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Abstract


Improving Sequential Decision Making in Human-In-The-Loop Systems


by


Chi Pang Lam


Doctor of Philosophy in Electrical Engineering and Computer Sciences


University of California, Berkeley


Professor S. Shankar Sastry, Chair


Interactions between humans and autonomous systems are always necessary. They could
be very simple interactions such as a person pushing a button to trigger a specific function,
or more complicated interactions such as an autonomous vehicle interacting with other hu-
man drivers. Therefore, a safe and efficient interaction is crucial for advancing autonomous
systems, especially those requiring persistent interactions with humans.


One common type of such systems is the human-assistance system such as warning sys-
tems in the aircraft and automatic braking systems in automobile. Traditionally, they only
monitor the states of the machine to prevent human errors and enhance safety, but not take
into account the state of the human in their decision-making processes, arguably the greatest
variability affecting the safety. In light of the above drawbacks, we believe that more desir-
able autonomous systems should take the human state into account in their decision-making
processes. In other words, other than the task completion, the exploration, estimation or
even control of the human state should be a part of the decision-making loop in such human-
in-the-loop systems. Moreover, to estimate the state of the human, most autonomous systems
just passively gain information from their sensors, while ignoring the fact that the action of
the autonomous system can actually help understand and estimate the human state better,
and a better understanding of the human state will better achieve its goal as well.


In this thesis, we will develop frameworks and computational tools for human-in-the-
loop systems to achieve a safe and efficient interaction. Beginning with a general form of
the interactive model using a partially observable discrete-time stochastic hybrid system,
we describe how its discrete form, partially observable Markov decision process, can be
used to integrate the human model, the machine dynamical model and their interaction in
a probabilistic framework. We will further advance the discrete version to hidden mode
stochastic hybrid systems that can consider continuous states with discrete hidden modes
used to model the hidden human intents. We tackle the computational challenge of the
optimal control problem in hidden mode stochastic hybrid systems and show a significant
improvement in the computational time. A driver-assistance application shows the efficacy
of our proposed method. Finally, we propose to incorporate the safety constraint by a
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novel model predictive control based framework, which will encourage the exploration of
the hidden human intent as well as achieving its goal with hard safety constraints. Taking
them together, these contributions advance the computational framework for next generation
human-in-the-loop systems, which are capable to monitor both the human and the machine
states, actively explore the human intent, and give appropriate feedbacks to them in order
to enhance both safety and efficiency.
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Chapter 1


Introduction


Autonomous systems or robots have been used increasingly in today’s society, from tra-
ditional robotic manipulators in factories, to medical robots in hospitals and autonomous
vehicles on our roads. While traditionally robots just remain in restricted environments
such as factories to do repetitive jobs, they start to appear in more complex, open and
less structured environments that involve humans. They have to collaborate or interact
with humans in order to complete their tasks, such as autonomous vehicles interacting with
other human drivers or pedestrians, surgical robots collaborating with doctors, or driver
assistance systems helping human drivers. Because of this, the interactive ability becomes
essential to many autonomous systems, especially systems requiring continuous interactions
with humans. This leads to an increasing research and studies in the field of human-robot
interaction. The goal is to study the fundamental principles of interactions and develop
algorithms for interactive behaviors to help the robot or human-robot as a whole achieve
certain tasks safely and efficiently.


Depending on different levels of autonomy [Par+00], interactions between autonomous
systems and humans can be divided into passive and active interactions. As shown in
Figure 1.1a, some autonomous systems such as manual control systems or driver assistance
systems only perform a passive interaction with the human, in which the autonomous system
will estimate the human state and receive the human action, and then make decision based
on them. In such systems, the human behavior model is not embedded in the decision-
making loop, so that the autonomous system will ignore how the change of the system state
will affect the human state and her action.


A more desirable system will be able to take the effect of the autonomous system states
and actions on the human into account in its decision-making process, as shown in Fig-
ure 1.1b. In this active interactive model, the autonomous system will still infer the human
intent and state, and will further consider how its action affects the human state and action
as well. The arrow of the system action in Figure 1.1b does not necessarily mean there is
direct action that affects the human. It means the autonomous system is now aware of the
system actions will influence the human. Therefore, the human is now considered as a part
of the decision-making loop and we call the whole system a human-in-the-loop system.
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(a) Passive interaction (b) Active Interaction


Figure 1.1: Different types of interactions


1.1 Human-In-The-Loop Systems


Having human in the control loop is more similar to human interactions, where each person
will predict the other’s intent and actions and how her actions will affect the other’s intent
and actions. For example, when a driver tries to merge into the other lane, the driver will
try to predict whether the driver in the other lane will yield to her by observing the behavior
of the other driver. Based on her prediction, she may decide whether to cut in front of the
other driver given the knowledge that if she really cut, the other driver will be likely to slow
down to prevent collision. She will decide when to merge according to her confidence on her
prediction, her internal preference on risk and the knowledge of how her action will affect
the other person.


The above example enlightens us about some essential components of a human-in-the-
loop system.


• Human intent and internal state prediction - the autonomous system needs to predict
the human intent and state according to observed behaviors from its sensors. There
are various cues we can use for inferring the human intent, such as facial expres-
sion [Bet+00], gesture [Dru+04], speech [LN05] or motion [Mik+04]. If the observed
cue does not directly represent the human intent, the autonomous system will need to
infer it. Some popular techniques include hidden Markov model[Lef+16] and Bayesian
inference [Bak+09].


• Human reactive model - based on the human intent and the state or action from the
autonomous system, the human will response to the autonomous system accordingly.
If we have a model of what the human will react, the autonomous system can plan
a better sequence of decisions/actions to complete its task. However, obtaining this
reactive model is difficult because it is hard to capture all the factors that affect human
decisions in general. We have to make assumption to limit the influential factors in
the model. To learn the model, techniques such as expectation-maximization algo-
rithm [Lam+15][Lef+16] and inverse reinforcement learning [Sad+16b] can be used.







CHAPTER 1. INTRODUCTION 3


• Objective function - the objective function represents the purpose of the autonomous
system, which could be a cost function to be minimized or a reward function to be
maximized. In some case, we know what states or control inputs are good and what
are bad and thus can explicitly specify the objective function. In some cases, however,
the objective function is difficult to specify manually, in which inverse reinforcement
learning [NR+00] is usually used to learn the objective function by observing how
humans will do to complete the task.


• Integrated framework - a planning framework for the autonomous system to make op-
timal sequence of decisions during the interaction. This should enable the autonomous
systems to leverage the above components to optimize its objective function and main-
tain safe.


We will see that in this thesis, with elaborate design of these components, the autonomous
system are able to actively explore, estimate or even control the human state in order to
complete a specific task efficiently and safely.


Although having human in the control loop has its advantage, there are challenges when
deploying it. The first comes from the uncertainty of the human. Human intent and behavior
are subject to complex physiological, psychological and environmental factors. It is unclear
what kinds of parametric or non-parametric models are suitable to capture the complex
transition of the human state. It is also hard to guarantee the initially learned model will
remain accurate as the human behaviors may change over time by some unexpected external
factors. Moreover, human-in-the-loop systems lack a unified decision-making framework to
manage different components. The framework should be able to handle the probabilistic
properties of human-in-the-loop systems because of the uncertainty of the human intent or
the human physiological state. Second, it should be a sequential process that can take care
of the long-term planning of the whole system, and lastly, it should be robust to certain
uncertainty. In this thesis, we aim to tackle the challenges by employing a POMDP-based
and a MPC-based sequential decision making frameworks. We will show how they are capable
of integrating the human model, the machine model and their interaction in a probabilistic
framework for planning safer and more efficient decisions.


1.2 Sequential Decision-Making


One essential element of the computational framework in human-in-the-loop systems is the
ability to make good sequential decisions as the autonomous system requires continuous
interaction with humans. In this thesis, the following models and their variations are studied
and used as fundamental frameworks for human-in-the-loop systems modeling.
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Markov decision process (MDP) and partially observable Markov decision
process (POMDP)


Markov decision process is a discrete time framework modeling the interaction between an
agent and an environment. Here the environment represents all our interested states. The
agent is the only ego system that makes decision and interacts with the environment. For
example, an AI system that plays a video game can be the agent while the game is the
environment, or a driver assistance system can be the agent while the vehicle with a driver
can be the environment. The Markov assumption made in MDPs is that the change of the
states only depends on the states in previous time step and the agent’s action applying to the
environment. Instead of a deterministic state transition, the transition could be probabilistic
in MDP, which allows us to model the randomness and the uncertainty of the environment.


The goal of a Markov decision process is to find a control policy that decides the optimal
action the agent can take in order to optimize an expected objective function of the system
trajectory. MDPs allow us to consider the long-term effect of the system via the objective
function and the system dynamics. Depending on whether we know the transition model in
advance, the techniques of finding the optimal policy can be divided into model-based meth-
ods such as value iteration or policy iteration, and model-free methods such as reinforcement
learning [SB98].


POMDP is similar to MDP except that the state of the environment cannot be fully
observed. Instead, its observation is drawn from a probabilistic distribution conditioning
on the underlying hidden state. Since the true state is hidden, we can only maintain a
probability distribution over the possible hidden states. The goal is to solve a control policy
that optimize the expected objective function over the trajectory too. Since the state is
not fully observed, the optimal control policy will take the probability distribution over the
hidden states as an input and output an optimal action. POMDP allows us to model a more
realistic interaction in a human-in-the-loop system because the autonomous system is not
able to observe the intent of the human during the interaction, and human behaviors have
certain amount of randomness. We will discuss it more in detail in Chapter 2,


MDPs and POMDPs have been extensively studied in academic research and real-world
decision making processes such as finding optimal strategy in games [Tes95] and spoken dialog
systems [WY07], etc. However, the computational challenges arise when the system become
high dimensional or continuous, especially for POMDP, in which the partially observable
nature creates more complexity. We will focus on how further approximations or heuristics
can mediate this computational challenge in Chapter 3.


Model predictive control (MPC)


Model predictive control solves a finite time optimal control problem at each time step t that
optimizes the objective function over the future trajectories subject to the system dynamics
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and system constraints,


minimize
{xt+1:t+N},{ut:t+N−1}


t+N−1∑


τ=t


J(xτ , uτ ) (1.2.1a)


subject to xτ+1 = f(xτ , uτ ) ∀τ = 1, · · · , t+N − 1 (1.2.1b)


C(xτ , uτ ) ≤ 0 ∀τ = 1, · · · , t+N − 1 (1.2.1c)


where xτ and uτ are the (predicted) states and control inputs of the system at time τ . Func-
tion J , f and C are the cost function, the system dynamics and the constraint function. N
is the horizon we considered. The above open-loop constrained optimal control problem is
solved online at every time step, but the real system will only execute the control input of
the first time step. The real system state evolves for one time step and then the computa-
tion is repeated starting from the new current state with a new horizon decreased by one.
Model predictive control has demonstrated good results for control problems involving large
numbers of states and control inputs [ML99]. By solving the optimization problem 1.2.1,
the hard constraints on states and control inputs can be rigorously enforced as well, which
is a main advantage of MPC over MDP, in which we can only embedded the constraints into
the objective function.


The system dynamics may be subject to noise, i.e., xτ+1 = f(xτ , uτ , wτ ), where wτ
represents the noise in the system. wτ is assumed to be bounded and deterministic in the
robust model predictive control framework [RH06][Lan+04]. If the nature of the uncertainty
wτ is probabilistic, we can explicitly account for the probabilistic uncertainties by stochastic
model predictive control framework,


minimize
{xt+1:t+N},{ut:t+N−1}


t+N−1∑


τ=t


E[J(xτ , uτ )] (1.2.2a)


subject to xτ+1 ∼ f(x′|xτ , uτ ) ∀τ = 1, · · · , t+N − 1 (1.2.2b)


Pr[C(xτ , uτ ) ≤ 0] ≥ p ∀τ = 1, · · · , t+N − 1 (1.2.2c)


where f is now the probability density function describing the characteristic of the proba-
bilistic transition. The constraints become chance constraints, which require the constraints
on states and control inputs being satisfied with at least a specified probability level p.


The challenge of MPC that hinders us to use it in every sequential decision making prob-
lem is that it requires solving an optimization problem at each time step in real time. Much
academic research has been done to develop fast algorithm to deal with it [KB12][T+03].
However, there is no universal algorithm that can apply to every MPC problem, so according
to different applications, different techniques are used in order to accelerate the computa-
tion. In Chapter 4, other than proposing our human-in-the-loop decision-making framework
via MPC, we also develop our approximations and heuristics to tackle the computation
challenge.
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1.3 Thesis Outline and Contributions


Thesis Outline


In this thesis, we will begin with a general form of the interactive model using partially
observable discrete-time stochastic hybrid systems and its discrete version, POMDP for
human-in-the-loop systems in Chapter 2. We will further advance to the computational
challenge of its optimal control problem in Chapter 3, and show a significant improvement
in the computational time. Applications to a driver assistance system shows the efficacy
of our proposed method. In Chapter 4, we incorporate the safety constraint by a novel
model predictive control based planning framework, which enables the autonomous system
to explore the hidden human intent and achieve its goal with hard safety constraints. Finally,
we draw conclusion and present some future directions in Chapter 5. The contribution of
each chapter is as follows.


Chapter 2


Traditional human-assistance features such as warning systems in aircrafts and automatic
braking systems in automobiles only monitor the states of the machine in order to prevent
human errors and enhance safety. We believe that next generation systems should be able
to monitor both the human and the machine and give an appropriate feedback to them. In
this chapter, we present a unified modeling framework to manage the feedback between the
human and the machine. Beginning with the general form of the interactive model using
partially observable discrete-time stochastic hybrid systems, and we show how its discrete
form partially observable Markov decision process can be used as a unified framework for
the three main components in a human-in-the-loop control system—the human model, the
machine dynamic model and the observation model. Our simulations show the benefits of
this framework.


Chapter 3


We propose an efficient algorithm to find an optimal control policy in a discrete-time hidden
mode stochastic hybrid system, which is a special case of partially observable discrete-time
stochastic hybrid systems in which only the discrete state is hidden and is used to model
the hidden human intent. The optimal control problem of hidden mode stochastic hybrid
system is known to have high computational complexity due to the continuous state space.
We tackle this computational challenge by computing the lower bound of the value function,
approximating the optimal expected reward by local quadratic functions, and using the
point-based value iteration technique. A significant improvement in the computational time
is shown. Moreover, a driver assistance application demonstrates the enhancement of the
quality of decision-making via our formulation.
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Chapter 4


Finally, we incorporate hard system and safety constraints by a novel model predictive con-
trol based framework. Further approximations are proposed to deal with the computational
complexity. We show that in addition to the task completion, our planning method also
encourages exploration of the human intent and maintains safety. We show that the action
of an autonomous system can actually help understand and estimate the human state better,
and a better understanding of the human state will better achieve its goal as well. Applica-
tions on two autonomous driving scenarios show that our method results in a more efficient
and effective control policy.
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Chapter 2


A Unified Framework for
Human-in-the-Loop Systems


In a traditional manual control system, a basic objective is that the system should perform
as a human expects and also subject to dynamical constraints. For example, when you are
controlling a manipulator using a joystick, you may look around to find the object you want
and then operate the manipulator based on your intent, such as moving left and down. At
the same time, the manipulator should move based on your control inputs and subject to
its dynamical constraints. This kind of manual control systems belongs to the lowest level
of autonomy in Parasuraman’s taxonomy[Par+00]. In such systems, there is nothing to do
when the human makes error, which may result in accidents. Therefore, a system with a
higher level of autonomy is necessary in which the controller can monitor the human and
the state of the machine and then give appropriate feedback to them. Traditional human-
assistance features only monitor the state of the machine in order to prevent human errors
and enhance safety. We believe that next generation systems should not only monitor the
states of the machine but also the states of the human. Moreover, the automatic controller
could take over human control in emergent cases. Suppose you aim to maintain a car in a
single lane and your physiological state could be drowsy or awake, the system should give
you alarm signals when you are drowsy. If the alarm cannot wake you up, the controller
could take over your steering wheel to maintain the car in the middle of the lane.


