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Introduction

Understanding the statistical properties of music has become relevant to an increas-
ing number of real-world applications over the last two decades, for example for
electronic music distribution and storage. The fields of Music Information Retrieval
(MIR) and Music Genre Recognition have correspondingly increased in popularity
[1], [2]. Although a majority of research has focused on low-level, signal-processing
based features of music and their corresponding statistics (e.g. [3]–[6]), it has been
shown that appropriately chosen higher-level features of music, such as the melody
line, can supplement and sometimes even outperform low-level features of music in
classification tasks [7], [8]. Furthermore, understanding and exploring the statistics
of higher-level musical features can contribute to the field of music theory [9], [10],
and can potentially help with the neuroscientific and psychological investigation of
the cortical processing of music [11], [12].

This paper explores the statistics of higher-order features of the musical works of
three early Classical composers. We are particularly interested in chord frequency
distribution [9], [13] and mapping out co-occurrences between di↵erent chords over
di↵erent time-window lengths. There are several reasons that chord co-occurrences
are of particular interest. First of all, context is extremely important for the musical
experience: a note will have completely di↵erent meaning or generate a di↵erent emo-
tional response depending on the notes immediately preceding it, or even preceding
it on a large scale.

Secondly, in natural language processing, similar feature spaces–called word em-
bedding spaces–have been developed and finely tuned for words [14], [15]. These
spaces represent each word, or in our case chord, as a vector of frequency of co-
occurrence with other words (or chords). For example, in the English language, the
word dog often co-occurs with cat, or ball, but only rarely co-occurs with the word
sushi. These spaces have proven to be powerful tools for analysis and dimensionality
reduction, and there is evidence that they may even reflect cortical organization of
information. In this paper, we create co-occurrence matrices for three composers: al-
though they are all early classical composers, they wrote in three di↵erent times, and
span two di↵erent musical subgenres (pre-tonal Renaissance music, and tonal Baroque
music). A question that we therefore seek to address is: do chord co-occurrence matri-
ces remain the same across these three composers? Or, alternatively, do they change
based on musical sub-genre?
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Methods

Dataset

Our dataset is a corpus of music written by three di↵erent composers from two dif-
ferent but closely related musical periods: Giovanni Pierluigi da Palestrina (1525-
1594) from the Renaissance period, Claudio Monteverdi (1567-1643), who wrote in
the period transitioning from Renaissance to Baroque, and Joann Sebastian Bach
(1685-1750), from the Baroque period. 100 songs from Palestrina, 97 songs from
Monteverdi, and 426 songs from Bach were analyzed. The songs are available as a
part of the music21 corpus [16], in the MusicXML (.xml/.mxl) and kern (.krn) format
[17].

Analysis tools

Custom code was written in python. It made heavy use of the python music analysis
toolkit music21 [16] as well as the scipy [18] and numpy [19] scientific computing
libraries.

Musical analysis

Transposition

We started the musical analysis by analyzing the key of each song, and then transpos-
ing all songs in major modes to C major, and all songs in minor modes to A minor.
We did this for the following reason: the goal of this study is to look at higher-order
statistics of music. According to musical theory, the same chord can have a di↵erent
function in a musical piece, depending on the key of the song. For example, the
major triad CEG, (with C as the root, E as the major third above C, and G as the
perfect fifth) can have a di↵erent feel or meaning depending on whether it is the tonic
chord (or I, in roman numeral notation) in the key of C major, or the dominant chord
(or V, in roman numeral notation), in the key of F major. It is common for music
to finish on a tonic chord, and gives listeners exposed to Western music a feeling of
completion. On the other hand, finishing a song on a dominant chord, or V, can leave
the listener feeling as if the musical piece is incomplete. Therefore, even though the
lower-level features (in this case, the major triad CEG) are exactly the same, if this
major triad is the final chord in the context of the key of C, the listener will feel like
the piece is complete. If the same major triad is the final chord in the context of
the key of F, the listener will expect to hear more. Composers took full advantage of
these types of expectations (following them, and at times breaking them). Therefore,
in order to understand the higher-level statistics of the chords, we have transposed
all major mode and all minor mode pieces to the same key. We chose C major for
major modes, and A minor for minor modes: both keys have no accidentals (sharps
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or flats) in their key signature. We analyzed the major and the minor mode songs
separately.

