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Abstract
Control planes for global carrier networks should be programmable (so that new func-

tionality can be easily introduced) and scalable (so they can handle the numerical scale and
geographic scope of these networks). Neither traditional control planes nor new SDN-based
control planes meet both of these goals. In response, we propose a framework for recur-
sive routing computations that combines the best of SDN (programmability) and traditional
networks (scalability through hierarchy) to achieve these two desired properties. Through
simulation on graphs of up to 10,000 nodes, we evaluate our design’s ability to support a va-
riety of routing and traffic engineering solutions, while incorporating a fast failure recovery
mechanism.
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1 Introduction
The goal of Software-Defined Networking (SDN) is to make network control planes pro-
grammable. While SDN has made great progress in various contexts, most notably within datacen-
ters and in private WANs that interconnect datacenters, there has been surprisingly little published
work on using SDN in a more traditional networking context: that of global-scale carrier networks
(such as operated by Deutsche Telekom, France Telecom, NTT, AT&T, and others). These carrier
networks are far more geographically dispersed than datacenter networks (by roughly four orders
of magnitude),1 while having far more nodes than the global networks that are used solely to inter-
connect those datacenters (by roughly three orders of magnitude).2 There are existing SDN designs
that can handle large numbers of nodes (e.g., Kandoo [12]), as well as SDN designs that can han-
dle global networks that interconnect a limited number of datacenters (e.g., B4 [14]). However, to
our knowledge there are no SDN routing designs (where “routing” is defined broadly, encompass-
ing the choice of routes for purposes of unicast, multicast, anycast, and traffic engineering) that
simultaneously handle both the numerical scale and geographic scope of today’s carrier networks.

The challenge – heretofore unmet in the global carrier context – is to provide global pro-
grammability while retaining locality-of-control, by which we mean providing rapid responses to
events (when they can be handled locally) and preserving fate-sharing (not unnecessarily relying
on distant parts of the network). Typical SDN designs involve a logically centralized (but often
replicated) controller. Applying this approach to carrier networks would violate both requirements
of locality-of-control: (i) the control plane would incur significant round-trip (or controller con-
sensus) delays for all control decisions, and (ii) the control plane would rely on connectivity to this
logical controller.

Thus, for global carrier networks we must extend the SDN paradigm. To that end, we de-
scribe a recursive approach to SDN routing – called Recursive SDN (RSDN) – that leverages the
hierarchical structure of carrier networks to achieve the programmability of SDN networks while
retaining the scalability and locality-of-control (through hierarchy) of legacy networks.3 In RSDN,
each level of the route computation acts on a set of aggregates (called logical cross-bars, or LXBs),
and then communicates a summary of the results to the appropriate parent and child LXBs. This
approach provides programmability while (i) limiting the number of nodes any individual route
computation has to handle (thereby providing scalability) and (ii) making route computations as
local as possible, only involving the affected LXB and, recursively, its children (thereby preserving
locality-of-control).

RSDN is not just another hierarchical routing algorithm. Instead, it is a recursive programming
framework; the RSDN programmatic API enables one to build a wide variety of recursive designs
for unicast routing, multicast/anycast routing, and traffic engineering.

However, RSDN does more than merely facilitate route computation. Because availability is
such a crucial requirement for carrier networks, RSDN incorporates a mechanism for rapid and
local recovery from failures that is independent of the particular routing algorithm. Typical routing
designs (notable exceptions being F10 [23] and DDC [22]) have a fast failover option that handles

1Datacenter diameters are significantly less than a mile while global carrier network diameters can reach ten thou-
sand miles.

2Inter-datacenter networks typically have fewer than 50 nodes, while carrier networks can have on the order of
50,000 nodes.

3We first described this approach in an earlier publication [25]. This work extends and expands upon it.
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only a narrow range of failure cases (such as single link failures), and then resort to full route
recomputation (using the normal route computation engine) to handle more general failure cases.
RSDN starts with standard link protection but then extends this to a more general network repair
mechanism that can handle all failure cases (by having the network with failed links support a
virtual version of the failure-free network). This network repair process is not as immediate as
local failover, but it is far faster than global route computations because it need only consider the
local region in which the failure occurs. As we demonstrate later, as compared to merely using
link protection, network repair can decrease routing failures (that is, cases where two endpoints
are physically connected but routing is not providing a usable path due to failure) by several orders
of magnitude. The novelty here is that RSDN’s repair mechanism is (i) able to handle all fail-
ure scenarios, which goes far beyond techniques such as link repair and (ii) built into the RSDN
framework so that individual routing designs built within RSDN need not incorporate fast failover
techniques themselves. Moreover, by having a built-in rapid repair mechanism, RSDN removes the
requirement that global route computation be fast, or be optimized for incremental computations,
thereby allowing for a broader class of route computations and easier implementation of them.

It is important to clarify that RSDN focuses only on edge-to-edge packet delivery, which is
only a small subset of control plane functionality. In addition to routing, network control planes
are often used to enforce policies (e.g., through the use of ACLs), create virtual networks (for
various tenants), and invoke middlebox functionality (by ensuring packets traverse the appropriate
middleboxes). RSDN does none of these additional tasks. We follow the approach espoused in [7]
and [33] in which all non-routing functionality is implemented at the network edge through a
variety of known techniques (and thus need not be controlled by RSDN). We adopt this approach
because it can support the necessary functionality while creating a network modularity with a clean
separation of concerns.

In the next two sections, we give a high-level overview of our design and then some necessary
context. The following three sections present detailed design and performance evaluations of two
unicast routing algorithms (Section 4), two traffic engineering mechanisms (Section 5) and the
built-in network repair mechanism (Section 6). We end with a discussion of miscellaneous issues
(Section 7) and a few concluding comments (Section 8).