From the above motivating example, we know that in order to determine when to give
feedback to the human and machine, we have to estimate the human’s intent and her phys-
iological state. However, we have no way of knowing what human thinks directly. Although
some research is focusing on using electrophysiological signals to infer human intent[Wol+02],
connecting a human to wires to gather these signals is too restrictive. Another reasonable
way is to observe human behaviors, actions and control inputs and treat them as our cues
to infer human intents or physiological states. Moreover, in order to help human achieve
her goal, the controller should make a plan from current to the near future. This leads to
some important intuitions about the model of a human-in-the-loop (HITL) system: first,
the model should be probabilistic because it is impossible to measure the human’s intent or
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physiological state exactly. This can be achieved by maintaining a probability distribution
over the state of the human by observing what the human has been doing; second, it should
be a sequential process that represents the long-term planning of the whole system; lastly, it
should be able to handle the observation error. Given these facts, we propose to cast a HITL
system as a partially observable discrete-time stochastic hybrid system (PODTSHS). We
will show how PODTSHS, or its discrete version, the partially observable Markov decision
process (POMDP) is capable of integrating the human model and the machine model as well
as their interaction in a probabilistic framework.


Pentland et al. proposed that many human behaviors can be accurately described as a set
of dynamic models sequenced together by a Markov chain, called a Markov dynamic model
(MDM)[PL95], in which they defined multiple dynamic models as internal states. They es-
timate observation error corresponding to each model to find the most likely model. Takano
et al. [Tak+08] modeled the driving pattern primitives consisting of states of the environ-
ment, vehicle and driver as a hidden Markov model (HMM). Although HMM is popular for
human behavior modeling [Wan+09][LO03][ZS11] given the fact that it provides a stochastic
framework for intent reasoning and is able to handle the uncertainty from observation, it
fails to unify the effect of feedback for the human or machine. We will show that POMDP
makes up for this drawback.


Most researchers used a shared control scheme to incorporate human and machine control.
Chipalkatty et al. directly modified the human inputs to make the actual inputs not only
conform with the human’s intent but also satisfy the dynamic constraint based on a sequence
of predicted human inputs[Chi+11]. Vasudevan et al. measured safety of a driving vehicle
[Vas+12] to determine when to intervene. Anderson et al. used model predictive control
to find a safe and optimal vehicle path and then control the vehicle via a weighted sum of
human input and controller input based on threat assessment [And+10]. The common factor
in these approaches is that they plan for future states and use a shared control scheme to
make the future states satisfy certain criterion like safety and dynamic constraints along the
future plan. These controllers only make use of the feedback to the machine, but do not
consider incorporating the feedback to the human such as warnings. We will show that how
our POMDP framework can incorporate the feedback to the machine and feedback to the
human to do future planning.


POMDPs have been used in a variety of real-world sequential decision processes, includ-
ing robot navigation, assistive technology, and planning under uncertainty. POMDPs have
been shown to be successful in many kinds of human-machine systems. Williams et al. used
a POMDP to model a spoken dialog system and demonstrated significant improvement in
robustness compared to existing techniques[WY07]. Hoey et al.[Hoe+10] used a POMDP
framework to implement assistance to people with dementia and showed its ability to esti-
mate and adapt to user psychological states such as awareness and responsiveness. Broz et
al.[Bro+13] modeled human-robot interaction as a time-indexed POMDP and showed that it
achieves better results than simpler models that make fixed assumptions about the human’s
intent[Bro+13]. Hadfield-Menell et al.[HM+16] reduced the cooperative inverse reinforce-
ment learning process for human-robot interaction as a POMDP and showed the optimal
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policy could produce active teaching and active learning behaviors to achieve a more effective
reward learning.


In this chapter, we aim to address one of the three challenges for employing HITL con-
trol proposed in [Mun+13]: determining how to incorporate different models into a formal
methodology of control. Starting from a general formulation of the interactive model using
partially observable discrete-time stochastic hybrid system, we show how its discrete version,
POMDP, can be used for human-in-the-loop control systems modeling. We present the basic
structure of HITL control system and show how the POMDP framework can incorporate all
the components in a HITL control system—the human model, machine dynamics model and
observation model—to determine an optimal feedback policy for when the controller should
give feedback to the human (such as warning) and take over control from the human.


This chapter is organized as follows. Section 2.1 begins with a review of partially observ-
able discrete-time stochastic hybrid systems. Section 2.2 describes how a HITL system is
modeled as a POMDP, the discrete version of PODTSHS, with factorized transition proba-
bility and observation probability. Section 2.3 shows the advantages of POMDP framework
using a case study with simulation results. Finally, we summarize this chapter and highlight
the key challenge of this framework in Section 2.4.


2.1 Background


A discrete-time stochastic hybrid system was first introduced by Abate et al. [Aba+08]. Ding
et al. [Din+13] and Lesser [LO14a] extended it to a partially observable framework. We
slightly modify the formulation in [Din+13] and [LO14a] and define our partially observable
discrete-time stochastic hybrid system as follows:


Definition 1 A partially observable discrete-time stochastic hybrid system (PODTSHS) is
a tuple H = (Q,X , In,Z, Tx, Tq,Ω) where


• Q = {q(1), q(2), ..., q(Nq)} is a finite set of discrete states.


• X ⊆ Rn is a set of continuous states. The hybrid state space is defined by S = Q×X .


• In = Σ × U , where Σ = {σ(1), σ(2), ..., σ(Nσ)} represents a finite set of discrete control
inputs affecting the discrete transitions, and U represents the space of continuous inputs
affecting the transition of continuous states.


• Z = Zq × Zx denotes the observation space, where Zq is the observation space of
discrete states and Zx is the observation space of continuous states.


• Tx : B(Rn)×Q×S × In→ [0, 1] is a Borel-measurable stochastic kernel which assigns
a probability measure to xk+1 ∈ X given sk ∈ S, σk ∈ Σ, uk ∈ U and qk+1 ∈ Q :
Tx(dxk+1|qk+1, sk, σk, uk).
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• Tq : Q×X×In→ [0, 1] is a discrete transition kernel assigning a probability distribution
to qk+1 ∈ Q given sk ∈ S, σk ∈ Σ and uk ∈ U : Tq(qk+1|sk, σk, uk).


• Ω : B(Z)×S×In→ [0, 1] is a Borel-measurable stochastic kernel assigning a probability
measure to zk ∈ Z given sk ∈ S, uk−1 ∈ U and σk−1 ∈ Σ : Ω(dzk|sk, σk−1, uk−1).


To simplify the problem we make the following assumptions:


1. The discrete transition Tq only depends on qk ∈ Q and σk ∈ Σ: Tq(qk+1|sk, σk, uk) =
Tq(qk+1|qk, σk).


2. The continuous transition Tx only depends on qk+1 ∈ Q, xk ∈ X and uk ∈ U :
Tx(dxk+1|qk+1, sk, σk, uk) = Tx(dxk+1|qk+1, xk, uk).


3. The measurement kernel Ω does not depend on the inputs and can be factorized into
measurements for discrete states and measurements for continuous states:
Ω(dzk|sk, σk−1, uk−1) = Ωq(z


q|qk)× Ωx(dz
x|xk).


Here we use a driver assistance example to illustrate the relationship between the general
PODTSHS and the above simplification. We assume the driver could be drowsy or awake,
which is modeled as the hidden discrete mode q. The continuous state x is the position of
the car. The discrete input σ indicates whether the warning signal is turned on to awake
the driver, and the continuous input u is an augmented control input to the car. The
first assumption means whether the driver is drowsy depends on whether she is drowsy at
the previous state and whether the warning signal is turned on to awake her. The second
assumption means that the position of the vehicle depends on whether the human is awake,
the previous position of the vehicle and the augmented control input. The last assumption
means we measure the state of the human and the state of the car separately.


Under this PODTSHS model, the information up to step k is denoted as
ik = (σ0, u0, z1, σ1, u1, z2, . . . , σk−1, uk−1, zk), along with the prior distribution of the initial
state s0. Working directly with the information state is cumbersome, so instead we work
with the distribution of the states at every time step, which is known as the belief state.
The belief state is defined as follows:


Definition 2 A belief b(s) is a probability distribution over S with
∫
s∈S b(s)ds = 1. Since


s = (q, x) is a hybrid state, the integral over s ∈ S is defined as∫
s∈S f(s)ds =


∑
q∈Q


∫
x∈X f(q, x)dx.


The belief changes in every time step. We denote the new belief at time k + 1 when
executing control inputs (σk, uk) and observing new measurement zk+1 as b


σk,uk,zk+1


k+1 (sk+1).
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The belief can be updated recursively by:


b
σk,uk,zk+1


k+1 (sk+1) =P (sk+1|σk, uk, zk+1, bk)


=
P (zk+1|sk+1, σk, uk, bk)P (sk+1|σk, uk, bk)


P (zk+1|σk, uk, bk)


=ηΩ(zk+1|sk+1, σk, uk)×
∫


sk∈S
Tx(dxk+1|qk+1, xk, uk)Tq(qk+1|qk, σk)bk(sk)dsk,


(2.1.1)


where η is a normalization factor.


Definition 3 A policy π for H is a sequence π = (π0, π1, π2, · · · ), where πk(bk) ∈ Σ × U is
a map from the belief state at time k to the set of controls.


A reward function is denoted as R(q, x, σ, u) or Rσ,u(q, x) ∈ R, which is obtained by the
system if it executes (σ, u) when the system is in state (q, x). To assess the quality of a
given policy π, we use a value function to represent the expected m-step cumulative reward
starting from the belief state b0:


Jπm(b0) =
m∑


k=0


γkEsk [R(sk, σk, uk)], (2.1.2)


where 0 ≤ γ ≤ 1 is a discount factor and the controls (σk, uk) = πk(bk).


2.2 POMDP for Human-in-the-Loop Systems


Partially observable Markov decision processes (POMDPs) is a special case of PODTSHS
in which only discrete states are considered. The discretization of the continuous state
space in PODTSHS can yield to a POMDP. Therefore, POMDP can be defined as a tuple
(Q,Σ,Zq, Tq,Ωq) where the definitions of the notations also follow Definition 1. Solving
POMDP is often computationally intractable but there exist techniques[Pin+03][SV05][SS05]
to obtain an approximate solution in practice.


As mentioned before, reasoning about a human’s intent or physiological state is important
in a HITL system. Instead of hacking into the human brain, we would want to estimate their
intents by observing their actions. As shown in Fig. 2.1a, conventional HMM models decou-
ple the state estimation process and the decision making process. They model the human
behavior as a HMM and estimate the internal states of the human from observations[ZS11].
Based on the estimation, a controller will give feedback to the human. As shown in Fig. 2.1b,
POMDP estimates the probability distribution over the human’s possible state b(sh) rather
than just giving a single state estimation. A decision is then made based on the distribution
of the hidden states. This allow the system to decide to take an action to reduce uncer-
tainty in the human’s state or provide assistance to the human. In the conventional HMM
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(a) Conventional (b) POMDP


Figure 2.1: Conventional HMM model and POMDP model for human-machine interaction


Figure 2.2: Block diagram of a human-in-the-loop system


framework, the decision is made from single estimation so it will not reduce the uncertainty
in the human’s state. POMDPs provide an integrated model to incorporate hidden states,
observations, and control actions, which perfectly describes the nature of a HITL system.
The following will show how we model a HITL system as a POMDP.


2.2.1 Human-in-the-Loop Modeling


Figure 2.2 is the block diagram of a HITL system. The variables are defined as follow:
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• qh ∈ Sh, the set of internal states of the human, which can be the human’s intent (e.g.
turn right, turn left) or physiological state (e.g. fatigue, awake.)


• ah ∈ Ah, the set of the human’s actions (e.g. head pose, control to a joystick.)


• sm ∈ Sm, the set of states of the machine(e.g. velocity, position.)


• ãh ∈ Oah , the set of observations of the human’s actions.


• s̃m ∈ Osm , the set of observations of the machine’s states.


• σh ∈ Σh, the set of control feedbacks for the human (e.g. warning, augmenting infor-
mation.)


• σm ∈ Σm, the set of control feedbacks for the machine (e.g. emergency brake, turning
the steering wheel.)


We assume all the above sets are finite. In the diagram in Fig. 2.2, the human has an internal
state, sh, which could be her intent or the goal she wants to achieve, or her physiological
state like fatigue, anger, being drunk, etc. Depending on her internal state, she will take
an action, ah to achieve her intent. The human, for example, may turn her head to check
the left lane and then turn the steering wheel if she wants to switch to the left lane. Some
human actions are control inputs to the machine and therefore the state of the machine sm
will change over time. One should note that not all human actions are control inputs of
the machine. Some actions, like checking the left lane, may just be common behaviors for a
specific task. There will be sensors to measure both the human’s action and the state of the
machine. We denote the measurement of the human’s action as ãh and the measurement of
the state of the machine as s̃m. The human-in-the-loop planner uses the measurements and
its previous feedback as inputs, estimates a probability distribution over the hidden states,
sh, ah and sm and then decides an optimal feedback uh to give to the human, and a control
feedback um to apply to the machine.


The above process iterates for each time step and therefore the whole process can be
viewed as a POMDP with a set of hidden statesQ = Sh×Ah×Sm, a control set Σ = Σh×Σm,
an observation set Z = Oah ×Osm and a transition probability


P (s′h, a
′
h, s
′
m|sh, ah, sm, σh, σm)


=P (s′h|sh, ah, sm, σh, σm)P (a′h|s′h, sh, ah, sm, σh, σm)P (s′m|s′h, a′h, s′h, ah, sm, σh, σm)


The above factorization is simply based on the chain rule in probability. Although the
transition probability seems to be complicated, we can simplify it by making some reasonable
conditional independence assumptions.


The first conditional independence assumption is that the internal state of the human
only depends on her previous internal state, the state of the machine, and the feedback to
the human. That is:


P (s′h|sh, ah, sm, σh, σm) = P (s′h|sh, sm, σh) (2.2.1)
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which we will call it the human internal state model. The human internal state model
describes how the human’s state changes over time. One may note that the human’s intent
does not have to change at all time steps. For example, while controlling a robotic arm to
take one of the objects on the table, the target object the user intents to take rarely changes
during the whole process.


The second assumption is that the human’s action is only based on her own internal
state, the state of the machine and the feedback to the human, i.e.


P (a′h|s′h, sh, ah, sm, σh, σm) = P (a′h|s′h, sm, σh) (2.2.2)


which we will call it the human action model. The human is taking action in order to
achieve her own goal given the current machine state and our feedback.


The final assumption on the transition probability is that the state of the machine only
depends on the human’s action, previous machine state and the feedback to the machine,
i.e.


P (s′m|s′h, a′h, s′h, ah, sm, σh, σm) = P (s′m|a′h, sm, σm) (2.2.3)


which we will call it the machine dynamic model. The machine dynamic model may
come from machine’s kinematic model or dynamics model.


