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Abstract 


Monitoring for cancer recurrence after initial therapy is challenging. Current imaging 


technology limits the size at which cancer may be detected; currently, the smallest clinically 


detectable tumor is 1-2 mm in diameter [1,20]. A locally recurrent tumor of this size has a high 


chance for metastatic dissemination, which could render the patient incurable [2].  In 


collaboration with oncologist researchers from Washington State University and UC-San 


Francisco, we propose a modern cancer surveillance technique that utilizes a radiation-detecting 


micro-sensor employed with radiolabeled inhibitor-based anti-body drug conjugates (ADC’s) for 


the localization of prostate cancer. To achieve molecular identification and localization, a 


network of CMOS image sensors will be used to localize tumor growth at early stages. As 


preliminary design steps, this project report identifies and analyzes system constraints to 


establish a theoretical framework for such a design. Based on data presented in this study, 


simulations suggest that two 500 x 500 um2 stacked CMOS Active Pixel Sensors (APS) with a 


500 um separation could be used to localize a tumor with a 300 um radius up to 5mm from the 


sensor interface.  
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Introduction of Variables 
3-T  3-Transistor 


A/D  Analog to Digital Converter 


ADC  Anti-body Drug Conjugate 


APS   Active Pixel Sensor 


CMOS  Complementary Metal-Oxide Semiconductor 


E  Beta Particle Energy 


EHP   Electron Hole Pair 


k  Number of events/radioactive decays 


No  Initial number of 32P Atoms present at the start of decay 


NoB  No for healthy (background) cells 


NoT  No for tumor cells 


PET  Positron Emission Tomography 


PN   Joined P-Type to N-Type Semiconductors 


PSMA   Prostate-Specific Membrane Antigen 


R   Beta particle incidence rate   


RB  Background beta particle incidence rate (β/sec) 


Rs  Tumor signal incidence rate ( β/sec) 


S(E)  Stopping Power (Energy Loss) in a medium with E Initial Energy 


SBR  Tumor Signal to Background Ratio 


SNR  Signal to Noise Ratio (Electronics) 


Ts  Sampling Period 


WblCDF  Weibull Cumulative Density Function  


wdepletion Depletion region width  


x  Distance a beta particle travels before hitting the sensor  


α   Sensor volume detectable angle 


λ   Half life 


μ   Gaussian noise distribution mean 


ρbackground Background binding density  


ρSilicon   Density of Silicon [g/cm3] 


σ2   Gaussian noise variance, with standard deviation σ 


ϕB   Background flux rate 
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1. Introduction 


 Cancer is a disease process that develops as a result of genetic and epigenetic alterations 


within a normal cell. It is known that these malignancies can vary in the rate of growth and 


progression [1]. Modern cancer surveillance techniques suffer from two major obstacles that 


prevent localization of initial cancer growth: (i) there is a resolution limit that constitutes the 


minimum tumor growth required for successful image detection, and (ii) there are no molecular 


markers to differentiate cancerous tissue from healthy tissue [2]. Using contemporary imaging 


technology, a tumor must grow to a diameter of at least 1mm before it may be emitted into an 


image [2,19]. Even if the tumor is large enough for image resolution, the tumor must be 


identified without the aid of any molecular markers [1,20]. Detection of malignancies is vital to 


patient treatment, outcome, and survival; therefore, better detection techniques would enable 


better survival rates [2]. 


 The constraints on current imaging technology prevent doctors from promptly detecting 


and quickly intervening at the early stages of growth, which may subsequently prevent neoplasm 


intervention before dissemination [1]. Once a tumor has metastasized and spread to other regions 


of the body, treatment and detection becomes complicated. Often times, metastatic tumors are 


the cause of death due to the invasion and domination of malignant cells within the body [2]. 


Based on the analysis of several clinical cases of metastases and time of dissemination, research 


studies show that “metastases start to grow years before the … tumor is clinically detectable” [2-


5]. In one particular research study of breast cancer dissemination, Von Fournier et al. concluded 


that tumors as small as 0.6mm in diameter have the potential to seed distant metastasis [4].  


 Current imaging technology is done from outside the body. We hypothesize that imaging 


from within the body would overcome these constraints and would allow for detection of smaller 
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tumors. Thus, this would enable earlier detection, earlier treatment, and better prognosis for 


survival of the patient. This project aim will specifically focus on the detection of prostate cancer 


within the male population. Particular consideration for this tumor was chosen because evidence 


has shown that locally recurrent prostate tumors have a high potential for metastasis [1]. 


1.1 Novel Cancer Surveillance Technique 


We propose a novel cancer surveillance technique that: (i) resolves um-scale tumor 


recurrence in the area of primary growth, and (ii) differentiates tumor cells from healthy cells 


using radiolabeled antibody drug conjugation. Our objective is to detect locally recurrent cancer 


before potential dissemination, at 100,000 cells (tumors with a 300um radius). To achieve this, 


implantable micro-sensors are used in conjunction with antibody molecular markers to assert 


and localize cancer growth. The proposed technique is outlined in Figure 1. 
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Figure 1: Outline of Novel Cancer Surveillance Procedure In Comparison to Current Methods 


(Image courtesy of Stefanie Garcia) 


 


To prove feasibility of our novel cancer surveillance technique, prostate cancer is used as 


a test model (as explained in the introduction) because of the wide availability of clinical data 


and its significant prevalence among the male population [6]. Our technique could also be 


extended to breast cancer surveillance in future trials. As outlined in Figure 1, our surveillance 


method goes as follows: 


1) After removal of the primary tumor, a network of radiation-detecting micro-sensors is 


placed within the region of primary growth.  


2) Every few months, the patient comes to the doctor’s office for a screening. 