Segmentation

Within a musical piece, the melody line (and sometimes other parts as well) will some-
times play notes that do not correspond exactly to the note from the true underlying
chord. Some researchers have tried to avoid chords created with such notes. For
example, Rohrmeier [9] segmented musical pieces into quarter notes, only analyzing
one chord per quarter note, and choosing the least dissonant of the chords if there
were several possible choices within each quarter note. However, we were interested in
retaining as many chords as possible, consonant or dissonant, and we additionally did
not want to impose music-theoretic notions of harmony onto our chord retention. In
order to maximize the number of actual chords that we retained for analysis, and to
create a data-driven analysis of the chord progressions, we used a chord segmentation
heuristic similar to White’s [13] salami slice heuristic, where we created a chord for
every note transition in the musical pieces.

Most frequently occurring chords

In order to more directly compare the composers, we created a master list of the most
frequently occurring chords for all composers taken together, both for minor and for
major modes. To do so, we first ranked the chords according to frequency for each
individual composer. We then summed the ranks of each chord over the ranking for
that chord for each composer, to create the master ranking.

Chord co-occurrences

For the chord co-occurrence analysis, we subdivided each song into overlapping n-
grams (sequences of n chords). The chord situated in the middle of the n-gram was
the target chord: we then counted the (n-1)/2 chords before and after the target
chord as co-occurring with the target chord. This was a simple binary count: we did
not weight the chords according to distance from target chord.

Chord co-occurrence clustering

We performed a k-means cluster (with k = 3) analysis on the individual song major
and minor mode n-gram (with n = 3, 5, 7, 9, 11, 13 and 15) chord co-occurrence
matrices. This unsupervised clustering will indicate whether the co-occurrence ma-
trices separate naturally into classes defined by composer. This analysis will also show
whether there is a di↵erence in clustering performance between di↵erent n-gram chord
song co-occurrence matrices, and between major and minor mode song co-occurrence
matrices.
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Chord co-occurrence classification

We performed a 3-fold cross-validated decision-tree classification and a 3-fold cross-
validated random-forest classification of the individual song chord co-occurrence ma-
trices. We classified according to composer for major and minor modes, and for 3, 5,
7, 9, 11, 13 and 15-gram chord co-occurrence matrices. We further examined the clas-
sifiers’ features’ importance, to determine which features (or chord co-occurrences, in
this case) were most important for the classification.

Results

In this paper, we analyze the statistics and harmonic syntax of three composers from
three di↵erent musical periods: the Renaissance composer Palestrina, the Baroque
composer Bach, and Monteverdi, who wrote in the transitionary period between the
Renaissance and Baroque periods.

Chord Frequency Distribution

We first start by analyzing the frequency distributions of chords for each one of the
three composers, for songs written in major keys and songs written in minor keys.
Figure 1 and Figure 2 show the frequency distribution of the top major mode and
top minor mode chords from the works of the Baroque composer Palestrina.

These two chord frequency distributions both follow a Zipfian (or Zeta, power-
law) distribution, with the most frequent chord occurring 1511 times, but the 20th
most frequent chord only appearing 98 times in the minor mode (in the major mode,
these numbers are 1728 and 89). This is the case for chord frequency distributions for
all three composers, for both major and minor modes (See also the Appendix for the
frequency distribution of the top 20 chords for Monteverdi and Bach). For all three
composers, the top 20 most frequent chords comprise a majority of all chords played
(around 60%). Moreover, all three composers share many of the same top 20 chords.
31 chords total are in the top 20 most frequent chords for major mode songs for all
three composers, and 29 for major mode songs.

For the major mode songs, ’I’ (C major triad) is the first and ’V’ is the second
most frequent chord for all composers. ’vi’ and ’IV’ are in the top five most frequent
chords, and ’I6’ is in the top six. ’ii’ and ’iii’ are in the top ten for all three composers,
as is ’IV6’. Therefore, for major mode songs, all three composers share 8 out of the top
10 chords, and of the top 6 most frequent chords, 5 are shared among the composers.
For the minor mode songs, ’i’ (A minor triad) is the most frequent chord for all three
composers. ’v’ is in the top ten for all three, as is ’III’, ’iv’, and ’bVI’.

