) , %ecx # Ret addr in %ecx ; o ld %ecx in shadow
2 CMP %ecx , (%esp) # Compare to main s tack
3 XCHG −0xa0000000(%esp) , %ecx # Restore o ld %ecx and shadow stack
4 JNZ abort$$
5 RET
6 abort$$:
7 HLT

• E104:

1 XCHG %eax , (%esp) # Ret addr in %eax
2 CMPXCHG %esp , −0xa0000000(%esp) # See exp lanat ion below
3 # %eax w i l l have c o r r e c t r e t addr
4 XCHG %eax , (%esp) # Restore %eax (and move r e t addr
5 # to main stack −− redundant)
6 JNZ abort$$
7 RET
8 abort$$:
9 HLT

The CMPXCHG %esp, -0xa0000000(%esp) instruction operates as:

1 i f (%eax == −0xa0000000(%esp)) {
2 // Ret address matches shadow stack
3 ZeroFlag = 1
4 −0xa0000000(%esp) = %esp // ‘ ‘ Zero out ’ ’ shadow stack
5 } e l s e {

APPENDIX A. SHADOW STACKS 111

6 // Ret address does not match
7 ZeroFlag = 0
8 %eax = −0xa0000000(%esp) // %eax conta in s c o r r e c t re turn address
9 }

At the end of both code paths, %eax will contain the correct return address. However,
the purpose of the XCHG instruction is not to save the correct return address to the
main stack – if the copy on the main stack was incorrect, it will abort anyway – but
to restore the original value of %eax.

• E105:

– This is similar to E104, but it saves and restores the contents of %eax using
PUSH/POP instead of XCHGs, and it does not bother to save the correct return
address to the main stack in the case of a mismatch (since it will abort anyway).

1 PUSH %eax
2 MOV 4(%esp) , %eax # Ret addr in %eax
3 CMPXCHG %esp , −0 x 9 f f f f f f c (%esp) # See exp lanat ion above
4 JNZ abort$$
5 POP %eax
6 RET
7 abort$$:
8 HLT

Assumes %ecx is available (e.g., due to calling convention) as a scratch register:

• E100*:

1 MOV (%esp) , %ecx # Ret addr in %ecx
2 CMP %ecx , −0xa0000000(%esp) # Compare r e t addr to shadow stack
3 JNZ abort$$
4 RET
5 abort$$:
6 HLT

• E100 jmp*:

1 MOV −0xa0000000(%esp) , %ecx # Ret addr in %ecx
2 CMP %ecx , (%esp) # Compare r e t addr to main stack
3 JNZ abort$$
4

5 ADD $4 , %esp # Fix up stack po in t e r
6 JMPL ∗%ecx # I n d i r e c t jump in s t ead o f RET

APPENDIX A. SHADOW STACKS 112

7 abort$$:
8 HLT

Assumes %eax is available (e.g., due to calling convention) as a scratch register:

• E103:

1 POP %eax # Ret addr in %eax
2 CMPXCHG %esp , −0xa0000004(%esp) # See exp lanat ion above
3 # %eax w i l l have c o r r e c t r e t addr
4 JNZ abort$$
5 PUSH %eax # Copy r e t addr to main stack
6 RET
7 abort$$:
8 HLT

APPENDIX A. SHADOW STACKS 113

A.2.4 Peephole Optimizations

• See Section 2.9.5 for caveats about signal/interrupt handlers on 32-bit Linux.

• We use our parallel shadow stack instrumentation as an example.

Prologue: basic optimization.
Instrumented prologues will often be of the form:

1 POP 999996(% esp)
2 SUB $4 , %esp
3 PUSH %ebp
4 MOV %esp , %ebp
5 SUB <X>, %esp

whereby the last three lines are the standard idiom for functions with frame pointers. We
could replace this with:

1 POP 999996(% esp)
2 MOV %ebp , −8(%esp)
3 LEA −8(%esp) , %ebp
4 SUB <X+8>, %esp

Tables A.1 and A.2 show step-by-step walkthroughs of the instrumented prologues before
and after peephole optimization.

Table A.1: Instrumented prologue before peephole optimization.