Size ≥ 1mm  


Size ≥ 300um  
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2.1) Radiolabeled anti- body drug conjugates (ADC’s) are intravenously 


administered to the patient. 


2.2) If there is any cancerous growth within the body, the drug conjugates will 


bind to the tumor site within 4 hours, and the rest will be washed out. Though 


most ADC’s will bind at the tumor site, there will be some background binding on 


healthy tissue.  


2.3) ADC’s are constantly emitting radiation as they undergo radioactive decay. 


The localized source of radiation will reveal the relative size and location of the 


tumor.  


2.4) Power and communication with the implanted micro-sensor may be 


accomplished using ultrasonic excitation of piezoelectric transducers, as presented 


in D. Seo’s research publication [5].  Raw sensor readings will be transmitted 


when powered. 


2.5) Sensor data will be externally reconstructed and analyzed. Cancer recurrence, 


at a specified size and location, can then be assessed.   


3) If cancer recurrence is detected, targeted radiation treatment, or other cancer 


therapeutics, could be utilized to remove the tumor and prevent metastases or 


further growth.    


 This project report is arranged as followed. Section 2 outlines the foundational 


constraints on designing a radiation-detecting implantable micro-sensor. Section 3 outlines a 


refined objective and design methodology for achieving an optimal design. Section 4 analyzes 


the maximum noise requirements and specifies probability of error. Section 5 analyzes the circuit 
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architecture and characterizes the pixel sensing circuit. Section 6 summarizes the design results 


and discusses the implications. Section 7 presents plans for future work. 


2. Background 


Implantable radiation micro-sensors have not been pursued in the past due to limitations 


in powering and communicating with such devices, as well as limitations on anti-body drug 


conjugates.  


2.1 Relevant Work  


Recently, radiation and oncologist researchers from Washington State University and 


University of California-San Francisco have developed a “PSMA [Prostate Specific Membrane 


Antigen] targeted inhibitor for PET imaging of prostate cancer” that achieves high binding rates 


and enables molecular labeling of cancerous cells [7]. Using inhibitor-based Anti-body Drug 


Conjugation (ADC), PSMA could be used to identify tumor growth at the cellular level (it is 


current clinical practice to us PSMA as indicators of prostate cancer cells) [7]. To achieve 


cellular identification, PET (positron emission tomography) cannot be used, as this imaging 


technique suffers from the limitations outlined in the introduction. Instead, micro-sensors 


employed with radiolabeled ADC’s could be used to localize um-scale tumor sites within the 


body [8]. Radiolabeled ADC’s, which are ADC’s labeled with radionuclides, would exhibit 


decay as they bind to cancer cells [8]. This radiation could then be detected and localized with 


nearby micro-sensors.    
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Based on preliminary data for PSMA targeted inhibitors, radiolabeled ADC’s bind to 


cancerous cells over healthy cells with a specificity of 30:1 [7]. Furthermore, a conservative 


estimate on the number of bound ADC’s over one cancerous cell is about 5000 [7]. 


In the advancement of micro-sensor wireless power harnessing, implantable neural sensor 


experiments have shown that “low-power CMOS circuitry coupled with ultrasonic power 


delivery and backscatter communication” can harness ~500uW with a 1mm2 sensor [5]. As 


proposed in the findings, this power may be scaled with sensor size. These power estimates 


provide sufficient amounts of energy to excite a low-power CMOS implantable micro-sensor [5]. 


The previously outlined research efforts support the foundational feasibility of our cancer 


surveillance method. In the following section, radiolabeled ADC’s are characterized to identify 


fundamental limits on the sensing mechanism and required sensitivity.   


 


Table 2.1 Summary of Preliminary Data Estimates for Implantable Micro-Sensor Design [7] 


2.2 Radiolabeling Techniques 


Modern cancer therapeutics consist of radiotherapy that uses gamma and alpha radiation 


for treatment. Since cancer patients will likely have been exposed to both of these types of 


radiation, only beta emitting radionuclides are considered for radiolabeling ADC’s to prevent 


residual radioactive remnants from affecting the sensor signal.  


The ideal beta emitter would be reactive with our PSMA targeted inhibitor and would 


also emit energies high enough for relativly long distance radiation detection. Beta emitters 


Cancer to Healthy Cell 


ADC Binding Rate
30:1


Number of Bound ADC's 


Over One Cancer Cell
5000 P-32/cancer cell


Available Power: 500uW/mm2 Sensing Area


Preliminary Data for Implantable Micro-Sensor Design
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compatible with the PSMA targeted inhibitor include 32P, 36Cl, 14C, and 35S. The decay equations 


and resultant emitted energies of these radionuclides are outlined in Figure 2.1. Of the possible 


beta emitters, 32P is analyzed in our cancer surveillance model because of its relativly high 


energy.  


 


Figure 2.1 Possible Beta Emitters for Radiolabeled PSMA Targeted Anti-body Drug 


Conjugates 


2.2.1 Beta Radiation Energy  


 32P decay releases 1.71MeV, of which the antineutrino and beta particle (fast moving 


electron) release as an energy continuum with a distribution shown in Figure 2.2 [9]. The 


average beta particle energy is 0.56 MeV, and the maximum energy is 1.71MeV [9]. The energy 


spectrum is approximated using a Weibull distribution with parameters a = 0.67 and b = 2.00. 


The fitted distribution is derived in Appendix Section 1.  


 


            
32 32 1


15 16


1 ( / )


1.71


( | , ) ( )
b


e


b x ab x
a a


P S MeV


f x a b e


  


 


   





                        


        


 


 


Figure 2.2: Figure 1.4: Beta Electron Energy Distribution During 32P Beta Decay [9] 
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Weibull Distribution Approximation expressed as f(x|a,b) 


 


2.2.2. Beta Energy Loss In Tissue 


 To detect a signal from a radiolabeled ADC, a beta particle must deposit some amount of 


energy on the sensor after experiencing energy loss and deflection during its travel through tissue 


[9]. The causes of energy loss and deflection are briefly outlined in Appendix Section 2. The key 


point is that stopping power S(E), given in g/cm2, models energy loss as it travels through a 


medium [18]. The stopping power for beta electrons traveling through tissue is shown in Figure 


2.3a [18]. 