A Spearman rank-correlation shows statistically significant correlations for the
top 10 major-mode chords between the three composers: Palestrina and Monteverdi
have a correlation of 0.964 (p = 7.32e-6); Monteverdi and Bach have a correlation of
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Figure 1: Frequency distribution of top 20 major mode chords from the works of Palestrina.

Each line shows the rank, chord type (in Roman Numeral form), quality (major, minor,

diminished, or other), the root number of the chord (with 1 = C, i.e. the tonic), the chord

inversion, the number of times the chord appears in the corpus, and the frequency with

which the chord appears in the corpus.

0.733 (p = 0.016); Palestrina and Bach have a correlation of 0.67 (p = 0.033). For
the 10 top minor-mode chords, there is a statistically significant correlation between
Palestrina and Monteverdi (Spearman rank-correlation: 0.794, p = 0.006). However,
there is no significant correlation between Monteverdi and Bach (correlation: 0.491,
p = 0.150), nor between Palestrina and Bach (correlation: 0.321, p = 0.365).

Chord co-occurrences

We created chord co-occurrence matrices per composer. However, for ease of com-
parison between composers, for each co-occurrence matrix we used the overall top 10
most common chords over all composers (see Methods for details). Each co-occurrence
count is divided by the number of times that chord occurred in the musical corpus.
A frequency of 1 would therefore imply that the chord occurred once per n-gram.
It is possible to have frequencies above 1, especially for larger n-grams: this simply
indicates that the chord in question appears more than once per n-gram.
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Figure 2: Frequency distribution of the top 20 minor mode chords from the works of

Palestrina. As in Table 1, each line shows the rank, chord type (in Roman Numeral form),

quality (major, minor, diminished, or other), the root number of the chord (with 1 = A,

i.e. the tonic), the chord inversion, the number of times the chord appears in the corpus,

and the frequency with which the chord appears in the corpus.

Trigram co-occurrence matrices

Major mode

The chord co-occurrence matrices for Palestrina (Figure 3, top), Monteverdi (Figure
3, middle) and Bach (Figure 3, bottom) share various similarities. There is a strong
co-occurrence between I-I, V-I, V-V, II-V and V6-I for all three composers. There
is a also a strong diagonal for Palestrina and Monteverdi which is barely present in
Bach.

Minor mode

There is once again a strong diagonal for Palestrina and Monteverdi (Figure 4, top
and middle), which is also found this time for the first 5 chords of Bach (Figure
4, bottom). Additionally, V-i, iv6-v and I-iv frequently co-occur for Palestrina, but
beyond that the o↵-diagonal is generally weak for Palestrina. For Bach, i-i, iv6-V,
and I-iv occur noticeably more frequently than other chord combinations. Also for
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Figure 3: Major mode chord tri-gram co-occurrence matrix per composer for the top 10

chords over the whole corpus. Top: Palestrina. Middle: Monteverdi. Bottom: Bach.
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Figure 4: Minor mode chord tri-gram co-occurrence matrix per composer for the top 10

chords over the whole corpus. Top: Palestrina. Middle: Monteverdi. Bottom: Bach.
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Bach, there is a trend for all chords to co-occur frequently with ’i’. This is in line
with the music theoretic concept that Baroque music is the beginning of tonal music
in the West, where music tends to center around the tonic (’i’ or ’I’) chord.

9-gram co-occurrence matrices

Major Mode

Most notable for all three composers in the 9-gram co-occurrence matrices is the
dominance of co-occurrences with ’I’ and with ’V’ for all chords (Figure 5). The
diagonal is still present for Palestrina and Monteverdi, although less noticeable than
for the tri-gram co-occurrence matrices. There is no diagonal at all for the Bach
pieces.

Minor Mode

The dominance of co-occurrences with ’I’ for the 9-grams is still noticeable for all
chords (Figure 6), but less so than for the major mode 9-grams. The diagonal is far
more strongly present for Palestrina and Monteverdi in the minor than in the major
mode. Additionally, there is a frequent co-occurrence between ’i’ and ’iv’ for all three
composers.

Chord co-occurrence clustering

A k-means (k = 3) cluster analysis on the individual songs co-occurrence matrices of
the top 10 chords, for all three composers, showed the following results.