2 Design Overview
Recursive structure: In designing RSDN, we exploit the locality that is found in almost all net-
works (and particularly in carrier networks), with links more likely to exist between nearby net-
work nodes than remote ones. We leverage this locality by clustering the network into aggregates,
which we call logical cross-bars (LXBs); these LXBs act like switches, in that they have a set of
external ports, and can provide transit between those external ports (and where every port attach-
ing a host is thus considered an external port). We repeat this process of aggregation on the LXBs
to build a hierarchical structure with each k-level LXB being comprised of multiple (k+1)-level
LXBs, and with links between the LXBs on the same level (or tier). For example, the levels of
aggregation may include: PoP and/or datacenter, access network, regional network, and country
(or continental) network. This kind of aggregation is standard in networking (and, in particular, is
used in approaches such as PNNI [29] to aggregate the topology), but here we are leveraging this
hierarchical structure to form an explicitly recursive SDN control plane.

Controllers: We associate a logical controller with each LXB. Within these logical controllers,
developers provide recursive control programs – which we term control logics – to perform control
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plane tasks (e.g., implementing a routing algorithm). Each controller is logically a single entity,
but should typically be replicated across multiple physical machines for reliability.4 When we say
that an LXB computes something or sends a message, we mean that control logics within a logical
controller take these actions on its behalf.

Programmatic API: This hierarchy of logical controllers provides a recursive programming
model (schematically depicted in Figure 1), where for upward-bound computations, each LXB
accepts state from its children, performs some local computation on this state, and then exports
information to its parent. Downward computations are similar, with each LXB accepting state
from its parent, performing some local computation, and then pushing state down to its children.
The nature of the state being pushed up or down and the nature of the local computation are fully
general, though a scalable control logic design is likely to make state less detailed as it flows up the
hierarchy (e.g., rather than simply pushing up a list of all failed links, push up only information on
failed paths that cannot be recovered locally), and more concrete and detailed as it flows down the
hierarchy (e.g., combining high-level forwarding information from the parent with local knowledge
of the topology to create forwarding information for individual children). Moreover, computations
need not be strictly upwards or downwards, but can push information in both directions as needed.
Note that it is trivial to achieve locality-of-control in such a recursive structure. For example, the
recomputation of routes in response to a failure is easily restricted to the affected region: if the
upwards computation at a tier results in no change to the state it previously sent its parent, then the
computation need not proceed further upward.

More specifically, the API presented to control logics consists primarily of three things: infor-
mation about the corresponding LXB (e.g., its unique ID, which tier it is on), information about
its local neighborhood (e.g., its parent, a graph of its children), and mechanisms for sending and
receiving messages to and from the parent and children controllers. At a conceptual level, RSDN
control logics are built around two basic event handlers: ParentMessage and ChildMessage. These
are invoked whenever an LXB receives a message from a parent or child node, and initiate some
internal computation and then optionally result in messages being sent to either parent or child
nodes. New control logic designs are specified by these two event handlers, which can be used (as
we discuss later) to build a variety of routing and traffic engineering solutions.

While we do not describe the RSDN implementation in detail, we note that control logics
require special care at leaf LXBs, as the children are hardware switches and not other LXBs.
Additionally, while we describe the system as running the same exact control logic code in each
LXB (and this is the case for the logics we discuss in detail in subsequent sections), there may
be cases where doing otherwise has benefits. For example, one might use different routing within
datacenters than between them. This is entirely possible: as long as control logics implement the
same interface (e.g., send the right messages to their parents and understand the right messages
from their children), they can be freely mixed.

Network repair: In addition to providing an API to control logics, the RSDN framework
also provides a network repair mechanism. This mechanism locally directs traffic around failures
(independent of the routing computation itself), by making novel use of network virtualization:
the repair mechanism implements a virtual “failure-free” network on the physical network (which
contains failures).

4Notably, our prototype implementation does not implement this, as it is orthogonal to RSDN and is a largely
solved problem, e.g., by ONOS [4] and standard availability techniques such as hot/warm/cold standbys.
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Control Logic 1
(e.g., Unicast)

Control Logic 2
(e.g., Anycast)

Control Logic N
(...)...

Parent messaging (if not root)

Child messaging

Child Graph

Figure 1: Software structure in a normal (non-leaf) LXB. Solid outlines represent parts of the framework,
dashed lines represent “user” provided control logic. Leaf LXBs are similar, but include repair functionality
and the bottom interface is towards physical switches rather than child LXBs.

Integration with rest of the network: RSDN focuses on the core routing functions for carrier
networks, but it can cleanly coexist with other aspects of carrier control planes. As described
in [7], we assume the network edge handles the “host-network” interface, while RSDN merely
delivers packets from ingress port to the appropriate egress port as determined by the edge (that
is, RSDN implements a fabric in the terminology of [7]). The edge control structure – which
could involve SDN controllers or RCP-like BGP implementations [6] or even standard BGP/iBGP
implementations (with RSDN functioning as a BGP-free core) – provides the state to the edge
routers,5 and these edge routers (i) map incoming packets to the appropriate RSDN egress ports
and (ii) may insert MPLS-like headers that tell the RSDN-controlled routers to which egress port
the packet should be delivered (such additional headers would be stripped off at egress).

Similarly, the edge control structure can insert ACLs into edge routers as needed, or direct
packets through tunnels (for network virtualization) or middleboxes (located at the edge) before
entering the RSDN-controlled core. Thus, RSDN is merely providing a global-scale fabric around
which additional functionality can be inserted at the edge in a straightforward manner.

3 Context
Related Work: Following our own initial work on the subject [26], there have been two sets of
short, related papers ( [19, 20, 28], [8, 9] ) some referencing our work, some not. None of these
papers (our own initial work included) explore the framework nature of RSDN, provide sufficient
flexibility to implement effective routing at large scale, look beyond unicast routing, or provide
general repair mechanisms (all of which we do here).