 Using stopping power, energy loss may be determined. Figure 2.3b outlines energy loss 


per unit length traveled (x) in tissue based on initial energy. Figure 2.3d outlines the incident 


energy distribution for beta particles at x = 5mm. A negative energy means that a beta particle at 


5mm with the indicated initial energy will not make it to the sensor. Figure 2.3c outlines the 


percentage of beta particles that travel to a specified distance based on the initial energy 


distribution and respective stopping power. For this figure, the Weibull Cumulative Density 


Function (denoted wblCDF) approximates the energy distribution. As presented in Figure 2.3c, 


approximately 15% of emitted beta particles have the potential to travel to 5mm, 7% have the 


potential to travel 6mm, and 2% have the potential to travel 7mm.  
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Figure 2.3: (a) Beta Electron Stopping Power through tissue [18] (b) Energy Lost Per Unit 


Length Traveled Based on Initial Energy (c) Percentage of Beta Particles that Can travel 


Specified Distance (d) Incident Energy at 5mm Based on Initial Energy [9] 


2.3 Optimal Sensing Technique 


Given the distribution of energy deposited on the sensor, there are several methods to 


measure and isolate the beta particle signal. Potential detection methods are outlined in Table 


1.2. 


The simplest detection method utilizes a PN junction to detect incoming beta particles 


and measures the current across the diode junction. Due to the low decay rate of 32P, this method 


is not feasible since there is not enough charge deposited on the junction to generate detectable 


amounts of current. Other methods could overcome this limitation by integrating charge over 


some amount of time and measuring the resultant voltage differential. To accomplish charge 


01 ( |  )
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incident initial initial tissue
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integration, a floating-gate flash memory design or a passive integration sensor could be used; 


however, the high radiation influx could potentially damage the insulating gate oxide, resulting 


in a high probability of faulty readings [10,11]. Another charge detection architecture that is less 


affected by oxide damage is the Active Pixel Sensor. The CMOS Active Pixel Sensor (APS) 


integrates charge on a small PN junction and induces a voltage on the sensing node [12]. Charge 


integration (signal generation) is accomplished through the junction capacitance in the depletion 


region of the PN junction; thus, radiation defects pose no immediate hazards over the sensing 


area [12].  


 


Measured 


Variable 


Sensing  


Technique 
Description Findings 


Current PN Junction/ Diode 
Current generated from incoming e-; 


measure current across diode 


Doesn't generate enough current.  


Detecting aA of current is not feasible, 


electronic noise would dominate 


Voltage  
Floating Gate Flash 


Memory 


Charge integrated on floating gate; 


measure voltage on floating gate cap 


Too much oxide damage would occur 


during initial intravenous infusion; 


would lead to defective sensor readings 


Voltage  
Passive Integration 


Sensor 


Incoming e- damage HfO2 layer;  


measure resistance from damaged 


Too much HfO2 damage would occur 


during initial intravenous infusion; 


would lead to defective sensor readings 


Voltage  
CMOS Active Pixel 


Sensor 


Charge integrated on diode cap; 


measure voltage over short timeframe 


Feasible to detect spike in charge from a 


single beta particle if integrated over 


short timeframe 


Table 2.2 Radiation Detection Techniques 


 


 Among several studied sensing architectures, the most feasible sensing method, given the 


limitations of the radioactive decay scenario, is the CMOS APS. Using CMOS APS as sensing 


elements provides several advantages: 
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 Using a small PN-junction, it generates a measurable charge-induced voltage change 


from a single beta particle. 


 The sensing element (PN-junction) does not immediately depend on an insulating gate 


oxide. This design has less gate capacitance area compared to other sensor techniques, 


making it less susceptible to radiation damage. 


 CMOS allows for a mass-producible, cost-effective device fabrication, and also allows a 


means of providing radiation-protection. 


Based on the several limitations posed to the system, CMOS APS is a feasible architecture on 


which to design a beta radiation sensor for cancer localization.   


2.3.1 APS Signal Generation  


A typical 3-T CMOS APS circuit is represented in Figure 2.3. The architecture is explained 


in the figure. Signal is generated and readout in the following manner: 


 


 


 


 


 


 


 


 


 


 


Figure 2.3 3-T CMOS Active Pixel Sensor 
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1. Silicon is Ionized: As beta particles pass through the sensor, they deposit some amount 


of energy within a pixel PN junction. This energy ionizes silicon (primarily in the 


depletion region of the sensing junction) and generates Electron Hole Pairs (EHP) within 


the firing pixel. The firing pixel denotes the individual pixel that experiences an event 


(was hit with the beta particle). 


2. Signal Converted to Instantaneous Voltage Drop: Charge generated from EHP’s is 


integrated within the junction capacitance over a short sampling frequency. The increased 


charge in the junction dQ is reflected through an increased voltage across the junction 


capacitor (dV = C*dQ). When there is no additional charge generation in the sensing 


junction (no event), the sensing node will experience a constant drop in voltage due to 


dark current. When energy is deposited (event occurred at the junction), there is an 


increase in charge in the sensing junction. This charge will induce a larger voltage drop 


on the sensing node in a single sample (compared to a no-event sample). 


3. Array is Sampled: The voltage across each pixel in the array is readout by enabling the 


row and column transistors in a sequential order. 


4. Ultrasonic Backscatter Data Transmission: After amplification and digitization, the 


sampled signal is modulated via the piezoelectric crystal and picked up by the external 


ultrasonic transducer.  