Major and minor 3-grams

K-means cluster analysis for the major mode tri-gram chord co-occurrences matrices
are somewhat clustered according to composer. Although there are three clusters,
the majority of the songs are classified into only two categories. Palestrina and
Monteverdi were clustered together (with 90% of the songs classified in Cluster 1),
and Bach was clustered separately (with over 95% of Bach’s songs classified in Cluster
2). Table 1 shows that of 3 di↵erent types of initialization (k-means++, random, and
PCA-based), k-means initializations were most accurate. The Adjusted Rand Index
(ARI, Table 1), shows an ARI of 0.794 (from a scale of 0 to 1, perfect accuracy being
1).

K-means cluster analysis for the minor mode tri-gram chord co-occurrences ma-
trices not at all clustered according to composer. Table 2 shows that of 3 di↵erent
types of initialization (k-means++, random, and PCA-based), k-means initializations
were again most accurate. The Adjusted Rand Index (Table 2), shows an ARI of only
0.111.
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Figure 5: Major mode chord 9-gram co-occurrence matrix per composer for the top 10

chords over the whole corpus. Top: Palestrina. Middle: Monteverdi. Bottom: Bach.
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Figure 6: Minor mode chord 9-gram co-occurrence matrix per composer for the top 10

chords over the whole corpus. Top: Palestrina. Middle: Monteverdi. Bottom: Bach.
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init homo compl v-meas ARI AMI silhouette
k-means++ 0.547 0.680 0.606 0.794 0.543 0.257
random 0.583 0.616 0.599 0.783 0.579 0.212

PCA-based 0.569 0.619 0.593 0.782 0.564 0.234

Table 1: K-means cluster analysis results for major mode tri-gram chord co-occurrence

matrices, for three di↵erent initialization types (k-means, random, and PCA). The tables

show the homogeneity score (homo), the completeness score (compl), the V-measure score

(harmonic mean between homogeneity and completeness), the Adjusted Rand Index (ARI),

the Adjusted Mutual Information (AMI), and the silhouette coe�cient (silhouette).

init homo compl v-meas ARI AMI silhouette
k-means++ 0.267 0.297 0.281 0.111 0.262 0.243
random 0.260 0.292 0.275 0.103 0.255 0.240

PCA-based 0.236 0.261 0.248 0.083 0.231 0.240

Table 2: K-means cluster analysis results for minor mode tri-gram chord co-occurrence

matrices, for three di↵erent initialization types (k-means, random, and PCA). The tables

show the homogeneity score (homo), the completeness score (compl), the V-measure score

(harmonic mean between homogeneity and completeness), the Adjusted Rand Index (ARI),

the Adjusted Mutual Information (AMI), and the silhouette coe�cient (silhouette).

Major and minor 9-grams

Similar to the major-mode tri-gram clustering, K-means cluster analysis for the major
mode 9-gram chord co-occurrences matrices are somewhat clustered according to
composer, with an ARI of 0.841 for the k-means initialization (Table 3). Of the
major chord co-occurrence matrices, 99.1% of Bach was assigned to the same cluster
(Cluster 0). Again, there was no di↵erentiation between Palestrina and Monteverdi,
with 83.3% of both Palestrina and Bach assigned to the same cluster (Cluster 1).

As with the minor tri-grams, the clustering did not di↵erentiate between the three
composers when classifying according to the minor chord mode co-occurrence matrices
(ARI of 0.69, Table 4).
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init homo compl v-meas ARI AMI silhouette
k-means++ 0.615 0.726 0.666 0.841 0.611 0.358
random 0.544 0.665 0.599 0.788 0.540 0.356

PCA-based 0.504 0.339 0.405 0.380 0.334 0.121

Table 3: K-means cluster analysis results for major mode 9-gram chord co-occurrence

matrices, for three di↵erent initialization types (k-means, random, and PCA). The tables

show the homogeneity score (homo), the completeness score (compl), the V-measure score

(harmonic mean between homogeneity and completeness), the Adjusted Rand Index (ARI),

the Adjusted Mutual Information (AMI), and the silhouette coe�cient (silhouette).

init homo compl v-meas ARI AMI silhouette
k-means++ 0.186 0.232 0.206 0.069 0.180 0.323
random 0.173 0.224 0.196 0.064 0.168 0.378

PCA-based 0.280 0.298 0.289 0.148 0.275 0.307

Table 4: K-means cluster analysis results for minor mode 9-gram chord co-occurrence

matrices, for three di↵erent initialization types (k-means, random, and PCA). The tables

show the homogeneity score (homo), the completeness score (compl), the V-measure score

(harmonic mean between homogeneity and completeness), the Adjusted Rand Index (ARI),

the Adjusted Mutual Information (AMI), and the silhouette coe�cient (silhouette).