More generally, there is a vast literature on routing and related topics. While the widely-
deployed OSPF and IS-IS protocols utilize two levels of hierarchy to scale, perhaps the most rele-
vant entry in the hierarchical routing literature is PNNI. PNNI [29] is a routing solution developed
for ATM which, like RSDN, aggregates switching hierarchically. However, it does not provide a
framework for hierarchical computation of the various aspects of routing (e.g., multicast, traffic en-
gineering). That is, PNNI is hierarchical, but not programmably recursive – it has no programmatic
interface that allows one to run the same control logic at each level of the hierarchy. Moreover,
PNNI’s relationship to ATM limits it to operating on virtual circuits. Thus, while PNNI’s model of

5The edge routers need not be physically distinct from the first-hop RSDN routers, but could refer instead to a
separate set of tables that is processed first on ingress and processed last on egress.
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hierarchically aggregated switching blazed many of the relevant trails, it cannot supply the general
and scalable programmability that global-scale SDN-based carrier networks need.

In terms of applying SDN to global-scale networks, B4 is the most relevant work [14]. B4 is
a sophisticated traffic engineering solution for a network that interconnects a few dozen Google
datacenters, and we see it as a brilliant solution to a different problem. As a routing control plane,
we note that B4 copes with geographic scope, but not numerical scale. As an exercise in traffic
engineering, B4 leverages the ability to control its own traffic at the edge, and give some traffic
low-quality service, to achieve extremely high utilizations; in the traffic engineering designs we
present here (which more closely represent current carrier requirements), we do not assume one can
throttle edge traffic nor that there are low-quality classes of service one can use to keep utilization
high.

RSDN’s network repair algorithm is a generalization of local protection and an application of
network virtualization, and thus has roots in and similarities to previous literature (e.g., MPLS
FRR [5,27]), but we are not aware of any existing work that combines them in the way we do here.
There is also a conceptual similarity to consensus routing [15] in that the safety and liveness of
packet delivery are distinctly separated. While consensus routing separated these along the lines
of consistency (i.e., safety was associated with stable, consistent routing state and liveness with
temporary but possibly inconsistent state to handle failures), RSDN’s state might always be con-
sidered consistent by adapting techniques from the general SDN literature [18, 31]. In RSDN, one
might consider paths incorporating TE as safe, with temporary (but TE-unaware) state established
by RSDN’s repair algorithm in response to failures as providing liveness.

Topologies: To evaluate RSDN, we performed simulations on synthetically generated graphs.
We created our own topology generator, rather than taking advantage of one of the many exist-
ing generators (e.g., [1, 16]) or measured real-world Internet topologies (e.g., [34, 35]), because
none of the resulting topologies matched the high level description we heard in our conversations
with carriers. Li et al. [21] discuss likely reasons for the disconnect between these generated/mea-
sured topologies and the real world, which include the questionable realism of degree-distribution
generation approaches and the presence of MPLS confounding IP-based mapping techniques.

Our generator’s basic unit is a country (or continental) network. Within each country, there
are multiple metropolitan area networks, and each metro network has some number of access net-
works. The metro networks within a country are connected by a core backbone network. Multiple
countries are interconnected to create a global network. Metro networks are connected to cores
redundantly such that no single switch or link failure can disconnect a metro from its core. Coun-
try cores are interconnected by placing the countries on a 2-D plane and connecting nearby ones,
similar to [37]. We use a simple distance model where links between metros are ten times longer
than within metros, and links between countries are twice the length of links between metros.

At a high level, our generator is consistent with the description of “heuristically optimal” net-
works described in [21]. While both [21] and discussions with carriers indicate the existence of
very large tree-like access networks, we actually disable their generation for all of the topologies
used in this paper, and we consider the points at which the access networks would attach as the
edge of the RSDN network. The rationale here is simple; in trees, route computation is trivial (or
even unnecessary) and traffic engineering and failure recovery are impossible, so extending our
simulations to access networks would only belabor the obvious (and artificially make our results
look better by trivially achieving optimal results in this part of the network).

Our generator has many parameters that control, for example, the number of nodes and the

7



DF

E G

H
I

A (root)

B C

Figure 2: A two-tier hierarchy where the root LXB (A) has two children, B and C. Physical switches are
shown in black; higher-level LXBs are shown in white. E, F , and I are top-tier border switches, as they
have links which cross the top-tier (root) LXB.

degree of connectivity within cores and within metros, the number of countries and how many
connections there are between neighboring countries, and so on. In our evaluations, we run our
simulations on several graphs that explore a range of parameter settings. All of our simulations
were run on three-tier topologies, but this is a property of our topology generator and not a limita-
tion of RSDN, which does not enforce that the hierarchy be any particular depth or even that it be
uniform.

What Matters: One considers issues like route computation time, path stretch, and routing
state when considering a routing algorithm. However, RSDN supports a wide variety of route
computation algorithms offering a range of tradeoffs between these metrics. Thus, while these
quantities are important for evaluating whether a particular route computation algorithm is suitable
for a given network, they are not properties of RSDN itself. Thus, what really matters about
RSDN is whether: (i) RSDN enables a broad enough class of routing algorithms (broadly defined)
to meet various needs and (ii) RSDN-controlled networks can respond quickly enough to failures
to achieve high availability. The first issue is addressed by our description and evaluation of two
unicast routing schemes (Section 4) and two traffic engineering schemes (Section 5), as well as
brief descriptions of anycast and multicast routing (Section 7). The second issue is addressed by
our inclusion of a network repair mechanism in RSDN (Section 6), which provides – independent
of any routing algorithm – a rapid failure recovery mechanism.