 


 As explained in the signal generation mechanism above, energy deposited within the 


depletion region of the sensing junction generates a measurable charge-induced voltage during 


one sample. The voltage generated over a short sampling period is outlined in the equations 


below. Assuming an approximately constant junction capacitance, the signal is directly 
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proportional to the incident energy. As an example distribution, Figure 2.5 portrays EHP 


generation based on incident energy for a depletion region width of 1um. 


,


,


( )


/


( ) /


deposited incident depletion Si


deposited ionization Si


incident depletion Si ionization Si


E S E w


EHP E E


dQ EHP q


dV QdC CdQ


dV CdQ S E w q E














 


 


 


 
 


Figure 2.5: (a) EHP Generation Based on Incident Energy  


2.3.2 Stacked CMOS APS Design  


 As previously described, there is a large amount of background radiation present in over 


our sensor (from ADC bindings to healthy tissue). If a single APS were used, the sensing area 


would be overwhelmed with background radiation, and there would also be no means of 


localization. To overcome this constraint, we propose that placing two Active Pixel Sensors 


back-to-back would allow for tumor signal isolation and localization. A single APS would only 


detect beta particle events and would have no sense of localization, since background radiation 


would overwhelm the sensing area and dominate signal readings. Placing two APS back-to-back 


would allow for localization. Each incoming beta particle would cause a single event on each of 


the two sensors over the same sample (beta particles travel at high speeds) [9]. Drawing a vector 
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from the two firing pixels on the sensors would reveal the relative location in which the beta 


particle originated. Over a large number of samples, a tumor would cause several event vectors 


to intersect over a small area, effectively suppressing uniform background radiation vectors. 


Figure 2.6 illustrates this scenario. Figure 2.6a shows how an event vector would be 


extrapolated. Figure 2.6b shows that an overwhelming number of event vectors originate from 


the background bindings. Over a large number of samples, the background vectors become 


uniform and randomly distributed over the sensor area. Using sophisticated noise suppression 


techniques, the uniform noise could be subtracted to isolate the tumor signal. 2.6c shows event 


vectors that would originate from a tumor without the presence of background. 


 


 


 


 


        (a)                                        (b)                                      (c) 


Figure 2.6: Vectors from (a) Single Event (b) Background Events (c) Tumor Events 


 


  


  







21 


 


3. Design Methodology 


 For an optimal sensor design, each design constraint must be carefully weighed to 


maximize tumor signal localization and minimize noise and background radiation.  


 Table 2.1 outlines the foundational design constraints of the entire system. As presented 


in Section 1.1, the primary objective of this project report is to design an implantable CMOS 


Active Pixel Sensor that, in conjunction 32P Radiolabeled Anti-body Drug Conjugates can detect 


locally recurrent tumors with a minimum 300um radius. Based on the background analysis made 


in Section 2, the objective is further refined in the following section.  


3.1 Design Objective 


 As presented in Figure 2.3d, 15% of emitted beta particles have the potential to travel to 


5mm. Since most of the beta particles from 5mm-7mm in front of the sensor will not have 


enough energy to make it to the sensor, only a 5mm detection sphere will be considered in this 


design. Background analysis on relevant work led us to an objective refinement: our objective is 


to design a CMOS APS that can detect tumors with a 300um radius at a maximum of 5mm from 


the sensor with minimum 98% confidence.  


3.2 Design Constraints: Two Main Sources of Error 


There are two inherent sources of error that constrain our design objective: (1) 


background ADCs that bind to healthy tissues and drown the tumor signal, and (2) electrical 


noise that may cause fluctuations in the sensor readings. SNR and SBR are terms are used to 


differentiate the two sources of error: 
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•
    


   
  


Beta Particles From Tumor Signal
SBR Signal to Background Ratio


Beta Particles From Background
   


SBR is the ratio of the tumor signal flux versus background flux, where flux denotes the 


expected number of incident beta particles over the sensor per second. Tumor Signal 


refers to the signal of interest (those beta particles originating from the tumor). 


Background flux refers to those beta particles (ADCs) that bind to healthy tissue. 


 


•
  


   
  


Electrical Signal Energy
SNR Signal to Noise Ratio


Electrical Noise Energy
   


SNR refers to parameters in the electrical domain and represents the ratio of signal 


energy (Es) to noise spectral density (No) for the sensor circuit. For an APS, signal 


energy represents the amount of charge-induced voltage generated in the PN junction 


from an event, and noise spectral density is derived from the equivalent input referred 


electrical noise from the system.   


 


Both SBR and SNR impose significant design constraints that affect different design 


parameters. Our design is based on the careful analysis of both constraints. Figure 3.1 outlines 


the design methodology for achieving the refined objective of Section 3.1. 
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Figure 3.1: CMOS APS Design Methodology 


 


This design methodology is followed in the following two sections. Section 4 analyzes 


the tumor signal to background ratio (SBR) through derivation of the tumor and background beta 


particle flux. Section 5 analyzes the electrical signal to noise ratio (SNR) of the pixel array 


circuit and derives the minimum detectable signal and probability of error. 
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4. Background and Tumor Signal Flux 


 Sources of error arising from background bindings cause the sensor to output false 


positives. This is an inherent limitation of our system dictated by our radiolabeled inhibitor-


based ADC. As explained in Section 2.1, the radiolabeled ADC binds to tumor and healthy cells 


with a specificity estimate of 30:1 [7]. This means, that to successfully detect a tumor at 5mm, 


the sensor would have to isolate the tumor signal from background bindings. The scenario is 


analyzed in the following sections.  