Chord co-occurrence classification

We performed a 3-fold cross-validated decision tree classification and random forest
classification of the individual song chord co-occurrence matrices. We classified ac-
cording to composer for major and minor modes, and for 3, 5, 7, 9, 11, 13 and 15-gram
chord co-occurrence matrices. We further examined the random forest classifiers’ fea-
tures’ importance, to determine which features (or chord co-occurrences, in this case)
were most important for the classification. Figure 5 shows an overview of both clus-
tering (random forest and decision tree) and classification (k-means) results for major
and minor mode co-occurrence matrices. This analysis confirms that there is a di↵er-
ence in clustering performance between major and minor mode chord co-occurrence
matrices, for all n-grams analyzed, where the minor-mode chord co-occurrence matri-
ces are not clustered according to composer, but the major-mode chord co-occurrence
matrices are clustered according to composer. Although the k-means cluster analy-
sis did not cluster the minor chord co-occurrence n-grams into clusters according to
composer, both the decision-tree and the random-forest classifiers performed at well
above chance levels for all minor mode chord co-occurrence n-grams (Figure 7). This
shows us that there is enough information in the chord co-occurrence matrices to
distinguish between composers for minor-mode songs, even though an unsupervised
classifier would not naturally cluster the chord co-occurrence matrices according to
composer. Major mode chord co-occurrence matrices are more accurately clustered
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Figure 7: K-means clustering and Decision Tree and Random Forest classification per-

formance for major and minor mode 3, 5, 7, 9, 11, 13, and 15-gram chord co-occurrence

matrices.

and more accurately classified than minor-mode chord co-occurrence matrices, for all
n-grams, and both random-forest and decision-tree classification always outperform
k-means clustering.

Feature-importance analysis for the best-performing classifier (Random Forest
classifier, Figure 8) shows that di↵erent features are most important for classifying
di↵erent size n-gram chord co-occurrence matrices, and this di↵erence is more pro-
nounced for minor than for major chord co-occurrence matrices.
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Figure 8: Feature importance for Random Forest Classifier, classifying chord co-occurrence

matrices according to composer for the top 10 chords in major and in minor-mode songs.

Top left: major mode tri-gram feature importance. Top right: minor tri-gram feature

importance. Bottom left: Major 9-gram feature importance. Bottom right: Minor 9-gram

feature importance.

Conclusion

In this paper, we performed a statistical analysis of three composers from the Baroque
and the Renaissance musical traditions. Our goal was threefold: to contribute to the
empirical knowledge-base of harmonic syntax; to help create a base that could be
used as a feature space for future analysis (such as neuroscience), and to contribute
to the understanding of the evolution of harmonic syntactical statistics.

We found that the chord frequency distributions are all Zipfian. We also found
an overlap in the frequency distributions of the most common chords for all three
composers, with greater overlap in major than in minor modes. In particular, ’I’,
’V’, ’IV’ and ’vi’ are in the top 5 most frequent chords for the major-mode songs for
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all three composers. There is a statistically significant correlation between the top
10 major-mode chords for all three composers. However, there is only a statistically
significant correlation between the top 10 minor-mode chords for the two earliest
composers, Palestrina and Monteverdi.

The chord co-occurrence matrices di↵er depending on n-gram window size, and
on composer. Monteverdi and Palestrina maintain a stronger diagonal than Bach.
Likewise smaller n-gram windows also tend to have a stronger diagonal. The larger
n-gram windows favor ’I’ or ’i’, as does the Baroque composer (Bach). This is in line
with the music theoretic concept that Baroque music is the beginning of tonal music
in the West, where music tends to center around the tonic (’i’ or ’I’) chord.