4 Unicast Routing
The design space for unicast routing solutions is vast. The goal of RSDN is not to pick one
particular approach, but to enable operators to choose or develop one that is suited for their needs
while leveraging the recursive structure of RSDN to scale. To illustrate how RSDN supports route
computation, we discuss and evaluate two example routing control logics (out of the many that we
have implemented and experimented with), both of which are implemented using an up-phase and
then a down-phase.
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4.1 Fine-Grained Routing (FGR)

First we consider Fine-Grained Routing, in which we compute shortest paths across an entire
RSDN network.6 The problem is broken down recursively: each LXB’s controller is tasked with
computing paths between the LXB’s border switches, which are simply the physical switches
within an LXB that connect to something outside the LXB – often to sibling LXBs, but also
possibly to the outside world. Examining Figure 2, F , E, and I are border switches of LXB A; E
and F are borders of B; and G and I are borders of C.

At the start of the upward pass of this algorithm, the controllers of the bottom-most LXBs
compute shortest paths between each of their border switches. For example, B would compute
a path between E and F . A distance matrix containing the distances between all of B’s border
switches is pushed upwards to its parent on the next higher tier – in this case, A. Once A has
border-to-border distance matrices from each of its children, it computes shortest paths between
each of its own border switches — in this case, paths between all combinations of E, F , and I .

In the downward pass of this algorithm, the parents use the paths they computed on the upward
phase to push down actual forwarding rules to forward between their children. These rules accu-
mulate down the hierarchy. For example, A sends rules to E so that it can reach G and vice-versa,
and B sends rules to forward between F , D, and E. The aggregation of all such rules when they
reach the switches at the bottom of the hierarchy is sufficient to communicate between all borders
of an LXB – most crucially, between all the border switches of the root LXB, since these are the
switches that connect to the outside world.

Note that A does not need to compute paths between switches which are not its own borders
(i.e., D, G, and H). Nor does A know anything at all about switches which are not borders
of its children; H , for example, does not appear in the distance matrix provided by C and is
therefore invisible to A. Also note that this means that a given LXB’s borders are always a subset
of the union of the border switches of its children. Finally note that siblings (e.g., B and C)
need not know anything about each other – only the common parent need know something about
both – and therefore can compute entirely in parallel. This combination of information hiding
and parallelization allows FGR to scale considerably better than a flat routing computation, and
the information hiding also reduces the amount of state that must be shared between controllers
(and ultimately placed on switches). However, as the number of border switches increases, these
advantages lessen, possibly necessitating another solution such as the one we explore next.

4.2 Coarse-Grained Routing (CGR)

To achieve better scalability, we have developed a coarser-grained approach to routing where a
switch need only contain forwarding state to reach sibling LXBs. For example, Figure 3 empha-
sizes the LXBs for which switches F , G, and H must contain forwarding state. First, they must
hold state about each other, as they are all siblings – they share parent B. Second, they must hold
forwarding state for C, as B and C are both children of D. Third, they must hold forwarding state
for E as it shares a parent (A) with D. This approach results in an enormous savings in both state
and computation relative to FGR because it nests routing and hides significant information about
the network. The natural downside to this information hiding is that the “further away” a switch

6There is one caveat to this claim of optimality: we explicitly disallow paths that must exit and later re-enter the
same LXB. If the only optimal paths violate this rule, we will choose a suboptimal path, but these cases did not arise
in our topologies.
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Figure 3: A three-tier hierarchy highlighting the LXBs for which switches F , G and H have forwarding
entries. Links have been omitted for clarity. Unlike Figure 2, physical switches are not colored differently
as they can be considered as just another LXB in CGR.

Switches Links Children/Tier Avg. Link
1 2 3 Latency

10355 47595 19 665 10355 14.584ms

Table 1: Characteristics of Topology X used for our unicast routing experiments.

is, the more inexact forwarding entries to it are, and thus path length may increase.
A controller running CGR computes a number of possible paths between its children, and

informs the children of all of these possibilities. This tells the child that it can reach some sibling
X with distance Y via an external link Z. These possibilities are passed down the hierarchy with
each tier pruning ones which are clearly not optimal (e.g., when the distance of one path plus the
diameter of the child is less than the distance of a second path, the second route could never be
better). Upon reaching the leaf LXBs at the bottom of the hierarchy, the best of the remaining
paths to an LXB is in fact the optimal path to the closest point of that LXB. That is, F could find
an optimal path to G and H , as well as an optimal path to whatever switches in C and E are closest
to F . In these latter cases, a packet that reaches the destination LXB would then get an optimal
path to the next destination LXB one tier down the hierarchy, and so on recursively until reaching
the bottom tier of the hierarchy – the physical switch which is the destination. Thus, one can view
this as a greedy recursive shortest path algorithm.

4.3 Evaluation of Routing Algorithms

We presented FGR and CGR merely to demonstrate that RSDN could incorporate widely varying
routing designs, and there are many other routing designs one could devise, but here we discuss
how FGR and CGR perform in terms of stretch, computation time, and routing table size. For clar-
ity, our presentation focuses on results from a single topology (call it topology X) that is described
in Table 1. However, we also performed extensive experiments with nine additional topologies
with between 1, 000 and 10, 000 switches, and degrees of intra- and inter-country connectivity
spanning over a factor of three (ranging both above and below what we believe to be realistic). The
general conclusions we draw here about RSDN’s performance are consistent with the results from
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Tier CGR FGR APSP
3 0.407s 0.391s —
2 5.709s 6.036s —
1 6.745s 6.811s —
0 (Root) 7.215s 249.081s 682.452s

Table 2: Times to run computation on topology X up to given level in the hierarchy using FGR, CGR, and
running all-pairs shortest path (APSP) over the entire topology.

Figure 4: The CDF of network stretch (as fractional increase over original path) for CGR on topology X.

those additional experiments.
Computation Time: We compared our Python RSDN route computations with a Python All-

Pairs-Shortest-Path (APSP) computation. The numbers here are not indicative of how an optimized
C++ computation would perform, but the relative performance provides some measure of the un-
derlying computational complexities. Route computation times are shown in Table 2 for FGR
and CGR up to each tier (this is relevant because after an initial computation, one only needs to
recompute to establish good routes after a failure; in only very few cases – a failure of a country-
to-country link in our topologies – does this require recomputing all the way up to the root). Note
that RSDN partially parallelizes the computation (since LXBs in the same tier can compute in par-
allel), which is why FGR beats APSP in computation time even though they both compute globally
shortest paths. While CGR does not compute shortest paths, it trades this off for significantly faster
computational performance.