In summary,


P (s′h, a
′
h, s
′
m|sh, ah, sm, σh, σm)P (s′h|sh, sm, σh)P (a′h|s′h, sm, σh)P (s′m|a′h, sm, σm) (2.2.4)


Equation (2.2.4) defines the transition probability in the HITL POMDP.
In the observation model, we assume that the observations of the human’s action and


the state of the machine only depend on the actual action of the human and the actual state
of the machine respectively:


P (ãh
′, s̃m


′|s′h, a′h, s′m, σh, σm) = P (ãh
′|a′h)P (s̃m


′|s′m) (2.2.5)


Figure 2.3 summarizes the HITL POMDP model as a dynamic Bayesian network.
In order to obtain the models, we can either learn the models from data or handcraft


them based on prior knowledge. The human internal state model and the human action
model can be estimated from annotated data of sequence of interactions[Sad+14]. The
machine dynamic model can be either obtained from system identification, or directly from
first principles. For example, we could assume the resulting machine dynamics have the form


s′m = f(sm, ah, σm) + w


where w is the noise. Finally, the observation model comes from the accuracy of the senor
system.


The design of the reward function R(sh, ah, sm, σh, σm) depends on our objective. For
example, if the objective is to enhance safety, the reward in safe states should be high while
the reward in unsafe states should be small. Of course a similar machinery can be applied
when we would like multiple objectives in a HITL system. In our simulations next section,
for example, we want to both promote safety and minimize interferences so we penalize
interference from uh and um while giving high rewards in safe states.
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Figure 2.3: Dynamic Bayesian Network representation of the HITL POMDP


2.3 Examples


In this section we present simulation results to illustrate the application of our proposed
framework. According to the AAA Foundation for Traffic Safety, an estimated 13.1% of
crashes that resulted in a person being admitted to a hospital, and 16.5% of fatal crashes
involved a drowsy driver[TTS10]. In this example, we assume the objective is to keep a car
in a single lane, but the driver may be drowsy.


2.3.1 HITL POMDP for Drowsy Driver


The driver has two internal states:


Sh = {Awake, Sleepy}.


Depending on these two states, the driver’s eyes could be open or closed. At the same time,
the driver is driving the car to maintain the car in the middle of the lane, so we define the
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Figure 2.4: A diagram representation of the transition probability of human internal state
model and human action model


human actions as Ah = Ah1 × Ah2, where


Ah1 ={Eyes open, Eyes closed}
Ah2 ={Steer left = -1, Steer right = +1,


Steer straight = 0, Do nothing}.


We discretize the horizontal position of the car on the lane:


Sm = {-2, -1, 0, +1, +2, Off the lane}.


where −2 is the left most, 0 is the middle and +2 is the right most of the lane. The feedback
to the human is a warning signal reminding the human to wake up or be careful,


Σh = {Warning on, Warning off}.


Assume the car has a driver assisting function that can take over the control of the steering
wheel and therefore, the feedback to the machine is:


Σm = {Steer left = -1, Steer right = +1, Do nothing = 0}.


There are sensors to detect the human’s actions and the machine states, so the observations
are


Oah ={Eyes open, Eyes closed}×
{Steer left, Steer right, Steer straight or do nothing}


and Osm = {-2, -1, 0, +1, +2, Off the lane}.
As shown in (2.2.4), the transition probability depends on the human internal state model,


the human action model and the machine dynamics model. For the sake of simplicity, we
handpick the probabilities in this simulation. Although it would be more realistic to learn
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the models from data, the learning process is not trivial and we leave it to our future work.
The human internal state model and the human action model is illustrated in Fig. 2.4. The
nodes in Fig. 2.4 represent the states while the numbers on the edges represent the transition
probabilities conditioned on their parent nodes.


The machine dynamics model is:


s′m = Maneuver(sm, ah2, σm, w)


=







sm + ah2 if ah2 6= Do nothing


sm + σm if ah2 = Do nothing & σm 6= Do nothing


sm + w otherwise


where ah2 ∈ Ah2 is the human’s input and σm ∈ Σm is the feedback to the machine. w ∈
{Steer left, Steer right, Do nothing} with probability {0.2, 0.2, 0.6} is acted as noise. Any
sm /∈ [−2,+2] is considered as ”Off the lane”. In function Maneuver(·, ·, ·, ·), ah2 has a
higher control priority than σm and w. To make the simulation more realistic, we use an
estimation of ah2 from the system instead of the true ah2, which is actually hidden. w takes
effect as the time both the driver and controller are not maneuvering the car, where the road
may have a left curve or a right curve. For example, the car entering a left curve without
maneuver has the same effect as w = “Steer right”.


In the observation model, we assume all sensors have accuracy Pacc = 0.9
According to the safety condition, we define the reward function as


R(sm, σh, σm) = R1(sm) +R2(σh) +R3(σm)


where R1(sm) is as follow:


-2 -1 0 +1 +2 Off
R1(sm) 5 10 20 10 5 0


We also penalize the intervention to human and machine:


Warning on Warning off
R2(σh) -5 0


Steer left Steer right Do nothing
R3(σm) -5 -5 0


We solve the above POMDP problem with the SymbolicPerseus package[Pou05], which
implements a point-based value iteration algorithm that uses algebraic decision diagrams as
the underlying data structure to tackle large factored POMDPs. Then we use the optimal
policy π∗ in our simulation. At each time step, we decide the optimal control σ∗t = π∗(bt),
sample the next state and observations based on the transition function and observation
function, and then update the current belief bt+1 using Eq. (2.1.1).


Figure 2.5 shows the simulation results. Figure 2.5a is the actual hidden internal state of
the human and Fig. 2.6a shows the marginal belief of the human’s internal state at each time
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(a) Human internal state


(b) Human action


(c) Vehicle state


(d) Feedback to human


(e) Machine control input


Figure 2.5: Simulation results
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(a) P (sh = Awake)


(b) The probability of unsafe situation, PUnsafe.


Figure 2.6: Simulation results (Con’t)


step. Though there are false alarms because of the measurement error as shown in Fig. 2.5b
and 2.5c, the probability P (sh = Awake) decreases whenever the actual state is “Sleepy”,
which means the system is able to reason about the internal state of the human. Figure 2.5d
shows the optimal feedback to the human, σh, which conforms with our intuition that when
P (sh = Awake) goes down to some threshold, the warning system will turn on in order to
keep the driver awake. Again, there are some false alarms due to the measurement error,
but they are less than using a policy only based on the measurements. In this simulation, we
only got 2 false alarms, whereas if we estimate the internal state of the human just relying
on the sensor measurements, we will get 25 false alarms. Figure 2.5e shows one of the human
actions, ah2, and the feedback to the vehicle σm. We can see that the optimal feedback to
the vehicle obtained from our optimal policy drives the vehicle back to the middle of the
lane in order to maintain safety. We can also see that given this POMDP framework, we
can solve an optimal policy that automatically balances between when to give feedback to
the human and when to give feedback to the machine.


This framework also allows us to keep track of the probability of unsafe state, which is
PUnsafe =


∑
st∈Unsafe bt(st), where st = (sth, a


t
h, s


t
m) and the unsafe set Unsafe =


{(sh, ah, sm)|sm = Off the lane}. Figure 2.6b shows the probability of the unsafe state,
remaining low in the whole process.


To show the benefit of POMDP in long-term planning, we compare the optimal policy
with two other policies. One is a greedy policy: when the controller observes the driver’s
eyes closed, the warning will be turned on. At the same time, the feedback to the vehicle
will be generated to drive the vehicle towards the middle according to observed vehicle state
s̃m. The other one is a minimal unsafe probability policy:


u∗ = arg min
u


∑


st+1∈Unsafe


P (st+1|st, u)bt(st)
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Figure 2.7: Comparison of different strategy with POMDP policy


Figure 2.7 shows the average reward for the three different policies corresponding to the
accuracy of sensors. The POMDP policy outperforms the other two policies. The difference
between these policies are more in low sensor accuracy than in high sensor accuracy. This
result is not surprising because the greedy policy is optimal when all states are observable,
i.e. Pacc = 1. The reward of the minimal unsafe probability policy is the most conservative
policy that the warning signal is turned on frequently to remind the driver, resulting in a
low reward. The reward of the minimal unsafe probability policy, however, is larger than the
greedy policy in low Pacc cases. It is because when the sensor is not accurate, it is very likely
to make wrong decision just based on observations and therefore leading the vehicle into
unsafe states and resulting in a low reward. POMDP policy enhances safety and minimizes
intervention at the same time so it has the highest reward.


2.4 Summary


In this chapter, we present a POMDP framework for human-in-the-loop control systems. It
is an initiating work in formalizing HITL control systems. We have shown that by imposing
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some reasonable conditional independent assumptions, we can succinctly unify stochastic
models for the human and machine—the human internal state model, the human action
model, and the machine dynamic model—into a single framework supporting global opti-
mization for long-run planning. This chapter has shown various benefits of using POMDP
in HITL modeling: (1) the abilities of reasoning human internal state; (2) handling the error
from observations; and (3) balancing the trade-off between the feedback to the human and
the feedback to the machine.


The key challenge here is that most POMDP solvers can only deal with discrete states,
while most machine states are described in a continuous state space. One way to handle it
is to discretize the continuous state space. However, when the state space is too large or the
discretizing resolution is too small, discretization is not practical because it makes solving
POMDP intractable. We will move forward to solve the HITL POMDP problem with hybrid
state in the next chapter.
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Chapter 3


Optimal Policy of Hidden Mode
Stochastic Hybrid Systems


In this chapter, we consider a special class in partially observable discrete-time stochastic
hybrid system (PODTSHS) [Din+13] in which only discrete states are hidden and there
are only discrete control inputs. There are many applications that can be modeled as such
systems, especially for human-centered systems in which the intent of the human operator
is unknown and can be modeled as the hidden mode. For instance, a driver assistance
system should be able to maintain the safety of the driver and the vehicle even though the
intent of the driver is unknown [LP97][PL95]. For human-robot interaction, it is desirable
for a smart robot to infer human intent in order to provide suitable response [Cro03]. More
examples could be found in assistive robotics [ET10][Was+03], multi-agent systems [Dem07],
and mobile robot navigation in man-made environments [Tho+09].


Hybrid systems with perfect information, in which the states are assumed to be directly
observed, have been studied extensively [Aba+08][SL10][Kam+11]. But there are only a few
works on stochastic hybrid systems with partial information. A general form of discrete-time
stochastic hybrid system with partial information can be formulated as a partially observable
discrete-time stochastic hybrid system [Din+13][LO14a]. However, the complexity of its
computation is still a main issue in solving a general PODTSHS. Instead, one can consider
a special case called hidden mode hybrid system, in which only the discrete mode is hidden
while the continuous states are assumed to be observed directly [VDV12][VDV10][YF13].
The safety control problem and mode tracking problem in hidden mode hybrid systems have
been studied in [VDV12] and [YF13] respectively, with the assumption of a deterministic
transition map. In the case of hidden mode stochastic hybrid systems, the literature has
been focused on the estimation of the hidden mode [HW02], but not the optimal control
policy to control the states, which is the focus of this chapter.


In order to find the optimal control policy for a discrete-time hidden mode stochastic
hybrid system, we have to maximize the value function at every time step, which is the
optimal expected reward over a finite or an infinite horizon. However, it is known that there
is no closed-form expression for the value function. Therefore, maximizing the value func-
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tion at every time step is a challenge. In the past, people either discretize the continuous
state space [Aba+07] or restrict the probability models and the reward function to be Gaus-
sian [LO14b] in order to approximate the value function as a linear combination of Gaussian
functions. Both approaches are either not scalable or too restricted.


Since the model involves hidden states, at every time step, we need to maintain the distri-
bution over the hidden states, known as the belief. Therefore, we are actually doing planning
on the belief space rather than the original state space. Researchers have been working on
computational techniques for belief space planning [PR09][Ber+12a]. In particular, Van den
Berg et al. [Ber+12a] approximated the value functions along the trajectory as quadratic
functions. We will adopt the similar technique into our hybrid setting.


In this chapter, we use the formulation of PODTSHS in Chapter 2 and address the op-
timal control problem in discrete-time hidden mode stochastic hybrid systems with only
discrete inputs and cumulative reward. We will show that by using local quadratic functions
to approximate the value function, we can efficiently evaluate the value function at each iter-
ation so that the computational time is reduced significantly. In the optimal value function
updating process, instead of doing a full update, we only update the lower bound of the
optimal value function in order to tackle the integral of a maximization function. Moreover,
we draw upon the point-based method for continuous partially observable Markov decision
processes (POMDPs) [Por+06] to restrict the number of points of interest used to update the
value function. We will show that our method is more efficient and less restricted compared
to previous work.


This chapter is organized as follows. We first derive a general solution to PODTSHS
with cumulative reward in Sections 3.1. In Section 3.2, we describe the control problem
in discrete-time hidden mode stochastic hybrid systems and propose an algorithm to find
the optimal control policy. Section 3.3 shows simulation results. An application for a driver
assistance system is demonstrated in Section 3.4. Finally, we draw a summary in Section 3.5.


3.1 Optimal Control Policy for PODTSHS


The PODTSHS has been defined in Chapter 2. The goal of a PODTSHS with cumulative
reward is to find an optimal policy to maximize the m-step value function to yield J∗m =
maxπ J


π
m. For infinite horizon, i.e., m → ∞, the optimal policies of all time steps are the


same, i.e., π∗ = π0 = π1 = · · · . For all m = 0, 1, 2, · · · , the optimal value function can be
calculated by


J∗m+1(b) = max
(σ,u)∈Σ×U


{〈Rσ,u, b〉+ γ


∫


z


p(z|σ, u, b)J∗m(bσ,u,z)dz}, (3.1.1)


where the operator 〈·, ·〉 is defined as 〈f(q, x), g(q, x)〉 =
∑


q∈Q
∫
x∈X f(q, x)g(q, x)dx. p(z|σ, u, b)


is the probability of observing z given the previous belief and controls.
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By Lemma 1 in [Por+06], we know that the m-step optimal value function can be ex-
pressed as:


J∗m(b) = max
{αim}i


〈αim, b〉, (3.1.2)


for an appropriate continuous set of α-functions αim : S → R. Therefore, to find the optimal
value function, it is equivalent to find the set of α-functions {αjm}j.


Using the α-function formulation, we will derive a recursive update process for the set of
α-functions. For m = 1, the optimal value function is the maximum of the instant reward:


J∗1 (b) = max
(σ,u)
〈R(σ,u), b〉. (3.1.3)


so the first step α-functions {αj1}j are {R(σ,u)}(σ,u) by Comparing (3.1.3) to (3.1.2), . The


(m + 1)-step α-functions {αjm+1}j can be calculated from the m-step α-functions {αjm}j.
Starting from (3.1.1), we have:


J∗m+1(b) = max
(σ,u)∈Σ×U


{
〈Rσ,u, b〉+ γ


∫


z


p(z|σ, u, b)J∗m(bσ,u,z)dz


}
(3.1.4)


= max
(σ,u)∈Σ×U


{
〈Rσ,u, b〉+ γ


∫


z


p(z|σ, u, b) max
{αjm}j


〈αjm, bσ,u,z〉dz
}


= max
(σ,u)∈Σ×U


{
〈Rσ,u, b〉+


γ


∫


z


max
{αjm}j


∫


s


b(s)


∫


s′
αjm(s′)Ω(z|s′, σ, u)Tx(x


′|q′, x, u)Tq(q
′|q, σ)ds′dsdz


}
.