4.1 Theoretical Model of Flux 


The beta particle flux may be estimated from the decay equation. The beta decay 


equation for 32P is given by: 


32 32 1


15 16 1.71eP S e MeV      


0


0


t


t


N e


d
N e


dt

























  


log2 log2


14.3 1.2 6secdays E
    


No is the initial amount of radioactive atoms present at the start of decay, and λ is the half-life of 


32P [9]. With the specified 32P PSMA ADC, the molecular probes would settle within the body 


about 4 hours after initial intravenous injection [7]. The beta decay rate at 4 hours is 


approximately equal to the initial decay rate.   


44
0 0
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 As outlined in Table 2.1, there is ~5000 bound ADC’s on a single tumor cell, and due to 


the background binding ratio of 30:1, there are ~5000/30 bound ADC’s on a healthy cell. For a 


tumor with a 300 um radius, assuming a spherical shape, the tumor volume is ~ 110E6 um3 and 


consists of ~110E3 tumor cells (1 cell = 1000 um3) [13,14]. With 5000 β/cell, the initial number 


of radioactive atoms present over the tumorbed is: 


NoT =  5000*110E3 = 550E6 


The tumor flux will radiate spherically from the point source and decreases by 1/x2 as the 


distance from the source increases.  


2


0


2 2


0


2


Radiative Flux ( /sec/um )


1


4 4


Incidence Rate ( /sec)


4


t


t


Sensor
Sensor


N ed


dt x x
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N e A
R A


x














 

















 


  





  


 


The beta particle incident rate R on the sensor is defined as the amount of radiative flux over the 


sensor surface area. The expected beta particle incidence rate for tumors of various radii and 


various distances from the sensor is outlined in Table 4.1.  


 


Table 4.1a: Tumor Incidence Rate (β/sec) over a 500x500um2 sensor 


for various tumor sizes and distances 


 


R=200umR=300umR=400umR=500um


D=1mm 149 504 1196 2337


D=2mm 32 110 261 511


D=3mm 8 28 66 129


D=4mm 3 11 26 51


D=5mm 1 3 8 16


Tumor Incidence Rate (β/sec), 500x500um2 Sensor 
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Table 4.1b: Tumor Incidence Rate (β/sec) over a 1x1mm2 sensor  


for various tumor sizes and distances 


 


 To determine the total contribution of background radiative flux incident on the sensor, 


the background binding density must be integrated over the entire detectable volume (spanning 


some angle and distance). The background binding is 5000/30 β/healthy cell. With an 


approximate cell size of 1000 um3, the background binding density is 


3


5000 1
30 1000


.017[ ]Background um


   


The detectable distance from the sensor is 0 – 7mm, as was presented in Figure 2.3d. The 


detectable azimuthal and polar angle depends on the separation between the two sensors as well 


as the sensor size. For separation S and sensor length L, the azimuthal detectable angle α is given 


by the equation below. If the sensor has the same length along the other edge (it’s a square), the 


polar detectable angle would be the same as the azimuthal detectable angle.  


12 tan ( / )L S   


R=200umR=300umR=400umR=500um


D=1mm 598 2019 4787 9350


D=2mm 130 441 1047 2045


D=3mm 33 112 265 519


D=4mm 13 44 104 204


D=5mm 4 14 33 65


Tumor Incidence Rate (β/sec) over a 1x1mm2 Sensor 
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Figure 4.1: Determining the Azimuthal and Polar Detection Angles 


 


 Using spherical coordinates, the total detectable volume of the sensor may be 


approximated by taking the volume integral from 0 – 7mm (detectable distance) over α (the 


detectable azimuthal and polar angle). To get the total number of background beta particles NoB 


present, the background binding density is multiplied with the total detectable volume. NoB, 


combined with λ, yields the total number of background beta particles emitted in that volume per 


unit time dβ/dt. The background incidence rate is then found by incorporating the 1/x2 flux 


decrease. 
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 This approach slightly underestimates the amount of background radiation present since 


the detectable volume is not entirely spherical. This approach serves as model to yield a rough 


estimate on the expected background incidence rate. Monte Carlo simulations, outlined in the 


following section, validate the relative accuracy of these results.  
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 Correcting for the energies and range (from Figure 2.3d), the mean probability that a beta 


particle from 0 – 7m will hit the sensor based on the energy distribution is ~40%. The estimated 


background flux for various sensor sizes are listed in Table 4.2. Increasing the sensing area 


increases the amount of background radiation detected by the sensor, while decreasing the 


separation increases the detectable volume and also increases the detected background radiation. 


For a 500 x 500um2 sensor with a separation of 500um, RB≅ 600 β/sec. 


 


Table 4.2: Estimated Background Incidence Rates for Various Sensor Sizes and Separations 


4.2 Computational Model of Flux 


 A Monte Carlo approach was taken in order to simulate the behavior of an incoming beta 


particle over the sensor. Figure 4.3 outlines the procedure. 


 To run the simulation, the following variables must be chosen: tumor size, maximum beta 


particle range, sensor size, and sensor separation. From the tumor size and maximum beta 


particle range, the outward flux of tumor and background beta particles (dβ/dt) is identified. With 


a fixed simulation time, the number of beta particles originating from the tumor volume and 


background detectable volume is determined.  


 After identifying the number of beta particles to generate, the simulation proceeds as 


follows. For each beta particle, a random originating location is assigned. The location is taken 


L [um] S [um] α [rad] Rbackground (β/sec)
Incorporating 


Energy Loss


100um 500um 1.4 5 0


500um 500um 0.8 1700 595


1mm 500um 0.5 14000 5600


500um 100um 0.2 4900 1715


500um 500um 0.8 1700 595


500um 1mm 1.1 750 260
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from a uniform distribution over the respective volume. For particles originating from the tumor, 


a random point within the tumor volume is chosen. For particles originating from the 


background, a random point with the detectable volume is chosen. A random direction and 


random energy is then assigned. The direction is taken from a uniform distribution over all 


directions (360 degrees by 180 degrees in spherical coordinates). The energy is taken from the 


fitted Weibull energy distribution of the 32P beta emitters (outlined in section 1 and elaborated in 


Appendix Section 1).  