Initial setup

return address

…

esp0.5

POP 999996(%esp)

return address

…

esp1.5

APPENDIX A. SHADOW STACKS 114

SUB $4, %esp

return address

…

esp2.5

PUSH %ebp

return address

…

esp3.5
saved frame ptr

MOV %esp, %ebp

return address

…

ebp4.5, esp4.5
saved frame ptr

APPENDIX A. SHADOW STACKS 115

SUB <X>, %esp

return address

…

ebp5.5
saved frame ptr

esp5.5

X

Table A.2: Instrumented prologue after peephole optimization.

Initial setup

return address

…

esp0.5

POP 999996(%esp)

return address

…

esp1.5

APPENDIX A. SHADOW STACKS 116

MOV %ebp, -8(%esp)

return address

…

esp2.5

saved frame ptr

LEA -8(%esp), %ebp

return address

…

esp3.5

saved frame ptr
ebp3.5

SUB <X+8>, %esp

return address

…

ebp4.5
saved frame ptr

esp4.5

X

Epilogues without LEAVE: basic optimization.

APPENDIX A. SHADOW STACKS 117

Instrumented epilogues that have frame pointers but don’t use the LEAVE instruction will
often be of the form:

1 MOV %ebp , %esp
2 POP %ebp
3 SUB $4 , %esp
4 PUSH 999996(% esp)
5 RET

which can be converted into:

1 LEA 8(%ebp) , %esp
2 MOV −8(%esp) , %ebp
3 PUSH 999996(% esp)
4 RET

Tables A.3 and A.4 show step-by-step walkthroughs of the instrumented epilogues before
and after peephole optimization.

Table A.3: Instrumented epilogue before peephole optimization. “retaddr from PSS” refers
to return address from parallel shadow stack.

Initial setup

return address

…

ebp0.5
saved frame ptr

esp0.5

X

APPENDIX A. SHADOW STACKS 118

MOV %ebp, %esp

return address

…

ebp1.5,esp1.5
saved frame ptr

POP %ebp

return address

…

esp2.5
saved frame ptr

SUB $4, %esp

return address

…

esp3.5

saved frame ptr

APPENDIX A. SHADOW STACKS 119

PUSH 999996(%esp)

retaddr from PSS

…

esp4.5
saved frame ptr

Table A.4: Instrumented epilogue after peephole optimization. “retaddr from PSS” refers
to return address from parallel shadow stack.

Initial setup

return address

…

ebp0.5
saved frame ptr

esp0.5

X

APPENDIX A. SHADOW STACKS 120

LEA 8(%ebp), %esp

return address

…

saved frame ptr

esp1.5

X

MOV -8(%esp), %ebp

return address

…

saved frame ptr

esp2.5

X

APPENDIX A. SHADOW STACKS 121

PUSH 999996(%esp)

retaddr from PSS

…

saved frame ptr

esp3.5

X

Epilogues with LEAVE: RET with offset.
We can combine the stack pointer adjustment with the RET instruction i.e.,

1 LEAVE . . .
2 SUB $4 , %esp
3 PUSH 999996(% esp)
4 RET

is equivalent to:

1 LEAVE . . .
2 PUSH 1000000(% esp)
3 RET $4

Note that the return address from the shadow stack is copied below the return address
on the main stack.
Epilogue: indirect jump.

In the instrumented epilogue, we could replace the RET:

1 # standard ep i l o g ue omitted
2 . . .
3 SUB $4 , %esp
4 PUSH 999996(% esp)
5 RET

APPENDIX A. SHADOW STACKS 122

with an indirect jump:

1 # standard ep i l o g ue omitted
2 . . .
3 SUB $4 , %esp
4 JMP 999996(% esp)

This optimization can be applied/combined to the peephole optimized epilogues presented
above (with or without LEAVE).

123

Bibliography

[1] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow integrity
principles, implementations, and applications”. In: TISSEC (2009).

[2] Advancing Moore’s Law in 2014! http://www.intel.com/content/dam/www/

public/us/en/documents/presentation/advancing- moores- law- in- 2014-

presentation.pdf. Aug. 2014.

[3] Periklis Akritidis. “Cling: A Memory Allocator to Mitigate Dangling Pointers.” In:
USENIX Security. 2010, pp. 177–192.