Let


αjσ,u,z(s) =


∫


s′
αjm(s′)Ω(z|s′, σ, u)Tx(x


′|q′, x, u)Tq(q
′|q, σ)ds′, (3.1.5)


then we have:


J∗m+1(b) = max
(σ,u)∈Σ×U


{
〈Rσ,u, b〉+ γ


∫


z


max
{αjm}j


〈αjσ,u,z, b〉dz
}
. (3.1.6)


Let


(σ∗, u∗) = arg max
(σ,u)∈Σ×U


{
〈Rσ,u, b〉+ γ


∫


z


max
{αjm}j


〈αjσ,u,z, b〉dz
}
. (3.1.7)


Then if we represent J∗m+1(b) as the form of inner product as in (3.1.2), we can find that a
new (m+ 1)-step α-function for a specific belief b can be written as:


αb(σ∗,u∗)(s) = Rσ∗,u∗(s) + γ
∑


zq∈Zq


∫


zx
arg max
{αj
σ∗,u∗,z}j


〈αjσ∗,u∗,z, b〉dzx. (3.1.8)
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Then the new set of α-functions is:


{αim+1}i =
⋃


∀b


{αbσ∗,u∗}. (3.1.9)


Intuitively, each α-function αbσ∗,u∗ corresponds to a plan and the control (σ∗, u∗) associated
with the α-function is the optimal control for that plan. The expression (3.1.2) means that
we are choosing a plan that maximize the value function at the belief b. Given the set of
α-functions, and a belief b, the policy function π(·) is the map from b to the optimal control
calculated by (3.1.7).


Although we derive the updating process of the set of α-functions theoretically, it is very
challenging to perform the exact update in practice. There are four reasons:


1. We have to maximize the function (3.1.6) that does not have a closed-form expression;


2. There is no efficient way to find the exact value of the integral of maximization function
in (3.1.8);


3. There is no closed-form expression for α-functions;


4. It is not possible to find the full set of α-functions for all b in the belief space because
the belief space is of infinite dimension with continuous state variables.


3.2 Approximate Solution to a Hidden Mode


Stochastic Hybrid System


Instead of dealing with the general PODTSHS, we consider a special case of PODTSHS
where only discrete states are hidden and there are only discrete inputs. In this case we
will avoid the first challenge by assuming there is no continuous input. Although we do
not consider continuous inputs in the following derivation, we will show in the simulation
in Section 3.3 that we can use a controller selection scheme to introduce continuous control
inputs in the system. More specifically, we consider a PODTSHS as follows:


1. U = ∅;


2. Zx = X ;


3. Ωx(z
x|xk) = δ(zx − xk).


We also model the dynamical system under each discrete mode q as


xk+1 = fq(xk) + w, w ∼ N (0,Wq),


where w is the Gaussian noise and Wq is the covariance matrix of w at discrete mode
q. We also assume that fq(x) is differentiable. The above dynamical system implies that
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the continuous transition Tx(xk+1|qk+1, xk) is a Gaussian function with mean fqk+1
(xk) and


covariance Wqk+1
, i.e. N (fqk+1


(xk),Wqk+1
).


In this case, since the continuous states are observable, the belief at any time step k will
have the following form:


bk(qk, xk) =


{
bk(qk, zk) ≥ 0, if xk = zk;


0, otherwise.
(3.2.1)


The belief update (2.1.1) becomes:


b
σk,zk+1


k+1 (qk+1, xk+1)


=ηΩ(zqk+1|qk+1)δ(zxk+1 − xk+1)
∑


qk∈Q


∫


xk∈X
Tx(xk+1|qk+1, xk)Tq(qk+1|qk, σk)bk(qk, xk)dxk


=


{
ηΩ(zqk+1|qk+1)Tx(zk+1|qk+1, zk)


∑
qk∈Q Tq(qk+1|qk, σk)bk(qk, zk), if xk+1 = zk+1;


0, otherwise,


(3.2.2)


where


η =
∑


qk+1


Ω(zqk+1|qk+1)Tx(zk+1|qk+1, zk)Tq(qk+1|qk, σk)bk(qk, zk).


We can get the optimal value J∗m+1 with (3.1.6):


J∗m+1(b) = max
σ∈Σ


{
〈Rσ, b〉+ γ


∑


zq∈Zq


∫


zx
max
{αjm}j


〈αjσ,zq ,zx , b〉dzx
}
, (3.2.3)


where by equation (3.1.5), αjσ,zq ,zx(q, x) is:


αjσ,zq ,zx(q, x) =
∑


q′∈Q


αjm(q′, zx)Ω(zq|q′)Tx(zx|q′, x)Tq(q
′|q, σ). (3.2.4)


3.2.1 Quadratic Approximation and Update for α-Functions


Let b be a belief in our system at a specific time. Note that our continuous state is known
at every time step. By (3.2.1), without loss of generality, we assume b(q, x) ≥ 0 only if
x = x, where x is our observed continuous state at that time step. In order to evaluate
the optimal value J∗m+1(b), we have to deal with the integral of a maximization function
in (3.2.3). However, as we mentioned before, there is no efficient way to calculate an exact
closed-form solution of the integral of a maximization function. To tackle this challenge,
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instead of directly calculating the integral, we calculate a lower bound of the optimal value
J∗m+1(b) by the inequality:


∫


zx
max
{αjm}j


〈αjσ,zq ,zx , b〉dzx ≥ max
{αjm}j


∫


zx
〈αjσ,zq ,zx , b〉dzx. (3.2.5)


Using the lower bound is important because it will not overestimate the optimal value func-
tion. Overestimation may lead to divergence of Jm+1 because we find Jm+1 in a maximization
scheme. We also propose to use a quadratic function to approximate the α-function in order
to tackle the third challenge, i.e., let αj(q, x) ≈ aj0(q) + aj1(q)Tx + xTAj2(q)x. We will show
that by doing so, we can calculate a closed-form lower bound of the optimal value J∗m+1(b).
The integration in (3.2.5) can be obtained by:


∫


zx
〈αjσ,zq ,zx , b〉dzx =


∫


zx


∑


q∈Q


∑


q′∈Q


αjm(q′, zx)Ω(zq|q′)Tx(zx|q′, x)Tq(q
′|q, σ)b(q, x)dzx


=
∑


q∈Q


∑


q′∈Q


Ω(zq|q′)Tq(q′|q, σ)b(q, x)


∫


zx
αjm(q′, zx)Tx(z


x|q′, x)dzx


=
∑


q∈Q


∑


q′∈Q


Ω(zq|q′)Tq(q′|q, σ)b(q, x)E[αjm(q′, zx)], (3.2.6)


where


E[αjm(q′, zx)] = aj0(q′) + (a1(q′)j)TE[zx] + E[(zx)TAj2(q)zx].


Since Tx(z
x|q′, x) is a Gaussian distribution with mean fq′(x) and covariance Wq′ , we have:


E[αjm(q′, zx)] = aj0(q′) + (aj1(q′))Tfq′(x) + (fq′(x))TAj2(q′)fq′(x) + tr(Aj2(q′)Wq′). (3.2.7)


In (3.2.7), we are using the fact that E[xTLx] = E[x]TLE[x] + Tr(LVar(x)). Combin-
ing (3.2.3), (3.2.5), (3.2.6) and (3.2.7), we can get a lower bound of J∗m+1(b). Let


α∗m = arg max
{αjm}j


∫


zx
〈αjσ,zq ,zx , b〉dzx, (3.2.8)


then the lower bound of J∗m+1 is


J∗m+1(b) ≥ max
σ∈Σ


{
〈Rσ, b〉+ γ


∑


zq∈Zq


∑


q∈Q


∑


q′∈Q


Ω(zq|q′)Tq(q′|q, σ)b(q, x)E[α∗m(q′, zx)]


}
.


Let


σ∗ = arg max
σ∈Σ


{
〈Rσ, b〉+ γ


∑


zq∈Zq


∑


q∈Q


∑


q′∈Q


Ω(zq|q′)Tq(q′|q, σ)b(q, x)E[α∗m(q′, zx)]


}
. (3.2.9)
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Then similar to (3.1.8), a new αm+1 can be updated by:


αm+1(q, x) = Rσ∗(q, x) + γ
∑


zq∈Zq


∑


q′∈Q


Ω(zq|q′)Tq(q′|q, σ∗)E[α∗m(q′, zx)]. (3.2.10)


To maintain the quadratic form of the α-function, we approximate αm+1(q, x) as a quadratic
function. Since we are evaluating the optimal value function at b in which the observed
continuous state is x, we linearize αm+1(q, x) around x:


αm+1(q, x) ≈αm+1(q, x) +


(
∂αm+1(q, x)


∂x


∣∣∣∣
x


)T
(x− x) +


1


2
(x− x)T


∂2αm+1(q, x)


∂x∂x


∣∣∣∣
x


(x− x).


(3.2.11)


We also linearize the dynamical system around x:


xk+1 − fq(x) = Hq(xk − x), (3.2.12)


where Hq = Dfq(x)
∣∣
x
. Let the quadratic approximation of Rσ∗(q, x) around x be


Rσ∗(q, x) ≈ Rσ∗(q, x) + rT1 (x− x) +
1


2
(x− x)TM(x− x), (3.2.13)


where r1 = ∂Rσ∗ (q,x)
∂x


∣∣
x


and M = ∂2Rσ∗ (q,x)
∂x∂x


∣∣
x
. Combining (3.2.10), (3.2.12) and (3.2.13) we


can get:


∂αm+1(q, x)


∂x


∣∣∣∣
x


=r1 + γ
∑


zq∈Zq


∑


q′∈Q


[
Ω(zq|q′)Tq(q′|q, σ∗)


(
HT
q′a
∗
1(q′) + 2HT


q′A
∗
2(q′)fq′(x)


) ]


(3.2.14)


and


∂2αm+1(q, x)


∂x∂x


∣∣∣∣
x


=M + γ
∑


zq∈Zq


∑


q′∈Q


(
2Ω(zq|q′)Tq(q′|q, σ∗)HT


q′A
∗
2(q′)Hq′


)
. (3.2.15)


To summarize, we can update a new α-function for a specific belief b by Algorithm 1.
Since for every α-function, there is a specific linearizing point x used for quadratic approxi-
mation, we are not using the whole set of αjm’s, but using those whose linearizing points are
close enough to x to perform update in Step 1 of Algorithm 1.


3.2.2 Value Iteration for Hidden Mode Stochastic Hybrid System


A full updating process requires updating {αjm+1}j over all b ∈ B, the entire belief space.
However, as we mentioned before, the belief of continuous states is of infinite dimension, so
finding the full set of the (m+ 1)-step α-functions is not possible. The point-based method
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Algorithm 1: α-function update


Function Update({ajm}j, b)
1. Obtain α∗m by (3.2.8) where


∫
zx
〈αjσ,zq ,zx , b〉dzx


can be calculated by (3.2.6) and (3.2.7).
2. Get σ∗ by (3.2.9) and (3.2.7).
3. Obtain the quadratic approximation of a new
α-function αm+1 by (3.2.11), (3.2.14) and (3.2.15).


return αm+1


for POMDP suggests only using a finite number of reachable beliefs to update α-functions
and also bounding the number of new α-functions. The point-based method allows us to
update α-functions in bounded times, which makes the problem tractable. Therefore, we
will adopt the point-based method to tackle this challenge.


There are different variations of point based method in which people use different methods
for generating belief set B and updating a new set of α-functions. We propose Algorithm 2
to perform point based value iteration for hidden mode stochastic hybrid system.


The first step of Algorithm 2 is to generate a set of reachable beliefs. We first randomly
explore the belief space and then use K-means to cluster the belief set. After that, we select
beliefs from each cluster randomly until it meets the predefined number of beliefs. Since we
found that random exploration in PODTSHS will result in many similar beliefs, clustering
them and selecting them from different clusters can increase the diversity of beliefs, which
accelerates the value iteration process in next step. We adopt Perseus algorithm [SV05]
to perform point-based value iteration which has been shown to be efficient for discrete
POMDP.


In every iteration of ValueIteration, the time complexity is O(NB|Σ||Zq||Q|2|Vα|n2),
where NB is the number of beliefs used for update, |Σ| is the number of discrete inputs,
|Zq| is the number of discrete observations, |Q| is the number of discrete states, |Vα| is the
number of α-functions at every iteration, and n is the dimension of the continuous state.
Note that Algorithm 2 is run off-line to find the set of α-functions for the optimal value
function. Once we find the set of α-functions, we can apply them to determine the optimal
control in real time by (3.2.9).


3.3 Simulation Results


We use two simulations to demonstrate the efficacy and the speed of the proposed method.
The simulations are programmed in C++ on a laptop running Mac OS X with 2GHz Quad-
core Intel Core i7. In the first simulation, we simulate a human-in-the-loop system. It shows
that although we only consider discrete inputs in our proposed algorithm, we can actually
use a controller selection scheme to introduce continuous inputs. The second simulation
compared our method with a discretization scheme [Aba+07]. To our best knowledge, we
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Algorithm 2: Value iteration for discrete-time hidden mode stochastic hybrid system


Input: Hidden mode stochastic hybrid system H, initial state (q0, x0) and the
number of beliefs NB


Output: Vα: The set of α-functions


B = BeliefCollection((q0, x0), NB)


Vα = ValueIteration (B)
Function BeliefCollection((q, x), NB)


repeat
Uniformly choose σ from Σ
Sample (q′, x′)′ ∼ Tx(x


′|q′, x)Tq(q
′|q, σ)


Sample zq ∼ Ω(zq|q′)
b′ = bσ,z by (3.2.2)
B ← B


⋃
b′


(q, x)← (q′, x′)
until |B| = 10NB;
Clustering B by K-means: C =K-means(B)
B′ ← ∅
repeat


Randomly select a cluster Ci and randomly select a belief b from Ci
B′ ← B′


⋃
b, Ci ← Ci \ b


until |B′| = NB;
return B′


Function ValueIteration(B)
Vα ← {Rσ}σ∈Σ


repeat
B′ ← B; V ′α ← ∅
while B′ 6= ∅ do


Choose b ∈ B′ randomly
α′ ← Update(Vα, b) by Algorithm 1
if 〈α′, b〉 ≥ J∗(b) (J∗(b) is calculated by (3.1.2)) then


B′ ← {b ∈ B′|〈α′, b〉 < J∗(b)}
αb ← α′


else
B′ ← B′ \ b
αb ← arg maxα∈Vα〈α, b〉


V ′α ← V ′α
⋃
αb


Vα ← V ′α
until ∀b ∈ B, Vα(b) converges ;
return Vα
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are aware of another computational method in [LO14b], which uses the linear combination
of Gaussian functions to approximate the α-functions. However, it requires the probability
models and the reward function to be Gaussian, which is not applicable to our case.


The first simulation models a human-in-the-loop system with a two-dimensional contin-
uous state space, in which a driver, who could be either attentive or distracted, is keeping
the car at the middle of a lane. x is the position and v is the velocity of the car vertical to
the direction of the lane. Suppose that there are two feedback systems. One is a warning
system that reminds the driver to be attentive, and the other one is an augmented control
input um obtained by controllers C0 that will not intervene the driver, or C1 that will help
driving the car toward the middle of the lane. In such setting, we use a controller selection
scheme to introduce continuous input um.


More specifically, the hidden mode stochastic hybrid system is defined as follows:


• Q1={qa=Attentive, qd = Distracted}, Q2 = {q(0) = C0, q
(1) = C1}. Hidden state space


Q = Q1 ×Q2.


• Continuous state [x, v]T ∈ R2.