Stretch: Here we focus on the stretch of the CGR algorithm since (as mentioned above) FGR
produces optimal paths with no stretch except under specific conditions which we believe to be rare
and did not occur in our topologies. The stretch induced by CGR on topology X is summarized in
Figure 4, which shows the CDF of stretch over all source-destination pairs using both hopcount-
based routing and latency-based routing.7 For hopcounts, fewer than 15% of the pairs have stretch
over 10%; for latency, approximately 5% do. These latency results were quite consistent with the
average of all nine additional topologies we tested: 75% of the paths have no additional stretch and
92% of the paths have have less than 10% stretch. For hopcount-based routing on these additional

7Latency-based routing minimizes path length in terms of distances, and thus takes into account the geography as
determined by our topology generator.
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Routing Label LPM Cons. LPM Rand.
CGR 211.56 382.09 13, 088.38
FGR 2, 942.76 1, 296.02 41, 206.13

Table 3: Average table size with labels, highly-aggregatable (consecutive) IP prefixes, and poorly-
aggregatable (random) IP prefixes.

Topo Switches Links Links Children
Tier 1 Tier 2 Tier 3 Tier 1 Tier 2 Tier 3

little-low 119 224 28 42 154 7 28 119
little-med 119 230 30 42 158 7 28 119
little-high 119 252 33 42 177 7 28 119
middle-low 170 303 27 60 216 10 40 170
middle-med 170 343 31 60 252 10 40 170
middle-high 170 350 37 60 253 10 40 170
big-low 255 459 55 90 314 15 60 255
big-med 255 500 62 90 348 15 60 255
big-high 255 547 68 90 389 15 60 255

Table 4: Characteristics of topologies used for our TE simulations. These are small relative to those we use
to evaluate routing due to the fact that we cannot compute the gold-standard algorithm in reasonable times
on larger graphs.

topologies, the results were somewhat worse: 70% of the paths have no additional stretch, 73%
of the paths have have less than 10% stretch, though 93% of the paths have less than 20% stretch.
Intuitively, hop counts may become worse, though latency does not suffer as much because CGR
gets the broad strokes right (routing to the correct geographical region at some scale – accounting
for the majority of latency) but may get the details wrong (routing to a suboptimal switch within
the region – corrected by additional lower-latency hops). Ultimately, CGR trades off moderate
stretch for significantly faster computation.

Table Size: RSDN can incorporate a variety of approaches to forwarding tables and address
assignments, and here we discuss two of them. First, we considered an MPLS-like scheme where
at the network edge one or more labels are applied to the packet, and all forwarding is done on these
labels. Table 3 shows the resulting average forwarding table sizes that arise using this approach
for both FGR and CGR on topology X, with CGR being significantly smaller than FGR (about
93% savings). We then tried using IP addresses for forwarding (with LPM aggregation in the
tables) considering two address allocation schemes. The first took a set of 495k prefixes from
Route Views [32] and assigned them consecutively to the exterior ports (putting the same number
of prefixes on each port); the second assigned these randomly to the exterior ports. Unsurprisingly,
the easily aggregated consecutive assignment yielded smaller tables, though CGR provided about
70% savings for both. These results show that: (a) RSDN can use either labels or aggregatable
addresses, and (b) if small table size is important, CGR provides an effective and relatively low-
stretch way of accomplishing this.
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5 Traffic Engineering
As with our exploration of unicast routing, our goal here is not to pioneer radically new TE
paradigms but instead to merely show that RSDN can scalably achieve TE goals. There are many
TE designs, but most of them can be grouped into two categories. In the first, the traffic matrix
is fed into an offline solver that generates optimal routes. The second is used in conjunction with
multipath routing: a feedback system relays congestion information about a path to its source,
and the source preferentially steers traffic over less-loaded paths. We have implemented recursive
versions of both approaches, which we term Recursive Linear Programming (RLP) and Recursive
Split Tuning (RST).

For our evaluation, we focus purely on whether good routes can be chosen, and ignore real-
world issues such as flow divisibility and packet reordering (which are issues for any TE design).
The primary metric by which we evaluate our TE approaches is the load of the maximally loaded
link (and by load we mean utilization level), which should be minimized. We compare both of our
RSDN TE implementations against a “gold standard” – a straightforward global linear program
that achieves the minimum possible value of this metric.

5.1 Recursive Linear Programming

A simple approach for a recursive linear program would be to take the gold-standard linear program
(minimizing the maximal load) and run it in each LXB using the graph of its child LXBs and
the links between them. Such an approach is nicely recursive: the root LXB performs traffic
engineering at the coarsest level, and each lower LXB is responsible for a less abstracted and more
localized part of the problem than its parent. However, this approach is ineffective in practice:
it hides too much information, as a parent LXB does not know if additional load on a child will
increase its maximal load.

We could address this by exposing much more information, but instead we chose an iterative
approach where the parent learns about the effect of additional load from the previous iteration,
rather than being given enough information to have figured it out a priori. Each child in our RLP
implementation only reports a single value to its parent: the load of the most-loaded link between
or within any of its own children. We extend the basic LP to compute paths that not only minimize
link loads, but also node loads (which are the reported loads from child LXBs).

5.2 Recursive Split Tuning

The second approach to TE uses multipath routing and adaptively and iteratively balances traffic
across the available paths at the source or the point of ingress using some type of path-load feed-
back mechanism, as in [10,11,13,17]. This requires RSDN to implement the various pieces of this
approach: (i) a multipath routing algorithm, (ii) a mechanism to adjust the balance of traffic across
various paths, and (iii) a method for gathering information about the load along a path.