[4] ARM Information Center. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0439d/Chdedegj.html. Sept. 2013.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
“Workload analysis of a large-scale key-value store”. In: ACM SIGMETRICS Per-
formance Evaluation Review. Vol. 40. 1. ACM. 2012, pp. 53–64.

[6] Arash Baratloo, Navjot Singh, and Timothy K. Tsai. “Transparent Run-Time Defense
Against Stack-Smashing Attacks.” In: USENIX ATC. 2000.

[7] David A. Barrett and Benjamin G. Zorn. “Using lifetime predictors to improve mem-
ory allocation performance”. In: ACM SIGPLAN Notices. Vol. 28. 6. ACM. 1993,
pp. 187–196.

[8] Emery D. Berger and Benjamin G. Zorn. “DieHard: probabilistic memory safety for
unsafe languages”. In: ACM SIGPLAN Notices 41.6 (2006), pp. 158–168.

[9] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. “Reconsidering cus-
tom memory allocation”. In: ACM SIGPLAN Notices 48.4S (2013), pp. 46–57.

[10] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. “Efficient Techniques for Com-
prehensive Protection from Memory Error Exploits”. In: USENIX Security. 2005.

[11] Sarah Bird, Aashish Phansalkar, Lizy K. John, Alex Mericas, and Rajeev Indukuru.
“Performance Characterization of SPEC CPU Benchmarks on Intel’s Core Microar-
chitecture Based Processor”. In: SPEC Benchmark Workshop. 2007.

[12] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
“Hacking Blind”. In: Security and Privacy (SP), 2014 IEEE Symposium on. IEEE.
2014, pp. 227–242.

http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439d/Chdedegj.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439d/Chdedegj.html

BIBLIOGRAPHY 124

[13] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. “Jump-oriented
programming: a new class of code-reuse attack”. In: CCS. 2011.

[14] Linux Programming Blog. Threads and fork(): think twice before mixing them. June
2009. url: https://www.linuxprogrammingblog.com/threads-and-fork-think-
twice-before-using-them.

[15] Jeff Bonwick et al. “The Slab Allocator: An Object-Caching Kernel Memory Alloca-
tor.” In: USENIX summer. Vol. 16. Boston, MA, USA. 1994.

[16] Mihai Budiu, Úlfar Erlingsson, and Mart́ın Abadi. “Architectural support for software-
based protection”. In: Proceedings of the 1st workshop on Architectural and system
support for improving software dependability. 2006.

[17] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. “Undangle: early
detection of dangling pointers in use-after-free and double-free vulnerabilities”. In:
International Symposium on Software Testing and Analysis. ACM. 2012, pp. 133–
143.

[18] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. “Control-flow bending: On the effectiveness of control-flow integrity”. In: USENIX
Security. 2015, pp. 161–176.

[19] Nicholas Carlini and David Wagner. “ROP is still dangerous: Breaking modern de-
fenses”. In: USENIX Security. 2014.

[20] Marco Cesati, Renato Mancuso, Emiliano Betti, and Marco Caccamo. MadT: A mem-
ory access detection tool for symbolic memory profiling. Tech. rep. UIUC, 2015.

[21] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav
Shacham, and Marcel Winandy. “Return-oriented programming without returns”. In:
CCS. 2010.

[22] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K. Iyer. “Non-
Control-Data Attacks Are Realistic Threats.” In: USENIX Security. Vol. 5. 2005.

[23] Xi Chen, Asia Slowinska, and Herbert Bos. “On the detection of custom memory
allocators in C binaries”. In: Empirical Software Engineering (2015), pp. 1–25.

[24] Xi Chen, Asia Slowinska, and Herbert Bos. “Who allocated my memory? Detecting
custom memory allocators in C binaries.” In: WCRE. 2013, pp. 22–31.

[25] Tzi-cker Chiueh and Fu-Hau Hsu. “RAD: A compile-time solution to buffer overflow
attacks”. In: ICDCS. 2001.

[26] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. “Using DISE to protect return
addresses from attack”. In: ACM SIGARCH Computer Architecture News (2005).