• Σ1 = {σw = Warning, σnw = No warning} and Σ2 = {σ(0) = Execute C0, σ(1) =
Execute C1}. The set of discrete controls is Σ = Σ1 × Σ2


• Zq = Q1.


• Tq(q′|q, σ) = Tq1(q1|q1, σ1)Tq2(q
′
2|q2, σ2) where Tq1(q


′
1 = q1|q1, σ1 = σnw) = 0.95, Tq1(q


′
1 =


qa|q1 = qa, σ1) = 0.95, Tq1(q
′
1 = qa|q1 = qd, σ1 = σw) = 0.8 and Tq2(q


′
2 = σ2|q2, σ2) = 1.


•
[
xk+1


vk+1


]
=


[
1 ∆t
0 1


] [
xk
vk


]
+


[
(∆t)2


2


∆t


]
uh +


[
(∆t)2


2


∆t


]
um + w. (3.3.1)


uh,k =





−[K1 K2]


[
xk


vk


]
, if q1 = qa;


0, if q1 = qd.


um,k =







0, if q2 = q(0);


−[K1 K2]


[
xk


vk


]
, if q2 = q(1),


whereK1 andK2 are feedback gains such that the system is stable, and w ∼ N (0,
(


0.2 0
0 0


)
)


when q1 = qa and w ∼ N (0,
(


1 0
0 0


)
) when q1 = qd.
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• Ω(zq = q1|q1) = 0.95.


• R(q, x, v, σ) = 100 − [x v]


[
1 0
0 0.1


] [
x
v


]
− 5I(σ1 = σw) − 5I(σ2 = σ(1)), where I(·) is


the identity function.


Given the discrete-time hidden mode stochastic hybrid system, we first compute the
optimal control policy π(·) by Algorithm 2, which takes 27s with 5000 belief states. We
then evaluate our policy by the following simulation process: based on the current belief bt,
we obtain the control σt = π(bt), apply σt to the system and sample a new discrete state
qt+1 from Tq. We calculate xt+1 by equation (3.3.1) and sample new observation zqt+1 from
Ω, by which we update a new belief bt+1 and the whole process repeats. Figure 3.1a shows
the ground truth of the hidden discrete state q1 and figure 3.1b shows the continuous state
x. Figure 3.1c shows the marginal belief Pt(q1) of every time step, and figures 3.1d and 3.2
show the corresponding controls obtained by our learned policy.


Intuitively, the goal of the policy should encourage the system staying in mode qa and
keeping x and v zero. The simulation result conforms with our intuition that when P (q1 =
Attentive) goes down to some threshold, there will be a warning σ1 = Warning in order to
keep the driver attentive. Moreover, we can see that our learned policy selects controller C1


when the x is too far from zero. This simulation shows that using quadratic approximation,
we can still get a reasonable control policy.


Finally, we compare the time used to get the policy in our proposed algorithm with a
discretization scheme [Aba+07]. In this simulation, we reduce the above 2D example to
a 1D example with only one continuous variable x. Table 3.1 shows the computing time,
in which we can see that our proposed algorithm is at least 130 times faster than the dis-
cretization scheme. Moreover, we compare the average reward by running 50 simulations for
both schemes. As shown in Table 3.2, our method gets a higher average reward than the
discretization scheme. Hence, our method outperforms the discretization scheme. The main
reason is that the accuracy of discretization highly depends on how fine you discretize the
state space. If you do not discretize the space fine enough, the error will be large, but if we
discretize it too fine, the computation becomes slower. We can see that our method both
increases the efficiency and retains the optimality of the policy.


Table 3.1: The computational time of our method and the traditional discretization scheme.


Number of belief |B| used in updating value function
100 500 1000 2500 5000


Discretization 71m 93m 114m 120m 132m
Our method 1.0s 5.7s 12.4s 34.7s 61s







CHAPTER 3. OPTIMAL POLICY OF HIDDEN MODE STOCHASTIC HYBRID
SYSTEMS 34


(a) Ground truth of the hidden discrete state q1 and the corresponding discrete observation zq.


(b) Continuous states xt and vt.


(c) The probability of the driver being attentive Pt(q1 = Attentive).


(d) The first discrete input σ1: warning on/off.


Figure 3.1: Simulation results for a human-in-the-loop system.
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Figure 3.2: The second discrete input σ2: the selected controller.


Table 3.2: The average reward of our method and the traditional discretization scheme.


Number of belief |B| used in updating value function
100 500 1000 2500 5000


Discretization 9912 9914 9917 9918 9915
Our method 9917 9918 9919.2 9919.6 9920


3.4 Application to Driver Assistance Systems


In the recent paradigm shifts of developing autonomous driving vehicles, driver assistance
systems (DAS) have received a lot of attention in both academia and industry. In particular,
various versions of commercial DAS systems have been successfully deployed, including lane
departure warning, lane-keeping assistance, and automatic braking systems, just to name a
few. They have demonstrated their effectiveness in enhancing the safety of vehicles on the
road, when human drivers still assume the main responsibilities of supervising the vehicles.


Currently, most DAS solutions only monitor the vehicle state and/or the environment
around the vehicle [Ber+12b][Bro+09][Cle+09]. Typically in such systems, there is a risk
assessment module [And+10][Ber+12b] evaluating different forms of safety metrics, and such
information will be used for rule-based decision making. However, these solutions failed to
take into account the state of the human driver in making the decision, arguably the greatest
variability affecting the safety of the vehicle.


In light of the above drawbacks, researchers in the community of human-in-the-loop
control systems have argued that more desirable DAS systems should take into account the
modeling of the human driver. For example, knowing the head pose of the driver will give us
a better differentiation between intended lane-changing or unintended lane-departure. In the
literature, human monitoring systems have been demonstrated to be effective in estimating
the head pose [Taw+14], correlating the driver’s gaze with road events [FZ09], or analyzing
the steering wheel position [PU99] to gain a better understanding of the driver’s attention.


Based on the understanding of the driver state, there are several ways to integrate it into
the DAS decision making process. The first kind is rule-based decision processes: when the







CHAPTER 3. OPTIMAL POLICY OF HIDDEN MODE STOCHASTIC HYBRID
SYSTEMS 36


system detects the driver does not pay attention to the road condition according to certain
preset thresholds [FZ09][Taw+14], the DAS will give warning or intervene. The second kind
is based on solving an optimal control problem with a prediction of driver input from a
human model [Shi+14][Lef+14]. One of the drawbacks of these methods is that both rule-
based methods and optimal control methods are formulated to accommodate only one type
of DAS function. As a result, these methods are referred to as single-mode DAS systems.


Single-mode DAS systems also have their own drawbacks, chief of which is the fact that
the systems do not easily support the integration of two or more types of different DAS
functions. To overcome this drawback, we need a more sophisticated solution to determine
and balance different types of feedbacks from both the measurements of the vehicle and the
driver, which is the main topic of this chapter.


Specifically, we propose a novel solution to address human-in-the-loop decision making
in multi-mode DAS based on the hidden mode stochastic hybrid systems (Hidden Mode
SHS) framework, where the internal states of the driver can be modeled as some hidden
modes, such as attentive versus distracted, or keeping in lane versus changing lane. The
model has the ability to keep track of the distribution of the hidden driver state. The
decision is determined based on both this distribution and the vehicle state. Moreover, we
can balance different functions better in multi-mode DAS systems through solving optimal
control policies in Hidden Mode SHS.


Motivating Scenarios


Consider a scenario where a car, referred to as the ego vehicle, is driven by a human driver
in a single-direction two-lane driveway. When there is no obstacle within a certain region in
the heading of the ego vehicle, the attentive driver should keep the car in the center of the
current lane. Here we assume that the driver will turn on the turn signal so the lane-keeping
system will not be activated for intended lane change. When there is an obstacle blocking
the heading of the ego vehicle, which can be another car with a slower speed, the attentive
driver should switch lane and then pass the obstacle from the other line. It is reasonable to
assume that the driver is attentive in general. However, she may be distracted from time to
time, e.g., by interacting with her cell phone.


The proposed DAS supports two popular vehicle safety functions: automatic braking and
lane keeping. Each function when activated will act in two modes, respectively, which provide
phased safety enhancement. More specifically, in one mode, both functions merely alert the
driver about unsafe vehicle conditions and/or road conditions. In the other mode, both
functions directly intervene and briefly take control of the vehicle until the unsafe conditions
are mitigated.


Note that our multi-mode DAS models the combination of human modes and vehicle
modes. It compares favorably to traditional DAS solutions, most of which focus only on
monitoring the vehicle state, namely, whether the vehicle drifts towards the edge of a lane or
whether it comes within an unsafe distance from a road obstacle. These traditional systems
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Figure 3.3: A screen shot of the experimental platform on Force Dynamic 401CR simulator.
A video demonstration is available on https://youtu.be/Ue4SZ9PRD5E.


do not consider whether the driver state is attentive or distracted, arguably a more difficult
state to measure in a human-in-the-loop system.


Our experiment shown in Section 3.4.3 is conducted using real-time human driving data
collected on a Force Dynamic 401CR simulation platform, shown in Figure 3.3. The specifi-
cations of the platform will be described in Section 3.4.3.


3.4.1 Hidden Mode Stochastic Hybrid Systems for Multi-Model
Driver Assistance


We model the decision making process of the proposed multi-model driver assistance system
as Hidden Mode SHS. We assume the driver could be attentive or distracted. In practice,
there are many ways to measure whether the driver is distracted, such as detecting the
gaze of the driver or whether the driver’s hands are on the steering wheel. Indeed, many
commercial car safety systems have implemented various versions of these straightforward
measures. As we mainly focus on investigating human-in-the-loop decision making processes,
we adopt a simple indicator of driver distraction by measuring whether the driver is using her
cell phone, which can be recorded in our simulator in real time. However, we note that the
Hidden Mode SHS framework is general enough to interface with other alternative measures



https://youtu.be/Ue4SZ9PRD5E





CHAPTER 3. OPTIMAL POLICY OF HIDDEN MODE STOCHASTIC HYBRID
SYSTEMS 38


x


0


Attentive Distracted 
xk+1 = A2xk + u + n2xk+1 = A1xk + u + n1


�1 = {Warning on, Warning o↵}


Figure 3.4: Lane-keeping scenario.


regarding whether the driver is distracted.


Lane-Keeping Scenario


In the first kind of road condition, when there is no obstacle within certain distance in front
of the ego vehicle, the driver should keep the car in the middle of the lane, as shown in
Figure 3.4.


We use a linear system model to model the trajectory of the car:
{
xk+1 = A1xk + u+ n1, for attentive driver;


xk+1 = A2xk + u+ n2, for distracted driver,
(3.4.1)


where u is the augmented intervention to the vehicle, and xk is the lateral drift with respect
to the center of the lane and its positive direction is toward the middle line. Throughout
this chapter, ni denotes a Gaussian noise with zero mean and variance Wi. There are two
feedback systems. One is a warning system that reminds the driver to be attentive, and the
other one is an augmented control input u. The value of u is determined by the following
rule:


{
u = 0, if executing controller C0;


u = A1x− A2x, if executing controller C1,
(3.4.2)


where the controller C0 will not intervene, and C1 will help driving the car toward the middle
of the lane.
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In equation (3.4.2), the switching between the two controllers C0 and C1 is determined by
a controller selection scheme. More specifically, the Hidden Mode SHS in the lane-keeping
scenario is defined as follows:


• Q1={qa=Attentive, qd = Distracted}, Q2= {q(0) = C0, q(1) = C1}. Hidden state space
Q = Q1 ×Q2.


• Continuous state x ∈ R is the lateral position of the car vertical to the direction of
the lane, where x = 0 corresponds to the middle of the lane. Its positive direction is
toward the middle line.


• Σ1 = {σon = Warning on, σoff = Warning off} and Σ2 = {σ(0) = Execute C0, σ(1) =
Execute C1}. The set of discrete controls is Σ = Σ1 × Σ2


• Z={z1=The driver is not distracted by the phone, z2=The phone has rang and the
driver might be reading the phone, z3=The driver is texting on the phone}.


• Tq(q′|q, σ) = Tq1(q1|q1, σ1)Tq2(q
′
2|q2, σ2) where Tq1(q


′
1 = q1|q1, σ1 = σoff ) = 0.95, Tq1(q


′
1 =


qa|q1 = qa, σ1) = 0.95, Tq1(q
′
1 = qa|q1 = qd, σ1 = σon) = 0.8 and Tq2(q


′
2 = σ2|q2, σ2) = 1.


• The continuous transition Tx follows (3.4.1) and (3.4.2).


• the observation function Ω(z|q) measure the accuracy of our measurement, which can
be obtained from the experimental data.


• The reward function R(q, x, σ) = 50− x2 − 3I(σ1 = σon)− 3I(σ2 = σ(1)), where I(·) is
the identity function.


Tq(q
′|q, σ) is defined empirically, given the fact that the driver will be more likely to be


attentive if we give warning. The reward function R(q, x, σ) give a high reward to x close
to the center of the lane and penalize the warning to the driver and the intervention to
the vehicle. A higher penalty results to less intervention and warning. Ω(z|q) is estimated
by counting the frequency of the corresponding event, by assuming the driver is always
distracted when she is texting and is attentive when she is not.


Collision Avoidance Scenario


In the second kind of road condition, there is an obstacle within a certain distance to the
ego vehicle, as shown in Figure 3.5. When a driver observes there is a car in front of her,
she will first go straight and approach the front car, and then switch to the other lane with
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constant lateral velocity:





xk+1 = xk + n3, if the driver is attentive and keeps


the vehicle in the current lane;


xk+1 = xk + aatt + n5, if the driver is attentive and is


switching lane;


xk+1 = xk + n6, if the driver is distracted and keeps


the vehicle in the current lane;


xk+1 = xk + adis + n8, if the driver is distracted and goes


straight to approach the front car,


(3.4.3)


where aatt and adis are the lateral velocities per sampling time in attentive mode and dis-
tracted mode. We also consider the distance between the ego car and the front car, d, in our
Hidden Mode SHS:


{
dk+1 = dk + catt + v + n4, for attentive driver;


dk+1 = dk + cdis + v + n7, for distracted driver,
(3.4.4)


where catt and cdis are the relative velocities per sampling time in attentive mode and dis-
tracted mode respectively. v is the augment control from the automatic braking system.
Assume when the automatic braking is active, it applies a constant decrease of velocity until
the car stop. The value of v is determined by the following rule:


{
v = 0, if executing controller C2;


v = vbrake, if executing controller C3,
(3.4.5)


where the controller C2 will not activate the automatic braking while the controller C3 will.


More specifically, the Hidden Mode SHS in the collision avoidance scenario is as follows:


• Q1={qa=Attentive, qd = Distracted}, Q2 = {qk = Keeping in lane, qs=Switching
lane}, Q3 = {qnb=No automatic braking, qb= Applying automatic braking}. Hidden
state space Q = Q1 ×Q2 ×Q3.


• Continuous state [x, d] ∈ R2.


• Σ1 = {σon = Warning on, σoff = Warning off} and Σ2 = {σ(0) = Execute C2, σ(1) =
Execute C3}. The set of discrete controls is Σ = Σ1 × Σ2


• Z={z1=The driver is not distracted by the phone, z2=The phone has rang and the
driver might be reading the phone, z3=The driver is texting on the phone}.


• Similar to the lane-keeping scenario, the discrete transition Tq(q
′|q, σ) is defined em-


pirically.
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Figure 3.5: Collision avoidance scenario.
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• The continuous transition Tx follows Equations (3.4.3), (3.4.4) and (3.4.5).


• The observation function Ω(z|q) measure the accuracy of our measurement, which can
be obtained from the experimental data.