We experimented with several methods for choosing multiple paths, but the most straightfor-
ward – and the one we evaluate here – is a simple variation of the fine-grained routing algorithm
discussed in Section 4.1. Rather than pick a single shortest path, we use Suurballe’s algorithm [36]
to choose two disjoint paths (if possible). The iterative algorithm that actually determines the split
values is simple: when one of the two possible paths is more loaded than the other, the split is
adjusted to favor the less-loaded link slightly more. The algorithm to actually find the load of a
path is slightly more complex – as with RLP, the relevant information (the most loaded link along
a path in this case) may be hidden within a child. To confront this, each child informs its parent of
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Topology RLP RST None G-S
little-low 1.00 1.00 1.48 1.00
little-med 1.00 1.00 1.60 1.00
little-high 1.00 1.00 1.20 1.00
middle-low 1.00 1.22 2.22 1.00
middle-med 1.00 1.00 1.58 1.00
middle-high 1.00 1.00 1.84 1.00
big-low 1.00 1.00 1.79 1.00
big-med 1.00 1.00 1.56 1.00
big-high 1.00 1.00 1.87 1.00

Table 5: Maximal link load normalized by that achieved by the globally optimal gold-standard on nine
topologies.

(a) (b)

Figure 5: CDF of the load on links in the (a) middle-low and (b) big-med topologies when using each of the
traffic engineering methods. The horizontal axis is the relative link load (i.e., normalized per each method)
with low toward the left and high toward the right.

the load of the most-loaded link being used between every pair of ports.
That this same balancing algorithm is run in each LXB, and thus at each tier of the hierarchy,

has two related implications worth pointing out. First, while two paths may seem insufficient
(some of the cited prior work uses many more), two paths are chosen for every LXB. If we consider
a source-destination pair between edge ports, which is balanced across two paths, and each of
those paths goes through two child LXBs, this yields eight different paths with only two tiers of
hierarchy; more tiers or traversing additional LXBs quickly grows the path count. Second, when
run at a lower tier, the algorithm makes more localized changes than when run at a higher tier. This
motivates having lower tiers iterate with a higher frequency than higher tiers; this way, there is a
chance to make small (more localized) adaptations before making larger ones (we arbitrarily chose
a ratio of five to one between the frequency of each tier and the one above it).

5.3 Evaluation of Traffic Engineering

We evaluate TE by running simulations on nine topologies (characterized in Table 4). Table 5
shows the worst-case link load for RLP and RST and compares them to the results from the global
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optimal (against which all the results are normalized) and from merely using shortest-path routing
with no TE. In all cases, RLP matches the performance of optimal to within less than a percent.
RST is also generally within a percent of optimal; a single case misses by 22%. Additionally,
leveraging locality means the recursive approaches converge faster: on average, RLP reaches its
best case in 65% of the time needed by the gold standard, and RST in only 15%.

In Figure 5 we look at the distribution of link loads on two topologies. While the goal of the
gold-standard TE algorithm is only to minimize the maximal load, the RLP and RST algorithms do
a better job of spreading the load around (even if they cannot always achieve the same mini-max
load). That is, RLP and RST have fewer highly loaded links (as compared to the gold-standard),
having pushed some of that load off to the more lightly loaded links; the gold-standard does not
bother trying to decrease loads on less-than-maximally-loaded links. This is not to say that this
sort of load spreading could not be made an objective of a global solver – simply that it comes “for
free” when using RSDN’s recursive TE approach.

While we admittedly ignore some real-world concerns in our simulations and analysis, the
result we find is encouraging: we were able to take the two dominant TE paradigms and create
recursive examples of each which fit nicely in the RSDN framework and perform competitively.

6 Network Repair
While the previous two sections have examined control logic written using the RSDN framework,
this section examines a feature of the framework itself, which all control logics automatically
benefit from: network repair.

6.1 Motivation and Design

A common practice for improving network availability is to implement link protection, in which
for every link between two routers (or nodes, in the text below) a and b, an alternate path (not
including that link) is precomputed and then immediately used as a failover route when the link
goes down. This works as long as the failover remains up, but cannot cope when multiple failures
knock out both the primary and failover paths. RSDN uses link protection, but then adds a more
general network repair mechanism that can recover from all failure scenarios (as long as a path
exists).

Our network repair approach is inspired by network virtualization. When routes are computed,
we note the state of the network (i.e., which nodes and links are up). We then embed a virtual
version of this network within whatever the current physical network happens to be; this virtual
network clearly supports the previously computed routes, so they need not be recomputed. Note
that RSDN’s repair approach does not rely on the recursive structure and could therefore be imple-
mented on any network.

To understand our repair algorithm, consider a particular network state (in terms of which
nodes and links are up and down), and the sets and functions shown in Table 6; the network repair
algorithm at node a is as given in Algorithm 1. After applying this simple procedure for each node,
every node a has a set of internal tables that can be used to virtually route through unreachable
nodes. That is, suppose that if a were to send a packet destined for some node x its first two hops
would ordinarily be nodes b and c. When a link fails, if the responsible controller discovers that a
can no longer reach b (because EnsurePath(a,b) fails), then the controller virtualizes b within a

(by including b’s routing table in a), determines where b would have sent the packet (in this case,
node c), and computes a repair path to c using EnsurePath(a,c). If this succeeds, then a can
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Nbr[a] Neighbors of a
HavePath Nodes to which a already has a path.
NeedPath Nodes to which a needs a path.
Vnodes Nodes that a “virtualizes” (includes the for-

warding table for)
EnsurePath(a,b) Ensures that there is a path between a and b

considering the current state of the network.
Returns true if the link between a and b is
up, has working link protection, or if a repair
path can be computed.

Table 6: Network repair sets and functions for node a.

forward the packet directly to c; if it fails, then the procedure recurses and a imports c’s routing
table, determines where c would have routed the packet, and then attempts to directly route to that
node.