[27] Intel Corporation. 5-Level Paging and 5-Level EPT. May 2017. url: https : / /

software.intel.com/sites/default/files/managed/2b/80/5-level_paging_

white_paper.pdf.

https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf

BIBLIOGRAPHY 125

[28] Standard Performance Evaluation Corporation. Readme 1st CPU2006. url: https:
//www.spec.org/cpu2006/Docs/readme1st.html#Q21.

[29] Standard Performance Evaluation Corporation. SPEC CPU2006: Read Me First.
http://www.spec.org/cpu2006/Docs/readme1st.html. Sept. 2011.

[30] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. “PointGuard: pro-
tecting pointers from buffer overflow vulnerabilities”. In: USENIX Security. Vol. 12.
2003, pp. 91–104.

[31] Christopher Dahn and Spiros Mancoridis. “Using program transformation to secure
C programs against buffer overflows”. In: 20th Working Conference on Reverse En-
gineering. 2003.

[32] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. “Hardware-Assisted Fine-
Grained Control-Flow Integrity: Towards Efficient Protection of Embedded Systems
Against Software Exploitation”. In: DAC. 2014.

[33] Lucas Davi, Daniel Lehmann, Ahmad-Reza Sadeghi, and Fabian Monrose. “Stitching
the gadgets: On the ineffectiveness of coarse-grained control-flow integrity protection”.
In: USENIX Security. 2014.

[34] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. “ROPdefender: A detection
tool to defend against return-oriented programming attacks”. In: CCS. 2011.

[35] Jared DeMott. UaF: Mitigation and Bypass. Jan. 2015. url: https://bromiumlabs.
files.wordpress.com/2015/01/demott_uaf_migitation_and_bypass2.pdf.

[36] Solar Designer. lpr LIBC RETURN exploit. http://insecure.org/sploits/linux.
libc.return.lpr.sploit.html. 1997.

[37] Dinakar Dhurjati and Vikram Adve. “Efficiently detecting all dangling pointer uses in
production servers”. In: Dependable Systems and Networks. IEEE. 2006, pp. 269–280.

[38] Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. “Stack bounds protection
with low fat pointers”. In: Symposium on Network and Distributed System Security.
2017.

[39] Electric Fence. http://elinux.org/index.php?title=Electric_Fence&oldid=
369914. Jan. 2015.

[40] Emerging ‘Stack Pivoting’ Exploits Bypass Common Security. http://blogs.mcafee.
com / mcafee - labs / emerging - stack - pivoting - exploits - bypass - common -

security. May 2013.

[41] HP Enterprise. Efficacy of MemoryProtection against use-after-free vulnerabilities.
url: http : / / community . hpe . com / t5 / Security - Research / Efficacy - of -

MemoryProtection - against - use - after - free / ba - p / 6556134 # .VsFYB8v8vCK

(visited on 2014).

[42] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C Necula.
“XFI: Software guards for system address spaces”. In: OSDI. 2006.

https://www.spec.org/cpu2006/Docs/readme1st.html#Q21
https://www.spec.org/cpu2006/Docs/readme1st.html#Q21
http://www.spec.org/cpu2006/Docs/readme1st.html
https://bromiumlabs.files.wordpress.com/2015/01/demott_uaf_migitation_and_bypass2.pdf
https://bromiumlabs.files.wordpress.com/2015/01/demott_uaf_migitation_and_bypass2.pdf
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://elinux.org/index.php?title=Electric_Fence&oldid=369914
http://elinux.org/index.php?title=Electric_Fence&oldid=369914
http://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security
http://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security
http://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK

BIBLIOGRAPHY 126

[43] Agner Fog. Microarchitecture of Intel, AMD and VIA CPUs. http://www.agner.
org/optimize/microarchitecture.pdf. 2017.

[44] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs. www.agner.org/
optimize/microarchitecture.pdf. Aug. 2014.

[45] Michael Frantzen and Michael Shuey. “StackGhost: Hardware Facilitated Stack Pro-
tection.” In: USENIX Security. 2001.

[46] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis. “Out of
control: Overcoming control-flow integrity”. In: IEEE S&P. 2014.