• The reward function R(q, x, d, σ)=


{
15 + d− 0.02d2I(σ1 = σon)− 0.02d2I(σ2 = σ(1)), if q1 = Attentive;


d− 0.01d2I(σ1 = σon)− 0.01d2I(σ2 = σ(1)), if q1 = Distracted.


The idea behind the reward function is that we give the attentive driver and larger
d a higher reward. We also penalize the warning and intervention according to the
distance. The penalization is more in attentive mode (-0.02) than in distracted mode
(-0.01). The penalties are parameters that affect the sensitiveness of the warning and
the intervention.


Under these two Hidden Mode SHS models, we have to first estimate the parameters in
each mode, and then find the optimal policy that maximizes the accumulative reward.


3.4.2 Driver Model Learning


In this subsection, we establish a process to estimate the parameters in both the lane-keeping
Hidden Mode SHS model and the collision avoidance Hidden Mode SHS model.


In the lane-keeping scenario (3.4.1), to estimate parameters A1 and A2, we collect all the
trajectories of an attentive driver driving in lane-keeping scenario and use the method of
least squares to find A1 and A2. The variances W1 and W2 are approximated by the sample
variances, respectively.


In the collision avoidance scenario (3.4.3) and (3.4.4), we collect the trajectories of an
attentive or distracted driver when there is an obstacle within a certain distance in front
of the ego vehicle. We can use least squares to estimate catt and cdis and use expectation-
maximization (EM) to estimate the others. catt and cdis can be estimate by least squares
because the dynamics of dt in (3.4.4) are the same in a single mode. After estimating catt and
cdis, we can estimate the variances W4 of n4 and W7 of n7 in (3.4.4) by sample variances in
both attentive and distracted modes. On the other hand, we use EM algorithm to estimate
the remaining parameters because we do not have annotations on when the driver starts
to switch lane when she see the obstacle. The remaining parameters include aatt, adis, W3,
W5, W6, and W8 in (3.4.3), and the probabilities of switching from ”Keeping in lane” to
”Switching lane” in both attentive mode and distracted mode patt and pdis.


We now show the details of the parameters learning from data in attentive mode in
collision avoidance scenario. The parameters in the distracted mode: pdis, adis, W6 and W8


can be estimated by EM in a similar way.
Figure 3.6 shows the graphical model for a driver who is switching lane, where qt ∈


{Keeping in lane, Switching lane} is the hidden mode and xt is the position of the vehicle.
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xt+1 ⇠ N (xt + aatt, W5) if qt+1=‘Switching lane’


patt := P (qt+1 = ‘Switching lane’|qt = ‘Keeping in lane’)


Figure 3.6: Graphical model for parameters learning.


Let t = K be the time step that the vehicle is changing from “Keeing in lane” to “Switching
lane”. From time 0 to time K, the vehicle is keeping in lane and approach the front obstacle.
It starts to switch lane from time (K+ 1) to time n, where n is the time that the ego vehicle
has been to the other lane. patt is defined as the probabilities of switching from ”Keeping
in lane” to ”Switching lane” in attentive mode, i.e. patt := P (qt+1 = “Switching lane”|qt =
“Keeping in lane”). Let θ = (patt, aatt,W3,W5) be the parameters we are estimating in
attentive collision avoidance mode. Given the model, we can write the complete log-likelihood
as:


L(x0:n, q0:n) = K log (1− patt) + log patt +
1


2


K∑


t=1


(
(xt − xt−1)2


W3


− log (2π)− log(W3)


)
+


1


2


n∑


t=K+1


(
(xt − xt−1 − aatt)2


W5


− log (2π)− log(W5)


)
.


We use EM algorithm to estimate the parameters.
E-step:


Ki =
n−1∑


k=1


k Pr(qk+1 = “Switching lane” ∧ qk = “Keeping in lane”|θi−1, x0:n),


where


Pr(qk+1 = “Switching lane” ∧ qk = “Keeping in lane”|θi−1, x0:n)


∝(1− patt)kpatt
k∏


i=1


1√
2πW3


exp


(
1


2


(xi − xi−1)2


W3


) n∏


i=k+1


1√
2πW5


exp


(
1


2


(xt − xt−1 − aatt)2


W5


)
.
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M-step:


patt =
K


n


aatt =
1


n−K
n∑


i=Ki+1


(xi − xi−1)


W3 =
1


K


Ki∑


i=1


(xi − xi−1)2


W5 =
1


n−K
n∑


i=Ki+1


(xi − xi−1 − aatt)2.


Driver Assistant System Decision


After learning the model of Hidden Mode SHS, we would like to solve the optimal control
problem in order to get the optimal policy π(·) ∈ Σ1 × Σ2 in both lane-keeping scenario
and collision avoidance scenario. We then use Algorithm 2 to find the optimal policy. The
algorithm will solve optimal policies of Hidden Mode SHS for both the lane-keeping scenario,
π∗1(·), and the collision avoidance scenario, π∗2(·), respectively.


Once the optimal policies are obtained, the decision process is carried out as follows.
In every time step t, the system first detects whether there is an obstacle within a certain
distance in front of the ego vehicle by the radar on the ego vehicle in order to determine
which scenario the vehicle is in. If in the previous and current time steps the vehicle is in
the lane-keeping scenario, the observation zt and the current state xt will be used to update
the current belief based bt(qt, xt) by (2.1.1) for that scenario. Similarly, if in the previous
and current time steps the vehicle is in the collision avoidance scenario, the observation zt
and the current state (xt, dt) will be used to update the current belief based bt(qt, xt, dt).


Note that the number of discrete states in the lane-keeping scenario are different from the
number of discrete states in the collision avoidance scenario. Therefore, when the scenario
in the previous time step is not the same as the scenario in the current time step, we cannot
use the belief update in (2.1.1) directly. To solve this problem, if the scenario in the previous
time step is different from the current one, we will carry the belief of the the previous time
step to the current time step by the following way:


• If it is transiting from collision avoidance scenario to lane-keeping scenario,


bt(qt = Attentive, xt) =
∑


qt−1 is attentive


bt−1(qt−1, xt−1, dt−1),


bt(qt = Distracted, xt) =
∑


qt−1 is distracted


bt−1(qt−1, xt−1, dt−1).
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• Similarly, if it is transiting from collision avoidance scenario to lane-keeping scenario,


bt(qt = Attentive, xt, dt) =
∑


qt−1 is attentive


bt−1(qt−1, xt−1),


bt(qt = Distracted, xt, dt) =
∑


qt−1 is distracted


bt−1(qt−1, xt−1).


Once we determine the belief, the optimal control decision is made according to the optimal
policy of the current scenario, i.e. σ = π∗1(bt) or σ = π∗2(bt).


3.4.3 Results


Our experiment is conducted in a Force Dynamic 401CR simulator, as shown in Figure 3.3.
The simulator provides four-axis motion: pitch, roll, yaw, and heave. The platform is capable
of providing continuous 360-degree rotation at 1:1 rotation ratio. The maximal velocity of the
platform is 120 degrees per second (dps) in yaw, and 60 dps in pitch and roll, respectively.
The controls of the simulator include force feedback steering, brake, paddle shifters, and
throttle. Our system has been integrated with PreScan software, which provides vehicle
dynamics and customizable driving environments [Pre].


The testbed is designed to recreate the feeling of moving in a vehicle and is equipped with
monitoring devices to observe the human. The data is collected following the experimental
design in [DC+15] and [Dri+14]. We collect data from human drivers driving on four custom
designed courses as shown in Figure 3.9. These courses consist of two-lane roads with turns
of various curvatures, with different levels of traffic that moves independently with respect
to the ego vehicle with no opposing traffic. On these courses, the driver faces a number of
obstacles, some of which are stationary (e.g. cardboard boxesn on the road) and some of
which are moving (e.g. balls rolling in the road and other vehicles). The driver is asked to
drive as they would normally at about 50 mph. We use the data from the first three courses
to learning our Hidden Mode SHS and the data from the fourth course for testing. The
final test course consists of obstacles and road patterns that had not been experienced in the
training set, to verify the flexibility of the model.


To simulate distraction, the driver is given an android phone with a custom application
to randomly ping the driver to respond to a text message within 30-60 seconds after the
driver responds to the previous text.


The data is collected every 0.025 second. Some key data include the position and velocity
of the vehicle, the obstacle position and speed relative to the ego vehicle, and the state of
the cell phone. We use the data from the three training courses to estimate the parameters
of our parametric models of lane-keeping scenario and collision avoidance scenario described
in Section 3.4.2. The total length of the training data is about 30 minutes.


After learning the model, we solve the optimal control policies for the two Hidden Mode
SHS. We then run the control policies on the data from the test course. The duration of
the test data is 15 minutes. Figure 3.7 shows the experimental results from 0 second to 180
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Figure 3.7: Experimental result of our control decisions. x(t) shows the lateral drift of the
ego vehicle where blue means the driver is driving without being distracted by the cell phone,
yellow means the cell phone rings and the driver may reading the phone message, and red
means the driver is texting on the cell phone. “Obstacle” indicates the apperance of obsta-
cles in time, where darker colors mean obstacles are closer. “Warning” and “Intervention”
decisions are determined by our control policy. “Rule-Based” shows the decisions determined
by the rule-based policy in comparison.


seconds on the test course. We also compare our control policy with a rule-based policy.
The rule-based policy merely monitors the vehicle state, and intervenes if a certain unsafe
condition is satisfied. More specifically, we let the rule-based driver assistance system start to
intervene when |xt| > xunsafe in lane-keeping scenario or dt < 20 meters in collision avoidance
scenario. We choose the threshold xunsafe = 3.6/2− 0.1 = 1.7 meters because the width of a
single lane is 3.6 meters. Figure 3.8 shows the vehicle state and the driver from the view of
the course.


From Figure 3.7, we can see that in lane-keeping scenario, our policy tends not to inter-
vene if the probability of attentive driver is high, but will first give warning when the driver
is distracted. The intervention will come in only if the vehicle drift off a certain distance
from the middle of the lane, as shown in Figure 3.10a. The rule-based policy, however, just
determines whether to intervene based on the vehicle state, even though the driver is actually
attentive. Our policy is more desirable because if the driver is still attentive, an intervention
may negatively interfere with the control of the driver. Therefore, the DAS should minimize
the occurrence of intervention.


In collision avoidance scenario, the advantage of our optimal policy is illustrated in Fig-
ure 3.10b. From around 82.5 seconds to 84 seconds, since the driver is texting on the phone,
our belief on distracted driver is high. The warning signal will turn on first, given that the
distance to the front obstacle is still large at that time. One second later, our optimal policy
intervenes and applies brakes since the driver is still texting on the cell phone and the dis-
tance is close to the front obstacle. Our policy gradually increases the level of intervention
according to both the vehicle state and the belief of the driver state, while the rule-based
policy only intervenes according to the vehicle state.


One may argue that a rule can be added to turn on the warning when the driver is texting.
However, such a hard decision rule does not combine the information from the measurement
and the vehicle state. Note that our belief update (2.1.1) depends on both the observation
and the vehicle state so we can have a better estimation of the driver state.
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Figure 3.8: The state of the vehicle and the driver from the view of the course. The use of
color annotation is the same as Figure 3.7.
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(a) Course 1.
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Figure 3.9: Four driving courses. The first three courses are for training and the last course
is for testing.


Finally, we compare the time corresponding to different modes in Table 3.3 to show
how our policy improves the human-in-the-loop decision making in DAS. We can see that
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(b) Phased collision avoidance.


Figure 3.10: Two examples of engaging the proposed multi-mode driver assistance system.


when the vehicle is safe and the driver is not distracted by the cell phone, i.e. z1 ∧ (|xt| <
xunsafe ∨ dt > 20), both our policy and the rule-based policy will not intervene. When the
vehicle is unsafe and the driver is texting, i.e. z3 ∧ (|xt| > xunsafe ∨ dt < 20), our policy will
either warn the driver or intervene directly in order to maintain safety, which is the same
as the rule-based policy. Therefore, the decisions of our policy and rule-based policy are the
same in the safest case and the most unsafe case.


The main difference between our policy and the rule-based policy is that although the
vehicle is still in the safe region, i.e. |xt| < xunsafe ∨ dt > 20, our policy will sometimes turn
on the warning signal when z = z2 or z = z3. It is because our Hidden Mode SHS can infer
the belief of the driver state from the observation and the vehicle state. When the belief
of the driver being attentive is low, our method will first warning to the driver, which will
make the driver more likely to become attentive again. By considering the driver state, this
phased interference not only decreases the possibility of intervention, but also prevents the
unsafe state early.


From Figure 3.7 and Table 3.3, we can also find that in the collision avoidance scenario,
when the driver is not distracted by the cell phone, our policy allows the ego vehicle to be
closer to the obstacles without triggering the warning or the intervention. This is because
we penalize intervention more in attentive mode than in distracted mode in the reward
function. It follows the idea that there should be less intervention to an attentive driver
than a distracted driver.


3.5 Summary


We have proposed an algorithm to find an approximate optimal control policy for the hid-
den model stochastic hybrid system. We have shown that by approximating α-functions
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Table 3.3: Total amount of time corresponding to the two scenarios. The highlighted columns
shows the main differences between our policy and rule-based policy.


Lane-keeping scenario
z1 =Not distracted z2=Phone rang z3=Driver texting


|xt| < xunsafe|xt| > xunsafe |xt| < xunsafe|xt| > xunsafe |xt| < xunsafe|xt| > xunsafe
Total 465.5s 33.1s 111.025s 7.7s 87.225s 8.675s


Warning 0s 0s 35.7s 7.6s 36.125s 8.675s


Intervention 0s 0.025s 0s 0s 0s 0s


Rule-based 0s 33.1s 0s 7.7s 0s 8.675s


Collision avoidance scenario
z1=Not distracted z2=Phone rang z3=Driver texting
dt > 20 dt < 20 dt > 20 dt < 20 dt > 20 dt < 20


Total 53.8s 13.05s 8.675s 0.5s 10.075s 0.6s


Warning 0.025s 0.15s 1.55s 0.3s 1.35s 0.575s


Intervention 0s 0.9s 0s 0.5s 0s 0.6s


Rule-based 0s 13.05s 0s 0.5s 0s 0.6s


as quadratic functions and using lower bound of the optimal value function to do update,
we can efficiently perform value iteration in order to find the optimal control policy. We
have compared our method with the traditional discretization scheme and have shown that
our method can find the optimal policy faster while still remain the optimality of the con-
trol policy. Its application for multi-mode driver assistance systems is shown using two
popular scenarios: the lane-keeping scenario and the collision avoidance scenario where the
automatic braking function may be activated. We have described how we can integrate the
human model into the Hidden Mode SHS and combine decision making processes for the two
scenarios. Through experiments, we have shown that our policy can provide phased safety
enhancement based on both the distribution of the driver state and the vehicle state.
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Chapter 4


Exploratory Planning via Model
Predictive Control


4.1 Introduction


Think about autonomous vehicles driving on the road. Before every car is autonomous,
autonomous cars should interact with different kinds of human drivers on the road. Some
drivers are aggressive whereas some are courteous. Suppose an autonomous vehicle and a
human driver both need to merge into the same lane as shown in Figure 4.1. The goal of the
autonomous car is to enter the bottleneck as soon as possible without any collision, i.e. both
cars should not enter the bottleneck at the same time. Obviously, there should be one car
going first and the other car going after the first car. However, the autonomous car has no
information about whether the human driver is aggressive so she wants to accelerate and go
first, or the driver is courteous so she is going to yield to the autonomous car. The problem
is: how can the autonomous car ensure both safety and effectiveness, given that it does not
know the intent of the human driver in advance?