 The random location, direction, and energy constitute one ray which represents the beta 


particle. For each ray, it is then determined whether or not the beta particle hits the sensor. There 


are two criteria for hitting the sensor: (i) is the ray traveling in the right direction and does it hit 


both sensors, and (ii) does the ray have enough energy to make it to the sensor. If the ray satisfies 


both criteria and makes it to the sensor, the incident energy is used to determine the EHP which 


would be generated.  


 The results from the simulation yield the background signal flux, the tumor signal flux, 


and the amount of charge generated on each sensor from the incident rays. Over a large number 


of simulations, an approximation of the background signal flux and the tumor signal flux is 


determined.  


 Results from the Monte Carlo simulation are succinctly outlined in Table 4.3. As 


expected, the theoretical model in section 4.1 slightly underestimated the background incidence 


rate. The calculated RB from section 4.1 was 600 β/sec, and the simulated RB from the Monte 


Carlo results was approximately 650 β/sec, within 10% of the theoretical result. The model also 


underestimated the tumor signal rate, especially for close distances. This is most probably due to 


discrepancies in the incident energy distribution approximations.  
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Figure 4.3: Monte Carlo Procedure 


Weibull Distribution 
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Table 4.3: Monte Carlo Simulation Results 


 It is important to note that, although this particular Monte Carlo simulation result for a 


tumor with a 200um radius at 5mm showed an Rsig of 0 β/sec, had I ran more simulations, we 


could expect that, on average, Rsig would be 1 β/sec. This expected result is used in the following 


sections. 


4.3 Limitations on Number of Pixels and Sampling Rate 


 Based on the results from the previous section, the constraints on the minimum number 


of pixels and minimum sampling rate are defined. 


4.3.1 Minimum Number of Pixels  


 The minimum number of pixels is given by: 


Background


Pixel


Desired


R
N SBR


R
  


With the background and tumor signal rates outlines in Table 4.3 (Monte Carlo Results), a target 


design SBR of 10 requires the minimum number of pixels in Table 4.4 to isolate and localize the 


tumor signal. Since the sensor size is fixed, the number of pixels determines the pixel size. For 


4000 pixels, each pixel would be 8 x 8 um2. 


Rsig RB Rsig RB Rsig RB


D=1mm 88 680 272 688 616 620


D=3mm 3 648 26 628 46 654


D=5mm 0 608 2 648 8 666


Avg RB: 649


R=400umR=300umR=200um
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Table 4.4: Minimum Number of Pixels Required for Various Tumor Sizes 


4.3.2 Minimum Sampling Rate 


 Each pixel should be sampled fast enough to only capture a single event during the 


sampling window. The sampling period should be faster than RB so that, on average, there is less 


than one event expected over the sensor over a given sampling period, otherwise successive 


events would be indistinguishable from one another. Based on the simulation results, the 


sampling frequency must be much greater than 650Hz. 


1/


Background


s s


s


f T


f R






 


  


R=200umR=300umR=400um


D=1mm 78 26 10


D=3mm 2160 242 142


D=5mm 6080 3240 833
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5. Electrical Noise Analysis 


 This section focuses on CMOS pixel circuit design. Electrical noise is analyzed, and in 


particle, thresholds are identified for number of pixels and SNR. 


5.1 Sources of Electrical Noise 


 Parasitics, thermal variations, and effects of other random processes must be kept to a 


minimum to reduce noise fluctuations in the signal. CMOS noise is largely random, and over a 


large number of samples, CMOS noise may be characterized using a Gaussian distribution with 


mean μ and variance σ2: 
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f(x=a) is the probability density of CMOS noise at a. Integrating over values of x, the probability 


that the noise will be less than a certain value may be estimated using the cumulative density 


function given by: 
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The cumulative density function of a Gaussian random variable is best evaluated in terms of the 


Q function, which cleanly represents information of interest for Gaussian noise.  
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5.2 Probability of Error 


 The probability of pixel error is composed of the probability of false positives (detection 


of a pixel event through the sensing junction when no event has occurred) and the probability of 


false negatives (failure to detect an event through the sensing junction when an event has 


occurred). False positives arise from electrical noise, and false negatives arise when a beta 


particle does not have enough energy to generate a measureable charge-induced voltage. 


5.2.1 Noise Distribution For No-Event 


 The voltage signal that represents that no event has occurred is assumed to be 0V. As 


outlined in section 5.1, the distribution of noise around the no-event voltage is approximated 


with a Gaussian function with 0 mean and noise variance σ2. Figure 5.1 shows the expected noise 


distribution. Noise variance is calculated in section 5.4 and is approximated to be 200uV in this 


analysis.  


 


Figure 5.1 Gaussian Distribution of Electrical Noise 


Noise Distribution for No-Event 
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5.2.2 Noise Distribution For An Event 


 When an event is detected by the sensor, not all events will generate the same amount of 


charge. Some events will hit the sensor with low amounts of energy, and few events will hit the 


sensor with high amounts of energy. The deposited energy will generate a charge-induced 


voltage on the sensing node, with the expected mean signal voltage for an event approximated as 


2mV (explained in Section 2.3.1). The distribution of expected voltage generation on the sensing 


node is shown in Figure 5.2. 


 


Figure 5.2: Energy Distribution of Incoming Beta Particles. 