[47] Google. AddressSanitizerLeakSanitizer. url: https://github.com/google/sanitizers/
wiki/AddressSanitizerLeakSanitizer.

[48] Suhas Gupta, Pranay Pratap, Huzur Saran, and S. Arun-Kumar. “Dynamic code in-
strumentation to detect and recover from return address corruption”. In: International
workshop on Dynamic systems analysis. 2006.

[49] Tejun Heo. Patchwork [11/11] x86: implement x86 32 stack protector. https : / /

patchwork.kernel.org/patch/6217/. 2009.

[50] How to use Pageheap.exe in Windows XP, Windows 2000, and Windows Server 2003.
https://support.microsoft.com/en-us/kb/286470.

[51] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. “Data-Oriented Programming: On the Expressive of Non-Control
Data Attacks”. In: IEEE S&P. 2016.

[52] Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System V Application Binary In-
terface: AMD64 Architecture Processor Supplement. 2005.

[53] Koji Inoue. “Lock and Unlock: A Data Management Algorithm for A Security-Aware
Cache.” In: ICECS. 2006.

[54] Intel. Control-flow Enforcement Technology Preview. https://software.intel.

com / sites / default / files / managed / 4d / 2a / control - flow - enforcement -

technology-preview.pdf. 2017.

[55] Intel(R) 64 and IA-32 Architectures Optimization Reference Manual. Mar. 2014.

[56] Ciji Isen and Lizy John. “On the Object Orientedness of C++ programs in SPEC
CPU 2006”. In: SPEC Benchmark Workshop. 2008.

[57] Itanium(R) Processor Family Performance Advantages: Register Stack Architecture.
https://software.intel.com/en-us/articles/itaniumr-processor-family-

performance-advantages-register-stack-architecture. Oct. 2008.

[58] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. “Cyclone: A Safe Dialect of C.” In: USENIX ATC. 2002, pp. 275–
288.

http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
www.agner.org/optimize/microarchitecture.pdf
www.agner.org/optimize/microarchitecture.pdf
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://patchwork.kernel.org/patch/6217/
https://patchwork.kernel.org/patch/6217/
https://support.microsoft.com/en-us/kb/286470
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/en-us/articles/itaniumr-processor-family-performance-advantages-register-stack-architecture
https://software.intel.com/en-us/articles/itaniumr-processor-family-performance-advantages-register-stack-architecture

BIBLIOGRAPHY 127

[59] Wen-Fu Kao and S. Felix Wu. “Light-weight Hardware Return Address and Stack
Frame Tracking to Prevent Function Return Address Attack”. In: International Con-
ference on Computational Science and Engineering.

[60] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. “DangSan: Scalable
Use-after-free Detection.” In: EuroSys. 2017, pp. 405–419.

[61] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar, and
Dawn Song. “Code-Pointer Integrity”. In: OSDI. 2014.

[62] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. “Preventing Use-after-free with Dangling Pointers Nullification.”
In: NDSS. 2015.

[63] Ruby B. Lee, David K. Karig, John P. McGregor, and Zhijie Shi. “Enlisting hardware
architecture to thwart malicious code injection”. In: Security in Pervasive Computing.
2004.

[64] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. “How to Make ASLR
Win the Clone Wars: Runtime Re-Randomization.” In: NDSS. 2016.

[65] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn. “Archipelago:
trading address space for reliability and security”. In: ACM SIGOPS Operating Sys-
tems Review 42.2 (2008), pp. 115–124.

[66] Ali Jose Mashtizadeh, Andrea Bittau, David Mazières, and Dan Boneh. “Crypto-
graphically Enforced Control Flow Integrity”. In: arXiv:1408.1451. 2014.

[67] Henry Massalin. “Superoptimizer: a look at the smallest program”. In: ACM SIG-
PLAN Notices. 1987.

[68] Stephen McCamant and Greg Morrisett. “Evaluating SFI for a CISC Architecture”.
In: USENIX Security. 2006.

[69] Memcheck: a memory error detector. http://valgrind.org/docs/manual/mc-
manual.html.

[70] Microsoft. A detailed description of the Data Execution Prevention (DEP) feature in
Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows
Server 2003. https://support.microsoft.com/en-us/help/875352/a-detailed-
description-of-the-data-execution-prevention-dep-feature-in. n.d.