This procedure is initiated whenever a neighbor fails (or otherwise becomes unreachable), and
results in a complete set of routing tables. The computational complexity of this operation scales
not with the overall network size but with the complexity of computing repair paths between nearby
nodes (i.e., when EnsurePath finds that there is no direct or protected link between a and b and
must compute a new path). The maximal distance between any two nodes where this function is
invoked is the most consecutive unreachable nodes in a path. It is very unlikely that this distance
will ever be more than a few hops.

Algorithm 1 Network Repair Algorithm.
. Repair algorithm for node a
NeedPath Nbr[a] . Initialize NeedPath
HavePath ; . Initialize HavePath
Vnodes { a } . Initialize Vnodes
while NeedPath 6= ; do

b member(NeedPath) . Take element b
NeedPath NeedPath�b
if EnsurePath(a,b) = true then

. If we can find a path from a to b, we’re done
HavePath HavePath [ b

else
. If no path is found, virtualize b
Vnodes Vnodes [ b

. Need paths to neighbors of b that we can’t reach yet
NewNbrs Nbr[b]�HavePath�Vnodes
NeedPath NeedPath [ NewNbrs

end if
end while
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big-low big-med big-high
light 0.5%:0.04% 0.5%:0.04% 0.5%:0.04%
heavy 4.8%:0.89% 4.2%:0.9% 4.3%:0.9%

Table 7: Average link:node downtimes as percentages of the entire simulation runs for three different topolo-
gies.

6.2 Evaluation of Network Repair

When considering failures, we ran experiments using a failure model based on [24], which ran-
domly fails and recovers links according to distributions measured in the Sprint network, and apply
this same model to switches. We do not include planned link outages, since those can be handled
without loss of connectivity by most SDN-based systems. We looked at a variety of failure sce-
narios, but only report on two here: where links fail at an average rate of once per day, and where
they fail once per ten days, and in each case we arbitrarily set the node failure rate to half of the
link failure rate.

Since no recovery mechanism can provide connectivity when the physical network is discon-
nected, the appropriate performance metric is the percent of time physically connected pairs are
connected by routing; or, for short, the connectivity of the physically reachable pairs (which we
denote by CPRP).8

In analyzing the performance of network repair, we make the following two assumptions. First,
we only consider failures once they have been detected by the sending switch, since there is nothing
a routing or recovery mechanism can do to deal with undetected failures. Second, we assume that
the time to repair a failure is, on average, 50ms. This is based on estimates of how long it takes
(i) for messages to travel from switch to controller and back (to which we allocate 10ms in each
direction, which is roughly the average over all switch-to-controller latencies in our topologies;
this number is low because most links are quite local to their bottom-tier controller), (ii) for the
controller to compute repair paths and generate a response (to which we allocate 10ms, which
is more than reasonable),9 and (iii) the time it takes to install new routes (to which we allocate
20ms). This last quantity is by far the most variable, as it depends on the number of routes, the
router technology used, and other factors outside our control. For example, table insertion when
doing exact matching (as in MPLS, which could be used here for internal forwarding) can be far
faster than when inserting for LPM. Most importantly, the installation time can improve with better
router technology, whereas the others are due to more inherent limitations.

We present performance results of network repair on the three big topologies from Section 5;
we also ran experiments on all the other topologies from Section 5 and omit the (similar) results.
We considered three possible recovery strategies: (a) none, (b) only link protection, and (c) network
repair (which includes link protection). We then ran the simulation for the equivalent of two days,
and recorded what fraction of paths between all source-destination pairs are connected by the three

8Note that it is a nongoal of network repair to perform traffic engineering on short time scales; that is, we accept the
fact that when there is a failure, traffic may need to be routed in ways that unbalances the traffic. Indeed, we believe
many carrier networks are run at relatively low utilization precisely so that this type of short-term traffic rerouting does
not cause overload.

9For all of the simulations, we also measured the time taken to compute the on-demand repair paths and found it to
be minimal. The mean time spent per failure is less than 0.5ms and the maximal time less than 10ms for all controllers
combined – and this is for completely unoptimized Python code.
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(a) (b)

Figure 6: CDF of CPRP (x-axis) for no failure recovery, link protection, and RSDN repair on the big-med
topology under the (a) light and (b) heavy failure scenarios.

Sim. Topo None Link Repair

light
big-low 97.8% 99.79% 99.999977%
big-med 98.7% 99.85% 99.999982%
big-high 98.1% 99.77% 99.999983%

heavy
big-low 82% 96.2% 99.99979%
big-med 86% 97.9% 99.99983%
big-high 85% 96.1% 99.99982%

Table 8: Average CPRPs for no failure recovey, link protection, and RSDN repair on all three big topologies
from Table 4 under both the light and heavy failure scenarios.

recovery strategies. Table 7 shows the average link and node downtimes in these scenarios, which
represent extreme tests of the repair system.

Table 8 summarizes the CPRP for all three topologies under both failure scenarios, and Figure 6
details the results in terms of the CDF of availability for the big-med topology. Note that even under
the heavy failure scenario, where links are down roughly 5% of the time, network repair is able to
provide “five 9s” of CPRP, while no protection offers no 9s and link protection offers a single 9.
This high relative availability is because – in addition to covering the exact same failures that link
protection covers in exactly same way – network repair can recover from all failures (subject only
to table size limits on the switch), and link protection simply cannot. The only reason that repair
does not achieve the maximum possible connectivity is due to the 50ms delay when controller
involvement is required.

One might be surprised that such a mechanism can provide five 9s when the Internet is generally
deemed to be less than three 9s. The distinction is that we are not counting the case where the
network is physically disconnected (since neither routing nor repair can help there) and are only
measuring the availability for the physically connected pairs. What our results show is that with
network repair, the routing algorithm is no longer the availability bottleneck, regardless of what
routing algorithm you use. Instead, the availability bottleneck is strictly physical connectivity,
which must be addressed by other means.
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7 Additional Issues
While the previous three sections focused on the most important uses of RSDN (unicast routing
and traffic engineering) and its most important built-in function (network repair), here we briefly
discuss additional use cases (multicast and anycast) and additional built-in functionality (reliability,
bootstrapping, security).