5.2.3 Probability of Event/Non-Event 


 The probability of k events occurring (probability of k radioactive decays) is given by a 


Poisson distribution with mean λ. The expected number of events over a sampling period Ts is 


determined by the total β incidence flux, which is approximately equal to the background flux 


rate ϕB.  
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Noise Distribution for Event 
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 Assuming that sampling frequency is at least 10 times faster than the background flux 


rate (as explained in Section 4.3), λ would be 0.1 and the probability of an event and no-event 


could be approximated as:  


0.1


0.1


( 0, 0.1) 0.90


( 1, 0.1) 0.1 0.09


f k e


f k e














   


   
 


90% of the time there is no event over the sensor, and 9% of the time these is 1 event. 1% of the 


time there is more than one event over the sensor.  


5.2.4 Optimal Threshold:   


 The optimal threshold would minimize the overall probability of error by minimizing the 


probability of false positives and probability of false negatives.  
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The optimal threshold is presented in Figure 5.3 and is approximately 0.12mV. Since P(non-


event) = 90% and P(event) = 10%, the overall threshold is closer to non-event voltage. Figure 


5.3b zooms in on the area of interest to illustrate the probability of error. The orange shaded 


region represents the probability of a false negative, which integrating over the area was found to 


be 0.3%. The blue region on the right represents the probability of a false positive, which was 


found to be 0.04%. The total probability of error for the considered case is 0.34%, with a higher 


probability of false negatives than false positives. 
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Figure 5.3: Distribution of Noise About Both Signals 


 


 


Figure 5.3b: Zoomed in Area of 5.3 Showing Optimal Threshold and Error 


 


5.3 Limitations on Required SNR 


 The pixel error ratio (PER), which is given by the ratio of pixel errors to total pixels in a 


given sample period, can be approximated with the pixel error probability P(error). 


( )PER P error  


1 ( ) ( )PER F wblCDF    
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 One of the major system constraints is that only one pixel event may occur over a given 


sample period over the entire array, otherwise events will be indistinguishable from each other 


and directionality may not be determined. On average, the false pixel rate of one pixel over a 


sampling period should be less than 1 in order to minimize this error, thus  


1PixelN PER   


1 ( )(
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This pixel bound is also taken into consideration with the pixel bound of section 4.3.1. As the 


number of pixels increases, noise worsens thus SNR decreases. A balance must be achieved 


between the Npix and SNR to stay within the above constraint. 


5.4 Electrical SNR Analysis 


 In a 3-T CMOS APS, such as the circuit outlined in Figure 2.3, noise in the sensing 


junction, transistors, amplifier, and A/D converter all negatively affect the signal of interest. The 


primary and dominating sources of noise in these components are thermal noise, shot noise, and 


flicker noise [16]. Thermal (Johnson-Nyquist) noise is attributed to random thermal motion of 


charge carriers within a semiconductor [16]. Shot noise arises from the flow of electrons within a 


PN junction [16]. Flicker (1/f) noise is also observed in transistors and is known to fall of 


steadily at higher frequencies [16]. The noise powers (or noise variances) from each of these 


sources is outlined below.  
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The noise power of the pixel circuit is approximated in the following section in order to 


determine the minimum detectable signal, optimal sampling frequency, and power requirements.  


5.4.1 Output Referred Noise  


 The sensing junction experiences different amounts of noise under the 2 different modes 


of operation, during reset (when the reset transistor enabled) and during readout (when the reset 


transistor is disabled and the source follower transistor is enabled). 


 During Reset, thermal noise is experienced in the sensing capacitance as: 


2
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B
n reset


pd


k T
v


C
  


Based on theoretical and experimental analysis of APS reset noise in [15], the expected mean 


square noise voltage during reset is about ½ the expected kT/C value due to short reset times 


relative to the thermal time (time to charge the junction capacitance to kT/q) [15].  


 During Readout, thermal, shot, and flicker noise from the junction, transistors, and 


amplifier are all observed. The noise from each of the sources is characterized by the following: 
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Δf for the source follower is the sampling frequency of one pixel (fs*π/2), and ΔfA for the 


amplifier is the array sampling frequency (which is Npix times the sampling frequency of one 


pixel). Analyzing the noise during readout, the noise is compared to the signal voltage 


(calculated in Section 2.3.1), and the Signal to Noise Ratio is given by: 


2 2


,


2 2


,


/


10log( / )


sig n total


dB sig n total


SNR v v


SNR v v












 


5.4.2 Device Characterization 


 To analyze the SNR, nominal values for process parameters are used. The assumed 


values for this analysis are outlined in Table 5.1.  


 


T 310 [K] Temperature Inside the Body 


kB 1.38E-23[J/K] Boltzman's Constant 


q 1.6E-19[C] Charge of an electron 


Kf 3E-24 [V2-F] Flicker Noise Process Parameter [16] 


Cpd 0.1 [fF/um2] Photodiode Capacitance 


IDark 50 [aA] PhotoDiode Dark Current 


Cox 5 [fF/um2] Oxide Capacitance 


W 10 [um] CMOS Device Width 


L 1 [um] CMOS Device Length 


chm 0.02 [1/V] Channel Length Modulation 


td 1 [um] Depletion Region Width 


S(Einc) 2E6 [eVcm2/g] Electron Stopping Power in Silicon [18] 


Eion 3.6 [eV] Ionization Energy in Silicon 
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Power 100 [uW] Power Availability 


 


Table 5.1: Estimated CMOS Process Parameters 


 


 Based on these parameters, and a power limit of 100uW, an expected SNR plot of our 


pixel sensor is shown in Figure 5.4. For this particular design, the minimum number of pixels 


necessary to detect a tumor at 5mm was ~3200, thus 4000 pixels were considered based on the 


limits outlined in Section 4.2 and 5.3. Peak SNR is achieved at 300Hz, which based on our 


minimum sampling frequency limitation presented in Section 4.2 is not possible for this system. 