[71] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. “Pro-
ducing wrong data without doing anything obviously wrong!” In: ASPLOS. 2009.

[72] Santosh Nagarakatte. personal communication. June 22, 2017.

[73] Santosh Ganapati Nagarakatte. Practical low-overhead enforcement of memory safety
for C programs. Doctoral dissertation. University of Pennsylvania, 2012.

[74] Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. “Watchdog: Hardware
for safe and secure manual memory management and full memory safety”. In: ACM
SIGARCH Computer Architecture News 40.3 (2012), pp. 189–200.

http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/mc-manual.html
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in

BIBLIOGRAPHY 128

[75] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. “CETS:
compiler enforced temporal safety for C”. In: ACM SIGPLAN Notices 45.8 (2010),
pp. 31–40.

[76] Danny Nebenzahl, Mooly Sagiv, and Avishai Wool. “Install-time vaccination of Win-
dows executables to defend against stack smashing attacks”. In: Dependable and Se-
cure Computing, IEEE Transactions on (2006).

[77] George C. Necula, Scott McPeak, and Westley Weimer. “CCured: Type-safe retrofitting
of legacy code”. In: ACM SIGPLAN Notices 37.1 (2002), pp. 128–139.

[78] Aleph One. “Smashing the stack for fun and profit”. In: Phrack magazine (1996).

[79] Pádraig O’Sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev Barua,
and Angelos D. Keromytis. “Retrofitting security in COTS software with binary
rewriting”. In: Future Challenges in Security and Privacy for Academia and Industry.
2011.

[80] Ownership and moves. https://rustbyexample.com/scope/move.html.

[81] Hilmi Ozdoganoglu, T.N. Vijaykumar, Carla E. Brodley, Benjamin A. Kuperman,
and Ankit Jalote. “SmashGuard: A hardware solution to prevent security attacks on
the function return address”. In: Computers, IEEE Transactions on (2006).

[82] Seon-Ho Park, Young-Ju Han, Soon-Jwa Hong, Hyoung-Chun Kim, and Tai-Myoung
Chung. “The Dynamic Buffer Overflow Detection and Prevention Tool for Windows
Executables Using Binary Rewriting”. In: The 9th International Conference on Ad-
vanced Communication Technology. 2007.

[83] PaX. Address Space Layout Randomization. https://pax.grsecurity.net/docs/
aslr.txt. 2001.

[84] Mathias Payer and Thomas R. Gross. “Fine-grained user-space security through vir-
tualization”. In: VEE. 2011.

[85] Mathias Payer, Tobias Hartmann, and Thomas R. Gross. “Safe loading-a foundation
for secure execution of untrusted programs”. In: IEEE S&P. 2012.

[86] Manish Prasad and Tzi-cker Chiueh. “A Binary Rewriting Defense Against Stack
based Buffer Overflow Attacks.” In: USENIX ATC. 2003.

[87] Rui Qiao, Mingwei Zhang, and R. Sekar. “A Principled Approach for ROP Defense”.
In: Proceedings of the 31st Annual Computer Security Applications Conference. ACM.
2015, pp. 101–110.

[88] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren. “Supporting
dynamic data structures on distributed-memory machines”. In: TOPLAS 17.2 (1995),
pp. 233–263.

https://rustbyexample.com/scope/move.html
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt

BIBLIOGRAPHY 129

[89] Ravi L. Sahita, Vedvyas Shanbhogue, Gilbert Neiger, Jonathan Edwards, Ido Ouziel,
Barry E. Huntley, Stanislav Shwartsman, David M. Durham, Andrew V. Anderson,
Michael Lemay, et al. Method and apparatus for fine grain memory protection. US
Patent 20,150,378,633. Dec. 2015.

[90] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
“AddressSanitizer: A Fast Address Sanity Checker”. In: USENIX ATC. 2012.

[91] Hovav Shacham. “The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86)”. In: CCS. 2007.

[92] Kirill A. Shutemov. [RFC, PATCHv1 00/28] 5-level paging. Dec. 8, 2016. url: http:
//lkml.iu.edu/hypermail/linux/kernel/1612.1/00383.html.