From the above example, we can see that it is important for an autonomous system to
understand the intent of the human whom it interacts with. If the autonomous car can infer
whether the other driver wants to go ahead or yield to it, it can react accordingly to enhance
safety and performance.


The uncertainty of the human behavior casts difficulty to the autonomous system inter-
acting with the human. To deal with the uncertainty of the human, some researchers used
stochastic human models that involved a nominal human dynamical model and some error
terms modeling the uncertainty of the human behavior [Gra+13][GR05]. However, these
models only captured the behavior of the human with a single intent. If the human can have
several intents, the nominal human model might fail to model different behaviors.


To deal with the multi-intent case, most researchers divided the task into two pieces: 1.
human intent estimation, and 2. decision making based on the estimated intent. To estimate
the intent, hidden Markov model (HMM) and its variations are popular for the human
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Figure 4.1: Autonomous vehicle and human driven vehicle merge into the same lane.


behavior modeling because it can model the hidden discrete intent as well as the continuous
dynamics [PL95][Tak+08][Lef+16]. Some approaches modeled the human goal inference
problem as an inverse planning problem and then used Bayesian inference to infer the human
goal [Bak+09][Liu+14]. Some gathered human intent from human response via language,
gesture, etc [Neh+05][Mat+14]. After the intent estimation phase, a controller will determine
the control input to achieve the task according to the estimated intent [Lef+14][Shi+14]. In
those approaches, the human intent estimation relied only on passive observation, and was
independent of the decision making. They ignored the fact that the action of the autonomous
system can actually help itself to infer the human intent, because the human reactions to
the action of the autonomous system will be different with different human intents.


To leverage the action of the autonomous system, the authors in [Sad+16a] planned
actions that probed the user in order to clarify her intent by maximizing the information
gain. Their objective was to estimate the unknown intent only, while the objective of task
completion and the safe constraint were not integrated into the planning. To jointly consider
the intent estimation and task completion, the problem can be formulated as a partially
observable Markov decision process (POMDP) or its variations [LS14][Ban+13][Lam+15],
in which the resulting control policy would automatically balance actions that estimated
the hidden human intent and actions that completed the task. However POMDPs cannot
incorporate hard constraints of the system.


In this chapter, we propose a novel framework that jointly considers the intent estima-
tion, task completion and safety constraints using a model predictive control (MPC) based
formulation. We consider all possible hidden intents in our model and introduce an intent
exploration term to encourage control inputs that increase the diversity of human responses.
Our method will tend to plan actions that help itself to differentiate the correct hidden
intent under high uncertainty, while still focusing on task completion if the human intent
becomes more certain. We apply our method to two autonomous driving scenarios. The
results show that our method improves the decision making of the controller in terms of
safety and efficiency.
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This chapter is organized as follows. In Section 4.2, we present the proposed model and
address the computational details. We then simulate and apply the proposed method on a
lane merging scenario and a left-turn scenario in Section 4.3. Finally we discuss the usability
and summarize the chapter in Section 4.4.


4.2 Exploratory planning for multi-intent


human-in-the-loop systems


We describe the interaction between the autonomous system and the human for a single
intent as a dynamical model:


[
xh,t+1


xr,t+1


]
= f


([
xh,t
xr,t


]
,


[
uh,t
ur,t


]
, wt


)
,


where xh,t and xr,t represent the human and robot state at time t, uh,t and ur,t are the control
inputs by the human and the robot at time t, and wt is the noise. Here we made an assump-
tion that the human input uh,t depends on xh,t, xr,t and ur,t, i.e. uh,t = uh,t(xh,t, xr,t, ur,t),
and therefore, we can remove uh,t by formulating the dynamical model to a model that only
depends on xh,t, xr,t and ur,t. In practice, there are other external factors such as human
distraction that may affect the human input, so it is hard to model all possible external
factors. A common way to handle this is to treat those human behaviors under the influence
of the external factors as the behaviors under certain human intents [Sad+16a] [Lef+16].
For example, the human may not intent to be distractive, but we also model the distractive
behavior as one human intent. We also assume that the human intent is among a finite set
of intents. This assumption has been used in the literature, and the number of intents or
modes can either be predefined from our domain knowledge [Sad+16a] or be trained from
data [Lef+16]. Since it is not the focus of this chapter, we assume the number of intents K
and their corresponding dynamical models are known. For each intent, a dynamical model
is used to describe the interaction:


Model Mj : xt+1 = fj(xt, ut, w
j) j = 1, . . . , K (4.2.1)


where xt = [xh,t, xr,t]
T ∈ Rn and ut = ur,t. wj ∼ N (0, Qj) is assumed to be the Gaussian


noise in mode j with zero mean and covariance Qj. fj is the function describing the dynamics
under intent j.


Since the intent of the human is hidden, we can only maintain the probability distribution
of the human intent, which is denoted as the belief bt = [bt(1), . . . , bt(K)]T , where bt(j) is the
probability of intent j at time t. We assume that the intent is fixed within a finite horizon
we consider.


For each time step t, what we need is to


1. Observe the current state xt and then find the optimal control input u∗t to minimize
our cost function subjecting to constraints and dynamics;
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2. Update belief bt+1 based on the observed state xt and control input u∗t .


For the first part, we propose to determine the u∗t by solving the following finite horizon
model predictive control problem:


minimize
{xjt:t+N−1}j ,{u


j
t:t+N−1}j


K∑


j=1


t+N−1∑


τ=t


E[J(xjτ , u
j
τ )]bt(j)


︸ ︷︷ ︸
Task completion term


+


λH(bt)
t+N−1∑


τ=t+1


(
−
∑


i<j


DKL(xiτ ||xjτ ) +
1


2
ζ


K∑


j=2


||u1
τ − ujτ ||2


)


︸ ︷︷ ︸
Intent exploration term


(4.2.2a)


subject to xjt = xt ∀j = 1, . . . , K (4.2.2b)


xjτ+1 = fj(x
j
τ , u


j
τ , w


j) ∀j, τ (4.2.2c)


Pr(xjτ ∈ F) ≥ p ∀j, τ (4.2.2d)


umin ≤ ujτ ≤ umax ∀j, τ (4.2.2e)


u1
t = ujt ∀j = 2, . . . , K (4.2.2f)


and the optimal control input u∗t is set to be u1
t after solving the optimization problem. N


is the horizon we consider. Since we do not know the right dynamical model to use, we
need to guarantee the trajectory xt:t+N−1 to satisfy our constraints whichever the intent is.
Therefore, we consider all possible trajectories in all modes, i.e., xjt:t+N−1 ∀j = 1, . . . , K. We


also consider all possible control inputs that generate those trajectories, i.e. ujt:t+N−1 ∀j.
The first term of the cost function (4.2.2a) in the optimization problem (4.2.2) is the


expected cumulative cost, where J(xjτ , u
j
τ ) is the instantaneous cost we can get in state


xjτ with the control input ujτ . The second term tries to encourage the exploration about
which mode the system is in, where DKL(xiτ ||xjτ ) is the KL divergence of two states in mode
i and j at time τ . By maximizing the KL divergence and minimizing the differences of
control inputs in different modes, the optimizer will tend to generate control inputs that can
differentiate the trajectories so that we can gain more information about what mode the
system is in. Note that minimizing the differences of control inputs is important because
the KL divergence makes sense only when we use similar control inputs in all modes. A
strict equality constraints on the control inputs in different modes, however, will sacrifice
the nature that the optimal control inputs can be different in different modes. That is why we
only encourage consistent control inputs in different modes in the cost function. In addition,
the entropy of the current belief,


H(bt) = −
K∑


j=1


bt(j) log bt(j), (4.2.3)
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is used as a parameter to affect how important the intent exploration term is. If we are very
certain about the mode of the system, the entropyH(bt) will be small, so the exploration term
will be less important and the optimizer will not put much effort on planning trajectories
that help differentiate the mode of the system. λ and ζ are weights on their corresponding
terms.


Equation (4.2.2b) constrains the initial state of each mode to be the same and equal to the
observed state at time t. Equation (4.2.2c) is the dynamics of all modes. Equation (4.2.2d)
represents the chance constraint where the state xjτ should be within the feasible set F with
probability larger than a predefined value p. Equation (4.2.2e) forces that ujτ should be
bounded by umin and umax. Finally, in Equation (4.2.2f), we constrain the upcoming control
input ujt to be the same in all modes. The solved ujt will be our optimal control input u∗t
being applied to the system.


The optimization problem (4.2.2), however, is hard to solve because most functions are
nonlinear and it includes probabilistic constraints. Therefore, we will reduce the complexity
of (4.2.2) via the following approximations and convert it into a deterministic MPC.


1) The trajectory xjt:t+N−1


We approximate each state on the state trajectory xjτ as a Gaussian random variable with
mean x̄jτ and covariance Σj


τ . The nominal trajectory x̄jτ can be updated by


x̄jτ+1 = fj(x̄
j
τ , u


j
τ , 0) ∀τ = t, . . . , t+N − 2. (4.2.4)


The covariance, however, cannot be easily computed if fj is nonlinear. Here we use an update
similar to extended Kalman filter in which the Jacobian of the nonlinear model is computed
and used to update the covariance matrix:


Σj
t+1 = LjtQ


j(Ljt)
T , (4.2.5)


Σj
τ+1 = F j


τ Στ (F
j
τ )T + LjτQ


j(Ljτ )
T , ∀τ = t+ 1, . . . , t+N − 2, (4.2.6)


where F j
τ =


∂fj
∂x


∣∣∣∣
(x̄jτ ,u


j
τ ,0)


and Ljτ =
∂fj
∂w


∣∣∣∣
(x̄jτ ,u


j
τ ,0)


. (4.2.7)


Based on this representation, we can apply further approximation to reduce the complexity
of the optimization (4.2.2).


2) The expected cost E[J(xjτ , u
j
τ )]


To simplify the problem, we just simply get rid of the expectation and use the nominal
trajectory in the cost function, i.e.


E[J(xjτ , u
j
τ )] ≈ J(x̄jτ , u


j
τ ). (4.2.8)
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3) Calculating Σj
τ


The covariance Σj
τ depends on the historic trajectory xjt:τ and ujt:τ , so if we also treat them


as our optimization variables, the problem will become very complicated and intractable.
Instead, we will pre-calculate and approximate the covariances at the beginning using some
initial xjt:t+N−1 and ujt:t+N−1, which we set to be those optimal variables obtained from the
previous time step, denoted as x̂jτ and ûjτ . Then the estimated covariances can be calculated
recursively by (4.2.5), (4.2.6),


F j
τ =


∂fj
∂x


∣∣∣∣
(x̂jτ ,û


j
τ ,0)


and Ljτ =
∂fj
∂w


∣∣∣∣
(x̂jτ ,û


j
τ ,0)


(4.2.9)


This approximation lets the covariances become fixed parameters and highly reduces the
complexity of the optimization problem.


4) The KL divergence DKL(xiτ ||xjτ )
Since xjτ is approximated as a Gaussian random variable, the KL divergence can be calculated
by


DKL(xiτ ||xjτ ) =
1


2


(
(x̄jτ − x̄iτ )T (Σj


τ )
−1(x̄jτ − x̄iτ ) + tr((Σj


τ )
−1Σi


τ )− dim(xiτ ) + ln


( |Σj
τ |
|Σi


τ |


))
.


(4.2.10)


In Equation (4.2.10), only 1
2
((x̄jτ − x̄iτ )T (Σj


τ )
−1(x̄jτ − x̄iτ )) is related to the optimization vari-


ables. Σj
τ ’s are now constants so that other parts are all independent to the optimization


variables. Therefore, we can replace the DKL(xiτ ||xjτ ) by a simpler function,


Dr(x̄
i
τ , x̄


j
τ ) =


1


2


(
(x̄jτ − x̄iτ )T (Σj


τ )
−1(x̄jτ − x̄iτ )


)
. (4.2.11)


We can see that Equation (4.2.11) basically calculates the distance between two nominal
states in two modes. That is why maximizing it will result in control inputs that diversify
the trajectories in different modes, and hence a faster identification of the correct mode.


5) The chance constraint Pr(xjτ ∈ F) ≥ p


Since xjτ ∼ N (x̄jτ ,Σ
j
τ ), we can represent xjτ as


xjτ = x̄jτ + wjτ where wjτ ∼ N (0,Σj
τ ). (4.2.12)


To convert the chance constraint (4.2.2d) into a deterministic constraint, we first use a convex
polytope to approximate and convexify the infeasible region, as shown in Fig. 4.2b, and then
tighten the feasible set by Wj


τ , where


Wj
τ = {w|wT (Σj


τ )
−1w ≤ α} (4.2.13)
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(a) Original feasible region (in blue stripes) (b) Convex hull of the infeasible region


(c) Tightened region (d) Linear constraint


Figure 4.2: The original and tightened feasible regions (white regions) in the lane merging
example


is the error ellipsoid that the noise is within it with probability at least p, The operator 	
denotes the Pontryagin difference, defined by


A	 B = {a ∈ A|(a+ b) ∈ A ∀b ∈ B}.


α is the constant such that Pr(wjτ ∈ Wj
τ ) ≥ p. (wjτ )


T (Σj
τ )
−1wjτ is a χ2-distribution with


v degree of freedom, where v equals to the dimension of the noise wjτ . Let F (x; v) be the
cumulative probability density of a a χ2-distribution with degree v. Then α can be obtained
by calculating the inverse of F such that p = F (α; v). However, the tightened feasible set
could still be non-convex, as shown in Fig. 4.2c. To mediate this, we propose to utilize the
trajectories {x̂jt:t+N−1} from the solution of the optimization problem of the previous time
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step to calculate linear constraints by


~d(x̂jτ ,Conv(F c)⊕Wj
τ )


||~d(x̂jτ ,Conv(F c)⊕Wj
τ )||


(x̄jτ − x̂jτ ) ≤ ||~d(x̂jτ ,Conv(F c)⊕Wj
τ )|| ∀τ, j, (4.2.14)


where ~d(x̂jτ ,Conv(F c)⊕Wj
τ )) is the minimum distance between x̂jτ and the expanded infeasi-


ble set Conv(F c)⊕Wj
τ , as shown in Fig. 4.2d. Let U j


τ be a matrix such that U j
τ (U j


τ )T = Σj
τ/α.


We can compute ~d efficiently by first transforming the environment by (U j
τ )−1 such that the


uncertainty ellipsoid becomes a unit n-sphere. We then find the distance between the robot
and the closest polytope boundary in the transformed environment. If the dimension is only
2 or 3, we can compare all distances from the robot to edges or planes of the polygon or
polyhedron to find the minimum distance. Or we can solve a quadratic programming directly
to find that. The distance is then subtracted by one unit and transformed back to the orig-
inal environment by U j


τ . For more than one disjoint infeasible regions, we can do the above
process for each infeasible region and then include all the inequality constraints (4.2.14).


Here it is worth to point out that if the dynamical model is linear and the feasible set can
be represented as a linear inequality such as gTx ≤ h, we can use the closed-loop paradigm
introduced in [Kou+10] to obtain a less conservative tightened region.