At about 10 times the minimum rate (at 6 kHz), the SNR is 50dB, and continues to decline 


steadily with increasing frequency. In consideration of power limitations and background 


radiation suppression, 6 kHz would be a feasible sampling frequency because it is fast enough to 


suppress background events and slow enough to accommodate a large pixel array. With half the 


amount of power, at 50uW, the SNR at 6kHz is 40dB.  


With these design parameters, the charge-induced signal voltage dVβsig (introduced in Section 4) 


may be calculated as:  


 


 


 


 


 


(a)       (b) 


Figure 5.4: SNR Plots (a) 100uW (b) 10uW 
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The noise variance of our system is modeled by vn,output
2, and the minimum detectable signal is 


the energy  of that noise evaluated with our design parameters. 
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If more time had allowed, we would want to refine several design parameters, such as the 


amplifier design and A/D converter. Optimal designs of these parameters would minimize the 


overall noise and could improve the noise sensitivity. 


6. Discussion of Results  


Based on the theoretical analysis and simulation of background radiation circuit noise, an 


ideal APS design that can successfully detect and localize tumors with a radius of 300 um has 


been realized. Our analytical approach shows that a 500 x 500 um2 sensor with a separation of 


500um will achieve our objective. 


In Section 4, the tumor signal and background radiation flux was modeled theoretically 


and computationally. These simulations showed that a 500 x 500 um2 sensor with a 500 um 


separation could expect a background incidence rate RB of ~650 β/sec. The expected tumor 


signal at 5mm (emitted from a tumor with a 300um radius) that must be isolated would be ~2 


β/sec. These rates set a limit on the minimum number of pixels and the minimum sampling 


frequency, as explored in Section 4.3. For our objective design, greater than 3200 pixels (57 x 57 
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pixel array) must be sampled at a frequency greater than 650Hz to isolate the tumor signal. This 


yields ~9 x 9 um2 pixel size, which is well within modern CMOS process limitations.  


In Section 5, circuit noise was analyzed to determine if, given the ultrasonic power 


harnessing constraints, a beta particle could generate the minimum detectable signal with a low 


enough probability of error. For a standard modern CMOS APS array of 4000 pixels, the 


minimum detectable signal was identified to be approximately 0.2mV. 6kHz was evaluated as an 


optimal sampling frequency, as it was well within the limits. At this frequency, the probability of 


error given the design parameters is ~0.3%.  
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7. Conclusion and Future Work 


This initial sensor design analysis presented in this project report proves the feasibility of 


using a stacked CMOS APS design for cancer surveillance of um-scale tumors.  This project 


report serves as a foundational introduction to the several constraints imposed on implantable 


radiation-detecting micro-sensors, and also serves as a basis on which a cancer surveillance 


CMOS Active Pixel Sensor may be designed. 


Future work for this project includes modeling the active pixel sensor in Cadence and 


expanding on the readout circuit, which was not focused on in this project report. The readout 


circuit would further introduce noise to the system, but a similar analysis could be made to 


balance conflicting system constraints. Once a circuit design has been validated in Cadence, 


testing an actual device would yield the most insight on this novel cancer surveillance technique.  
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Appendix 


1. Comparison of Beta Energy Distribution Curves  
 


  


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure A.1: Beta Particle Energy Distribution for (a) all beta particles, measured average, (b) 


simulated with Weibull Distrubution, (c) shows the comparison 


 


The energy distribution shown in (a) was experimentally measured and presented in 


Annunziata’s Radioactivity textbook [9]. As shown in Figure A.1c, the Weibull distribution 


normalizes the probability density function from 0 to the maximum energy (1.7MeV) and 


slightly underestimates the energy distribution for values above the average. For the intentions of 


this project report, the Weibull Distribution with scale parameter 0.67,shape parameter 2.00, and 


mean 0.57 sufficiently represents 32P emitted energy distribution. 
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2. Stopping Power 


 To detect a signal from a radiolabeled ADC, a beta particle must deposit some amount of 


energy on the sensor after experiencing energy loss and deflection after traveling through tissue. 


Energy loss is primarily due to inelastic collisions with electrons in the traveling medium and 


elastic scattering from radiative interaction with nearby nuclei [7]. These radiative and 


collisional losses are expressed through the stopping power, which defines the total energy lost 


per unit path length through a medium [7,21].  


 Radiative losses (bremsstrahlung) account for beta particle deflections and energy loss 


due to atomic interactions with other charged particles [17]. Bremsstrahlung is dominant for high 


energy beta particles, as higher excitation energies lead to stronger interactions with nearby 


atoms [17]. Collisional losses account for ionization that stem from interactions with orbital 


electrons in the medium [7]. During a collision, beta electrons collide with particles of identical 


mass (i.e. other electrons) which result in potentially large scattering angles of the beta particle. 


The total stopping power, described through the Bethe-Bloch formula, is outlined in the equation 


below [7]. It is given in [g/cm2] to express losses through different mediums [22]. The total 


energy lost in tissue is found by multiplying the stopping power with the density of tissue and 


distance traveled.  
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Figure A.2: Beta Electron Stopping Power in (a) Tissue and (b) Silicon [22] 


 


 Stopping power for a beta electron traveling through tissue is graphed in Figure A.2. 


From the equation, it is observed that the stopping power is dependent on the variable initial 


energy (expressed through tau). As seen in Figure 1.5, beta particles with an initial energy of 


~1MeV experience the lowest stopping power, while lower energy beta particles have a higher 


stopping power. Although minimizing the losses through the traveling medium is desirable, once 


the beta particle hits the sensor interface, higher collisional losses, which are reflected through a 


higher stopping power, are desired in order to ionize particles in the sensor and generate a 


measureable signal. For the case of a silicon sensor, the collisional stopping power (shown in 


Figure A.2b) follows a similar trend and is higher for lower energy beta particles [9].  
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