[93] Stelios Sidiroglou, Giannis Giovanidis, and Angelos D. Keromytis. “A dynamic mech-
anism for recovering from buffer overflow attacks”. In: Information security. 2005.

[94] Matthew S. Simpson and Rajeev K. Barua. “MemSafe: ensuring the spatial and tem-
poral memory safety of C at runtime”. In: Software: Practice and Experience 43.1
(2013), pp. 93–128.

[95] Saravanan Sinnadurai, Qin Zhao, and Weng Fai Wong. Transparent runtime shadow
stack: Protection against malicious return address modifications. http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf.
2008.

[96] Software Optimization Guide for AMD Family 15h Processors. Jan. 2012.

[97] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal war in
memory”. In: IEEE S&P. IEEE. 2013, pp. 48–62.

[98] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal war in
memory”. In: IEEE S&P. 2013.

[99] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlings-
son, Luis Lozano, and Geoff Pike. “Enforcing forward-edge control-flow integrity in
gcc & llvm”. In: USENIX Security. 2014.

[100] Vendicator. Stack Shield. http://www.angelfire.com/sk/stackshield/info.
html. 2000.

[101] Perry Wagle and Crispin Cowan. “Stackguard: Simple stack smash protection for
gcc”. In: GCC Developers Summit. 2003.

[102] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. “Efficient
software-based fault isolation”. In: SOSP. 1993.

[103] David Weston and Matt Miller. Microsoft’s strategy and technology improvements to-
ward mitigating arbitrary native code execution. https://cansecwest.com/slides/
2017/CSW2017_Weston-Miller_Mitigating_Native_Remote_Code_Execution.

pdf. 2017.

http://lkml.iu.edu/hypermail/linux/kernel/1612.1/00383.html
http://lkml.iu.edu/hypermail/linux/kernel/1612.1/00383.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf
http://www.angelfire.com/sk/stackshield/info.html
http://www.angelfire.com/sk/stackshield/info.html
https://cansecwest.com/slides/2017/CSW2017_Weston-Miller_Mitigating_Native_Remote_Code_Execution.pdf
https://cansecwest.com/slides/2017/CSW2017_Weston-Miller_Mitigating_Native_Remote_Code_Execution.pdf
https://cansecwest.com/slides/2017/CSW2017_Weston-Miller_Mitigating_Native_Remote_Code_Execution.pdf

BIBLIOGRAPHY 130

[104] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and Ravishankar K. Iyer. “Architecture
support for defending against buffer overflow attacks”. In: Workshop on Evaluating
and Architecting Systems for Dependability. 2002.

[105] Yves Younan. “FreeSentry: protecting against use-after-free vulnerabilities due to
dangling pointers.” In: NDSS. 2015.

[106] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szekeres, Stephen McCa-
mant, Dawn Song, and Wei Zou. “Practical control flow integrity and randomization
for binary executables”. In: IEEE S&P. 2013.

[107] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. “A platform for secure
static binary instrumentation”. In: VEE. 2014.

[108] Mingwei Zhang and R. Sekar. “Control Flow Integrity for COTS Binaries”. In: USENIX
Security. 2013.

	Contents
	List of Figures
	List of Tables
	Introduction
	Memory Safety
	Direct defenses: enforcing memory safety
	Partial defenses
	This Work

	The Performance Cost of Shadow Stacks and Stack Canaries
	Introduction
	Background
	Related Work
	Challenges
	Design
	Aims
	Method
	Results
	Discussion
	Conclusion

	Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dangling Pointers
	Introduction
	Related Work
	Lock-and-Key Schemes
	Baseline Oscar Design
	Lowering Overhead Of Shadows
	Performance Evaluation
	Extending Oscar for Server Applications
	Discussion
	Limitations and Future Work
	Conclusion

	Oscar++: Extending Oscar with Multiple Objects per Alias
	Introduction
	Implementation
	Results
	Oscar++LP: Oscar++ with Lifetime Prediction
	Future Work: Hotness

	Conclusion
	Shadow Stacks
	Traditional Shadow Stacks
	Parallel Shadow Stacks

	Bibliography