7.1 Multicast and Anycast

Here we sketch RSDN designs for multicast (which we have actually implemented and simulated)
and anycast (which we have not). Our goal here is merely to show that these services can be easily
accommodated with the RSDN framework.

Multicast: To implement multicast within RSDN, we have developed a CBT-like [3] approach
that is similar to other hierarchical multicast approaches [2]. Each LXB has one or more multicast
core nodes associated with it. A multicast join message at the edge of the RSDN network is directed
to the controller for the LXB of which the receiving switch is a part. This controller establishes
CBT-like state for all members (including the newly joining one) in this LXB, using one of the
LXB’s core nodes. If the LXB had previously not had any members in this group, the join is
forwarded to the parent LXB’s controller. The parent controller will then use one if its multicast
cores to establish CBT-like state between the newly-joining child and any other children that are
part of the group; if the parent has no other children in the group (the notifying one is the first and
only), it again forwards the join to its own parent. This proceeds recursively until reaching an LXB
that already has members of the group (and therefore had already informed its parent) or reaching
the root LXB (at which point there is no one else to notify).

Packets addressed to a multicast group are forwarded to the core within the enclosing lowest-
level LXB, which then broadcasts them along the tree set up within that LXB in response to the
join messages. If the LXB has been notified by its parent that members exist in some other LXB,
the core also forwards packets to its parent core (i.e., the multicast core chosen by the parent LXB).
This recurses, with each core forwarding packets only if it has state indicating that additional mem-
bers exist in either its parent LXB or its child LXBs. Because of RSDN’s hierarchical structure,
there is always a nearby core for a group, so packets are never sent beyond the highest-level LXB
that encloses all the members of the group. While, for brevity, we do not present evaluation here,
the ultimate result is that when group members exhibit geographic locality, there can be a savings
in state and latency, particularly when compared to a single core with suboptimal placement.

Anycast: If one ignores address aggregation, then one can implement anycast merely by an-
nouncing the same address from multiple locations and have the unicast route computation find
the path to the nearest anycast destination. If one wants to limit the impact on routing state, one
can modify the multicast solution described above to provide core-based routing to the nearest
anycast destination. Services register themselves as serving the anycast address similarly to how
one joins a multicast group. Messages from a client to an anycast address are forwarded to the
local anycast core. Unlike with multicast, an anycast core forwards the packet to the single clos-
est group member instead of all members. Typically this would be a local member. If no local
member exists, the core would forward the packet to its parent core one level up the hierarchy. If
this heuristic approach (assuming members reachable through children are closer than members
reachable through the parent) is unsuitable for a given deployment, then exact distances could be
collected and updated via the join and leave messages so that at every point in the hierarchy, the
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core knows the distance to the nearest anycast member via its parent and via each child. Return
packets are simply unicast from the server back to the client normally.

7.2 Reliability, bootstrapping, security

All SDN designs must cope with these three issues, and RSDN has no special advantage or disad-
vantage over other SDN systems in these respects. In terms of reliability in the face of controller
failures, we assume that each logical controller is, in reality, a set of controllers that (i) is suffi-
ciently distributed so that they all fail only if most of the components in the associated LXB have
failed, and (ii) uses a coordination system that allows the logical controller to continue operating
as long as most (or any) of the constituent controllers remains operational and connected.

RSDN can operate with either an in-band or out-of-band control network, but the in-band
case requires some care to successfully bootstrap. RSDN could use a legacy routing algorithm to
connect the set of controllers that comprise a logical controller, and the logical controllers to each
other. Integrating this with RSDN need not be difficult (e.g., by using a separate set of routing
tables), and is a far easier task than general Internet routing as only the RSDN controllers need to
be routed between using this system.

As for security, we often hear the lament that SDN introduces new threat vectors because an
attacker could potentially connect to a switch and gain control over it by pretending to be a con-
troller (or influence a controller by pretending to be a switch). However, this is not a fundamentally
new attack vector: almost all switches have some sort of remote administration capability which,
in the hands of an attacker, could be a significant tool to disruption. Whether SDN or legacy, input
to network elements should be authenticated.

8 Summary
RSDN is, to our knowledge, the first design that combines the programmability of SDN networks
with the hierarchy of legacy networks to create a recursive framework for global carrier networks.
The designs presented in Sections 4, 5, and 7 demonstrate that RSDN’s programmatic API – built
around two basic event handlers – provides a clean way to implement a range of unicast, anycast,
multicast, and traffic engineering solutions over hierarchical network infrastructures. Moreover,
RSDN incorporates a novel network repair mechanism that provides rapid recovery across all such
routing functions. We evaluated these designs via simulation on synthetic network topologies that
mimic the essential properties of global carrier networks (and we believe these topologies are far
superior to the various measured topologies in this respect). While we only presented results from
a few of these topologies, we ran simulations over many other topologies and found similar results.

The routing designs presented here are not fundamentally novel in themselves, but they do
illustrate that RSDN enables one to achieve good performance (balancing optimality, state, and
computation time) and high availability (essentially matching that of the underlying physical con-
nectivity, independent of the particular routing algorithm). Moreover, the approach advocated here
could easily be integrated into current SDN controllers (and we have done so with POX [30]).

Conceptually, the approach we advocate is complementary to the horizontal scaling we see in
existing production SDN controllers: horizontal scale-out provides reliability for a single logical
controller, while RSDN’s recursive structure leverages network localities to enable algorithms that
scale globally but recover locally. Thus, we believe RSDN is a promising approach that comple-
ments the current industry directions (of controller scale out) and will enable SDN to control the
basic routing functions – the fabric – of global carrier networks.
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