6) The approximate form


Based on the above approximations and reductions, we conclude here that the optimization
problem (4.2.2) will be approximated by the following deterministic MPC:


minimize
{x̄jt:t+N−1}j,
{ujt:t+N−1}j


K∑


j=1


t+N−1∑


τ=t


J(x̄jτ , u
j
τ )bt(j)+


λH(bt)
t+N−1∑


τ=t+1


(
−
∑


i<j


Dr(x̄
i
τ , x̄


j
τ ) +


1


2
ζ


K∑


j=2


||u1
τ − ujτ ||2


)
(4.2.15a)


subject to x̄jt = xt ∀j = 1, . . . , K (4.2.15b)


x̄jτ+1 = fj(x̄
j
τ , u


j
τ ) ∀j, τ (4.2.15c)


Inequality (4.2.14) ∀j, τ (4.2.15d)


umin ≤ ujτ ≤ umax ∀j, τ (4.2.15e)


u1
t = ujt ∀j = 2, . . . , K (4.2.15f)


To further reduce the time complexity in a high confidence case, we will remove the states
and constraints corresponding to intent j if the belief bt(j) is below a user-defined parameter
ε, which should be a small number.


7) The intent estimation







CHAPTER 4. EXPLORATORY PLANNING VIA MODEL PREDICTIVE CONTROL58


For the second part, we need to update the belief bt+1 based on the observed new state
xt+1 and the optimal control input u∗t . The belief can be updated by Bayesian inference via:


bt+1(j) ∝ bt(j)P (xt+1|xt, u∗t , j), (4.2.16)


where P (xt+1|xt, u∗t , j) ∝
1√


(2π)n|Σj
t+1|
×


exp


(
1


2
(xt+1 − fj(xt, u∗t , 0))T (Σj


t+1)−1(xt+1 − fj(xt, u∗t , 0))


)
.


4.3 Applications to Autonomous Driving


In this section, we show how we formulate and apply our framework to two autonomous
driving scenarios: a lane merging scenario and a left-turn scenario. We will show that our
method not only improves the safety comparing to standard MPC, but it also enhances the
overall performance by exploring the human intent.


4.3.1 Lane Merging Scenario


The first one is the lane merging scenario mentioned in Section 4.1. We assume that there are
three different kinds of human drivers, i.e. K = 3, in the lane merging scenario: {1: Oblivious;
2: Aggressive; 3: Courteous}. The state of the system is x = [dh, vh, dr, vr]


T where subscripts
h and r represent the vehicle with human driver and the autonomous vehicle, respectively.
dh and dr are distances to the bottleneck, and vh and vr are their speeds. The dynamical
model of each mode is as follows:


xt+1 = f1(xt, ut) = Axt +But + w(1) (4.3.1)


xt+1 = f2(xt, ut)


=


{
Axt +But + a+ w(2) if |dh,t − dr,t| < Dreact


Axt +But + w(2) otherwise
(4.3.2)


xt+1 = f3(xt, ut)


=


{
Axt +But − a+ w(3) if |dh,t − dr,t| < Dreact


Axt +But + w(3) otherwise
(4.3.3)


where


A =






1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1



 , B =






0
0
0


∆t



 , a =






0
∆t
0
0



 .
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Dreact is the assumed reaction distance that the human driver will react to the autonomous
car only when two cars are within Dreact. We set Dreact = 25 here. If the human driver
is oblivious, she will not be affected by the other car. If the driver is aggressive, she will
react and accelerate when the other car gets close enough, i.e., within Dreact, to her. If
the driver is courteous, she will yield to the other car if they are within Dreact. We let
w(1), w(2), w(3) ∼ N (0, Q), where the covariance Q = diag([0.01, 0.01, 0.01, 0.01]T ). In this
example, we only control the accelerate rate ut on the horizontal direction.


The two vehicles should remain a safe distance after the bottleneck, so the feasible set is
defined by


F = {xt : |dh,t − dr,t| > Dsafe if dh,t > 0 or dr,t > 0},


where we set the safety distance Dsafe = 7(m), which is slightly larger than the length of
an average family car. The original feasible region is shown in the region of blue stripes in
Figure 4.2a.


We use two simulations in this scenario to show the efficacy of our method. The simula-
tions are run in Matlab with an open source nonlinear optimization solver Ipopt [WB06]. In
our simulation, the horizon N is chosen to be 30. The solving times for each time step in 3
intents, 2 intents, and a single intent cases are less than 0.9s, 0.6s and 0.1s respectively. We
believe the solving time can be improved if we use a more efficient language such as C++.
We can also shorten the horizon to reduce the solving time.


Our method vs MPC without human model


The first simulation compares our method with a normal MPC without human model. The
human driver is assumed to be an aggressive driver. In this comparison, we let


J(x̄jτ , u
j
τ ) =


[
0 0 −1 0


]
x̄jτ ,


so the autonomous vehicle will try to reach the bottleneck. In the standard MPC framework,
the speed of the human-driven car is assumed to be constant during the horizon we consider,
which is a reasonable assumption when we do not have future information about other cars.


Figure 4.3 shows the positions of the human-driven car (yellow) and the autonomous car
(black) when using both our method and the standard MPC. The standard MPC controller
finds solutions that make the autonomous car accelerate to pass the human driver at the
beginning, as shown in Figure 4.4b. When the autonomous car gets close enough to the
human driver, she speeds up. However, the standard MPC does not model the behavior of
an aggressive driver and just assumes the driver will maintain her own speed in the future.
Under its model, it finds itself unable to pass the other car at time 4.8s, and moreover, it is
also too late to decelerate to avoid collision. That is why the standard MPC method fails to
find a solution and ends at 4.8s.


On the contrary, our method takes care of different driver behaviors. At the beginning
we can see that from Fig. 4.3a and Fig. 4.4a that our controller is trying to remain the same
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(a)


(b)


Figure 4.3: The trajectories of (a) our method and (b) standard MPC. The yellow squares
and black squares represent the human driver and the autonomous vehicle respectively.


(a)


(b)


Figure 4.4: The velocities of (a) our method and (b) standard MPC.


speed but still be able to catch up with the human driver in order to trigger the reaction
of the human driver. When it finds out the driver is aggressive, as shown in Figure 4.5,
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Figure 4.5: The belief estimation in our method.


(a)


(b)


Figure 4.6: The trajectories of (a) with and (b) without the intent exploration term. The
yellow and black squares represent the human driver and the autonomous vehicle respectively.


our controller will keep the same speed as the human driver and maintain a safe distance in
order to avoid collision. Finally, they safely merge into the same lane.


Human intent exploration


The second simulation compares the results of our method with and without the human
intent exploration term in order to show that our method will determine control inputs that
help identify the correct intent. The driver is assumed to be courteous in this comparison.
We let


J(x̄jτ , u
j
τ ) =


1


2
||ujτ ||2.


λ = 20 and ζ = 1000 when we include the intent exploration term in our method.
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(a)


(b)


Figure 4.7: The velocities of (a) with and (b) without the intent exploration term.


(a)


(b)


Figure 4.8: The belief estimation of (a) with and (b) without the intent exploration term.


Figures 4.6b and 4.7b show the trajectory and speed without the human intent explo-
ration term. We can see that it only aims to minimize the control input, and belief estimation
in Figure 4.8b does not change during the whole process. On the contrary, if we add the
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Figure 4.9: Autonomous vehicle turning left and human driven vehicle going straight.


human intent exploration term, the autonomous car will start to accelerate at the beginning,
as shown in Figures 4.6a and 4.7a in order to get close enough to probe the type of the human
driver. Hence, it can update the belief of the human driver and learn that the human driver
is mostly courteous at around 6-7s, as shown in Figure 4.8a. Then it safely maintains its
current speed to pass the other car once it has high belief that the driver is courteous.


4.3.2 Left-Turn Scenario


In this scenario, the autonomous car needs to make a left-turn while there is another human-
driven car going straight from the other lane, as shown in Fig. 4.9. The human driver may
be oblivious, take a soft brake and take a hard brake. The human driven car will react to
the autonomous car only if the autonomous car gets close to lane boundary. The goal of the
autonomous car is to make a left-turn without collision as soon as possible.


The coordinate system is shown in Fig. 4.9, where d is the longitudinal distance and y is
the latitudinal direction. Let dr, yr, θr be the pose of the autonomous vehicle, where θr is
the heading angle, and vr, ωr be the velocity and angular velocity of the robot. We have




dr,t+1


yr,t+1


θr,t+1



 =




dr,t
yr,t
θr,t



+






∆t cos θt 0
∆t sin θt 0


0 ∆t




[
vr
ωr


]
(4.3.4)


To simply the formulation, we assume the autonomous vehicle is originally in (0, 0, 0)
and will follow a circular trajectory with radius R during the left-turn and let vr = Rωr, so
the position of the autonomous vehicle can be represented as the radian along the circular
trajectory, which is the same as the heading angle θr as well. The human driver is assumed
to be within three modes: {1: Maintain the same speed, 2: Apply half deceleration rate,
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Figure 4.10: The positions of the oblivious human driven car (yellow) and the autonomous
car (black).


(a)


(b)


Figure 4.11: The (a) control input of the autonomous car and (b) its belief on human driver.


3: Apply full deceleration rate}. The longitudinal motion model for the human driver is as
follows:


dh,t+1 = dh,t + vh,t∆t


vh,t+1 = vh,t + ah,


where a is the deceleration rate and


ah =







1
2
amax if mode = 2 and θr ≥ θreact,


amax if mode = 3 and θr ≥ θreact,


0 otherwise.


(4.3.5)


We let amax be the maximum deceleration rate which is set to 4m/s2 in our simulation and
θreact = 20◦ be the angle that will cause the human drive to react to the autonomous car.


In the first simulation, the human driver is an oblivious driver (mode 1). The positions
of the two cars are shown in Fig. 4.10. We can see that the autonomous car will first stop
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Figure 4.12: The positions of the courteous human driven car (yellow) and the autonomous
car (black).


(a)


(b)


Figure 4.13: The (a) control input of the autonomous car and (b) its belief on human driver.


at near the intersection starting from 0.5s, as shown in Fig 4.11a, to wait for the reaction
of the human driven vehicle in order to infer the human mode. As shown in Fig. 4.11b, the
probability of mode 1 (oblivious driver) rises. Based on this belief, the autonomous vehicle
continues to wait until the human driven vehicle passes the intersection and finally starts
to turn from 2.8s. This shows our controller generates an exploratory behavior on probing
the human driver intent by moving close to the intersection and maintains safety at the
same time. It is interesting to point out that using our proposed planning framework, the
autonomous vehicle performs a human-like behavior that it approaches the intersection to
see if the car from the other lane will yield to it or not.


In the second simulation, the human driver is a courteous driver who will decelerate
with 3m/s2, which is between those of mode 2 and mode 3. Even though the deceleration
rate is not in our model, we can see that the autonomous vehicle is able to estimate the
mode of the human driver from Fig. 4.13b, where the probabilities of mode 2 and mode 3
are changing around 0.5. In this case, the autonomous vehicle crosses the intersection first
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because in either mode 2 or mode 3, the autonomous car is safe to cross the intersection.
This simulation shows that our method can handle certain amount of model mismatch and
maintain safe. The more modes we include, the more robust our method will be. However,
determining the number of modes we need to include in order to achieve certain robustness
is not a trivial problem, and we will look into it in the future.


4.4 Summary


In this chapter, we consider the problem of planning in human-robot interaction with un-
known human intent. We propose a MPC-based framework which can encourage the explo-
ration of the human intent as well as achieving its goal safely. Some approximations and
reductions are proposed in order to solve the proposed optimization problem efficiently. A
lane merging scenario and a left-turn scenario are shown to demonstrate the efficacy of our
method and the effectiveness of the human intent exploration term in our framework.


The main challenge of this method is to efficiently obtain a global or a good local mini-
mizer. Since in general the cost functions and constraints can be nonlinear and nonconvex,
we might only be able to obtain a local minimal solution within a specific time, but the
local minimal might not be good enough. Another challenge is to consider the case that the
human intent changes depending on the robot actions.
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Chapter 5


Conclusion and Future Directions


This thesis contributes to the development of frameworks and computational tools for de-
signing safe and efficient human-in-the-loop systems in which human intents are hidden. A
POMDP-based (Chapter 2 and 3) and a MPC-based (Chapter 4) sequential decision-making
frameworks are proposed to integrate the human model, the machine dynamical model and
their interaction. There are different venues for these two frameworks. The POMDP-based
approach is a model-based formulation for planning in multi-intent human-in-the-loop sys-
tems whose optimal policy can be solved offline. Although it takes more time to compute
the control policy, once we solve the policy, running the policy can be very fast and done in
real time. Therefore, it is suitable for non-safety-critical systems that require fast interactive
behavior. On the other hand, the MPC-based approach requires a longer time horizon since
it has to solve an optimization problem in real time, but its advantage is that it can incorpo-
rate hard constraints so it guarantees the constraints will not be violated. Our results show
that both approaches enable us to design autonomous systems that are aware of the effect
of their actions on the human, resulting in a faster identification of human intents, a safer
interaction, and a better balance among decisions that gather information, decisions that
change the human intent and decisions that complete the goal.


Furthermore, the computational challenges are addressed and tackled in Chapter 3 and 4.
We utilize quadratic function approximation, lower bound update and point-based value
iteration to make solving an optimal policy possible in the hidden mode stochastic hybrid
system, which results in a significant improvement on the computational time. For the
MPC-based method, Gaussian approximations, covariance updates and linear constraint
approximations are used to accelerate the computation, making the intractable formulation
become a tractable problem.


Taking them together, our contributions provide a formalism for designing efficient and
safe human-in-the-loop systems.
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5.1 Future Directions


We have demonstrated applications in driver-assistance systems and autonomous driving
systems using our frameworks. However, under our frameworks for sequential decision-
making for human-in-the-loop systems, some work still remains to establish a boarder and
more applicable interactive autonomy. Here we propose possible extensions in support of
this vision.


Hierarchical planning


We can combine the benefits of the POMDP-based and the MPC-based approaches in a
hierarchical manner. The main drawback for MPC-based approach is that it cannot extend
to very long horizon, but if we run a POMDP policy to determine a subgoal for the task in
the higher hierarchy first, it mediates the computational effort consumed by MPC. Therefore,
MPC can run in the lower hierarchy to achieve the subgoal with a shorter horizon. Such way
reduces the horizon of MPC so that it can run in real time and still ensure the constraints
will not be violated while planing for the subgoal.


Multi-agents interaction


In some real-world scenarios, an autonomous system has to interact with multiple humans
at the same time and those humans also interact with each other and with the autonomous
system. For example, vehicles on the road are basically interacting with each other at the
same time. In our approach, we can treat other agents other than the ego autonomous system
as a single system the autonomous system interacts with, so the set of hidden intents are the
Cartesian product of all human possible intents and the system states are the concatenation
of all different human states. However, such way cannot extend to too many agents because
the number of possible intents will grow exponentially. Furthermore, it is hard to model the
joint interactive behavior, where the multi-human multi-robot interaction problem is still
an open research topic. It is valuable to explore different approaches. For example, we can
try to reduce the coupled interaction of other humans into a simpler model. Or we can
prioritize the human agents and assume the human with lower priority will not affect the
human behavior with higher priority.


Human model learning and adaptation


It is worth to study how many human modes are sufficient in order to describe different
human behaviors during the interaction. In some cases, we can use our domain knowledge
to decide it and treat it as a hyper-parameter. A more systematic approach is to learn it
from data. Since the number of modes are unknown in advance, Bayesian nonparametric
models [Teh+04] such as the Dirichlet processes can be used for clustering with unknown
number of clusters. Its benefit is that the number of modes can grow if we observe new
data not compatible to previous seen data. Another direction is to learn a nominal model
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first. During the interaction, the autonomous system tries to adapt a new and more accurate
human model on the fly starting from the nominal model.
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