Songs were equally accurately clustered according to composer for n-grams rang-
ing from 3 to 15 chord co-occurrence matrices. However, while major-mode chord co-
occurrence matrices were relatively well clustered (with Palestrina and Monteverdi
falling within the same cluster, and Bach clustered separately), minor-mode chord
co-occurrence matrices were not at all clustered according to composer (with 0-1.1%
Adjusted Rand Index). This di↵erence between major and minor-mode analysis was
also present in classification analysis. A random forest classifier classified the songs
over 90% correctly according to composer for the major-mode songs. While the ran-
dom forest classifier for the minor mode songs performed far better than the clustering,
it still perfomed worse than the major-mode classifier, with its best classification only
reaching 68% correct.

De Clercq & Temperly [20] analyzed harmony of a rock corpus, creating a set of 20
songs per decade from Rolling Stone’s list of the 500 greatest rock songs, ranging from
the 1950s to the 1990s. They found that ’I’ was the most common chord, followed
by ’IV’. Interestingly, it therefore seems that the most frequently used chords do
not seem to have changed in the past 500 years. However, the di↵erence between
the pre-tonal (Renaissance) composer chord co-occurrence matrices and the post-
tonal (Baroque) composer chord co-occurrence matrices in our study points to the
necessity of creating individualized co-occurrence matrices per musical genre, and
possibly even per musical sub-genre. Previous research supports this finding, both in
classical and in more modern music. White [10] found that harmonic progressions can
be defined by time-period in classical music. Again, the De Clercq & Temperley [20]
study revealed changes over time in harmonic composition. So it seems that while
chord frequencies may remain very stable, chord transition practices can change quite
rapidly, and add the color that helps to define a specific musical time-period.

Implementation and future directions

It would be very interesting to expand this analysis to a much wider variety of com-
posers and musical genres; the application of this research is limited if it only remains
in the early Classical musical period.
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We intend on implementing a web-based application that allows users to analyze
and create their own musical feature space, based on .xml or .mxl musical files. This
will allow researchers who want to use chord co-occurrences as a feature set to easily
translate individual chords into their representation in frequencies of common chords,
and provide musical context to their analyses. We are particularly excited about its
potential applications in neuroscience research: this chord co-occurrence feature set
could create a high-level model of cortical responses to music, similar to high-level
models that have been created and have worked remarkably well for speech.
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Appendix

Figure 9: Frequency distribution of top 20 major mode chords from the works of Mon-

teverdi. Each line shows the rank, chord type (in Roman Numeral form), quality (major,

minor, diminished, or other), the root number of the chord (with 1 = C, i.e. the tonic), the

chord inversion, the number of times the chord appears in the corpus, and the frequency

with which the chord appears in the corpus.
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Figure 10: Frequency distribution of the top 20 minor mode chords from the works of

Monteverdi. Each line shows the rank, chord type (in Roman Numeral form), quality

(major, minor, diminished, or other), the root number of the chord (with 1 = A, i.e. the

tonic), the chord inversion, the number of times the chord appears in the corpus, and the

frequency with which the chord appears in the corpus.
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Figure 11: Frequency distribution of top 20 major mode chords from the works of Bach.

Each line shows the rank, chord type (in Roman Numeral form), quality (major, minor,

diminished, or other), the root number of the chord (with 1 = C, i.e. the tonic), the chord

inversion, the number of times the chord appears in the corpus, and the frequency with

which the chord appears in the corpus.
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Figure 12: Frequency distribution of the top 20 minor mode chords from the works of

Bach. Each line shows the rank, chord type (in Roman Numeral form), quality (major,

minor, diminished, or other), the root number of the chord (with 1 = A, i.e. the tonic), the

chord inversion, the number of times the chord appears in the corpus, and the frequency

with which the chord appears in the corpus.
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Figure 13: Tri-gram frequency co-occurrence matrices for the top 10 major mode chords,

for the three di↵erent composers
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Figure 14: 9-gram frequency co-occurrence matrices for the top 10 major mode chords,

for the three di↵erent composers
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Figure 15: 3-gram frequency co-occurrence matrices for the top 10 minor mode chords,

for the three di↵erent composers
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Figure 16: 9-gram frequency co-occurrence matrices for the top 10 minor mode chords,

for the three di↵erent composers
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